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Abstract

Quenching is the phenomenon of a superconducting magnetic material carrying current
transitioning into a regular conducting material. This may cause severe and irreparable dam-
age to the superconductor due to Joule heating. The Magnet Department at Fermi National
Accelerator Laboratory (FNAL) has acquired experimental data through quench antenna ar-
rays that are recorded when the quench is detected. These data are in terms of voltage signals
that are sampled at 100k H z for several minutes. There are multiple channels and each channel
provides a data set of more than 20 million observations, while there is one channel, called the
trigger channel which shows the time when quench is detected. Despite some advancements
that were made including machine learning, data complexity still shadows the progress. In
this work, we studied a multi-resolution analysis of the quench antenna data through the Haar
wavelet transform. In particular, we applied the maximally overlapped discrete wavelet trans-
form (MODWT) of a suitable level L to the given data and then projected it onto the wavelet
basis. This decomposes a given signal (Original data) x € R” into L + 1 subspaces of R".
One of the subspaces called the approximation, captures the trend of the signal, and the others,
called the details, capture the fluctuations at different frequency bands. This decomposition
provides a clear trend of the data at a suitable level and also various activities (spikes) are seen
in the details of the decomposition at every level. These spikes might reveal some information
about the quench under investigation but in any case, give information about magnet behavior.
Also, this decomposition is seen to be very useful in removing noise present in the data due to
the source or mechanism of the experiment.
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1 Introduction

Superconducting magnets are used widely in particle accelerators since they carry large current
densities with no electrical resistance. They generate very intense magnetic fields. These generated
fields are then responsible for keeping particle beams stable and precisely aligned, or squeezing
the beams closer together when they enter a particle detector. Thus, superconducting magnets
play an extremely important role in ensuring the normal operation of particle accelerators. The
resistance of the magnet coil windings is zero in the superconducting state, so it requires no energy
to maintain the current flow. If the coil temperature rises above the superconductivity threshold, the
windings suddenly develop a finite resistance. The circulating current passing through this elevated
coil resistance creates heat, which quickly results in further expansion of the resistive zone. This
irreversible phenomenon is called guench. Having large stored energy, magnets can be damaged
by quenches due to localized heating, high voltage, or large force transients. The loss has a huge
price. The available quench protection systems can detect quenches only after they happen.

Fermi National Accelerator Laboratory (FNAL) has been developing multiple versions of flexi-
ble quench antennas (flex-QA), including some specially optimized for high sensitivity and/or high
resolution, to characterize quench events and transients during current ramping in superconducting
magnets [1]. Flex-QA arrays can be used to pinpoint quench locations with remarkable precision,
although the time development of signals was not fully characterized. Still, acoustic sensors, ini-
tially developed by Lawrence Berkeley National Laboratory (LBNL) [2] were also used in many
magnet tests and are becoming a standard tool for magnet characterization. Both quench antenna
and acoustic sensors can gather data during the whole current ramp (to quench) of a magnet and the
combined data provide extremely rich and detailed information about magnet behavior and, pos-
sibly, quenches. Authors in [3] have established that there could be quench precursors that exist
in acoustic data by investigating a dynamic learning setup using Auto-Encoder (AE) Deep Neural
Network (DNN). Those manifest as anomalies in acoustic data during current ramps. While some
of the current research on magnet data and applications at FNAL can be found in [1], [3], and [4],
what is missing from all studies so far is a detailed mathematical investigation on signal properties
and anomalies in the large amount of data available.

Understanding the quench antenna data information content for both ramp and quench data
using mathematical tools for signal processing, with similarities to [5], is the objective of the
proposed work.

Research Objectives

The fact that data from quench antenna and acoustic data have a lot of features during magnet
ramp(s) and quench(es) has been established. Finding relevant features in data or relations between
“events” in data or different parts of data is still in the early steps. An important aspect of those
developments is signal processing and exploring mathematical tools to extract maximal useful
information. The research objective of this project is to further study and advance the topic of data
processing with the aim being to find proper mathematical tools and techniques to describe the
processes we observe in terms of relations over time or space, eventually linking earlier magnet
behavior to actual quenches. We will apply maximally overlapped discrete wavelet transform on
the quench antenna data.



