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Abstract Editor’s note: One of the most important developments in theoretical particle physics at the end
of the 20th century and beginning of the twenty-first century has been the development of effective field
theories (EFTs). Pursuing an effective field theory approach is a methodology for constructing theories,
where a set of core principles is agreed upon, such as Lorentz symmetry and unitarity, and all possible
interactions consistent with them are then compulsory in the theory. The utility of this approach to
particle physics (and beyond) is wide ranging and undisputed, as evidenced by the recent formation of the
international seminar series All Things EFT (Talks in the series can be viewed at https://www.youtube.
com/channel/UC1_KF6kdJFoDEcLgpcegwCQ (accessed 21 December 2020).) which brings together each
week the worldwide community of EFT practitioners. The text below is a lightly edited version of the
talk given by Prof. Weinberg on September 30, 2020, which inaugurated the series. The talk reviews some
of the early history of EFTs from the perspective of its pioneer and concludes with a discussion of EFT
implications for future discovery.

What is the world made of? This question is per-
haps the deepest and earliest in all of science. Greeks
were asking this question a hundred years before the
time of Socrates. By the time that I became a grad-
uate student an answer had apparently been settled.
The world is made not of water, earth, air or fire, but
of fields. There is the electromagnetic field that when
quantum mechanics is applied to it is manifested in the
form of bundles of energy, momentum—particles that
are called photons. There is an electron field that sim-
ilarly when quantized appears as particles called elec-
trons. And there are other fields that we in the late
1950s knew we did not yet know about. The weak and
the strong interactions were pretty mysterious. It was
clear that there had to be more than just electrons
and photons. But we looked forward to a description
of nature as consisting fundamentally of fields as the
constituents of everything.

The quantum field theory of electrons and photons
in the late 1940s had scored a tremendous success.
Theorists—Feynman, Schwinger, Tomonaga, Dyson—
had figured out after decades of effort how to do calcu-
lations preserving not only Lorentz invariance but also
the appearance of Lorentz invariance at every stage
of the calculation. This allowed them to sort out the
infinities in the theory that had been noticed in the
early 1930s by Oppenheimer and Waller, and that had
been the bête noire of theoretical physics throughout
the 1930s. They were able to show in the late 1940s
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that these infinities could all be absorbed into a redef-
inition, called a renormalization, of the electron mass
and charge and the scales of the various fields. And they
were able to do calculations of unprecedented precision,
which turned out to be verified by experiment: calcu-
lations of the Lamb shift and the anomalous magnetic
moment of the electron.

More than that, and this particularly appealed to me
as a graduate student, renormalization theory didn’t
always work. It wouldn’t work unless the theory had a
certain kind of simplicity. Essentially the only coupling
constants allowed in the theory, in units where Planck’s
constant and the speed of light were 1, had to be dimen-
sionless, like the charge of the electron: e2/4π is 1/137.
And this provided not only a means of dealing with
the infinities but a rationale for the simplicity of the
theory. Of course we always like simple theories. But
when we have discovered successful simple theories, we
always should ask why are they so simple? Renormaliz-
ability provided an answer to that question. Of course
it was only an answer if we thought that these were
really the fundamental theories that described nature
at all scales. Otherwise, anything else might intervene
to get rid of the infinities.

We hoped that we would see the rest of physics—the
mysterious strong and weak nuclear forces—brought
into a similar framework. And that is indeed what hap-
pened in the following decades in the development of
the Standard Model. Once we got past the obscuri-
ties produced by spontaneous symmetry breaking in
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the weak interactions and color trapping in the strong
interactions, the Standard Model was revealed to us as a
theory that was really not very different from quantum
electrodynamics. We had more gauge fields, not just
the electromagnetic field but gluon and W and Z fields.
There were more fermions, not just the electron but a
whole host of charged leptons and neutrinos and quarks.
But the Standard Model seemed to be quantum electro-
dynamics writ large. One could perhaps have been for-
given for reaching a stage of satisfaction that, although
not everything was answered, although there were still
outstanding questions, that this was going to be part
of nature at the most fundamental level.

