
White Dwarfs as Probes of Novel
Physical Phenomena

by

Leesa Fleury

B.Sc., The University of Western Ontario, 2013
M.Sc., McGill University, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Physics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2024

© Leesa Fleury 2024



The following individuals certify that they have read, and recommend to

the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis

entitled:

White Dwarfs as Probes of Novel Physical Phenomena

submitted by Leesa Fleury in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in Physics

Examining Committee:

Jeremy Heyl, Professor, Physics and Astronomy, UBC

Supervisor

Gary Hinshaw, Professor, Physics and Astronomy, UBC

Supervisory Committee Member

Mona Berciu, Professor, Physics and Astronomy, UBC

Supervisory Committee Member

Ingrid Stairs, Professor, Physics and Astronomy, UBC

University Examiner

John Madden, Professor, Electrical and Computer Engineering, UBC

University Examiner

Georg Raffelt, Senior Scientist, Max Planck Institute for Physics

External Examiner

Additional Supervisory Committee Members:

David Morrissey, Research Scientist, TRIUMF

Supervisory Committee Member

Harvey Richer, Professor Emeritus, Physics and Astronomy, UBC

Supervisory Committee Member

ii



Abstract

White dwarfs are the final state of most stars once nuclear burning in the

core has finished, leaving a remnant that evolves through a straightforward

cooling process that is largely thought to be well-understood. The electron-

degenerate core of a white dwarf is an extreme environment that provides

a testbed of physics in regimes not achievable with ground-based experi-

ments. In this dissertation, observations of white dwarfs are used to test

white dwarf cooling theory and look for evidence of novel physical phe-

nomena. The cooling and kinematics of ultramassive white dwarfs in the

solar neighbourhood are analysed using Gaia EDR3 observations to rein-

vestigate an anomalous cooling delay previously reported based on earlier

Gaia DR2 observations, which challenged the conventional understanding

of white dwarf cooling. The cooling of white dwarfs in the globular cluster

47 Tucanae is also analysed in detail by comparing cooling models to HST

data to both test the implementation of element diffusion in stellar evolution

simulations and determine the values of parameters important for modelling

white dwarf cooling like the white dwarf mass and envelope thickness. A

thorough understanding of these properties enables the cooling of white

dwarfs to be used to indirectly search for evidence of novel particles such as

axions. The emission of axions produced in the core of a white dwarf via

axion bremsstrahlung would provide an additional energy loss mechanism

and thus affect the cooling rate. A new bound on the axion-electron cou-

pling of gaee ≤ 0.81×10−13 is derived from the cooling of white dwarfs in 47

Tucanae. This improves upon previous constraints by nearly a factor of two

and excludes the range of values favoured by the hints of axions suggested

by galactic white dwarf luminosity functions. Axions could also be produced

in the core of a very hot, magnetic white dwarf like ZTF J1901+1458 via the
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Abstract

57Fe transition and then convert to photons in the magnetosphere, and it is

shown that X-ray observations of ZTF J1901+1458 by NuSTAR to search

for the corresponding signal could probe the coupling of axions to nucleons

with better sensitivity than both current and future planned ground-based

observations.
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Lay Summary

White dwarfs are the final state of most stars once they have finished burn-

ing nuclear fuel in their cores and are left to simply cool. A cooling anomaly

reported for some unusually massive white dwarfs is re-investigated using

improved data to validate conventional white dwarf cooling models. The

cooling of a population of more typical white dwarfs is also analysed to de-

termine certain properties important for modelling white dwarf cooling and

to look for evidence of new particles such as axions, which are hypothesised

particles that could affect the cooling rate if they are emitted from white

dwarfs. A new constraint is found on the possible strength of the interac-

tion between axions and electrons. Finally, calculations are performed to

show that observations of the X-ray radiation emitted by a particular very

hot, magnetic white dwarf could also be used to look for evidence of axions

interacting with protons and neutrons.
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Chapter 1

Introduction

1.1 White Dwarfs

White dwarfs are the remnants of low mass stars that have run out of nuclear

fuel to burn in their cores. They are the final state of evolution for most stars

in the Universe, with over 98% of stars destined to eventually become white

dwarfs [6], including the Sun. Since a white dwarf does not generate energy

through nuclear burning in its core, its fate is ultimately to continually cool

over time. However, white dwarfs are initially very hot when they are born,

and as a white dwarf evolves, it is supported against gravitational collapse

by the electron degeneracy pressure of its very dense core. These extreme

conditions of white dwarf interiors can lead to the emergence of physical

phenomena not seen in other environments and make white dwarfs good

testbeds for new physics.

A star will become a white dwarf if its initial mass is less than 8 M⊙,

and even stars with initial masses as large as 11 M⊙ may become white

dwarfs [7, 8]. Progenitor stars that later become white dwarfs lose mass at

earlier stages of evolution due to stellar winds and in the planetary nebula

ejection that produces the white dwarf. A progenitor star with an initial

mass of ∼ 1 M⊙ typically produces a white dwarf with a mass of ∼ 0.6 M⊙

due to this mass loss [9]. A mass of ∼ 0.6 M⊙ (∼ 0.5 − 0.7 M⊙) [9–14] is

typical for a white dwarf in the solar neighbourhood, though white dwarfs

can have masses as large as the Chandrasekhar limit of ∼ 1.4 M⊙. The

Chandrasekhar limit is the maximum possible mass a white dwarf can have;

for masses above this limit, electron degeneracy pressure is not sufficient to

sustain the white dwarf against gravitational collapse. The mass distribution

of white dwarfs in the solar neighbourhood is strongly peaked at MWD ∼

1



1.1. White Dwarfs

0.6 M⊙ but also has a broad shoulder that extends to higher masses with

a small secondary peak at about MWD ∼ 0.8 M⊙ [15]. White dwarfs with

mass MWD ≳ 0.90 M⊙ are considered to be massive, and those with even

larger masses MWD ≳ 1.05 M⊙ are classified as ultramassive white dwarfs.

Stars that are too massive to become white dwarfs reach high enough

temperatures in their cores to ignite carbon burning, i.e. the fusion of two
12C nuclei, a process which initiates runaway nuclear reactions that produce

heavier elements up to iron and ultimately results in the production of a

neutron star or black hole [16, 17]. The less massive stars that become

white dwarfs only reach core temperatures hot enough to burn He, and the

main products of this He burning are 12C and 16O. The final ratio of 12C

to 16O depends on the rate of the α-capture process 12C (α, γ)16O in which
12C fuses with a 4He nucleus (i.e. an alpha particle, α) to produce 16O

and a photon γ. The rate of this reaction is one of the biggest sources of

uncertainty in nuclear astrophysics and leads to uncertainty in the ratio of
12C to 16O in white dwarf cores [18–20]. For the most massive stars that

are still light enough to form white dwarfs, the core can reach high enough

temperatures to also produce 22Ne through the reaction 18O(α, γ)22Ne, i.e.

α-capture onto the neutron-enriched 18O isotope of oxygen, and some of this

neon can further be converted to magnesium [16]. However, most stars that

ultimately become white dwarfs do not become hot enough to form these

heavier elements in appreciable amounts.

The structure of a white dwarf consists of a core surrounded by layers

of different elements. A typical white dwarf consists of a core composed

primarily of carbon and oxygen, with the core covered by a shell of helium,

which is further covered by an outer envelope of hydrogen. White dwarfs

with masses below ∼ 0.4 M⊙ have helium cores [9], as their progenitors

do not reach hot enough temperatures to ignite He burning. Though the

Universe is not yet old enough for a single progenitor of this mass to have

become a white dwarf, helium-core white dwarfs can be produced in a binary

system where rapid mass transfer strips an initially more massive progenitor

down to a mass below 0.4 M⊙. On the other hand, white dwarfs with

masses above ∼ 1.05−1.15M⊙ can have cores composed primarily of oxygen
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and neon (and some magnesium) [21–24], as their progenitors can reach

hot enough temperatures to convert oxygen to neon. However, most white

dwarfs lie in the mass range where carbon-oxygen cores are expected.

Different atmospheric compositions are also possible for white dwarfs.

The elements present in the atmosphere of a white dwarf can be determined

using spectroscopy to look for the spectral lines associated with relevant

elements, and a white dwarf is given a spectral classification based on which

elements are present in its atmosphere. The classification “DA” denotes a

H-dominated atmosphere (having only H absorption lines in its spectrum),

while the classification “DB” denotes a He-dominated atmosphere (having

only He I absorption lines in its spectrum). DA is the most common spectral

type, followed by DB, and most white dwarfs have one of these two spectral

types as their primary spectral classification [9].

1.2 White Dwarf Evolution

While stars in earlier stages of evolution are sustained against gravitational

collapse by the outward pressure of nuclear burning, white dwarfs are pre-

vented from completely collapsing under gravity by the electron degeneracy

pressure of their dense cores. As a white dwarf does not generate pressure

from nuclear burning to counteract gravity, the radius of a white dwarf ini-

tially decreases with time as the star cools, and the density and pressure in

the core increase, until the electrons in the core become sufficiently degener-

ate that the white dwarf is sustained against collapse by electron degeneracy

pressure.

As white dwarfs are the end state of stars that have finished nuclear

burning in their cores, having exhausted all of the available fuel, the evo-

lution of white dwarfs largely consists of a straightforward cooling process

that is thought to be well understood. White dwarfs are known to cool by

the emission of photons, and they also cool by the emission of neutrinos at

very early cooling times. The luminosity of a white dwarf correspondingly

decreases over time as the white dwarf cools, and this relation of white dwarf

luminosity as a function of cooling time is called a cooling curve. This re-
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lation is sensitive to the interior state and energy loss mechanisms of the

white dwarf and can be modelled through white dwarf cooling theory. A key

tool to test this cooling theory using observations of a population of white

dwarfs is the white dwarf luminosity function, which is the number density

distribution per unit luminosity interval as a function of luminosity; the

fraction of white dwarfs expected to have luminosities within a given range

depends on the time it takes white dwarfs to cool through that luminosity

range.

Aside from the brief periods of shell burning that may be ignited in young

or accreting white dwarfs, which occur over time periods that are negligible

compared to the typical cooling ages of white dwarfs, the luminosity of a

white dwarf monotonically decreases with time. However, the rate at which

the luminosity decreases depends on what stage of evolution the white dwarf

is in, which manifests as the slope of the cooling curve. The rate of change of

the luminosity differs for cooling dominated by neutrino emission compared

to cooling dominated by photon emission, and the rate of cooling can differ

from both of these standard cooling regimes if cooling is dominated by the

emission of exotic particles such as axions.

As white dwarfs cool over time, they also undergo phase transitions in

their core, which affect the rate of cooling. White dwarf cores transition

first from a gaseous to liquid stage at early cooling times, then from a liquid

to solid crystalline stage at later times. The latter transition of the core

from liquid to solid is also referred to as core crystallisation or freezing. The

release of latent heat [25], as well as other energy associated with element

sedimentation [26–29], during the process of core crystallisation slows down

the rate of cooling, resulting in a shallower slope of the cooling curve during

this transition. This slowed cooling rate produces a corresponding pile-up

of white dwarfs that can be seen in the white dwarf luminosity function

[30, 31].
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1.3 Magnitudes

1.3.1 Magnitude Systems

Observationally, the luminosity of an object is measured in terms of quan-

tities called magnitudes, which are relative measures of the flux of a source.

For a monochromatic flux at wavelength λ, the magnitude mλ is given with

respect to a reference source by the expression

mλ −mλ,ref = −2.5 log10

(
Fλ

Fλ,ref

)
, (1.1)

where Fλ is the energy flux of the source for which mλ is the magnitude,

Fλ,ref is the energy flux of the reference source, and mλ,ref is the magnitude

of the reference source. The star Vega is commonly used as a reference

source due to its brightness, with mλ,ref taken to be zero by convention; this

defines the Vega magnitude system.

In practice, magnitudes are measured using filters that only allow light

spanning a particular range of wavelengths to pass through. A set of particu-

lar passbands define a photometric system. A commonly used standardised

photometric system is the Johnson-Cousins UBVRI photometric system,

which defines magnitudes for light in the ultraviolet (U), blue (B), visible

(V), red (R), and infrared (I). Passbands for the UBVRI system are pro-

vided by Bessell [32]. For a detailed review of this photometric system that

covers the various early contributions to its development, see e.g. Bessell

[33].

This dissertation uses photometric data from two telescopes, Gaia and

the Hubble Space Telescope (HST), which each define their own photomet-

ric systems. The Gaia data consists of observations from Gaia early data

release 3 (EDR3) measured using three passbands: a blue passband GBP,

a red passband GRP, and a passband G that spans both the blue and red

passbands [34]. For the HST data used in this dissertation, six different

filters are relevant. Two of these filters (F225W and F336W) are part of
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System Passband λmean λeff λmin λmax Weff

UBVRI U 360.51 365.99 303.12 417.37 64.04
B 441.31 438.07 363.33 549.71 95.92
V 551.21 544.54 473.33 687.50 89.31
R 658.59 641.15 550.44 883.33 159.10
I 805.99 798.21 704.17 916.67 149.51

Gaia G 671.96 582.24 330.91 1, 038.17 405.30
GBP 531.99 503.58 330.18 673.93 215.75
GRP 793.91 762.00 620.05 1, 046.56 292.44

HST F225W 239.14 237.28 199.00 300.57 46.26
F336W 336.57 335.90 301.59 370.82 51.24
F435W 436.01 434.16 361.02 488.38 82.17
F555W 539.76 533.18 458.43 620.87 109.87
F606W 603.57 580.93 463.43 718.01 177.19
F814W 812.92 797.34 686.96 963.20 188.87

Table 1.1: Summary of parameters characterising passbands for dif-
ferent photometric systems (all values given in units of nm).

the WFC3/UVIS1 instrument, while the other four filters (F435W, F555W,

F606W, and F814W) are part of the ACS/WFC instrument. In the HST

naming convention, the letter “F” at the start of each bandpass name de-

notes that it is a filter (as opposed to a grism, which would start with “G”),

the three-digit number in the middle of the name gives the nominal effective

wavelength of the bandpass in nm (for WFC3/UVIS and ACS/WFC), and

the letter “W” at the end of each name denotes a wide bandpass2.

Some key parameters (wavelengths and effective width) characterising

the relevant passbands for both the Gaia and HST photometric systems

are summarised in Table 1.1, along with the parameters of the UBVRI

passbands provided by Bessell [32] for comparison. All of the values reported

in Table 1.1 were retrieved from the Spanish Virtual Observatory (SVO)

1The UVIS detector is comprised of two chips (called UVIS1 and UVIS2) with slightly
different passbands. The values in Table 1.1 are given specifically for UVIS1, though the
values for UVIS2 are similar.

2See e.g. the online documentation at https://hst-docs.stsci.edu/wfc3ihb/

chapter-6-uvis-imaging-with-wfc3/6-5-uvis-spectral-elements.
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Filter Profile Service (FPS) website3 [35, 36]. The parameters given in

Table 1.1 are defined as follows.

Let T (λ) be the filter transmission, which gives the probability of light

with wavelength λ passing through the filter such that the total flux that

passes through is F =
∫
T (λ)Fλ dλ. The mean wavelength λmean is

λmean ≡
∫
λT (λ) dλ∫
T (λ) dλ

, (1.2)

and the effective wavelength λeff

λeff ≡
∫
λT (λ)Vg(λ) dλ∫
T (λ)Vg(λ) dλ

, (1.3)

where Vg(λ) is the spectrum of Vega. λmean and λeff are both measures of the

centre of the passband. The wavelengths λmin and λmax are the minimum

and maximum wavelengths, respectively, with a transmission equal to at

least 1% of the maximum transmission; these wavelength values are the

edges of the passband. Finally, the effective width Weff of the passband is

given by

Weff ≡
∫
T (λ) dλ

Max[T (λ)]
, (1.4)

where Max[T (λ)] is the maximum transmission. Weff is equivalent to the

horizontal size of a rectangle with height equal to maximum transmission

and with the same area as that covered by the filter transmission curve.

The magnitude measured at the detector is called the apparent magni-

tude. By convention, the apparent magnitude measured using a particular

bandpass filter is simply denoted by the name of that filter, and each tele-

scope has its own naming convention for filters, as described above for Gaia

and HST. A magnitude can also be defined in terms of the total flux emit-

ted at all wavelengths without applying any bandpass filters (i.e. the total

bolometric flux, Fbol =
∫
Fλ dλ); this is called the bolometric magnitude.

The value of the apparent magnitude depends on the distance between

the detector and the source, but it is often useful to discuss magnitudes at

3The SVO FPS is available at http://svo2.cab.inta-csic.es/theory/fps/.
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a fixed distance from the source. This is accomplished by working in terms

of the absolute magnitude, which is defined as the apparent magnitude that

would be measured for a source at a distance of 10 pc. The absolute mag-

nitude Mλ is related to the apparent magnitude mλ through the expression

mλ −Mλ = 5 log10

(
d

10 pc

)
+Aλ, (1.5)

where d is the distance between to the source and Aλ is the extinction due

to the absorption and scattering of light by interstellar dust.

1.3.2 Reddening

As light travels from the source to the detector, it is scattered and absorbed

by the dust and gas in the interstellar medium it passes through. Since bluer

wavelengths are more strongly attenuated than redder wavelengths, this

phenomenon results in photometric colours becoming redder and is called

interstellar reddening. The amount of reddening can be quantified in terms

of the colour excess E(B−V ), which is the difference between the observed

and intrinsic values of the B−V colour (in the Johnson photometric system),

E(B − V ) = (B − V )− (B − V )0, (1.6)

where (B − V ) is the value observed by the detector and (B − V )0 is the

value the B−V colour index would have if it were not affected by extinction.

This colour excess is explicitly expressed in terms of the total extinctions

AB and AV in the B and V bands, respectively, as

E(B − V ) = AB −AV . (1.7)

The extinction Aλ at wavelength λ is given by an extinction curve, which is

typically expressed in terms of the absolute extinction Aλ/AV
4. The general

shape of this extinction curve is characterised by the relative visibility RV

4Extinction curves can also be given in terms of the quantity E(λ − V )/E(B − V ),
where E(λ− V ) = Aλ −AV (see e.g. [37]).
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[38–40], which compares the total V -band extinction to the colour excess,

RV =
AV

E(B − V )
, (1.8)

and has a typical value of RV = 3.1 for sources in the Milky Way [41].

1.4 Overview

This dissertation investigates various ways that observations of white dwarfs

can be used both as tests of our current understanding of white dwarf cool-

ing and as probes of new physics. The extreme environments of white dwarfs

can lead to the emergence of physical phenomena not seen elsewhere, either

on Earth or in other astrophysical environments. Ultramassive white dwarfs

in particular push the limits of the extreme densities and temperatures that

a white dwarf can have, and recent observations of ultramassive white dwarfs

have shown evidence that some of them may experience anomalous cooling

behaviour during the period of white dwarf crystallisation. Even the more

common lower mass white dwarfs exist in density and temperature regimes

that cannot be achieved on Earth, and thus observations of white dwarfs can

be used to search for evidence of physical phenomena that cannot be seen

in laboratory experiments. White dwarfs have in particular been identified

as good targets to search for evidence of new particles beyond the Standard

Model of particle physics, such as axions and axion-like particles. The emis-

sion of axions produced in the core of a white dwarf provides an additional

method of cooling that can alter the cooling rate at a measurable level for

sufficiently strong axion couplings. If white dwarf cooling is well understood,

then observations of the white dwarf luminosity function in comparison to

model predictions can be used to search for evidence of axions or other ex-

otic physics. Signatures of axion emission can also be searched for in the

photon emission spectrum of certain individual white dwarfs.

More detailed background information on the topics of both white dwarf

cooling and axions is given in Chapters 2 and 3. These chapters provide

information that is useful for understanding the research presented in later
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chapters. White dwarf cooling is explained in detail in Chapter 2, covering

the key phenomena that are important for modelling the cooling of white

dwarfs. Chapter 2 explains the elementary theory of white dwarf cooling,

important modifications to this elementary cooling theory, and the relation-

ship between white dwarf cooling and the white dwarf luminosity function.

Chapter 3 provides detailed information about axions. It covers the motiva-

tion for introducing such particles, the key interactions possible in models

of these particles, and how these interactions can affect stellar astrophysics,

particularly for white dwarfs. Chapter 3 also provides current bounds on

axion couplings from astrophysical observations.

Though white dwarf cooling is generally thought to be a well understood

process, some anomalous features reported for ultramassive white dwarfs in

the solar neighbourhood, based on observations from the second data re-

lease (DR2) of the Gaia mission [42], have called into question conventional

understanding of white dwarf core crystallisation and the accuracy of cur-

rent white dwarf cooling models [43]. These anomalous features include a

purported excess in the number of young ultramassive white dwarfs and a

small fraction of ultramassive white dwarfs moving faster than expected.

In Chapters 4 and 5 of this dissertation, these anomalous features of ultra-

massive white dwarfs are re-investigated using the improved observations

of Gaia EDR3 [34]. Chapter 4 examines the distribution of cooling ages

for massive and ultramassive white dwarfs, while Chapter 5 examines their

kinematic properties.

Accurately modelling white dwarf cooling is a particularly important

task when searching for evidence of axions or other exotic physics using the

white dwarf luminosity function, as anomalies in the cooling behaviour of

white dwarfs are precisely the evidence sought. In particular, the increased

rate of cooling due to the emission of axions would correspond to a deficit

of objects and altered slope in the white dwarf luminosity function over

a particular luminosity range that can be predicted using cooling models

that account for the extra cooling due to the emission of axions. Evidence

of additional cooling compatible with axion emission has been reported for

the white dwarf luminosity functions constructed from observations [44–46]
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of white dwarfs in i) the thin and thick discs and ii) the halo, and it has

been suggested that this hints towards the existence of axions that couple to

electrons and have a mass of up to ∼ 4− 10 meV [47–49]. Chapters 6 and 7

investigate the potential existence of such axions in more rigorous detail by

analysing white dwarf cooling in the globular cluster 47 Tucanae (47 Tuc).

A globular cluster is a spherically-distributed group of stars that are

tightly bound together by gravity [50]. Globular clusters contain populations

of very old stars that were all initially created from the same protostellar

material at the same time in a burst of star formation5. The main difference

between stars in a globular cluster population is simply the initial mass each

star is born with. This primarily affects the length of time the star spends on

the main sequence burning H in its core, with more massive stars finishing

this stage of evolution more quickly. All subsequent stages of evolution for

stars in globular clusters are so fast that all but the faintest white dwarfs

in the population have approximately the same mass [51, 52]. The more

massive white dwarfs lie fainter than those studied in this work. This is in

contrast to stars in the solar neighbourhood (i.e. a population of stars in

the Galactic disc), for which star formation is a continually ongoing process

and the white dwarfs can have a wide range of different masses.

Thus, in contrast to white dwarfs in the Galactic disc or halo, globu-

lar clusters provide populations of white dwarfs with fixed values for some

key parameters, such as white dwarf mass and distance, that are impor-

tant when comparing observed cooling behaviour to the predictions of white

dwarf cooling models. This makes globular clusters good environments for

studying white dwarf cooling, and 47 Tuc is a particularly good target for

this work because it is well populated and has been extensively observed.

However, while many key parameters have been well quantified for 47 Tuc,

a few important parameters are less well constrained, most notably the typ-

ical thickness of the white dwarf H envelope. In Chapter 6, the parameters

characterising white dwarf cooling in 47 Tuc are determined more precisely

by fitting cooling models to observations of old 47 Tuc white dwarfs in a

5Though many globular clusters contain multiple populations, each of these populations
formed in an isolated star formation event.
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cooling regime where axion emission would no longer have an observable

effect. The results of Chapter 6 are then used in the analysis of Chapter 7

to search for evidence of axions. In Chapter 7, the predictions of cooling

models that account for the emission of axions produced by axion brems-

strahlung from electrons colliding with ions are compared to observations

of young white dwarfs in the cooling regime that would be dominated by

axion emission. In the absence of evidence for extra cooling due to axion

emission, the statistical analysis of Chapter 7 provides new constraints on

the axion-electron coupling.

Evidence of axions can also be searched for in the emission spectra of

white dwarfs, and such searches have been used to constrain the coupling

of axions to electrons (and photons). In particular, X-ray observations of

the hot, magnetic, white dwarf RE J0317-853 have been used to search for

the signature of axions that were produced by axion bremsstrahlung in the

core of the white dwarf and then converted to photons in the surrounding

magnetosphere [53, 54]. Chapter 8 of this dissertation examines the po-

tential for X-ray observations of hot, magnetic white dwarfs to also probe

the coupling of axions to nucleons (and photons) by searching for the signal

associated with an analogous mechanism in which axions are produced in

the core of the white dwarf by the decay of the first excited state of 57Fe

and then convert to photons in the magnetic field surrounding the white

dwarf. Though axions produced by this 57Fe transition in the Sun are often

the target of helioscope searches [55, 56], white dwarfs have not previously

been recognised as viable targets to search for evidence of axions produced

in this way. In Chapter 8, the ultramassive white dwarf ZTF J1901+1458

[57] is identified as a particularly good target for indirect searches of such

axions, and the projected sensitivity is calculated for a 100 ks observation

of this white dwarf.

In summary, the rest of this dissertation is structured as follows. Chap-

ters 2 and 3 provide more detailed background information that is useful for

understanding the research presented in later chapters. White dwarf cooling

is covered in Chapter 2, while axion and axion-like particle models are cov-

ered in Chapter 3. Chapters 4 and 5 present research on ultramassive white
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dwarfs in the solar neighbourhood investigating evidence for an anomalous

cooling delay, with Chapter 4 focusing on the distribution of cooling ages

and Chapter 5 focusing on the kinematics. Chapters 6 and 7 present research

about white dwarf cooling in 47 Tuc. The work of Chapter 6 uses observa-

tions of old white dwarfs to fit for parameters important for modelling white

dwarf cooling in 47 Tuc, while the work of Chapter 7 uses observations of

younger white dwarfs in 47 Tuc to constrain the coupling of axions to elec-

trons. Chapter 8 presents work showing how observations of hot, magnetic

white dwarfs like ZTF J1901+1458 can be used to probe the coupling of

axions to nucleons. The results of each of these research chapters are sum-

marised in Chapter 9, and both the implications of the results and possible

directions for future research are discussed for all of this work.
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Chapter 2

White dwarf cooling

2.1 Basic Cooling Theory

Elementary white dwarf cooling theory was first described by Mestel [58],

and this cooling theory has since been summarised in a number of reviews

of white dwarf cooling (e.g. [59–61]). The key points of this theory are sum-

marised in this section, largely following chapter 4 of Shapiro and Teukolsky

[59]. In this elementary cooling theory, the dominant source of energy loss

affecting the white dwarf cooling rate is the emission of photons (i.e. emis-

sion of neutrinos and exotic particles is neglected), and the interior of the

white dwarf is assumed to be hot enough that the ions can be reasonably

modelled as an ideal gas.

The basic model for the internal structure of a white dwarf consists of

an electron-degenerate core enveloped by non-degenerate surface layers that

are very thin compared to the core. In the electron-degenerate interior of

a white dwarf, heat is transferred very efficiently via electron conduction,

resulting in an approximately uniform temperature across the core. On the

other hand, the non-degenerate surface layers covering this isothermal core

are in radiative equilibrium, whereby the diffusion of photons carries an en-

ergy flux outward while matter is essentially maintained in thermodynamic

equilibrium locally. These surface layers efficiently isolate the hot core of

the white dwarf from the cold surrounding space, throttling the energy loss

by photon radiation.

The luminosity L of the photons emitted from the surface of the white

dwarf is related to the core temperature Tc by radiative heat transfer through

the surface layers. The white dwarf is sustained against gravitational col-

lapse by electron degeneracy pressure, so very little gravitational energy can

14



2.1. Basic Cooling Theory

be released by further gravitational contraction, and there is no appreciable

nuclear burning taking place in the core; thus, the only significant source of

energy to be radiated is the residual thermal energy of the ions. The change

in the core temperature Tc over time is thus related to the change in the

total thermal energy U of the core, modelled as an isothermal heat bath.

Combining these relations then gives a relation for how the luminosity varies

with cooling time.

2.1.1 Energy Transfer Through Surface Layers

The structure of the surface layers relates the luminosity L to the core

temperature Tc as follows. The photon diffusion equation for energy transfer

through the surface layers is

L = −4πr2
c

3κρ

d

dr

(
aT 4

)
= −16π a c

3
r2
T 3

κρ

dT

dr
, (2.1)

where κ is the opacity and
(
aT 4

)
is the blackbody energy density, with a =

4σSB/c being a constant given in terms of the Stefan-Boltzmann constant

σSB and the speed of light c. The opacity is assumed to follow Kramer’s

opacity law

κ = κ0 ρ T
−3.5, (2.2)

and the appropriate value for κ0 is given by [61, p. 237]

κ0 =
(
4.34× 1024 cm2 g−1

)
(1 +X) Z, (2.3)

where X is the mass fraction of hydrogen and Z is the mass fraction of all

elements heavier than helium. This law accounts for opacity due to the pho-

toionization of atoms (“bound-free” transitions) and inverse bremsstrahlung

of free electrons (“free-free” transitions).

The dependence on the radius r in Eq. (2.1) can be replaced with de-

pendence on the pressure P using the equation of hydrostatic equilibrium,

and then P can be replaced by the mass density ρ using the equation of

state. The equation of hydrostatic equilibrium for the surface layers can be
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written as
dP

dr
= −GMWD

ρ

r2
, (2.4)

where the mass contained inside the radius r has been approximated as

constant and equal to the white dwarf massMWD because the surface layers

are much thinner than the core.

Rearranging Eq. (2.1) to get an expression for dT/dr, substituting in

Eq. (2.2), and dividing Eq. (2.4) by this expression gives the equation

dP

dT
=

4ac

3

4πGMWD

κ0L

T 6.5

ρ
. (2.5)

The density is related to the pressure and temperature through the equation

of state, which is simply given by the ideal gas law in the non-degenerate

surface layers, yielding

ρ = µmu
P

kBT
, (2.6)

where µ is the mean molecular weight, mu = 1.66057×10−24 g is the atomic

mass unit, and kB is Boltzmann’s constant. Using Eq. (2.6) to eliminate the

density from Eq. (2.5) gives an equation that can easily be integrated out to

the surface boundary conditions P = 0 and T = 0. The resulting expression

for P as a function of T can then be substituted back into Eq. (2.6).

This gives a relation for the density as a function of temperature in the

envelope (for a white dwarf of a given luminosity and mass),

ρ =

(
2

8.5

4ac

3

4πG

κ0

µmu

kB

)1/2(MWD

L

)1/2

T 3.25. (2.7)

This relationship breaks down in the interior where the electrons become

degenerate.

The density ρ⋆ and temperature T⋆ at the boundary between the non-

degenerate surface layers and electron-degenerate core can be estimated by

equating the expression for the electron pressure Pe given by the equation
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of state for non-degenerate electrons

Pe =
ρ∗kBT∗
µemu

(non-degenerate) (2.8)

to that given by the equation of state for degenerate, non-relativistic elec-

trons

Pe =
32/3π4/3 ℏ2

5mem
5/3
u

(
ρ∗
µe

)5/3

(degenerate) (2.9)

where µe is the mean molecular weight per electron. Equating Eq. (2.8) to

Eq. (2.9) gives the relation

ρ⋆ = (2.4× 10−8 g cm−3)µe T
3/2
⋆ (2.10)

at the boundary, and the temperature T⋆ at this boundary can be taken to

be the core temperature Tc.

Combining Eq. (2.10) and Eq. (2.7) with T⋆ = Tc finally gives an expres-

sion relating L and Tc,

L = CMWD T
3.5
c , (2.11)

where C is a constant, defined as

C = (5.7× 105 erg s−1M−1
⊙ )

µ

µe

1

(1 +X) Z
, (2.12)

related to the composition of the surface layers. For a typical white dwarf

consisting of a carbon/oxygen core surrounded by a thin helium layer and

much thinner outer hydrogen layer, the mass fraction of helium can be taken

to be Y = 0.9 and the mass fraction of hydrogen to be X ≈ 0 as a reasonable

example for illustrative purposes. Then Z = 1−X−Y has a value of Z = 0.1,

and the values of the remaining parameters are µe ≈ 2 and µ ≈ 1.4. The

value of the constant C in this case is then C ≈ 2× 106 erg s−1M−1
⊙ .

For a white dwarf of a particular mass and composition, Eq. (2.11) gives

the luminosity of photons emitted at the surface of the white dwarf as a

function of the temperature of the core. Conversely, it can also be used to

give the core temperature in terms of the luminosity, which will be made
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use of later. This equation applies as long as heat transfer through the core

is radiative (rather than convective), regardless of the state of matter of the

core and even if appreciable energy is lost to the emission of other particles

such as neutrinos or axions in addition to photons.

2.1.2 Cooling of Interior

The change in total thermal energy of the core is related to the change in

the core temperature by the expression

dU

dTc
=

(
MWD

Amu

)
cv, (2.13)

where cv is the specific heat capacity of the ions (at constant volume). The

factor of MWD/ (Amu) accounts for the number of ions, where the mass of

the core has again been approximated as equal to total mass of the white

dwarf and Amu is the average mass of an ion in the core. Eq. (2.13) follows

directly from the definition of the heat capacity combined with the first

law of thermodynamics when the volume is constant, which is a condition

that applies in the case of a white dwarf core sustained against further

gravitational collapse by electron degeneracy pressure. The specific heat

capacity in Eq. (2.13) has also been assumed to be independent of pressure

and is thus treated as only a function of (core) temperature.

Both Tc and U are functions of time t, so the derivative chain rule

dU

dTc
=

dU

dt

dt

dTc
(2.14)

can be used to re-write Eq. (2.13) as

dt

dTc
=

(
MWD

Amu

)
cv

(
dU

dt

)−1

. (2.15)

If the white dwarf predominantly loses energy via photon radiation, then

dU

dt
= −L, (2.16)
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2.1. Basic Cooling Theory

and L is given in terms of Tc by Eq. (2.11). Combining Eqs. (2.11) and (2.16)

and substituting the resulting expression for dU/dt in terms of Tc into

Eq. (2.15) gives the equation

dt

dTc
= −

(
1

C Amu

)
cv T

−3.5
c . (2.17)

The term in brackets in Eq. (2.17) is a constant, while the cv is in general

a function of Tc. If the expression for cv as a function of Tc is known, then

Eq. (2.17) can be integrated.

The appropriate expression for the heat capacity in general depends on

the state of matter of the core, which eventually changes over time from

gaseous to liquid to solid as the white dwarf cools. However, the ions in

the core can be approximated as an ideal gas for most of the white dwarf’s

evolution while it is still bright enough to be observed. In this ideal gas

approximation, the specific heat capacity of the ions is

cv =
3

2
kB, (2.18)

where kB is Boltzmann’s constant.

Substituting Eq. (2.18) in Eq. (2.17) and integrating from an initial time

t0 and corresponding initial temperature Tc,0 gives

t− t0 =
3

5

kB
C Amu

(
T−5/2
c − T

−5/2
c,0

)
. (2.19)

Taking Tc,0 ≫ Tc and defining the cooling time to be

tcool ≡ t− t0 (2.20)

simplifies this expression, giving

tcool =
3

5

kB
AmuC

T−5/2
c . (2.21)

Using Eq. (2.11) to express Tc in terms of L then gives the relationship
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2.2. Neutrino Cooling

between cooling time and luminosity

tcool =
3

5

kB
AmuC2/7

(
L

MWD

)−5/7

. (2.22)

The key features from these relations are the dependence of Tc and L on

cooling time,

Tc ∝ t
−2/5
cool (2.23)

and

L ∝ t
−7/5
cool . (2.24)

The relationship between luminosity and cooling time derived in this section

is the Mestel cooling curve.

2.2 Neutrino Cooling

Very early on in the cooling process, when a white dwarf is at its hottest

temperature, neutrino emission is also an important source of energy loss.

It is dominant over photon emission during this very early period of white

dwarf cooling, before later becoming sub-dominant to photon cooling. Neu-

trinos are primarily produced in white dwarfs through the plasma neutrino

process whereby a plasmon decays into a neutrino and anti-neutrino pair

γ∗ −→ νe ν̄e, (2.25)

where γ∗ is the plasmon, νe is an electron neutrino, and ν̄e is an electron

anti-neutrino. Itoh et al. [62] showed that the plasma neutrino process

is the dominant neutrino production process when electrons are strongly

degenerate, as is the case in the interior of a white dwarf. Though the

improved calculations of Itoh et al. [63] modify the exact rate for the plasma

neutrino process from the result of Itoh et al. [62], the plasma neutrino

process was still found to be the dominant process, as summarised in Itoh

et al. [64].

Calculating the energy loss rate due to the emission of neutrinos is a more
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2.3. Axion Cooling

elaborate process than the simple calculations for photon radiation discussed

in Section 2.1. For the dense interiors of stars, where many-body effects are

important, the energy loss rate as a function of temperature and density

for a particular composition typically needs to be calculated numerically.

Analytic formulas are then typically fit to the results of such calculations

for implementation as input into stellar evolution simulations. The results

of such calculations for the energy loss rates of various neutrino processes

in stellar interiors have been summarised by Itoh et al. [64], who provide

analytic fitting formulas for their results.

Unlike photons, which are emitted from the surface of the white dwarf

after diffusing through the optically thick outer layers, neutrinos are pre-

dominantly emitted from the interior of the white dwarf where they are

produced. Because neutrinos interact so weakly with other particles, they

have a much longer mean free path than photons and typically exit the

white dwarf without further interaction after being produced. This provides

another channel through which white dwarfs can lose energy, in addition

to photon radiation, and contributes an additional term −Lν to the right-

hand side of Eq. (2.16), where Lν is the total energy loss rate due to the

emission of neutrinos. The additional energy loss due to neutrino emission

causes white dwarfs to cool more quickly than they would by photon emis-

sion alone, which reduces the number of white dwarfs expected to be found

over the luminosity range where neutrino emission is a dominant energy

loss mechanism. This manifests as a deficit in the white dwarf luminosity

function compared to Mestel’s cooling law at bright luminosities.

