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Abstract We explore a Portalino-like model of dark matter
and neutrino masses in which right-handed neutrino fields
connect gauge neutral operators from the Standard Model
and Hidden Sector. Neutrino masses are generated via a
seesaw-like mechanism that can explain the light active neu-
trino masses. The model includes a “Portalino” state that
connects the two sectors via the neutrino portal. Dark Mat-
ter in this model consists of a hidden sector Dirac fermion
that dominantly freezes-out via resonant annihilations into
other hidden sector states, which ultimately results in a pop-
ulation of Portalinos. Due to small mixing in the extended
neutrino sector these Portalinos tend to be cosmologically
long lived, decaying into Standard Model particles leading
to constraints on the model from Big Bang Nucleosynthesis
and measurements of the Cosmic Microwave Background
radiation. Combining these limits with direct constraints on
the size of the Portalino–neutrino mixing and the assump-
tions of the model the viable mass ranges for the Portal-
ino states are found to be 0.02 eV � mn � 6.4 eV or
489 MeV � mn � TeV. Indirect dark matter signals in the
form of highly boosted, mono-energetic Portalinos produced
in Dark Matter annihilations provide a target for neutrino
telescopes.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 The model . . . . . . . . . . . . . . . . . . . . . . .
3 Reconstructing the PMNS matrix . . . . . . . . . . .
4 Dark matter phenomenology . . . . . . . . . . . . . .

4.1 Dark matter abundance . . . . . . . . . . . . . .
4.2 Direct detection . . . . . . . . . . . . . . . . . .

5 Portalino phenomenology . . . . . . . . . . . . . . .

a e-mail: Dugald.Hepburn@rhul.ac.uk
b e-mail: Stephen.West@rhul.ac.uk (corresponding author)

5.1 The heavy Portalino case . . . . . . . . . . . . .
5.2 Intermediate Portalino . . . . . . . . . . . . . .
5.3 Light Portalino . . . . . . . . . . . . . . . . . .
5.4 Portalinos and the indirect detection of dark matter

6 Conclusions and discussion . . . . . . . . . . . . . .
Appendix A: Neutrino masses and mixing . . . . . . . .
Appendix B: Full Lagrangian in mass eigenbasis . . . . .
Appendix C: Parameterisation of the mixing matrix for

numerical evaluation . . . . . . . . . . . . . . . . . .
Appendix D: Dark matter annihilation cross section to

hidden vectors . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

The question of how the dark sector interacts with the visible
sector, if it does at all, underpins the uncertainty surrounding
the nature and origin of Dark Matter (DM). Many proposals
have been made for how a connection can be established
through so called “portals”, including the Higgs portal see
e.g. [1–3], through the Kinetic mixing portal [4–7], neutrino
portal [8–13], axion portal [14], or perhaps there is no portal
at all in which case the dark sector evolves independently but
may still have observable effects [15].

In this paper we focus on the neutrino portal, and in par-
ticular examine a model inspired by the Portalino scenario in
which a singlet fermion field connects gauge neutral fermion
operators from the Standard Model (SM) and hidden sector
[16].

In a simple realisation of the Portalino framework intro-
duced in [16] the SM is supplemented by two additional
gauge singlet fermions and a complex scalar singlet. One of
the fermion states plays the role of the right-handed neutrino,
νR , and couples to the gauge invariant combination of the
SM Higgs and Lepton doublets generating a Dirac like neu-
trino mass term after electroweak symmetry breaking. This
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right-handed neutrino state also couples to a second gauge
invariant operator composed of the second singlet fermion,
which we call ψ , and the complex scalar field, call it �. If
there is a dark U (1) under which � and ψ both transform
then we can construct Yukawa interactions that lead to Dirac
masses after the spontaneous symmetry breaking of the dark
U (1) such that

L ⊂ λ1ν
†
RH0νL+λ2ν

†
R� ψ = mdν

†
R(sin θ νL+ cos θ ψ),

(1.1)

where H0 is the neutral component of the SM Higgs doublet,
and the linear combination of ψ and νL forms a massive
Dirac state with νR . As ψ has vector interactions with the
dark gauge sector the light neutrino (zero) mass eigenstate,
ν = cos θ νL − sin θ ψ inherits these interactions albeit
suppressed by a factor of sin θ . As pointed out in [16], this
scenario is a specific version of a Z ′ model in which the only
interactions between the new hidden sectorU (1) and the SM
is via the neutrinos.1

Introducing DM into the hidden sector is straightforward.
For example, in [16] a Yukawa interaction involving the
scalar state � and a new Dirac fermion, call it X , was
included. The dark sector dominantly interacts with the neu-
trino sector potentially leading to the X DM states freezing-
out via annihilation to neutrinos. This removes, or greatly
suppresses, the usual modes for probing DM in direct and
indirect detection experiments allowing for models that con-
sider a wider range of potentially viable DM masses. On the
other hand this makes the model harder to probe.

The simple model outlined above however requires modi-
fication in order to include neutrino masses. There are a num-
ber of choices we can make to do this. One possibility is to
add a Majorana mass term for the ψ field leading to a model
along the lines of the inverse see-saw model, see e.g. [17].
In [18], it was suggested that it may be possible to produce
non-zero neutrino masses in a Zee-type model including two
Higgs doublets via a (li h)(hl j ) term generated at loop level.

An alternative is to change particle content by introduc-
ing further generations of the singlet fermion fields. In this
paper, we extend the model to include two more genera-
tions of right-handed neutrino and introduce associated large
Majorana mass terms for these states. This set-up generates
masses for two of the three generations of light neutrinos,
with the heavy Majorana masses suppressing the mass scale
of these two mass eigenstates through a seesaw-like mecha-
nism. Without the heavy Majorana masses, the light neutrinos
will be Dirac states with Dirac neutrino masses of O (λνvh).
Although with sufficiently small Yukawa couplings this is
in principle a viable model, we choose instead to adopt the
Majorana case.

1 Although, given the introduction of a new scalar field, the Higgs portal
also connects the two sectors.

The introduction of the large Majorana mass scale leads to
small mixing angles in this combined neutrino-hidden state
sector, which in turn generates suppressed couplings for the
more massive hidden sector states. This leads to relatively
long lifetimes for these states, giving rise to interesting cos-
mological implications and constraints on the model.

In Sect. 2 we describe the model in full, including the
detailed properties of the putative DM candidate. In Sect. 3
we outline the model’s predictions for neutrino masses and
mixings, and how the experimentally observed values can be
accommodated. In Sect. 4.1 we specify the viable parameter
space capable of generating the correct DM abundance. We
explore the phenomenology of – and constraints on – the
new hidden sector states, which can have lifetimes up to and
exceeding the age of the universe, in Sect. 5.

2 The model

The model consists of the SM supplemented by a number of
SM singlet fields. These include three generations of right-
handed neutrino, νRα (α = 1, 2, 3), a complex scalar, �, and
three Weyl fermions, ψ , XL and XR . The XL , XR fields will
combine to form a Dirac fermion state and will be our DM
candidate. We further introduce a new abelian gauge symme-
try, U (1)d, under which �, ψ and XR transform each with
charge 1/2. The right-handed neutrinos, XL and all other SM
states are uncharged under the new symmetry. Additionally
both XL and XR are charged under a separate Z3 symmetry
uncharged. The role of this Z3 is two-fold, firstly this for-
bids an explicit Majorana mass term for XL and secondly it
ensures the stability of the X DM state. A summary of these
charges is displayed in Table 1.

Given this particle content and charge assignment, the
Lagrangian for the model reads

L =
(

− √
2λν

αβL
†
αHνRβ − √

2λψ
α ψ†�νRα

+ i

2
MRαβνTRασ2νRβ − √

2λX X
†
R�XL + h.c.

)

+μ2
H |H |2 − λH |H |4 + μ2

�|�|2 − λ�|�|4
−λH,�|H |2|�|2 . . . , (2.1)

Table 1 Charge assignments of the field content in the hidden sector
under U (1)d and Z3. All fields in the table are Standard Model singlets

Field νRα � ψ XL XR

U (1)d 0 1/2 1/2 0 1/2

Z3 + + + eiπ/3 eiπ/3
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where the ellipsis represents the SM Lagrangian terms and all
kinetic terms for the new states including all relevant gauge
interactions with theU (1)d gauge boson, ωμ, and we specify
that μ2

�,μ2
H > 0. In principle, we may expect a kinetic

mixing term that mixes the field strengths associated with
the new U (1)d and SM hypercharge U (1)Y . However, we
assume, for simplicity, that this term is sufficiently small that
it does not impact the phenomenology of the model.2

The form of the potential leads to the spontaneous break-
ing of SU (2)L × U (1)y → U (1)em and U (1)d → noth-
ing. We parameterise both � and H in terms of excita-
tions, φ′ and h′ respectively, around the corresponding vac-
uum expectation values, expressed in the unitary gauge as

H = 1√
2

(
0

vh + h′
)

and � = 1√
2

(
vφ + φ′), where the

expectation values are given by

v2
h = 2μ2

Hλ� − μ2
�λH,�

4λHλ� − λ2
H,�

, v2
φ = 2μ2

�λH − μ2
HλH,�

4λ�λH − λ2
H,�

.

(2.2)

The Lagrangian after spontaneous symmetry breaking
reads

L =
(

− Mdαβν
†
lανRβ − Mψα

ψ†νRα

+ i

2
MRαβνTRασ2νRβ − mX X†

R XL + h.c.

)

+
(
−λν

αβν
†
lανRβh

′ − λ
ψ
α ψ†φ′νRα − λX X†

Rφ′XL + h.c.
)

− V (h′, φ′) + · · · , (2.3)

where Mdαβ = λν
αβvh, Mψα = λ

ψ
α vφ, mX = λXvφ , and

where we have assumed λX is real. The scalar potential now
reads

V (h′, φ′) = λHv2
hh

′2 + λ�v2
φφ′2 + λH,�vhvφh

′φ′

+ λHvhh
′3 + λH

4
h′4 + λ�vφφ′3 + λ�

4
φ′4

+ λH,�vh

2
h′φ′2 + λH,�vφ

2
h′2φ′ + λH,�

4
h′2φ′2. (2.4)

The ellipsis in Eq. 2.3 again include the rest of the SM
Lagrangian with the addition of all the beyond the SM kinetic
terms and interactions of the states charged underU (1)d with
the associated gauge boson, ω, whose mass is given bymω =
(vφ g̃)/2 after symmetry breaking.