Now that has changed. In the decades since the
completion of the Standard Model, a new and cooler
view has become widespread. The Standard Model, we
now see—we being, let me say, me and a lot of other
people—as a low-energy approximation to a fundamen-
tal theory about which we know very little. And low
energy means energies much less than some extremely
high energy scale 1015 − 1018 GeV . As a low-energy
approximation, we expect corrections to the Standard
Model. These corrections are beginning to show up.
Some of them have already been found.

This whole point of view goes by the name of effective
field theory. It had applications outside elementary par-
ticle physics in areas like superconductivity. I am not
going to in this talk try to bring the subject up-to-date,
including all the applications of effective field theory to
hadronic physics, and to areas of physics outside parti-
cle physics, like superconductivity. That’s going to be
done by subsequent lecturers in this series by physicists
who played a leading role in the development of effective
field theory beyond anything that I knew about it in the
early days. They are true experts in the field. I won’t
dare to try to anticipate what they will say. I’ll talk
about a subject on which I am undoubtedly the world’s
expert and that is my own history of how I came to
think about these things. I’m a little bit unhappy that
I am putting myself too much forward. Other people
came to effective field theories through different routes.
I’m not going to survey anyone else’s intellectual history
except my own.

From my point of view, it started with current alge-
bra. The late 1950s and early 1960s were a time of
despair about the future—about the practical applica-
tion of quantum field theory to the strong interactions.
Although we could believe that quantum field theory
was at the root of things we didn’t know how to apply
quantum field theory to the strong interactions. Pertur-
bation theory didn’t work. Instead, a method was devel-
oped called current algebra in which one concentrated
on the currents of the weak interactions, the vector
and axial vector currents, using their commutation rela-
tions, their conservation properties and in particular a
suggestion made by Nambu that the divergence of the
axial vector current was dominated by one pion states.
This current algebra was used in a very clunky way,
requiring very detailed calculations that just called out
for a simpler approach to derive useful results, includ-
ing the Goldberger–Treiman formula for the pion decay

amplitude and the Adler–Weisberger sum rule for the
axial vector coupling constant.

After a while some of us began to think that although
these results were important and valuable, perhaps we
were giving too much attention to the currents them-
selves, which of course play a central role in the weak
interactions. We ought to concentrate on the symme-
try properties of the strong interactions which made
all this possible. In particular, the existence of a sym-
metry which gradually emerged in our thinking, chiral
SU(2) × SU(2), which is just isotopic spin symmetry as
applied separately to the left-handed and right-handed
parts of what we would now say are quark fields.

This symmetry is a property of the strong interac-
tions which would be important even if there weren’t
any weak interactions. And it was employed to derive
purely strong interaction results, like, for example, the
scattering lengths of pions on nucleons and pions on
pions and more complicated things like the emission of
any number of soft pions in high energy collisions of
nucleons or other particles. When this was done using
these, as I said, clunky methods of current algebra,
looking at the results, they seemed to look like the
results of a field theory. You could write down Feyn-
man diagrams just out of the blue which would repro-
duce the results of current algebra.

And so the question naturally arose, is there a way
of avoiding the machinery of current algebra by just
writing down a field theory that would automatically
produce the same results with much greater ease and
perhaps physical clarity? Because after all in using cur-
rent algebra one had to always wave one’s hands and
make assumptions about the smoothness of matrix ele-
ments, whereas if you could get these results from Feyn-
man diagrams, you could see what the singularity struc-
ture of the matrix elements was and make only those
smoothness assumptions that were consistent with that.

At the beginning, this was done using a standard the-
ory with the chiral symmetry that we thought was at
the bottom of all these results, the linear sigma model,
and then redefining the fields in such a way that the
results would look like current algebra. The effect of
the redefinition was the introduction of a nonlinearly
realized chiral symmetry. Eventually, the linear sigma
model was scrapped; instead, the procedure was sim-
ply to ask, what kind of symmetry transformation for
the pion field alone, some transformation into a nonlin-
ear function of the pion field, would have the algebraic
properties of chiral symmetry, based on the Lie algebra
of SU(2) × SU(2).

That theory had the property that in lowest order in
the coupling constant 1/Fπ the results reproduced the
results of current algebra. Why did it? Well, it had to,
because a theory having chiral and Lorentz invariance
and unitarity and smoothness satisfied the assumptions
of current algebra and therefore had to reproduce the
same results. For example, current algebra calculations
gave a pion–pion scattering matrix element of order
1/F 2

π , where Fπ is the pion decay amplitude, so if you
use this field theory and just threw away everything
except the leading term which is of order 1/F 2

π , this
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matrix element had to agree with the results of current
algebra.