Notations

Throughout the paper Z, and R are used to denote the set of integers and the set of real numbers
respectively. N denotes the length of the data, F; denotes the sampling frequency, and L denotes
the level of wavelet decomposition. A scaling function is denoted by ¢ while ) denotes the wavelet
function. The space L?(RR) is a usual Hilbert space but here it can be considered as a space of finite
energy signals.

2 Method of Wavelet Analysis

2.1 Continuous Wavelet Transform

Wavelet functions provide time and frequency information of a signal together unlike the Fourier
transform which provides localized frequency information. This transformation yields a multires-
olution of the signal [8]. A wavelet is a function ¢ € L*(R) with zero average. A wavelet family
1, 18 the set of functions generated by scaling and translation of a given mother wavelet 1, viz.

1 (t—b
aalt) =lal b (12)). 0
where a,b € R, a # 0 are the scaling and translation parameters respectively.

The continuous wavelet transform (CWT) of a signal f(t) € L*(R) is defined as

Worlat) =l [ pow (“50) dt = (). @

where 1" is the complex conjugate of the function 7). This inner product captures the correlation
between the function f () and the wavelet family 1, at each scale a and translation parameter b.
The numbers (f, 1, ) are called the wavelet coefficients. If a signal has a major component within
the current scale, the CWT coefficients calculated within this scale in the time-scale domain would
be relatively large. This dilation and translation of wavelet make it an applicable transformation
because it can reveal transient features in both time and frequency domains. This transformation is
invertible, so a perfect reconstruction of the signal f(¢) is possible. Theoretically, this transforma-
tion works perfectly but in practice, there are infinitely many coefficients and there is redundancy
in the representation of a signal.

Let ¢ be such that its integer translates ¢ ;(z) := {¢(x — k), k € Z} form an orthonormal
basis for some closed subspace Vy € L*(R), i.e. Vo = span{¢(t — k), k € Z}. The function ¢
is called the scaling function and the space V; is called the approximation space. It turns out that
the family of functions ¢; ; := 27 ¢(27t — k), k € 7Z forms an orthonormal basis for V;, where
V; = span{¢;, k € Z}. This is an approximation space at scale at scale 2/. This generates a
sequence of closed subspaces of L*(R)

..... VoCcViCcVoCViCV.yC---. (3)

This is what constitutes a multi-resolution analysis (MRA) of the space L*(R) [8]. We assume
that the signal is in the space Vj. In this case it is said to be at a scale 2° = 1. We can approximate
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the signal by projecting the signal onto the space V; as well. Since V; C V4, and the set ¢(t —
k), k € Z forms an orthogonal basis for V[, some extra functions are needed to have an orthogonal
basis for V. These extra functions are wavelet functions ¢)(t — k), k € Z. This wavelet family
spans a space W, C Vj, so that Vo = Vi @ W;. This approximation is at scale 2! = 2. This is
called level 1 approximation. We therefore get a sequence of subspaces --- Wy C Wy C Wy C
W_y C ---,such that V; = V4 &P W;11. By iteration of the above, we obtain Since V) =
V,@W,W;_16p--- @ Wa+ @ Wi. So the function f(t) € V} can be represented as

Z a]+1 ]-‘rl ‘I‘ Z Z b —zt _

kEZ i=1 kE€Z

where aiﬂ and bfl are the scaling and wavelet coefficients. Thus the function f(¢) can be de-
composed as

H=fi+Y w, (4)
=1

where f; is the projection onto V; and w, is the projection onto W;. The simplest wavelet is
the well-known Haar wavelet, whose scaling function ¢, and the wavelet function ¢ are given
respectively by

(1 ifo<z<1, (1 ifo<z<1/2
qz5(1:)_{0 otherwise, ¢($)_{—1 ifl/2<xz<1.

1 1
0 0
-1} -1
0 1 0 1

Figure 1: Haar scaling function and Haar wavelet function

2.2 Discrete Wavelet Analysis

The discrete wavelet transform (DWT) is a sampled wavelet transform applicable to digital signals,
it provides a non-redundant representation of the signal and this can be easily implemented. For
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this, we choose a mother wavelet function ¢ and the corresponding scaling function ¢. Throughout
this paper, we adopt the convention that the given signal lies in a space V;, € R"., where N is the
length of the signal. This signal can be decomposed as V' = V| € W, and recursively

