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Exploration of signal processing methods for
superconducting magnet and quench data

Abstract

Quenching is the phenomenon of a superconducting magnetic material carrying current

transitioning into a regular conducting material. This may cause severe and irreparable dam-

age to the superconductor due to Joule heating. The Magnet Department at Fermi National

Accelerator Laboratory (FNAL) has acquired experimental data through quench antenna ar-

rays that are recorded when the quench is detected. These data are in terms of voltage signals

that are sampled at 100kHz for several minutes. There are multiple channels and each channel

provides a data set of more than 20 million observations, while there is one channel, called the

trigger channel which shows the time when quench is detected. Despite some advancements

that were made including machine learning, data complexity still shadows the progress. In

this work, we studied a multi-resolution analysis of the quench antenna data through the Haar

wavelet transform. In particular, we applied the maximally overlapped discrete wavelet trans-

form (MODWT) of a suitable level L to the given data and then projected it onto the wavelet

basis. This decomposes a given signal (Original data) x ∈ R
N into L + 1 subspaces of RN

.

One of the subspaces called the approximation, captures the trend of the signal, and the others,

called the details, capture the fluctuations at different frequency bands. This decomposition

provides a clear trend of the data at a suitable level and also various activities (spikes) are seen

in the details of the decomposition at every level. These spikes might reveal some information

about the quench under investigation but in any case, give information about magnet behavior.

Also, this decomposition is seen to be very useful in removing noise present in the data due to

the source or mechanism of the experiment.
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1 Introduction

Superconducting magnets are used widely in particle accelerators since they carry large current

densities with no electrical resistance. They generate very intense magnetic fields. These generated

fields are then responsible for keeping particle beams stable and precisely aligned, or squeezing

the beams closer together when they enter a particle detector. Thus, superconducting magnets

play an extremely important role in ensuring the normal operation of particle accelerators. The

resistance of the magnet coil windings is zero in the superconducting state, so it requires no energy

to maintain the current flow. If the coil temperature rises above the superconductivity threshold, the

windings suddenly develop a finite resistance. The circulating current passing through this elevated

coil resistance creates heat, which quickly results in further expansion of the resistive zone. This

irreversible phenomenon is called quench. Having large stored energy, magnets can be damaged

by quenches due to localized heating, high voltage, or large force transients. The loss has a huge

price. The available quench protection systems can detect quenches only after they happen.

Fermi National Accelerator Laboratory (FNAL) has been developing multiple versions of flexi-

ble quench antennas (flex-QA), including some specially optimized for high sensitivity and/or high

resolution, to characterize quench events and transients during current ramping in superconducting

magnets [1]. Flex-QA arrays can be used to pinpoint quench locations with remarkable precision,

although the time development of signals was not fully characterized. Still, acoustic sensors, ini-

tially developed by Lawrence Berkeley National Laboratory (LBNL) [2] were also used in many

magnet tests and are becoming a standard tool for magnet characterization. Both quench antenna

and acoustic sensors can gather data during the whole current ramp (to quench) of a magnet and the

combined data provide extremely rich and detailed information about magnet behavior and, pos-

sibly, quenches. Authors in [3] have established that there could be quench precursors that exist

in acoustic data by investigating a dynamic learning setup using Auto-Encoder (AE) Deep Neural

Network (DNN). Those manifest as anomalies in acoustic data during current ramps. While some

of the current research on magnet data and applications at FNAL can be found in [1], [3], and [4],

what is missing from all studies so far is a detailed mathematical investigation on signal properties

and anomalies in the large amount of data available.

Understanding the quench antenna data information content for both ramp and quench data

using mathematical tools for signal processing, with similarities to [5], is the objective of the

proposed work.

