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We study the gauge link contribution to the dipole type transverse momentum dependent distributions 
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to search for the evidence of the Coulomb correction in the Bethe-Heitler process in eA collisions at EIC 
and EicC.
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1. Introduction

The study of QED processes in a strong Coulomb field has a long history pioneered by the Bethe and Maximon’s seminal work [1], 
in which the Furry-Sommerfeld-Manue wave functions were used to calculate Coulomb corrections (CC) to the pair production and 
bremsstrahlung cross section. For a comprehensive review on this topic, we refer readers to the reference [2]. It later received renewed 
interest in the heavy ion physics community around the time when physics operation began at Relativistic Heavy Ion Collider (RHIC). A 
lot of efforts have been made to compute pure electromagnetic lepton pair production in Ultra-Peripheral heavy ion Collisions (UPC) to all 
orders in Zα where Z is the nuclear charge number. The summation of multiple photon re-scattering can be achieved by either making 
the systematical Eikonal approximation formulated in the impact parameter space [3–6] or solving the Dirac equation in the presence 
of a strong Coulomb field [7–10]. The agreement between these more modern methods and the original Bethe-Maximon’s results was 
confirmed in Ref. [11].

The total cross section of lepton pair production in UPCs is predicated to be reduced by the Coulomb correction. However, there 
is no clear evidence of the Coulomb correction observed in heavy ion collisions so far [12,13]. The fact that experimental data is well 
described by the lowest order QED calculation [14–22] leaves no much room for any higher order QED effect. On the other hand, as 
the experimental observation of the Coulomb correction crucially depends on the overall normalization of the total cross section that 
suffers from various uncertainties (reliable Coulomb dissociation estimations, luminosity of heavy ion beams, and faithful reproduction of 
experimental momenta cuts, etc.), no definitive conclusion can be drawn at this stage.

In this work, we study the Coulomb correction to the Bethe-Heitler (BH) process in eA collisions. The deviation from the single photon 
exchange can be experimentally checked by comparing with the cross section of the BH process in ep collisions. The precise determination 
of the absolute normalization is thus not required for searching the evidence of the Coulomb correction in this process. The distribution of 
the total transverse momentum of the scattered electron and the emitted photon is found to be very sensitive to the Coulomb correction. 
It should be feasible to test our predications at the future Electron Ion Collider (EIC) in US and the Electron Ion Collider in China (EicC). 
We notice that this subject has been addressed in some earlier publications [23–25]. The present work differs from the previous studies 
in two aspects: 1) The problem is re-formulated in the framework of transverse momentum dependent factorization [26], based on which 
the multiple photon re-scattering effect is naturally incorporated into the gauge link. In addition, the Sudakov effect arising from soft 
photon radiation can be easily taken into account in our calculation. 2) The Coulomb correction to the linear polarization of coherent 
photons [29,30] is included. We investigate how the polarization dependent observable is affected by the Coulomb correction as well.

The organization of this paper is as follows. We first give the matrix element definition for the dipole type photon TMDs in which the 
initial and final state multiple photon scattering in the BH process is encoded in a close loop gauge link. We compute the expectation 
value of the photon TMD matrix element in a boosted Coulomb potential and obtained a close form for the case of point-like charged 
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particle. For an extended charge source, the photon TMDs have to be calculated numerically. The resulting photon TMDs clearly deviates 
from the widely used Weizsäcker-Williams (WW) distribution when Z is large. In Sec. 3, we compute the differential cross section of the 
BH process at EIC and EicC energies using the derived photon TMDs as the input. The Coulomb correction is signaled by the ratio of the 
cross sections in eA to that in ep collisions. Furthermore, we show that the cos 2φ azimuthal modulation induced by the linearly polarized 
photons is slightly enhanced due to the Coulomb correction. The paper is summarized in Sec. 4.