In this way, phenomenological Lagrangians were
developed that could be thought of as merely labor-
saving devices, which were guaranteed to give the same
results as current algebras because they satisfied the
same underlying conditions of symmetry and so on,
and that could be used in lowest order because cur-
rent algebra said the result was of lowest order in the
1/Fπ coupling—that is, 1/F 2

π for ππ scattering and also
for pion–nucleon scattering. If you had more pions, you
would have more powers of 1/Fπ. But the results would
always agree with current algebra.

No one took these theories seriously as true quantum
field theories at the time. (I am talking about the late
1960s.) No one would have dreamed at this point of
using the phenomenological Lagrangian in calculating
loop diagrams. What would be the point? We knew that
it was the tree approximation that reproduced current
algebra. As I said, these phenomenological Lagrangians
were simply labor-saving devices.

The late 1960s and 1970s saw many of us engaged
in the development of the Standard Model. During this
time, I wasn’t thinking much about current algebra or
phenomenological Lagrangians. The soft-pion theorems
had been successful, not only in agreeing with experi-
ment, but also in killing off a competitor of quantum
field theory known as S-matrix theory. S-matrix theory
had been the slogan of a school of theoretical physicists
headed by Geoff Chew at Berkeley. I had been there at
Berkeley in its heyday but had never bought on to it.

Their idea was that field theory is hopeless. It deals
with things we will never observe like quantum fields.
What we should do is just to study things that are
observable, like S-matrix elements: apply principles
of Lorentz invariance, analyticity and so on, and get
results like dispersion relations that we can compare
with observation. It was even hoped that stable or
unstable composite particles like the ρ meson provide
the force that produces these composites, so that using
this bootstrap mechanism one could actually do cal-
culations. This never really worked as a calculational
scheme, but was extremely attractive philosophically
because it made do with very little except the most
fundamental assumptions, without introducing things
like strongly interacting fields that we really didn’t
know about. But the chiral symmetry results, the soft-
pion results, showed that some of the approximations
assumed in using S-matrix theory, like strong pion–pion
interactions at low energy, just weren’t right. Chiral
symmetry provided actual calculations of processes like
ππ and π-nucleon scattering, which made the ideas of S-
matrix theory seem unnecessary, attractive as the phi-
losophy was.
S-matrix theory had been largely killed off and chiral

symmetry had been put in the books as a success, but
we were all involved in applying the ideas of quantum
field theory in the weak and the electromagnetic inter-
actions and then the strong interactions, building up
the Standard Model, which was beginning to be very
successful experimentally. It was a very happy time for

the interaction between theory and experiment. During
this period of course, I was teaching. It was in the course
of teaching that my point of view changed, because in
teaching quantum field theory I had to keep confronting
the question of the motivation for this theory. Why
should these students take seriously the assumptions
we were making, in particular the formalism of writing
fields in terms of creation and annihilation operators,
with their commutation relations. Where did this come
from? The standard approach was to take a field theory
like Maxwell’s theory and quantize it, using the rules
of canonical quantization. Lo and behold, you turn the
crank, and out come the commutation relations for the
operator coefficients of the wave functions in the quan-
tum field.

I found that hard to sell, especially to myself. Why
should you apply the canonical formalism to these
fields? The answer that the canonical formalism had
proved useful in celestial mechanics in the nineteenth
century wasn’t really very satisfying. In particular, sup-
pose there was a theory that in other ways was success-
ful but couldn’t be formulated in terms of canonical
quantization, would that bother us? In fact, we have
quantum field theories like that. They’re not realistic
theories. They’re theories in six dimensions, or theo-
ries we derive by compactifying six dimensional theo-
ries. We have quantum field theories that apparently
can’t be given a Lagrangian formalism—that can’t be
derived using the canonical formalism. So I looked for
some other way of teaching the subject.