Research Objectives

The fact that data from quench antenna and acoustic data have a lot of features during magnet

ramp(s) and quench(es) has been established. Finding relevant features in data or relations between

“events” in data or different parts of data is still in the early steps. An important aspect of those

developments is signal processing and exploring mathematical tools to extract maximal useful

information. The research objective of this project is to further study and advance the topic of data

processing with the aim being to find proper mathematical tools and techniques to describe the

processes we observe in terms of relations over time or space, eventually linking earlier magnet

behavior to actual quenches. We will apply maximally overlapped discrete wavelet transform on

the quench antenna data.
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Notations

Throughout the paper Z, and R are used to denote the set of integers and the set of real numbers

respectively. N denotes the length of the data, Fs denotes the sampling frequency, and L denotes

the level of wavelet decomposition. A scaling function is denoted by φ while ψ denotes the wavelet

function. The space L2(R) is a usual Hilbert space but here it can be considered as a space of finite

energy signals.

2 Method of Wavelet Analysis

2.1 Continuous Wavelet Transform

Wavelet functions provide time and frequency information of a signal together unlike the Fourier

transform which provides localized frequency information. This transformation yields a multires-

olution of the signal [8]. A wavelet is a function ψ ∈ L2(R) with zero average. A wavelet family

ψa,b is the set of functions generated by scaling and translation of a given mother wavelet ψ, viz.

ψa,b(t) = |a|−
1

2ψ

(
t− b

a

)
, (1)

where a, b ∈ R, a 6= 0 are the scaling and translation parameters respectively.

The continuous wavelet transform (CWT) of a signal f(t) ∈ L2(R) is defined as

Wψf(a, b) := |a|−
1

2

∫ ∞

−∞
f(t)ψ∗

(
t− b

a

)
dt =: 〈f, ψa,b〉 , (2)

where ψ∗ is the complex conjugate of the function ψ. This inner product captures the correlation

between the function f(t) and the wavelet family ψa,b at each scale a and translation parameter b.
The numbers 〈f, ψa,b〉 are called the wavelet coefficients. If a signal has a major component within

the current scale, the CWT coefficients calculated within this scale in the time-scale domain would

be relatively large. This dilation and translation of wavelet make it an applicable transformation

because it can reveal transient features in both time and frequency domains. This transformation is

invertible, so a perfect reconstruction of the signal f(t) is possible. Theoretically, this transforma-

tion works perfectly but in practice, there are infinitely many coefficients and there is redundancy

in the representation of a signal.

Let φ be such that its integer translates φ0,k(x) := {φ(x − k), k ∈ Z} form an orthonormal

basis for some closed subspace V0 ∈ L2(R), i.e. V0 = span{φ(t− k), k ∈ Z}. The function φ
is called the scaling function and the space V0 is called the approximation space. It turns out that

the family of functions φj,k := 2
−j

2 φ(2−jt− k), k ∈ Z forms an orthonormal basis for Vj, where

Vj = span{φj,k, k ∈ Z}. This is an approximation space at scale at scale 2j. This generates a

sequence of closed subspaces of L2(R)

.....V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · . (3)

This is what constitutes a multi-resolution analysis (MRA) of the space L2(R) [8]. We assume

that the signal is in the space V0. In this case it is said to be at a scale 20 = 1. We can approximate
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the signal by projecting the signal onto the space V1 as well. Since V1 ⊂ V0, and the set φ(t −
k), k ∈ Z forms an orthogonal basis for V0, some extra functions are needed to have an orthogonal

basis for V1. These extra functions are wavelet functions ψ(t − k), k ∈ Z. This wavelet family

spans a space W1 ⊂ V0, so that V0 = V1

⊕
W1. This approximation is at scale 21 = 2. This is

called level 1 approximation. We therefore get a sequence of subspaces · · ·W2 ⊂ W1 ⊂ W0 ⊂
W−1 ⊂ · · · , such that Vj = Vj+1

⊕
Wj+1. By iteration of the above, we obtain Since V0 =

Vj

⊕
Wj

⊕
Wj−1

⊕
· · ·

⊕
W2 +

⊕
W1. So the function f(t) ∈ V0 can be represented as

f(t) =
∑

k∈Z

aj+1
k φ(2−(j+1)t− k) +

j∑

i=1

∑

k∈Z

bikψ(2
−it− k),

where aj+1
k and bj+1

k are the scaling and wavelet coefficients. Thus the function f(t) can be de-

composed as

f(t) = fj +
∑

i=1

wj, (4)

where fj is the projection onto Vj and wj is the projection onto Wj. The simplest wavelet is

the well-known Haar wavelet, whose scaling function φ, and the wavelet function ψ are given

respectively by

φ(x) =

{
1 if 0 ≤ x < 1,
0 otherwise,

ψ(x) =

{
1 if 0 ≤ x < 1/2,
−1 if 1/2 ≤ x < 1.