2. The Coulomb correction to the photon TMDs

In the Bethe-Heitler process, the incoming electron multiple rescattering off the boosted Coulomb potential can occur either before 
emitting a photon or after a photon being radiated. At low virtuality, the exchanged photons coherently couple with charged heavy ion 
as a whole. The multiple coherent Coulomb scattering is much more pronounced in eA collisions than that in ep collisions, because 
the flux of coherent photons is enhanced by the factor Z 2. If the calculation is carried out in TMD factorization, the cross section can 
be expressed as the convolution of the hard part and photon TMD distributions. The imaginary phase accumulated from the final and 
initial state interactions is summarized into a close loop gauge link in the photon TMD matrix element. In analogy to the gluon TMD 
distributions [31], the formal operator definition of photon TMDs is given by,

∫
dy−d2 y⊥
P+(2π)3

eik·y〈P |F μ
+⊥(0)U †(0⊥)U (y⊥)F ν+⊥(y)|P 〉∣∣y+=0 = δ

μν
⊥
2

xf γ
1 (x,k2⊥) +

(
kμ
⊥kν⊥
k2⊥

− δ
μν
⊥
2

)
xh⊥γ

1 (x,k2⊥), (1)

where the transverse tensor is commonly defined: δμν
⊥ = −gμν + pμnν + pνnμ and k2⊥ = δ

μν
⊥ k⊥μk⊥ν . Two photon TMDs, f γ

1 and h⊥γ
1 , are 

the unpolarized and linearly polarized photon distribution, respectively. U †(0⊥)U (y⊥) and the transverse gauge link which is not explicitly 
shown here form a close loop gauge link. U (y⊥) is defined as,

U (y⊥) = Peie
∫ +∞
−∞ dz− A+(z−,y⊥). (2)

One should notice that the gauge link here plays the no role in ensuring gauge invariance as photon doesn’t carry charge. Note that in 
analogy to the small x gluon TMDs [27,28], one can define a Weizsäcker-Williams type photon TMD. However, unlike the QCD case, the 
gauge link is absent in the WW type photon TMD, simply because photon doesn’t carry charge. This also can be intuitively understood as 
follows: The WW photon TMD can be probed via lepton pair production in the correlation limit where lepton pair stay very close to each 
other in the position space. The produced lepton pair system can be effectively viewed as the charge neutral object when using coherent 
photons with long wave length as probe. Consequently, the final state interaction is power suppressed as explicitly shown in Ref. [21], 
leading to the absence of the staple like gauge link in the WW type photon TMD.

As argued above, at low transverse momentum, photons coherently generated by the charge source inside relativistic nuclei dominate 
the distribution. Both the unpolarized and polarized distributions of coherent photons can be computed with the equivalent photon 
method. If one neglects the gauge link contribution, the photon distributions associated with a boosted Coulomb potential are given 
by [29,30,32,33],

xf γ
1,0(x,k2⊥) = xh⊥γ

1,0 (x,k2⊥) = Z 2α

π2 k2⊥

[
F (k2⊥ + x2M2

p)

(k2⊥ + x2M2
p)

]2

(3)

where F is the nuclear charge form factor, and Mp is proton mass. The subscript “0” denotes the WW photon distributions. In the small 
x limit, two photon distributions xf γ

1,0 and xh⊥γ
1,0 become identical [29,30].

The main purpose of this work is to investigate how the photon distributions are affected by the gauge link. To this end, we first 
express the gauge potential as,

V(y⊥) ≡ e

+∞∫
−∞

dz− A+(z−, y⊥) = αZ

π

∫
d2q⊥e−iy⊥·q⊥ F (q2⊥)

q2⊥ + δ2
(4)

where a photon mass δ is introduced for regulating the infrared divergence. The strength of the field appears in the photon TMD matrix 
element takes the similar form,

Fμ(x, y⊥) ≡
+∞∫

−∞
dy−eixP+ y−

F μ
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4π2
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p

(5)

where x is the longitudinal momentum fraction carried by photon. The full expression of the photon TMD distributions incorporating the 
Coulomb correction (the gauge link contribution) is then given by,

∫
d2 y⊥d2 y′⊥

4π3
e−ik⊥·(y⊥−y′⊥)Fν(x, y⊥)F∗μ(x, y′⊥)ei
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]
= δ
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2
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2

)
xh⊥γ

1 (x,k2⊥) (6)

For a point-like charged particle, the close form solution of the above integration exists. By setting F (q2⊥) = 1 and F (q2⊥ + x2M2
p) = 1, one 

readily obtains,
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Fig. 1. The ratio R = f γ
1 / f γ

1,0 is plotted as the function of k⊥
xM p

for a point like charged particle (left panel). The same ratio is plotted as the function of k⊥ for a Pb target at 
different x (right panel).