2 Following [19], the leading contribution to the loop induced kinetic

mixing term is ∼ 10−7
(
λνλψ

)2
, which arises from a 3-loop diagram.

Even with the couplings λν and λψ of order 1 the size of the induced
kinetic mixing term is not relevant for the model phenomenology and
evades bounds on the size of the kinetic mixing parameter, [19].

The scalar sector is diagonalised via the rotation defined
by

(
h
φ

)
=
(

cos θ sin θ

− sin θ cos θ

)(
h′
φ′
)

,

where tan 2θ = − λH,�vhvφ

λ�v2
φ − λHv2

h

. (2.5)

The measured value of the couplings of the SM gauge bosons
to the Higgs are very close to that predicted by the SM and
consequently the mixing angle θ must be small – in the region
of interest (vφ � TeV), the limit is approximated by [20,21]:

| sin θ | � 0.3√
1 + log

(
mφ

TeV

) . (2.6)

This can be achieved by insisting vφ � vh and by assum-
ing that the coupling λH,φ is moderately suppressed com-
pared with the other dimensionless couplings in the scalar
potential. Suppressing λH,φ also has the effect of shutting
off the Higgs Portal as a channel for DM annihilation, see
Sect. 4.1 for details. The vφ � vh hierarchy is also neces-
sary for achieving light neutrinos with phenomenologically
viable masses.

In this limit the scalar mass eigenstates read

m2
h = 2λHv2

h

(
1 − λ2

H,�

4λ�λH
+ O

((
λH,�vh

λ�vφ

)2
))

, (2.7)

m2
φ = 2λ�v2

φ

(
1 +

(
λH,�vh

λ�vφ

)2
+ O

((
λH,�vh

λ�vφ

)2 λH v2
h

λ�v2
φ

))
.

(2.8)

Moving to the fermionic content of the model, the first
two mass mixing terms of Eq. 2.3 encode the Portalino-like
mixing, as detailed in Eq. 1.1. The picture is necessarily com-
plicated by the Majorana mass term for the νR fields and this
is what leads to non-zero light neutrino masses. In this work
we do not propose a full flavour model, instead we assume
that there are no significant hierarchies within the compo-
nents of λν

αβ , λ
ψ
α or MRα . Under this assumption, we define

λν
αβ ≡ λνFν

αβ ≡ md

vu
Fν

αβ, λψ
α ≡ λψ Fψ

α ≡ mψ

vφ

Fψ
α ,

MRαβ ≡ mRFRαβ (2.9)

where the parameters without flavour indices, which we
define to be real, will be used to indicate the typical size
of the entries of each term leaving the precise flavour depen-
dence to the objects labelled F .

In order to obtain the correct mass spectrum, we require
that theνR Majorana mass is much larger than its mass mixing
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with either ψ or the active neutrinos νL , and that the mixing
with ψ is much larger than the mixing with νL , that is λνvh 	
λψvφ 	 mR or equivalently, md 	 mψ 	 mR .

Given this hierarchy of scales, the mass matrix mixing the
states ψ, νl and νR can be approximately diagonalised via
the following transformations

νi ∼ U (ννl )
iα

(
νlα

iσ2ν
∗
lα

)
+ md

mψ

U (νψ)
i

(
ψ

iσ2ψ
∗
)

+ md

mR
U (ννR)
iα

(−iσ2ν
∗
Rα

νRα

)
,

n ∼ md

mψ

U (nνl )
α

(
νlα

iσ2ν
∗
lα

)
+U (nψ)

(
ψ

iσ2ψ
∗
)

+ mψ

mR
U (nνR)

α

(−iσ2ν
∗
Rα

νRα

)
,

Ni ∼ md

mR
U (Nνl )
iα

(
νlα

iσ2ν
∗
lα

)
+ mψ

mR
U (Nψ)
i

(
ψ

iσ2ψ
∗
)

+U (NνR)
iα

(−iσ2ν
∗
Rα

νRα

)
, (2.10)

where i, α = 1, 2, 3 and in the above the definitions in Eq. 2.9
have been used to factor out the leading order behaviour
while the various factors of U contain all the detailed flavour
mixing.

The full diagonalisation of the (νlα, ψ, νRα) system is pre-
sented in Appendix A and includes the full expression for
the unitary matrix that Eq. 2.10 derives from, including the
explicit form of the U factors.

To leading order the three light neutrinos, νi , have masses

mν1 = 0, mν2,3 ∼ m2
d

mR
, (2.11)

and the three heavy neutrinos, Ni , have masses

mNi ∼ mR . (2.12)

The field n, which we choose to call the Portalino,3 has a
mass suppressed relative to the mass scale mψ given by

mn ∼ m2
ψ

mR
. (2.13)

3 It is not entirely clear which of our states is the analogue of the Portal-
ino from the earlier example outlined in Eq. 1.1, where νR was the Por-
talino. It should perhaps, morally speaking, be the fields Ni that should
take on the Portalino title given that their largest component comes
from the νR fields. We prefer however to adopt the naming conventions
from neutrino mass models where the Ni s are the heavy neutrinos, the
νi the light neutrinos, leaving the n field which we will refer to as the
Portalino.

With mψ = λψvφ , it is clear that under the hierarchy
assumption of mR � λψvφ , it must be true that mn 	
vφ . The full Lagrangian in the mass eigenbasis is given in
Appendix B.

3 Reconstructing the PMNS matrix

In Appendix A the full masses and mixings of the (νlα, ψ,

νRα) system are calculated and presented as approximate
analytic expressions following the hierarchy in masses scales
md 	 mψ 	 mR . As stated above, we are assuming that
there are no significant hierarchies between the flavours of
the individual masses.

Due to the additional states mixing with the left-handed
neutrinos, the PMNS matrix will no longer be unitary.
Assuming no mixing in the charged lepton sector the PMNS
matrix is determined by the mixing in the extended neutrino
sector only. The allowed 3σ ranges on the entries PMNS
matrix (once the assumption of unitary is dropped) are [22]:

|V | =
⎛
⎝0.76 → 0.85 0.50 → 0.60 0.13 → 0.16

0.21 → 0.54 0.42 → 0.70 0.61 → 0.79
0.18 → 0.58 0.38 → 0.72 0.40 → 0.78

⎞
⎠ . (3.1)

In addition to the mixing, the masses of the light neutrinos
must fall within the following ranges (the lightest neutrino is
massless in this model) – assuming normal ordering [23]:

m2 ∈ [8.2 meV, 9.0 meV] ,m3 ∈ [49.0 meV, 50.9 meV] .

(3.2)

A flavour model for the structure of λν, λψ and MR is
beyond the scope of this work, and without such a model
the task of finding values for the components of these matri-
ces that satisfy the mixing and mass constraints is an under-
constrained problem.

4 Dark matter phenomenology

4.1 Dark matter abundance

Moving now to the DM phenomenology in this model. In
our numerical analysis below we have used micrOMEGAs,
[24], to compute the freeze-out abundance for a range of
parameter values. We can eliminate a number of parameters
in favour of the measured values of the Higgs mass, mh , and
the masses of the SM gauge bosons. The DM phenomenology
is not sensitive to the relative sizes of the neutrino masses and
mixings. In order to ensure that we consider parameter values
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Fig. 1 Left: DM abundance against mX , for vφ = 2 TeV, mn =
100 keV, λψ = 1, g̃ = 1, λ� = 1, λH,� = 0.1. The horizontal dot-
ted line indicates the observed DM abundance. The first trough cor-
responds to the resonant X X̄ → nn process with ω in the s-channel
with mX ≈ mω/2 (mω = g̃

2 vφ = 1 TeV) and the second, shallower,
trough corresponds to the resonant X X̄ → ωω process with φ in the s-

channel withmX ≈ mφ/2 (mφ = √2λφvφ ≈ 2.8 TeV). Middle (right):

Relative (absolute) contributions of each channel to
(

h2

)−1
. The line

labelled ‘Higgs Resonance’ includes several channels which are only
significant near the h resonance at mX ≈ mh/2. These are dominated
by XX → bb; the next largest contributions come from XX → GG,
XX → τ+τ− and XX → cc

that can reproduce light neutrino masses we set4 (
md
mψ

)2mn =
20 meV in order to fix λν . The remaining relevant masses and
couplings are determined, at least to leading order, by seven
parameters: vφ, λψ, λ�, λH,�,mn , g̃, and mX .

In the left-hand panel of Fig. 1 we demonstrate how the
DM abundance behaves as a function of the DM mass,
mX , with other parameters fixed at vφ = 2 TeV,mn =
100 keV, λψ = 1, g̃ = 1, λ� = 1, λH,� = 0.1 (unless
stated otherwise these are the parameter values used in all
plots in this section). The dynamics of the DM freeze-out is
rather insensitive to the exact value ofmn providedmn < mX

by at least a factor of 10.
The horizontal dotted line in Fig. 1 indicates the observed

DM abundance. In the middle and right-hand panel of Fig. 1
we show the absolute and relative contributions of different
DM annihilation channels to

(

h2

)−1
respectively.

For mX < mω the dominant annihilation process is
X X̄ → nn, which proceeds via s-channel exchange of the
hidden sector gauge boson, ω. For mX > mω, DM annihila-
tion into pairs of ω gauge bosons is kinematically possible
and becomes the dominant channel for mX ∼ mφ/2 and
above.

The annihilation cross section for X X̄ → nn expanded in
powers of relative velocity, v, reads

σ(X X̄ → nn)v ≈ g̃4m2
X

∣∣Unψ
∣∣4

128π
[(

4m2
X − m2

ω

)2 + �2
ωm

2
ω

] , (4.1)

4 This mass sets the scale for the light neutrinos, the precise masses
and mixings are determined by other flavour parameters that do not
play a leading role in the determination of the DM abundance. In order
to numerically calculate the DM abundance we do need to input some
structure by hand and we assume a simple parameterised form of the
components of the full 7 × 7 neutrino mixing matrix, these are listed in
Appendix C.

where �ω is the total decay width of ω and we have assumed5

mX � mn . For X X̄ → ωω, the cross section has the form

σ(X X̄ → ωω)v ≈ g̃4
(
m2

X − m2
ω

)3/2

256πm2
ωmX

(
2m2

X − m2
ω

)

+v2 g̃2 F(mX ,mω, g̃, λX , θ)[(
4m2

X − m2
φ

)2 + m2
φ�2

φ

] (4.2)

where �φ is the total decay width of φ and F(mX ,mω, g̃,
λX , θ) is a complicated expression detailed in Appendix D.
The O(v2) term in Eq. 4.2 includes the s-channel diagram
with φ in the intermediate state, that, although p-wave, will
dominate the σ(X X̄ → ωω) around mX ∼ mφ/2. The s-
wave term in Eq. 4.2 comes from a diagram with X in the
t-channel.