0 1

−1

0

1

0 1

−1

0

1

Figure 1: Haar scaling function and Haar wavelet function

2.2 Discrete Wavelet Analysis

The discrete wavelet transform (DWT) is a sampled wavelet transform applicable to digital signals,

it provides a non-redundant representation of the signal and this can be easily implemented. For
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this, we choose a mother wavelet function ψ and the corresponding scaling function φ. Throughout

this paper, we adopt the convention that the given signal lies in a space V0 ∈ R
N ., where N is the

length of the signal. This signal can be decomposed as V = V1

⊕
W1, and recursively

V0 = VL

⊕
WL

⊕
WL−1 + · · ·

⊕
W1,

provides the L− level decomposition of the given space V0. The space VL captures the average

trend of the signal at a specified scale, and the subspaces W1, · · ·WL are related to the changes

of averages over specific scales. The parameter L determines the scale and magnitude of the

corresponding scaling function. The parameter k determines the time displacement of the wavelet.

The wavelet coefficients capture the details as the signal is approximated by the scaling function.

The subspace VL maintains the domain properties of the signal and the subspaces Wj preserve its

properties in the frequency domain. The space Wj contains the frequency information of the signal

in the frequency band Fs

2j+1 ≤ ω ≤ Fs

2j
, Fs is the sampling frequency. The space VL contains the

frequency information for the frequency range 0 ≤ Fs

2L+1 . The decomposition level is guided by

the signal and the wavelet chosen. We are concerned with only the Haar wavelet in this study for

which the maximum level is given by Log2N [8] but it’s not necessary to the maximum leve

2.3 Discrete Haar Wavelet Transform

Discrete Haar wavelet transform is a 2 tap wavelet transform. The scaling and the wavelet filter

coefficients are denoted by hj,k, and gj,k, where j denotes the level and k denotes translation. The

level 1 scaling filters are h1,0 = h1,1 = 1√
2
, and the wavelet filters are g1,0 = 1√

2
, and g1,1 = − 1√

2
[8].

Example 1 Let N = 8, let x = (x0, x1, · · · , x7)
T ∈ R

8 be a signal, where T denotes the trans-

pose. Its level 1 Discrete Haar transform W̃1x provides the approximation coefficients a1 and

detail d1 which are given by W̃1x = (S1x,W1x)
T = (a1, d1)

T , where

W̃1 =




1√
2

1√
2

0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2

1√
2

− 1√
2

0 0 0

0 0 1√
2

− 1√
2

0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2




=

(
S1

W1

)

This decomposition projects the vector x onto two 4 dimensional subspaces of R8. It turns out that

the projection onto the scaling and wavelet spaces as in the equation (4) is given by [8],

A1 = ST
1 S1x, and D1 = W T

1 W1x, so that x = A1 +D1.

For the level 2 transform, there are 22 = 4 coefficients. They are h2,0 = h2,1 = h2,3 = h2,4 = 1
2
,

g2,0 = g2,1 =
1
2
, and g2,1 = g2,3 = −1

2
. W2x provides the approximation coefficients a2 and detail
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d1 and d2 which are given by given by W̃2x = (S2x,W2x,W1x)
T = (a2, d2, d1)

T , where

W̃2 =




1
2

1
2

1
2

1
2

0 0 0 0
0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

−1
2

−1
2

0 0 0
0 0 0 0 1

2
1
2

−1
2

−1
2

1√
2

− 1√
2

0 0 0 0 0

0 0 1√
2

− 1√
2

0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2




=




S2

W2

W1




At the third level, there are 23 = 4 coefficients. The scaling coefficients are h3,0 = h3,1 = h3,2 =
h3,3 = h3,4 = h3,5 = h3,6 = h3,7 =