%ZVL@WL@WL—1+"'@W1,

provides the L— level decomposition of the given space V. The space Vi, captures the average
trend of the signal at a specified scale, and the subspaces W7, --- W are related to the changes
of averages over specific scales. The parameter L determines the scale and magnitude of the
corresponding scaling function. The parameter k£ determines the time displacement of the wavelet.
The wavelet coefficients capture the details as the signal is approximated by the scaling function.
The subspace V;, maintains the domain properties of the signal and the subspaces I preserve its
properties in the frequency domain. The space W; contains the frequency information of the signal
in the frequency band Qf% <w< %, F is the sampling frequency. The space V}, contains the
frequency information for the frequency range 0 < Qfﬁ The decomposition level is guided by
the signal and the wavelet chosen. We are concerned with only the Haar wavelet in this study for
which the maximum level is given by Logs N [8] but it’s not necessary to the maximum leve

2.3 Discrete Haar Wavelet Transform

Discrete Haar wavelet transform is a 2 tap wavelet transform. The scaling and the wavelet filter
coefficients are denoted by A i, and g;x, where j denotes the level and & denotes translation. The

level 1 scaling filters are hy g = hy 1 = \%, and the wavelet filters are g, o = \%, and g;; = —\%
[8].
Example 1 Let N = 8, let v = (zg, 71, -+ ,77)T € RS be a signal, where T denotes the trans-

pose. lts level 1 Discrete Haar transform Wyx provides the approximation coefficients a, and
detail dy which are given by Wyx = (S1x, Wiz)T = (ay,dy)T, where

1 1
oy 0 0 0 0 00
0 0 &% &% 0 0 0 0
0 0 0 0 4 4 0 0
mo_| 0 0 0 0 0 0 5 [ _/S
5 —% 0 0 0 Wi
vioTveo
0 0 &% -5 0 0 0 0
0 0 0 0 4 —% 0 0
1 1
o 0 0 0 0 0 I -7

This decomposition projects the vector x onto two 4 dimensional subspaces of R®. It turns out that
the projection onto the scaling and wavelet spaces as in the equation (4) is given by [8],

Ay = ST Sz, and D, = WI'Wyx, sothatx = A, + D;.

For the level 2 transform, there are 2° = 4 coefficients. They are hao = hay = has = hoy = %,
920 = G21 = %, and g1 = o3 = —%. Wox provides the approximation coefficients as and detail
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d, and dy which are given by given by Wax = (So, Woz, Wix)T = (a9, ds, d1)T, where

s 3 3 3 0 0 o0 o0
o o o o 3 L+ 2 2
5 z —3 —3 0 0 0 S
_ o o o o :+ L+ -1 -2 2
We="T""T70 0 0 0 0 ll LE
0 ¢ L -1 g o 0o o0 "
o 0 0 0 L L o o
vive |
o 0 0 0 0 0 X -%

At the third level, there are 2° = 4 coefficients. The scaling coefficients are hso = hsi = hso =
1 1

h3,3 = h3,4 = h3,5 = h3,6 = h3,7 = 23’ 930 = 931 = 932 = g33 = BVoR and 934 = g35 = 936 —

g37 = _ﬁi' Wsx provides the approximation coefficients az and detail dy, dy, and ds which are

given by given by Wiz = (Ssz, Waz, Wox, Wiz)T = (a3, ds, da, dy), where

|H
-~
|H
|H
|H
|H
|H
|H

2v2  2v2  2v2  2v/2 2v2 2v2 2v2 2v2

1+ T 1 1T 1T 1 "1

2v2 22 2v2 22 22 22 22 2v/2 S

I T T T 3
We=| 0 0 0o 0 2 2 —05 _1 | = %3

T -IT 0 0 0 0 0 -

0 0 L -1 o o 0 o .

V2 V2
o 0 0 0 % —» 0 0
0 0 0 0 0 0 \/% —\/%

This decomposition projects the vector x onto four 4 subspaces of R8. They are a scaling subspace
(one dimensional), and 3 wavelet subspaces ( four, two, and one dimensional each) and it turns
out that the projection onto the scaling and wavelet spaces as in (4) is given by [8],

As = STSsx, D3 = WiWsx, Dy =WiWya, Dy = Wi W,

so that the multiresolution decomposition is given by
3
r= A3+ Z D; &)
i=1

Note 1 Since N = length(x) = 23 = 8, we can perform only L = 3 levels. As provides the trend
of the signal and D; represents the details at those three levels for i = 1,2, 3. If the signal is of
length (N = 2") for some n, then n levels of decomposition can be performed. At each level of
decomposition, the length of the source vector (signal) goes down by half. For example the vector
x € R® but the length of a, and d, is 4. The length of dy and ay are 2 each and the length of as, ds
are 1 each.