2.3 Axion Cooling

The emission of novel particles like axions can also affect white dwarf cool-

ing in a way similar to the emission of neutrinos. Axions and their effect on

stellar evolution are discussed in detail in Chapter 3, but a brief overview

of the effect of axion emission on white dwarf cooling is given here for com-

pleteness. The main process by which axions can be produced in a white

dwarf is axion bremsstrahlung from electrons scattering on nucleons. Axion
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2.4. Convective Coupling

bremsstrahlung is analogous to standard bremsstrahlung, but with an axion

emitted instead of a photon. Axion bremsstrahlung from electrons in partic-

ular relies on an axion-electron interaction, and though not all axion models

include an axion-electron coupling, it is a common feature of axion models.

The axion emission rate due to this process is sensitive to the strength of

the axion-electron coupling, as well as the density and temperature of the

white dwarf core. Like in the case of neutrino emission, determining the

precise energy loss rate due to axion emission in dense stellar interiors is a

complicated calculation that needs to be done numerically. Such computa-

tions have been performed by Nakagawa et al. [65, 66], who provided fitting

formulas for their results.

Like neutrinos, axions produced in the dense interior of a white dwarf

would typically leave the white dwarf without further interaction, carrying

energy off with them. Axion emission thus likewise contributes and addi-

tional term −Lx to the right-hand side of Eq. (2.16), where Lx is the total

energy loss rate due to the emission of axions (or other novel particles that

would have a similar effect). The emission rate of axions (produced via

axion bremsstrahlung from electrons) has a different dependence on den-

sity and temperature than the emission rate of neutrinos (produced via the

plasma neutrino process). For a typical white dwarf of mass ∼ 0.6 M⊙

with a carbon-oxygen core, this results in axion emission becoming a poten-

tially dominant energy loss mechanism at a slightly later cooling time than

neutrino emission, though still early in the white dwarf cooling process.

2.4 Convective Coupling

As the white dwarf cools, the heat transport in the envelope eventually be-

comes convective rather than radiative [67]. When the base of the convection

zone that develops in the envelope reaches into the degenerate interior of

the white dwarf, coupling the surface to the core, energy can be transferred

across the outer envelope at a rate faster than what is possible through ra-

diative transfer alone [68]. This convective coupling of the envelope to the

core initially causes the white dwarf to appear more luminous than it would
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2.5. Core Crystallisation

if the energy continued to be transported radiatively across the envelope.

2.5 Core Crystallisation

As the temperature of the core decreases over time, the ions begin to crys-

tallise into a lattice structure. When the temperature of the core drops to

sufficiently low temperatures, the specific heat is due to the lattice vibrations

of ions rather than free thermal motion of the ions. The critical temperature

below which the lattice vibrations become a more important source of heat

than the free thermal motion of the ions is called the Debye temperature

θD, and cv drops rapidly below this temperature.

The degree of crystallisation can be quantified by the plasma coupling

parameter Γ, which is defined as the ratio of the Coulomb energy between

nuclei ECoulomb = (Ze)2 /ri to the thermal energy Ethermal = kB Tc and is

thus given by

Γ =
(Z e)2

ri kB Tc
, (2.26)

where ri is the radius of the average spherical volume occupied by an ion

and is given by

ri =

(
3

4π ni

)1/3

, (2.27)

where ni is the number density of ions. For Γ ≪ 1, the thermal energy

dominates and the ions can be approximated as an ideal gas. For Γ ≫ 1,

the Coulomb energy forces dominate and the ion plasma crystallises into a

periodic lattice structure that minimizes the Coulomb energy.

The phase transition from gas to liquid occurs when Γ ∼ 1, which hap-

pens at a temperature Tg given by

Tg ∼
(
3× 104 K

) ( ρ

1g cm−3

)1/3

Z5/3. (2.28)

The liquid to solid phase transitions occurs when Γ ∼ 175, which happens
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at the melting temperature Tm given by

Tm ≈ 1

Γ

Z2e2

kB

(
4π

3

ρ

2Zmu

)1/3

≈
(
9× 102 K

)
Z5/3

(
ρ

1g cm−3

)1/3

, (2.29)

where it has been assumed that µe ≈ 2. The Debye temperature is defined

as the temperature at which kBθD ≡ ℏΩp, where Ωp =
(
4πniZ

2e2/mi

)1/2
is

the plasma frequency for an ion with mass mi; this temperature is given by

θD ≈
(
4× 103 K

)( ρ

1g cm−3

)1/2

. (2.30)

At temperatures below θD, quantum effects become important. For a typical

white dwarf with Z > 2 in the core, the Debye temperature is cooler than

the melting temperature, θD < Tm.

As the core of the white dwarf cools and transitions through these dif-

ferent states of matter, the specific heat capacity of the ions that appears

in Eq. (2.15) varies as a function of temperature. In general, cv needs to

be calculated numerically. However, expressions can be derived for cv in

certain limiting cases that help to provide a better understanding of how

the cooling rate is modified in different temperature regimes compared to

Mestel cooling theory (see e.g. [59] for details). The expressions for cv in

some temperature regimes of interest are

cv =


3
2kB, Tc ≫ Tg

3 kB, θD ≪ Tc ≪ Tg

16π4

5 kB

(
Tc
θD

)3
. Tc ≪ θD

(2.31)

The very high temperature gaseous regime Tc ≫ Tg is simply the ideal gas

case that was considered in Section 2.1, which has been repeated here for

completeness and easy reference. cv/kB increases from the value of 3/2 in

the ideal gas case to a maximum value of 3 in the high temperature lattice

regime θD ≪ Tc ≪ Tg then drops dramatically with temperature in the low

temperature lattice regime below the Debye temperature θD
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Using these different expressions for cv in Eq. (2.15) and solving like in

Section 2.1 gives the following expressions for the cooling time

τ =


τmestel, Tc ≫ Tg

2 τmestel, θD ≪ Tc ≪ Tg

32π4

3

(
Tc
θD

)3 [(Tc,0

Tc

)1/2
− 1

]
τmestel. Tc ≪ θD

(2.32)

where Tc,0 > θD is the initial core temperature. The case of Tc ≫ Tg is the

result that was worked out in Section 2.1, with τmestel given as a function of

Tc by Eq. (2.21). For the regime θD ≪ Tc ≪ Tg, the cooling time is twice as

long as would be predicted by the benchmark Mestel case. This is because

the lattice potential energy provides an additional (1/2)kBTc per vibrational

mode to the internal energy per ion, which increases the heat capacity by a

factor of 2 compared to the ideal gas case. For the regime Tc ≪ θD, the initial

core temperature Tc,0 should be taken to be Tc,0 ≲ θD, so it is always the

case that Tc ≲ θD. In this cooling regime, the cooling time is initially longer

than the other two regimes, but at even cooler temperatures becomes shorter

than either of those regimes. For temperatures Tc ≲ 0.1 θD, the cooling time

is shorter than the result for the hot lattice regime θD ≪ Tc ≪ Tg. For

temperatures Tc ≲ 0.07 θD, the cooling time is even shorter than the Mestel

result for the regime Tc ≫ Tg.

Note that cooling times given in Eq. (2.32) only account for the effect of

different heat capacities in the different cooling regimes; they do not account

for the additional energy provided by the latent heat of crystallisation. When

the core undergoes the liquid-solid phase transition at a temperature of

Tc ∼ Tm, an amount of latent heat per ion of

−qlatent ∼ kBTm (2.33)

is released. This increases the total energy supply of the white dwarf, result-

ing in the white dwarf taking a longer time to cool than it would without

this additional source of energy. As noted earlier, the liquid-solid phase

transition typically occurs at temperatures above the Debye temperature,
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2.6. White Dwarf Luminosity Function

θD < Tm < Tg. The effect of including the latent heat of crystallisation is

to further increase the cooling time compared to the classical lattice result

for the regime θD ≪ Tc ≪ Tg.

2.6 White Dwarf Luminosity Function

White dwarf cooling properties can be tested for a population of white dwarfs

using the white dwarf luminosity function (WDLF), which is the number

density of white dwarfs per unit (volume and) magnitude interval. The

theoretical WDLF can be calculated as

dN

dMbol
= −

∫ Mu

Mℓ

∫ T

0
Φ (MPS) Ψ (t)

dt

dMbol

× δ {t− [T − tPS (MPS)− tcool (Mbol,MPS)]} dt dMPS,

(2.34)

where MPS is the mass of a progenitor star that became a white dwarf with

mass MWD and absolute bolometric magnitude Mbol today, t is the time

today since the population first began forming, T is the total age of the

population since it first began forming (which is e.g. the age of the disc

for a Galactic disc population), tPS is the progenitor lifetime (i.e. the time

that it takes the progenitor to evolve through all pre-white dwarf stages

of evolution before becoming a white dwarf), and tcool is the white dwarf

cooling time (i.e. the time that the white dwarf has spent cooling since

the start of the white dwarf stage of evolution). The time a white dwarf

has spent cooling in general depends on both the current magnitude of the

white dwarf and the mass of the white dwarf, the latter of which is related

to the progenitor mass; tcool has simply been labelled with MPS instead of

MWD in Eq. (2.34) for convenience. The integration limits Mℓ and Mu are

the minimum and maximum progenitor masses that are able to produce a

white dwarf with bolometric magnitude Mbol today. The lower mass limit

Mℓ satisfies the condition

tcool (Mbol,Mℓ) + tPS (Mℓ) = T. (2.35)
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The function Φ is the initial mass function, which describes the distribu-

tion of the initial progenitor masses. The function Ψ is the time-dependent

star formation rate of the progenitors as a function of the time since the

population first began forming.

Eq. (2.34) applies for the general situation in which the rate at which

white dwarfs are born varies with time and the white dwarf population is

comprised of white dwarfs of different masses. The time-varying white dwarf

birthrate is accounted for indirectly in Eq. (2.34) through the star-formation

rate of the progenitors. This general form of the WDLF is applicable, for

example, when studying populations of white dwarfs in the Galactic disc. In

the case of a globular cluster population where the progenitors all formed at

the same time in a single burst of star formation and where a white dwarf

population can often be approximated as consisting of white dwarfs that all

have the same mass, the expression for the WDLF simplifies.

If the white dwarfs are born at a constant rate and have identical prop-

erties, especially the same mass, then the number density of white dwarfs in

a given bolometric magnitude interval dMbol is simply proportional to the

time interval dt that it takes a white dwarf to cool through that magnitude

range. This can be expressed as

dN

dMbol
= B

dt

dMbol
, (2.36)

where N is the number density per unit volume and B is the constant white

dwarf birthrate, giving the number of white dwarfs born per unit time per

unit volume.

The bolometric magnitude is related to the luminosity (of photon radi-

ation) by the expression

Mbol =Mbol,⊙ − 2.5 log10

(
L

L⊙

)
, (2.37)

where the nominal solar values are set by IAU 2015 resolution [69] to be

L⊙ = 3.828 × 1026 W and Mbol,⊙ = 4.74. The relation between cooling

time and luminosity thus determines the WDLF predicted by theory. In
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the elementary case where photon radiation is the dominant energy loss

mechanism and the white dwarf core is approximated as an isothermal heat

bath, with the ions approximated as an ideal gas, this relation is given by

Eq. (2.22).

In Section 2.1, this relation was derived for the elementary case where

photon radiation is the dominant energy loss mechanism and the white dwarf

is still hot enough that the ions in its core can be approximated to be an

ideal gas. The resultant relation is given by Eq. (2.22). Combining Eq. (2.22)

with Eqs. (2.36) and (2.37) gives Mestel’s cooling law [51]

log10

(
dN

dMbol

)
=

2

7
Mbol + constant, (2.38)

where the additive constant depends on the mass and composition of the

white dwarf.

This relation is modified in regimes where the phenomena discussed in

Sections 2.2 to 2.5 are important. Noting from Eq. (2.37) that

dL

dMbol
= −2

5
ln (10) L (2.39)

and expressing dt/dL in terms of the key relations that determine it

dt

dL
=

dTc
dL

dU

dTc

dt

dU
, (2.40)

then Eq. (2.36) for the WDLF can be expressed as

dN

dMbol
= −2

5
ln (10) B L

(dTc/dL) (dU/dTc)

dU/dt
. (2.41)

When photon emission is the dominant energy loss mechanism, dU/dt is

given by Eq. (2.16). However, at early cooling times where the neutrino emis-

sion and axion emission can be important energy loss mechanisms, Eq. (2.16)

is more generally written as

dU

dt
= − (L+ Lν + Lx) , (2.42)

28



2.6. White Dwarf Luminosity Function

where Lν denotes the total energy loss rate due to neutrino volume emission

and Lx denotes the total energy loss rate due to the emission of other, novel

particles like axions. For radiative heat transport through the surface layers,

L and Tc are related through Eq. (2.11). This relation is modified at late

times when heat transport through the surface layers becomes convective

instead of radiative and the envelope becomes convectively coupled to the

core. U and Tc are related through the heat capacity, with dU/dTc given by

Eq. (2.13). As discussed in Section 2.5, the heat capacity depends on the

state of matter, and in particular changes as the white dwarf core crystallises.

For the early cooling times were neutrino and axion emission are impor-

tant, heat transfer through the surface can still be assumed to be radiative

and the ions in the core can still be approximated as an ideal gas. Follow-

ing the notation of Raffelt [51] for convenience, let K ≡ CMWD so that

Eq. (2.11) becomes L = K T
7/2
c , and let C̃ = (3/2) kBMWD/(Amu) so that

Eq. (2.13) becomes dU/dTc = C̃ for an ideal gas, for which cv = (3/2) kB.

Then the expression for the WDLF becomes

dN

dMbol
=

4

35
ln (10) B

C̃

K2/7

L2/7

(L+ Lν + Lx)
. (2.43)

This shows how the emission of neutrinos and axions modifies the WDLF

function relative to what is expected from photon emission alone at a given

luminosity. Non-negligible values of either Lν or Lx give smaller values of

dN/dMbol at a given L. This corresponds to a deficit in the number of white

dwarfs expected in a given magnitude range relative to the expectation from

Mestel’s law.
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Chapter 3

Axions

3.1 The QCD Axion

The axion is a hypothesised light pseudo-scalar particle, originally moti-

vated as an explanation for the lack of observed CP violation in the strong

force. Quantum chromodynamics (QCD), the theory describing the strong

interaction, generically allows CP violation in the strong sector within the

Standard Model of particle physics. The lack of observed CP violation de-

spite CP violation being expected in QCD is referred to as the strong CP

problem. This problem can be solved by introducing a spontaneously broken

global U(1) symmetry, with the axion being the (pseudo-)Nambu-Goldstone

boson associated with the spontaneous symmetry breaking.

Axion models that solve the strong CP problem, as was their original

motivation, are called QCD axions. The QCD axion is a particularly well-

motivated dark matter candidate, as it arises naturally in a solution to

one of the few problems with the Standard Model. There is also a much

larger class of axion-like particle (ALP) models of light pseudo-scalar bosons

similar to the QCD axion, but that do not solve the strong CP problem.

These particles are often referred to simply as axions, and are also viable

dark matter candidates.

3.2 The Strong CP Problem and Solution

The full QCD Lagrangian density can be expressed as

LQCD = −1

4
Gµν

a Gaµν −
∑
f

q̄f (γ
µDµ +mf ) qf + LCP, (3.1)
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LCP = −θ̄ αs

8π
Gµν

a G̃aµν , (3.2)

where qf are the quark fields (with the index f labelling the quark flavours),

mf are the corresponding quark masses, Gµν
a is the gluon field strength

tensor (with the index a labelling the gluon fields), G̃aµν ≡ 1
2 ϵµνρϕ Gρϕ

a

is the dual gluon field strength tensor, θ̄ is a dimensionless parameter that

parametrizes the degree of CP violation in the strong sector, and αs is the

QCD fine-structure constant (analogous to the fine structure constant of

electromagnetism). The covariant derivative in Eq. (3.1) is given by

Dµ = ∂µ − i gsG
a
µ

λa
2
, (3.3)

where gs is the coupling constant of the strong interactions, Ga
µ denotes the

gluon fields, and λa are the Gell-Mann matrices6. The gluon field strength

tensor is defined in terms of the gluon fields through the expression

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gs f

a
bcG

b
µG

c
ν , (3.4)

where fabc are the structure constants of the group SU(3). Together with the

strong force generators Ta = (1/2)λa, these structure constants characterise

the Lie algebra describing QCD such that the generators satisfy the com-

mutation relations [Ta, Tb] = if cab Tc. Note that the fine-structure constant

of the strong force is distinct from the structure constants of the Lie algebra

of SU(3). The QCD fine-structure constant is simply defined in terms of

the strong coupling through the expression αs = g2s/ (4π).

The first two terms in Eq. (3.1) for the QCD Lagrangian are invariant

under CP transformation, but the term LCP violates CP symmetry7. The

amount of CP violation is parametrised by θ̄, which is generically expected

to have a value of order ∼ 1. Though CP violation has been observed in

the weak interactions, it has not been observed in the strong interactions.

The strong CP-violating term given by Eq. (3.2) results in a neutron electric

6These are a set of 3 × 3 matrices for which the rows and columns correspond to the
three quark colours. There are eight Gell-Mann matrices and likewise eight gluon fields.

7This term violates P and T but not C, so it also violates CP.
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dipole moment dn ≃ −3.9× 10−16 θ̄ e · cm [70], which has been constrained

by experimental searches to be |dn| ≤ 2.9×10−26 e · cm [71, 72], resulting in

θ̄ being constrained to |θ̄| ≲ 7.4× 10−11. This strongly constrained lack of

CP violation in the strong interactions despite being a prediction of QCD,

with no a priori reason for θ̄ to be so small, is referred to as the strong CP

problem.

Though Eq. (3.2) corresponds to a total derivative, which integrates to

a boundary term, the non-trivial vacuum topology of QCD prevents this

term from vanishing. More specifically, QCD has an infinite number of

degenerate, topologically distinct vacuum states, with the topology of each

state characterised by the Chern-Simons number n ∈ Z. The QCD vacuum

is a superposition of these states parametrised by the phase θ such that

|θ⟩ =
∑
n

eiθn |n⟩ , (3.5)

and instantons allow tunnelling between states labelled by different n. In

addition to the non-trivial vacuum of QCD, the strong CP-violating term

also receives a contribution arising from the phase transformations of the

quark fields needed to make the quark mass matrix Mq real and diagonal

in the full Standard Model. The total amount of CP violation in the strong

sector is parametrised by θ̄ = θ + arg detMq. The two terms contributing

to θ̄ have completely different physical origins with no a priori reason why

these terms should cancel to give a value of θ̄ small enough to be in keeping

with experimental constraints [51].

Peccei and Quinn presented a solution to the strong CP problem in

1977 [73, 74] by postulating that the Standard Model was invariant under a

spontaneously broken global U(1) chiral symmetry, now known as the PQ

symmetry U(1)PQ. To better understand the strong CP problem and its

solution, first consider the case of massless quarks. If quarks were massless,

with nf being the number of quarks with non-trivial PQ charge, then U(1)PQ

could be an exact symmetry and the strong CP problem would be trivially

solved. Under a U(1)PQ transformation parametrised by α, the left- and
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right-handed quark fields (qL and qR) transform as

qR → eiαqR, qL → e−iαqL, (3.6)

which changes the vacuum angle θ̄ through the QCD chiral anomaly [75]

θ̄ → θ̄ + 2nfα. (3.7)

Thus θ̄ could be set to zero through a simple redefinition of the quark

fields [76]. However, since quarks are massive, their mass term in the

Lagrangian explicitly breaks the chiral symmetry. To see this, write the

mass term
∑
f

mf q̄fqf in terms of the left- and right-handed components

q̄fqf = q̄fLqfR + q̄fRqL. Each mass term transforms as

mf q̄fqf = mf (q̄fLqfR + q̄fRqfL)

→ mf

(
e2iαq̄fLqfR + e−2iαq̄fRqfL

)
̸= mf q̄fqf .

(3.8)

So θ̄ is physical and cannot be removed by simplying redefining the quark

fields.

The PQ solution instead introduces a new complex scalar field that car-

ries PQ charge and has a non-zero vacuum expectation value (vev). In order

for the Standard Model to conserve U(1)PQ while still solving the strong CP

problem, PQ charge must be carried by at least one flavour of quark (either

a Standard Model quark or new species), which acquires its mass during

the spontaneous breaking of U(1)PQ from its Yukawa interaction with the

new PQ-charged scalar field, rather than from the Standard Model Higgs

field. The axion is the (pseudo-)Nambu-Goldstone boson associated with

the spontaneous breaking of PQ symmetry [77, 78], corresponding to the

angular component of this new complex scalar field. Since U(1)PQ is also

explicitly broken by the QCD chiral anomaly at energies at and below the

QCD scale ΛQCD ∼ 200 MeV, the axion is not a true Nambu-Goldstone

boson, though it is approximately so at high energies.

Peccei and Quinn showed that if such conditions are met, then after
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PQ symmetry breaking, the parameter θ̄ in Eq. (3.2) is replaced by the

pseudo-scalar axion field, converting the CP-violating term to a CP-invariant

interaction between axions and gluons. To see this, let Φ be the new scalar

field carrying PQ charge. Neglecting the radial component of the field, which

is not important for the following discussion, Φ can be written as

Φ(x) =
fa√
2
eia(x)/fa , (3.9)

where fa is the PQ symmetry-breaking scale and a(x) is the axion field.

Under a U(1)PQ transformation, Φ → eiαΦ, the axion field transforms as

a(x) → a(x) + αfa. (3.10)

Though classically the Lagrangian describing this theory should only have

the axion field appear through derivative couplings to conserve PQ sym-

metry, quantum Standard Model anomalies break this symmetry and allow

tree-level couplings of the axion to the Standard Model gauge bosons. In

particular, the QCD chiral anomaly permits a term that couples the axion

and gluon fields

L
aGG̃

= − a

fa
ξ
αs

8π
Gµν

b G̃bµν , (3.11)

where ξ is a parameter that depends on the particular axion model being

implemented.

For spontaneous breaking of PQ symmetry, we write a(x) as the sum of

its vev ⟨a⟩ and excitation ã above its vev, a(x) = ⟨a⟩+ ã(x), and see that

LCP + L
aGG̃

= −
(
θ̄ + ⟨a⟩ ξ

fa

)
αs

8π
Gµν

a G̃aµν − ã
ξ

fa

αs

8π
Gµν

b G̃bµν . (3.12)

The term containing ⟨a⟩ effectively shifts the QCD vacuum angle so that

θ̄eff = θ̄+ ⟨a⟩ ξ/fa parametrises the total CP-violating term, while the term

for the interaction of ã with gluons provides a potential for the axion. This

potential is temperature-dependent and vanishes at energy scales well above

the QCD scale (ΛQCD ∼ 200 MeV, which corresponds to a temperature

TQCD ∼ 2× 1012 K), so ⟨a⟩ is unconstrained in the high-temperature limit.
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3.3. Axion Models

However, as the potential becomes non-negligible at energy scales below

the QCD scale, ⟨a⟩ is driven to the energy minimum of the effective axion

potential. In the low-temperature limit, the vev of the axion field takes the

value ⟨a⟩ = −θ̄fa/ξ, thus dynamically driving θ̄eff to zero and causing the

strong CP-violating term to vanish. What remains is the CP-invariant term

giving the interaction between the gluon fields and the physical (excited)

axion field ã, which from now on will just be called a.

3.3 Axion Models

There exist multiple models for implementing the QCD axion, depending on

which particles are assigned non-trivial PQ charge. In hadronic models, like

the Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [79, 80] new quark

species are introduced to carry the PQ charge. In fermionic models, such

as the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model [81, 82] PQ charge

can be carried by Standard Model fermions.

The most general Lagrangian density that can be written for the axion

field, including all possible interactions with Standard Model particles, can

be expressed as [83]

Laxion =− 1

2
∂µa∂

µa+ Jµ∂µa

− a

fa

[
ξ
αs

8π
Gµν

b G̃bµν − k1W
µν
b W̃bµν − k2B

µνB̃µν

]
,

(3.13)

with the current Jµ given by

Jµfa = iψ̄i,m (Ximn + iYimnγ5)ψi,n +XϕH

(
ϕ†HiD

µϕH + h.c.
)
, (3.14)

where Wµν
b and Bµν are the gauge bosons of SU(2) and U(1) and mediate

the electro-weak interaction, ϕH is the Standard Model Higgs field, and ψ

denotes all fermions that carry PQ charge in the model, with i indexing

all flavours of quarks and leptons and m and n indexing all generations

of a given flavour. The abbreviation “h.c.” denotes Hermitian conjugate

terms. The quantities ξ, k1, k2, Ximn, Yimn, and XϕH
are model dependent
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parameters. There can also be additional terms if new particle content is

introduced in a particular axion model.

At temperatures well above the QCD scale, the QCD chiral anomaly

term that explicitly breaks PQ symmetry is negligible, so the axion behaves

like a true Nambu-Goldstone boson and is massless. Below the QCD scale,

PQ symmetry is explicitly broken and the axion becomes massive. At tem-

peratures well below the QCD scale, as is relevant for stellar astrophysics,

the axion mass is

ma ≈ fπm
2
π

mumd

(mu +md)2
1

fa
, (3.15)

where mπ, mu, and md are the masses of the pion, up quark, and down

quark, and fπ is the pion symmetry-breaking scale.

3.4 Axion Interactions Important for Stellar

Evolution

3.4.1 Overview

There are a large variety of ways that axions could have an observable ef-

fect in astrophysical environments, and in particular have observable conse-

quences for stars. This section focuses on axion phenomena most relevant

for stellar evolution, including the evolution of white dwarfs, and the cur-

rent constraints on axion parameters pertaining to those phenomena. For a

more extensive review of the various ways axions could affect astrophysical

observables and the corresponding constraints on axion parameters, includ-

ing subdominant constraints, see the recent review by Di Luzio et al. [84].

For a review that also includes axion constraints from experimental searches,

see e.g. Di Luzio et al. [85].

The main axion production processes relevant for stellar evolution are

the axion Primakoff effect and axion bremsstrahlung. The Primakoff effect

is a process by which a photon in an external electric field (such as the

Coulomb field of a nucleus in a stellar plasma) can convert into a particle

with a two-photon vertex interaction (such as a neutral pion, for which this
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effect was first noted [86], or an axion, as is relevant here), with the external

field providing a virtual photon for the interaction. Axion bremsstrahlung is

a process analogous to standard bremsstrahlung but with an axion emitted

instead of a photon, and it can occur via the scattering on nucleons of either

electrons (through the axion-electron interaction) or other nucleons (through

axion-nucleon interactions).

The axion Primakoff effect is most important for the horizontal branch

stage of evolution during which stars are hot but less dense than stages where

the core is degenerate, such as the red giant branch (RGB), asymptotic giant

branch (AGB), or white dwarf stages of evolution. Axion bremsstrahlung

via electrons becomes an important effect for stellar cooling when a star is

dense enough to have an electron-degenerate core, in particular during the

RGB phase of low mass stars and in white dwarfs. Axion bremsstrahlung

via nucleons is important in neutron stars but is not relevant for white

dwarfs or the low-mass progenitors from which they form, so it will not

be discussed further. It should be noted that all axion models include the

axion-photon interaction through which the axion Primakoff process occurs.

Axion bremsstrahlung by electrons, on the other hand, occurs via the axion-

electron interaction, which only exists for models where electrons carry PQ

charge. In particular, such an interaction does exist for the DFSZ axion

model, though there is no such interaction (at tree-level) in the KSVZ axion

model.

3.4.2 Primakoff Effect

Axions generically have an interaction with photons given by

Laγγ = −gaγγ
4
FµνF̃

µν = gaγγ a E ·B , (3.16)

where gaγγ is the axion-photon coupling constant, Fµν is the electromagnetic

field strength tensor, F̃µν is the dual of Fµν , E is the electric field, B is the

magnetic field, and a is the axion field.

This axion-photon interaction enables the Primakoff effect, whereby a

plasmon in the presence of the Coulomb field of a nucleus converts into an
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axion

γ∗ + (Z,A) −→ a+ (Z,A), (3.17)

where γ∗ denotes the plasmon and (Z,A) denotes a nucleus with proton

number Z and atomic mass number A.

The energy loss rate per unit mass via Primakoff conversion is [51, 52,

84, 85]

ϵ =
(
2.8× 1021 erg g−1 s−1

) ( gaγγ

GeV−1

)2 T 7
8

ρ4
F (ξ2), (3.18)

where the temperature T and density ρ have been scaled by typical values

for horizontal branch stars,

ρ4 ≡
ρ

104 g cm−3
, (3.19)

T8 ≡
T

108 K
, (3.20)

and F is a function that depends on the Debye-Huckle screening wavenumber

κ through the variable ξ, which is defined to be

ξ ≡ κ

2T
. (3.21)

The function F (ξ2) is given explicitly by the expression

F (ξ2) =
ξ2

2π

∞∫
0

dx

[(
x2 + ξ2

)
ln

(
1 +

x2

ξ2

)
− x2

]
x

ex − 1
, (3.22)

and it can be approximated by the simpler analytic expression [87]

F (ξ2) ≃
(

1.037ξ2

1.01 + ξ2/5.4
+

1.037ξ2

44 + 0.628ξ2

)
ln

(
3.85 +

3.99

ξ2

)
. (3.23)

Typically the value of F is of order unity in regimes where the Primakoff

effect is important. For horizontal branch stars with ρ = 104 g cm−3 and

T = 108 K, the values of κ2 and F are κ2 ≈ 2.5 and F ≈ 0.98.

Energy loss via the Primakoff process is particularly important for stars
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on the horizontal branch. These are stars hot enough to burn He in their

cores, and their cores are not dense enough to be electron-degenerate. They

are hotter than main-sequence stars (which are stars burning H in their

cores), but not as dense as white dwarfs or stars on the RGB or AGB (which

are all dense enough to have electron-degenerate cores). Note that the energy

emission rate for the Primakoff process given by Eq. (3.18) is suppressed at

high densities by the factor of ρ in the denominator. Eq. (3.18) specifically

applies in the non-degenerate case (which is applicable for horizontal branch

stars), but the Primakoff emission rate in the high-density degenerate case

is also suppressed.

The additional avenue of energy loss provided by the emission of axions

produced through the Primakoff process reduces the amount of time stars

spend on the horizontal branch, while not appreciably affecting the time

spent on the RGB. The number of stars observed at a particular stage of

stellar evolution is proportional to the length of time spent in that phase, so

the additional axion energy loss from the Primakoff process would decrease

the ratio of stars on the horizontal branch to those on the RGB [87–89].

To discuss constraints of gaγγ from this phenomenon, one can define [89]

the R parameter to be the ratio of the number NHB of stars found on the

horizontal branch over the number NRGB of stars found on the RGB:

R ≡ NHB

NRGB
. (3.24)

Larger values of gaγγ will result in smaller theoretical values of R. The most

recent bound on gaγγ from measurements of the R parameter is [89, 90]

gaγγ ≤ 0.65× 10−10 GeV−1 (3.25)

at 95% confidence level. This bound was obtained by analysing measure-

ments of the R parameter in comparison to theoretical predictions for a

sample of globular clusters.

Constraints on gaγγ can also be derived from a related parameter called

the R2 parameter, which is the ratio of the number NAGB of stars on the
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AGB to the number of stars on the horizontal branch such that

R2 ≡
NAGB

NHB
. (3.26)

The R2 parameter has been used to derive a bound of [91]

gaγγ < 0.47× 10−10 GeV−1, (3.27)

which is an improvement on the bound from the R parameter given above.

3.4.3 Axion Bremsstrahlung

The DFSZ model contains an axion-electron interaction term of the form

Laee = igaeeψ̄eγ5ψe a, (3.28)

where gaee is the axion-electron coupling constant, a is the axion field, and

ψe is the electron field. The axion-electron coupling can be expressed as

gaee =
Ce me

fa
, (3.29)

where Ce is a model-dependent constant, me is the electron mass, and fa =

fPQ/Nf is the Peccei-Quinn (symmetry breaking) scale.

Note that hadronic axion models such as the KSVZ model do not contain

axion-electron tree-level interactions, as fermions do not carry PQ charge in

these models. Nevertheless, this term is present in the popular DFSZ model

and other grand-unified axion models. To summarise for the benchmark

models, Ce has the form

Ce =


sin2 β
Nf

(DFSZ)

0 (KSVZ)
, (3.30)

where Nf is the number of standard fermion families, which can be taken

to be Nf = 3. For the DFSZ model, Ce has simply been recast in terms

of the parameter β, where tanβ is defined as the ratio of the vacuum ex-
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pectation values of the two electroweak doublet scalar fields that carry PQ

charge in the DFSZ model. Note that it is simply a matter of convention

which vev appears in the numerator or denominator when defining tanβ.

The definition used here is tanβ ≡ ⟨Hu⟩ / ⟨Hd⟩, where ⟨Hu⟩ is the vev of the

Higgs doublet Hu that couples to the up-type quarks and ⟨Hd⟩ is the vev of

the Higgs doublet Hd that couples to the down-type quarks. This definition

has been used in some recent reviews of axion models and constraints, e.g.

[84, 85]. If β is alternatively defined such that ⟨Hu⟩ and ⟨Hd⟩ are swapped

in the expression for tanβ, then sinβ is simply replaced by cosβ in the ex-

pression for Ce. This alternative definition was used in some earlier reviews

that have been extensively cited, e.g. [51, 52]. For the definition of β used

here, tanβ is restricted to the interval tanβ ∈ [0.25, 170] to remain in the

perturbative domain.

This axion-electron coupling leads to a process analogous to standard

bremsstrahlung, with the photon of standard bremsstrahlung replaced by

an axion

e− + (Z,A) → e− + (Z,A) + a. (3.31)

This process is commonly referred to as “axion bremsstrahlung”. The energy

loss rate due to axion bremsstrahlung in dense stellar interiors has been

calculated to be [65, 66]

ϵ =
(
1.08× 1023 ergs g−1 s−1

)
αa

Z2

A
T 4
7 F, (3.32)

where ϵ is the energy loss rate per unit mass, αa = g2aee/(4π) is a fine-

structure constant (analogous to the fine-structure constant of electromag-

netism), Z and A are respectively the number of protons and total number

of nucleons of the nucleus, T7 = T/(107 K) is the temperature, and F is

a dimensionless form factor with a prescription given by Nakagawa et al.

[65, 66]. The value of F depends on the phase and composition of material

in the star, though its maximum value is typically of order unity (F ∼ 1).

Axion bremsstrahlung (via electrons) will affect stellar evolution during

the RGB stage of low-mass stars and during white dwarf cooling, where the
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star has an electron-degenerate core. The effect on RGB evolution is to delay

the onset of He burning and thus increase the luminosity and temperature

of the tip of the RGB8. The bound on the axion-electron coupling due to

delayed He ignition on the RGB is [92]

gaee ≤ 1.5× 10−13 (3.33)

at 95% confidence level. This bound was determined by an analysis of the

tip of the RGB for 22 globular clusters. A similar bound of gaee ≤ 1.6×10−13

was also found by an independent analysis of the RGB tip of the globular

cluster NGC 4258 [93].

As for white dwarfs, energy loss through axion bremsstrahlung affects

the rate at which white dwarfs cool. This affects both the shape and cutoff

of the WDLF, which is the number of white dwarfs found as a function of

luminosity. Hints of axions have been suggested based on observed WDLFs

of white dwarfs in the Galactic thin and thick discs, as well as the halo, to

explain features of these WDLFs that indicate a cooling anomaly [47–49]. In

addition to finding a favoured range of values for gaee, the analysis of Miller

Bertolami et al. [48] investigating these axion hints also provided a bound

on the axion-electron coupling of gaee ≤ 2.8× 10−13 at 3 σ confidence (and

gaee ≤ 2.1× 10−13 at 2 σ confidence), though this bound is not as stringent

as the more recent bound from the tip of the RGB. The hints of axions

suggested by WDLFs is discussed in further detail in Section 3.5 below.

The effect of axion emission on white dwarf cooling can also be searched

for using observations of white dwarf variables, a class of white dwarfs whose

luminosity changes periodically with time. The pulsation period P of these

variable white dwarfs is typically on the order of a few minutes and decreases

over time at a rate Ṗ that depends on the cooling efficiency of the white

dwarf. To a good approximation, Ṗ /P is directly proportional to the cooling

8The number of stars on the RGB is also increased, which further decreases the value of
the R parameter given by Eq. (3.24). The bound on gaγγ reported in Eq. (3.25) based on
the R parameter is a conservative bound that assumes no axion-electron coupling. Joint
bounds on gaγγ and gaee can be derived from the R parameter for axion models that
include a coupling to electrons, but such bounds are model-dependent.
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Observation gaee / 10
−13 Reference

Tip of RGB (22 clusters) ≤ 1.5 Straniero et al. [92]

Tip of RGB (NGC 4258) ≤ 1.6 Capozzi and Raffelt [93]

WDLF (Galactic disc, halo) ≤ 2.1 Miller Bertolami et al. [48]

White Dwarf Variables ≤ 4.1 Giannotti et al. [95]

WDLF hint ∼ 1.1− 2.8 Isern et al. [49]

Table 3.1: Summary of stellar bounds on the axion-electron coupling.
The hint from Galactic WDLFs (discussed in Section 3.5) is also given
on the final line for comparison. The bounds are all reported to 2 σ
(i.e. 95% confidence), while the hint is reported to 3 σ.

rate Ṫ /T [94]. Observations of the period decrease (Ṗ /P ) for particular

white dwarf variables have shown discrepancies with the expected behaviour,

with a systematic tendency for the observed value of Ṗ to be larger than

expected. This indicates that these white dwarfs are cooling faster than

expected, which could be explained by the emission of axions.