I fastened on a point of view that is really not that
different from S-matrix theory. One starts of course by
assuming the rules of quantum mechanics as laid down
in the 1920s, together with special relativity and then
one makes an additional assumption, the cluster decom-
position principle, whose importance was emphasized
to me by a colleague at Berkeley, Eyvind Wichmann,
while I was there in the 1960s. The cluster decompo-
sition principle says essentially that unless you make
special efforts to produce an entangled situation the
results of distant experiments are uncorrelated. The
results of an experiment at CERN are not affected
by the results being obtained by an experiment being
done at the same time at Fermilab. The natural way
of implementing the cluster decomposition principle is
by writing the Hamiltonian as a sum of products of
creation and annihilation operators with non-singular
coefficients. Indeed, this had been done for many years
by condensed matter physicists not because they were
interested in quantum field theory as a fundamental
principle, but in order to sort out the volume depen-
dence of various thermodynamic quantities. They were
managing this by introducing creation and annihilation
operators long before I began to teach courses in quan-
tum field theory.

It gradually appeared to me in teaching the sub-
ject that although individual quantum field theories like
quantum electrodynamics certainly have content, quan-
tum field theory in itself has no content except the prin-
ciples on which it is based, namely quantum mechanics,
Lorentz invariance and the cluster decomposition prin-
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ciple, together with whatever other symmetry princi-
ples you may want to invoke, like chiral symmetry and
gauge invariance.

This means that if we think we know what the
degrees of freedom are—the particles we have to
study—like, for example, low-energy pions, that if we
write down the most general possible theory involving
fields for these particles, including all possible inter-
actions consistent with the symmetries, which in this
case are Lorentz invariance and chiral SU(2) × SU(2),
if we write down all possible invariant terms in the
Lagrangian, and we work to all orders in perturbation
theory, the result can’t be wrong, because it is just a
way of implementing these principles. It is just giving
you the most general possible matrix element consis-
tent with Lorentz invariance, chiral symmetry, quantum
mechanics, cluster decomposition and unitarity.

Now, this may not sound as if it is a very useful real-
ization. If you tell someone to calculate using the most
general possible Lagrangian with an unlimited number
of free parameters and calculate to all orders in pertur-
bation theory, they’re likely to seek some advice else-
where on how to spend their time. But it is not that
bad, because even if the theory has no small dimen-
sionless couplings, you can use this approach to gener-
ate a power series in powers of the energy that you’re
interested in. For instance, if you’re interested in low-
energy pions and you don’t want to consider energies
high enough so that ππ collisions can produce nucleon–
antinucleon pairs, you will be dealing with typical ener-
gies E well below the nucleon mass. This very general
Lagrangian gives you a power series in powers of E.
Specifically, aside from a term that depends only on
the nature of the process being considered, the number
of powers of E arising from a given Feynman diagram
is the total number of derivatives acting at all the ver-
tices, plus half the number of nucleon lines connected
to all the vertices, plus twice the number of loops.

Now, chiral symmetry dictates that the number of
derivatives plus half the number of nucleon fields in each
interaction is always equal to or greater than two. The
diagrams that give the lowest total number of powers of
E are those constructed only from interactions where
that number equals two, with no loops. For pion–pion
scattering, the leading term comes from a single vertex
with just two derivatives. For pion–nucleon scattering,
there is a diagram with a single vertex with one deriva-
tive to which are connected two nucleon lines. These
diagrams are the ones that we had been using since the
mid-1960s to reproduce the results of current algebra.

But now the new thing was that you could consider
contributions of higher order in energy. If you look for
terms that have two additional powers of energy, they
could come from diagrams where you have one interac-
tion with the number of derivatives plus half the num-
ber of nucleon fields equaling not two but four, plus
any number of interactions with this number equal to
two, and no loops. Or you could have only interactions
with the numbers of derivatives plus half the number
of nucleon fields equal to two, that is, just the basic
interactions that reproduce current algebra, plus one

loop. The infinity in the one loop diagram could be
canceled by that one additional vertex that has, say,
not two derivatives but four derivatives. In every order
of perturbation theory as you encounter more and more
loops, because you are allowing more and more powers
of energy, you get more and more infinities, but there
are always counterterms available to cancel the infini-
ties. A non-renormalizable theory, like the soft-pion the-
ory, is just as renormalizable as a renormalizable theory.
You have an infinite number of terms in the Lagrangian,
but only a finite number is needed to calculate S-matrix
elements to any given order in E.