2.4 Maximal Overlapping Discrete Wavelet Transform

Maximal Overlapping Discrete Wavelet Transform (MODWT) is similar to DWT except there are
a few things that make it a better choice for the antenna data analysis of this project. The DWT
for level L requires the data to be of size 2 while MODWT does not, but this comes at some
computational price [8] because MODWT does not downsample and provides the vector of the
same length at each level, unlike DWT. Other differences are provided in [8]. MODWT produces a
L x N matrix at the L" level where N is the length of the signal. Each row provides the frequency
information in a different frequency band. MODWT partitions a signal’s energy across the detail
and scaling coefficients. For example, at the first level, MODWT provides a 2 x /N matrix where the
second row provides the average of points called the (approximation, A;) and the first row provides
the fluctuation of the data from the average (details, D;). A third-level MODWT provides a 3 x N
matrix, of which the third row provides the approximation and the first two rows provide the details
at two different scales. The scaling coefficients for the Haar MODWT are given by [8]

o =

) ~ 9j.k
ik = ma and 9jk = 2 (6)

2i/2°

where h;; and g; are the filter coefficients of the Haar DWT algorithm outlined above. The
number of filter coefficients at each level given by L; = (29 —1)(M — 1) + 1, where M is the filter
length [8]. In our case, it’s Haar wavelet so the width of the filter is M = 2, so the filter length is
L; = 27. These filters convolve the original signal and the MODWT pyramid algorithm generates
the approximation and detail coefficient. For clarity, here are the matrices that perform the first
and the second-level MODWT.

Example 2 At level 1, MODWT produces a 2 x N matrix of which the first and the second rows are
given by (Wyz)T and (S12)7, respectively where W1, and Sy are given by the following (n x N)
matrices

1 1 1 1
Lo 0 P 0
~1 3, (1) 0 1 ; (1) 0
W, — 0 —5 3 o --- 0 g = 0 3 3 0 0
: : : :1 1 : : : : 1 1 :
0 -ovv-- 0 3 3, (1) 0 «vvv-- 0 5 g ?
0  ceenn- o -1 1 0 0  oee-. o I 4
For level 2 there are 22 = 4 coefficients. They are hoo = hag = has = hoy = %, 92,0 = 92,1 = %,
and g1 = g23 = —;11. The level 2 transform matrix (approximation) is given by
1 1 11
SRR S A
[ S S S
A T S S
C T S T T S
1 1 1 4
00 3 7 1 310
o BT



The wavelet matrix Wy can be considered similarly. At the third level, there are 2° = 4 coefficients.
The scaling coefficients are hz oy = hs1 = hzo = hgs = hsa = hss = hgg = h37 = %. So the
scaling coefficients provide the averages of 8 entries from the signal at a time. An important thing
to notice is that the first few entries (in this case it is 2> — 1 = 3) take the points from the tail of the
data. At level 3, it takes the 7 points from the end for convolution.

Note 2 We are going to consider level L = 16 below. So 2'°® — 1 points at the beginning and end
of the reconstructed signal will be misleading because of the boundary conditions. The circular
boundary condition of the MODWT algorithm assumes that the data is periodic i.e. the given data
(€0, T1, g, - xN_1) is assumed to be like (....xx_2,TN_1,T0,T1, - Tn_1). In reflection bound-
ary conditions, it is assumed to be like (...x2,x1,xg, T1,Ta, - ,xn_1). The reflection boundary
requires more computations, therefore we mainly performed the circular boundary conditions here.