The period of white dwarf variables changes so slowly (Ṗ /P ≈ 10−18 s−1

in most measured cases [85]) that accurately measuring the period change

requires observing the white dwarf over a span of decades. The rate of

period change has thus only been measured for a few white dwarf variables,

despite many white dwarf variables being known. A global analysis of the

available measurements of white dwarf variables was found to give a good fit

for gaee = 2.9×10−13 (with a reduced chi-squared value of 1.1) and to favour

an axion interpretation of the cooling anomaly for the white dwarf variables

at 2σ [95]. The hint at 1σ has been expressed by Di Luzio et al. [84] and Di

Luzio et al. [85] as gaee = 2.9+0.6
−0.9×10−13, and the 2σ bound from the global

analysis of the white dwarf variable data is gaee ≤ 4.1× 10−13. This bound

from the white dwarf variables is currently less constraining than either the

bound from the tip of the RGB or the Galactic WDLFs.

For easy reference, all of the axion-electron coupling bounds discussed

in this section are summarized in Table 3.1. The bounds are all given to
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the same confidence of 2 σ, which is equivalent to the 95% confidence level.

For comparison, the axion hint from Galactic WDLFs is also included. This

hint is reported to 3 σ in Table 3.1, which is how it was reported by Isern

et al. [49]. The confidence level of the hint reported by Isern et al. [49] is

not actually well defined, but the upper limit of the range of values given in

Table 3.1 for this hint corresponds to the 3 σ bound from Miller Bertolami

et al. [48]. Note that the 3 σ threshold used to report the hint differs from

the 2 σ threshold used to report the bounds in Table 3.1.

3.5 Hints of Axions from White Dwarf Cooling

Hints of axion emission affecting the cooling of white dwarfs have been

suggested based on empirical Galactic WDLFs [47–49]. In particular, it

has been suggested that the emission of axions produced via axion brems-

strahlung from electrons could explain a slight excess in the observed white

dwarf cooling rates, as indicated by Galactic WDLFs, compared to theoret-

ical models without axions (where cooling is due only to Standard Model

neutrinos and photons). The most recent analysis [49] suggests this cooling

anomaly could be explained by a DFSZ axion with a mass (and angular

parameter) of ma sin
2 β ∼ 4 − 10 meV, corresponding to an axion-electron

coupling of gaee ∼ (1.1− 2.8)×10−13 more generally for any axion or axion-

like particle model that includes an axion-electron interaction term.

This work argued that including cooling from axion emission in white

dwarf cooling models produces theoretical WDLFs that fit observational

WDLFs better than current theoretical WDLFs over certain magnitude

ranges. Isern et al. [49] in particular compared theoretical model predictions

of WDLFs to the observational WDLFs for white dwarfs in the Galactic

thin disc, thick disc, and stellar halo based on data from the Sloan Digital

Sky Survey (SDSS) [44, 45] and SuperCOSMOS Sky Survey (SCSS) [46].

The WDLF excess studied by Isern et al. [49] specifically occurs over the

bolometric magnitude range Mbol ∼ 8 − 10, and Isern et al. [49] limited

their investigation to the range 6 ≲ Mbol ≲ 13. This magnitude range has

less theoretical uncertainty than if fainter white dwarfs with Mbol ≳ 13 are
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included, but it excludes a wealth of data available at larger magnitudes,

which are actually more populated with white dwarfs than the limited range

of magnitudes investigated in that work. As discussed by Isern et al. [49],

there are a number of uncertainties in constructing luminosity functions for

Galactic white dwarfs, particularly associated with the star formation rate.

Isern et al. [49] used an improved treatment of the star formation rate com-

pared to the earlier work of Isern et al. [47] and Miller Bertolami et al. [48],

but the star formation rate is still an important source of uncertainty in

that analysis. Globular clusters provide populations of white dwarfs with

better-controlled white dwarf formation rates, making them good targets for

further investigation into these hints of axions.
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Chapter 4

Ultramassive white dwarf

cooling ages

4.1 Introduction

The Gaia mission [42] has revealed the largest number of white dwarfs ever

observed in our Galaxy. Before Gaia, less than 40,000 confirmed white

dwarfs were known, mostly from the spectroscopic Sloan Digital Sky Sur-

vey [96, 97]. This sample was largely incomplete and concentrated in the

northern hemisphere. Thanks to Gaia’s precise parallaxes and photomet-

ric measurements, Gentile Fusillo et al. [98] were able to identify ∼260,000

high-confidence white dwarf candidates simply from their position in the HR

diagram. The latest data release of Gaia, Gaia EDR3 [34], provided 20 to

30% better parallax measurements on average, as well as twice as accurate

proper motions and better measurements of colour, especially for the bluest

objects. These improvements allowed Gentile Fusillo et al. [99] to update

the catalogue, which now includes ∼359,000 high-confidence white dwarfs.

The wealth of new data provided by Gaia DR2 has challenged our un-

derstanding of white dwarf cooling, a process that was thought to be well

understood. The Gaia DR2 colour-magnitude diagram (CMD) unveiled

the presence of the Q branch, a transversal sequence of white dwarfs with

mass above ∼ 1 M⊙ that was not aligned with theoretical cooling sequences

[100], which Tremblay et al. [31] identified as observational evidence of a

white dwarf cooling delay due to core crystallization. While a pile-up of

white dwarfs in the region of the Q branch is expected in standard crystal-

lization models due to the cooling delay resulting from the release of latent
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heat in the phase transition from a liquid to solid state [31], Cheng et al.

[43] presented evidence of an additional anomalous cooling delay on the Q

branch in Gaia DR2 data experienced by massive (1.08 − 1.23M⊙) white

dwarfs that could not be explained by conventional models of core crystal-

lization. This has resulted in much research into the details of white dwarf

crystallization, particularly 22Ne sedimentation, in an attempt to explain

this cooling anomaly [101–105].

Another significant finding arising from Gaia DR2 data was the discov-

ery of a star formation burst in the Galactic disc 2 − 3 Gyr ago based on

observations of main sequence stars [106]. In addition to presenting evi-

dence of such an event, Mor et al. [106] mathematically characterized the

time dependent star formation rate (SFR), modelling it as a bounded ex-

ponential function plus a Gaussian component that accounts for the star

formation burst. Isern [107] noted the significance of this star formation

history for the white dwarf luminosity function, reconstructing the SFR for

0.9 − 1.1 M⊙ Gaia DR2 white dwarfs within 100 pc of the Sun, using the

luminosity function of Tremblay et al. [31] and the BaSTI cooling models

for DA white dwarfs and qualitatively comparing this to the SFR of Mor

et al. [106].

The catalogue of Gaia EDR3 white dwarfs recently produced by Gentile

Fusillo et al. [99] provides us with a powerful tool to re-investigate the cooling

of massive white dwarfs in the solar neighbourhood with improved statistical

power. In this chapter, we determine the distribution of cooling ages for

massive high-probability white dwarf candidates recently identified by the

Gentile Fusillo et al. [99] catalogue that are within 200 pc of the Sun. Using

the publicly available WD models code [108], we use different sets of white

dwarf models, including both the carbon/oxygen (C/O) core cooling models

of Bédard et al. [109] and the oxygen/neon (O/Ne) core cooling models of

Camisassa et al. [110], to determine the masses and cooling ages of each

white dwarf candidate from the Gaia EDR3 photometric observations. For

each set of models, we construct the distribution of cooling ages for objects

with mass in the range 0.95 − 1.25 M⊙ and binned into subdivisions by

mass within this range. We quantitatively assess the statistical significance
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of the similarity of the cooling rate distribution of massive Gaia EDR3 white

dwarfs to the star formation rate of main sequence stars, as characterized by

Mor et al. [106]. We also illustrate how the presence of a significant fraction

of mergers among the most massive white dwarfs, with single progenitors

created at the Mor et al. [106] rate of star formation, can explain the nearly

uniform distribution that we find for their cooling ages.

4.2 Methods

4.2.1 Models

Throughout this chapter, we compare multiple sets of white dwarf cooling

models to Gaia EDR3 white dwarf data. For our analysis, we use the pub-

licly available WD models package provided by Cheng [108]9. We consider

the cooling models of the Montreal group [109] and the La Plata group

[110–112]. For each set of cooling models, we consider both H-atmosphere

and He-atmosphere models. We use the evolutionary models in conjunction

with the publicly available Montreal group synthetic colours10 for pure H

and pure He atmosphere models with Gaia EDR3 band-pass filters to de-

termine the masses and cooling ages of each white dwarf candidate from the

Gaia EDR3 photometric observations.

For the Montreal group models [109], we consider three cases of at-

mosphere composition: thick H envelope evolution models with a pure H

atmosphere model (“thick H envelope models”), thin H envelope evolution

models with a pure H atmosphere model (“thin H envelope models”), and

thin H envelope evolution models with a pure He atmosphere model (“He

envelope models”). We collectively refer to the set of thick H envelope

models plus He envelope models as the “thick Montreal” models, and anal-

ogously refer to the set of thin H envelope models plus He envelope models

as the “thin Montreal” models. In all of these cases, the Montreal models

9The WD models package is publicly available at https://github.com/SihaoCheng/WD_
models.

10The Montreal group synthetic colours are publicly available at http://www.astro.

umontreal.ca/~bergeron/CoolingModels.
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have a C/O core composed of a uniform mixture of C and O in equal parts

by mass (XC = XO = 0.5). It should be noted that this core composi-

tion differs from typical model predictions for single stellar evolution (e.g.

[21, 113, 114]), which predict lower fractions of C for white dwarfs with mass

in the range that we consider. Furthermore, the fixed uniform mixture used

for the cores in the Montreal models does not account for element diffusion,

which separates the elements into stratified layers.

For the La Plata group set of models, we combine the higher mass O/Ne

core models of Camisassa et al. [110] with the lower mass C/O core models

of Renedo et al. [112] and Camisassa et al. [111]. While the Camisassa

et al. [110] models are available for both DA and DB white dwarfs, the

Renedo et al. [112] models are only available for DA white dwarfs and the

Camisassa et al. [111] are only available for DB white dwarfs. Thus, for the

La Plata group H-atmosphere models, we used the DA white dwarf models of

Camisassa et al. [110] for masses ≥ 1.1 M⊙ and the models of Renedo et al.

[112] with metallicity Z = 0.01 for masses ≤ 0.93M⊙, linearly interpolating

between these models for masses between 0.93 and 1.1 M⊙. To make the

full set of He-atmosphere La Plata group models, we used the DB white

dwarf models of Camisassa et al. [110] for masses ≥ 1.1 M⊙ and the models

of Camisassa et al. [111] for masses ≤ 1 M⊙. We collectively refer to all of

these models as the “La Plata” models.

The composition of ultramassive white dwarfs (i.e. white dwarfs with

mass above 1.05 M⊙) is not well known. The single stellar evolution sim-

ulations of Siess [21, 22] and Doherty et al. [23] indicate that white dwarfs

transition from having C/O cores to O/Ne for masses ≳ 1.05 M⊙, and

Doherty et al. [24] find this transition to correspond to masses between

∼ 1.07−1.15 M⊙ for solar metallicity. However, Althaus et al. [114] showed

that ultramassive C/O-core white dwarfs with masses in excess of 1.25 M⊙

can readily be produced by models with either high rotation rates or low

rates of mass loss on the AGB. Massive white dwarfs can also be formed

through the merger of two lighter white dwarfs, and this process could re-

sult in white dwarfs with different composition than those produced from

the evolution of a single progenitor [114]. While the evolutionary models of
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Schwab [115] for the merger remnant of two C/O white dwarfs indicate that

merger products with final mass ≳ 1.05 M⊙ have O/Ne cores, other work

(e.g. [116, 117]) has found scenarios in which ultramassive remnants with

C/O cores may be produced from double white dwarf mergers.

For ultramassive C/O white dwarf models, Althaus et al. [114] noted

that the composition of those produced by single stellar evolution and those

produced by double white dwarf mergers is expected to be different. White

dwarfs produced by single stellar evolution are expected to be born with the

most abundant elements already largely separated into distinct layers due to

element diffusion during pre-white-dwarf evolution, while the merger of two

white dwarfs mixes the elements and thus causes the resulting white dwarf to

(re)start cooling with a more uniformly mixed composition. Even for single

stellar evolution models, there is significant uncertainty in the expected

ratio of carbon to oxygen in C/O-core white dwarfs due to factors such as

the uncertainty in the 12C(α, γ)16O rate and the treatment of convection in

progenitor models (e.g. [19, 20, 118]), in addition to the choice of rotation

and mass loss on the AGB [114].

We adopt an agnostic approach to the white dwarf core composition by

considering models with a variety of compositions and performing the same

analysis for each set of models to determine the best-fitting model for each

mass bin. The models considered in this work are particularly relevant for

comparison with the work of Cheng et al. [43], which found an anomalous

cooling delay on the Q branch for massive Gaia DR2 white dwarfs. The

Bédard et al. [109] models are the most recent version of the older Fontaine

et al. [68] models used by Cheng et al. [43], who used the thick H models

of Fontaine et al. [68] for white dwarf masses ≤ 1.05 M⊙ and the models of

Camisassa et al. [110] for white dwarf masses ≥ 1.1 M⊙.

4.2.2 Data

We used the main catalogue of Gentile Fusillo et al. [99], which consists of

Gaia EDR3 white dwarfs with reliable parallax measurements. From this

catalogue, we selected sources within a distance of 200 pc and for which the
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probability of being a white dwarf exceeded 90%, as determined by the Pwd

parameter of the catalogue (for details concerning how this probability was

determined, see [99]).

For each source in the catalogue, Gentile Fusillo et al. [99] provide

the three parameters chisq H, chisq He, and chisq mixed, indicating the

goodness-of-fit of models with different atmosphere compositions: pure H,

pure He, and mixed H/He atmospheres, respectively. In our work, we clas-

sified each white dwarf as having an atmosphere composition corresponding

to the atmosphere model with the smallest (non-empty) chi-squared value.

White dwarfs for which all three chi-squared parameters were empty were

classified as having an “unknown” atmosphere. For a given set of models,

this classification was used to determine whether the H-atmosphere or He-

atmosphere models were used to determine the mass and cooling age of each

source from the observed photometry. He-atmosphere models were used for

both the pure He and mixed H/He atmosphere white dwarfs. Following the

recommendations of Gentile Fusillo et al. [99], we used H-atmosphere models

for white dwarfs with unknown atmosphere composition.

Figure 4.1 depicts our observational sample of white dwarfs identified

by Gentile Fusillo et al. [99] within 200 pc. Superimposed on the diagram

are contours of constant mass and cooling age calculated using the thin H

envelope models of Bédard et al. [109]. The other models considered in

our work show similar trends. Furthermore, the thresholds and completion

of core crystallisation for carbon/oxygen and oxygen/neon white dwarfs as

identified by Bauer et al. [101] are shown by solid and dashed black lines.

These contours are similar to those identified by Tremblay et al. [31] for

carbon/oxygen white dwarfs and to those by Camisassa et al. [110] for oxy-

gen/neon white dwarfs. For the masses that we consider, the crystallisation

occurs between the absolute G-band magnitude of 12 and 14. The mag-

nitude and colour have been de-reddened using the mean AV values given

in the catalogue and the prescription given by Gentile Fusillo et al. [99] to

convert this extinction in the Johnson V band to extinctions in Gaia bands.

To illustrate the shift in the CMD caused by reddening, we show the Gaia

extinction vector for a colour excess of E(B − V ) = 0.1 (the median extinc-
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Figure 4.1: Upper: the Gaia CMD of white dwarf candidates within
200 pc from Gentile Fusillo et al. [99]. Lower: focus on the high-mass
white dwarfs. The effect of interstellar extinction with E(B−V ) = 0.1
is indicated by the red arrow. Superimposed on the observations are
contours of equal mass, from 0.95 to 1.25 solar masses (right to left),
and contours of equal cooling age, from 0.5 to 2.5 Gyr (top to bot-
tom), according to the thin H atmosphere white dwarf cooling models
of Bédard et al. [109]. The four black lines show significant points in
core crystallization, as identified by Bauer et al. [101]. The dashed black
lines indicate the region of O/Ne crystallisation, showing the points at
which 20% (top) and 80% (bottom) of the O/Ne core is frozen. Anal-
ogously, the solid black lines show the points at which 20% (top) and
80% (bottom) of the C/O core is frozen.
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tion for stars within 200 pc from the Gaia EDR3) as a red arrow in the

lower panel of Fig. 4.1. De-reddening undoes the effect illustrated by this

arrow, shifting the white dwarfs back in the opposite direction. As the ex-

tinction vector is approximately parallel to the phase transition lines for the

range of white dwarf masses that we will consider, the location of a white

dwarf relative to the phase transition lines is approximately independent of

extinction. While reddening will make a white dwarf appear slightly less

massive by a few hundredths of a solar mass for E(B − V ) = 0.1, since we

will be studying white dwarfs binned into samples one tenth of a solar mass

wide, our conclusion should not be very sensitive to the exact treatment of

reddening.

A key concern in determining the distribution of white dwarf cooling

ages is to determine the volume sampled as a function of the luminosity of

the white dwarf [119]. Although we could estimate this using the magnitude

limits of the Gentile Fusillo et al. [99] catalogue, we would still not have a

reliable estimate of the completeness rate at the faint end of the catalogue;

consequently, we will study the completeness of the catalogue as a function of

absolute G-band magnitude and distance using a variant of the Schmidt [120]

estimator. If the population that we are sampling is uniform surrounding

the Sun (which is a good approximation within 200 pc), the number of white

dwarfs that we detect should increase linearly with the volume sampled.

Figure 4.2 depicts the cumulative number of white dwarfs detected as a

function of the volume sampled (normalised by the total volume Vmax, which

is the volume of a sphere with a 200 pc radius). The solid curves of different

colours correspond to samples binned by absolute G-band magnitude into

bins with a width of one magnitude and centred on the values indicated by

the legend, with the values of these bin centres ranging from MG = 9 to

MG = 17. White dwarfs with absolute magnitudes of 14 and brighter are

detected with high completeness all the way out to 200 pc. For inherently

fainter white dwarfs, the samples become incomplete closer to the Sun. The

incompleteness manifests itself as the downward curvature of the cumulative

distribution from the linear relation.

We choose the limiting volume to be where this curvature develops. In
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Figure 4.2: Completeness limits of white dwarf samples as a function
of absolute magnitude. The legend indicates the central value of each
magnitude bin. The vertical dashed lines indicate the volume limits
of the complete samples that we consider as a function of absolute
magnitude.
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particular we choose the limiting volume to be where the slope of the cu-

mulative distribution deviates by more than 5% relative to its value for

small volumes. Consequently, within these limiting volumes, the samples

are nearly complete. We only perform this adjustment for samples that we

estimate to be less than 85% complete within 200 pc, that is, for MG ≥ 15.

The three leftmost vertical lines from left to right show the limiting volume

that we choose for magnitude values11 ofMG = 17, 16 and 15. ForMG ≤ 14,

we do not reduce the volume relative to the total volume of the 200 pc sam-

ple, and we illustrate this choice as a limiting volume equal to Vmax shown

by the rightmost vertical line in Fig. 4.2. We restrict our sample to objects

within their magnitude dependent completeness-limiting volume, Vlim(MG).

The reduced sampling volume of the faint white dwarfs is then corrected by

assigning a weight of Vmax / Vlim(MG) to objects for which Vlim(MG) < Vmax

and a weight of 1 to objects for which Vlim(MG) ≥ Vmax.

4.3 Results

In Fig. 4.3 we show the joint distribution of masses and cooling ages of Gaia

EDR3 white dwarfs according to different sets of models. To generate these

distributions, the white dwarfs were weighted to correct for the reduced sam-

pling volume required to make the sample complete. For each set of models,

the mass and cooling age of each object in our reduced sample was deter-

mined by linearly interpolating the models, using either the H-atmosphere

or He-atmosphere models depending on the atmosphere classification of the

source (as determined by the chisq H, chisq He, and chisq mixed param-

eters of the Gentile Fusillo et al. [99] catalogue). Later in this work we sort

the white dwarfs into three mass bins of width 0.1M⊙, centred on the values

1.0, 1.1, and 1.2 M⊙. The edges of these mass bins are indicated in Fig. 4.3

by light grey dotted vertical lines. For illustrative purposes and to help

orient the reader, we also show the core crystallization lines of Bauer et al.

11These magnitude values correspond to the centres of the magnitude bins for the solid
curves plotted in Fig. 4.2. We linearly interpolate between the limiting volumes chosen
for these reference points to determine the limiting volume for (and thus assign a weight
to) each white dwarf in the full sample.
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[101] as red lines in Fig. 4.3. The solid lines indicate C/O crystallization

thresholds of 20% (bottom, solid) and 80% (top, solid) frozen, while the

dashed lines similarly indicate O/Ne crystallization thresholds of 20% (bot-

tom, dashed) and 80% (top, dashed) frozen. Bauer et al. [101] calculated

these crystallization thresholds using models with pure He atmospheres and

Gaia DR2 filters. For consistency with the Bauer et al. [101] models used to

calculate these threshold, we used He-atmosphere models to convert those

(Gaia DR2) colour-magnitude crystallization thresholds to curves in mass

and cooling age. The models used for this conversion consisted of the He-

envelope evolution models of each of the three sets of models considered in

this work along with the synthetic colours for Gaia DR2 filters, rather than

those for the EDR3 filters used to determine the masses and cooling ages of

objects in our observational sample. By comparison with the crystallization

lines in Fig. 4.1, we can identify where the Q branch region of the CMD

has been mapped to in Fig. 4.3, as the bulk of the Q branch region occurs

between the lines of 20% C/O frozen and 80% O/Ne frozen.

Several trends are immediately apparent from Fig. 4.3, regardless of

which set of models is considered. The decreasing density from left to right

across each plot indicates that there are more low-mass white dwarfs than

high-mass white dwarfs. Equally striking is that, as the cooling age increases

(moving from bottom to top in each plot), the density of white dwarfs grad-

ually increases until it reaches a peak well after the age at which 80% of a

C/O core is frozen. This corresponds to an excess of stars on the Q branch

and below it on the CMD. This effect is much more pronounced for the

lower mass white dwarfs, with masses ∼ 0.95−1.15M⊙. Since white dwarfs

with mass ≳ 1.15 M⊙ are much less numerous than white dwarfs on the

lower end of the mass range shown in Fig. 4.3, the scale of the plots makes

it difficult to see the trend with cooling age for these most massive white

dwarfs; however, our analysis later in this work will reveal that their cooling

ages are much closer to uniformly distributed.
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Figure 4.3: Joint distribution of mass and cooling age for massive Gaia EDR3 white dwarfs according to
different sets of models, weighted to correct for reduced sampling volume. For each subplot, the set of models
used to calculate the cooling ages and masses from Gaia EDR3 photometry is indicated at the top of the
subplot. From left to right, these are the thick Montreal models, the thin Montreal models, and the La Plata
models (see main text for details). The fill colour of each bin indicates the corrected count found in that
bin, with corresponding value given by the colour bar and white denoting that no objects were found in that
bin. The red lines indicate the C/O (solid) and O/Ne (dashed) freezing lines of Bauer et al. [101], shown
only for reference. From bottom to top, these lines indicate 20% O/Ne frozen, 20% C/O frozen, 80% O/Ne
frozen, and 80% C/O frozen. The vertical dotted lines indicate the boundaries between the three mass bins
considered in this work.
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Figure 4.4: Distribution of cooling ages (in Gyr) of 0.95− 1.25 M⊙ white dwarfs within 200 pc of the Sun,
weighted to correct for reduced sampling volume. This sample was sorted into subgroups based on atmospheric
composition, as determined by the fits of Gentile Fusillo et al. [99]. White dwarfs with atmospheric composition
classified as either pure He or mixed H/He were combined into one group (shown in blue), and He-atmosphere
models were used to determine their ages and masses. H-atmosphere models were used to determine the ages
and masses of white dwarfs with atmospheric composition classified as either pure H or unknown, but the
H-atmosphere white dwarfs (shown in orange) and the unknown-atmosphere white dwarfs (shown in grey)
were kept as separate groups. The (corrected) counts for each of these groups are stacked such that the top
of the stacked distribution indicates the total (corrected) count from combining all three groups. The black
line indicates the star formation rate of main sequence stars determined by Mor et al. [106], normalized to
the number of white dwarfs with cooling age ≤ 3 Gyr.
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If the models are correct and the white dwarf birthrate were constant,

then the distribution of cooling ages at a given mass would be expected to

be uniform. The non-uniform density seen in Fig. 4.3 (for 0.95 − 1.15 M⊙

white dwarfs) indicates that either the white dwarf birthrate is not constant

or that these white dwarfs are cooling more slowly than predicted by the

models in the region where the density increases. In the latter scenario, the

observed pile-up of white dwarfs would imply a cooling delay that spans

both the Q branch region and well beyond it, with the apparent delay in

fact being much more prominent for white dwarfs that have already finished

their Q branch stage of evolution. The peak of this white dwarf pile-up

actually roughly coincides with the burst of star formation found by Mor

et al. [106] for Gaia DR2 main sequence stars, with the general trend of the

density gradually increasing with cooling age to a peak for the first ∼ 3 Gyr

seeming to follow the corresponding time-varying star formation rate found

in that work. This strongly suggests that the non-uniform distribution of the

white dwarf cooling ages seen in Fig. 4.3 is simply the imprint of the time-

varying star formation history of their main sequence progenitors rather

than an indication of a cooling delay relative to the standard white dwarf

cooling models. Progenitor stars that produce massive white dwarfs in the

mass range that we consider (0.95 − 1.25 M⊙) evolve through their pre-

white-dwarf stages of evolution on timescales that are negligible compared

to the cooling ages we consider, with pre-white-dwarf lifetimes of less than

100 Myr [121, 122]. Thus, if the massive white dwarfs that we consider

are born from single progenitors, then the distribution of their cooling ages

should follow the star formation rate of their main sequence progenitors.

The distribution of cooling ages for white dwarfs in the mass range

0.95 − 1.25 M⊙, according to different sets of models and weighted to cor-

rect for the completeness-limiting reduced sampling volume, are shown in

Fig. 4.4. These plots are the result of marginalizing the joint distributions

of Fig. 4.3 over white dwarf mass for the given mass range. The differ-

ent colours indicate the contribution of white dwarfs with different atmo-

sphere classifications to the total distribution. Nearly all of the youngest

white dwarfs, with cooling age ≲ 2 Gyr, are classified as having a H-
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atmosphere; while there are significant numbers of both H-atmosphere and

He-atmosphere white dwarfs with older cooling ages. White dwarfs with

unknown atmosphere composition only make up a very small fraction of the

total white dwarfs at any cooling age, so our treatment of these white dwarfs

should not significantly impact our results.

In each panel of Fig. 4.4, we also show the star formation rate deter-

mined by Mor et al. [106] for Gaia DR2 main sequence stars, which we have

normalized to the number of white dwarfs with a cooling age of ≤ 3 Gyr.

Up to about 3 Gyr, the distribution of massive Gaia EDR3 white dwarfs

tracks the shape of the SFR distribution, up to a small lag that should be

expected due to the time required for a main sequence star to become a

white dwarf. Heyl et al. [122] have measured the lag between star formation

and the formation of a one-solar-mass white dwarf to be less than 100 Myr

from the Pleiades, so neglecting this lag is a reasonable approximation. If

the white dwarf birthrate were constant, this distribution should be approx-

imately uniform. Instead we see an accumulation of massive white dwarfs

at cooling ages that coincide with the look-back time for the star forma-

tion burst found by Mor et al. [106]. Beyond about 3 Gyr, the white dwarf

cooling age distribution appears to track the SFR less well. This could in-

dicate that the star formation burst is actually broader than found for the

fiducial case of Mor et al. [106]. The discrepancy for old white dwarfs could

alternately be due to the poorer statistics of the oldest white dwarfs or an

imperfect correction for the reduced sampling volume of these stars, which

are typically fainter and less complete than the younger white dwarfs. The

weighting only begins to affect the distributions for cooling ages older than

about 3 Gyr, so we can reliably compare the cooling age distribution to the

SFR up to at least 3 Gyr even if the latter situation is the issue. We exam-

ine the divergence between the weighted and unweighted distribution more

closely in our analysis of the cumulative cooling age distributions below.

To investigate the effect of white dwarf mass, MWD, on the distribution

of cooling ages, we sort the massive white dwarfs into three mass bins: 0.95−
1.05M⊙, 1.05−1.15M⊙, and 1.15−1.25M⊙. The cumulative distributions

for white dwarfs in each of these mass bins, according to the three sets
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of models we consider, are shown in Fig. 4.5. We show the white dwarf

distribution both with and without weighting to correct for the reduced

sampling volume for which the Gaia EDR3 observations are complete. In

each panel of Fig. 4.5, we show the cumulative distribution corresponding

to the SFR of Mor et al. [106], normalized to the unweighted white dwarf

distribution at 3 Gyr. For reference, we also show a uniform distribution

with the same normalization. From the top and middle rows of this figure,

we see that the distributions for white dwarfs in the two lightest mass bins,

0.95−1.05M⊙ and 1.05−1.15M⊙, approximately follow the time-dependent

SFR of main sequence stars [106]. In stark contrast, the distribution of the

heaviest white dwarfs, in the mass bin 1.15 − 1.25 M⊙ (bottom row), does

not seem to follow the SFR at all; instead, the cooling ages of the heaviest

white dwarfs are nearly uniformly distributed.

To statistically asses the similarity between the observed cumulative

cooling age distributions and the cumulative SFR of [106], we perform a

series of one-sample Kolmogorov–Smirnov (KS) tests. We test the null hy-

pothesis that the empirical cumulative distribution of a particular sample

of white dwarf cooling ages is equal to the analytic cumulative distribution

function of the SFR. These cumulative distributions will be equivalent if the

models are correct and the white dwarf birthrate is proportional to the SFR

of the main sequence progenitors, i.e. if the probability density of producing

a white dwarf with a particular cooling age is proportional to the SFR at

the equivalent look-back time. Viewing the cooling age of a white dwarf

as a random variable drawn from an underlying probability distribution,

which here is taken to be proportional to the SFR under the null hypoth-

esis, the p-value from the one-sample KS tests quantifies the probably of

randomly drawing a sample from the proposed underlying distribution for

which the sample distribution differs from the underlying distribution by at

least as much as what is seen for the observed empirical distribution. A

small p-value indicates that the observed white dwarf cooling ages are un-

likely to have been drawn from the proposed SFR distribution. Viewed as

a goodness-of-fit test, a small p-value indicates a poor fit of the SFR to the

empirical distribution of cooling ages.
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Figure 4.5: Cumulative distributions of cooling ages (in Gyr) of mas-
sive white dwarfs in different mass bins according to the different sets
of cooling models considered in this work. Each column corresponds to
a particular set of models: thick Montreal (left), thin Montreal (cen-
tre), and La Plata (right). Each row corresponds to a particular white
dwarf mass bin: 0.95 − 1.05 M⊙ (top), 1.05 − 1.15 M⊙ (middle), and
1.15 − 1.25 M⊙ (bottom). For each subplot, we show both the un-
weighted (solid blue line) and weighted (dashed blue line) white dwarf
distributions. For comparison, we also show the cumulative distribu-
tion for the star formation rate of Mor et al. [106] (solid orange line)
and a uniform distribution (dotted black line), both normalized to the
(unweighted) white dwarf distribution at 3 Gyr.
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We performed separate KS tests for each mass bin and each set of models,

as well as for the full mass range 0.95− 1.25 M⊙ encompassing all bins. As

can be seen in Fig. 4.5, the weighted distribution starts to deviate from the

unweighted distribution at cooling ages ≳ 3 Gyr for the first two mass bins,

and slightly earlier for the most massive bin. The KS tests do not account

for the weighting of the white dwarfs, so we can only use these tests to

draw statistically meaningful conclusions for distributions of white dwarfs

young enough that the weighted distribution does not yet differ significantly

from the unweighted distribution. For each sample we consider in a KS

test, the sample includes only white dwarfs with cooling age ≤ tmax. For

each combination of model set and mass range, we perform KS tests for

three choices of maximum cooling age: 2 Gyr, 3 Gyr, and 4 Gyr. The p-

values resulting from all of these tests are summarized in Table 4.1. These

different samples allow us to consider different options for balancing the

improved statistical power of larger sample numbers with the error for the

oldest white dwarfs from not accounting for the reduced sampling volume.

For the lightest two mass bins, we consider the sub-samples for which the

white dwarf cooling ages are ≤ 3 Gyr to give the best balance between these

two considerations.

For each of the two lightest mass bins, there are two sets of models that

give results consistent with the SFR for the sample with tmax = 3 Gyr,

though the optimal models are different for each bin. The La Plata models

give the best results for the 0.95−1.05M⊙ mass bin, with a p-value of 0.0266

for tmax = 3 Gyr, while the thick Montreal models give the best results for

the 1.05 − 1.15 M⊙ mass bin, with a p-value of 0.0138 for tmax = 3 Gyr

(and 0.0707 for tmax = 4 Gyr). For white dwarfs in the heaviest mass bin,

1.15−1.25M⊙, none of the models give white dwarf distributions consistent

with the SFR (all p-values < 10−4). This result is in line with Fig. 4.5, which

shows that these heaviest white dwarfs have approximately uniformly dis-

tributed cooling ages, particularly for cooling ages above ∼ 1 Gyr, regardless

of which set of models is considered. To assess this apparently uniform trend,

we performed another series of one-sample KS tests for just white dwarfs

in this heaviest bin to compare their cooling age distribution to a uniform
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Mass (M⊙) tmax (Gyr) Montreal, thick Montreal, thin La Plata

0.95− 1.05 2 0.0005 < 10−4 < 10−4

3 0.0177 < 10−4 0.0266
4 < 10−4 < 10−4 < 10−4

1.05− 1.15 2 < 10−4 0.0103 0.0179
3 0.0138 0.0208 < 10−4

4 0.0707 < 10−4 < 10−4

1.15− 1.25 2 < 10−4 < 10−4 < 10−4

3 < 10−4 < 10−4 < 10−4

4 < 10−4 < 10−4 < 10−4

0.95− 1.25 2 < 10−4 < 10−4 0.0033
3 < 10−4 0.0008 < 10−4

4 < 10−4 < 10−4 < 10−4

Table 4.1: The p-values from one-sample KS tests comparing the
(unweighted) cumulative distribution of cooling ages of white dwarfs
in different mass bins, according to different models, to the cumulative
SFR of Mor et al. [106] for samples restricted to different maximum
cooling ages, tmax (in Gyr).
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distribution. For distributions over the cooling age range 1 − 2.5 Gyr, all

of the models give distributions that are highly consistent with a uniform

distribution, with p-values for KS tests comparing these distributions to a

uniform distribution of 0.9803, 0.6321, and 0.2523 for the thick Montreal,

thin Montreal, and La Plata models, respectively. The distributions for the

first 1 Gyr (i.e. restricted to the cooling age range 0− 1 Gyr) are in tension

with a uniform distribution, having p-values of 0.0014, 0.0005, and < 10−4.

This indicates that it could take ∼ 1 Gyr for the uniform distribution to

develop.

A possible explanation of the approximately uniform distribution of the

most massive white dwarfs is that a large fraction of these white dwarfs

formed due to mergers. Temmink et al. [123] have used binary population

synthesis simulations to show that the assumption of single stellar evolu-

tion for white dwarfs that have undergone mergers typically leads to an

underestimate of the white dwarf age, particularly for white dwarfs more

massive than 0.9 M⊙ that are produced by double white dwarf mergers.

Temmink et al. [123] further estimated that 30− 50% of white dwarfs with

mass above 0.9 M⊙ are the product of binary mergers. The earlier binary

population synthesis simulations of Bogomazov and Tutukov [124] predicted

even higher merger fractions for the most massive white dwarfs, with over

50% of white dwarfs more massive than 1.1 M⊙ predicted to be the product

of double white dwarf mergers. These theoretical predictions of a high frac-

tion of merger products among massive white dwarfs have been supported

by observations. Based on the kinematic, magnetic, and rotational proper-

ties of white dwarfs in the Montreal White Dwarf Database 100 pc sample,

Kilic et al. [125] found direct observational evidence that at least 32% of

the ultra-massive white dwarfs in their sample, with mass > 1.3 M⊙, were

the product of binary mergers. Cheng et al. [126] have shown strong evi-

dence of the presence of double white dwarf merger products among Gaia

DR2 high mass white dwarfs and determined the cooling delay time distri-

bution of double white dwarf merger products for multiple mass bins using

population synthesis simulations.

For the mass ranges we consider, if most white dwarfs in the sample
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were formed from the evolution of a single progenitor, then the distribution

of white dwarf cooling ages would be expected to directly track the SFR

of their main sequence progenitors, similar to what we see for the lightest

two mass bins. However, white dwarfs that are the result of a double white

dwarf merger event will have a younger apparent cooling age than predicted

by single white dwarf evolution models. If a large fraction of white dwarfs

in the sample are the result of double white dwarf merger events, then their

cooling ages will be approximately distributed according to the convolution

of the SFR of the single progenitors and the distribution of cooling delay

times due to mergers.

To estimate the cooling age distribution if most of the white dwarfs in our

most massive bin are the result of double white dwarf mergers, we convolve

the Cheng et al. [126] distribution of cooling delay times for 1.14− 1.24 M⊙

(approximately corresponding to our mass bin) with the Mor et al. [106]

SFR. The result of this convolution is shown as the solid black curve in

Fig. 4.6, normalized to the number of white dwarfs with apparent cooling

age ≤ 3 Gyr in our heaviest bin according to the thick Montreal models. The

dashed coloured curves in Fig. 4.6 show the SFR by itself, without convo-

lution with the merger delay time distribution, with each curve normalized

to the number of white dwarfs with cooling age ≤ 3 Gyr in the mass bin

of the corresponding colour. Each normalization was determined using the

most statistically consistent model for that mass bin according to the KS

tests. Note that normalizing the SFR to a different mass bin only affects

the height of the curve, not the shape.