Similar remarks apply to gravitation, which I think
has led to a new perspective on general relativity. Why
in the world should anyone take seriously Einstein’s
original theory, with just the Einstein–Hilbert action in
which only two derivatives act on metric fields? Surely
that’s just the lowest order term in an infinite series of
terms with more and more derivatives. In such a the-
ory, loops are made finite by counterterms provided by
the higher-order terms in the Lagrangian. This point of
view has been actively pursued by Donoghue and his
collaborators.

Teaching came to my aid again. At the blackboard
one day in 1990, it suddenly occurred to me that one of
the kinds of interaction that has the number of deriva-
tives plus half the number of nucleon fields equal to
two is the interaction with no derivatives at all and
four nucleon fields. It had taken me a decade to realize
that four divided by two is two. This sort of interaction
is just the kind of hard-core nucleon–nucleon interac-
tion that nuclear physicists had always known would
be needed to understand nuclear forces. But now we
had a rationale for it. In a calculation of nuclear forces
as a power series in energy, the leading terms are just
the ones that the nuclear physicists had always been
using, pion exchange plus a hard core. This point of
view has been explored by Ordoñez and van Kolck and
others.

In the theories that I have been discussing, the chiral
symmetry theory of soft pions and general relativity, the
symmetries don’t allow a purely renormalizable interac-
tion. In a theory of gauge fields and quarks and leptons
and scalars, you can have a renormalizable Lagrangian.
Throwing away everything but renormalizable interac-
tions, you have just the Standard Model, a renormaliz-
able theory of quarks and leptons and gauge fields and
a scalar doublet. But now we can look at the Standard
Model as one term in a much more general theory, with
all kinds of non-renormalizable interactions, which yield
corrections if higher order in energy.

In these corrections, the typical energy E must be
divided by some characteristic mass scale M . For the
chiral theory of soft pions, this mass scale is M ≈ 2πFπ,
about 1200 MeV. For the theory of weak, strong and
electromagnetic interactions, M is probably a much
higher scale, perhaps something like the scale of order
1015 GeV where Georgi, Quinn and I found the effective
gauge couplings of the weak, strong and electromag-
netic interactions all come together. Or perhaps it is
the characteristic scale of gravitation, the Planck scale
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1018 GeV . Or perhaps somewhere in that general neigh-
borhood. It is the large scale of M that made it a good
strategy in constructing the Standard Model to look for
a renormalizable theory .

We now expect that there are corrections to the
renormalizable Standard Model of the order of pow-
ers of E/M . How in the world are we ever going to find
corrections that are suppressed by such incredibly tiny
fractions? The one hope is that those corrections can
violate symmetries that we once thought were invio-
lable, but that we now understand are simply accidents,
arising from the constraint of renormalizability that we
imposed on the Standard Model.

Indeed, quite apart from the development of effective
field theory, one of the great things about the Standard
Model was that it explained various symmetries that
could not be fundamental, because we already knew
they were only partial or approximate symmetries. This
included flavor conservation, such as strangeness con-
servation, a symmetry of the strong and electromag-
netic interactions that was manifestly violated in the
weak interactions. Another example was charge conju-
gation invariance—likewise a good symmetry of strong
and electromagnetic but violated by weak interactions.
The same was true of parity, although in this case
you have to make special accommodations for non-
perturbative effects. All these were accidental symme-
tries, imposed by the simplicity of the Standard Model
necessary for renormalizability plus other symmetries
like gauge symmetries and Lorentz invariance that seem
truly exact and fundamental. Chiral symmetry itself is
such an accidental symmetry, though only approximate.
It becomes an accidental exact symmetry of the strong
interactions in the limit in which the up and down quark
masses are zero, as does isotopic spin symmetry. Since
these masses are not zero, but relatively small chiral
symmetry is an approximate accidental symmetry.

Now, coming back to effective field theory, there are
other symmetries within the Standard Model that are
accidental symmetries of the whole renormalizable the-
ory of weak, strong and electromagnetic interactions: In
particular, baryon conservation and lepton conservation
are respected aside from very small non-perturbative
effects (well, very small at least in laboratories, though
maybe not so small cosmologically). If baryon and lep-
ton conservations are only accidental properties of the
Standard Model, maybe they are not symmetries of
nature. In this case, there is no reason why baryon
and lepton conservation should be respected by non-
renormalizable corrections to the Lagrangian, and so
you would expect terms of O(E/M) or O((E/M)2) or
higher order as corrections to the Standard Model that
violate these symmetries.