Looking more closely at the left panel in Fig. 1, the struc-
ture of the plot is dominated by two resonances, one in each
of the channels described above. The first with an on-shell ω

in the s-channel appearing at mX ∼ mω/2, and the second
with an on-shell φ appearing at mX ∼ mφ/2.

The middle and right panels of Fig. 1 demonstrate over
what mass range the two processes dominantly contribute
to the determination of the DM abundance. In the middle
panel we plot the relative contributions of all channels with
more than a 1% contribution and it is clear that the hidden
sector/Portalino only channels dominate.

There are some contributions from SM model channels,
all of which are enabled by the Higgs Portal via the mixing
between the SM Higgs and hidden sector φ. For example,
contributions from the W+W−, Z Z , hh final state channels

5 This assumption is only made in the analytic expressions for the cross
section, the mass of the Portalinos is included in the numerical calcu-
lations.
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Fig. 2 DM abundance against mX for different values of g̃ (left panel)
and λ� (right panel). Apart from the values of g̃ and λ� indicated in
the plots, both panels display results for parameter values as stated for

the left panel of Fig. 1. The effect of varying the values of both these
parameters is seen in the position and shape of the troughs in the DM
abundance (see text for details)

are present due to resonant s-channel exchange of the φ field.
The size of these SM channel contributions is ultimately con-
trolled by the parameter λH,�. Suppressing this parameter or
even setting it to zero shuts off the Higgs Portal and removes
the contributions from the SM channels in Fig. 1. On one
hand this may be desirable as it means the DM abundance is
determined entirely by hidden sector/Portalino physics. The
usually close link in freeze-out models between the annihi-
lation process determining the abundance and the predicted
signal rate in direct and indirect DM detection experiments is
then decoupled. There are however still potential constraints
on this model from the phenomenology of the Portalinos
described in Sect. 5 and potential signals from indirect detec-
tion described in Sect. 5.4.

Conversely, if the Higgs Portal is activated by increasing
the size of λH,� the role of the SM states in both generating
the DM abundance (mainly around the φ resonance) and in
constraining the model become more important and can lead
to interesting signals, for example in indirect detection sig-
nals where the DM states are annihilating to SM final states.
These processes are however p-wave and therefore velocity
suppressed and do not trouble current limits.

For sufficiently large masses the process X X̄ → φω can
play a role, with a modest dip in the abundance towardsmX ∼
2 TeV. At smaller masses, the Higgs s-channel resonance can
also contribute but only in a very narrow range, as can be seen
in the middle panel of Fig. 1. This latter channel is again only
present due to the Higgs Portal and will be reduced if λH,�

is further suppressed below the value of 0.1 used here.
In Fig. 2, we demonstrate the dependence of the DM abun-

dance on g̃ (left panel) and λ� (right panel). In particular,
the way in which these parameters determine the position
and shape of the troughs in the abundance. With reference

to the left panel, g̃ modifies the abundance in three ways.
For mX < 1.25 TeV, the process X X̄ → nn dominates the
determination of the abundance. With the cross section for
this process going as ∼ g̃4, reducing the value of g̃ increases
the abundance, which can be seen in the left panel of Fig. 2.

A second variation arises due to the fact that the value of
g̃ determines the mass of the vector boson ω for fixed vφ and
hence shifts the position of the resonance in mX and in turn
shifts where the tough appears in the abundance. Decreasing
the value of g̃ therefore shifts the trough in the abundance to
lower DM masses.

Finally, the width of the trough/resonance depends on g̃
via the decay rate of ω. A smaller value of g̃ decreases �ω pro-
ducing a more narrow trough/resonance. The second trough
remains largely unchanged.

In the right panel of Fig. 2, the dependence of the
DM abundance on λ� is demonstrated. The first trough is
unchanged as this is dominantly determined by the nn final
state channel, but the decrease in λ� shifts the second trough
to lower mX due to the decrease in mφ . The width of the φ

resonance/trough is narrower for smaller λX .
We note that the modest dip in the abundance at large

mX is no longer visible in the left panel of Fig. 2 when g̃
is decreased. The reason is that the X X̄ → ωω annihilation
process will dominate in this mass range due to having a
dominant contribution that goes like ∼ g̃2λX compared with
the leading contribution for the ωφ channel, which goes like
∼ g̃4. In the left panel of Fig. 2 however, the dip is clearly
visible and appears at a lower value of mX for λ� = 0.5
owing to the reduced value of mφ .

Finally, we summarise the dependence on the remaining
free parameters. For fixed vφ the DM abundance doesn’t
depend on λν , λψ ormn , as can be seen from Eqs. 4.1 and 4.2.
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There is a degeneracy in these parameters whereby a change
in one can be compensated by another with no effect on the
DM abundance. In Sect. 5, however, we show that there are
constraints on the Portalino that constrain these parameters
of the model.

For fixed g̃, λX , λψ , increasing vφ increases the masses
of the hidden sector states. For DM masses around the
ω resonance the correct abundance can still be achieved
up to vφ ∼ 100 TeV, whereas the correct abundance for
DM masses around the φ resonance can be achieved up to
vφ ∼ 7 TeV. However, in both these extreme cases this is
only possible if we are precisely on resonance. Given the
assumption that mn 	 vφ from Sect. 2 the viability of the
DM model limits the maximum mass of mn to be ∼ TeV, the
precise limit depending on the mass of the DM state and the
degree of tuning to the resonance one can tolerate.

In summary, we have shown that it is relatively straightfor-
ward to reconstruct the correct DM abundance in this model
with the X states freezing-out dominantly via the annihilation
channels: XX → nn and XX → ωω. There is an important
question however about the fate of the Portalino, n, states.
It is expected that there is a significant number density of
these states left after the DM states have frozen-out and all
other dark sector states have decayed. The Portalino states
are unstable with potentiality long lifetimes and may dis-
rupt, for example, Big Bang Nucleosynthesis (BBN) or the
Cosmic Microwave Background Radiation (CMBR) as they
decay to SM particles. Constraints coming from the Portal-
ino phenomenology are discussed in the Sect. 5. They will
also play an important role in indirect detection as discussed
in the Sect. 5.4.

4.2 Direct detection

Direct DM detection signals can be generated if the Higgs
portal is active, that is the parameter λH,� is non-zero.
The dominant contribution to the direct detection signal
comes from Higgs exchange with scattering cross section
per nucleon approximately given by [25]

σ ∼ m2
r

2π

(
λX sin 2θ

vhm2
h

)2

f 2
p , (4.3)

where mr is the reduced mass of the DM-proton given by
mr = mXmp/(mX + mp) and we have assumed that the
interactions with protons and neutrons are the same with

f p = mp

⎡
⎣∑
u,d,s

fTq + 6

27
fTG

⎤
⎦ ∼ 0.30 mp, (4.4)

where, following [26], we have used ( fTu , fTd , fTs , fTG ) =
(0.018, 0.027, 0.037, 0.917).

Assuming a small mixing angle θ and applying λ�v2
φ �

λHv2
h to tan (2θ) in Eq. 2.5, we find

σ ∼ 5 × 10−46 cm−2
(

λH,�

0.1

)2 (2 TeV

vφ

)4 ( mX

2 TeV

)2
(

1

λ�

)2

.

(4.5)

This value is just below the constraint from LUX-ZEPLIN
(LZ), [27], at 2 TeV. For smaller values of mX , the direct
detection limit decreases linearly with decreasing mass (until
around 30 GeV where it flattens off) in contrast, the predicted
cross section from Eq. 4.5 with fixed values of λH,�, vφ and
λ� decreases with m2

X . As a result, masses below 2 TeV are
allowed for λH,�, vφ and λ� fixed at the values indicated in
Eq. 4.5.

To get a more general understanding of the direct detection
limits Eq. 4.5 can be compared to a linear approximation of
the LZ bound (which holds for mX � 40 GeV) and reads

σmax ∼ 5.5 × 10−46 cm−2
( mX

2 TeV

)
. (4.6)

Using this, we can write:

mX � 2.2 TeV

(
0.1

λH,�

)2 ( vφ

2 TeV

)4
(

λ�

1

)2

. (4.7)

Focusing now on parameter values where the observed
DM abundance is correctly reproduced in the model, it is
clear from Fig. 1 that we need to be near one of the troughs
corresponding to the ω or φ resonances. These occur at
mX = mω/2 and mX = mφ/2 respectively, or equivalently
at mX/vφ = g̃/2 and mX/vφ = √λφ/2. Comparing these to
Eq. 4.7, the troughs will be allowed by direct detection limits
if

λH,� � 0.15 λ� g̃−1/2
( vφ

2 TeV

) 3
2

(ω resonance), (4.8)

λH,� � 0.12 λ
3/4
�

( vφ

2 TeV

) 3
2

(φ resonance). (4.9)

In summary, direct detection can play a role in limiting the
allowed parameter space, but it is always possible to suppress
the predicted signal by reducing the size of λH,�. Reducing
this parameter has no significant impact on whether the cor-
rect abundance can be achieved. This parameter, however,
cannot be arbitrarily small as it provides the interaction that
keeps the dark sector in thermal equilibrium.

5 Portalino phenomenology

The Portalino mass and dark sector masses are all related to
vφ , as a result the scale of the Portalino mass can be linked
to the dark sector masses. In particular, the mass of the DM
particle X can be written in terms of the Portalino mass as
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mX = λXvφ =
(

λνλX

λψ

)(
mn

mν

) 1
2

vh

≈ 500 GeV

(
λX

0.25

)( mn

GeV

) 1
2
(

1

λψ

)(
λν

3.6 × 10−5

)
.

(5.1)

Comparing with Fig. 1, the observed DM abundance can be
produced even in scenarios with a relatively heavy Portalino.
Note though that this does require a relatively small value
of λν . This is due to the fact that increasing the Portalino
mass mn in Eq. 2.13 while holding vφ (mψ ) constant is only
possible via decreasing the Majorana mass mR . In turn, a
decrease in mR necessitates a smaller value of λν in order to
obtain the correct neutrino mass scale in Eq. 2.11.