V(y⊥) = 2Zα lim
δ→0

K0(|y⊥|δ) ≈ Zα

(
−2γE + ln

4

y2⊥δ2

)
(7)

Fμ(x, y⊥) = Ze

2π

yμ
⊥

|y⊥| xMp K1(|y⊥|xMp) (8)

Inserting these results into Eq. (6),
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One notices that the infrared cutoff scale δ dependence now drops out. Carrying out the integration over y⊥ and y′⊥ , we arrive at,
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(10)

where 2 F1 is the hypergeometric function. The unpolarized and the linearly polarized photon TMDs remain the same after taking into 
account gauge link contribution. The similar relations between the dipole type gluon TMDs have been established in earlier work [34–36]
for both cases of unpolarized target and transversely polarized target. In the limit Z → 1, the above result is reduced to,

xf γ
1 (x,k2⊥) = xh⊥γ

1 (x,k2⊥) ≈ Z 2α

π2

k2⊥
(k2⊥ + M2

px2)2
(11)

which recovers Eq. (3) as it should. Furthermore, when k2⊥ � x2M2
p , the photon TMDs are simplified as,

xf γ
1 (x,k2⊥) = xh⊥γ

1 (x,k2⊥) ≈ Z 2α

π2

1

k2⊥
(12)

This indicates that the gauge link contribution, i.e. the Coulomb correction, to the photon TMDs is vanishing with increasing transverse 
momentum for the case of point like particle. The photon distributions are altered by the multiple re-scattering effect only in the low 
transverse momentum region. However, this is no longer true for an extended charge source as shown below.

According to Eq. (10), k2⊥xf γ
1 (x, k2⊥) is a function of the single variable |k⊥|

xMp
rather than of two variables |k⊥| and x. In Fig. 1, we plot 

the ratio R = f γ
1 / f γ

1,0 as the function of |k⊥|
xMp

for a point-like particle with the various choices of Z . One sees that the photon TMD is 

significantly reduced by the Coulomb correction at the low value of |k⊥|
xMp

. In the case of an extended particle, the photon distribution is 

no longer the function of the single variable |k⊥|
xMp

. The ratio as the function of k⊥ at different x for a Pb target is displayed in Fig. 1(right). 
In our numerical estimation, the nuclear charge form factor is taken from the STARlight MC generator [37],

F (|�k|) = 4πρ0

|�k|3 A

[
sin(|�k|R A) − |�k|R A cos(|�k|R A)

] 1

a2�k2 + 1
(13)

where R A = 1.1A1/3 fm, and a = 0.7 fm. This parametrization is very close to the Woods-Saxon distribution. Our numerical results 
demonstrate that the photon distribution of the charged heavy ion is also suppressed at low k⊥ due to multiple Coulomb re-scattering. 
However, in a sharp contrast with the point like particle case, one notices that the ratio exceeds 1 at relatively large k⊥ .

It is also interesting to investigate how the integrated photon distribution is modified by the Coulomb phase. The integration over 
k⊥ has to be carried out with extreme caution [11]. For a point like particle, the difference between the integrated dipole type photon 
distribution (with the Coulomb correction) and the integrated WW photon distribution (without the Coulomb correction) is given by,



4 Z.-h. Sun et al. / Physics Letters B 808 (2020) 135679
Fig. 2. The ratio R and R0 as the function of q⊥ (left panel) and yγ (right panel) for a Pb target at EicC and EIC. P⊥ is integrated over the regions [300 MeV, 400 MeV] for 
EicC and [1.5 GeV, 2 GeV] for EIC. In the left plot, the emitted photon rapidity yγ is integrated over [0.5, 1]. In the right plot, the total transverse momentum q⊥ is fixed to 
be 20 MeV.∫

d2k⊥
[

xf γ
1 (x,k2⊥) − xf γ

1,0(x,k2⊥)
]

= −2Z 2α

π
f (Zα) (14)

where f (Zα) ≡ Reψ(1 + i Zα) + γE with ψ(x) = d ln 
(x)/dx is just the well known universal function derived in the Bethe-Maximon 
theory [1]. We also numerically test this relation and confirm its validation.