The cooling age distributions for the observed Gaia EDR3 white dwarfs

in each mass bin, according to the most consistent set of models for each

bin as determined by the earlier KS tests, are shown in Fig. 4.6 as his-

tograms with 0.5 Gyr bin width. These distributions were calculated using

the same weighting as the previous figures in this work to correct for the

reduced sampling volume of the complete samples. The La Plata models

were used for the lightest bin and the thick Montreal models for the two

heaviest bins. Comparison of the dashed green and solid black curves in

Fig. 4.6 illustrates the effect on the cooling age distribution of accounting
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Figure 4.6: Distribution of white dwarf cooling ages by mass bin,
weighted to correct for the reduced sampling volume of the complete
sample. For the lightest two mass bins, we show the distributions made
using the set of models that was most consistent with the star formation
rate based on the results of KS tests. For the heaviest bin, we used
the thick Montreal models. The dash-dot black curve indicates the
distribution resulting from convolving the star formation rate of Mor
et al. [106] with the merger delay distribution of Cheng et al. [126]
appropriate for our heaviest mass bin; this curve has been normalized
to the number of white dwarfs in the heaviest bin with cooling age
≤ 3 Gyr. The dashed lines indicate the star formation rate of Mor
et al. [106] analogously normalized to the number of white dwarfs with
cooling age ≤ 3 Gyr in the mass bin with the corresponding colour.
From top to bottom these are the lightest to heaviest mass bins.
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for the merger delay, shifting the peak associated with the star formation

burst event to younger cooling ages and overall flattening the distribution,

resulting in a distribution much closer to uniform and in better agreement

with the observed distribution for white dwarfs in the most massive bin.

We model the cooling age distribution of ultramassive white dwarfs as

a linear combination of the distribution for white dwarfs produced by di-

rect stellar evolution and the distribution for white dwarfs produced by the

merger of two lighter white dwarfs. The distribution for white dwarfs that

evolved from a single progenitor is taken to be the SFR found by Mor et al.

[106] for main sequence stars, while the distribution for merger products is

taken to be the convolution of the SFR of Mor et al. [106] and the cooling

delay distribution determined by Cheng et al. [126]. We determine the em-

pirical cooling age distribution for 1.15−1.25M⊙ white dwarfs according to

each set of white dwarf cooling models by constructing weighted histograms

of 0.5 Gyr bin width for cooling ages spanning 0 to 4 Gyr, and we fit this

model to each empirical distribution using non-linear least squares regres-

sion. The results of these fits are summarized in Table 4.2. We also perform

fits for the two limiting cases in which the ultramassive white dwarfs are

i) only the product of mergers and ii) only the product of single stellar

evolution, labelled respectively as “Only Mergers” and “Only Singles” in

Table 4.2.

The goodness-of-fit is assessed using the reduced chi-squared statistic,

χ2
ν , which allows us to compare the fits for the different distributions de-

spite differences in the degrees of freedom, ν. Fits for the limiting cases of

only merger products and only single stellar evolution products each have

ν = 7, while fits for the fiducial combination scenario have ν = 6. Even

after accounting for the different degrees of freedom, the combination sce-

nario gives a better fit than either of the limiting cases, regardless of which

white dwarf cooling model is used to determine the masses and cooling ages.

Among the different white dwarf cooling models, the thick Montreal models

give the best fit for all of the cooling age distributions.

For the best-fitting combination of merger and direct formation prod-

ucts according to each set of white dwarf cooling models, we determine the

68



4.3. Results

Montreal, thick Montreal, thin La Plata

χ2
ν

Combination 1.4 4.9 11.6
Only Mergers 10.5 17.6 26.2
Only Singles 11.3 12.6 15.3

fm
Today 0.805 0.756 0.688
Average 0.511 0.439 0.358

Table 4.2: Fitting results for cooling age distribution of 1.15−1.25M⊙
white dwarfs. The goodness-of-fit, scaled to the degrees of freedom (ν),
for each combination of origin model and white dwarf cooling model is
indicated by the reduced chi-squared value, χ2

ν . We fit origin scenarios
in which all of the white dwarfs are the result of mergers (“Only Merg-
ers”, ν = 7), all are the result of single stellar evolution (“Only Singles”,
ν = 7), and some fraction are merger products (“Combination”, ν = 6).
The fraction of merger products, fm, forming today and averaged over
4 Gyr is given for each best-fit combination.

fraction of merger products, fm, as a function of cooling age. In Table 4.2,

we summarize fm by reporting the fraction of merger products among white

dwarfs forming today (at 0 Gyr cooling age) and the fraction of merger prod-

ucts among white dwarfs that have formed over the past 4 Gyr. It should be

noted that fm is not a parameter of the fit; it is a function that is determined

from the result after the fit has been performed. The function fm(tcool) is

then evaluated at the particular instant tcool = 0 Gyr to get the value today

(reported in the row labelled “Today” in Table 4.2), and it is averaged over

the cooling age range 0−4 Gyr to get the the fraction of merger products for

white dwarfs that have formed over the past 4 Gyr (labelled “Average” in

Table 4.2). The best-fitting cooling models, the thick Montreal models, give

merger product fractions of 0.805 ± 0.037 for white dwarfs forming today

and 0.511± 0.059 for white dwarfs that have formed over the last 4 Gyr, in

line with the theoretical estimates of Bogomazov and Tutukov [124] and the

observational results of Kilic et al. [125], though somewhat larger than the

observational results of Cheng et al. [126]. From the χ2
ν values summarized

in Table 4.2, we see that the case of the combination formation scenario
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with the thick Montreal cooling models fits the data well, with χ2
ν = 1.4,

but none of the other cases produce a good fit.

In Fig. 4.7, we show the results of fitting the different ultramassive white

dwarf formation scenarios to the empirical distribution according to the

thick Montreal cooling models. The empirical distribution is shown as the

green histogram. The solid red curve shows the cooling age distribution for

the best-fitting combination of merger and direct formation products. Also

shown are the best-fitting cooling age distributions for the limiting cases in

which all of the ultramassive white dwarfs are the result of direct formation

(dashed green curve) and all are the result of mergers (dash-dot black curve),

which are simply proportional to the SFR and the convolution of the SFR

and merger delay distribution, respectively. Using a separate y-axis scale,

Fig. 4.7 shows fm for the best-fitting combination as a solid grey line. The

scale for all of the cooling age distributions is indicated by the y-axis on the

left side of the plot, while the scale for the fraction of merger products is

indicated by a separate y-axis on the right side of the plot. Comparison of

the cooling age distributions visually illustrates the better fit of the optimal

combination formation scenario relative to the limiting cases, as quantified

by the χ2
ν values listed in Table 4.2. For the optimal combination, we also

see from Fig. 4.7 that the fraction of merger products is a function of the

white dwarf cooling age, with a maximum value for white dwarfs that are

forming today.
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Figure 4.7: Ultramassive white dwarf (1.15 − 1.25 M⊙) formation
mechanisms. In the best-fitting combination (red solid curve, χ2

ν = 1.4
with six degrees of freedom) of mergers and direct formation, 51% of
ultramassive white dwarfs that formed over the past 4 Gyr, formed
through mergers. Among the ultramassive white dwarfs forming today,
80% are the result of mergers. The limiting cases of only mergers (black
dash-dot curve) and only single stellar evolution (dashed green curve)
are shown for comparison. The green histogram is the empirical distri-
bution. The fraction of merger products in the best-fitting combination
is shown as the solid grey curve, with y-axis on the right.
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4.4 Conclusions

In this chapter, we have shown that the number density of Gaia EDR3 white

dwarfs in the mass range 0.95 − 1.15 M⊙ gradually increases with cooling

age over the first ∼ 3 Gyr of cooling time. This pile-up of white dwarfs

extends over the entire age range associated with the Q branch and continues

well beyond it, reaching a peak after the end of core crystallization. If the

white dwarf birthrate were constant, this apparent excess of white dwarfs

would indicate an anomalous cooling delay relative to the models. However,

the discovery of a time-varying star formation rate for Gaia DR2 main

sequence stars [106] suggests that the white dwarf birthrate is likely to also

vary with time, with the expectation that the distribution of cooling ages for

the massive white dwarfs that we consider closely follows this star formation

rate if the white dwarfs predominantly originate from single progenitor stars

and if the models are correct. We indeed find that white dwarfs in the

mass bins 0.95− 1.05 M⊙ and 1.05− 1.15 M⊙ have cumulative cooling age

distributions that are statistically consistent with the expectation from the

star formation rate observed for main sequence stars [106]. We do not see

statistical evidence for an anomalous cooling delay in these results.

For slightly more massive white dwarfs, in the mass bin 1.15− 1.25 M⊙,

we find that the distribution of their cooling ages is consistent with a uniform

distribution for all sets of models considered over the cooling age range 1−
2.5 Gyr, and this is not consistent with the star formation rate of Mor et al.

[106]. This could indicate that a large fraction of these most massive white

dwarfs formed from double white dwarf mergers. The binary population

synthesis results of Cheng et al. [126] for white dwarfs in this mass range

indicate a merger delay time distribution that, when convolved with the star

formation rate of the main sequence progenitors, pushes the peak density to

earlier white dwarf cooling ages and overall flattens the distribution.

We model the cooling age distribution of 1.15−1.25M⊙ white dwarfs as

a linear combination of the distribution of single stellar evolution products

and the distribution of double white dwarf merger products, and we show

that this formation model provides a good fit to the empirical distribution of
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the photometric cooling ages determined by C/O-core white dwarf cooling

models. Depending on the cooling model, we find that about 69 − 80% of

the white dwarfs forming today and 36− 51% of the white dwarfs that have

formed over the last 4 Gyr are the product of double white dwarf mergers.

We note that we find no evidence for a substantial cooling delay in the

numbers of massive white dwarfs detected in Gaia EDR3 when one takes

the star formation history of the Galaxy into consideration. For the most

massive white dwarfs we find that the bulk were formed in mergers. The C/O

white dwarf models seem to fit better to the number of white dwarfs than

O/Ne models. This may indicate that these merger remnants are actually

C/O white dwarfs. It alternately could be that the merger delay distribution

proposed by Cheng et al. [126] is not realized in the solar neighbourhood,

that the star formation history is not precisely that given by Mor et al. [106],

or that the models for O/Ne white dwarfs require some minor revision.
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Chapter 5

Ultramassive white dwarf

kinematics

5.1 Introduction

The kinematics of stars can encode important information about their his-

tory and origin. The dynamical history of the Galaxy is imprinted on the

kinematics-age relations of stars in the solar neighbourhood, such as the

trend for the velocity dispersion of stars from the local Galactic disc to in-

crease with age due to disc heating, as seen in the age-velocity dispersion

relation (AVR; [127–140]). Since the epoch of the HIPPARCOS mission

[141], the kinematics of stars in the solar neighbourhood have been exten-

sively studied [131, 142–148], and the precise astrometry of the Gaia mis-

sion [42], the successor to HIPPARCOS, has further advanced these studies

[139, 140, 149–153].

Gaia EDR3 [34] has been used to study the kinematics of white dwarfs in

the solar neighbourhood, showing that the kinematic structure of local white

dwarfs [153] is similar to that of local main-sequence stars [150, 151, 154].

For example, Raddi et al. [140] performed a detailed three-dimensional kine-

matic analysis of a sample of 3133 white dwarfs from Gaia EDR3 with ra-

dial velocity measurements from either Gaia or cross-matched spectroscopic

observations, finding that their sample, which was mostly located within

∼ 300 pc of the Sun, consisted of ∼ 90 − 95% thin disc stars, ∼ 5 − 10%

thick disc stars, and a few isolated white dwarfs and halo members. For

the thin disc members, Raddi et al. [140] determined their AVRs and found

them to agree with previous AVR results that were determined from dif-
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ferent samples of LAMOST-Gaia FGK-type stars without radial velocity

information [139].

Gaia has also revealed structure in the CMD of white dwarfs in the so-

lar neighbourhood, which has implications for our understanding of white

dwarf cooling. Gaia DR2 revealed the so-called Q branch [100], an observed

sequence of massive white dwarfs in the CMD that is transversal to the the-

oretical cooling sequences for white dwarfs with mass ≳ 1 M⊙ and coincides

with the region of white dwarf crystallization [31]. The phase transition

from liquid to solid state during the process of crystallization results in the

release of latent heat [25] and other energy associated with element sedimen-

tation [26–29] that slows the rate of white dwarf cooling, and this cooling

delay results in a pile-up of white dwarfs that has been identified with the

Q branch [31].

While a cooling delay due to white dwarf crystallization had been pre-

dicted for over 50 yr prior to Gaia DR2, Cheng et al. [43] presented evidence

from Gaia DR2 for an extra cooling delay of ∼ 8 Gyr experienced by ∼ 6%

of ultramassive (1.08 − 1.23 M⊙) white dwarfs on the Q branch that is

not explained by standard crystallization models. By looking at the number

density of white dwarfs as a function of the age inferred by white dwarf cool-

ing models, Cheng et al. [43] noted an excess number of ultramassive white

dwarfs on the Q branch above the expected pile-up from the crystalliza-

tion delay. Furthermore, Cheng et al. [43] noted that for some ultramassive

Gaia DR2 white dwarfs on the Q branch there was a discrepancy between

the dynamic age, inferred from the transverse velocity using the AVRs of

Holmberg et al. [133] and [138] for the local thin and thick discs, and the

photometric isochrone age, inferred from the photometry using white dwarf

cooling models. Among ∼ 1.08− 1.23 M⊙ white dwarfs, they found a pop-

ulation moving anomalously fast relative to the velocity expected from the

AVR for their photometric ages. Cheng et al. [43] argued that this discrep-

ancy could only be explained by an extra cooling delay, in addition to the

delays due to crystallization and double white dwarf mergers, and suggested

modifications to the treatment of 22Ne sedimentation in white dwarf cool-

ing models as a possible mechanism. This prompted many efforts to explain
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this cooling anomaly through modifications to white dwarf cooling models

[101–105, 155–157].

In Chapter 4, we used the improved Gaia EDR3 data to re-investigate

this cooling anomaly by analysing the number density distribution of the

photometric cooling ages for massive (0.95−1.25M⊙) white dwarfs identified

in the white dwarf catalogue of Gentile Fusillo et al. [99]. We considered a

variety of publicly available white dwarf cooling models, including both the

oxygen-neon core models of Camisassa et al. [110] and carbon-oxygen core

models of Bédard et al. [109] with different envelope thicknesses. These are

all standard cooling models, by which we mean that they do not attempt to

reproduce the anomalous ∼ 8 Gyr cooling delay proposed by Cheng et al.

[43]. For each set of cooling models considered, the masses and ages of the

white dwarfs were determined from the Gaia photometry, and the resultant

cooling age distributions were compared to the expectation from the time-

varying star formation rate observed by Mor et al. [106] for Gaia DR2 main-

sequence stars. Mor et al. [106] discovered a star formation burst in the

local Galactic disc 2− 3 Gyr ago, which, if a uniform white dwarf birthrate

were assumed, would appear as an excess number of massive white dwarfs

around this age produced through single stellar evolution. In Chapter 4, it

was indeed found that, under the assumption of a uniform birthrate, there

was an apparent excess of white dwarfs both along the Q branch and below

it, coinciding with the burst of star formation seen in the star formation

history of main-sequence stars.

As part of the detailed analysis in Chapter 4, the sample was further

subdivided into three equally spaced mass bins, and the number density

distribution of photometric cooling ages according to each set of cooling

models was statistically compared to the Mor et al. [106] star formation

rate. For the two lightest mass bins, 0.95− 1.05 and 1.05− 1.15 M⊙, it was

found that standard cooling models could produce cooling age distributions

that were statistically consistent with the expected distribution from the

star formation rate observed by Mor et al. [106]. For the most massive

bin, 1.15 − 1.25 M⊙, it was found that the cooling age distribution was

well fitted by a linear combination of the distribution expected for single
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stellar evolution products (taken to be proportional to the star formation

rate) and the distribution expected for the product of double white dwarf

merger products (taken to be the convolution of the star formation rate

and the merger delay time distribution calculated by Cheng et al. [126]

using population synthesis simulations) when approximately 40−50% of the

1.15−1.25M⊙ white dwarfs that formed over the past 4 Gyr were produced

through double white dwarf mergers. From this analysis, it was found in

Chapter 4 that the photometric cooling age distribution of ultramassive

white dwarfs could be explained by accounting for the time-dependent star

formation rate and the presence of a large fraction of merger products among

1.15 − 1.25 M⊙ white dwarfs, without needing to invoke an anomalous ∼
8 Gyr cooling delay.

In this chapter, we follow up the work of Chapter 4 with a kinematic

analysis of the transverse motions of the same sample of 0.95−1.25M⊙ white

dwarfs in the solar neighbourhood that was considered in Chapter 4, subdi-

vided into the same mass bins of 0.95−1.05, 1.05−1.15, and 1.15−1.25M⊙

and with masses and cooling ages determined using white dwarf cooling

models found in Chapter 4 to produce photometric cooling age distribu-

tions consistent with the expectation from the star formation history. For

each of these mass bins, we estimate the transverse velocity dispersion as

a function of age using different estimators and analyse the distributions

of the separate transverse velocity components for several age ranges. We

compare the empirical distributions to the expectation from the AVRs mea-

sured for main-sequence stars in the local thin disc and find a population of

anomalously fast-moving ultramassive white dwarfs on the Q branch with

kinematic features that are not explained by an extra cooling delay in white

dwarfs originating from the local thin disc.

The structure of this chapter is as follows. The data and models used in

this chapter, along with the formal procedure for determining transverse mo-

tions, are described in Section 5.2. The results are presented in Section 5.3,

and the implications for the origin of anomalously fast-moving ultramassive

white dwarfs on the Q branch are discussed in Section 5.4. Finally, the

results and discussion are summarized in Section 5.5.
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5.2 Methods

5.2.1 Data Sample

We use the data and white dwarf cooling models described in Chapter 4.

The data consist of Gaia EDR312 white dwarfs identified in the Gentile

Fusillo et al. [99] catalogue with at least 90% probability, as determined

by the Pwd parameter of the catalogue, and located within 200 pc of the

Sun. The magnitude and colour observations were de-reddened following

the prescription of Gentile Fusillo et al. [99]. We used extinctions of AG =

0.835AV , AGBP
= 1.139AV , and AGRP

= 0.650AV for the G-, GBP-, and

GRP-band magnitudes, respectively, with AV values given by the meanAV

parameter of the catalogue. We calculated the absolute G-band magnitude,

MG, according to the expression

MG = G− 5 log10

(
100 mas

ω̄

)
−AG , (5.1)

where ω̄ is the parallax in mas, using the values of the catalogue parameters

parallax and phot g mean mag for ω̄ and G, respectively.

The completeness of this 200 pc sample as a function of MG was anal-

ysed in Chapter 4 and found to be volume limited for white dwarfs with

MG ≥ 15. The limiting volume as a function of magnitude, Vlim(MG), was

determined in Chapter 4 using a variant of the Schmidt [120] estimator

as follows. The cumulative number distribution as a function of sampling

volume was constructed for magnitude-binned sub-samples, and Vlim was

determined for each magnitude bin by finding the volume above which the

distribution began to deviate from the linear relation expected for a com-

plete sample (and which was realized at smaller volumes). The limiting

volume for each white dwarf was then calculated by linearly interpolating

between these magnitude-binned Vlim values as a function of MG, taking

the limiting volume for magnitudes MG ≥ 15 to simply be the total volume,

Vmax, of the 200 pc sample (i.e. the volume of a sphere with a radius of

12Although there is a more recent data release, Gaia Data Release 3 [158], it does not
contain new astrometric information compared to EDR3.
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200 pc).

Following the procedure of Chapter 4, we restrict our sample to only

include white dwarfs within their completeness-limiting volumes and correct

for the magnitude-dependent reduced sampling volume by assigning each

remaining white dwarf a weight of

wi =

Vmax / Vlim,i if Vlim,i < Vmax

1 otherwise
, (5.2)

where i is a data index denoting the ith white dwarf, Vlim,i is the limiting

volume for the magnitude of that white dwarf, and wi is the weight assigned

to that white dwarf.

5.2.2 Cooling and Atmosphere Models

Using the publicly availablewd models13 package provided by Cheng [108],

we use white dwarf cooling models to determine the photometric age and

mass of each white dwarf from its absolute G-band magnitude, MG, and

colour, GBP −GRP. To determine masses and cooling ages from these pho-

tometry measurements, the atmosphere composition of the white dwarf is an

important factor to consider. As described in detail in Chapter 4, we classi-

fied each source in our sample as having either a pure-H, pure-He, or mixed

atmosphere based on the best-fitting results from Gentile Fusillo et al. [99],

as determined by the chi-squared values provided in the catalogue for their

model fits: chisq H, chisq He, and chisq mixed. Each source was classi-

fied as having an atmosphere composition corresponding to whichever model

gave the smallest chi-squared value. Sources for which all three chi-squared

values were empty were assumed to have pure-H atmospheres.

Each set of models from wd models considered in Chapter 4 included

both H-atmosphere and He-atmosphere models. The evolutionary models

were combined with the corresponding publicly available Montreal group

13The wd models package is publicly available at https://github.com/SihaoCheng/

WD_models.
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synthetic colours14 for pure-H and pure-He atmosphere models with Gaia

EDR3 band-pass filters to convert the photometry measurements of each

source into mass and cooling age values. The synthetic colours map the

magnitude and colour to the effective temperature and surface gravity, re-

spectively Teff and log g, and the evolutionary models map Teff and log g

to cooling age and mass. Models of the appropriate atmosphere composi-

tion were used for each source as determined by the atmosphere classification

from the Gentile Fusillo et al. [99] catalogue described above. He-atmosphere

models were used for sources classified as having pure-He or mixed atmo-

spheres, while H-atmosphere models were used for sources classified as hav-

ing pure-H or unknown atmospheres.

In Chapter 4, we assessed the consistency of the photometric cooling age

distribution determined using various models available through wd models

with the star formation history observed for Gaia DR2 main-sequence stars

[106]. In this chapter, we use only the thick Montreal white dwarf cooling

models [109]. These models gave the best-fitting cooling age distribution for

the 1.05− 1.15 and 1.15− 1.25 M⊙ mass bins in Chapter 4. For the 0.95−
1.05M⊙ mass bin, the La Plata models [110–112] and thick Montreal models

were both determined to produce cooling age distributions consistent with

the star formation history and yielded similar p-values, so for consistency

we use the thick Montreal models for all three mass bins. Using the La

Plata models instead of the thick Montreal models for the lightest mass bin

produces similar results.

After the publication of the results of Chapter 4 (see Fleury et al. [2],

the La Plata group produced cooling models for ultramassive white dwarfs

(≳ 1.15 M⊙) with carbon-oxygen cores [159]. These models implement

more realistic physics in the core of the white dwarfs than the Bédard et al.

[109] models, such as element diffusion and abundance ratios determined by

progenitor evolution simulations, though there is still a great deal of uncer-

tainty regarding the abundances expected for carbon-oxygen white dwarfs

[19, 20, 114, 118]. While an analysis of the photometric cooling age distribu-

14The Montreal group synthetic colours are publicly available at http://www.astro.

umontreal.ca/~bergeron/CoolingModels.
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tions determined by the Camisassa et al. [159] models in comparison to the

star formation rate (as was done in Chapter 4) is worthwhile, our choice of

cooling model will not change the salient results presented in this chapter.

Using the Camisassa et al. [159] models instead of the Bédard et al. [109]

models would shift the particular ages at which the key features of the ve-

locity dispersion appear, but it would not remove these features. Likewise,

using oxygen-neon core models (e.g. [110]) instead of carbon-oxygen core

models would shift the inferred cooling ages and, to a lesser extent, masses

of our white dwarf sample, but it would not affect the values of the velocities

and therefore would not eliminate the key features presented in this chapter.

5.2.3 Kinematics

5.2.3.1 Streaming Motion

The observed velocity of a star in the solar neighbourhood consists of the

local (average) streaming velocity, which includes both the average motion

due to Galactic rotation and reflex solar motion relative to the local standard

of rest, plus the peculiar velocity of the star due to random motion. In this

work, we are interested in the random motion of white dwarfs about the

local mean, so we correct the observed velocities for both Galactic rotation

and solar motion.

Olling and Dehnen [160] give a concise derivation of the local streaming

motion in the Galactic plane to first order in a two-dimensional Taylor series

expansion of the mean velocity field about the location of the Sun. To first

order in this expansion, the Galactic rotation can be parametrized by the

four Oort constants A, B, C, and K, with C = K = 0 in the case of

axisymmetry. The proper motions corresponding to the streaming velocity

in Galactic coordinates are

µ̄ℓ∗ = (U0 sin ℓ− V0 cos ℓ) ω̄ + cos b (A cos 2ℓ− C sin 2ℓ+B) (5.3)

µ̄b = [(U0 cos ℓ+ V0 sin ℓ) sin b−W0 cos b] ω̄

− sin b cos b (A sin 2ℓ+ C cos 2ℓ+K) ,
(5.4)
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where the proper motions µ̄ℓ∗ and µ̄b are given in units of km s−1 kpc−1,

µ̄ℓ∗ ≡ µ̄ℓ cos b, ω̄ is the inverse distance in units of kpc−1 (corresponding

to a parallax angle measured in mas), ℓ is the Galactic longitude, b is the

Galactic latitude, and (U0, V0,W0) is the velocity of the Sun relative to the

local streaming in a heliocentric Cartesian coordinate system with x̂ pointing

in the direction (ℓ, b) = (0◦, 0◦), ŷ in the direction (ℓ, b) = (90◦, 0◦), and

ẑ in the direction of b = 90◦. The components of the transverse streaming

velocity in the ℓ̂ and b̂ directions, in units of km s−1, are

(v̄ℓ, v̄b) = (µ̄ℓ∗, µ̄b) / ω̄ . (5.5)

We calculate the streaming velocities using values reported in the litera-

ture for both the solar motion and the Oort constants. For the solar motion,

we use the peculiar solar velocity measurements of Wang et al. [161], with

values of U0 = 11.69 km s−1, V0 = 10.16 km s−1, and W0 = 7.67 km s−1.

For the Galactic rotation, we assign the Oort constants the values measured

by Bovy [149] using Gaia DR1 main-sequence stars from the Tycho-Gaia

Astrometric Solution catalogue, with values of A = 15.3 km s−1 kpc−1, B =

−11.9 km s−1 kpc−1, C = −3.2 km s−1 kpc−1, and K = −3.3 km s−1 kpc−1.

A conversion factor of κ = 4.74047 is needed to convert proper motions

given in mas yr−1 to units of km s−1 kpc−1. Including this conversion factor,

the observed velocities (in km s−1) in the ℓ̂ and b̂ directions are(
v
(obs)
ℓ , v

(obs)
b

)
= κ

(
µ
(obs)
ℓ∗ , µ

(obs)
b

)
/ ω̄ . (5.6)

Gaia only provides proper motions in ICRS coordinates, so we convert the

observed proper motions from ICRS coordinates to Galactic coordinates

using the astropy15 package for python [162, 163].

We calculate the peculiar velocities, vℓ and vb, of the white dwarfs by

15http://www.astropy.org
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correcting the observed velocities for solar motion and Galactic rotation

vℓ = v
(obs)
ℓ − v̄ℓ (5.7)

vb = v
(obs)
b − v̄b . (5.8)

These two velocities, together with the sky coordinates and parallax, com-

pletely specify the random transverse motion of our sample relative to the

local standard of rest.

5.2.3.2 Random Transverse Motion

Since most sources in Gaia EDR3 do not have radial velocity measurements,

we perform our analysis of the kinematics using only the transverse motion.

Following the procedure of Dehnen and Binney [143], we relate the transverse

motion to the full three-dimensional motion through use of a projection

operator P that projects the three-dimensional space velocity v onto the

celestial sphere.

We write this formulation explicitly using matrix notation with vectors

as column matrices and work in Cartesian Galactic coordinates in which x̂

points towards the Galactic centre (ℓ = 0◦, b = 0◦), ŷ points in the direction

of Galactic rotation (ℓ = 90◦, b = 0◦), ẑ points towards the North Galactic

Pole (b = 90◦), and v = (U, V,W )T. Let r̂ = (cos b cos ℓ, cos b sin ℓ, sin b)T

be the unit position vector pointing to the location of the star. Then the

projection operator in matrix notation is

P ≡ I− r̂ r̂T , (5.9)

where I is the 3× 3 identity matrix. The tangent velocity vector v⊥ is then

related to v by

v⊥ = P v , (5.10)

where v⊥ is the component of v in the tangent plane at the angular position

of the star.

The rectangular components of the tangential velocity vector can be
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written explicitly as

v⊥ =

U⊥

V⊥

W⊥

 =

− sin ℓ vℓ − cos ℓ sin b vb

cos ℓ vℓ − sin ℓ sin b vb

cos b vb

 , (5.11)

and the magnitude of the transverse velocity, vt = |v⊥|, is simply given by

vt =
√
v2ℓ + v2b . (5.12)

We calculate vt and the components of v⊥ for the white dwarfs in our sample

using vℓ and vb as given by Eqs. (5.7) and (5.8). Since the mean local motion

due to both Galactic rotation and solar motion has already been removed,

the velocities here are the peculiar velocities, corresponding to the random

motion about the mean.

If the full three-dimensional space velocities (including radial motion)

have a diagonal dispersion tensor σ2 = diag
(
σ2U , σ

2
V , σ

2
W

)
and the positions

of the white dwarfs are uncorrelated with the velocities, then the dispersion

of the transverse velocity can be quantified by

σ2t = E
[
Tr
(
Pσ2PT

)]
, (5.13)

where Tr denotes the matrix trace, which is equivalent to the sum of eigen-

values of the matrix, and E denotes the expectation value for a particular

distribution of sky coordinates, which can be estimated by a statistic such

as the sample mean.

Throughout this chapter, we compare the results we find for the white

dwarf transverse kinematics relations with the expectation assuming the

dispersions of their full three-dimensional velocities follow the AVRs deter-

mined by Holmberg et al. [133] for main-sequence stars from the local thin

disc. While more recent determinations of these AVRs exist (e.g. [139]), they

are similar to the AVRs of Holmberg et al. [133] and do not change our re-

sults. As evidence for a cooling anomaly among ultramassive white dwarfs

was presented by Cheng et al. [43] with reference to the thin disc AVRs
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of Holmberg et al. [133], using the Holmberg et al. [133] AVRs facilitates

comparison of our results with earlier work on this topic.

The sample for which the Holmberg et al. [133] AVRs were determined

was volume-complete to a distance of ∼ 40 pc [131–133], so both the Holm-

berg et al. [133] sample and our 200 pc sample are local enough that bias

against populations with large scale height is not a major concern in com-

paring our results to the Holmberg et al. [133] AVRs. This was verified by

comparing the Holmberg et al. [133] AVRs to the Yu and Liu [139] AVRs for

a sample of thin disc (metal-rich) stars with |z| < 270 pc, which we found to

be similar enough that the main features in the comparison of our results to

the AVRs were unchanged. The similarity of the Yu and Liu [139] AVRs to

the Holmberg et al. [133] AVRs demonstrates the negligible impact of scale

height bias for the results presented in this chapter.

5.3 Results

5.3.1 Summary Statistics

Fig. 5.1 shows various probes of the AVR for Gaia EDR3 white dwarfs in

three different mass bins, 0.95 − 1.05 M⊙ (blue), 1.05 − 1.15 M⊙ (orange),

and 1.15 − 1.25 M⊙ (green). The masses and cooling ages were calculated

from the observed photometry using the single stellar evolution white dwarf

cooling models of Bédard et al. [109] which were determined in Chapter 4 to

produce cooling age distributions that are statistically consistent with the

star formation rate observed for Gaia DR2 main-sequence stars [106].

The upper panel of Fig. 5.1 shows the fraction of fast-moving white

dwarfs with vt > 60 km s−1 as a function of photometric cooling age. The

empirical distributions, shown as histograms, were constructed using cool-

ing age bins of 0.5 Gyr width over the range 0 − 4 Gyr. The fraction of

fast-movers in each age bin was calculated using weighted counts for that

bin, where each white dwarf was assigned a weight according to the proce-

dure of Chapter 4 to correct for the reduced sampling volume that ensures

completeness.
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Figure 5.1: Upper panel: Fraction of fast-moving massive white
dwarfs for three mass bins. The fast-moving white dwarfs are defined
as those with transverse velocity greater than 60 km s−1. Middle panel:
Transverse velocity dispersion accounting for uncertainties in proper
motion. Lower panel: Scaled median transverse velocity (robust esti-
mator of velocity dispersion). In the middle and lower panels, the solid
black line traces the results for main-sequence stars from Holmberg
et al. [133] with the same sky distribution as the white dwarfs, and the
dashed black lines trace the results from main-sequence stars including
a merger delay described by the merger delay distribution of Cheng
et al. [126]. The main-sequence curve (solid black) is the expectation if
the 1.15−1.25 M⊙ white dwarfs are all produced by single progenitors,
while the mergers curve (dashed black) is the expectation in the limit
that 100% of those white dwarfs are produced by double white dwarf
mergers.
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The fraction of fast-moving ultramassive white dwarfs in Gaia EDR3

as a function of photometric cooling age shows a trend with cooling age

that is similar to what Cheng et al. [43] found for Gaia DR2 white dwarfs,

though we see a less pronounced peak for young 1.05 − 1.15 M⊙ white

dwarfs on the Q branch than what was found by Cheng et al. [43] for this

bin. For the 0.95− 1.05 M⊙ white dwarfs, the fraction of fast-movers tends

to increase with cooling age, which is the expected behaviour if the white

dwarf velocities follow an AVR similar to what has been observed for main-

sequence (G and F dwarf) stars in the thin disc [133]. Of particular note is

the distribution for 1.15 − 1.25 M⊙ white dwarfs, for which the fraction of

young fast-movers in the age range 0.5−1.5 Gyr is larger than the fraction in

either the younger or older age bins. This corresponds to an excess of young

fast-movers on the Q branch relative to the expectation based on the AVR

observed for stars in the thin disc [133]. While we see a hint of a similar

excess in the 1.5 − 2.0 Gyr bin of the 1.05 − 1.15 M⊙ white dwarfs, we do

not see a clear signal of an excess of fast-movers within the uncertainties.

This difference between our distribution and that of Cheng et al. [43] for

the 1.05 − 1.15 M⊙ white dwarfs could be due to the difference in colours

and proper motions between the Gaia EDR3 and DR2 measurements. The

updated colour measurements for very blue objects in particular affect the

masses inferred for those objects.

The middle and lower panels of Fig. 5.1 show estimates of the transverse

velocity dispersion as a function of age using different estimators of σt, one

based on the sample mean in each bin (middle panel) and the other based

on the sample median (lower panel), the latter of which is more robust to

outliers. Random variation in the observed values of vt will arise both from

the intrinsic randomness in the motion of the white dwarfs about the local

mean (i.e. the peculiar motion of the white dwarfs) that we are interested

in and from random measurement error. We correct for the latter effect in

both methods of estimating σt from the observations. The random error for

each value of vt was calculated by propagating the standard errors and cor-

relations provided by Gaia for the proper motions and parallax from which

the observed transverse velocity (without corrections for Galactic rotation

87



5.3. Results

or solar motion) was calculated. The error was propagated using the expres-

sion e2vt,(obs) = JΣJT, where Σ is the covariance matrix, J is the Jacobian

matrix, and evt,(obs) is the random error for the observed transverse velocity.

The middle panel of Fig. 5.1 shows the transverse velocity dispersion

calculated using the mean for each age (and mass) bin with a correction for

random measurement error according to the expression√〈
v2t

〉
−
〈
e2vt,(obs)

〉
, (5.14)

where vt is the transverse velocity after correcting for Galactic rotation

and reflex solar motion (i.e. calculated from the sky-projected velocity af-

ter subtracting the mean velocity), evt,(obs) is the standard error for the

transverse velocity calculated from observed proper motions and parallax

without subtracting the mean Galactic rotation and reflex solar motion,

and the angle brackets ⟨ ⟩ denote a weighted sample average (e.g.
〈
v2t
〉
=

(
∑

iwiv
2
t )/(

∑
iwi) with i an index labeling the data points in the sample).

The lower panel of Fig. 5.1 shows the scaled median velocity corrected

for random measurement error, which is calculated for each joint mass and

photometric cooling age bin using the formula√
ṽ2t
ln 2

−
〈
e2vt,(obs)

〉
, (5.15)

where ṽt is the sample median of vt, determined for each bin using the

weighted cumulative fraction for white dwarfs in that bin. The motivation

for scaling the median is that we empirically find the the transverse ve-

locities to be approximately Rayleigh-distributed. A Rayleigh distribution

parametrized by mode σ has a mean of σ
√
π/2, median of σ

√
2 ln 2, and

variance of σ2(2−π/2), yielding a transverse velocity dispersion of σ
√
2 and

ṽ2t = (ln 2)⟨v2t ⟩.
In both the middle and lower panels of Fig. 5.1, the solid black line shows

the expected relation according to the AVRs of main-sequence (G and F

dwarf) stars found by Holmberg et al. [133] for the sky distribution of the

sample of 1.15− 1.25 M⊙ white dwarfs in each age bin. This curve assumes
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that all the white dwarfs formed through single stellar evolution, and thus

that none of the white dwarfs formed through mergers. The transverse

velocity dispersion value for each bin was calculated by taking the sample

average of the sum of the eigenvalues of Pσ2PT (equivalent to the trace of

this matrix), 〈
Tr
(
Pσ2PT

)〉
, (5.16)

where P is the projection operator that projects the velocity v onto the

tangent plane of the celestial sphere such that v⊥ = P v , vt = |v⊥|, and
σ2 = diag

(
σ2U , σ

2
V , σ

2
W

)
is the dispersion tensor of the full three-dimensional

space velocities before projection. The values of σU , σV , and σW are calcu-

lated for each white dwarf using the AVRs determined by Holmberg et al.