Our results are based on circular boundary conditions but the data after the quench is detected is
modified (replaced by the value at the quench time) as explained below. An important feature of
MODWT is that the length of the vectors at each level is the same as the length of the given data
N. The multi-resolution analysis (projection of the original signal into several wavelet subspaces)
as in the equation (3) of the signal is then carried out by MODWTMRA. At level L decomposition
of the signal using MODWT, the MODWTMRA provides the projection of the signal = onto the
L + 1 subspaces of RY as in the equation (4)

L

Jj=1

2.5 Objective of the Project

The fact that data from quench antenna and acoustic data have a lot of features during magnet
ramp(s) and quench(es) has been established. Finding relevant features in data or relations between
“events” in data or different parts of data is still in the early steps. Understanding the quench
antenna data information content for quench data using mathematical tools for signal processing
is the objective of the proposed work. The research objective of this project is to further study
and advance the topic of data processing with the aim being to find proper mathematical tools and
techniques to describe the processes we observe in terms of relations over time or space, eventually
linking earlier magnet behavior to actual quenches. Any anomalies present in the data and mapping
them to the “’suspicious events” is the primary goal of this project.

3 Scientific Approach

Since Haar wavelets have short support and we are looking for rapidly changing features in our
data, we prefer choosing the Haar wavelets in this project. MODWT is defined for all sample sizes
except its highly redundant and non-orthogonal transform. Since the size of the quench antenna
data is huge, MODWT is preferred here. Several levels are run through the code but most of the
results presented here are based on level L = 16. Here the signal lies in RY. This produces a matrix
of size 17 x N. The last row captures the averages on a specified scale. In our case, it captures the
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Table 2: Frequency bands of wavelet decomposition levels

Level Frequency Bands (Hz) Filtered by Remarks

1 50k — 25k D, mostely noise

2 25k — 12.5K D, Some spikes, some noise
3 12.5k — 6.25k Ds Some spikes, some noise
4 6.25k — 3.125k Dy

) 3.125k — 1.5625k Dy

6 1.5625k — 781.25 Dg

7 781.25 — 390.625 D,

8 390.625 — 195.3125 Dy

9 195.3125 — 97.6562 Dy

10 97.6562 — 48.8281 Dy

11 48.8281 — 24.4140 Dy

12 24.4140 — 12.207 Do

13 —16..... D3 — Dy¢ small spikes only

averages of 26 points at a time (if we perform only up to level 10, this will take the averages of
210 points at a time). This last row which is the projection onto the averaging space, is denoted by
Ay throughout this document. The first row of the output represents the component of the signal
with the highest frequency filtered (in this case it is [%, %], where Fj is the sampling frequency).
This is the projection of the signal into one of the sub-spaces (high frequency) spanned by wavelet
vectors, it is denoted by D, throughout this paper. The second row (D) represents the component
of the signal with frequency at the next level [%, %]) The other rows D3 — Dig represent the
component of the signal in the frequency range as given in the table 2. So the given signal can be
represented as in (4)

x = A+ Dig+ D5+ -+ Ds. (8)

According to the Nyquist rule of sampling the highest frequency that can be accurately represented
is less than one-half of the sampling rate. According to Mallat’s algorithm and this rule the max-
imum frequency that can be filtered out by the wavelet decomposition is provided in the table 2.

3.1 Structure of Quench Antenna Data

The geometric structure of the data-acquiring channels and their mechanism is provided in [1].
They are a result of 57 experiments on MBHSMO3 superconducting magnet that have been per-
formed at the Fermi National Accelerator Lab [6]. In each current ramp, the current was in-
creased from zero until the quench was detected and the voltage signals were recorded at a sam-
pling rate of 100kH z for hundreds of seconds. In most cases, the current rate was abruptly
changed from 50A4/s to 20A/s near 7.5k A. The channels are called IN, OUT, LE, and RE chan-
nels for each ramp. The data are stored in two groups with each group containing 40 channels
indexed from Voltage 0 to Voltage_39 [7]. We are going to use the names as they appear in
[7] in this paper. The IN/OUT channels (20) are numbered from IN_T1_T20-IN_T10_T11 and
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OUT_T10_T11-OUT_T1_T20. The LE/RE channels (20 each) are numbered LE_T1- LE_T20,
and RE_T1-RE_T20. A complete description of the geometry and naming is given in [1, 7]. The
quench detection time in each ramp is calculated from the trigger channel ’V oltage_32.” The chan-
nel data used in this work are adjusted to have the quench detection at ¢ = 0. For example, the
data taken the trigger channel and "IN_T2_T19” channel in Ramp 3 are shown in the figure 2 after
adjusting quench detection time to be ¢t = 0s.