Wilczek and Zee and I independently did a catalog
of the leading terms of this type. Some of them—those
involving baryon number non-conservation—give you
corrections of O((E/M)2). They have not been yet been
discovered experimentally. But there are other terms
that produce corrections of O(E/M) that violate lep-
ton conservation, and they apparently have been dis-
covered, in the form of neutrino masses. I wish I could

say that the effective field theory point of view had pre-
dicted the neutrino masses. Unfortunately, it must be
admitted that neutrino masses were already proposed
by Pontecorvo as a solution to the apparent deficit of
neutrinos coming from the Sun. So though I can’t say
that the effective field theory approach had predicted
neutrino masses, I do think that it gets a strong boost
from the fact that we now have evidence of a correction
to the renormalizable part of the Standard Model. But
of course there already was a known correction. Gravi-
tation was always there, warning us that renormalizable
quantum field theory can’t be the whole story.

I expect that sooner or later we will be seeing another
departure from the renormalizable Standard Model in
the discovery of proton decay, or some other example
of baryon non-conservation. In a sense, baryon non-
conservation has already been discovered, because we
know from the present ratio of baryon number to pho-
ton number that in the early universe before the tem-
perature dropped to a few GeV, there was about 1
excess quark over every 109 quark–antiquark pairs. This
has to be explained by the non-renormalizable correc-
tions to the Standard Model, and indeed, it has been
explained, unfortunately not just by one such model but
by many different models. We don’t know the actual
mechanism for producing baryon number in the early
universe, but I have no doubt that it will be found.

There are still unnatural elements in the Stan-
dard Model. I said that you would expect the leading
terms that describe physical reactions to be given by
the renormalizable theory—here the Standard Model—
with the effects of non-renormalizable terms suppressed
by powers of E/M . Those corrections come from inter-
actions that have coupling constants whose dimensions
have negative powers of mass, 1/M , 1/M2, and so on.
But what about interactions that have positive pow-
ers of mass? Why aren’t they there at O(Mn)? Well
unfortunately we don’t have a good explanation.

The cosmological constant is such a term. It has the
dimensions of energy per volume, in other words M4.
We don’t know why it is as small as it is. There is
also the bare mass of the Higgs boson. That’s the one
term in the Standard Model Lagrangian whose coeffi-
cient has the dimensionality of a positive power of mass.
We don’t know why it is not O(1015 GeV ). These are
great mysteries that confront us: Why are the terms in
our present theory that have the dimensions of posi-
tive powers of mass so small compared to the scale that
we think is the fundamental scale, somewhere in the
neighborhood of 1015–1018 GeV ? We don’t know.

With the new approach to the Standard Model I
think we have to say that this theory in its original form
is not what we thought it was. It is not a fundamental
theory. But at the same time, I want to stress that the
Standard Model will survive in any future textbooks of
physics in the same way that Newtonian mechanics has
survived as a theory we use all the time applied to the
solar system. All of our successful theories survive as
approximations to a future theory.

There’s a school of philosophy of science associated
in particular with the name of Thomas Kuhn that sees
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the development of science—particularly of physics—as
a series of paradigm shifts in which our point of view
changes so radically that we can barely understand the
theories of earlier times. I don’t believe it for a minute.
I think our successful theories always survive, as New-
tonian mechanics has, and as I’m sure the Standard
Model will survive, as approximations.

Now, we have to face the question, approximations
to what? We think the Standard Model is a low-energy
approximation to a theory whose constituents involve
mass scales way beyond what we can approach in the
laboratory, scales on the order of 1015, 1018 GeV . It
may be a field theory. It may be an asymptomatically
safe field theory, which avoids coupling constants run-
ning off to infinity as the energy increases. Or it seems
to me more likely that it is not a field theory at all, that
it is something like a string theory. In this case, we will
understand the very successful field theories with which
we work as effective field theories, embodying the prin-
ciples of quantum mechanics and symmetry, applied as
an approximation valid at low energy where any theory
will look like a quantum field theory.

Acknowledgements This work is supported by the National
Science Foundation under grant number Phy-1914679 and
also with support from the Robert A. Welch Foundation,
Grant No. F-0014.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	On the development of effective field theory