[133] with the photometric cooling age of that white dwarf. The AVRs of

Holmberg et al. [133] for the three velocity components and the total veloc-

ity (giving σU , σV , σW , and σtot as a function of age) each follow a power

law with exponents of 0.39, 0.40, 0.53, and 0.40 for U , V , W , and total

dispersion, respectively.

We similarly determined the expected relation for the Holmberg et al.

[133] AVRs if all of the white dwarfs are the product of double white dwarf

mergers, which is shown as the dashed black curve in the middle and lower

panels of Fig. 5.1. This corresponds to the limit in which the merger fraction

is 100% for white dwarfs that formed over the last 4 Gyr. Instead of using

the photometric cooling age inferred directly using the white cooling mod-

els applicable for single stellar evolution to calculate the predicted σU , σV ,

and σW values from the AVRs, the relation for merger products was calcu-

lated using the expected true age after accounting for a merger delay time,

with the expectation value calculated using the merger delay distribution of

Cheng et al. [126]. Delay time distributions associated with double white

dwarf mergers were calculated by Cheng et al. [126] using binary population

synthesis simulations for resultant white dwarfs of various mass ranges; we

use the distribution for 1.14 − 1.24 M⊙ white dwarfs, which spans approx-

imately the same mass range as our most massive bin and is the merger

delay time distribution that was used in Chapter 4.
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Double white dwarf mergers can produce photometrically young white

dwarfs with transverse velocities faster than what would be expected for sin-

gle stellar evolution products of the same photometric age because the true

age of the white dwarf merger products (accounting for the lifetime of the

merger progenitors) is typically older than the age inferred from photome-

try [123]. Estimates of the merger fraction from both simulations [123, 124]

and data [2, 125, 126, 164] indicate that double white dwarf merger prod-

ucts constitute an appreciable fraction of ultramassive white dwarfs, with

estimates ranging from ∼ 15% to over 50%. The population synthesis sim-

ulations of Temmink et al. [123] indicate that 30 − 50% of white dwarfs

with mass ≥ 0.9 M⊙ form through binary mergers, with about 45% of these

mergers occurring between two white dwarfs, while the population synthe-

sis simulations of Bogomazov and Tutukov [124] indicate that over 50% of

white dwarfs with mass ≥ 1.1M⊙ are produced through double white dwarf

mergers.

Empirically, based on the magnetism, kinematics, rotation, and compo-

sition of the 25 most massive white dwarfs identified by Kilic et al. [125] in

the Montreal White Dwarf Database 100 pc sample, Kilic et al. [164] found

a merger fraction of 56+9
−10% among ultramassive white dwarfs with mass

≳ 1.3 M⊙. Theoretical results indicate that nearly half of the identified

merger products would have been produced through the double white dwarf

merger channel [123], and over half of the merger products identified in

Kilic et al. [125, 164] showed kinematic and/or rotation features indicative

of double white dwarf mergers in particular. Cheng et al. [126] estimated a

double white dwarf merger fraction of about 20% for Gaia DR2 white dwarfs

within 250 pc with mass in the range 0.8 − 1.3 M⊙ and a larger fraction

of about 35% for the subset in the mass range 1.14 − 1.24 M⊙ (assuming

carbon-oxygen cores to determine the mass). For our Gaia EDR3 white

dwarf sample within 200 pc in the 1.15 − 1.25 M⊙ mass bin, it was found

in Chapter 4 that the photometric cooling age distribution was well fitted

when the double white dwarf merger fraction was about 40− 50%.

The expectation for the limiting case of 100% double white dwarf merger

products is shown in Fig. 5.1 as a simple check of the feasibility of a double
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white dwarf merger delay explanation of the fast-movers. The lower panel

of Fig. 5.1 shows that a sufficiently large fraction of merger products among

1.15− 1.25 M⊙ white dwarfs can reach the excess observed for the median

estimate of the transverse velocity dispersion, which is representative of the

(more slowly moving) bulk of the white dwarfs as the median estimator is

robust to the outlying fast-movers. However, even in the extremum limit

that 100% of the 1.15 − 1.25 M⊙ white dwarfs are the product of double

white dwarf mergers, the middle panel of Fig. 5.1 shows that the excess

observed for the mean estimate of the transverse velocity dispersion, which

is sensitive to the outlying fast-movers, cannot be achieved. In keeping with

Cheng et al. [43], we thus find that double white dwarf mergers (in the local

Galactic disc) cannot be the sole explanation of the fast-movers.

5.3.2 Three-Dimensional Velocity Distributions

The behaviour of the AVRs that we measure in Section 5.3.1 for the trans-

verse velocities aligns with the behaviour of the observed fraction of fast-

movers as a function of cooling age. For both the non-robust and ro-

bust estimators of transverse velocity dispersion, we see that the lightest

(0.95− 1.05 M⊙) white dwarfs tend to become more dispersed with age, as

inferred from the fraction of fast-movers and expected from the AVRs of

main-sequence stars. The 1.05 − 1.15 M⊙ white dwarfs mostly follow this

trend as well, but with a small peak for cooling ages of ∼ 1.0 − 2.0 Gyr.

The most massive (1.15−1.25M⊙) white dwarfs show a prominent peak for

cooling ages of ∼ 0.5− 2.0 Gyr. The peak in transverse velocity dispersion

of ultramassive white dwarfs inferred using the non-robust estimator (mean)

is much larger than that inferred using the robust estimator (median), sug-

gesting that the fast-movers in these age bins are outliers or comprise a

separate population that is much more dispersed than the main population.

To better understand the kinematic features of the population of young

fast-movers, we consider the distribution of each Cartesian component of

the transverse velocities in each mass and age bin. Fig. 5.2 shows quantile-

quantile (Q-Q) plots comparing the sample distribution of transverse Carte-
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sian velocity components U⊥ (upper row), V⊥ (middle row), andW⊥ (bottom

row) to the quantile function for a normal distribution with zero mean. The

quantile function of a distribution is the inverse of the cumulative distribu-

tion; for an input percentile p, it gives the value of the random variable for

which there is p probability of the random variable being less than or equal

to the output value. For a 1D normal distribution with mean µ and variance

σ2, the quantile function is µ + σ
√
2 erfc−1 (2 [1− p]), where p ∈ [0, 1] is

the percentile (i.e. cumulative probability) and erfc−1 is the inverse com-

plimentary error function. In Fig. 5.2, the measured value of the velocity

component is used as the x-axis variable, while the y-axis variable is the

value of the quantile function in units of standard deviation calculated from

the weighted cumulative fraction. Written explicitly, the y-axis variable is

yi =
√
2 erfc−1 (2 [1− pi]) for the ith ordered data point (in order of increas-

ing x) with pi =
∑

j≤iwj where j runs over all points for which xj ≤ xi.

For reference, we also show quantile functions for normal distributions with

zero mean and σ = 10, 20, 30, and 40 km s−1 in order of decreasing slope as

black lines. If the transverse velocity in a particular direction is normally

distributed for a particular sample, the corresponding Q-Q plot in Fig. 5.2

should appear as a straight line. A non-zero mean will simply cause a shift

of the distribution along the horizontal axis, as can be seen in the plots for

V⊥ due to asymmetric drift.

Observations of main-sequence stars (e.g. [133]) indicate that the velocity

dispersion of stars in the local thin disc increases with age. If the white

dwarf velocities follow the AVRs of main-sequence stars [133], the slope of

the distribution in Fig. 5.2 should get progressively less steep with increasing

cooling age for a given mass bin and velocity component. For the age bins

considered in Fig. 5.2, this effect should be more pronounced for younger

ages due to the power-law form of the AVRs with exponents < 1. This is the

approximate behaviour seen for the lightest two bins, 0.95 − 1.05 M⊙ and

1.05− 1.15 M⊙ (left and middle columns of Fig. 5.2). For the ultramassive

1.15− 1.25 M⊙ white dwarfs, however, we see that the curves for the 0.5−
1.5 Gyr white dwarfs have a shallower slope and thus larger dispersion than

what would be predicted by the Holmberg et al. [133] AVRs, particularly for
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Figure 5.2: Quantile-quantile plots of transverse velocity components.
The vertical axis is the quantile function in units of standard deviation σ
for a normal distribution with zero mean, calculated from the empirical
cumulative fraction corresponding to the velocity component shown on
the horizontal axis. The black lines correspond to normal distributions
with σ = 10, 20, 30, and 40 km s−1 in order of decreasing slope.
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negative U⊥ and V⊥. The dispersions for these 0.5−1.5 Gyr white dwarfs are

notably larger than the dispersions for the older 1.5− 2.5 and 2.5− 3.5 Gyr

white dwarfs with mass in the range 1.15− 1.25 M⊙. Furthermore, for the

0.5− 1.5 Gyr age bin of 1.15− 1.25 M⊙ white dwarfs, the white dwarfs with

negative V⊥ are much more dispersed in V⊥ than in U⊥, indicating that

these white dwarfs likely do not originate from the local thin disc.

The AVRs of Holmberg et al. [133] indicate that local thin disc stars are

more dispersed in U than V , and we show in Fig. 5.3 that this expectation

holds for the tangential velocity components U⊥ and V⊥ as well. Since the

Holmberg et al. [133] AVRs describe the full three-dimensional space veloc-

ities, we converted those relations to the expected AVRs of the projected

velocities for the sky coordinate distribution of our 1.15− 1.25 M⊙ sample

with 0.5 − 2.5 Gyr photometric ages. This enables us to properly compare

the results of Holmberg et al. [133] for main-sequence stars from the local

thin disc to the dispersion values of the tangential velocity components in-

ferred from Fig. 5.2 for our ultramassive white dwarf sample. The expected

AVRs of the projected velocities are given by the square root of the diagonal

elements of the expectation of the matrix Pσ2PT. Fig. 5.3 shows the AVRs

from Holmberg et al. [133] for the full three-dimensional space velocities for

each of the U, V, and W components (as solid blue, orange, and green curves,

respectively), compared to the computed AVRs expected from the projected

velocities for our sample’s empirical sky distribution (dashed lines). We also

analytically evaluated the expected AVRs of the projected velocities for an

isotropic distribution (shown as the dotted curves in Fig. 5.3) and found

them to be nearly the same as the AVRs determined using the empirical sky

distribution of our sample.

From Fig. 5.3 we see that the expected dispersions for the projected

velocities are typically notably smaller than the corresponding dispersion of

the un-projected velocities, but that the relative size of the dispersion for V⊥

compared to U⊥ is similar to the relative sizes of σV and σU . Of particular

note is that, throughout the age of the thin disc, the dispersion of V⊥ is

smaller than the dispersion of U⊥. For the population of anomalously fast

white dwarfs (mass bin 1.15−1.25M⊙ and photometric age bin 0.5−1.5 Gyr)
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Figure 5.3: AVRs of projected and un-projected velocities. AVRs
are shown for U , V , and W in blue, orange, and green, respectively.
The solid curves show the AVRs for the full three-dimensional space
velocities determined by Holmberg et al. [133] for main-sequence stars.
The dotted curves show the expected AVRs for the projected velocities
assuming that the un-projected velocities follow the AVRs of Holmberg
et al. [133] and that the sky distribution is isotropic. The dashed curves
also show the expected AVRs for the Holmberg et al. [133] projected
velocities but assuming that the sky distribution is that observed for
1.15− 1.25 M⊙ white dwarfs with 0.5− 2.5 Gyr cooling ages.
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with negative V⊥, however, the dispersion of V⊥ is actually larger than the

dispersion of U⊥. A population in equilibrium in the disc should have a

dispersion ratio for V relative to U of σV /σU = 2/3 [50], and the AVRs

measured by Holmberg et al. [133] for thin disc main-sequence stars have

a dispersion ratio nearly equal to this equilibrium ratio (though actually

slightly smaller). The dispersion of V⊥ being larger than the dispersion of

U⊥ in the anomalous population thus indicates that this population is not

in equilibrium in the disc and thus does not originate from the local thin (or

thick) disc.

5.4 Discussion

The presence of a population of anomalously fast-moving young, ultramas-

sive white dwarfs on the Q branch was first discovered in Gaia DR2 obser-

vations by Cheng et al. [43], who argued this population must experience

an extra cooling delay on the Q branch of ∼ 6 − 8 Gyr that is not ac-

counted for in current white dwarf cooling models. This proposed extra

cooling delay scenario explained the large transverse velocities observed for

the fast-moving population as a consequence of these white dwarfs being

much older than their photometric ages indicate. The fast-movers in this

scenario were assumed to originate from the local disc, where observed AVRs

indicate that objects become more dispersed over time. As a check of the

assumption of a local disc origin of the fast-mover population in the extra

cooling delay scenario, Cheng et al. [43] ran a test in which they modelled

the velocity distribution of the fast-movers on the Q branch as a Gaussian

and determined kinematic relations expected for a disc in equilibrium, no-

tably finding a dispersion ratio σV /σU of approximately 2/3. Like Cheng

et al. [43], we also find a population of anomalously fast-moving young,

ultramassive white dwarfs coincident with the Q branch. However, the em-

pirical distributions of the transverse velocity components in Fig. 5.2 for

Gaia EDR3 reveal kinematic features that are inconsistent with a local disc

origin, in particular the distribution for V⊥ and the dispersion ratio for V⊥

and U⊥.
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Fig. 5.2 suggests that the distribution of V⊥ for the anomalously fast

ultramassive white dwarfs is actually too broad to be explained entirely by

a cooling delay in (thin) disc white dwarfs. If white dwarfs with a true age

of 10 Gyr produced through single stellar evolution in the Galactic thin disc

follow the AVRs determined by Holmberg et al. [133], then the expected

dispersion for the projected velocity component V⊥ in the tangent plane

averaged over the sky distribution of the 1.15− 1.25 M⊙ white dwarfs with

photometric ages 0.5 − 2.5 Gyr would be approximately 26 km s−1 (see

Fig. 5.3). From Fig. 5.2, we see that the anomalous 1.15 − 1.25 M⊙ white

dwarfs with 0.5 − 1.5 Gyr photometric ages have a dispersion for V⊥ of

∼ 40 km s−1 when V⊥ is negative (i.e. among white dwarfs that are moving

in the opposite direction of Galactic rotation). The Galactic thin disc is

not old enough to produce white dwarfs with such a high dispersion given

the observed AVRs [133]. While stars in the older thick disc have slightly

higher dispersion [138], the expected dispersion of ∼ 33 km s−1 for V⊥ is

still too small to explain this dispersion through a cooling delay in a thick

disc population.

Furthermore, as noted in Section 5.3.2 and seen in Fig. 5.2, we find a

population of highly dispersed ultramassive white dwarfs coincident with

the Q branch for which the dispersion in V⊥ is larger than the dispersion in

U⊥. This is inconsistent with the dispersion ratio of a disc in equilibrium, for

which the dispersion in V⊥ should be smaller than the dispersion in U⊥ with

a dispersion ratio similar to that of the un-projected velocity components

(see Fig. 5.3). Thus the empirical dispersion ratio for V⊥ and U⊥ suggests

that these white dwarfs do not originate from the Milky Way disc.

The true origin of this population, however, is unclear. These white

dwarfs may have originated from elsewhere in the Galaxy such as from the

halo. The halo is older than the Galactic disc [165] and halo stars are

typically more dispersed [151]. This scenario still requires a mechanism by

which photometrically young white dwarfs acquire velocities faster than their

photometric age would indicate. This mechanism could be an extra cooling

delay as proposed by Cheng et al. [43] of nearly 10 Gyr, so that only white

dwarfs with photometric ages of 0.5 − 1.5 Gyr are affected. Alternatively,
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these objects could originate from a dynamically distinct, hot yet young

population.

Another possible explanation of the anomalous fast-movers is that they

are the merger remnant of the inner binary of a hierarchical triple sys-

tem whose outer companion was ejected. Observations indicate that triple

systems are common, constituting about 10% of multiples with F and G

dwarf primaries [166–169] and much larger fractions for higher mass B- and

O-type primaries [169, 170], and population synthesis simulations indicate

that stellar interactions occur in the majority of triple systems [171, 172].

The evolution of triple systems is significantly more complicated than that

of isolated binaries due to the combination of stellar evolution, stellar in-

teractions, and three-body dynamics (see e.g. Toonen et al. [173] for a

review). Triple systems tend to be hierarchical, with an inner binary and

a distant companion [174]. Such systems have a large variety of possible

evolution channels [171, 172, 175] and can result in mergers and ejections

[175–181]. The secular gravitational effects between the outer companion

and inner binary can drive the inner binary to high eccentricity in Zeipel-

Lidov-Kozai oscillations [182–186], which can enhance mergers of compact

objects [172, 187–200]. For example, dynamical effects of the outer com-

panion can enhance the merger rate of inner compact double white dwarf

binaries relative to isolated binary systems [188]. Destabilized stellar triple

systems in the field can eject a component with runaway speeds of tens of

km s−1 [175].

Unstable triple systems in star clusters can also result in the ejection of

the tertiary perturber and escape from the cluster [176]. From their N -body

simulations of open clusters, Mardling and Aarseth [176] describe a particu-

lar event in which an initially stable triple system became unstable and the

tertiary companion was ejected; the resulting binary and single star both es-

caped the cluster with respective terminal velocities of 20.6 and 65.7 km s−1.

Star clusters are known to harbour exotica such as blue stragglers, which

can be formed through the dynamical evolution of stellar triple systems [201]

and have been found in both open clusters [202–204] and globular clusters

[205, 206]. Furthermore, cluster members can display different kinematic
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relations than what is expected for a disc in equilibrium, and many nearby

clusters are moving at speeds of tens of km s−1 relative to the local standard

of rest [100, 207–209]. The kinematically anomalous population we observe

could thus conceivably originate from old open clusters or globular clusters

that are close to the Galactic disc. While open clusters are typically younger

than the members of the anomalous population, some open clusters are old

enough to be a source of these white dwarfs, and those old open clusters

are also typically rich [100, 207, 208]. As open clusters are only loosely

gravitationally bound, stars can also readily escape from them; for example,

observations indicate that the Pleiades has lost ∼ 20% of its mass over the

past 100 Myr [122]. Though globular clusters are more tightly bound than

open clusters and thus less prone to the escape of cluster members, they

are also typically much more populated [100] and only a small fraction of

escapees is needed to explain the anomalous population that we observe in

this work.

In order to explain the clustering in photometric age in this scenario, the

fast-moving population must be produced through a singular event rather

than some continuous process. This could be cluster evaporation in the case

of an open cluster origin, or it could be some transient event that disrupted

a globular cluster. This transient event may relate to the burst of star

formation in the local Galactic disc that peaked around 2− 3 Gyr ago and

continued until ∼ 1 Gyr ago [106]. A travel time of around 1 Gyr from the

location of origin after the disruption of the cluster would then produce the

observed clustering in age of the fast-moving population.

5.5 Conclusions

As a follow-up to our work in Chapter 4 on the distribution of photometric

cooling ages of massive white dwarfs in Gaia EDR3, we analysed the kine-

matics of the transverse motion of 0.95−1.25M⊙ Gaia EDR3 white dwarfs.

We find that the population of anomalously fast ultramassive white dwarfs

on the Q branch reported by Cheng et al. [43] for Gaia DR2 is still present

in Gaia EDR3. These white dwarfs appear photometrically young according
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to single stellar evolution models, but are moving faster than expected for

stars of that age according to AVRs observed for the local thin disc. Using

white dwarf cooling models for which the photometric age distributions are

consistent with the expectation from the star formation history (see Chap-

ter 4) to infer the masses and ages of our sample of white dwarfs and sorting

our full sample into mass and age bins, we find that this population of fast-

movers is concentrated to masses of 1.15−1.25M⊙ and photometric cooling

ages of 0.5− 1.5 Gyr.

Our analysis of the distributions of the individual components of the

transverse velocity reveals that among the white dwarfs in the mass range

1.15− 1.25 M⊙ and age range 0.5− 1.5 Gyr, there is a population of white

dwarfs lagging the local Galactic rotation that is too dispersed in V⊥ to be

explained solely by a cooling delay in white dwarfs born in the local thin

disc. According to the AVRs determined from observations of main-sequence

stars in the local thin disc [133], it would take longer than the age of the

thin disc (10 Gyr) for disc heating to produce a dispersion large enough to

explain this anomalous population of white dwarfs. Furthermore, we find

this population to be more dispersed in V⊥ than in U⊥, which suggests

that this population does not originate from the local disc. Some potential

explanations of this population include a halo origin, in conjunction with

an extra cooling delay or from a dynamically distinct population, or that

they are produced through triple system dynamics such as the merger of the

inner binary of a hierarchical triple system whose tertiary companion was

ejected resulting in a large velocity for the binary that ultimately merges

to form the white dwarf. However, the precise origin of this population of

young ultramassive white dwarfs is an open question for future work.
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Chapter 6

The cooling of old white

dwarfs in 47 Tucanae

6.1 Introduction

Globular clusters are useful environments for studying white dwarf cooling

because they provide populations of stars with many well controlled pa-

rameters, such as distance, interstellar reddening, age, and metallicity (e.g.

[210–212]). Though metallicity is not directly a concern for observations of

white dwarfs, since element sedimentation causes metals to sink below the

surface envelope of the white dwarf by the early stages of white dwarf cool-

ing, it affects the age and composition of the white dwarfs through earlier

stages of stellar evolution. For a coeval population of stars with the same

initial metallicity, white dwarfs of a similar mass are formed through single

stellar evolution at an approximately constant rate.

Unlike open clusters, for which the parameters mentioned above are

also well controlled, globular clusters are very old and typically much more

rich (i.e. well-populated). These additional properties of globular clusters

enable white dwarf cooling to be studied to much later times and with the

greater statistical power of a larger sample size compared to what could be

achieved with open clusters. The globular cluster 47 Tuc, in particular, has

an especially rich white dwarf population and is known to be very old, with

an age of ∼ 10 Gyr [213]. Furthermore, the distance to 47 Tuc has been

well determined [214].

47 Tuc is one of the most widely studied globular clusters, and white

dwarfs in 47 Tuc have been used to study a variety of aspects of white dwarf
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cooling. For example, Obertas et al. [30] studied the onset of convective

coupling and core crystallisation at late times in the white dwarf cooling

process by comparing white dwarf evolution models to deep HST observa-

tions of white dwarfs in 47 Tuc. As another example, HST observations

of younger white dwarfs in 47 Tuc were used by Goldsbury et al. [215] to

study white dwarf cooling by the emission of neutrinos and to constrain

neutrino physics. In both of these cases, the typical envelope thickness of

white dwarfs in 47 Tuc was an important ancillary parameter in studying

the relevant aspects of white dwarf cooling due to the relation between the

envelope thickness and the cooling rate.

The envelope thickness is particularly important for the cooling rate

at late cooling times when the envelope becomes convectively coupled to

the core of the white dwarf. Convective coupling of the envelope to the

core occurs when the convective layer that eventually develops in the outer

layers of a white dwarf [67] breaks through to the degenerate interior, which

enables energy to be transported from the core to the surface more quickly

than if the envelope had remained radiative (see e.g. [68] for a review).

This results in the white dwarf initially appearing more luminous at the

onset of convective coupling than it otherwise would have, which manifests

as a bump in the cooling curve showing the evolution of luminosity as a

function of cooling time. Tassoul et al. [216] argued that the size of this

bump depends sensitively on the thickness of the hydrogen envelope.

In this chapter, we analyse the cooling of white dwarfs in 47 Tuc to late

cooling times where convective coupling becomes important for the cooling

rate. At such late cooling times, the white dwarfs have cores that have

long since finished transitioning from a gaseous to liquid state of matter

and, as shown by Obertas et al. [30] in the case of 47 Tuc, are even in the

process of crystallising from a liquid to solid state. Though from a theo-

retical standpoint a white dwarf core can only reasonably be approximated

as an ideal gas at very early cooling times, the usual implementation of el-

ement diffusion in stellar evolution software like Modules for Experiments

in Stellar Astrophysics (MESA; [217–222]) implicitly approximates the ions

as an ideal gas in order to make the diffusion equations tractable. We per-
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form stellar evolution simulations using MESA to create white dwarf cooling

models for different envelope thicknesses, white dwarf masses, and diffusion

scenarios. Three different treatments of element diffusion are considered: i)

the standard MESA treatment where the ions are approximated as an ideal

gas, ii) a custom modified treatment where diffusion is suppressed compared

to the standard treatment to account for non-ideal gas effects, and iii) the

case of no diffusion. We compare these cooling models to the deep HST

data considered by Obertas et al. [30] using an unbinned likelihood analysis

procedure similar to that of Goldsbury et al. [215]. This work provides both

the best-fitting values of some parameters that are important for modelling

white dwarf cooling in 47 Tuc, in particular the typical envelope thickness

and mass of white dwarfs, and a test of the standard MESA treatment of

diffusion to cooling times late enough that the core begins to crystallise.

6.2 Data

Our data consists of archival Hubble Space Telescope (HST) deep observa-

tions of the outer field of 47 Tuc imaged by the Advanced Camera for Sur-

veys (ACS) using the Wide Field Camera (WFC) instrument, as described

by Kalirai et al. [223]. These data were collected over 121 orbits during the

time period extending from January 2010 to October 2010 as part of the HST

Cycle 17 proposal GO-11677 (PI: H. Richer). The ACS/WFC observations

were done using the broadband filters F606W and F814W. The deep expo-

sures had a total integrated exposure time of 163.7 ks across 117 exposures

in F606W and 172.8 ks across 125 exposures in F814W. These observations

were centred at sky coordinates of α = 00h 22m 39s and δ = −72◦ 04′ 04′′

in the international celestial reference frame (ICRS) at the reference epoch

J2000, where α is the right ascension and δ is the declination. This cor-

responds to a distance of about 6.7 arcminutes (8.8 pc) from the cluster

centre, which is located at α = 00h 24m 05.71s and δ = −72◦ 04′ 52.7′′ [224].

For each filter, images from the various exposures were combined into

a single final, stacked image. Photometric, astrometric, and morphological

measurements were then performed on the final, stacked images for the two
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filters using iterative point-spread function (PSF) fitting techniques. Mor-

phological information from the PSF fitting is stored in the SHARP diagnostic

parameter, which provides a measure of how much broader the source’s pro-

file is compared to the PSF profile it was fitted to. The SHARP parameter

provides a way to distinguish stars from other contaminant sources such as

galaxies and cosmic rays.

The PSF fitting produced a catalogue of sources that contains the F606W

and F814W magnitudes, position, chi goodness-of-fit statistic, and SHARP

statistic determined for each source, with the magnitudes reported in the

Vega magnitude system. The full image processing and PSF fitting proce-

dures are described in further detail in Kalirai et al. [223], and the resultant

catalogue is publicly available through the Mikulski Archive for Space Tele-

scopes (MAST) as a High-Level Science Product (HLSP)16. In addition to

this catalogue, the results of the artificial stars tests documented in Kalirai

et al. [223, 225] are also publicly available as part of the same HLSP collec-

tion16. These artificial stars tests are used to characterise the photometric

uncertainties and completeness of the data in the final catalogue, and are

discussed in detail in Section 6.3.

Photometric observations of 47 Tuc white dwarfs are contaminated at

the faint end of the white dwarf cooling sequence by the Small Magellanic

Cloud (SMC). Though the main body of the SMC lies more than 2◦ away

from 47 Tuc17, a diffuse population of SMC stars persists out to very large

radii and is present in the background of our 47 Tuc observations. This

background SMC population overlaps with the faint end of the 47 Tuc white

dwarf cooling sequence in the CMD of our data, which is the region of the

cooling sequence we are most interested in. Fortunately, the SMC is moving

with respect to 47 Tuc fast enough that the two populations can be mostly

separated in proper motion space, and thus most of the SMC contaminants

can be removed from our data. The reduction procedures to determine the

16The final stacked images, source catalogue, and artificial stars data are available at
https://archive.stsci.edu/prepds/deep47tuc/.

17The SMC is located at the sky coordinates α = 00h 52m 45s, δ = −72◦ 49′ 43′′ [226].
This is an angular distance of ∼ 2.28◦ from the centre of 47 Tuc and ∼ 2.39◦ from the
centre of the ACS/WFC observing field.
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proper motions accompanying the ACS/WFC photometric observations are

described in detail in Richer et al. [227]. Note that we are interested in

objects much fainter than those considered in Richer et al. [227] and that

the uncertainty in the proper motions increases with magnitude. Our proper

motion data thus has larger uncertainties and appears more dispersed overall

than that of Richer et al. [227]. Since we are interested in the white dwarf

cooling sequence down to very faint magnitudes, it is important to include

the proper motions for the fainter white dwarfs, even though it results in a

sample with larger proper motion uncertainties.

We identify white dwarfs associated with 47 Tuc in the HST data by

making cuts in SHARP, proper motion, and the CMD. The cut in SHARP

enables us to clean the data by removing contaminants such as cosmic rays

and galaxies whose photometric profiles do not match the expected PSF

profile for stars. The cut in proper motion is used to select sources likely

to be members of 47 Tuc, further cleaning the data by removing most of

the SMC and field stars. For this data cleaning, we perform a SHARP cut

that selects objects with |SHARP| < 0.5 and a proper motion cut that selects

objects with a total proper motion < 2.5 mas yr−1 relative to the mean

proper motion of 47 Tuc. After cleaning the data using these cuts in SHARP

and proper motion, we then perform a cut in the CMD to select our white

dwarf sample, and the boundaries of this cut in the CMD define the data

space for the unbinned likelihood analysis. The data cleaning procedure,

including the choice of which cuts to make, is further explained in detail

in Section 6.4. The unbinned likelihood analysis, including the CMD data

space selection, is discussed in Section 6.7.

6.3 Artificial Stars Tests

The artificial stars tests were performed by adding artificial sources to the

final stacked images and running the new images through the same PSF

fitting procedure as was used for the real data. Each artificial source was

given a unique ID in order to track whether the artificial source was detected

by the PSF fitting procedure and, if the source was detected, to compare
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the output values of its magnitude and position to the known true value.

A detailed description of the artificial stars tests and the corresponding

artificial sources catalogue is described in detail in Kalirai et al. [223].

The catalogue of artificial sources produced by these artificial stars tests

was used to construct a photometric error distribution function in a proce-

dure similar to what is described in Goldsbury et al. [215]. Let F606Win

and F814Win denote the input magnitudes of a source, and let F606Wout

and F814Wout denote the output magnitudes determined by the PSF fitting

procedure. The photometric error distribution function

E = E (∆F606W,∆F814W;F606Win,F814Win) (6.1)

gives the joint probability density, normalised to the number of input stars,

of the magnitude errors ∆F606W and ∆F814W as a function parameterised

by the input magnitudes, where the errors are quantified as the differ-

ences between the output and input values of the magnitudes, ∆F606W =

F606Wout−F606Win and ∆F814W = F814Wout−F814Win The normalisa-

tion of the error distribution function as a function of the input magnitudes

is simply the completeness,

C (F606Win,F814Win) =

∫ ∞

−∞

∫ ∞

−∞
E d (∆F606W) d (∆F814W) , (6.2)

which in general is less than unity because not all of the sources that are

actually present are recovered by the photometric reduction procedure. The

completeness quantifies the probability of detecting a source and can in prin-

ciple take values in the range of 0 to 1, though in practice the observations

become unusable if the completeness becomes too poor.

In general, the error distribution function and completeness also depend

on the position from the centre of the cluster. However, for the data con-

sidered in this work, the position dependence is negligible. Furthermore, it

should be noted that since all of the cooling models that will be considered

in our analysis lie along approximately the same curve in colour-magnitude

(and likewise magnitude-magnitude) space before accounting for photomet-
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ric errors, the photometric error distribution only needs to be constructed at

the combination of (F606Win,F814Win) values that lie along this sequence.

6.4 Data Cleaning Procedures

6.4.1 Overview

To clean our deep HST ACS/WFC data, we want to remove sources in the

catalogue that (1) are not stars or (2) are not members of 47 Tuc. In the

latter case, we are particularly concerned with removing SMC stars that

contaminate the faint end of the 47 Tuc white dwarf cooling sequence in the

CMD. A cut in SHARP allows us to remove objects that are not stars, while

a cut in proper motion allows us to remove objects that are unlikely to be

47 Tuc cluster members. We calibrate our data cleaning procedure using 47

Tuc main-sequence stars to choose what cuts to make in SHARP and proper

motion and to quantify the effect of these cuts on the completeness of our

white dwarf sample. We furthermore quantify the number of SMC stars ex-

pected to survive the cleaning procedure and contaminate our white dwarf

sample. Any changes to the completeness arising from the cleaning proce-

dure must be accounted for and applied to the error distribution function

from the artificial stars tests.

6.4.2 SHARP

If an object identified by the daophot ii program allstar is a star, then

it should have a SHARP value near zero. Values of SHARP much larger than

zero indicate the object is probably a galaxy or unrecognized double, while

objects with SHARP much less than zero are probably cosmic rays or image

defects such as bad pixels [228]. A cut in the SHARP parameter can thus

be used to remove objects that are not stars. Galaxies in particular are

a common contaminant of the white dwarf cooling sequence at very faint

magnitudes [223].

To determine what a reasonable range of SHARP values is for stars in

our sample, we analyze the distribution of SHARP values for 47 Tuc main-
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sequence stars as a function of magnitude. The 47 Tuc white dwarfs should

have a distribution in SHARP similar to that of the 47 Tuc main-sequence

stars (at comparable magnitudes), so we use our analysis of the latter to

choose the threshold value for our SHARP cut. The aim is to make a cut in

SHARP that is generous enough to not reduce the completeness of the white

dwarf data but strict enough to remove as many objects that are not stars

as possible.

The 47 Tuc main-sequence stars are selected using a cut in the CMD.

The CMD boundary used to select the 47 Tuc main-sequence stars is shown

in Fig. 6.1 by the green lines (labelled “47 Tuc MS”). Figure 6.1 also shows

the boundaries used to define CMD-selected populations of 47 Tuc white

dwarfs (“47 Tuc WD”, blue lines) and SMC stars (“SMC”, orange lines),

which are used later in the analysis in Section 6.4.3. The CMD boundary for

the 47 Tuc white dwarfs is furthermore the same boundary ultimately used

to define the data space in the unbinned likelihood analysis. In this section,

these boundaries of the 47 Tuc white dwarfs and the SMC in the CMD

simply serve as visual references to note the locations of these populations.

From left to right across Fig. 6.1, the CMD boundaries correspond to 47

Tuc white dwarfs, SMC stars, and 47 Tuc main-sequence stars. The CMD

boundaries of these three populations are the same in both sub-figures of

Fig. 6.1, though the full span of each bounding region can only be seen in

Fig. 6.1a. All three boundaries span the same range of F606W magnitude

values along the y-axis, from 22 to 29, so the calibration analysis in both

this section and Section 6.4.3 can be done as a function of F606W.

We construct the empirical SHARP distributions for the CMD-selected

main-sequence stars both before and after performing a proper motion cut

to select objects within 2.5 mas yr−1 of the mean proper motion of 47 Tuc18.

This is the same proper motion cut that we use in the final cleaning pro-

cedure for our white dwarf data. The SHARP distributions for the proper-

18In contrast, the proper motion cut to select SMC stars used to calibrate the proper
motion cleaning procedure (discussed in Section 6.4.3) selects objects within 0.75 mas yr−1

of the mean proper motion of the SMC, a much tighter cut in proper motion than what
is used for 47 Tuc.
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(a) Effect of proper motion cleaning.
Not SHARP-cleaned.

(b) SMC contamination of faint white
dwarfs. SHARP-cleaned.

Figure 6.1: CMDs showing population boundaries and effects of clean-
ing procedures. The boundaries defining the CMD-selected populations
are shown as solid lines. From left to right, these populations are 47
Tuc white dwarfs (blue), SMC stars (orange), and 47 Tuc main-sequence
stars (green). The left panel shows the effect of proper motion cleaning,
while the right panel shows the effect of SHARP cleaning and the SMC
contamination at the faint end of the 47 Tuc white dwarf data space.
The data point colours indicate different proper motion cuts for the left
and right panels. Left: Data without SHARP cleaning. Sources selected
by the 47 Tuc proper motion cut are shown in black, while rejected
sources are shown in grey. Right: SHARP-cleaned data with focus on
faint white dwarfs. Sources selected by the SMC proper motion cut
are shown in black, while other sources are shown in grey. The SMC
proper motion cut is used for calibration purposes in Section 6.4.3.2;
its purpose is to select a very pure sample of SMC stars rather than as
many SMC members as possible.
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motion-cleaned main-sequence stars are of most interest to us because the

proper motion cleaning produces a more pure sample of 47 Tuc members.

However, comparing the SHARP distributions both before and after proper

motion cleaning is also useful as it gives us information about the typical

SHARP values of the outliers removed by the proper motion cut, especially

those sources that are likely not stars. The reduction in completeness caused

by the proper motion cut is analysed in Section 6.4.3. While that is an im-

portant consideration for our analysis of the white dwarf cooling, a reduction

in completeness of the main-sequence sample due to this proper motion cut

is not a concern for our analysis of the SHARP distribution, as it will only

affect the amplitude, not the shape, of the distribution.