1
2
√
2
, g3,0 = g3,1 = g3,2 = g3,3 =

1
2
√
2
, and g3,4 = g3,5 = g3,6 =

g3,7 = − 1
2
√
2
. W3x provides the approximation coefficients a3 and detail d1, d2, and d3 which are

given by given by W̃1x = (S3x,W3x,W2x,W1x)
T = (a3, d3, d2, d1)

T , where

W̃3 =




1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

1
2

1
2

−1
2

−1
2

0 0 0
0 0 0 0 1

2
1
2

−1
2

−1
2

1√
2

− 1√
2

0 0 0 0 0

0 0 1√
2

− 1√
2

0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2




=




S3

W3

W2

W1




This decomposition projects the vector x onto four 4 subspaces of R8. They are a scaling subspace

(one dimensional), and 3 wavelet subspaces ( four, two, and one dimensional each) and it turns

out that the projection onto the scaling and wavelet spaces as in (4) is given by [8],

A3 = ST
3 S3x, D3 = W T

3 W3x, D2 = W T
2 W2x,D1 = W T

1 W1x,

so that the multiresolution decomposition is given by

x = A3 +
3∑

i=1

Di (5)

Note 1 Since N = length(x) = 23 = 8, we can perform only L = 3 levels. A3 provides the trend

of the signal and Di represents the details at those three levels for i = 1, 2, 3. If the signal is of

length (N = 2n) for some n, then n levels of decomposition can be performed. At each level of

decomposition, the length of the source vector (signal) goes down by half. For example the vector

x ∈ R
8 but the length of a1 and d1 is 4. The length of d2 and a2 are 2 each and the length of a3, d3

are 1 each.
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2.4 Maximal Overlapping Discrete Wavelet Transform

Maximal Overlapping Discrete Wavelet Transform (MODWT) is similar to DWT except there are

a few things that make it a better choice for the antenna data analysis of this project. The DWT

for level L requires the data to be of size 2L, while MODWT does not, but this comes at some

computational price [8] because MODWT does not downsample and provides the vector of the

same length at each level, unlike DWT. Other differences are provided in [8]. MODWT produces a

L×N matrix at the Lth level where N is the length of the signal. Each row provides the frequency

information in a different frequency band. MODWT partitions a signal’s energy across the detail

and scaling coefficients. For example, at the first level, MODWT provides a 2×N matrix where the

second row provides the average of points called the (approximation, A1) and the first row provides

the fluctuation of the data from the average (details, D1). A third-level MODWT provides a 3×N
matrix, of which the third row provides the approximation and the first two rows provide the details

at two different scales. The scaling coefficients for the Haar MODWT are given by [8]

h̃j,k =
hj,k

2j/2
, and g̃j,k =

gj,k
2j/2

, (6)

where hj,k and gj,k are the filter coefficients of the Haar DWT algorithm outlined above. The

number of filter coefficients at each level given by Lj = (2j −1)(M −1)+1, where M is the filter

length [8]. In our case, it’s Haar wavelet so the width of the filter is M = 2, so the filter length is

Lj = 2j. These filters convolve the original signal and the MODWT pyramid algorithm generates

the approximation and detail coefficient. For clarity, here are the matrices that perform the first

and the second-level MODWT.

Example 2 At level 1, MODWT produces a 2×N matrix of which the first and the second rows are

given by (W1x)
T and (S1x)

T , respectively where W1, and S1 are given by the following (n × N)
matrices

W1 =




1
2

0 · · · · · · 0 −1
2

−1
2

1
2

0 · · · · · · 0
0 −1

2
1
2

0 · · · 0
...

...
...

...
...

...

0 · · · · · · 0 −1
2

1
2

0
0 0 · · · · · · 0 −1

2
1
2




, S1 =




1
2

0 · · · · · · 0 1
2

1
2

1
2

0 · · · · · · 0
0 1

2
1
2

0 · · · 0
...