Ramp 3 Trigger Channel

Voltage (V)

1 1 1 1 1 1
-250 -200 -150 -100 -50 0
Time (S)

Ramp 3 IN_T2_T19 Channel

0.06
0.04
0.02

Voltage (V)

-0.02

_004 1 1 1 1 1
-250 -200 -150 -100 -50 0

Time (S)

Figure 2: Top is the Ramp 3 trigger Channel and the bottom is IN_T2_T19 channel’s original data.

Observation 1:

The channel LE_T10 in ramp 3 is decomposed into 17 subspaces of RY by L(= 16) levels of Haar
transform. Here, the original length of the signal is N = 28,434, 432. All entries in the signal
after the quench detection time are replaced by the value of the signal at £ = Os. In this channel,
this value is —.1053. The graphs in the figures 3 and 4 illustrate the complete Haar Multiresolution
analysis of this signal. The plot for D, shows the highest frequency it can filter and so on as given
in the table 2. This plot shows that there is a very high frequency, possibly noise, present in the
data. As the level increases, the MRA shows that the noise settles down. Dy — D7y show that there
is significant noise present in the signal in those frequency bands but that may be from source.
After that, there are some samll spikes seen in D; — Dy¢. The data in A4 captures the trend of
the signal. The spike near ¢ = —100s which is seen in the original data seems very clear in the
trend, that’s originating from the ramping current as reported in [7] too. The spike at ¢ = —50s
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-0.09 T T

Ramp 3 LE_T10: Original

-0.11F

-0.12 ! !

-250 -200 -150 -100 -50 0
6 %1073 Ramp 3 LE_T10: D1 X 103 Ramp 3 LE_T10: D2
0 L
) -250 -200 -150 -100 -50 0 _ -250 -200 -150 -100 -50 0
. %1073 Ramp 3 LE_T10: D3 %1073 Ramp 3 LE_T10: D4
S 5 : : : 5 : : :
(0]
(@)
£ of
(o]
> 1 1 1 1 1 1 1 1 1 1
-250 -200 -150 -100 -50 0 -250 -200 -150 -100 -50 0
6 %1073 Ramp 3 LE_T10: D5 X 103 Ramp 3 LE_T10: D6
O e Of s F—
) -250 -200 -150 -100 -50 0 _ -250 -200 -150 -100 -50 0
5 %1073 Ramp 3 LE_T10: D7 5 %1073 Ramp 3 LE_T10: D8
Of ——(a— O s s o
~ 250 200 -150 -100  -50 0 250 200 -150 -100  -50 0
Time(S)

Figure 3: Ramp 3 LE_T10 Channel: The original data and its Haar multi-resolution analysis from

D1 to Dg.

was indicated in [7] as an important anomalous event. It’s seen by wavelet decomposition too. We

note that this decomposition satisfies

Observation 2:

The MRA allows us to compress the signal. The Figure 6 shows the original signal, the trend signal
and the trend with some higher level details. The fourth plot is the signal with trend and details
D11 — Dag, ignoring the other levels completely, i.e. ignoring all high frequency content. The third
and fourth plot in this figure show the presence of noise in D15 and Dq3. It turns out that the noise

the equation (7).
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%1073 Ramp 3 LE_T10: D9 %1073 Ramp 3 LE_T10: D10
5 T T T T 5 T T T T
or 1 e
) -250 -200 -150 -100 -50 0 - -250 -200 -150 -100 -50 0
. %1073 Ramp 3 LE_T10: D11 . %1073 Ramp 3 LE_T10: D12
Or \( ¢ - o+ .
_ -250 -200 -150 -100 -50 0 _ -250 -200 -150 -100 -50 0
g %1073 Ramp 3 LE_T10: D13 %1073 Ramp 3 LE_T10:D,,
S 11— . . . . 11— . . .
g of ,——%’—W&:J : e Of i  —
S Ll . . . . 4L . . . .
g -250 -200 -150 -100 -50 0 -250 -200 -150 -100 -50 0
1 %103 Ramp 3 LE_T10: D15 1 %1073 Ramp 3 LE_T10: D16
O =t : Of =" ,‘
250 -200 -150 -100  -50 0 250 -200 -150 -100  -50 0
Ramp 3 LE_T10: A16
_0-105 T T T T T
-0.1075} w
-0.11 1 1 1 1 1
-250 -200 -150 -100 -50 0
Time(S)

Figure 4: Ramp 3 LE_T10 Channel: Haar multi-resolution analysis of the data from Dy-D14 and
the trend A4 of the data.

gets worse as we go from D4 to D;. The spike near t = —100s as well as t = —50s are clearer
here together with other spikes.