This is a quite puzzling result in the sense that photon PDF seems to be process dependent. For example, the photon PDF enters 
into the cross section of dilepton production in ultra-peripheral heavy ion collisions receives no coulomb correction. This is because the 
produced lepton pair is a charge neutral object and the final state interactions with soft photons are absent. As a consequence, the gauge 
link in the WW type photon TMD is absent. Correspondingly, the photon PDF that is obtained by integrating over k⊥ for the WW photon 
TMD is free from the Coulomb correction and thus different from the one under consideration. We will thoroughly explore this issue in a 
future publication.

3. Observables

The photon TMDs with a close loop gauge link can be probed in the Bethe-Heitler process,

e( P̄ ) + γ (xP + k⊥) → γ (p1) + e(p2), (15)

where xP + k⊥ is understood as the total momentum transfer via multiple photon exchange. We focus on a specific kinematical region, 
the so-called correlation limit where the total transverse momentum k⊥ = p1⊥ + p2⊥ of the final state produced particles (γ + e) is 
much smaller than P⊥ = p1⊥−p2⊥

2 ≈ p1⊥ ≈ −p2⊥ . The possible background to the BH process under consideration is the process where 
the real photon is emitted from large nuclei instead of electron. But this channel is either lack of Z 2 enhancement or suppressed due 
to nuclear charge form factor in the kinematical region that we are interested in. Therefore, this background can be safely neglected. In 
the correlation limit, the calculation of the cross section can be formulated either in the CGC framework or in the TMD formalism. The 
equivalence of the two approaches has been verified for the gluon initiated bremsstrahlung process [34,38]. Obviously, all the analysis can 
be extended to the corresponding QED process. Since there are two well separated scales in the correlation limit, large logarithm terms 
arise from unobserved soft photon radiations show up in higher order QED calculations. It is conventional to express the differential cross 
section in the impact parameter space to facilitate resumming these large logarithms,

dσ

dP .S
= HBorn

∫
d2r⊥
(2π)2

eir⊥·q⊥e
− αe

2π ln2 P 2⊥
μ2

r

∫
d2k⊥eir⊥·k⊥ xf γ

1 (x,k2⊥) (16)

with μr = 2e−γE /|r⊥|. Here the Sudakov factor e
− αe

2π ln2 P 2⊥
μ2

r takes care of all order soft photon radiation effect up to the double leading 
logarithm accuracy. The phase space factor is defined as dP .S = dyγ d2 P⊥d2q⊥ , where yγ is the rapidity of the emitted photon. The hard 
coefficient is given by,

HBorn = 2α2
e z2 1 + (1 − z)2

P 4⊥
(17)

where z is the longitudinal momentum fraction of the incoming electron carried by the final state photon. In the above formula, the 
electron mass has been neglected. This is a very good approximation at EIC and EicC energies.

The Fig. 2 displays the two ratios R(q⊥) and R0(q⊥) defined as follows,

R(q⊥) = dσe A

Z 2dσep
R0(q⊥) = dσ 0

e A

Z 2dσ 0
ep

(18)

where dσep and dσe A are the exact cross sections of the BH process in ep and eA scatterings respectively. For a comparison, the cross 
sections dσ 0

ep and dσ 0
e A are computed using the conventional equivalent photon approximation (see Eq. (3)). The parametrization F (|�k|) =

1/(1 + �k2

2 )2 with Q 2
0 = 0.71 GeV2 for the proton charge form factor is used for determining the photon distribution of proton. Note that 
Q 0
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Fig. 3. The azimuthal asymmetry as the function of q⊥ (left panel) and yγ (right panel) with and without taking into account the Coulomb corrections for a Pb target at 
EIC. Q 2 is fixed to be Q 2 = 4 GeV2. The asymmetry is averaged over the P⊥ region [1.5 GeV, 2 GeV]. In the left plot, the emitted photon rapidity yγ is integrated over the 
region [2, 2.8]. In the right plot, the total transverse momentum q⊥ is fixed to be 50 MeV.

the Coulomb correction to photon distribution of proton is negligible. Therefore, we simply use the WW photon distribution to calculate 
the cross section in ep collisions. The proton magnetic moment contribution to the BH cross section at low q⊥ can be neglected. The 
rapidity yγ in the Fig. 2(right) is defined in the lab frame where electron beam and heavy ion beam energies are 18 GeV and 100 GeV 
for EIC respectively, while they are 3.5 GeV and 8 GeV for EicC respectively. From Fig. 2, one sees that the ratios R and R0 are rather 
different in the most kinematical regions at EIC and EicC energies. If the experimentally measured ratios deviate from these dashed lines 
(R0) presented in Fig. 2, it would be a clear evidence of the Coulomb correction.