...
...

...
...

...

0 · · · · · · 0 1
2

1
2

0
0 0 · · · · · · 0 1

2
1
2




.

For level 2 there are 22 = 4 coefficients. They are h2,0 = h2,1 = h2,3 = h2,4 =
1
4
, g2,0 = g2,1 =

1
4
,

and g2,1 = g2,3 = −1
4
. The level 2 transform matrix (approximation) is given by

S2 =




1
4

0 · · · · · · 0 1
4

1
4

1
4

1
4

1
4

0 · · · · · · 0 1
4

1
4

1
4

1
4

1
4

0 · · · · · · 0 1
4

1
4

1
4

1
4

1
4

0 · · · · · · 0
0 1

4
1
4

1
4

1
4

0 · · ·
0 0 1

4
1
4

1
4

1
4

0 · · ·
...

...
...

...
...

...
...

...

0 · · · · · · 0 1
4

1
4

1
4

1
4



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The wavelet matrix W2 can be considered similarly. At the third level, there are 23 = 4 coefficients.

The scaling coefficients are h3,0 = h3,1 = h3,2 = h3,3 = h3,4 = h3,5 = h3,6 = h3,7 = 1
8
. So the

scaling coefficients provide the averages of 8 entries from the signal at a time. An important thing

to notice is that the first few entries (in this case it is 22 − 1 = 3) take the points from the tail of the

data. At level 3, it takes the 7 points from the end for convolution.

Note 2 We are going to consider level L = 16 below. So 216 − 1 points at the beginning and end

of the reconstructed signal will be misleading because of the boundary conditions. The circular

boundary condition of the MODWT algorithm assumes that the data is periodic i.e. the given data

(x0, x1, x2, · · · xN−1) is assumed to be like (....xN−2, xN−1, x0, x1, · · · xN−1). In reflection bound-

ary conditions, it is assumed to be like (...x2, x1, x0, x1, x2, · · · , xN−1). The reflection boundary

requires more computations, therefore we mainly performed the circular boundary conditions here.

Our results are based on circular boundary conditions but the data after the quench is detected is

modified (replaced by the value at the quench time) as explained below. An important feature of

MODWT is that the length of the vectors at each level is the same as the length of the given data

N. The multi-resolution analysis (projection of the original signal into several wavelet subspaces)

as in the equation (3) of the signal is then carried out by MODWTMRA. At level L decomposition

of the signal using MODWT, the MODWTMRA provides the projection of the signal x onto the

L+ 1 subspaces of RN as in the equation (4)

x =
L∑

j=1

Dj + AL. (7)

2.5 Objective of the Project

The fact that data from quench antenna and acoustic data have a lot of features during magnet

ramp(s) and quench(es) has been established. Finding relevant features in data or relations between

“events” in data or different parts of data is still in the early steps. Understanding the quench

antenna data information content for quench data using mathematical tools for signal processing

is the objective of the proposed work. The research objective of this project is to further study

and advance the topic of data processing with the aim being to find proper mathematical tools and

techniques to describe the processes we observe in terms of relations over time or space, eventually

linking earlier magnet behavior to actual quenches. Any anomalies present in the data and mapping

them to the ”suspicious events” is the primary goal of this project.

3 Scientific Approach

Since Haar wavelets have short support and we are looking for rapidly changing features in our

data, we prefer choosing the Haar wavelets in this project. MODWT is defined for all sample sizes

except its highly redundant and non-orthogonal transform. Since the size of the quench antenna

data is huge, MODWT is preferred here. Several levels are run through the code but most of the

results presented here are based on level L = 16. Here the signal lies in R
N . This produces a matrix

of size 17×N. The last row captures the averages on a specified scale. In our case, it captures the