The effect of the proper motion cleaning on the CMD of the data is shown

in Fig. 6.1a, where it can be seen that most of the SMC stars are removed by

the cut in proper motion. While some SMC stars survive the proper motion

cut, the SMC is located far enough away from the 47 Tuc main-sequence in

the CMD that the SMC stars do not contaminate the main-sequence sample

selected using the CMD cut. In Fig. 6.1a, the black points show the sources

that were selected as likely 47 Tuc members by the proper motion cut, while

the grey points show sources that were rejected by this cut. Note that the

black and grey colour-coding of the data points in Fig. 6.1b has a different

meaning than in Fig. 6.1a. In Fig. 6.1b, the colour-coding of the data points

indicates which objects are selected (black) or rejected (grey) by a proper

motion cut to select likely SMC members, which is used in Section 6.4.3.2

to analyse the SMC contamination in the 47 Tuc white dwarf data space

and is described in detail in that section. It should also be noted that

both the CMD and proper motion selections of SMC stars are only used

for the purpose of calibrating the proper motion data cleaning procedure

in Section 6.4.3 and do not need to be complete for this purpose, so these

selections prioritize the purity of the SMC sample over the completeness of

the sample. This results in many SMC stars being excluded from the SMC

selections, particularly for the proper motion selection of SMC stars shown

in Fig. 6.1b. These SMC selections are not relevant for the SHARP cleaning

procedure discussed in the current section, so the discussion here is kept
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brief, but more details can be found in Section 6.4.3.2.

The empirical number distributions of the SHARP parameter for the 47

Tuc main-sequence stars sub-divided into various F606W magnitude bins

are shown in Fig. 6.2. The distributions before proper motion cleaning are

shown in Fig. 6.2a (left column), while the distributions after proper motion

cleaning are shown in Fig. 6.2b (right column). Each row corresponds to a

different magnitude bin. From top to bottom, the F606W magnitude bins

shown in Fig. 6.2 are 22− 25, 25− 26.5, 26.5− 28, and 28− 29. The ranges

for these bins were chosen by first constructing the SHARP distributions for

evenly spaced magnitude bins of 0.5 width and then grouping together ad-

jacent bins for which the morphology of the distributions was similar. This

grouping was done to facilitate visualisation. All of the SHARP distributions,

plotted as histograms in Fig. 6.2, were constructed using the same SHARP

bin width of 0.05. For each magnitude bin, we also calculated the following

sample statistics: mean, median, standard deviation, and skewness. These

sample statistics, along with the total number N of sources in the bin, are

reported in Fig. 6.2 and summarised in Table 6.1.

Written explicitly, the sample mean for a particular magnitude bin is

SHARP =
1

N

N∑
i=1

SHARPi, (6.3)

where i is an index that labels the sources in the sample and SHARPi is the

value of SHARP for a particular source. The sample median is denoted as

S̃HARP, with a tilde instead of an overline.

The sample standard deviation of the SHARP values in each magnitude

bin is

σSHARP =

√√√√ 1

N

N∑
i=1

(
SHARPi − SHARP

)2
, (6.4)

which is the square root of the sample variance. If the SHARP values are

normally distributed, then Eq. (6.4) corresponds to the maximum likelihood

estimate of the standard deviation parameter of the underlying distribution.

For the sample skewness statistic, we use the Fisher-Pearson coefficient
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Figure 6.2: Distribution of SHARP for 47 Tuc main-sequence stars by
F606W magnitude bin.
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F606W N SHARP S̃HARP σSHARP g1

Before proper
motion cleaning

22.0− 25.0 11611 0.038 0.014 0.14 4.58
25.0− 26.5 3196 0.061 0.036 0.17 4.71
26.5− 28.0 1151 0.063 0.046 0.22 0.99
28.0− 29.0 304 −0.001 0.045 0.43 −3.99

After proper
motion cleaning

22.0− 25.0 10851 0.032 0.012 0.12 3.25
25.0− 26.5 2913 0.052 0.035 0.12 1.95
26.5− 28.0 993 0.054 0.044 0.16 0.05
28.0− 29.0 207 0.068 0.057 0.18 1.02

Table 6.1: Statistics for the SHARP distributions of CMD-selected 47
Tuc main-sequence stars. For each F606W magnitude bin, the reported
quantities are the number of sources (N), the mean (SHARP), the median

(S̃HARP), the standard deviation (σSHARP), and the skewness (g1).

of skewness

g1 =
m3

m
3/2
2

, (6.5)

which is calculated from the biased sample second and third central mo-

ments, respectively m2 and m3, where

mn =
1

N

N∑
i=1

(
SHARPi − SHARP

)n
(6.6)

is the biased sample nth central moment. The sample sizes are large enough

that using the adjusted Fisher-Pearson standardized moment coefficient,

G1 = g1
√
N(N − 1))/(N − 2), instead of g1 to correct for bias makes negli-

gible difference to the results. To the level of significance reported, the only

difference is in the faintest bin, where G1 = −4.01 (instead of g1 = −3.99)

before proper motion cleaning and G1 = 1.03 (instead of g1 = 1.02) after

proper motion cleaning.

The mean and median are both measures of central tendency, with the

median being more robust to outliers. Both the sample mean and sample

median are close to zero for all magnitude bins, as expected. This applies for

the SHARP distributions both before and after proper motion cleaning. For
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the standard deviation, which is a measure of the spread of SHARP values,

we see that proper motion cleaning makes more of a difference. Before

proper motion cleaning, σSHARP increases more dramatically with magnitude;

while after proper motion cleaning, the σSHARP values remain more similar

even down to the faintest magnitude bin. σSHARP is also overall smaller after

proper motion cleaning, though the value is similar before and after proper

motion cleaning for the brightest stars. After proper motion cleaning, we

see that a SHARP cut of |SHARP| < 0.5 corresponds to a cut of ≳ 3σSHARP for

all magnitude bins.

Even before proper motion cleaning, we find that σSHARP for the two

magnitude bins containing the brightest sources (22.0 < F606W < 25.0

and 25.0 < F606W < 26.5) are small enough that 3σSHARP ≲ 0.5. The

two magnitude bins containing the faintest sources (26.5 < F606W < 28.0

and 28.0 < F606W < 29.0) have larger estimated values of the standard

deviation, but they also have much larger fractions of outliers that are likely

not actually stars (particularly the faintest bin, 28.0 < F606W < 29.0,

which has the largest estimated standard deviation). These outliers can be

seen in the tails of the distributions in Fig. 6.2a, and comparison of those

distributions with the distributions for the same magnitude bins in Fig. 6.2b

shows that most of these outliers are removed by the proper motion cut. The

sample standard deviation is not very robust to outliers, so for these bins in

particular, and before proper motion cleaning overall, the outliers lead to an

overestimate of the standard deviation of the underlying SHARP distribution

for sources that are actually single stars. The values of σSHARP after proper

motion cleaning should be a better estimate, and we indeed find these values

to be smaller than the values of σSHARP before proper motion cleaning.

While the SHARP values are approximately normally-distributed, it can

be seen from Fig. 6.2 that the SHARP distributions have some asymmetry.

The skewness statistic is a measure of this asymmetry. Before proper motion

cleaning, the SHARP distributions for the brightest two magnitude bins have

a similar value of skewness, both being positively skewed with a longer tail

for positive SHARP values. This positive skewness may be in part due to

the presence of unresolved binaries, which would have large positive SHARP
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values [228] and would not be removed by proper motion cleaning. The

negative skewness for the faintest bin (28.0 < F606W < 29.0) before proper

motion cleaning, on the other hand, can be attributed to the long tail of likely

non-stellar outliers with large negative SHARP values. After proper motion

cleaning, we see that the skewness in the faintest bin becomes positive, like

the skewness in the other magnitude bins, and the absolute value of the

skewness decreases in all of the bins.

For all magnitudes, we find that most of the objects are contained within

the range −0.5 < SHARP < 0.5. The small number of objects outside of this

SHARP range are outliers of the SHARP distributions that are unlikely to be

stars. We thus choose a cut in the SHARP parameter of |SHARP| < 0.5 for the

cleaning procedure of our main white dwarf data. The result of this SHARP

cleaning is shown in Fig. 6.1b, which focuses on faint magnitudes where

the SMC sequence begins to overlap with the 47 Tuc white dwarf cooling

sequence. The improvement in data quality achieved by SHARP cleaning can

be seen by comparing Fig. 6.1b to Fig. 6.1a, the latter of which shows the

data before any SHARP cleaning. The black and grey colour-coding of the

data points in the two sub-figures sorts the data based on different proper

motion cuts in each sub-figure, but these colours do not indicate anything

about SHARP cleaning in either case. Neither the proper-motion-selected

nor proper-motion-rejected data points shown in Fig. 6.1a have been SHARP-

cleaned, while both the proper-motion-selected and proper-motion-rejected

data points shown in Fig. 6.1b have been SHARP-cleaned so that only points

with |SHARP| < 0.5 are shown in Fig. 6.1b.

6.4.3 Proper Motion

A cut in proper motion allows us to remove most of the SMC stars (and

other contaminants like galaxies) from our white dwarf sample. This is

particularly useful for cleaning our white dwarf sample at the faint end

of the cooling sequence where it intersects with the SMC sequence in the

CMD (see Fig. 6.1). However, the 47 Tuc and SMC populations overlap

in the tails of their proper motion distributions, so the SMC contaminants
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cannot be completely removed with a proper motion cut, at least not for

the faintest stars of interest to us where the larger proper motion errors lead

to more diffuse proper motion distributions for both the 47 Tuc and SMC

populations. Furthermore, a cut in proper motion reduces the completeness

of our sample. We quantify both of these effects in this section.

We first quantify the residual SMC contamination using both CMD-

selected and proper-motion-selected SMC stars. Then we quantify the re-

duction in completeness using CMD-selected 47 Tuc main-sequence stars.

For both of these procedures, we first clean our data by applying the SHARP

parameter cut determined in Section 6.4.2, i.e. |SHARP| < 0.5, to the initial

catalogue from the deep HST ACS/WFC observations. Based on the anal-

ysis of Section 6.4.2, this cut does not reduce the completeness of our 47

Tuc sample, but it removes non-stellar contaminants and facilitates identi-

fication of the CMD populations, particularly at the faint end of the 47 Tuc

white dwarf and SMC sequences.

6.4.3.1 Proper Motion Distribution Model

To inform our choice of proper motion cuts in our analysis of the proper

motion cleaning procedure, we want to know the mean proper motion of

the SMC relative to the mean proper motion of 47 Tuc. We also want to

know the spread of proper motion values for each of these two populations,

which is quantified by the standard deviation for a population with normally-

distributed proper motions. Let µα and µδ be the components of the tangent

plane projection of the proper motion vector, where µα is the component in

the direction of increasing right ascension and µδ is the component in the

direction of increasing declination. While the mean proper motion of 47 Tuc

has already been subtracted from our proper motion data, this mean proper

motion is still included in the model discussed in this section to make the

dependence on the mean motion of 47 Tuc explicit.

We model the distribution of proper motions for our data as a three-

component Gaussian mixture model. In this model, the joint probability

density function of µα and µδ is taken to be the linear superposition of three
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bivariate normal distributions, each with its own mean (µ̄α,i, µ̄δ,i), standard

deviation σi, and amplitude Ai, where i is an index labelling the constituent

distributions. One of these Gaussian components accounts for the 47 Tuc

population (i = 1), another one accounts for the SMC population (i = 2),

and the final one accounts for outliers and background contaminants like

field stars (i = 3). Written explicitly, the joint probability density function

of µα and µδ is

fµα,µδ
(µα, µδ; θ) =

3∑
i=1

Ai fµα,µδ,i (µα, µδ; µ̄α,i, µ̄δ,i, σi) , (6.7)

where θ denotes the full set of parameters that characterise the distribution

and the probability density distribution of a single population labelled with

index i is

fµα,µδ,i (µα, µδ; µ̄α,i, µ̄δ,i, σi)

=
1

2πσi
exp

[
−(µα − µ̄α,i)

2

2σ2i
−

(µδ − µ̄δ,i)
2

2σ2i

]
.

(6.8)

It has been assumed that the two proper motion components µα and µδ are

uncorrelated and have the same standard deviation for a given population.

In general, these assumptions need not be true and could be relaxed in

the model, but the current model given by Eq. (6.7) is sufficient for our

purposes.The model is also further simplified by eliminating the dependence

of fµα,µδ
on a few parameters in Eq. (6.7) as follows.

The proper motion data are already given relative to the mean proper

motion of 47 Tuc, so we keep the mean proper motion of 47 Tuc fixed in

this model with the value (µ̄α,1, µ̄δ,1) = (0, 0). As the total probability

density function must be normalised to unity and each of the constituent

Gaussian distributions is normalised to unity, the sum of amplitudes must

be equal to unity, i.e.
∑

iAi = 1. This relation eliminates dependence of

the total probability density function on one of the amplitudes. We choose

to eliminate A3 by setting A3 = 1−A1−A2. In summary, three parameters
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are eliminated from Eq. (6.7) by enforcing the relations

µ̄α,1 = 0, (6.9)

µ̄δ,1 = 0, (6.10)

A3 = 1−A1 −A2. (6.11)

This reduces the number of parameters that fµα,µδ
depends on in Eq. (6.7)

from 12 to 9. The set of remaining parameters is

θ = {A1, σ1, A2, σ2, µ̄α,2, µ̄δ,2, σ3, µ̄α,3, µ̄δ,3} . (6.12)

The best-fitting values of the remaining 9 parameters, including the mean

proper motion components of the SMC, are then determined using the maxi-

mum likelihood estimate. Let d = {dj} be the set of observed proper motion

data points, where dj = (µαj , µδj) is a single data point in proper motion

space and j is an index that labels the data points. The likelihood L (θ)

is the probability (density) of the observed data given the parameters and

model,

L (θ) = p (d|θ) (6.13)

=
∏
j

p (dj |θ) (6.14)

=
∏
j

fµα,µδ
(µαj , µδj ; θ) . (6.15)

The natural logarithm of the likelihood for our model of the proper motion

distribution is thus

lnL (θ) =
∑
j

ln fµα,µδ
(µαj , µδj ; θ) . (6.16)

The maximum likelihood estimate θ̂ of the model parameters is the set of

parameter values that maximises L (θ), i.e. that maximises the probability

of the observed data. In practice, it is more computationally feasible to

minimise the negative log-likelihood, − lnL (θ), and doing so is equivalent
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to maximising L (θ). We minimise the negative of Eq. (6.16) numerically to

get θ̂, which is the set of best-fitting parameters for our model.

The three-component Gaussian mixture model was fit to the proper mo-

tions for different F606W magnitude bins spanning the range 22 − 29 in

increments of 0.5. The maximum likelihood estimates of the distribution

parameters for each of the magnitude bins are given in Table 6.2. The

standard deviations of both the 47 Tuc population and the SMC popu-

lation increase with magnitude due to the increasing error in the proper

motion measurements with magnitude. Note that the errors can be taken

to be Gaussian-distributed and the convolution of two Gaussians is another

Gaussian, so the proper motion errors are naturally accounted for in the

Gaussian mixture model as an adjustment to the standard deviations of the

populations. These increasing proper motion errors do not have a notable

effect on the location of the SMC in proper motion space, which was found

to be similar across all of the magnitude bins. The coordinates of the SMC

in proper motion space are taken to be the average of the coordinates found

in each bin. These coordinates are (µ̄α,2, µ̄δ,2) = (4.76, 1.59).

Though the best-fitting parameters are determined using the joint dis-

tribution of µα and µδ, it is also instructive to see how the total proper

motion is distributed for a particular population in polar coordinates after

marginalising over the polar angle. This marginal distribution is derived

below, and some of its important features are discussed.

Consider a population labelled by index i with proper motion distri-

bution given by Eq. (6.8). Define the polar coordinate variables µ and ϕ

relative to the mean proper motion of this population, such that

µα − µ̄α,i = µ cosϕ, (6.17)

µδ − µ̄δ,i = µ sinϕ. (6.18)

The determinant of the Jacobian matrix J(µ, ϕ) for the transformation from

the Cartesian to polar coordinates is det |J(µ, ϕ)| = µ.
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F606W A1 σ1 A2 σ2 µ̄α,2 µ̄δ,2 A3 σ3 µ̄α,3 µ̄δ,3

22.0− 22.5 0.82 0.62 0.09 0.44 4.75 1.53 0.10 3.34 −1.07 0.39
22.5− 23.0 0.77 0.60 0.10 0.47 4.74 1.49 0.13 2.76 −0.76 0.00
23.0− 23.5 0.78 0.60 0.10 0.43 4.67 1.44 0.12 3.04 −0.82 −0.05
23.5− 24.0 0.75 0.61 0.12 0.53 4.72 1.52 0.13 2.51 −0.93 −0.15
24.0− 24.5 0.75 0.62 0.14 0.48 4.75 1.48 0.11 2.99 −0.57 0.06
24.5− 25.0 0.70 0.64 0.17 0.52 4.71 1.51 0.13 3.27 −0.29 0.26
25.0− 25.5 0.63 0.64 0.22 0.56 4.73 1.56 0.15 3.55 0.83 0.73
25.5− 26.0 0.56 0.69 0.28 0.62 4.73 1.61 0.16 4.28 0.65 0.40
26.0− 26.5 0.48 0.74 0.37 0.81 4.74 1.69 0.15 5.82 1.02 0.68
26.5− 27.0 0.35 0.82 0.43 0.93 4.75 1.67 0.22 6.27 2.06 1.15
27.0− 27.5 0.27 0.90 0.49 1.15 4.86 1.61 0.24 6.83 1.18 0.40
27.5− 28.0 0.21 1.08 0.49 1.37 4.84 1.78 0.30 7.94 1.33 0.49
28.0− 28.5 0.20 1.36 0.44 1.55 4.71 1.67 0.35 8.32 1.44 0.57
28.5− 29.0 0.22 1.63 0.35 1.79 4.88 1.68 0.43 8.38 0.92 0.46

Table 6.2: Results of fitting proper motion distribution by F606W magnitude bin. The subscript indices
of the parameters denote which population that parameter describes in a three-component Gaussian mixture
model: 1 denotes 47 Tuc, 2 denotes the SMC, and 3 denotes the background. The average proper motion
coordinates of the SMC across all magnitude bins are µ̄α,2 = 4.76 and µ̄δ,2 = 1.59.
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Accounting for the relevant factor of det |J(µ, ϕ)|, the joint probability

density function of µ and ϕ is thus given by the relation

fµ,ϕ,i (µ, ϕ; σi)

= µ fµα,µδ,i (µ̄α,i + µ cosϕ, µ̄δ,i + µ sinϕ; µ̄α,i, µ̄δ,i, σ1)
(6.19)

=
µ

2πσ2i
exp

(
− µ2

2σ2i

)
. (6.20)

Marginalising fµ,ϕ,i (µ, ϕ; σi) over ϕ then gives the probability density func-

tion of µ,

fµ,i (µ; σi) =

∫ 2π

0
dϕ fµ,ϕ,i (µ, ϕ; σi) (6.21)

=
µ

σ2i
exp

(
− µ2

2σ2i

)
. (6.22)

This function goes to zero as µ goes to zero, i.e. limµ→0 fµ,i(µ; σi) = 0. Also

note that the probability density of µ is maximized when µ = σi; this is in

contrast to the joint probability density of µα and µδ, which is maximised

at the coordinates (µ̄α,i, µ̄δ,i) and thus µ = 0.

If proper motion values are given relative to the mean motion of 47 Tuc,

then the probability density distribution of µ values for the 47 Tuc popula-

tion goes to zero as µ → 0. This is straight-forwardly given by Eq. (6.22)

with i = 1, as the mean proper motion of the 47 Tuc population coincides

with the origin of the polar coordinate system in proper motion space. For

the SMC population, the distribution of the total proper motion relative to

the mean proper motion of 47 Tuc is more complicated, as the mean proper

motion of the SMC does not coincide with the origin of the polar coordinate

system. However, the factor of µ that appears in Eq. (6.19), which is the

determinant of the Jacobian in transforming the proper motion distribution

function from Cartesian coordinates to polar coordinates, also appears in

the analogous distribution for the SMC when µ is defined with respect to

(µ̄α,1, µ̄δ,1) instead of (µ̄α,2, µ̄δ,2), and this factor likewise results in the dis-

tribution of µ for SMC stars going to zero as µ → 0. The SMC population
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is also far enough away from the 47 Tuc population in proper motion space

that very few SMC stars are expected to be found at the centre of the 47

Tuc distribution in proper motion space in the first place.

6.4.3.2 SMC Contamination

While the SHARP cleaning makes the 47 Tuc white dwarf cooling sequence

and the SMC sequence appear more distinct in the CMD (see Fig. 6.1),

these sequences still intersect at faint magnitudes (for F606W greater than

about 27). The proper motion cut to select likely 47 Tuc members, which

will be referred to as simply the “47 Tuc proper motion cut”, also does not

remove all of the SMC stars that overlap with the faint white dwarfs in the

cooling sequence. This is illustrated by Fig. 6.1a, where it can be seen that

some of the objects selected by the 47 Tuc proper motion cut (black points)

lie along the SMC sequence (mostly composed of grey points). Though

Fig. 6.1a has not been SHARP-cleaned, most of the black points along the

SMC sequence in Fig. 6.1a persist after SHARP cleaning, so the problem of

SMC contamination remains. We want to quantify the number of SMC stars

that are expected to be in the final fully-cleaned white dwarf sample that we

use for the unbinned likelihood analysis. The number of SMC contaminants

in the white dwarf data space is in general a function of magnitude, so we

determine this number for F606W magnitude bins, using bins of 0.5 width

spanning the range 22− 29.

To quantify the number of SMC stars expected to contaminate our final

white dwarf sample, we define cuts in both the CMD and proper motion

space that each independently select stars that are very likely to be SMC

members. The ratio of the number of SMC stars in the 47 Tuc white dwarf

CMD region vs the SMC CMD region should be the same regardless of

what proper motion cut is used (as long as some SMC stars survive the

proper motion cut). Thus, the number of SMC contaminants in the white

dwarf CMD region after the 47 Tuc proper motion cut can be estimated by

calculating this ratio using a very pure sample of SMC stars selected using

a proper motion cut and multiplying this ratio by the number of stars in
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the SMC CMD region after the 47 Tuc proper motion cut.

Another way of understanding this procedure is that we count the num-

ber of proper-motion-selected SMC stars in the 47 Tuc white dwarf CMD

region, then re-scale this number using the ratio of the number of CMD-

selected SMC stars that survive the 47 Tuc proper motion cut to the num-

ber of CMD-selected SMC stars that survive the SMC proper motion cut.

If the cuts to select SMC stars yield pure SMC samples, then this procedure

estimates the number of SMC stars expected to both survive the 47 Tuc

proper motion cut and fall within the 47 Tuc white dwarf CMD region.

Let Nps,cw be the number of stars that survive both the tight proper

motion cut to select SMC stars and the CMD cut to select white dwarfs in

47 Tuc. Let Nps,cs be the number of stars that survive the same SMC proper

motion cut used to get Nps,cw and that also survive the CMD cut to select

SMC stars. Finally, let Npt,cs be the number of stars that survive the 47

Tuc proper motion cut and also survive the same CMD cut to select SMC

stars used to get Nps,cs. Then the number of SMC stars expected to survive

both the 47 Tuc proper motion cut and the 47 Tuc white dwarf CMD cut is

Ncontam =
Nps,cw Npt,cs

Nps,cs
. (6.23)

This is the expected number of SMC contaminants in the proper-motion-

cleaned white dwarf sample that we ultimately use in the unbinned likelihood

analysis. A formal treatment of the derivation of Eq. (6.23) is given in

Appendix A.1.

The goal of both the SMC proper motion cut and the SMC CMD cut

is to get a pure sample of SMC stars, and the boundaries of these cuts are

chosen with this goal in mind. However, it is still possible that some 47 Tuc

stars could survive these cuts, particularly the SMC CMD cut where the

SMC sequence and 47 Tuc white dwarf cooling sequence begin to overlap.

These misclassified 47 Tuc stars would cause our count for the corresponding

number used in the calculation of Ncontam to be too large. This is most likely

to be an issue in determining the number of stars that survive one 47 Tuc

cut and one SMC cut, i.e. Nps,cw or Npt,cs, and in particular Npt,cs. It is
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least likely to be an issue in determining the number of stars that survive

both SMC cuts, i.e. Nps,cs, as these stars should be the purest sample of

SMC stars. Note that both Nps,cw and Npt,cs appear in the numerator on

the right-hand side of Eq. (6.23), while Nps,cs appears in the denominator.

Ncontam is thus more properly an upper limit on the number of SMC stars

that contaminate the 47 Tuc white dwarf data space after the 47 Tuc proper

motion cut. As the boundaries for the SMC cuts are specifically chosen

to reduce the risk of misclassifying 47 Tuc stars, the true number of SMC

contaminants in the proper-motion-cleaned white dwarf data space should

be close to this upper limit. Furthermore, if this upper limit is found to be

negligibly small compared to the total size of the white dwarf sample, then

that is sufficient information to deem the possibility of SMC contamination

in the white dwarf data space to be of no further concern.

The boundaries defining the CMD-selected SMC sample are shown in

Fig. 6.1 as the middle boundary region (orange lines). The CMD bound-

aries for the SMC population select predominantly the red side of the SMC

sequence at faint magnitudes in order to avoid including 47 Tuc white dwarfs

in the CMD-selected SMC population. The priority here is to select a pure

population of SMC stars, even if it results in the exclusion of some SMC

members. This SMC sample does not need to be complete for our analysis.

The boundary region defining the 47 Tuc white dwarf CMD selection is also

shown in Fig. 6.1, as the left-most boundary region (blue lines). This CMD

boundary region for 47 Tuc white dwarfs is the same as the white dwarf data

space that will be used in the unbinned likelihood analysis. In Fig. 6.1b,

objects in the SHARP-cleaned data that survive the SMC proper motion cut

are shown as black points, while the other objects in that data are shown

as grey points.

The proper motions for all sources in our SHARP-cleaned data in a frame

relative to the mean motion of 47 Tuc are shown in Fig. 6.3. For objects

that lie within one of the three CMD boundary regions shown in Fig. 6.1,

the CMD-selected population to which each object belongs is indicated by

colour. These CMD-selected populations are 47 Tuc white dwarfs (blue), 47

Tuc main-sequence stars (green), and SMC stars (orange). Objects that do
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not correspond to any of these three CMD-selected populations are shown

in grey. The boundary of the 47 Tuc proper motion cut is shown in both

Fig. 6.3a and Fig. 6.3b as a solid black curve. The boundary of the tight

SMC proper motion cut is shown in Fig. 6.3a as a dashed black curve.

Note that the 47 Tuc white dwarfs and main-sequence stars largely over-

lap in the proper motion plots of Fig. 6.3, as expected since they belong to

the same dynamical population. Most of the white dwarfs are obscured in

Fig. 6.3a and at bright magnitudes in Fig. 6.3b simply because the main-

sequence stars have been plotted on top of them. However, some of the

white dwarfs of most interest to us are still visible, especially those at faint

magnitudes in Fig. 6.3b where the number density of the main-sequence

stars is much lower than at brighter magnitudes. In Fig. 6.3a, it can also

be seen that some of the objects selected by the 47 Tuc white dwarf CMD

cut fall within the boundary of the SMC proper motion cut. These objects

correspond to the black points in Fig. 6.1b that lie within the white dwarf

CMD boundary. As the SMC proper motion cut is very tight about the

mean motion of the SMC and far from the bulk of the 47 Tuc proper motion

distribution, these objects are highly likely to be SMC stars that lie within

the 47 Tuc white dwarf CMD boundary region.

Fig. 6.3a shows the two-dimensional distribution of the components of

proper motion in the directions of right ascension and declination, respec-

tively µα and µδ. Note that a factor of cos δ is included in the definition

of µα (i.e. µα = α̇ cos δ and µδ = δ̇, where the overdot denotes a deriva-

tive with respect to time), making (µα, µδ) the tangent plane projection of

the proper motion vector. Two distinct populations are clearly visible in

Fig. 6.3a. The population on the left and centred at (0, 0) corresponds to

47 Tuc, while the population on the right corresponds to the SMC.

The 47 Tuc proper motion cut selects objects with√
(µα − µ̄α,t)

2 + (µδ − µ̄δ,t)
2 < 2.5 mas yr−1, (6.24)

where (µ̄α,t, µ̄δ,t) is the mean proper motion of 47 Tuc, which has the value

(µ̄α,t, µ̄δ,t) = (0, 0) in the reference frame of Fig. 6.3. This corresponds to
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(a) Components of proper motion vector in tangent plane.

(b) Total proper motions as a function of F606W magnitude.

Figure 6.3: Proper motions of SHARP-cleaned data relative to mean
motion of 47 Tuc. The CMD-selected population to which each source
belongs is indicated by colour: 47 Tuc white dwarfs (blue), 47 Tuc
main-sequence stars (green), SMC stars (orange), and other sources
with 22 < F606W < 29 but not in a CMD boundary region (grey). The
boundary of the proper motion cut to select 47 Tuc members is shown
as a solid black curve indicating a circle of radius 2.5 mas yr−1 centred
on the mean 47 Tuc proper motion coordinates (0, 0). The boundary of
the tight SMC proper motion cut used in the proper motion calibration
procedure is shown in sub-figure (a) as a dashed black curve of radius
0.75 mas yr−1 centred on the mean motion of the SMC at (4.76, 1.59).
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selecting the points in Fig. 6.3a that lie within the circle of radius 2.5 centred

on (0, 0), which is shown as a solid black line.

The SMC proper motion cut selects objects with√
(µα − µ̄α,s)

2 + (µδ − µ̄δ,s)
2 < 0.75 mas yr−1, (6.25)

where (µ̄α,s, µ̄δ,s) is the mean proper motion of the SMC, which we take to be

(µ̄α,s, µ̄δ,s) = (4.76, 1.59) in the reference frame of Fig. 6.3. This corresponds

to selecting the points in Fig. 6.3a that lie within the circle of radius 0.75

centred on (4.76, 1.59), which is shown as a dashed black line.

The value that we use for the mean motion of the SMC was determined

by fitting a three-component Gaussian mixture model to the proper motion

data, where the first of these Gaussian components accounts for the 47 Tuc

population, the second one accounts for the SMC population, and the third

one accounts for outliers and background contaminants like field stars. The

best-fitting parameters of this model for the proper motion distribution were

determined using the maximum likelihood estimate. This model and fitting

procedure are described in detail in Section 6.4.3.1.

Fig. 6.3b shows the total proper motion in the tangent plane as a function

of F606W magnitude. This total proper motion is defined in terms of µα

and µδ as

µ =
√
µ2α + µ2δ . (6.26)

Since the mean proper motion of 47 Tuc is located at proper motion coor-

dinates (0, 0), this is the total proper motion relative to the 47 Tuc mean.

As in Fig. 6.3a, distinct 47 Tuc and SMC populations can also be seen in

Fig. 6.3b. Most of the 47 Tuc stars have µ < 2.5 mas yr−1, while the total

proper motions of the SMC stars are clustered near µ ∼ 5 mas yr−1. Note

that the density of stars at µ = 0 is approximately zero due to the factor

of µ that appears through the Jacobian in transforming the proper motion

distribution function from Cartesian coordinates to polar coordinates, as

explained in Section 6.4.3.1.

In terms of the total proper motion given by Eq. (6.26), the 47 Tuc
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proper motion cut selects objects with µ < 2.5 mas yr−1, which corre-

sponds to all objects that lie below the solid black line in Fig. 6.3b. The

SMC proper motion cut is more complicated in terms of µ. The distance

between the mean proper motion of the SMC and the mean proper mo-

tion of 47 Tuc in proper motion space is µ̄s =
√
µ̄2α,s + µ̄2δ,s, which has the

value µ̄s = 5.02 mas yr−1. So the smallest value of µ along the boundary

of the SMC proper motion cut is µ̄s − 0.75 mas yr−1 = 4.27 mas yr−1,

and the largest value of µ along the boundary of the SMC proper mo-

tion cut is µ̄s + 0.75 mas yr−1 = 5.77 mas yr−1. Thus, all objects se-

lected by the SMC proper motion cut have total proper motion in the range

4.27 mas yr−1 < µ < 5.77 mas yr−1; however, not all objects with µ in this

range are actually selected by the SMC proper motion cut.

The increasing uncertainty of the proper motion measurements with in-

creasing magnitude causes fainter stars in both 47 Tuc and the SMC to

appear more dispersed, which manifests in Fig. 6.3b as the increasingly

large spread of µ values along the y-axis as the magnitude increases. This

leads to the proper motion distributions of the two populations overlapping

more as the magnitude increases. The number of SMC contaminants in the

47 Tuc white dwarf data space is thus expected to increase with magnitude,

especially for F606W ≳ 27 where the proper motions start to become no-

ticeably more dispersed and the CMD sequences of the SMC stars and 47

Tuc white dwarfs begin to intersect.

The value of Ncontam that we calculate in each F606W magnitude bin is

given in Table 6.3. For reference, the total number of objects, NWD, found

in that bin for our proper-motion-cleaned white dwarf data space (i.e. after

both the 47 Tuc proper motion cut and the 47 Tuc white dwarf CMD cut)

is also given in Table 6.3. The estimate of the true number of white dwarfs

in that bin is NWD −Ncontam. Since Ncontam is really an upper limit on the

number of SMC contaminants in the 47 Tuc white dwarf data space (which

should also be close to the actual number of contaminants), the quantity

NWD − Ncontam is correspondingly really a lower limit on the true number

of white dwarfs. Note that the interpretation of Ncontam as an upper limit

makes it sensible to report non-integer values for Ncontam.

128



6.4. Data Cleaning Procedures

F606W NWD Ncontam fCR Error (fCR)

22.0− 22.5 1 0.0 0.9413 0.0062
22.5− 23.0 1 0.0 0.9373 0.0058
23.0− 23.5 5 0.0 0.9349 0.0055
23.5− 24.0 10 0.0 0.9359 0.0050
24.0− 24.5 28 0.0 0.9431 0.0051
24.5− 25.0 27 0.0 0.9328 0.0060
25.0− 25.5 44 0.0 0.9293 0.0069
25.5− 26.0 48 0.0 0.9114 0.0088
26.0− 26.5 75 0.0 0.9093 0.0106
26.5− 27.0 78 0.0 0.9087 0.0131
27.0− 27.5 117 0.1 0.8849 0.0167
27.5− 28.0 150 0.0 0.8161 0.0240
28.0− 28.5 320 0.6 0.7419 0.0351
28.5− 29.0 424 4.5 0.7016 0.0411

Table 6.3: Results of calibrating proper motion cleaning procedure by
F606W magnitude bin. The number of objects in the proper-motion-
cleaned 47 Tuc white dwarf data space (NWD) is the total number of
objects in a given magnitude bin that survive both the 47 Tuc proper
motion cut and the 47 Tuc white dwarf CMD cut. The number of con-
taminants (Ncontam) is the estimated number of SMC stars that survive
the same cuts used to calculate NWD. The completeness reduction fac-
tor (fCR) is the fraction of CMD-selected 47 Tuc main-sequence stars
that survive the 47 Tuc proper motion cut. The error for fCR is re-
ported in the final column, following its value. All of these quantities
were calculated using the SHARP-cleaned data.
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From the values tabulated in Table 6.3, it can be seen that Ncontam is

negligible compared to NWD for our choice of 47 Tuc proper motion cut.

Most magnitude bins contain no contaminants, and even for the faintest

magnitudes, most of the bins have Ncontam < 1. The largest number of

contaminants is found in the faintest magnitude bin, 28.5 < F606W <

29.0, and Ncontam is still negligible compared to NWD for this bin. As our

cleaning procedure successfully removes all but a negligible number of SMC

stars from the data, we do not need to apply a correction in our unbinned

likelihood analysis to account for SMC contaminants in the white dwarf

data space. However, the proper motion cleaning also removes some objects

that are actually 47 Tuc white dwarfs. This reduces the completeness of our

white dwarf sample below what is found from the artificial stars tests. This

completeness reduction effect is analysed below in Section 6.4.3.3, and the

result of that analysis is also included in Table 6.3.

6.4.3.3 Completeness Reduction

The reduction in completeness from the proper motion cut to select likely 47

Tuc members is quantified using 47 Tuc main-sequence stars. These main-

sequence stars are identified in the CMD using the same bounding region

as was used for the SHARP calibration, which is fully shown in Fig. 6.1a as

the right-most bounding region (in green). The proper motion cut used

in our ultimate cleaning procedure for the white dwarf data, which selects

objects with a total proper motion < 2.5 mas yr−1 relative to the mean

proper motion of 47 Tuc, was then applied to the CMD-selected 47 Tuc

main-sequence sample. The fraction of main-sequence stars remaining after

the proper motion cut quantifies the completeness reduction due to the

proper motion cleaning procedure. This survival fraction corresponds to

the magnitude-dependent fraction of green points that lie below the solid

black line in Fig. 6.3b and tends to decreases with magnitude as the proper

motion uncertainties increase. The completeness reduction was determined

as a function of F606W magnitude by sorting the main-sequence sample

into bins of 0.5 magnitude width over the magnitude range 22 to 29 and
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Parameter Value

F606W0 27.00± 0.17
fCR,0 0.9158± 0.0059
a1 −0.0060± 0.0017
a2 −0.1297± 0.0247

Table 6.4: Best-fitting parameter values for piece-wise linear model of
fCR as a function of F606W.

calculating the fraction remaining in each bin after the proper motion cut.

These are the same magnitude bins used to calculate Ncontam. The results

are tabulated in Table 6.3.

Let Ncm be the number of CMD-selected 47 Tuc main-sequence stars

without any proper motion cut applied, and let Npt,cm be the number of

CMD-selected 47 Tuc main-sequence stars that survive the 47 Tuc proper

motion cut. We define a completeness reduction factor fCR, which is given

by the survival fraction of the CMD-selected main-sequence stars

fCR =
Npt,cm

Ncm
. (6.27)

The standard error in fCR is taken to be binomially-distributed and thus

given by

Error(fCR) =

√
fCR (1− fCR)

Ncm
. (6.28)

The errors calculated in this way are reported in the final column of Ta-

ble 6.3, following the corresponding values of fCR.