Beyond the phenomenological role Portalinos play in dark
matter freeze-out, indirect detection and neutrino mixing,
their presence in the Early Universe may also lead to signif-
icant constraints due to their potentially very long lifetime.
The decay modes for the Portalino are to SM neutrinos; a
neutrino plus neutral meson; a neutrino plus charged lepton
pair; or a charged lepton plus charged meson, the first two
via a SM Z boson and the latter two via the SM W±. The
mixing between the Portalino and neutrino can vary from the
first order approximations described by Eq. 2.10 depending
on the underlying flavour parameters. To account for this in
a simplified manner we include an overall scaling param-
eter η in the Portalino–neutrino mixings (see Appendix C)
and neglect further details of any potential flavour structure.
Within this parametrisation, the lifetime of the Portalino is
given approximately by

τn ∼ 3s

(
1

η

)2 (GeV

mn

)4

C(mn), (5.2)

whereC(mn) accounts for the different decay modes possible
for a given mass, mn . The value of C(mn) is plotted in Fig. 3
and ranges from ∼ 1 for mn < 2me to ∼ 0.01 for a Portalino
mass just below the W± mass. The steps down in the plot
correspond to mass thresholds of Standard Models particles
into which the Portalino can decay.

The important thing to note is that these decays are cosmo-
logically important, as any decays into the neutrino or pho-
ton sector which occur after neutrino decoupling affect the
neutrino-photon temperature ratio (and hence Neff). Further-
more there are constraints on long lived decaying particles
from the primordial abundance of light elements set during
BBN [28].

This relationship between the Portalino mass and its cou-
pling to the SM, in particular to the SM leptons, determines
the Portalino decoupling temperature. Portalinos are primar-
ily held in thermal equilibrium by processes such as en ↔ eν,
which depends on a coupling of orderO (md/mψ

)
or in terms

Fig. 3 The value of C(mn) from Eq. 5.2 plotted as a function of the
Portalino mass mn

of the physical mass states O (√mν/mn
)
. The more massive

the Portalino state is the weaker its coupling with the SM
becomes and the earlier it will decouple, for example in the
limit where the Portalino decouples relativistically, the rate
of en ↔ eν is given approximately by

� ∼
⎧⎨
⎩

η2
(

mν

π3mn

)
G2

FT
5, for T < mZ ,

η2
(

mν

π3mn

)
G2

Fm
2
Z T

3 for T > mZ ,
(5.3)

where we have neglected the masses of the electron and neu-
trino and have quoted the result for decoupling temperatures
above and below the mass of the Z (and W ) SM gauge boson.

By comparing these rates to the Hubble parameter we can
approximately determine the decoupling temperature of the
Portalinos as

Tn,decouple ∼

⎧⎪⎨
⎪⎩

23 GeV
(

1
η

) 2
3
(

mn
1 GeV

) 1
3
, for Tn,decouple < mZ ,

165 GeV
(

0.1
η

)2 ( mn
1 GeV

)
for Tn,decouple > mZ ,

(5.4)

where we have set the total number of effectively massless
degrees of freedom g∗ ∼ 100 and mν = 0.2 meV.

For these example parameter values the Portalino decou-
ples while relativistic with a significant energy density. Any
Portalino decays producing neutrinos that occur after neu-
trino decoupling and before/during BBN or recombination
would affect Neff during these times. Any shift in Neff is
tightly constrained [29,30]. In addition, sufficiently long
lived Portalinos decaying into SM particles during BBN
directly impact the abundance of light elements, [28], further
constraining the Portalino parameter space. The constraints
from BBN leave us with two options: the Portalinos must
decay before BBN and neutrino decoupling, or after recom-
bination. The latter possibility can be further split into two
scenarios: one in which the Portalinos decay after recom-
bination, and another in which the Portalinos don’t decay

123



Eur. Phys. J. C           (2023) 83:405 Page 9 of 22   405 

within the lifetime of the universe. These scenarios will be
discussed in the following sections.

5.1 The heavy Portalino case

We first focus on the heavy Portalino case in which Portal-
inos decay most rapidly. For a given mass, the value of η

will determine the decoupling temperature and decay time
of the Portalino and the condition that the Portalinos must
decay before BBN corresponds to a minimum value of η. The
parameter η also feeds into the mixing between the Portalino
and the active neutrinos (see Appendix A for details). Limits
on the maximum size of this mixing comes from electroweak
precision tests, collider searches for the direct production of
Portalinos, beam dump experiments, and measurements of
meson decays such that combined with the BBN constraints
limits η to a range of allowed values. The extent of this range
narrows with decreasing Portalino mass and shrinks to zero
at mn = 489 MeV.

To show this, we first evaluate the combined constraints on
|Ve4|2 for Portalino masses between 0.1 GeV and 100 GeV,
a summary of which is shown in Fig. 4. The Portalino is not
expected to mix more strongly with any particular neutrino so
only constraints for |Ve4|2 are shown, as these are strongest.

Electroweak precision tests: The Portalino mixing with
active neutrinos can affect several electroweak observables
such as the invisible Z decay width. These effects are pri-
marily dependent on the size of the Portalino–neutrino mix-
ing Vnν , but there is some mass dependence for lower val-
ues of mn . Global fits of sterile neutrino mixing have been
performed on electroweak precision data (taken from [31],
which draws from [32–36]), and these bounds can be applied
to the Portalino. This constraint is displayed in Fig. 4 as a
green coloured region labelled ‘EWPT’.

Collider searches: Portalinos can be produced directly
(e.g. via e+e− → nν or pp → W ∗ → nl±) or via Z -boson
decays. They could then decay into visible products, possibly
with detectable displaced vertices. Searches for such decays
have been carried out using data from LEP [37,38], ATLAS
[39], and CMS [40–42]. Limits have also been projected for
future experiments such as MATHUSLA [43], FCC-ee [44]
and ILC [44]. These constraints are displayed in Fig. 4 as a
red region labelled ‘Collider’, along with projected limits for
future experiments labelled ‘MATHUSLA’, ‘FCC-ee’ and
‘ILC’.

Beam dump experiments: Portalinos with a mass of
around 1 GeV can have significant lifetimes and so may
decay at some distance from the production site. Visible
decay products can be searched for in beam dump experi-
ments with the detector positioned at a distance from the pro-
duction site. Many such experiments have been carried out

[45–51]. These constraints are displayed in Fig. 4 as a blue
region labelled ‘Beam dump’, along with projected limits for
future experiments labelled ‘DUNE’ [52] and ‘SHiP’ [53].
Note that CHARM and PS191 bounds have been adjusted to
account for the Majorana nature of the Portalino, where the
bounds are twice as strong in this case [54].

Meson decays: The Portalino may take part in charged
meson decays such as X± → l±n, with a branching ratio
proportional to |Vnν |2. This would manifest as an additional
peak in the charged meson decay spectrum. Constraints from
decays such as π+ → e+ν are compiled in [31,55], these
constraints are displayed in Fig. 4 labelled as ‘π → eν’.
Additionally the Belle experiment, which searched for the
decay B → XlN or B → lN followed by N → lπ (where
N is a sterile neutrino and X is a meson), would also place
constraints on the neutrino-Portalino mixing [56]. This con-
straint is the dark pink region labelled ‘Belle’.

Lepton number violation in meson decays: The Majo-
rana mass term violates lepton number. Hence in the Portal-
ino model lepton number violating (LNV) processes such as
K+ → l+l+π− may take place. Many searches for LNV
processes have been carried out (e.g. [47]). However, the
bounds from lepton number violation are weaker than other
limits and are not shown in Fig. 4.

BBN andNeff : Starting with the impact on Neff from Por-
talino decays into neutrinos. Neutrinos decouple from the rest
of the thermal bath before electron–positron annihilation, and
hence the entropy from electrons and positrons is transferred
into the photons alone, raising the photon temperature rela-
tive to the neutrino temperature. In the standard case this leads

to the ratio Tν ≈ ( 4
11

) 1
3 Tγ . However, Portalinos can decay

into neutrinos and charged leptons, so if the Portalinos decay
after neutrino decoupling they will alter the neutrino-photon
temperature ratio. A convenient way to parameterise this is
as a constraint on the effective number of neutrino species
Neff: �Neff = Neff − N

′
eff, which is constrained to be less

than 0.16 at BBN [29], and less than 0.33 at recombination
[30] (where N

′
eff = 3.046 is the SM prediction [57]).

The form of Neff can be defined via the relationship
between the total radiation energy density and the energy
density in photons:

ρr = ρ
′
γ + ρ

′
ν + �ρ (5.5)

= ργ

(
1 + 7

8
Neff

(
4

11

) 4
3
)

, (5.6)

where �ρ is the energy density due to Portalino decay prod-
ucts, and the ′ superscript refers to quantities ignoring any
Portalino contributions.

The size of �ρ depends on whether the Portalinos decou-
ple relativistically or remain in thermal equilibrium long
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Fig. 4 Current and future
bounds on heavy Portalino
mixing with the electron
neutrino, combined with the
constraint that the Portalino
must decay before neutrino
decoupling. See text for details
of constraints such as Collider,
EWPT etc. The line labelled
|Ve4(mn)|2 indicates an
approximate expected size of
the Portalino–neutrino mixing
with η = 1 leaving
|Ve4(mn)|2 ∼ mν/mn . The four
colour graded lines (for mn =
489 MeV, 500 MeV, 1 GeV and
2 GeV), projected into the
mn–|Ve4|2 plane are lines on
which the model lives as a
function of η

enough such that they freeze-out non-relativistically with a
Boltzmann suppressed abundance. The latter scenario where
the Portalinos freeze-out non-relativistically does not lead to
a modification of Neff during BBN (or later) as the increased
size of the coupling required to keep the Portalinos in thermal
equilibrium long enough leads to a short Portalino lifetime
meaning all states will have decayed well before BBN.