10



Table 2: Frequency bands of wavelet decomposition levels

Level Frequency Bands (Hz) Filtered by Remarks

1 50k − 25k D1 mostely noise

2 25k − 12.5K D2 Some spikes, some noise

3 12.5k − 6.25k D3 Some spikes, some noise

4 6.25k − 3.125k D4

5 3.125k − 1.5625k D5

6 1.5625k − 781.25 D6

7 781.25− 390.625 D7

8 390.625− 195.3125 D8

9 195.3125− 97.6562 D9

10 97.6562− 48.8281 D10

11 48.8281− 24.4140 D11

12 24.4140− 12.207 D12

13− 16..... ... D13 −D16 small spikes only

averages of 216 points at a time (if we perform only up to level 10, this will take the averages of

210 points at a time). This last row which is the projection onto the averaging space, is denoted by

A16 throughout this document. The first row of the output represents the component of the signal

with the highest frequency filtered (in this case it is [Fs

4
, Fs

2
], where Fs is the sampling frequency).

This is the projection of the signal into one of the sub-spaces (high frequency) spanned by wavelet

vectors, it is denoted by D1 throughout this paper. The second row (D2) represents the component

of the signal with frequency at the next level [Fs

8
, Fs

4
]). The other rows D3 − D16 represent the

component of the signal in the frequency range as given in the table 2. So the given signal can be

represented as in (4)

x = A16 +D16 +D15 + · · ·+D1. (8)

According to the Nyquist rule of sampling the highest frequency that can be accurately represented

is less than one-half of the sampling rate. According to Mallat’s algorithm and this rule the max-

imum frequency that can be filtered out by the wavelet decomposition is provided in the table 2.

3.1 Structure of Quench Antenna Data

The geometric structure of the data-acquiring channels and their mechanism is provided in [1].

They are a result of 57 experiments on MBHSM03 superconducting magnet that have been per-

formed at the Fermi National Accelerator Lab [6]. In each current ramp, the current was in-

creased from zero until the quench was detected and the voltage signals were recorded at a sam-

pling rate of 100kHz for hundreds of seconds. In most cases, the current rate was abruptly

changed from 50A/s to 20A/s near 7.5kA. The channels are called IN, OUT, LE, and RE chan-

nels for each ramp. The data are stored in two groups with each group containing 40 channels

indexed from V oltage 0 to V oltage 39 [7]. We are going to use the names as they appear in

[7] in this paper. The IN/OUT channels (20) are numbered from IN T1 T20–IN T10 T11 and
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OUT T10 T11–OUT T1 T20. The LE/RE channels (20 each) are numbered LE T1– LE T20,

and RE T1–RE T20. A complete description of the geometry and naming is given in [1, 7]. The

quench detection time in each ramp is calculated from the trigger channel ”V oltage 32.” The chan-

nel data used in this work are adjusted to have the quench detection at t = 0. For example, the

data taken the trigger channel and ”IN T2 T19” channel in Ramp 3 are shown in the figure 2 after

adjusting quench detection time to be t = 0s.
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Figure 2: Top is the Ramp 3 trigger Channel and the bottom is IN T2 T19 channel’s original data.

Observation 1:

The channel LE T10 in ramp 3 is decomposed into 17 subspaces of RN by L(= 16) levels of Haar

transform. Here, the original length of the signal is N = 28, 434, 432. All entries in the signal

after the quench detection time are replaced by the value of the signal at t = 0s. In this channel,

this value is −.1053. The graphs in the figures 3 and 4 illustrate the complete Haar Multiresolution

analysis of this signal. The plot for D1 shows the highest frequency it can filter and so on as given

in the table 2. This plot shows that there is a very high frequency, possibly noise, present in the

data. As the level increases, the MRA shows that the noise settles down. D9−D10 show that there

is significant noise present in the signal in those frequency bands but that may be from source.

After that, there are some samll spikes seen in D11 − D16. The data in A16 captures the trend of

the signal. The spike near t = −100s which is seen in the original data seems very clear in the

trend, that’s originating from the ramping current as reported in [7] too. The spike at t = −50s
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Figure 3: Ramp 3 LE T10 Channel: The original data and its Haar multi-resolution analysis from

D1 to D8.

was indicated in [7] as an important anomalous event. It’s seen by wavelet decomposition too. We

note that this decomposition satisfies the equation (7).