To avoid numerical artefacts due to binning when using fCR in the un-

binned likelihood analysis, we modelled fCR as a piece-wise linear function

of F606W with parameter values determined by fitting this function to the

reference values given in Table 6.3. The analytic function used for fCR

consists of two linear segments, with the switch occurring at the F606W

value F606W0 and corresponding fCR value fCR,0. We let F606W0 and

fCR,0 be free parameters of the fit, along with the slope a1 of the seg-
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Figure 6.4: Completeness reduction factor fCR due to proper motion
cleaning as a function of F606Wmagnitude. The analytic function (blue
curve) is shown for the best-fitting parameters determined by fitting the
binned values of fCR (black points) calculated in the calibration of the
cleaning procedure.

ment where F606W < F606W0 and the slope a2 of the other segment where

F606W ≥ F606W0. The best-fitting parameter values are given in Table 6.4,

and the corresponding best-fitting function is plotted in Fig. 6.4, along with

the values it was fitted to. The reduced chi-squared χν value (with ν = 10

degrees of freedom) is χν = 0.976, indicating a good fit.

The completeness reduction due to proper motion cleaning is accounted

for in our unbinned likelihood analysis after applying the photometric er-

ror distribution function, Eq. (6.1), to the cooling model. Note that the

error distribution is taken to depend on the input magnitudes, whereas the

completeness reduction factor should be treated as a function of the output

magnitudes after accounting for photometric errors (as fCR was calculated

directly from observations). After applying the error distribution to the
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cooling model, the resultant distribution function (which is a function of

the output magnitudes) is then multiplied by fCR to account for the com-

pleteness reduction in the unbinned likelihood analysis.

6.5 Models

We created white dwarf cooling models using the stellar evolution software

MESA [217–221]19. Using MESA, we ran a suite of white dwarf cooling sim-

ulations for different parameter values, varying the white dwarf mass, the

treatment of diffusion, and the thickness of the H envelope. This suite of

simulations was generated from an initial model of a young, hot white dwarf

that was created by simulating the pre-white dwarf evolution of a progen-

itor star. The simulation that produced this initial model is described in

Section 6.5.1. The white dwarf cooling models are described in Section 6.5.2.

6.5.1 Creation of Initial Model

The initial model for the white dwarf cooling simulations was created by

simulating the evolution of a 0.9 M⊙ progenitor star with parameters ap-

propriate for 47 Tuc from the pre-main sequence until the birth of the white

dwarf. This simulation was done using MESA version 10398 (mesa-r10398)

and was created from the MESA test suite example 1M pre ms to wd. We

modified the parameters of the 1M pre ms to wd inlist by changing the ini-

tial mass, the initial composition parameters, and the wind parameters. We

set the following initial parameters

initial_mass = 0.9d0

initial_z = 4.0d-3

initial_y = 0.256d0

and set Zbase (for use with Type 2 opacities) to be the same as initial z.

We used a Reimers mass loss scheme [229] on the RGB and a Blocker

mass loss scheme [230] on the AGB. Previous work has shown that stars in

19There is also a more recent sixth instrument paper [222]; however, it is only relevant
for MESA versions released later than the oldest version used in this work.
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47 Tuc lose most of their mass on the AGB [231], rather than the RGB, so

we set the scaling parameter values

Reimers_scaling_factor = 0.1d0

Blocker_scaling_factor = 0.7d0

for our prescriptions of mass loss via stellar winds. As we are not primarily

concerned with the details of stellar evolution before the white dwarf stage,

the particular choice of scaling factors is not a concern for this work; the

values simply need to be reasonable for 47 Tuc and produce a white dwarf

with a thick H envelope from which our set of white dwarf models can be

created.

A custom stopping condition was used to ensure that the simulation

ended shortly after the star became a white dwarf. The simulation ended

when the two conditions log Teff > 4.5 and log L < 2 were both met, with

the code for this implemented through the run star extras module. This

stopped the simulation before the luminosity of the white dwarf had dropped

into the luminosity range of interest for studying white dwarf cooling in 47

Tuc, and thus the output of this simulation can be used as a starting point to

generate white dwarf cooling models that span the entire luminosity range

of interest. In the end, the simulation of pre-main sequence to white dwarf

evolution produced a model of a newly born white dwarf with a mass of

0.5388 M⊙ and a thick H envelope.

6.5.2 White Dwarf Cooling Models

Starting from the model created by the simulation described in Section 6.5.1,

we generated additional initial models with different masses and envelope

thicknesses from which to begin the white dwarf cooling simulations. We

simulated the evolution of white dwarfs with these different parameter val-

ues using different treatments of diffusion as described below. Both the

procedures to modify the initial model and the main white dwarf cooling

simulations were performed using MESA version 15140 (mesa-r15140).

From the initial model of a 0.5338 M⊙ white dwarf, we created less

massive white dwarf models with masses of 0.5092, 0.5166, 0.5240, and
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0.5314 M⊙ using the relax mass scale control provided by MESA and

running a brief simulation in which the model was allowed to evolve for a

few short time steps to adjust to the change. Note that a mass of 0.5240M⊙

was chosen as one of the target mass values because this was the mass of the

model used in Obertas et al. [30], which was produced by a stellar evolution

simulation of a 0.974 M⊙ progenitor for 47 Tuc and was found by Obertas

et al. [30] to reasonably replicate the cooling curve of the old white dwarfs

in the same data as used in this work. The procedure to reduce the mass of

the initial model simply re-scaled the profile of the 0.5338 M⊙ input model

to the target mass, so like the 0.5338 M⊙ model, the less massive models

produced in this way also have thick H envelopes.

We found that the relax mass scale procedure was only able to suc-

cessfully re-scale models to a target mass that was lower than the mass of the

initial model. In order to extend the mass grid to masses above 0.5338 M⊙,

we thus created another, heavier initial model from which the simulations for

more massive white dwarfs could be generated. We created a 0.5644M⊙ ini-

tial white dwarf model using a simulation based on the test suite example

make co wd with the relevant parameters modified to make the simulation

appropriate for 47 Tuc. From the new 0.5644M⊙ initial white dwarf model,

we used the relax mass scale procedure described above to create mod-

els with white dwarf masses of 0.5462 and 0.5536 M⊙. We also checked to

confirm that relaxing the heavier initial white dwarf model down to lower

masses produced the same cooling models as starting from the 0.5388 M⊙

initial model. In total, we created white dwarf simulations for white dwarf

masses spanning the range 0.5092− 0.5535 M⊙ (inclusive) in increments of

0.0074 M⊙.

For each of these masses, models with thinner envelopes were created

by using the relax mass control. This removes mass from the white dwarf

via a wind, which takes the mass from the H envelope. For this procedure

the new mass is set to be just slightly smaller than the mass of the input

model, with the different being the amount of mass to remove from the H

envelope. As even the thickest envelopes only have a mass on the order of

10−4 times the total mass MWD of the white dwarf, the change to MWD
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due to reducing the mass of the envelope in this way is negligible in terms

of the effect that varying MWD can have on the cooling curves. For white

dwarfs with thick envelopes, the envelope thickness also decreases over time

at early times in the white dwarf’s evolution due to residual H burning near

the boundary of the He layer and H envelope. This residual H burning does

not change the total mass of the white dwarf, but it makes the envelope

thickness in general a function of time. To define a parameter quantifying

the thickness of the H envelope, we select a reference cooling time of 10 Myr

into the white dwarf cooling simulations at which to define the envelope

thickness parameter, and for this parameter we use the relative mass of the

H envelope qH =MH/MWD, where MH is the mass of the H envelope.

For each value of MWD, white dwarf evolution was simulated for a range

of qH values using three different treatments of diffusion: standard diffusion

as implemented by MESA, a custom modified treatment of diffusion, and

no diffusion. The diffusion equations solved by MESA implicitly assume an

ideal gas approximation. As we are interested in white dwarf evolution at

cooling times well after the phase transition from gas to liquid has occurred

in the white dwarf core, the ideal gas approximation should not be assumed

to hold throughout the duration of the white dwarf cooling simulations.

We thus consider a modified treatment of diffusion that corrects for non-

ideal gas effects. We do this by modifying the parameter SIG factor in

MESA’s diffusion solver routine, which by default is set equal to the inlist

control parameter diffusion SIG factor at every location in the star. In

our modified diffusion routine, this parameter is instead set to be

SIG factor = diffusion SIG factor×

0.3 t ≤ ton

1
[1+(Γk/c3)

c4 ]
t > ton

(6.29)

at each position cell indexed by k with plasma coupling parameter Γk, where

ton = 5× 103 yrs and c3 and c4 are parameters that can be set in the inlist

using custom x ctrl inlist control parameters. The case of t ≤ ton is simply

to give the model time to adjust before implementing the main modified

diffusion code. The initial relaxation period t ≤ 104 yrs, which includes all of
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the period t ≤ ton and the very early part of the main simulation, is removed

from each cooling model before performing the analysis, so continuity at

t = ton is not a concern. The modification to diffusion given by Eq. (6.29)

uses a very general functional form. We consider a fiducial case where the

parameters are set to be c3 = 0.0625 and c4 = 1. We obtained this function

form and estimated the value of c3 (to set as the fiducial value) by performing

a small suite of molecular dynamics simulations of hydrogen-helium plasmas

with different values of Γ. We implement our modified diffusion routine

via the other diffusion subroutine in run stars extras. The treatment

of element diffusion in MESA and our modified treatment of diffusion are

explained in more detail in Appendix A.2.

The white dwarf cooling simulations were all based on the test_suite

example wd_cool_0.6M provided by MESA with the modifications described

above. We also set use_Skye to be false20 and set Zbase to be 0.004, the

same value used for the simulation that produced the initial 47 Tuc white

dwarf model. These simulations were run for 12.5 Gyr of cooling time or

until Teff reached a lower limit of 2, 000 K, whichever condition was reached

first. These stopping conditions enabled the white dwarf models to become

sufficiently faint to span the entire magnitude range of our data space while

remaining within the parameter regime limits of MESA.

The cooling models produced by these simulations describe how lumi-

nosity changes over time, and the cooling curves showing this relation for the

different parameter combinations that were simulated are plotted in Fig. 6.5.

The different curves within a given sub-figure show the effect of varying the

envelope thickness for a fixed white dwarf mass and diffusion treatment.

The different rows of sub-figures show the effect of varying the white dwarf

mass, with the mass increasing from the top to bottom row; only a few

select masses are shown for the sake of visualisation. The different columns

correspond to the different diffusion scenarios: no diffusion (left), modified

diffusion (middle), and standard diffusion (right).

20The Skye equation of state was experimental in mesa-r15140, the version of MESA
used for our cooling simulations.
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Figure 6.5: Theoretical cooling curves for different model parameters
varied in MESA simulations. Each subplot shows cooling curves for
white dwarfs with the same mass (MWD) and diffusion treatment but
different H envelope thickness at a reference cooling time of 10 Myr.
The envelope thickness is indicated in the legend by the parameter
qH , which gives the ratio of the mass of H in the white dwarf to the
total white dwarf mass at the reference time. Each row corresponds to
a fixed white dwarf mass, which from top to bottom are 0.5166 M⊙,
0.5314 M⊙, and 0.5462 M⊙. Each column corresponds to a particular
diffusion scenario, which from left to right are no diffusion, our custom
modified diffusion, and standard MESA diffusion.
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In the standard diffusion scenario, the faster diffusion, in particular at

the boundary of the H envelope, causes the white dwarfs to undergo stronger

residual H burning at early times and finish this residual burning at earlier

times than in the other diffusion scenarios considered. In the modified treat-

ment of diffusion, it takes longer for the elements to diffuse, so the residual

H burning is delayed, which results in a cooling curve more similar to the

scenario of no diffusion at early times.

The final bump in the cooling curve that occurs after a few billion years

of cooling time in Fig. 6.5 (in all of the plots shown) corresponds to the onset

of convective coupling of the envelope, which also approximately coincides

with the onset of core crystallisation for white dwarfs in 47 Tuc [30]. This

feature is sensitive to the envelope thickness and occurs at a luminosity

where there are a large number of white dwarfs in the deep ACS data set.

6.6 Birthrate

The white dwarf birthrate for our sample is one of the parameters that is

determined in the unbinned likelihood analysis described in Section 6.7. Be-

fore performing that analysis, however, we first determine a prior for the

birthrate using observations of red giant stars from Gaia EDR3 data in the

HST footprint. Since the members of a star cluster population are approxi-

mately the same age and the stars evolve quickly through the evolutionary

stages between the end of the main sequence stage and start of the white

dwarf stage, the rate of stars leaving the main sequence should be approxi-

mately the same as the white dwarf birthrate, and this rate can be measured

using stars on the RGB.

The HST data cannot be used for this birthrate calculation because the

red giant stars are so bright that they saturate the deep observations, leading

to high incompleteness. Instead, we must use another dataset and ensure

that we select stars over the same field of view as was used for the HST

white dwarf observations. Gaia EDR3 observations are essentially complete

for 17 < G < 12, which spans nearly the entire RGB of 47 Tuc, and have
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the most precise astrometry ever measured21, making Gaia EDR3 a good

dataset for this purpose.

We first retrieved all Gaia EDR3 sources within a radius22 far enough

from the centre of 47 Tuc that the selection included the entire HST field of

view. The Gaia data is publicly available and was retrieved through Vizier.

We then selected the Gaia EDR3 sources within the field boundaries of

the HST ACS/WFC observations of our white dwarf data by performing

a cut in position space to get a sample of Gaia EDR3 sources in the HST

footprint. To get the field boundary for the full HST observation, we merged

the boundaries of all of the orbits. The observational plan grouped the orbits

into 24 visits, and the boundaries for the 24 visits (for which the observing

regions of the constituent orbits23 have been merged) are publicly available

through MAST. We merged the boundaries provided by MAST for these

visits to get the boundary for the final stacked image that combined the

observations from all of the orbits. The final merged boundary is shown as

a red curve in Fig. 6.6, where it is plotted over the Gaia EDR3 data (shown

as the black points). Figure 6.6a shows the Gaia EDR3 data before selecting

sources within the HST field boundary; this plot is approximately centred on

the centre of 47 Tuc and shows the location of the HST observations relative

to the cluster centre. Figure 6.6b shows only the Gaia EDR3 sample after

selecting sources within the HST field boundary, with the plot approximately

centred on the centre of the HST field boundary.

The dependence of the number density and completeness on the radial

distance from the cluster centre is clearly shown in Fig. 6.6a. The number

density in general increases as the distance to the cluster centre decreases;

however, overcrowding near the very centre of the cluster notably reduces

the completeness in this region, leading to an absence of stars observed at

the centre where the cluster is most densely populated. The dependence

21Though the more recent Gaia DR3 is now available, the astrometric measurements
are the same as Gaia EDR3.

22A value of 5◦ was used for this radius, but the exact value is not important as long
as it is large enough to include the entire HST field of view.

23Each visit consists of a group of five orbits (except for Visit 24, which consists of six
orbits). See Kalirai et al. [223] for details.
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(a) Zoomed-out view before selection.

(b) Zoomed-in view after selection.

Figure 6.6: Field boundaries (red curves) for the HST ACS/WFC
deep observations overlaid on Gaia EDR3 observations (black points)
of 47 Tuc. The Gaia EDR3 sources that are located within these bound-
aries are used for the birthrate calculations.
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of the completeness and thus photometric error distribution on the radial

coordinate from the cluster centre would be a concern if the region observed

to gather the white dwarf data were closer to the centre; however, the field

of view for the HST observations considered in this chapter is far enough

away from the cluster centre that the photometric error distribution does

not depend appreciably radius. The dependence of the number density on

radius can also be seen in Fig. 6.6b, where the number density of the data

points increases with increasing values of right ascension, which correspond

to positions closer to the cluster centre within the HST field region shown

in that plot. Since the photometric error distribution does not depend on

radius, the dependence of the number density on radius does not need to be

accounted for in the unbinned likelihood analysis.

From the sample of Gaia EDR3 sources within the HST field boundaries,

we then selected RGB stars using a cut in the CMD. The main boundary

regions for selecting RGB stars is shown in Fig. 6.7 by the dashed red curves.

Figure 6.7 also shows stellar evolution models (solid curves) for various ini-

tial masses plotted over the Gaia EDR3 data (black points). The models are

shown in Fig. 6.7 from the end of the main sequence stage (taken to be when

the mass fraction of hydrogen at the centre of the star drops below 10−4)

until the tip of the RGB. The birthrate is calculated by dividing the number

NRGB of stars observed in the RGB boundary region by the time tRGB it

takes a star to traverse this region according to the models, so (the prior

value for) the birthrate is given by Ṅ0 = NRGB / tRGB. To access the uncer-

tainty in the birthrate, we calculated the birthrate using models of different

initial masses and using different RGB boundary definitions consisting of

sub-regions of the main boundary regions shown in Fig. 6.7.

The stellar evolution models used to calculate the birthrate (and shown

in Fig. 6.7) were created by running MESA simulations analogous to the

simulation described in Section 6.5.1 (which created the initial white dwarf

model from which the white dwarf cooling simulations were generated) but

with different initial masses. Like the simulation of Section 6.5.1, these sim-

ulations were based on the MESA test_suite example 1M_pre_ms_to_wd

with composition appropriate for 47 Tuc (i.e. with an initial_z of 4×10−4
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(a) Selection excluding red-giant bump.
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(b) Selection including red-giant bump.

Figure 6.7: CMD selections of RGB stars for birthrate calculations.
The black points correspond to Gaia EDR3 data in the HST footprint,
while the dashed red curves indicate the boundaries to select the RGB
stars. From right to left, the solid curves correspond to stellar evolution
models with initial masses of 0.80, 0.85, 0.90, 0.95, and 1.00 M⊙.
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and initial_y of 0.256) and were run using mesa-r10398. The magnitudes

(and colour) in the Gaia bandpass filters were calculated for these MESA

evolution models using bolometric corrections. We used the bolometric cor-

rections24 of Chen et al. [232] from PARSEC [233] calculated using synthetic

spectra from a mix of the ATLAS9 ODFNEW [234] and PHOENIX BT-

Settl [235] spectral libraries (combined with the spectra from COMARCS

[236, 237] for cool giants and Chen et al. [238] for very hot stars) with the

transmission curves of the Gaia EDR3 bandpass filters [239, 240] provided

on the ESA/Gaia website25. We used the same values for distance modulus

and colour excess as are used in the unbinned likelihood analysis for the

main white dwarf data, i.e. µ = 13.24 and E(B − V ) = 0.04, and we like-

wise used the same extinction curves, i.e. those of Cardelli et al. [38] and

O’Donnell [39] with a total extinction26 of AV = 0.124 and a relative visi-

bility of RV = 3.1. The procedure for applying the bolometric corrections is

essentially the same as what is described in Section 6.7 for the white dwarf

models; we simply used different filters and got the corresponding bolometric

corrections from a different source for the RGB models used here compared

to the white dwarf models used in the main analysis later.

The main models used for the birthrate calculations were those with ini-

tial masses of 0.85, 0.90, and 0.95M⊙. The models shown in Fig. 6.7 indicate

that stars with an initial mass of ∼ 0.85 M⊙ are just beginning to leave the

main sequence, which is in keeping with expectations from other work (e.g.

[241–244]). The 0.80 M⊙ model is only shown for reference to illustrate the

mass-dependence of the main sequence turnoff; it was not used for any of the

birthrate calculations because the models indicate that stars with mass this

low in 47 Tuc have not yet left the main sequence. The 1.00 M⊙ model was

only used when calculating birthrates for truncated boundary regions that

do not include its subgiant stage (i.e. boundary selection with a maximum

value of G ≤ 16.4). The models with initial mass ≥ 0.85 M⊙ align well with

24Accessed through http://stev.oapd.inaf.it/cgi-bin/cmd using version 3.4. This
particular version is available at http://stev.oapd.inaf.it/cgi-bin/cmd_3.4.

25https://www.cosmos.esa.int/web/gaia/edr3-passbands
26The total extinction is related to the colour excess through the relative visibility by

the equation AV = RV E(B − V ), and a value of RV = 3.1 is typical for the Milky Way.
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the observed RGB sequence aside from the discrepancy between the loca-

tion of the red-giant bump in the data and the corresponding feature in the

models. The red-giant bump is the accumulation of stars located at G ∼ 14

on the RGB of the data in Fig. 6.7 and corresponds to a temporary decrease

in luminosity (and thus a “bump” in the luminosity function). The occur-

rence of this feature is related to the H-burning shell passing through the

composition gradient left over by the convective envelope where it reached

its maximum depth [245]. The location of the red-giant bump is thus sensi-

tive to the details of mixing processes beyond convective boundaries, which

current stellar evolution models struggle to accurately predict [246]. The

discrepancy between observations and model predictions of the luminosity

of the red-giant bump in globular clusters has been identified repeatedly in

the literature, with a variety of different potential explanations suggested

(e.g. [246–252]), and it remains an open issue. However, more accurately

modelling the location of this feature is not needed for our purposes as long

as the RGB boundary region is chosen appropriately.

The boundary region shown in Fig. 6.7a selects stars at the early stage of

evolution along the RGB and excludes the red-giant bump feature of both

the data and the models. This boundary region was chosen to maximise

the number of stars selected while not needing to be concerned about the

misalignment of the red-giant bump between the models and the data. For

each model used (as described above), we calculated NRGB / tRGB for this

region as well as sub-regions where the maximum G value (at which the

bottom horizontal boundary line in Fig. 6.7a was drawn) was reduced in

increments of 0.1 from 16.5 to 16.0. This varies the boundary close to the

subgiant branch, which stars evolve through more slowly than the RGB

stage. The spread in values from these calculations was taken to be the 3σ

range of the Gaussian prior for the birthrate (i.e. the range from Ṅ0 − 3σṄ
to Ṅ0 + 3σṄ ), yielding a prior birthrate of Ṅ0 = 2.21 × 10−7 yr−1 with

σṄ = 0.04× 10−7 yr−1.

As a check, we considered an extended RGB boundary region shown

in Fig. 6.7b that includes the red-giant bump of both the data and the
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models27 and performed a similar set of calculations in which the boundary

regions of both Fig. 6.7a and Fig. 6.7b were truncated at the maximum G

end in increments of 0.25 from 16.5 to 16.0, with NRGB / tRGB calculated

in each of these cases for each relevant model. Considering the spread of

values for just the extended regions gives a much larger birthrate estimate

of Ṅ = (2.43± 0.03) × 10−7 yr−1, but we do not consider this estimate

reliable due to the discrepancy between the models and data in this region.

Considering both the shorter and extended RGB boundary regions gives a

wider spread of values and thus a larger value of σṄ in addition to a larger

value of Ṅ0 compared to considering just the shorter regions, yielding an

estimate of Ṅ = (2.31± 0.07)× 10−7 yr−1.

This tendency to shift the estimate of the birthrate to larger values when

the RGB boundary region is extended to include the red-giant bump is worth

keeping in mind when considering the results of this chapter. However,

including the estimates from the extended RGB regions likely overestimates

the uncertainty in the birthrate. It is important to have a tight prior on the

birthrate for the unbinned likelihood analysis, otherwise the birthrate will

tend to simply be adjusted so that the number of white dwarfs predicted by

the likelihood function matches the total number of white dwarfs observed in

the data space, which effectively prioritises fitting the normalisation constant

rather than the morphology of the cooling curve and is weighted towards the

faintest end of the cooling sequence where there are the most white dwarfs

but also the poorest completeness. We consider the birthrate estimate given

by just the shorter RGB regions that exclude the red-giant bump to be the

most accurate and thus use the result Ṅ = (2.21± 0.04)× 10−7 yr−1 given

by those calculations as the prior for the birthrate in the unbinned likelihood

analysis of Section 6.7.

27Using a boundary region that includes the red-giant bump in the data but excludes it
in the models gives a larger birthrate estimate than regions that either include or exclude
the red-giant bump in both the data and models, but that is not a reasonable selection.
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6.7 Unbinned Likelihood Analysis

We perform an unbinned likelihood analysis similar to that of Goldsbury

et al. [215]. As the data used in our analysis consists of observations far

from the centre of 47 Tuc, where the density profile depends very little

on the distance R from the cluster centre, we take the density profile to

be uniform. The distribution of photometric errors is also approximately

independent of R for our data, so the number density distribution function

(and thus likelihood) does not depend on R for our analysis.

For the analysis performed in this chapter, the number density distribu-

tion function f for the magnitudes m1 = F606W and m2 = F814W is given

by the expression

f(m1,m2; θ) = Ṅ fCR (m1)

∫ ∞

−∞

∫ ∞

−∞
fM
(
m′

1,m
′
2; θM

)
× E

(
m1 −m′

1,m2 −m′
2; m

′
1,m

′
2

)
dm′

1 dm
′
2,

(6.30)

where θ denotes the set of parameters that the full model depends on, θM is

the set of all model parameters except the birthrate Ṅ , E is the photometric

error distribution function, and the quantity Ṅ fM is the theoretical num-

ber density distribution function given by the model before accounting for

photometric errors. The function fM gives the rate of change of the cooling

time with respect to magnitude and depends only on the subset of parame-

ters θM . The completeness correction factor fCR has been inserted into the

expression for f(m1,m2; θ) given by Goldsbury et al. [215] to account for

the additional cleaning procedure performed in our work. Note that fCR is a

function of the magnitude m1 after accounting for photometric errors. The

primed magnitudes m′
1 and m′

2 are the magnitude values before accounting

for photometric errors, while the magnitudes m1 and m2 without a prime

symbol are the magnitude values after accounting for photometric errors.

In the notation of Goldsbury et al. [215], the expression giving fM would

be written as fM = dt
dm′

1dm
′
2
for a cooling time dt over a cell of volume

dm′
1dm

′
2 in magnitude-magnitude space. Since m′

1 and m′
2 are dependent
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variables, the expression for fM is written more formally as

fM
(
m′

1,m
′
2; θM

)
=

dt

dm′
1

δ
[
m′

2 −m2,mod

(
m′

1; θM
)]
, (6.31)

where m2,mod (m
′
1; θM ) is the function that relates m′

2 to m
′
1 for a particular

cooling model (parameterised by θM ). The set of parameters represented by

θM consists of the parameters of the theoretical cooling models (i.e. MWD,

log10 qH , and diffusion scenario), as well as the distance d to 47 Tuc (from

Earth) and the colour excess E(B − V ) due to reddening. The full set of

parameters represented by θ additionally includes the white dwarf birthrate,

such that θ =
{
Ṅ , θM

}
.

Note that the different diffusion scenarios can equivalently be viewed as

different models (in a model comparison problem) or as a single model of the

modified diffusion parameterised by a diffusion parameter (in a parameter

estimation problem), with the cases of standard diffusion and no diffusion

being extremum cases of this model. The parameters d and E(B − V ) are

needed to move the models from theory space to data space, as they are

used to determine the magnitudes m′
1 and m′

2 predicted by a model (before

accounting for photometric errors). Since the publication of Goldsbury et al.

[215], Gaia observations have been used to determine the distance to 47 Tuc

to much higher accuracy, d = 4.45± 0.13 kpc [214], than was known at the

time the work of Goldsbury et al. [215] was done, so there is less concern

about its value in our work. Likewise, varying E(B − V ) over the very

limited range of allowable values for 47 Tuc, E(B − V ) = 0.04± 0.02 [210],

would have little effect on our results while increasing the computational

cost of the analysis (if added as an additional axis of the parameter grid).

We thus keep d and E(B − V ) fixed at values of d = 4.45 kpc [214] and

E(B − V ) = 0.04 [210] in our analysis. The predicted magnitudes are

calculated from the relevant theory-space model variables using bolometric

corrections and these d and E(B − V ) values.

The bolometric correction for a particular filter labelled by the index i

is the difference between the bolometric magnitude and absolute magnitude
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for that filter,

BCi =Mbol −Mi, (6.32)

where Mbol is the bolometric magnitude and Mi is the absolute magnitude

in the ith filter. For a fixed metallicity, BCi is a function of the effective

temperature Teff and surface gravity g, which the white dwarf cooling models

give as a function of cooling age. The bolometric magnitude is given by

Mbol =Mbol,⊙ − 2.5 log

(
L

L⊙

)
, (6.33)

where Mbol,⊙ is the absolute bolometric magnitude for the nominal solar

luminosity L⊙ and L is the luminosity of the white dwarf. According to

the IAU 2015 resolution [69], the nominal solar luminosity is L⊙ = 3.828×
1026 W, corresponding to Mbol,⊙ = 4.74 mag.

The apparent magnitude predicted by a model in the ith filter is thus

m′
i =Mbol − BCi + µ+Ai, (6.34)

where µ is the distance modulus, given by

µ = 5 log10

(
d

10 pc

)
, (6.35)

and Ai is the extinction in the ith filter due to interstellar reddening, which

depends on E(B − V ) through the extinction law. We take the distance to

be d = 4.45 kpc [214], which gives a distance modulus of µ = 13.24, and

we take the colour excess to be E(B − V ) = 0.04 [210]. The extinctions in

the filters F606W and F814W were determined using the extinction law28

of Cardelli et al. [38] and O’Donnell [39] with a total V -band extinction of

AV = 0.124 and relative visibility of RV = 3.1, which is typical of the Milky

Way. The relative visibility relates the total extinction to the colour excess

through the expression AV = RV E(B − V ). The resultant values for the

28The extinction values were retrieved using http://stev.oapd.inaf.it/cgi-bin/cmd_
3.7, which uses this extinction law.
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extinctions Ai are

AF606W = 0.59696AV , (6.36)

AF814W = 0.90328AV . (6.37)

We use bolometric corrections calculated by the procedure described in Hol-

berg and Bergeron [253], which is an extension of the earlier work of Bergeron

et al. [254], for pure-hydrogen models and the relevant HST filters29. These

bolometric corrections for DA white dwarfs were calculated using the mod-

els of Blouin et al. [255] at low temperatures Teff < 5, 000 K, the models of

Bédard et al. [109] at high temperatures Teff > 30, 000 K, and the models of

Tremblay et al. [256] at intermediate temperatures. They also incorporate

the Lyman alpha profile calculations of Kowalski and Saumon [257].

With the procedure established for calculating the distribution function

given by Eq. (6.30), the unbinned likelihood can then be calculated from the

distribution function. The unbinned likelihood L is given by the expression30

lnL (θ) =
∑
i

ln f (m1i,m2i; θ)−Npred (θ) , (6.38)

where lnL is the natural logarithm of the likelihood, i is an index that enu-

merates the data points (i.e. the white dwarfs observed within the bound-

aries defining the data space), f(m1i,m2i; θ) is the number density distribu-

tion function evaluated at the magnitude values m1i and m2i of the ith data

point, and Npred is the total number of white dwarfs predicted by the model

to be in the data space. Npred is calculated by integrating f(m1,m2; θ) over

29Tables with bolometric and absolute magnitudes for a number of photometric sys-
tems calculated using the same atmosphere models are available at https://www.astro.
umontreal.ca/~bergeron/CoolingModels/. Absolute magnitudes in the HST filters rele-
vant for this work were provided by Pierre Bergeron upon request.

30As was done in Goldsbury et al. [215], an additive constant that does not depend on
the model parameters has been dropped from the expression for lnL. See Goldsbury et al.
[215] for a full derivation of this expression.
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the whole data space,

Npred (θ) =

∫∫
data space

f (m1,m2; θ) dm1dm2. (6.39)

The data space used for this analysis is a truncated version of the white

dwarf data space shown in Fig. 6.1 that ends at a horizontal lower limit

of F606W = 28.5 instead of extending to the limit of F606W = 29.0 used

in the cleaning procedure. This truncated data space region is used to

ensure that the completeness (as a function of F606W magnitude) remains

reasonable even after applying the completeness correction factor. To extend

the analysis to larger magnitudes, there is a trade-off between the improved

statistical power of having more objects vs the reduced completeness and

increased spread of the error distribution at larger magnitudes. Multiple

cut-offs for the data space between F606W of 28.0 and 29.0 were tested,

and it was found that a cut-off of 28.5 optimised this trade-off while still

extending to a large enough magnitude to capture the relevant feature in

the cumulative luminosity function associated with convective coupling.

The data space ultimately used in the unbinned likelihood analysis is

shown in Fig. 6.8. The data space boundaries are indicated by the solid red

curves enclosing most of the 47 Tuc white dwarf cooling sequence. For ref-

erence, a cooling model as a function of input magnitudes before accounting

for the distribution of photometric errors is shown as a solid orange curve

that passes through the middle of the data space. The data shown in Fig. 6.8

are the HST data after applying the full data cleaning procedure described

in Section 6.4. It can be seen in Fig. 6.8 that the reference model aligns

well with the observed white dwarf cooling sequence of 47 Tuc, falling ap-

proximately along the centre of this sequence. For the model parameter

ranges considered in this work, there is little variation in the correspond-

ing model curve in the CMD, so Fig. 6.8 looks similar for every model in

our grid of cooling models. Note the data space boundaries are shown in

colour-magnitude space in Fig. 6.8 for the ease of visualisation; however, the

analysis was actually performed in magnitude-magnitude space.
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Figure 6.8: Data space used in unbinned likelihood analysis. The
boundaries of the data space are indicated by the solid red curves. A
reference cooling model in terms of input magnitudes (before account-
ing for photometric errors) is shown as the solid orange curve passing
through the data space. The data space boundaries and model are
shown overlaid on the cleaned HST data (points).
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To maximise the log-likelihood, we first evaluate the likelihood over a grid

of values for the 3 parameters MWD, diffusion, and qH with the birthrate

fixed to the value Ṅ0 calculated from stars leaving the main sequence. We

then analytically solve for the birthrate that optimises the likelihood at

each point on the 3-parameter grid and find the combination of the other

parameters that give the maximum value of the likelihood after re-scaling the

birthrate. The birthrate is treated in this way instead of as an additional axis

of the parameter grid in order to reduce the memory usage of the procedure.

Let Ṅ0 be the fixed birthrate used to calculate the likelihoods on the 3-

parameter grid described above, and let lnL0 and Npred,0 be the correspond-

ing (natural) log-likelihood and total predicted number of white dwarfs in

the data space. The likelihood for this fixed birthrate is given by

lnL0 =

Nobs∑
i=1

ln f0,i −Npred,0, (6.40)

where f0,i is the distribution function evaluated at the magnitude values of

the ith data point with a birthrate of Ṅ0. Let a be a factor that re-scales

the birthrate such that

Ṅ = a Ṅ0. (6.41)

We assign a Gaussian prior to the birthrate such that Ṅ ∼ N
(
Ṅ0, σṄ

)
and

account for this prior in the expression for lnL, resulting in the expression

lnL = lnL0 +Nobs ln (a)−Npred,0 (a− 1)− 1

2

(
Ṅ0

σṄ

)2

(a− 1)2 . (6.42)

The values of Ṅ0 and σṄ that parameterise the prior distribution for Ṅ were

determined using the procedure described in Section 6.6. Note that if the

priors for the other parameters represented by θ (aside from the birthrate)

are taken to be uniform, then the logarithm of the joint posterior probability

distribution for the parameters is equal to lnL as given by Eq. (6.42) up to

an additive constant (which includes the uniform prior distributions and an

overall normalisation term).
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The expression for lnL given by Eq. (6.42) can be optimised analyti-

cally with respect to the re-scale factor a without needing to evaluate the

distribution function Eq. (6.30) for different birthrate values, which reduces

the computational cost of the analysis. The extremum values for lnL with

respect to the birthrate re-scale factor occur when

a =
1

2
(1− b)± 1

2

√
(1− b)2 + 4 b

Nobs

Npred,0
, (6.43)

where the constant b has been defined to be

b ≡ Npred,0

(
σṄ
Ṅ0

)2

. (6.44)

To find the combination of parameters that maximises the likelihood,

i.e. the maximum likelihood estimates of the parameters, we first calculate

lnL0 at each point on the 3-parameter grid as given by Eq. (6.40). At each

point on this parameter grid, we then calculate a as given by Eq. (6.43)

and use the result to calculate lnL as given by Eq. (6.42). Finally, we find

the combination of parameters on the parameter grid that maximises this

new lnL, and we get the corresponding maximum likelihood estimate of the

birthrate from Eq. (6.41) using the optimal value of the re-scale factor for

that parameter grid point.

The results of the unbinned likelihood analysis are presented in Sec-

tion 6.8, with the results of the procedure to find the optimal parameters

using the likelihood re-scaling technique described above presented in Sec-

tion 6.8.1. The optimal model found by this procedure is compared to the

data in Section 6.8.2 by comparing the predicted and empirical (inverse)

cumulative luminosity functions.
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6.8 Results

6.8.1 Likelihood Distribution

The distribution of likelihood values after locally optimising the birthrate

at each point on the cooling model parameter grid is shown in Fig. 6.9. The

quantity L plotted in Fig. 6.9 is really the likelihood plus birthrate prior

after re-scaling the birthrate, i.e. L as given by Eq. (6.42), evaluated at

each point on the parameter grid using the value of the birthrate re-scale

factor that maximises L for that combination of cooling model parameter

values. To make the significance of the likelihood values clear, L has been

scaled by the value L̂ of its global maximum across the entire parameter

grid, and the distribution of L/L̂ values is shown as a filled contour plot

with the levels corresponding to the σ-level values of the similarly scaled

probability density for a two-dimensional (spherically symmetric) normal

distribution. Letting p denote the probability density of a two-dimensional

normal distribution and p̂ denote the maximum value of p, the value of the

scaled probability density corresponding to the level nσ σ is simply given by

p̂/p = exp
(
−0.5n2σ

)
. More specifically, the contour levels corresponding to

1, 2, 3, 4, and 5 σ in Fig. 6.9 are drawn at values of −0.5, −2.0, −4.5, −8.0,

and −12.5 (from darkest to lightest region).