For Portalinos decoupling while relativistic (and assum-
ing they decay at a temperature Tn,decay < mn), the energy
density due to the decay products at (photon thermal bath)
temperatures T is given by

�ρ(T ) = mnnn
(
Tn,decay

) ( T

Tn,decay

)4

= 3mnζ(3)

2π2 T 3
n,decouple

(
an,decouple

an,decay

)3 ( T

Tn,decay

)4

,

(5.7)

where nn is the Portalino number density and the Riemann
zeta function ζ(3) ≈ 1.2. Applying conservation of entropy
we find

�ρ(T )

T 4 = 3ζ(3)

2π2

g∗(Tn,decay)

g∗(Tn,decouple)

mn

Tn,decay
. (5.8)

Assuming the Portalinos instantaneously decay at (ther-
mal bath) temperature Tn,decay, they deposit energy densities
β�ρ and (1 − β)�ρ into the neutrino and photon sectors
respectively. The resulting change in Neff reads

�Neff =
15

(
β 8

7

( 11
4

) 4
3 − (1 − β)N

′
eff

)

π2 + 15(1 − β)
�ρ

(Tn,decay)4

�ρ

(Tn,decay)4 . (5.9)

For simplicity in our analysis, we make the conservative
choice of β = 1 when producing constraints as the Portalino
abundance is so large that �Neff � 0.16 whenever Portali-
nos decay after neutrino decoupling, regardless of the value
of β (as long as β � 0.4, below which �Neff becomes neg-
ative). The constraint is therefore that any decay occurring
after neutrino decoupling is ruled out. This constraint is the
grey region labelled “Neff” in Fig. 4.

Further to the constraints on changes to Neff, Portalinos
decaying into SM states during BBN may directly impact
the abundance of light elements. The yield of Portalinos that
decouple while relativistic will be equal to the equilibrium
yield, Y EQ

n ∼ 0.4/g∗(Tn,decouple). Even for very high decou-
pling temperatures, g∗(Tn,decouple) will at most be ∼ 102

meaning the yield of decaying Portalinos will be large. For
values of mnY

EQ
n � 10−8, the lifetime of Portalinos decay-

ing and producing quark–antiquark pairs, for example, is
restricted to less than ∼ 0.03 s, [28]. As with the Neff con-
straint, Portalinos decoupling when non-relativistic with a
Boltzmann suppressed abundance have short lifetimes that
means they will have decayed well before BBN. The con-
straint on relativistically decoupling Portalinos is given by
the pink region labelled “BBN” in Fig. 4, where this con-
straint continues “behind” the grey region towards the bottom
left hand side of the plot.

In Fig. 4 the model lives on the vertical multi coloured
lines. Each line corresponds to a different Portalino mass with
values 2 GeV, 1 GeV, 500 MeV and 489 MeV plotted. The
colour gradient on these lines represents the changing values
of η moving from large values at the top of the figure down
to small values at the bottom. As the mass of the Portalino is
lowered the vertical model line moves towards the left and for
mn = 489 MeV the full line is completed excluded meaning
that we require Portalino masses with mn > 489 GeV in this
scenario.
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Fig. 5 Portalino decoupling temperature against Portalino lifetime, for
a range of Portalino masses. Marked on the plot are: the decoupling
temperature as a function of lifetime, Tn,decouple(τ ), parameterised by η

(the enhancement/suppression of the Portalino–neutrino mixings); the
region in pink and to the right of this is ruled out by the impact of the Por-
talino decays on the abundance of light elements during BBN and the
grey region indicates where the Portalino decay temperature Tn,decay

is equal to or below the neutrino decoupling temperature Tν,decouple,
within this region the Portalino decays impact on the effective rela-
tivistic degrees of freedom Neff; and the region where the Portalino–
neutrino mixing is larger than allowed by constraints is indicated by the
light blue shading. The allowed region lies on the multicoloured line
Tn,decouple(τ ), between the blue shading and the pink region

Figure 5 illustrates the same model constraints but now in
terms of the Portalino decoupling temperature and lifetime.
The model parameter space lies along the diagonal multi-
coloured line labelled Tn,decouple (τ ). This line was calculated
numerically using the exact tree-level cross section expres-
sion for the process en ↔ eν using FeynCalc [58], in order
evaluate the rate �(T, η) = nn〈σv〉(T, η), where nn is the
number density of Portalinos.

The decoupling temperature for each value of η was found
by equating this rate to the Hubble parameter. The lifetime
of the Portalino is also evaluated numerically as a function
of η to produce the multicoloured line, where the gradient
of colours represents the size of η. Moving to the left on
this model line the size of η increases and as a result so
does the corresponding Portalino–neutrino mixing. The blue
shading around the line indicates values of η ruled out by the
constraints on |Ve4|2.

On the right hand side of all plots in Fig. 5 the constraints
on the Portalino lifetime stemming from �Neff (grey region,

labelled “�Neff > 0.16”) and the abundance of light ele-
ments during BBN (pink region, labelled “BBN”) are shown.
The BBN constraints continue to longer lifetimes behind the
grey region.

From the fourth plot in Fig. 5 the limits from |Ve4|2 meet
those from BBN ruling out all values ofη for Portalino masses
equal to or less than 489 MeV indicating that for the heavy
Portalino case we have viable parameter space for mn >

489 MeV for O(1) values of the flavour parameter η.

5.2 Intermediate Portalino

Decreasing the mass of the Portalino (and/or decreasing η)
allows for their decays to occur after recombination. This
means that they don’t affect the neutrino-photon tempera-
ture ratio at recombination, and hence they evade constraints
on Neff at this point, potentially opening up an additional
region of parameter space. However, we will show that this
set-up tends to lead to an early extra period of (Portalino)
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matter domination, and a universe which, at the present day
temperature, has an energy density and expansion rate that is
too high.

Firstly, η increases the decay rate of the Portalino. The
condition that the Portalinos must decay after recombination
can be recast as a condition on η:

Condition 1: τ > trecombination �⇒ η � 160

(
100 keV

mn

)2

.

Next, we can consider the time dependence of the expan-
sion of the universe. Similarly to the heavy case, in this sce-
nario the Portalino tends to decouple while relativistic and
with a significant number density. Ifmn � 100 eV the energy
density in Portalinos comes to dominate the universe until
they decay. This allows us to place a lower limit on η given
that the smaller the value of η the longer lived the Portali-
nos are. An increase in the Portalino lifetime increases the
length of the period of early matter domination, and leads
to a lower temperature (or equivalently, a larger scale factor
a(t)) at the point that Portalinos decay. Under the assump-
tion that τ > trecombination, this doesn’t leave enough time to
reach matter domination between Portalino decays and the
point when the temperature of the universe reaches T0 (i.e.
the present day temperature). This can be seen from the fol-
lowing approximation for the scale factor at matter-radiation
equality (where radiation includes Portalino decay products):

aMRE ≈ 5.8 × 103

(
61.75

g∗
(
Tn,decouple

)
) 2

9

η− 4
3

(
100 keV

mn

) 7
3

,

(5.10)

where aMRE > 1 would mean that the present day is
radiation-dominated, with a higher expansion rate H0 than
observed. The condition that aMRE < 1 (i.e. that matter-
radiation equality is reached before the present day) can be
translated into a constraint on η:

Condition 2:

aMRE <1 �⇒ η�670

(
61.75

g∗
(
Tn,decouple

)
) 1

6 (100 keV

mn

) 7
4

.

The final condition that must be taken into account is that
|Ve4|2 < 1 and so η cannot be too large:

Condition 3: |Ve4|2<1 �⇒ η � 2.2×103
( mn

100 keV

) 1
2
.

Conditions 1, 2 and 3 cannot be simultaneously satisfied,
for any value of mn . This is equivalent to the statement that
the existence of a long-lived Portalino (τ > trecombination)

which comes to dominate the universe inevitably leads to a
current-day universe which is dominated by Portalino decay
products (or Portalinos themselves), and is growing more
quickly than we observe. Hence this scenario is ruled out.

This only leaves the possibility that the initial Portalino
density is so low (via low mass and/or density) that they never
come to dominate the universe, which brings us on to the next
section – the light Portalino.

5.3 Light Portalino

The final possibility is a very light (mn � 10 eV) Portalino.
Similarly to the above cases, DM freezes out at a temperature
T ∼ few hundred GeV following this, the Portalinos decou-
ple (possibly long) before the QCD phase transition. Again,
there is still a significant population of Portalinos after decou-
pling. However, unlike in either of the above cases the light
Portalinos never come to dominate the energy density of the
universe, and tend not to decay within the lifetime of the uni-
verse. They will however contribute �Neff at BBN and will
behave like light sterile neutrinos and will be constrained by
measurements of the CMB by Planck [30].

There are several other bounds for this scenario coming
from the Portalino–neutrino mixing, e.g. those that arise from
beta decay experiments (see for example [59]). However
these bounds are far weaker than the constraints from �Neff

and Planck.
As the light Portalino will be relativistic until well after

BBN, its contribution to the energy density at BBN will fol-
low

ρn = 7π2

120
T 4
n = 7π2

120

(
g∗s(Tν,decouple)

g∗s(T )

)
T 4, (5.11)

where g∗s(Tν,decouple) is the number of relativistic degrees of
freedom at neutrino decoupling and T is the temperature of
the Universe. As above,

�Neff = 120ρn

7π2T 4
ν

=
(
Tn
Tν

)4

=
(
g∗s(Tν,decouple)

g∗s(Tn,decouple)

) 4
3

.

Imposing �Neff < 0.16 [29] (and inserting g∗s
(Tν,decouple) = 43/4), implies that g∗s(Tn,decouple) > 42.5,
or equivalently Tn,decouple � 150 MeV for the light Portalino.
Comparing this to Eq. 5.4 this implies

η � 0.042 (mn/10 eV)
1
2 . (5.12)

The second constraint on this scenario comes from
Planck’s determination of cosmological parameters from
measurements of the CMB anisotropies, which combines
data from temperature and polarisation maps with lensing
and Baryon Acoustic Oscillation (BAO) measurements. In
particular, the light (mn < 10 eV) Portalino is constrained
by the Planck TT,TE,EE+lowE+lensing+BAO analysis limit
on an effective sterile neutrino mass, meff , where meff =
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Fig. 6 Constraints on the light Portalino scenario with the blue region
ruled out by constraints on �Neff at BBN and the grey region ruled
out by Planck’s analysis of the CMB anisotropies [30]. The vertical
dashed line indicates the scale of neutrino masses and is included to
highlight the limitations of the model assumption that the Portalino is
more massive than the neutrinos


sterileh2 (94.1 eV), is constrained to be less than 0.65 eV
[30].

Applying this to our case the light Portalino abundance
reads


n = 4ζ(3)GT 3
0

πH2
0

g∗S(T0)

g∗S(Tn,decouple)
mn, (5.13)

where G is the gravitational constant. Hence this limit is
almost entirely a constraint on mn alone, with a small adjust-
ment depending on Tn,decouple. For example, if the Portalinos
decouple extremely early, before top quarks, meff < 0.65 eV
translates to mn � 6.4 eV.