We now turn to study the impact of the Coulomb correction on the polarization dependent observable in the BH process. A cos 2φ

azimuthal modulation in the BH cross section is induced by the linearly polarized photons if a virtual photon instead of real one is emitted 
in the final state. The similar phenomena in QCD have been studied in Ref. [34,38], from which one can readily recover the azimuthal 
dependent cross section in the QED case,

dσ

dP .S
=

∫
d2r⊥
(2π)2

eir⊥·q⊥e
− αe

2π ln2 Q 2

μ2
r

×
∫

d2k⊥eir⊥·k⊥
{

H ′
Bornxf γ

1 (x,k2⊥) + Hcos(2φ)
Born

[
2(k̂⊥ · P̂⊥)2 − 1

]
xh⊥γ

1 (x,k2⊥)
}

(19)

where k̂⊥ = k⊥/|k⊥| and P̂⊥ = P⊥/|P⊥| are unit transverse vectors. The hard parts take the form,

H ′
Born = 2α2

e z2

[
1 + (1 − z)2(

P 2⊥ + (1 − z)Q 2
)2

− 2Q 2 P 2⊥z2(1 − z)(
P 2⊥ + (1 − z)Q 2

)4

]

Hcos(2φ)
Born = 2α2

e z2 −2Q 2 P 2⊥z2(1 − z)(
P 2⊥ + (1 − z)Q 2

)4
(20)

To avoid having to deal with a three scale problem, we restrict to the kinematical region where Q 2 is of the order of P 2⊥ . This happens 
to be the optimal region to observe cos 2φ azimuthal asymmetry as suggested by our numerical estimation. Moreover, as long as Q 2 is 
sufficiently large, the Coulomb multiple rescattering effect can be neglected for the lepton pair production via the virtual photon decay as 
explained above.

We plot the azimuthal asymmetries computed for EIC energy in Fig. 3. Here the azimuthal asymmetries, i.e. the average value of cos 2φ

is defined as,

〈cos(2φ)〉 =
∫ dσ

dP.S.
cos 2φ dP.S.∫ dσ

dP.S.
dP.S.

(21)

As shown in Fig. 3(right), the asymmetry becomes larger with the increasing photon rapidity. The maximal value of the asymmetry 
reaches roughly 10%. According to Eq. (10), the linearly polarized photon TMD and the unpolarized photon TMD are modified by the 
multiple Coulomb rescattering effect in the same way, and thus remain identical. If the Sudakov effect were not considered, the azimuthal 
asymmetry would not be affected by the Coulomb correction. However, the azimuthal averaged cross section and cos 2φ dependent part 
evolve with the scale P⊥ following a different pattern. The different initial conditions for the photon distributions would lead to the 
different cos 2φ asymmetries at higher scale P⊥ . Fig. 3 displays the cos 2φ asymmetries computed with the photon distributions given in 
Eq. (6) and the WW photon distributions. One sees that at EIC, the deviation caused by the Coulomb correction is visible though tiny. On 
the other hand, at EicC, the difference (not shown here) is completely negligible since the evolution effect is much weaker at low energy 
scale. Therefore, it appears to be not optimistic to observe the Coulomb correction effect via the polarization dependent observable at 
neither EIC nor EicC.

4. Summary

In this paper, we performed the detailed analysis of the dipole type photon TMDs associated with a boosted Coulomb potential. Our 
main focus is on the contribution of the close loop gauge link to photon transverse momentum distributions, which is conventionally 
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refereed to as the Coulomb correction in the study of strong field QED. Due to the large Z enhancement, the Coulomb correction (or 
gauge link contribution) alters transverse momentum distributions of photons substantially for a charged heavy ion target, as compared 
to the Weizsäcker-Williams photon distribution. The photon TMDs under consideration can be accessed in the BH process. Our numerical 
results show that it is promising to observe the Coulomb correction at EIC and EicC. The investigation of the Coulomb correction in the BH 
process will offer us a clean way to test the TMD formulation of initial/final state multiple re-scattering effects, and would be beneficial for 
deepening our understanding of the gauge link contribution in QCD processes. Moreover, the accurate account of the Coulomb correction 
to the BH process is also important for the determination of luminosity at EIC and EicC.
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