Observation 3:

The details at Dg and Dy are probably noisy due to the source. After removing all high frequency
components, the figure 6 shows some spikes occurring at a regular interval. It was noted in [7] that
there are spikes occurring at a constant but extremely low frequencies extremely low frequency of
every 35 s. The figure 6 shows that they are occurring at a regular interval of approximately 35 s.
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Ramp 3 LE_T10: Original

-0.09 T T
01
011
-0.12 1 1 1 1 1
-250 -200 -150 -100 -50 0
Ramp 3 LE_T10: A,
T T T T T
-0.106 - M
-0.108 =
g -0.11 I I I I I
o -250 -200 -150 -100 -50 0
o Ramp 3 LE_T10: D ,-D, and A,
o T T
>
-0.106 - -
A l
-0.108 - ' ‘ .
-0.11 \ ! ! ! !
-250 -200 -150 -100 -50 0
Ramp 3 LE_T10: D11-D16 and A16
T T
-0.106 - -
-0.108 =
-0.11 \ ! ! ! !
-250 -200 -150 -100 -50 0
Time(S)

Figure 5: Ramp 3 LE_T10 Channel: The top plot is the original data. The second plot is the trend
signal Ayg. The third plot is the trend with details D13 — D1¢, and the fourth plot is the trend with
details DH — D16

It looks like these spikes are contributed by low frequency part of the signal.

Observation 4

Since details D; (for lower values of i) are noisy, a hard threshold given by \; = 0;1/2Log(N)
is applied at each level i, where o; is the standard deviation of the values in D;. The data up to
t = 0Os are considered for this standard deviation (i.e. /N used here is shorter than the original
N ). Figure 7 shows Ds, D3, D, and Dj after applying a hard threshold of ;. In this case D,
completely vanishes. D5 has some spikes left near t = —225s and ¢t = 0s. Actually D; shows this
pattern too but )\ is large enough to nullify it. The figure 7 shows the values in Ds-Dj after the
hard threshold was applied.
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Figure 6: Ramp 3 LE_T10 Channel: The top plot is the trend A;4. The second plot is the trend Ai¢
and Dy, — D14. The third plot is the trend A5 and D1y — D¢, and the fourth plot is the trend with
details Dg — D16.

The figure 8 shows the compressed signal. The first plot in the figure 8 is the trend signal Ay,
the second plot shows the sum of all D; after applying the above mentioned threshold and the third
plot shows the compressed signal i.e. Ajg and all D;’s added together (after the application of
threshold ). The harmonics seen in the compressed signal near ¢ = Os are mainly from Dy — D3,
(high frequency) and those seen near t = —225s are from all levels.
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Figure 7: Ramp 3 LE_T10 Channel: D5, D3, D4, and Dj after applying a hard threshold.
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Figure 8: Ramp 3 LE_T10 Channel: Top plot is the trend signal, the second plot is the details only
after compression and the third plot is the reconstructed (compressed) signal after applying the
threshold.
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4 Future work

This work was based on Haar wavelets. The choice of the wavelet is an important question for the
future work. The number of decomposition levels chosen is another point to be considered, and
handing of the boundary conditions of the data are a few things that need some clarification. The
threshold applied for compression is an issue to be investigated too. The behavior of the spikes
across all channels and their relation to the quench under consideration is yet to be investigated.

5 Conclusions

The analysis of the quench antenna data is an ongoing research. We analyzed the quench antenna
data using the Haar wavelets to understand the anomaly of the data when the quench is detected. A
very large signal has been decomposed into several subspaces depending on the frequency bands,
thereby allowing us to compress the signal leaving behind some spikes that are present in the
signal. This work also supports the earlier work [7] based on single or double moving averages as
it provides the trend at each level of decomposition. The wavelet analysis presented here shows
that there is noise present in high frequency bands that can be cleaned up and some spikes that are
present at all frequency bands are potentially interesting events and it is interesting to see if some
spikes are predominantly in specific bands. The analysis also reveals the location of these spikes.
These spikes may be related to the quench and may be indicators of the magnet behavior. The
result presented here may also be useful for machine learning algorithms.
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