In Fig. 6 the combined limits on the light Portalino sce-
nario is mapped out as a function of η and mn with the
coloured regions ruled out. The blue region is ruled out due
to the Portalino contributing too much to �Neff at BBN with
the shape of the region determined by Eq. 5.12. The grey
region represents the parameter region ruled out by the Planck
constraint on meff , where the stepped shape comes from the
temperature dependence of g∗S .

5.4 Portalinos and the indirect detection of dark matter

As outlined above there are two DM mass regions of interest
corresponding to resonant annihilation processes in which
the model can generate the observed DM relic abundance.
For DM masses around mω/2 the resonant annihilation into
nn pairs dominates and for masses around mφ/2 the res-
onant annihilation into ωω pairs dominates. The ω states
decay quickly into nn pairs and as a result for DM states with

masses around the φ resonance, DM annihilation results in
the production of four n states.

Resonant DM annihilation into nn pairs is an s-wave pro-
cess and is therefore DM velocity independent. This means
that the DM annihilation rate in the Galactic Centre or Dwarf
Spheroidal Galaxies will be the same as that during freeze-
out. In the case where the φ resonance dominates, the reso-
nant part of the annihilation cross section to ωω is p-wave and
with the velocity in astrophysical environments, such as the
Galactic Centre, at v ∼ 10−3 (or lower in Dwarf Spheroidal
Galaxies), the indirect detection signals coming from such a
process will be velocity suppressed and play no role in con-
straining this mass region. There is an s-wave contribution
to the ωω channel but this is not resonant, with an annihi-
lation rate for our parameter values well below the ‘thermal
relic cross section’ (∼ 2×10−26 cm3 s−1) that is required to
generate the observed relic abundance and so does not lead
to constraints from indirect detection searches.

Focusing for the rest of this section on the s-wave DM
annihilation into nn pairs, the first important point is that the
Portalinos produced are mono-energetic, each with an energy
around the mass of the DM particle. The indirect detection
phenomenology is then determined by whether or not the
Portalinos decay before they reach Earth. In the case of heavy
(mn � 489 MeV) Portalinos produced in DM annihilations,
the allowed lifetime can be up to 0.03 s (see Sect. 5.1), with
the Portalino travelling on average a distance,

d ∼ 1010 m
( mX

500 GeV

)(489 MeV

mn

)
,

where we have assumed the Portalinos are ultra relativis-
tic, that is, mn 	 mX . For Portalino masses closer to the
DM mass the distance travelled will be significantly shorter.
Hence, for the heavy Portalino case, the Portalinos will decay
before reaching Earth, even if the DM annihilation has taken
place in the Sun rather than the Galactic Centre or Dwarf
Spheroidal Galaxy.

The Portalinos decay via virtual SM gauge bosons, n →
νi Z or l−W+, with the Z andW decaying either hadronically
or leptonically leading to indirect DM signals, in particular
in gamma rays. Fermi-LAT searched for gamma rays pro-
duced in DM annihilations in Milky Way Dwarf Spheroidal
Galaxies, [60] and taking the most constrained case of DM
annihilating into b̄b final states only they were able to rule out
the thermal relic cross section for DM masses below 100 GeV,
see e.g. Figures 1 and 2 of [60]. Above this mass the limit
weakens and the thermal relic cross section is not constrained.
Limits are also presented for DM that dominantly annihilates
into τ+τ− pairs, the resulting lower bound on the DM mass
is only marginally lower, still of order 100 GeV.

For mn > 2mb DM in the Portalino model does not domi-
nantly annihilate into b̄b pairs, but we can use the Fermi-LAT
limit to place a conservative bound on the model parame-
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ter space. For example, the lower bound on the DM mass
of 100 GeV leads to λX � 0.1 (TeV/vφ) and given that
in order to produce the correct relic abundance we must be
near the ω resonance, such that mX ∼ mω/2, we have that
g̃ � 0.4 (TeV/vφ). For Portalino masses between the bot-
tom mass and the τ mass we will find similar constraints but
for masses below the mass of the τ , the constraints weaken
considerably with the lower bound on the DM mass dropping
to around 10 GeV, see for example [61] where constraints are
derived for the case where the μ+μ− annihilation channel
dominates. Due to the Portalinos being produced on shell it
is their mass that determines the spectrum of SM states pro-
duced rather than the mass of the DM, in contrast to the usual
scenario of the DM annihilating directly to SM states. This
offers a way to evade the indirect limits.

The projected limits from the Cherenkov Telescope Array
(CTA) will reach the thermal relic cross section (and below)
for DM masses between a few 100 GeV and just over a TeV
assuming DM annihilates dominantly intoW+W− or b̄bfinal
states, [62]. These projected limits will be weakened for DM
annihilating into decaying Portalinos that produce a spec-
trum of different SM final states or the particular the case
of Portalinos with masses below the b-quark mass. A dedi-
cated study of the gamma ray flux produced in this mode is
required to understand both the current limits and the future
constraints in detail. This includes the impact of the Portali-
nos travelling significant distances from the DM annihilation
site before decaying into SM states.

Beyond the signal from gamma rays, neutrinos produced
in Portalino decays can also be searched for via neutrino
telescopes. The DM annihilation cross section limits from
IceCube [63] and ANTARES [64] are at least an order of
magnitude above the thermal relic cross section for all DM
masses we consider and so do not constrain the model. For
example, IceCube’s most stringent limit for DM with masses
between 30 GeV and 10 TeV annihilating into a pair of SM
neutrinos is ∼ 4 × 10−24 cm3 s−1 [63].

For the lighter Portalino case (mn � 6.4 eV), the Por-
talinos do not decay at all and can travel all the way to the
Earth. Neutrino search experiments are potentially capable of
detecting Portalinos e.g. IceCube [65] and ANTARES [64],
but with reduced sensitivity as the Portalinos will have a
coupling to the SM suppressed by

√
mν/mn compared with

neutrino interactions and for light Portalinos of around an eV
this ratio is ∼ 10−2. As with the heavy Portalino case, these
Portalino states will be mono-energetic, the energy of each
Portalino being equal to the DM mass, which in our model
means they are produced with TeV energies. These Portalinos
will produce a line in the neutrino spectrum, which provides
an intriguing target for neutrino telescopes with the location
of the line providing a way to measure the DM mass. As dis-
cussed above the current sensitivity of neutrino telescopes,
such as IceCube, is at least an order of magnitude too weak

to detect neutrinos from DM annihilations with thermal relic
cross sections and with the potential suppression of Portal-
inos compared with SM neutrinos this signal will be chal-
lenging even with the development of the next generation of
neutrino telescope. However, this does provide an exciting
target to focus on given the potential for measuring both the
DM mass and its annihilation cross section.

6 Conclusions and discussion

It seems fairly natural that if a singlet right-handed neutrino
does exist (as is the case in many models of neutrino mass)
that it may have interactions with the hidden sector and may
play a role in DM dynamics, creating a connection or portal
between the SM and dark sectors.

In this work we have expanded on the Portalino model
outlined in [16] to include neutrino masses and an expanded
dark sector including a DM state. A darkU (1) gauge symme-
try was introduced and spontaneously broken generating the
dark sector masses including for the Dirac Fermion DM state
whose stability is ensured via an unbroken Z3 symmetry. The
observed DM abundance in this model can be generated by
freeze-out via DM self-annihilations to either the Portalino
states or the now massive dark sector gauge bosons. Follow-
ing the freeze-out of DM, a population of Portalino states is
produced. The Portalino lifetime is cosmologically relevant
and as a result provides the main constraints on the proper-
ties of these states and the viability of the model. Portalinos
can also potentially play an important role in the indirect
detection of DM in this model. DM can annihilate into high
energy mono-energetic Portalinos which in the case where
they travel to the Earth can then be search for in neutrino tele-
scopes or, if they decay, their SM decay products will lead to
signals in gamma rays. Although current indirect limits do
not rule these out, it is possible future experiments will née
sensitive to these signals.

We have considered three qualitatively different scenarios
categorised in terms of the mass of the Portalino: an inter-
mediate case, which is not cosmologically viable; a heavy
and light case, the former with allowed parameter space
for a Portalino mass mn � 489 MeV and the latter viable
for mn � 6.4 eV provided Portalinos decouple before top
quarks. In the heavy Portalino case there is an upper limit
of mn � TeV due to the restriction that mn 	 vφ , where
the requirement on the successful generation of the observed
DM abundance limits the maximum size of vφ to the multi
TeV mass scale at most.

Throughout this work we have only considered includ-
ing one Portalino (with three heavy singlet neutrinos), but
we could consider models with multiple Portalinos (and/or
a different number of heavy neutrinos). We can put concrete
restrictions on which configurations are viable by imposing
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that they must give rise to at most one massless active neu-
trino. In the absence of specific flavour symmetries, the num-
ber of massless states is given by n0 = min(0, 3 − nR + n p)

where nR is the number of heavy neutrinos and n p is the
number of Portalino states. Hence for a model with n p Por-
talinos the number of heavy right-handed neutrinos required
is at least 2 + n p.

The inclusion of a full neutrino flavour model was beyond
the scope of this work. The details of such a flavour model will
feed into the Portalino phenomenology in a more complicated
way compared with the parameterisation used here in terms
of η and may lead to ways to widen the allowed parameter
range found in this work.

Another variation on what has been presented here is to
remove the Majorana mass term MR . In order to generate the
light active neutrino masses the neutrino Yukawa couplings
λν would need to be small (∼ 10−13). The structure of this
model is significantly different: for example the Portalino
mass isn’t suppressed relative to the other dark states and the
Portalino–neutrino mixing is significantly suppressed. Inter-
estingly, if the h −φ interactions were turned off or also sig-
nificantly suppressed, the Portalino–neutrino mixing could
be the strongest interaction between the dark and visible sec-
tors, and could potentially lead to the freeze-in production
[66,67] of the Portalino or other dark sector states.

The Portalino can in principle provide explanations for
some anomalies. Firstly, a decaying sterile state (which could
be the heavy Portalino) has been proposed as a solution to
short baseline anomalies [68–70]. An eV sterile neutrino has
also been mooted as a solution to these anomalies, however
the most straightforward case of an eV Portalino with suffi-
ciently strong mixing (Vnν ∼ 0.1) with SM neutrinos would
be ruled out by cosmological constraints [68,71].
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Appendix A: Neutrino masses and mixing

In this Appendix, a detailed presentation of the diagonalisa-
tion of the (νLα, ψ, νRα) sector is outlined. The objective is
to evaluate the mass eigenstates and mixings of this seven by
seven system with mass matrix given by

M =
⎛
⎝ 0 MT

d
MT

ψ

Md Mψ MR

⎞
⎠ ,

where Md and MR are 3 × 3 matrices and Mψ is a three
vector.