Observation 2:

The MRA allows us to compress the signal. The Figure 6 shows the original signal, the trend signal

and the trend with some higher level details. The fourth plot is the signal with trend and details

D11−D16, ignoring the other levels completely, i.e. ignoring all high frequency content. The third

and fourth plot in this figure show the presence of noise in D12 and D13. It turns out that the noise
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Figure 4: Ramp 3 LE T10 Channel: Haar multi-resolution analysis of the data from D9-D16 and

the trend A16 of the data.

gets worse as we go from D16 to D1. The spike near t = −100s as well as t = −50s are clearer

here together with other spikes.

Observation 3:

The details at D8 and D9 are probably noisy due to the source. After removing all high frequency

components, the figure 6 shows some spikes occurring at a regular interval. It was noted in [7] that

there are spikes occurring at a constant but extremely low frequencies extremely low frequency of

every 35 s. The figure 6 shows that they are occurring at a regular interval of approximately 35 s.
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Figure 5: Ramp 3 LE T10 Channel: The top plot is the original data. The second plot is the trend

signal A16. The third plot is the trend with details D13 −D16, and the fourth plot is the trend with

details D11 −D16

It looks like these spikes are contributed by low frequency part of the signal.

Observation 4

Since details Di (for lower values of i) are noisy, a hard threshold given by λi = σi

√
2Log(N)

is applied at each level i, where σi is the standard deviation of the values in Di. The data up to

t = 0s are considered for this standard deviation (i.e. N used here is shorter than the original

N ). Figure 7 shows D2, D3, D4 and D5 after applying a hard threshold of λi. In this case D1

completely vanishes. D2 has some spikes left near t = −225s and t = 0s. Actually D1 shows this

pattern too but λ1 is large enough to nullify it. The figure 7 shows the values in D2-D5 after the

hard threshold was applied.
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Figure 6: Ramp 3 LE T10 Channel: The top plot is the trend A16. The second plot is the trend A16

and D12 −D16. The third plot is the trend A16 and D10 −D16, and the fourth plot is the trend with

details D8 −D16.

The figure 8 shows the compressed signal. The first plot in the figure 8 is the trend signal A16,

the second plot shows the sum of all Di after applying the above mentioned threshold and the third

plot shows the compressed signal i.e. A16 and all Di
′s added together (after the application of

threshold ). The harmonics seen in the compressed signal near t = 0s are mainly from D2 −D3,
(high frequency) and those seen near t = −225s are from all levels.
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Figure 7: Ramp 3 LE T10 Channel: D2, D3, D4, and D5 after applying a hard threshold.
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Figure 8: Ramp 3 LE T10 Channel: Top plot is the trend signal, the second plot is the details only

after compression and the third plot is the reconstructed (compressed) signal after applying the

threshold.
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4 Future work

This work was based on Haar wavelets. The choice of the wavelet is an important question for the

future work. The number of decomposition levels chosen is another point to be considered, and

handing of the boundary conditions of the data are a few things that need some clarification. The

threshold applied for compression is an issue to be investigated too. The behavior of the spikes

across all channels and their relation to the quench under consideration is yet to be investigated.

5 Conclusions

The analysis of the quench antenna data is an ongoing research. We analyzed the quench antenna

data using the Haar wavelets to understand the anomaly of the data when the quench is detected. A

very large signal has been decomposed into several subspaces depending on the frequency bands,

thereby allowing us to compress the signal leaving behind some spikes that are present in the

signal. This work also supports the earlier work [7] based on single or double moving averages as

it provides the trend at each level of decomposition. The wavelet analysis presented here shows

that there is noise present in high frequency bands that can be cleaned up and some spikes that are

present at all frequency bands are potentially interesting events and it is interesting to see if some

spikes are predominantly in specific bands. The analysis also reveals the location of these spikes.

These spikes may be related to the quench and may be indicators of the magnet behavior. The

result presented here may also be useful for machine learning algorithms.
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