First it is noted that the mass matrix, M , has a zero eigen-
value, mν1 , with eigenvector:

e1 = N

⎛
⎜⎜⎜⎜⎝

−M−1
d Mψ

1
0
0
0

⎞
⎟⎟⎟⎟⎠

where N = 1/

√
1 + ‖M−1

d Mψ‖2. We define an orthonormal
basis which includes this zero eigenvector:

e1, e2 =

⎛
⎜⎜⎜⎜⎝

x1

0
0
0
0

⎞
⎟⎟⎟⎟⎠ , e3 =

⎛
⎜⎜⎜⎜⎝

x2

0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

e4 = N

‖M−1
d Mψ‖

⎛
⎜⎜⎜⎜⎝

M−1
d Mψ

‖M−1
d Mψ‖2

0
0
0

⎞
⎟⎟⎟⎟⎠ , (ei ) j = δi j ,

where x1,2 are chosen such that xT1,2M
−1
d Mψ = xT1 x2 = 0

and ‖x1,2‖2 = 1.
After rotating away the zero eigenstate, we obtain a 7 × 7

matrix with a non-zero 6 × 6 sub-matrix with a seesaw-type
structure:

P−1MP =
⎛
⎝ 04,4

01,3

MD

03,1 MT
D MR

⎞
⎠ ,

where for the sake of clarity we have indicated the dimensions
of the zero matrices (e.g. 0n,m is a n × m zero matrix) and
where

MD =

⎛
⎜⎜⎝

xT1 MT
d

xT2 MT
d

MT
ψ

N‖M−1
d Mψ‖

⎞
⎟⎟⎠
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and

P =

⎛
⎜⎜⎝

−NM−1
d Mψ x1 x2

NM−1
d Mψ

‖M−1
d Mψ‖

N 0 0 N‖M−1
d Mψ‖

04,3

03,4 I3

⎞
⎟⎟⎠ .

.
The resulting matrix can be approximately block diago-

nalised, assuming the hierarchy of masses md ,mψ 	 mR :

Q−1P−1MPQ

=
⎛
⎝ 0 01,3 01,3

03,1 −MDM−1
R MT

D + O(M3
DM−2

R ) 03,3
03,1 03,3 MR + O(MD)

⎞
⎠

(A.1)

where

Q =
⎛
⎜⎝

1 01,3 01,3

03,1 I3 − 1
2 MDM

−1
R M−1

R MT
D + O(m3

DM
−3
R ) MDM

−1
R + O(M3

DM
−3
R )

03,1 −M−1
R MT

D + O(M3
DM

−3
R ) I3 − 1

2 M
−1
R MT

DMDM
−1
R + O(M3

DM
−3
R )

⎞
⎟⎠ .

We note that the eigenvalues of the MR mass matrix will
correspond to the masses of the three heavy neutrino states,
labelled Ni in Sect. 2.

The remaining three mass eigenvalues contained within
the central 3 × 3 mass matrix block in Eq. A.1 are identified
as the remaining two light neutrino masses, along with the
Portalino mass, mn in Sect. 2. The explicit form of this mass
matrix is given by

−MDM−1
R MT

D

= −

⎛
⎜⎜⎜⎜⎜⎜⎝

xT1 MT
d M−1

R Mdx1 xT1 MT
d M−1

R Mdx2
xT1 MT

d M−1
R Mψ

N‖M−1
d Mψ‖

xT2 MT
d M−1

R Mdx1 xT2 MT
d M−1

R Mdx2
xT2 MT

d M−1
R Mψ

N‖M−1
d Mψ‖

MT
ψ M−1

R Mdx1

N‖M−1
d Mψ‖

MT
ψ M−1

R Mdx2

N‖M−1
d Mψ‖

MT
ψ M−1

R Mψ

N2‖M−1
d Mψ‖2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We use the remaining freedom to choose x1 (or equiva-
lently x2) to aid in further diagonalising. For example, choose

x1 ∝
(
MT

d M−1
R Mψ

)
×
(
M−1

d Mψ

)
(note that if this is zero

then MT
d M−1

R Mψ ∝ M−1
d Mψ and hence we can choose x1

and x2 such that the 1, 3 part is already block diagonalised -
so assume this isn’t the case), then:

− MDM
−1
R MT

D = −
⎛
⎝c d 0
d e b
0 b a

⎞
⎠ (A.1)

where

a = MT
ψM−1

R Mψ

N 2‖M−1
d Mψ‖2

= O
(
m2

ψ

mR

)

b = MT
ψM−1

R Mdx2

N‖M−1
d Mψ‖ = O

(
mdmψ

mR

)

c = xT1 MT
d M−1

R Mdx1 = O
(
m2

d

mR

)

d = xT1 MT
d M−1

R Mdx2 = O
(
m2

d

mR

)

e = xT2 MT
d M−1

R Mdx2 = O
(
m2

d

mR

)
,

where we have used the definitions in Eq. 2.9 to write the
leading order behaviour of these expressions assuming the
hierarchy of masses md 	 mψ 	 mR . Utilising this hierar-

chy further we can apply a rotation, R24, to the mass matrix
in Eq. A.1 such that

−R−1
24 MDM

−1
R MT

DR24 = −
⎛
⎜⎝
c d 0

d e − |b|2
a 0

0 0 a + |b|2
a

⎞
⎟⎠

+O
(

m3
d

mRmψ

)
,

where

R24 =
⎛
⎝1 0 0

0 cos θ24 sin θ24

0 sin θ24 cos θ24

⎞
⎠ , θ24 = −|b|

a
+ O

(
m3

d

m3
ψ

)
.

This leaves a final 2×2 matrix to diagonalise. All elements are
of the same order, and x2 is already fixed by the orthogonality
constraints. A final rotation leaves the system diagonal:

−R−1
23 R−1

24 MDM
−1
R MT

DR24R23 = −
⎛
⎝mν2 0 0

0 mν3 0
0 0 mn

⎞
⎠

+O
(

m3
d

mRmψ

)

where

R23 =
⎛
⎝ cos θ23 sin θ23 0

− sin θ23 cos θ23 0
0 0 1

⎞
⎠ ,
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cos θ23 = sign(d)√
2

√√√√√√1 −
(
c + |b|2

a − e
)

√(
c + |b|2

a − e
)2 + 4|d|2

,

sin θ23 = 1√
2

√√√√√√1 +
(
c + |b|2

a − e
)

√(
c + |b|2

a − e
)2 + 4|d|2

.

The three masses, mν1,2 and mn read

mν1 = 1

2

⎛
⎝c + e − |b|2

a
−
√(

c + |b|2
a

− e

)2

+ 4|d|2
⎞
⎠

= O
(
m2

d

mR

)

mν2 = 1

2

⎛
⎝c + e − |b|2

a
+
√(

c + |b|2
a

− e

)2

+ 4|d|2
⎞
⎠

= O
(
m2

d

mR

)

mn = a + |b|2
a

= O
(
m2

ψ

mR

)
.

Summarising the above, the 7×7 unitary matrix that diag-
onalises the mass matrix, M , is given to leading order by

V =
⎛
⎝i 0 0

0 i I3 0
0 0 I3

⎞
⎠ PQ

⎛
⎝1 0 0

0 R24 0
0 0 I3

⎞
⎠
⎛
⎝1 0 0

0 R23 0
0 0 I3

⎞
⎠
⎛
⎝−i 0 0

0 −i I3 0
0 0 I3

⎞
⎠

=

⎛
⎜⎜⎝

−NM−1
d Mψ

N
c23x1 − s23c24x2 s23x1 + c23c24x2

c24NM−1
d Mψ

‖M−1
d Mψ‖ − s24x2

−s23s24N‖M−1
d Mψ‖ c23s24N‖M−1

d Mψ‖ c24N‖M−1
d Mψ‖

A
−iMT

ψM−1
R

03,1 iM−1
R MT

DR24R23 I3 − 1
2 M

−1
R MT

DMDM
−1
R

⎞
⎟⎟⎠ ,

where

A = −i

(
M−1

d Mψ

) (
M−1

R Mψ

)T
‖M−1

d Mψ‖2
− i (x1)

(
M−1

R Mdx1

)T

−i (x2)
(
M−1

R Mdx2

)T
and c23 = cos θ23 etc. The order of the terms in the mixing
matrix V are

V ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O (1) O (1) O (1) O
(
md
mψ

)
O
(
md
mR

)
O
(
md
mR

)
O
(
md
mR

)
O (1) O (1) O (1) O

(
md
mψ

)
O
(
md
mR

)
O
(
md
mR

)
O
(
md
mR

)
O (1) O (1) O (1) O

(
md
mψ

)
O
(
md
mR

)
O
(
md
mR

)
O
(
md
mR

)
O
(
md
mψ

)
O
(
md
mψ

)
O
(
md
mψ

)
O (1) O

(
mψ

mR

)
O
(
mψ

mR

)
O
(
mψ

mR

)

0 O
(
md
mR

)
O
(
md
mR

)
O
(
mψ

mR

)
O (1) O

(
m2

ψ

m2
R

)
O
(

m2
ψ

m2
R

)

0 O
(
md
mR

)
O
(
md
mR

)
O
(
mψ

mR

)
O
(

m2
ψ

m2
R

)
O (1) O

(
mψ

m2
R

)

0 O
(
md
mR

)
O
(
md
mR

)
O
(
mψ

mR

)
O
(

m2
ψ

m2
R

)
O
(

m2
ψ

m2
R

)
O (1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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V ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
U (ννl )

)T md
mψ

U(nνl ) md
mR

(
U (Nνl )

)T

md
mψ

(
U(νψ)

)T
U (nψ) mψ

mR

(
U(Nψ)

)T

md
mR

(
U (ννR)

)T mψ

mR
U(nνR)

(
U (NνR)

)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In Eq. 2.10, the flavour mixing was parameterised by fac-
tors of U . These nine factors have the following forms

U (ννl ) =

⎛
⎜⎜⎝

−N
(
M−1

d Mψ

)T
c23xT1 − s23c24xT2
s23xT1 + c23c24xT2

⎞
⎟⎟⎠ ,

md

mψ

U(νψ) =
⎛
⎜⎝

N

−s23s24N‖M−1
d Mψ‖

c23s24N‖M−1
d Mψ‖

⎞
⎟⎠ ,

md

mR
U (ννR) =

⎛
⎜⎜⎜⎜⎝

01,3

c23xT1 MT
d M−1

R + s23c24xT2 MT
d M−1

R + s23s24
M−1

R Mψ

N‖M−1
d Mψ‖

−s23xT1 MT
d M−1

R + c23c24xT2 MT
d M−1

R + c23s24
M−1

R Mψ

N‖M−1
d Mψ‖

⎞
⎟⎟⎟⎟⎠ ,

md

mψ

U(nνl ) = c24NM−1
d Mψ

‖M−1
d Mψ‖ − s24x2, U (nψ) = c24N‖M−1

d Mψ‖,

mψ

mR
U(nνR) = s24

M−1
R Mψ

N‖M−1
d Mψ‖ ,

md

mR
U (Nνl ) = −i

(
M−1

R Mψ

) (
M−1

d Mψ

)T
‖M−1

d Mψ‖2
− i
(
M−1

R Mdx1

)
(x1)

T − i
(
M−1

R Mdx2

)
(x2)

T ,

mψ

mR
U(Nψ) = −iM−1

R Mψ, U (NνR) = I3 − 1

2
M−1

R MT
DMDM

−1
R .

The PMNS matrix, once again assuming there is no con-
tribution from the charged lepton sector, is then

⎛
⎜⎜⎝

νe
νμ

ντ

ψ

⎞
⎟⎟⎠ = V 4×4

PMNS

⎛
⎜⎜⎝

ν1

ν2

ν3

n

⎞
⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

O
(

mn
MR

)
O
(

md
MR

)
O
(

md
MR

)
O
(

md
MR

)

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where

V 4×4
PMNS =

⎛
⎝−NM−1

d mn cos θ23x1 − sin θ23 cos θ24x2 sin θ23x1 + cos θ23 cos θ24x2
cos θ24NM−1

d mn

‖M−1
d mn‖ − sin θ24x2

N − sin θ23 sin θ24N‖M−1
d mn‖ cos θ23 sin θ24N‖M−1

d mn‖ cos θ24N‖M−1
d mn‖

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

O (1) O (1) O (1) O
(
md
mn

)

O (1) O (1) O (1) O
(
md
mn

)

O (1) O (1) O (1) O
(
md
mn

)

O
(
md
mn

)
O
(
md
mn

)
O
(
md
mn

)
O (1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Appendix B: Full Lagrangian in mass eigenbasis

In this appendix we detail the dominant contributions to
interactions in the mass eigenbasis Lagrangian. For some
components more than one term is included if the dominant
contribution depends on relative sizes of couplings. The full
Lagrangian in the mass eigenstate basis reads

L = Lmatter-scalar + Lgauge-matter + Lh−φ,

where

Lmatter-scalar ⊃ −md

mR
cos θ

(
U (ννl )

αi λν
αβU

(ννR)
β j

2

)
νiν j h

−
[
md

mR
cos θ

(
U (nνl )

α λν
αβU

(nνR)
β

2

)

+mψ

mR
sin θ

(
U (nψ)λ

ψ
α U

(nνR)
α

2

)]
nnh

−
[
md

mR
cos θ

(
U (Nνl )∗

αi λν∗
αβU

(NνR)∗
β j

2

)

+ mψ

mR
sin θ

⎛
⎝U (Nψ)∗

i λ
ψ∗
α U (NνR)∗

α j

2

⎞
⎠]Ni N jh

− mψ

mR
cos θ

(
U (ννl )

αi λν
αβU

(nνR)
β

2

)
νi nh

− cos θ

(
U (ννl )

αi λν
αβU

(NνR)
β j

2

)
νi N j h

−
[
md

mψ

cos θ

(
U (nνl )

α λν
αβU

(NνR)
βi

2

)

+ sin θ

(
U (nψ)λ

ψ
α U

(NνR)
αi

2

)]
nNih

−
[

m2
d

mRmψ

cos θ

⎛
⎝U (νψ)

i λ
ψ
α U

(ννR)
α j

2

⎞
⎠

− md

mR
sin θ

(
U (ννl )

αi λν
αβU

(ννR)
β j

2

)]
νiν jφ

− mψ

mR
cos θ

(
U (nψ)λ

ψ
α U

(nνR)
α

2

)
nnφ

− mψ

mR
cos θ

⎛
⎝U (Nψ)∗

i λ
ψ∗
α U (NνR)∗

α j

2

⎞
⎠ Ni N jφ

−
[
md

mR
cos θ

(
U (νψ)
i λ

ψ
α U

(nνR)
α

2

)

− md

mR
cos θ

(
U (nψ)λ

ψ
α U

(ν′nuR)
αi

2

)

− mψ

mR
sin θ

(
U (ννl )

αi λν
αβU

(nνR)
β

2

)]
νi nφ

−
⎡
⎣md

mψ

cos θ

⎛
⎝U (νψ)

i λ
ψ
α U

(NνR)
α j

2

⎞
⎠

− sin θ

(
U (ννl )

αi λν
αβU

(NνR)
β j

2

)]
νi N jφ

− cos θ

(
U (nψ)λ

ψ
α U

(NνR)
αi

2

)
nNiφ + h.c.

− λX cos θXXφ + λX sin θXXh,

Lgauge−matter ⊃ g√
2

[(
U (ννl )

αi νi + md

mψ

U (nνl )
α n

+md

mR
U (Nνl )

α j N j

)
γ μ 1

2
(1 − γ 5)eαW

+
μ + h.c.

]
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−
√
g2 + g′2

2

[(
U (ννl )

αi νi + md

mψ

U (nνl )
α n

+md

mR
U (Nνl )

α j N j

)
γ μ 1

2
γ 5

×
(
U (ννl )∗

αi νi + md

mψ

U (nνl )∗
α n + md

mR
U (Nνl )∗

α j N j

)
Zμ

]

+ g̃

2

[(
md

mψ

U (νψ)
i νi +U (nψ)n + mψ

mR
U (Nψ)

j N j

)
γ μ 1

2
γ 5

×
(
md

mψ

U (νψ)∗
i νi +U (nψ)∗n + mψ

mR
U (Nψ)∗

j N j

)
ωμ

]

− g̃

4
Xγ μ

(
1 + γ 5

)
Xωμ

+
(
g2

2
W+

μ W−μ +
(
g2 + g′2

4

)
ZμZ

μ

)

×
(

cos θvhh + cos2 θ

2
h2 − cos θ sin θhφ

− sin θvhφ + sin2 θ

2
φ2
)

+ g̃2

4
ωμωμ

(
cos θvφφ + cos2 θ

2
φ2

+ cos θ sin θhφ + sin θvφh + sin2 θ

2
h2
)

,

and

Lh−φ ⊃
(

λHvh cos θ − λH,�vφ

2
sin θ

)
cos2 θh3

+ λH

4
cos4 θh4 + λ�vφ cos3 θφ3

+ λ�

4
cos4 θφ4 + λH,�vφ

2
cos3 θh2φ

+
(

λH,�vh

2
cos θ − 3λ�vφ sin θ

+λH,�vφ sin θ
)

cos2 θhφ2

+
(

λH − λH,�

2

)
cos3 θ sin θh3φ

+ λH,�

4
cos4 θh2φ2

−
(

λ� − λH,�

2

)
cos3 θ sin θhφ3.

Appendix C: Parameterisation of the mixing matrix for
numerical evaluation

Without a flavour model we have no guidance for what form
the components (that is, the factors of U in Eq. 2.10) of the
7 × 7 unitary matrix, V , will take. In order to evaluate the

DM phenomenology we take the following assignments

U (ννl ) =
√√√√
(

1 −
(
md

mψ

)2
)(

1 −
(
mψ

mR

)2
)
N †

PMNS,

U(νψ) = 1√
3

⎛
⎝1

1
1

⎞
⎠ η,

U (ννR) = 1√
3

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , U(nνl ) = 1√

3

⎛
⎝ 1

1
1

⎞
⎠ η,

U (nψ) =
√√√√
(

1 −
(
md

mψ

)2
)(

1 −
(
mψ

mR

)2
)

,

U(nνR) = 1√
3

⎛
⎝ 1

1
1

⎞
⎠ ,

U (Nνl ) = 1√
3

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , U(Nψ) = 1√

3

⎛
⎝ 1

1
1

⎞
⎠ ,

U (NνR) =
√√√√
(

1 −
(
md

mψ

)2
)(

1 −
(
mψ

mR

)2
)
I3,

where NPMNS is the experimentally observed PMNS matrix
[72].

Appendix D: Dark matter annihilation cross section to
hidden vectors

The annihilation rate for DM states into hidden sector gauge
bosons reads

σ(X X̄ → ωω)v =
g̃4
(
m2

X − m2
ω

)3/2

256πm2
ωmX

(
2m2

X − m2
ω

)

+ v2 g̃2 F(mX ,mω, g̃, λX , θ)[(
4m2

X − m2
φ

)2 + m2
φ�2

φ

]

≡
g̃4
(
m2

X − m2
ω

)3/2

256πm2
ωmX

(
2m2

X − m2
ω

)

+
v2 g̃2

√
m2

X − m2
ω

6144πmX

[(
4m2

X − m2
φ

)2 + m2
φ�2

φ

] (
m3

ω − 2mωm2
X

)4

×
[

2K1λXmω

(
m2

ω − 2m2
X

)2 + 18K2λ2
Xm

2
ω

(
m2

ω − 2m2
X

)4

+ g̃2K4

((
m2

φ − 4m2
X

)2 + m2
φ�2

φ

)
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+8K3 g̃λXmωmX

(
m2

φ − 4m2
X

) (
m2

ω − 2m2
X

)2
]

,

where

K1 = 3K2λX (4 cos 2θ + cos 4θ)mω

(
m2

ω − 2m2
X

)2

+ 4K3 cos 2θ g̃ mX

(
m2

φ − 4m2
X

)

K2 = 4m4
X − 4m2

ωm
2
X + 3m4

ω,

K3 = 10m4
ωm

2
X − 24m2

ωm
4
X + m6

ω + 16m6
X ,

K4 = 3m8
ωm

2
X − 84m6

ωm
4
X + 152m4

ωm
6
X − 80m2

ωm
8
X

+ 7m10
ω + 32m10

X .
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