Each plot in Fig. 6.9 corresponds to a slice in the distribution for a

particular diffusion scenario: no diffusion (top), modified diffusion (middle),

and standard diffusion (bottom). The likelihoods in these three plots are all

scaled by the same value L̂, which is the global maximum across the different

diffusion scenarios (as well as with respect toMWD and log10 qH); this global

normalisation makes these plots a meaningful comparison of the different

diffusion scenarios. From Fig. 6.9, it can be seen that the cases of modified

diffusion and standard diffusion give similarly likely results for similarMWD

and log10 qH values, though with slightly smaller log10 qH values favoured

in the case of modified diffusion. The 2 σ level contains both the case of

standard diffusion with MWD = 0.5314 M⊙ and log10 qH between −3.65

and −3.55 and the case of modified diffusion with the same mass value

MWD = 0.5314 M⊙ and log10 qH between −3.75 and −3.60. Even the 1 σ
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level contains both the case of standard diffusion (with MWD = 0.5314 M⊙

and log10 qH between −3.60 and −3.55) and the case of modified diffusion

(with MWD = 0.5314 M⊙ and log10 qH = −3.65). Similar to the case of

modified diffusion, the case of no diffusion also favours slightly lower log10 qH

values than the case of standard diffusion, though the case of no diffusion

is overall less likely than modified or standard diffusion, with the case of no

diffusion not included within the 2 σ level for any combination of MWD or

log10 qH values.

It should be emphasised that the filled contours in Fig. 6.9 indicate

ranges of probability density values, not regions of enclosed probabilities, so

they are not credible regions. The distribution shown in Fig. 6.9 is also not

quite the joint posterior distribution distribution; rather, it is a distribution

of the local maximum of the posterior with respect to birthrate at each

point on the parameter grid. Since the prior for the birthrate is a narrow

Gaussian, this is expected to be very similar to the posterior distribution

after marginalising over the birthrate. This marginal posterior is shown in

Fig. 6.10, which confirms the expected similarly of these two distributions.

Fig. 6.10 is analogous to Fig. 6.9, with contours drawn at the same levels,

but for the marginal posterior density distribution p instead of L. Like

Fig. 6.9, the filled contours in Fig. 6.10 are also not credible regions, though

the proper credible regions would be expected to be similar for a posterior

distribution that is approximately a normal distribution in the remaining

parameters.

Though the quantity plotted in Fig. 6.9 is not quite the posterior dis-

tribution, the location of its maximum value on the parameter grid is the

same as the location at which the posterior probability density distribution

is maximised (and the global maximum L̂ is equal to the maximum value of

the full joint posterior distribution). We find that L̂ corresponds to the case

of standard (fully on) diffusion with parameter values ofMWD = 0.5314M⊙

and log10 qH = −3.55 (corresponding to qH = 2.82×10−4) on the parameter

grid and a birthrate of Ṅ = 2.7 × 10−7 yrs−1 after re-scaling. The corre-

sponding value of the log-likelihood is ln L̂ = 5385.35. These maximum

likelihood estimate results are summarised in Table 6.5.
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Figure 6.9: Likelihood (including birthrate prior) locally maximised
with respect to birthrate at each location on the parameter grid. The
likelihood has been scaled by its global maximum across the parameter
grid (including different diffusion scenarios), with contours drawn at the
values of the analogously scaled probability density of a two-dimensional
normal distribution evaluated at 1, 2, 3, 4, and 5 σ (darkest to lightest).
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Figure 6.10: Joint posterior probability density distribution after
marginalising over the birthrates. The distribution as a function of
white dwarf mass (MWD) and envelope thickness (qH) is shown for
each diffusion scenario. The probability density (p) has been scaled by
its maximum value (p̂) across all diffusion scenarios so that the plotted
quantity is p/p̂. The filled contours are drawn at level values corre-
sponding to the σ levels for a two-dimensional normal distribution.
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Parameter Value

Diffusion scenario Standard diffusion
MWD 0.5314 M⊙

log10 qH −3.55

Ṅ 2.27× 10−7 yrs−1

ln L̂ 5385.35

Table 6.5: Maximum likelihood estimates of parameters and corre-
sponding log-likelihood value from unbinned likelihood analysis. These
are the parameter values and likelihood of the best-fitting model.

6.8.2 Best-Fitting Model

The inverse cumulative luminosity function, i.e. the inverse of the cumula-

tive number distribution of white dwarfs in the data space as a function of

magnitude, is shown in Figs. 6.11 and 6.12 for the best-fitting model from

the unbinned likelihood analysis (red curve) in comparison to the empirical

distribution for the HST data (black points) that the models were fitted to.

The cumulative number as a function of magnitude for the model is given

by integrating the number density distribution function,

N(m1; θ) =

∫ m1

−∞
dm∗

1

∫ ∞

−∞
dm2 f(m

∗
1,m2; θ) (6.45)

where N is the (predicted) number of white dwarfs in the data space with

magnitude ≤ m1 in filter 1 (in this case F606W) and f(m1,m2; θ) is the

number density distribution function given by Eq. (6.30) evaluated over the

(m1,m2) coordinates of the data space and equal to zero outside of the data

space. An equivalent expression for the cumulative number distribution as a

function of m2 can be written by swapping the indices 1 and 2 in Eq. (6.45).

Note that the cumulative number distribution is proportional to the

white dwarf birthrate through the proportional dependence of f(m1,m2) on

the birthrate; a larger birthrate would shift the whole model distribution to

the right in Figs. 6.11 and 6.12, while a smaller birthrate would shift it to

the left. The other model parameters that were varied in the analysis affect
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Figure 6.11: Inverse cumulative luminosity function for F606W mag-
nitude of data (black points) compared to optimal model determined
by the unbinned likelihood analysis (red curve).
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Figure 6.12: Inverse cumulative luminosity function for F814W mag-
nitude of data (black points) compared to optimal model determined
by the unbinned likelihood analysis (red curve).
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Magnitude Variable p-value

F606W 0.077
F814W 0.041

Table 6.6: Results of KS tests comparing the one-dimensional
marginal cumulative probability distribution functions predicted by the
optimal model to the corresponding empirical distribution.

the morphology of the distribution. The cumulative number distribution for

the data is given by simply counting a list of the data points ordered by

magnitude. The incompleteness of the data is accounted for in the distri-

bution functions of the models, so it does not need to be corrected for in

plotting the distribution of the data in Figs. 6.11 and 6.12.

It can be seen from Figs. 6.11 and 6.12 that the optimal model from the

unbinned likelihood analysis well reproduces the empirical distribution for

most of the white dwarf data space, which is indicative of a good fit to the

data. As a simple quantitative check of the goodness-of-fit of the optimal

model to the data, we performed a one-sample Kolmogorov-Smirnov (KS)

test for the cumulative marginal probability distribution with respect to

each magnitude (after integrating over the other magnitude). Each KS tests

compares the cumulative probability density function predicted by the model

for a given magnitude to the empirical cumulative fraction as a function of

that magnitude. The p-value returned by the one-sample KS test gives the

probability of drawing a sample from the model distribution for which the

corresponding sample distribution differs from the model distribution by at

least as much as the observed empirical distribution differs from the model

distribution. Very small p-values indicate a low probability that the data

was drawn from the model distribution and thus a poor fit, while larger p-

values are expected if the data was drawn from the model distribution (i.e.

if the model distribution and empirical distribution are equivalent) and thus

indicate a good fit. The p-values from these KS tests are given in Table 6.6.

The large p-values (well above a reasonable threshold of 10−4) in both cases

indicate a good fit.
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Note that the distributions compared by each KS test are cumulative

fractions normalized to unity over the magnitude range, rather than the

cumulative number distributions as shown in Figs. 6.11 and 6.12. These

KS tests specifically assess the morphology of the (inverse) cumulative lu-

minosity function with respect to a particular magnitude for the optimal

combination of cooling model parameters (MWD, qH) and diffusion scenario.

The birthrate parameter simply re-scales the total number of white dwarfs

predicted by the model (i.e. the normalization of the number density distri-

bution), but the KS test is applied to the probability distribution function

(normalized to unity). Thus, while the birthrate was important in determin-

ing the optimal cooling model using the unbinned likelihood analysis, it does

not directly affect the morphology assessed by the KS test. Nonetheless, we

note that the birthrate found for the optimal model only deviates from the

prior value by

Ṅ − Ṅ0 = 1.5σṄ , (6.46)

suggesting the birthrate value is reasonable.

6.9 Discussion

Previous work studying the cooling of white dwarfs in 47 Tuc such as

Goldsbury et al. [215] and Obertas et al. [30] used cooling models based

on test_suite examples from older versions of MESA that had diffusion

turned off for white dwarf evolution. Obertas et al. [30] used the same data

as our work and considered old white dwarfs down to faint enough magni-

tudes in the cooling sequence to reveal the effect of core crystallisation in

the (inverse) cumulative luminosity function, but the models shown in that

work were not fit to the data. Goldsbury et al. [215] found models that fit

the data well, but compared the models to data of younger white dwarfs

than considered in this chapter. Since the focus of Goldsbury et al. [215]

was neutrino cooling, which is important at early white dwarf cooling times

(and negligible at late cooling times), the data space selections used in that
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work stopped at much brighter magnitudes31 than the data space used in

our analysis. Since we are interested in the thickness of the H envelope as a

key parameter in our work (rather than it being a nuisance parameter as it

was in the work of Goldsbury et al. [215]) and the effect of this parameter is

best analysed using very old white dwarfs, our data space needs to extend

to fainter magnitudes. Truncating the data space used in our analysis so

that it stops at brighter magnitudes (maximum F606W ≤ 28.25) results in

the case of diffusion fully turned off giving a better fit, though the optimal

qH tends towards lower values in that case.

In this work, the parameters upon which the modified treatment of diffu-

sion depend have been fixed at fiducial values, though the code to implement

modified diffusion has been written with the flexibility to vary the values of

these diffusion parameters. The theoretically ideal approach to comparing

the different diffusion scenarios in a Bayesian framework would be to com-

pare the diffusion models after marginalising over the diffusion parameters

in the case of modified diffusion. In principle, these parameters could be var-

ied to produce white dwarf cooling models over a grid of diffusion parameter

values to extend the analysis done in this work. This would be worth doing

for data that has greater sensitivity to the treatment of diffusion, which

could potentially be produced by e.g. future JWST observations. How-

ever, our results indicate that it is already difficult to differentiate between

standard diffusion and our fiducial modified diffusion (when the H envelope

thickness is a free parameter) using the data considered in this work, so ex-

tending our analysis in this way for this data is unlikely to provide additional

information.

31Goldsbury et al. [215] used HST data in different filters than our data, so the mag-
nitude values are not directly comparable, but they can be compared through the corre-
sponding theoretical luminosity values.
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6.10 Conclusions

In this chapter, we performed a detailed analysis of the cooling of white

dwarfs to late cooling times in the globular cluster 47 Tuc using archival

data of deep observations taken by HST. These deep photometric observa-

tions resolve the white dwarf cooling sequence of 47 Tuc to faint enough

magnitudes that a bump associated with the onset of convective coupling

and core crystallisation can be seen in the luminosity function. This was

shown by Obertas et al. [30] using this same data, though a statistical anal-

ysis of model fits was not performed in that work. We built upon the work

of Obertas et al. [30] by performing a detailed statistical analysis that ac-

counted for different treatments of diffusion, H envelope thickness, white

dwarf mass, and white dwarf birthrate using the unbinned likelihood.

A cleaning procedure consisting of cuts in proper motion and the pho-

tometry quality-of-fit parameter SHARP were performed to remove contam-

ination from the SMC in the 47 Tuc white dwarf cooling sequence, and

this cleaning procedure was carefully calibrated to account for any potential

residual contamination and the reduction of completeness due to cleaning.

This cleaning procedure and calibration was particularly important for us-

ing data at the very faint end of the cooling sequence where the phenomena

of convective coupling of the envelope to the core and the crystallisation of

the core begin to occur. The thickness of the bump in the luminosity func-

tion due to convective coupling in particular is sensitive to the H envelope

thickness, and extending the analysis to the onset of core crystallisation pro-

vides a good test of the regime over which the standard MESA treatment

of diffusion can be used. The inclusion of these very old, faint white dwarfs

in the analysis is thus important to distinguish (cooling) models of different

H envelope thickness and diffusion treatment. Though the data for these

older, fainter white dwarfs has lower completeness than younger, brighter

white dwarfs, there is a much larger number of the fainter white dwarfs in

the data, so including them in the analysis furthermore provides improved

statistical power.

The stellar evolution software MESA was used to produce a suite of
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white dwarf cooling models for different treatments of diffusion, H envelope

thicknesses, and white dwarf mass. Three different diffusion scenarios were

considered: i) the standard MESA treatment of diffusion where the ions are

approximated as an ideal gas, ii) a custom modified treatment of diffusion

that accounts for non-ideal gas effects (that notably suppress diffusion at

the H/He boundary compared to the ideal gas case), and iii) the case of no

diffusion. In addition to the cooling model parameters, the full model for

the number density distribution function used in the unbinned likelihood

analysis was also sensitive to the white dwarf birthrate, for which a prior

value was determined using Gaia EDR3 data of stars on the RGB. The

optimal model found by the unbinned likelihood analysis corresponded to

the case of standard diffusion with a H envelope thickness parameter of

log10 qH = −3.55 (corresponding to qH = 2.82× 10−4), a white dwarf mass

ofMWD = 0.5314M⊙, and a white dwarf birthrate of Ṅ = 2.27×10−7 yrs−1.

We find that the standard MESA treatment of diffusion, in which the

ions are approximated as an ideal gas, produces white dwarf cooling models

that well reproduce the cumulative white dwarf luminosity function to mag-

nitudes faint enough to resolve features related to the onset of convective

coupling and core crystallisation, with thicker H envelopes being favoured.

There is some degeneracy between the treatment of diffusion and the H en-

velope thickness; the modified treatment of diffusion with somewhat thinner

(though still generally considered thick) envelopes produced cooling mod-

els that were similarly likely to the best-fitting models produced using the

standard MESA treatment of diffusion with thicker envelopes, and these

scenarios could not be distinguished at a statistically significant level using

the data considered in this work.

The analysis of the deep HST ACS/WFC data considered in this work

is limited by the increasingly poor completeness with increasing magnitude,

particularly at the faint end of the cooling sequence that is most important

for our analysis. Improved data with better completeness at the faintest

magnitudes of the cooling sequence, as could for example be obtained with a

newer telescope like JWST, may enable the degeneracy between the detailed

treatment of diffusion and the H envelope thickness to be better disentangled
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in the future. In that case, a more thorough, extensive analysis of how the

treatment of diffusion should be modified to account for non-ideal gas effects

may be warranted and would be an interesting avenue for future research.

The analysis presented in this chapter, however, has already pushed the

limits of what can be learned about this from the data considered in this

work.
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Chapter 7

Axion constraints from white

dwarfs in 47 Tucanae

7.1 Introduction

White dwarfs are a popular target of indirect searches for axions and axion-

like particles. For axion models such as the benchmark DFSZ model [81, 82]

that include a coupling between the axion and electrons, axions can be

produced in the very dense, electron-degenerate interior of white dwarfs

through axion bremsstrahlung from electrons. Axions can also in principle

be produced in the interiors of white dwarfs through the axion Primakoff

effect, but this is a sub-dominant process compared to axion bremsstrahlung

for the density and temperature scales typical of white dwarfs. Furthermore,

the typical densities and temperatures of young white dwarfs would lead to

high rates of emission for axions produced via axion bremsstrahlung relative

to the emission of neutrinos and photons, which are the standard channels

through which white dwarfs lose energy over time.

For example, X-ray observations of a hot, magnetic white dwarf have

been used to search for the spectroscopic signal of axions that were pro-

duced in the core of the white dwarf through axion bremsstrahlung (from

electron-ion scattering) and then converted to photons in the strong mag-

netic field surrounding the white dwarf [53, 54]. As that scenario relies on

the axion-photon interaction (to produce the observable photon signal) in

addition to an axion-electron interaction (to produce the axions), that work

constrained the product of the axion-electron coupling gaee and the axion-

photon coupling gaγγ , rather than just gaee alone. Dessert et al. [54] found
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a bound of |gaeegaγγ | ≲ 1.3× 10−25 GeV−1 at 95% confidence for low axion

masses ma ≪ 10−5 eV.

More typically, axion searches targeting white dwarfs focus on how the

additional energy loss due to axion emission modifies the cooling behaviour

of white dwarfs, and in particular the observable consequences of the altered

cooling rate on the white dwarf luminosity function of a population of white

dwarfs. Due to the weakness of the interaction between axions and standard

model particles, axions that are produced in the interior of a white dwarf

typically leave the white dwarf without further interaction. The emission of

axions provides an extra source of energy loss for a white dwarf in addition

to the standard energy loss due to the radiation of photons from the white

dwarf surface and, for young white dwarfs, the emission of neutrinos from

the white dwarf interior. This causes the white dwarf to cool at a faster rate

than predicted by standard cooling processes alone.

Evidence for an additional white dwarf cooling source compatible with

axion emission has been reported for the empirical white dwarf luminosity

functions [44–46] of white dwarfs in the Galactic thin and thick discs, as

well as the halo, and it has been suggested that this hints at the existence of

an axion that couples to electrons, with a mass ma (and angular parameter

β) value of ma sin
2 β ∼ 4 − 10 meV for a DFSZ axion model [49]. This

corresponds to an axion-electron coupling of gaee ∼ (1.1− 2.8)×10−13. The

work of Isern et al. [49] expanded upon the earlier work of Isern et al. [47]

and Miller Bertolami et al. [48], which likewise presented evidence for similar

hints of axions based on the shape of some measurements of Galactic white

dwarf luminosity functions. Using Galactic white dwarf luminosity function

measurements, Miller Bertolami et al. [48] placed a bound of ma sin
2 β ≲

10 meV on the mass of a DFSZ axion at a 3 σ confidence level, which

corresponds to a 3 σ bound on the axion-electron coupling of gaee ≲ 2.8 ×
10−13.

Recent reviews summarising both hints of axions and bounds on ax-

ion parameters from various observations pertaining to stellar evolution are

given by Di Luzio et al. [84] and Di Luzio et al. [85]. These reviews compare

bounds reported at a 2 σ confidence level, where the 2 σ bound from Miller

169



7.1. Introduction

Bertolami et al. [48] is given as gaee ≤ 2.1 × 10−13. The bound on gaee has

been improved upon since the work of Miller Bertolami et al. [48] (and Isern

et al. [49]) using observations of the tip of the red giant branch in globular

clusters [92, 93], with the strongest 2 σ bound being gaee ≤ 1.5× 10−13 [92].

Globular clusters are good environments for studying stellar evolution

because they provide coeval populations of stars with well-controlled values

of parameters like distance, reddening, and birthrate. The globular cluster

47 Tuc in particular is a good environment for studying the cooling of white

dwarfs, and parameters important for modelling the cooling of white dwarfs

in 47 Tuc, such as the typical white dwarf mass and envelope thickness, were

studied extensively in Chapter 6. If axions exist and couple to electrons

with the interaction strength hinted at by Galactic white dwarf luminosity

functions, there should be a measurable effect on the cooling of white dwarfs

in 47 Tuc as well. The emission of axions affects the white dwarf cooling

rate in a manner similar to the emission of neutrinos at early cooling times,

and the effect of neutrino emission on the cooling of young white dwarfs in

47 Tuc was studied in detail by Goldsbury et al. [215]. Like in the case of

neutrino emission, the emission of axions produced in the dense interior of a

white dwarf provides an additional mechanism of energy loss that increases

the cooling rate compared to what is expected from photon radiation alone,

though the effect of axion emission could persist to later cooling ages than

neutrino emission due to the particular temperature and density values at

which these emission processes are optimised [65, 66].

In this chapter, a detailed analysis of the cooling of white dwarfs in 47

Tuc is performed in order to look for indirect evidence of axions through the

effect of axion emission on the white dwarf cooling rate. This work follows

a procedure similar to the procedure of Goldsbury et al. [215], but applied

to axions instead of neutrinos. We use the same data and many of the same

analysis techniques as described in Goldsbury et al. [215], but we use new

white dwarf cooling models that account for energy loss due to the emission

of axions. The analysis procedure that we use in this work is also similar to

that of Chapter 6, where a separate set of data was analysed to study the

cooling of older white dwarfs in 47 Tuc. In the current work, we additionally
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make use of prior knowledge gained from the work of Chapter 6 about the

typical mass and envelope thickness of white dwarfs in 47 Tuc, as well as the

appropriate treatment of diffusion in modelling white dwarf cooling, in our

analysis of the effect of axion emission on the cooling of younger white dwarfs

in 47 Tuc. The use of this prior information enables stronger constraints to

be placed on the relevant axion parameters.

7.2 Data

In this chapter, we use archival data from HST observations of 47 Tuc per-

formed as part of the HST Cycle 20 proposal GO-12971 (PI: H. Richer).

The data was collected over 10 orbits, one of which was rejected due to

loss of guide stars. In each orbit, observations were done simultaneously

using WFC3/UVIS and ACS/WFC, with the WFC3/UVIS exposures split

between the F225W and F336W filters and the ACS/WFC exposures split

between the F435W and F555W filters. Across all of the orbits, WFC3 ob-

served the inner field at the centre of the cluster while ACS simultaneously

observed the outer field in a ring about the WFC3 field of view. This data

is described in more detail in Goldsbury et al. [215], along with a detailed

description of artificial stars tests that were performed to determine the

photometric errors of this data.

7.3 Models

7.3.1 MESA Simulations

Following the procedure of Chapter 6, we performed white dwarf cooling

simulations using MESA to produce a suite of white dwarf cooling models

over a grid of model parameter values. The simulations are analogous to

those described in Section 6.5.2, except they additionally implemented en-

ergy loss due to the emission of axions, which introduces axion couplings as

additional parameters that the models depend on. The parameters varied

in these simulations were the white dwarf mass MWD, the thickness of the
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H envelope, and the axion coupling constants.

The standard MESA treatment of diffusion was used for all of the sim-

ulations in this chapter. This was the diffusion scenario that produced the

optimal cooling model in Chapter 6. In principle, different diffusion scenar-

ios could be considered in this chapter as was done in Chapter 6, but the

results of Chapter 6 do not indicate a need to do so. Furthermore, as the

extreme ends of the mass grid considered in Chapter 6 are strongly excluded

by the results of that chapter, we restrict our work in this chapter to white

dwarf masses spanning the smaller range 0.5240 M⊙ ≤MWD ≤ 0.5388 M⊙.

Within this white dwarf mass range, we performed simulations for the same

grid of MWD values considered in Chapter 6 (i.e. MWD values of 0.5240,

0.5314, and 0.5388 M⊙), starting from the same initial models as the simu-

lations described in Section 6.5.

In our MESA simulations of white dwarf cooling, we implement en-

ergy loss due to axion emission via the run_star_extras module in the

other_neu subroutine. We account for energy loss due to both axion (elec-

tron) bremsstrahlung, which depends on the axion-electron coupling gaee,

and the axion Primakoff effect, which depends on the axion-photon coupling

gaγγ . We implement axion bremsstrahlung emission using the prescription

given by Nakagawa et al. [65, 66]. To account for axion Primakoff emission,

we use the fitting formula given by Friedland et al. [87], which has previously

been implemented (and for which code is publicly available) in the MESA

test_suite example axion_cooling. We specify the value of each coupling

constant, gaee and gaγγ , through MESA inlist x_ctrl parameters. Note that

axion bremsstrahlung is the dominant axion emission mechanism affecting

white dwarf cooling. Though axion Primakoff emission is a sub-dominant

effect for white dwarf cooling, it was included in the simulations for com-

pleteness and to confirm that this effect is negligible enough to neglect any

potential dependence of the cooling models on gaγγ in our analysis.

We performed simulations for a set of gaee and gaγγ values chosen based

on the benchmark DFSZ (type I) model. For this model, the coupling con-

stants gaee and gaγγ are related to the axion mass ma through the expres-
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sions32 [51]

gaγγ = 1.44× 10−10
( ma

1 eV

)
GeV−1, (7.1)

gaee = 2.83× 10−11 sin2 β
( ma

1 eV

)
, (7.2)

where the expression for gaee also depends on the angular parameter β. We

performed simulations for a grid of ma values ranging from 0.0 to 8.0 meV

in increments of 0.5 meV for the limiting case that sinβ = 1. In this case,

the cooling models only depend on a single axion parameter, the axion mass

ma. More generally, in parameter regimes where energy loss due to the

axion Primakoff effect is negligible, as is the case for the white dwarf cooling

regime that we consider in this work, the cooling models only depend on

the coupling constant gaee (i.e. the dependence of the cooling models on

gaγγ is negligible). The work presented in this chapter in terms of ma (for

a DFSZ axion with sinβ = 1) can thus equivalently be expressed in terms

gaee, with the results in terms of gaee applying more generally. Table 7.1

provides the conversion between ma and the gaee (and gaγγ) values used for

the simulations.

7.3.2 Cooling Curves

Fig. 7.1 shows how the cooling curves varying with axion mass (ma) and

H envelope thickness (qH). The left panel (Fig. 7.1a) shows a series of

cooling curves with different ma values over the range 0−10 meV for a fixed

envelope thickness of qH = 2.24 × 10−4, while the right panel (Fig. 7.1b)

shows a series of cooling curves with different qH values for a fixed axion

mass of ma = 4.0. For both series of cooling curves, the white dwarf mass is

fixed at MWD = 0.5388 M⊙ and the diffusion treatment is always standard

MESA diffusion (i.e. diffusion is fully on). Note that cooling curves are only

shown for a subset of ma and qH values in order to facilitate visualisation;

32See in particular Table 2.1 of Raffelt [51] for a summary of the expressions for various
axion coupling constants. Note that cosβ has been replaced by sinβ in the expression for
gaee in accordance with the definition used for β elsewhere in this dissertation. The choice
of which definition of β to use is simply a matter of convention.
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ma/ (1 meV) gaee/
(
10−13

)
gaγγ/

(
10−12 GeV−1

)
0.0 0.00 0.00
0.5 0.14 0.07
1.0 0.28 0.14
1.5 0.42 0.22
2.0 0.57 0.29
2.5 0.71 0.36
3.0 0.85 0.43
3.5 0.99 0.51
4.0 1.13 0.58
4.5 1.28 0.65
5.0 1.42 0.72
5.5 1.56 0.79
6.0 1.70 0.87
6.5 1.84 0.94
7.0 1.98 1.01
7.5 2.12 1.08
8.0 2.27 1.15

Table 7.1: Conversion between axion mass values and the correspond-
ing values used for the coupling constants in the MESA simulations
that produced the white dwarf cooling models. These values apply for
a DFSZ model with sinβ = 1. For these values of gaγγ , the effect of
axion-photon interactions on white dwarf cooling is negligible; these
values are simply reported for completeness.
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Figure 7.1: Theoretical cooling curves for various axion mass values
(left; a) and envelope thickness (right; b) when all other model parame-
ters are fixed. In both cases, the white dwarf mass isMwd = 0.5388M⊙
and diffusion is fully on. For the series of axion mass values shown
in the left panel, the envelope thickness always has a fixed value of
qH = 2.24× 10−4. For the series of qH values shown in the right panel,
the axion mass always has a fixed value of ma = 4.0 meV.

the full set of models used in the analysis is more finely spaced in ma and

qH than what is shown in Fig. 7.1.

For the axion mass range 0 − 10.0 meV considered in our analysis, the

emission of axions produced in the core of the white dwarf alters the shape

of the cooling curves for cooling ages between ∼ 1× 105 yrs and 3× 109 yrs

and over the luminosity range 1.5 ≲ logL ≲ −4, where L is the luminosity

in units of solar luminosity and log denotes the base-10 logarithm. This

can be seen in Fig. 7.1a, where the cooling curves differ over the luminosity

(and cooling age) range where axion emission is an important energy loss

mechanism. Larger values of the axion coupling (corresponding to large

values of ma) cause the luminosity of the white dwarf to decrease more

quickly with cooling age. The cooling curves for all of the ma values re-

converge at late cooling times once energy loss due to axion emission becomes
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negligible compared to energy loss due to photon radiation.

Over the cooling regime where axion emission is an important energy

emission mechanism, the morphology of the cooling curve also depends on

the H envelope thickness. This can be seen in Fig. 7.1b, where it can be seen

that the shape of the cooling curves varies within the relevant luminosity

range with varying qH for a fixed axion mass value. The cooling curve

depends on qH over this regime because thicker H envelopes result in more

residual nuclear burning at the boundary of the envelope, which in turn

causes the white dwarf to cool more slowly and remain brighter for a longer

period of time early in the cooling process.

7.4 Analysis

Our analysis uses the unbinned likelihood in a procedure very similar to

the analysis in Goldsbury et al. [215]. Similar methods were also used in

Section 6.7 and are discussed more in that section. Unlike in Section 6.7,

however, the dependence of the likelihood function on the distance R from

the cluster centre cannot be neglected.

The radial dependence is in particular important for analysing the WFC3

data because the WFC3 observations are centred on the cluster centre, where

stars belonging to the cluster are most densely concentrated. Overcrowding

in the observations near the cluster centre due to this dense concentration

results in reduced completeness at small values of R. The completeness of

the WFC3 observations is also reduced to a lesser extent at large values of

R due to the geometry of the observations, with less overlap in the fields at

larger values of R resulting in fewer fields that an object may be detected

in. Furthermore, the radial density distribution (in projection) of a globular

cluster in general, and 47 Tuc in particular, varies most rapidly with R at

small values of R where the cluster is most concentrated; the distribution

is less sensitive to R in the tails where the density varies more slowly with

R. The ACS observations were taken far enough from the centre that radial

dependence can be neglected for the ACS data.

For a particular data set, the number density distribution function ac-
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counting for radial dependence is given by the expression [215]

f(m1,m2, R; θ) = Ṅ fR (R; r0, rt)

∫ ∞

−∞

∫ ∞

−∞
fM
(
m′

1,m
′
2; θM

)
× E

(
m1 −m′

1,m2 −m′
2; m

′
1,m

′
2, R

)
dm′

1 dm
′
2,

(7.3)

where the photometric error distribution function E is parameterised by R

(in addition to the input magnitudes m′
1 and m′

2), fR is the projected radial

(surface) density distribution after integrating over the azimuth angle, fM is

a function that quantifies the cooling rate, θM denotes the set of parameters

that the cooling models depends on (after being moved from theory space

to data space), and θ =
{
θM , Ṅ , r0, rt

}
denotes the set of all parameters

that the full model depends on, which includes the white dwarf birthrate

Ṅ and any parameters that parameterise the radial density distribution.

In the case that radial dependence can be neglected, Eq. (7.3) reduces to

Eq. (6.30), the expression used for the analysis in Section 6.7.

The radial density distribution fR is, stated properly, a probability den-

sity function that we take to be normalised over the range of R values

defining the relevant data space. We use the same radial density distribu-

tion33 as Goldsbury et al. [215], which is a King-Michie model [258, 259]

with a King radius of r0 = 32′′ and tidal radius of rt = 3800′′. The para-

metric dependence of fR is written explicitly in Eq. (7.3) to make the model

dependence on these parameters in general clear; however, these parame-

ters are held fixed in the analysis performed in this chapter. We follow the

notation of Goldsbury et al. [260] and Goldsbury et al. [215] whereby a low-

ercase r denotes a three-dimensional radial distance from the cluster centre

and an uppercase R denotes the corresponding two-dimensional radius in

projection. The two-dimensional nature of fR is made more transparent by

expressing it as

fR (R) =
2π RΣ (R)∫
2π RΣ (R) dR

, (7.4)

33Note that the function fR(R) in our work is called ρ(R) in Goldsbury et al. [215]. We
use the notation fR to make the nature of this quantity as a two-dimensional probability
density function more clear.
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where Σ is the projected surface density given by an Abel transform of

the three-dimensional density distribution, as described in Goldsbury et al.

[260], and the integration to normalise fR is performed over the R limits

defining the data space. The procedure for evaluating Σ as a function of R

is described in Goldsbury et al. [260], which entails numerically solving the

system of equations describing the King-Michie model and then performing

an Abel transform on the result.

The magnitudes represented by m1 and m2 (and their primed equiva-

lents) are m1 = F225W and m2 = F336W in the case of the WFC3 data,

while they are m1 = F435W and m2 = F555W in the case of the ACS

data. The function fM quantifies the theoretical cooling rate predicted by

the cooling model as a function of both magnitudes before accounting for

photometric errors. Note that the quantity Ṅ fM is the theoretical number

density distribution of the magnitude values before accounting for photomet-

ric errors. The expression for fM given in Chapter 6 and related discussion

also applies here,

fM
(
m′

1,m
′
2; θM

)
=

dt

dm′
1

δ
[
m′

2 −m2,mod

(
m′

1; θM
)]
, (7.5)

though some of the parameters differ in the set of model parameters repre-

sented by θM . The theoretical cooling models before moving to data space

are parameterised by the white dwarf mass MWD, the H envelope thick-

ness parameter log10 qH , and the axion mass ma. Moving the theoreti-

cal models to data space depends on the distance modulus µ and colour

excess E(B − V ), so the function fM is parameterised by the parameter

set θM = {ma, MWD, log10 qH , µ, E(B − V )}. Since converting the cool-

ing rate to a number density depends on the white dwarf birthrate Ṅ and

the radial density distribution depends on the additional set of parameters

θR = {r0, rt}, the full set of parameters that the likelihood depends on is

θ =
{
ma, MWD, log10 qH , Ṅ , µ, E(B − V ), r0, rt

}
.

As was done in Chapter 6, the values of µ and E(B − V ) are held fixed,

with a value of µ = 13.24 used for the distance modulus [214] and a value of

E(B−V ) = 0.04 used for the colour excess [210]. For this value of the colour
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Parameter Value

r0 32”
rt 3800”
µ 13.24
E(B − V ) 0.04

Table 7.2: Summary of model parameter values held fixed in analysis.

excess, the corresponding value of the total V-band extinction is AV = 0.124,

where the relative visibility has been taken to be RV = 3.1, the typical value

for the Milky Way. The values of all of the parameters that are held fixed

are summarised in Table 7.2. With µ and E(B − V ) held fixed in addition

to r0 and rt, as described above, the set of parameters θM that the cooling

rate depends on in the analysis is reduced to θM = {ma, MWD, log10 qH , },
and the full model (and thus the likelihood) depends only on the reduced

set of parameters θ =
{
ma, MWD, log10 qH , Ṅ

}
.

The input magnitudes before accounting for photometric errors, denoted

by a prime symbol in Eqs. (7.3) and (7.5), are calculated from the relevant

theory-space cooling model variables using bolometric corrections via the

procedure described in Section 6.7, but with extinction values appropriate

for the magnitude filters of the data considered in this chapter. The relevant

extinctions for the WFC3/UVIS filters are given by

AF225W = 2.62940AV , (7.6)

AF336W = 1.67536AV , (7.7)

and the relevant extinctions for the ACS/WFC filters are given by

AF435W = 1.33879AV , (7.8)

AF555W = 1.03065AV . (7.9)

Note that these extinctions were determined using the same extinction law34,

34The extinction values were retrieved using http://stev.oapd.inaf.it/cgi-bin/cmd_
3.7, which uses this extinction law.
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that of Cardelli et al. [38] and O’Donnell [39], as was used in Section 6.7.

The natural logarithm of the unbinned likelihood is calculated from the

distribution function f given by Eq. (7.3) using the expression

lnL (θ) =
∑
i

ln fi −Npred, (7.10)

where fi is the distribution function evaluated at the data coordinate di =

(m1i,m2i, Ri) observed for the ith data point,

fi = f (m1i,m2i, Ri; θ) , (7.11)

and Npred is the model prediction for the total number of white dwarfs in

the data space,

Npred =

∫∫∫
data space

f (m1,m2, R; θ) dR dm1 dm2. (7.12)

The data space boundaries as they appear in a CMD for each data

set considered in our analysis are shown in Fig. 7.2. Note that the analy-

sis is actually performed in magnitude-magnitude space. The data space

is simply shown in colour-magnitude space for better visualisation, and

it is straightforward to move between colour-magnitude and magnitude-

magnitude space. The WFC3/UVIS data and corresponding data space

selection are shown in Fig. 7.2a, while the ACS/WFC data and correspond-

ing data space selection are shown in Fig. 7.2b. These plots are focused

on the white dwarf cooling sequence of 47 Tuc, with the data space bound-

aries shown as red curves enclosing a large part of the cooling sequence. For

each data set, the evolutionary track predicted by the model for the relevant

magnitudes before accounting for photometric errors is shown by the orange

curve that lies along the 47 Tuc cooling sequence and passes through the

data space.

The particular reference model shown in Fig. 7.2 corresponds to param-

eter values of MWD = 0.5388 M⊙, ma = 0 meV, and log10 qH = −3.60,

though it should be noted that the evolutionary track in the CMD shows
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(a) WFC3/UVIS data set (b) ACS/WFC data set

Figure 7.2: CMDs showing the data space selections used in the
unbinned likelihood analysis for the WFC3/UVIS data (left; a) and
ACS/WFC data (right; b). The plots are focused on the white dwarf
cooling sequence, with the data shown as black points. The boundaries
of the white dwarf data space selection for each data set are indicated
by the red curves. The evolutionary track predicted by the model in
each case before accounting for photometric errors is shown as an or-
ange curve.
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very little variation over the range of parameter values considered in our

analysis. It can be seen visually from Fig. 7.2 that the theoretical cooling

tracks align reasonably well with the observed data in the CMD. For the

WFC3 data, the model lies left of the centre line of the empirical cooling

sequence because the photometric errors are not distributed equally in the

two filters and the error distribution has not yet been applied to the model

shown in Fig. 7.2. For the ACS data, the photometric error distribution

is more symmetric in the two filters, and it can correspondingly be seen in

Fig. 7.2 that the model lies more closely along the centre line of the empirical

white dwarf sequence of the ACS data.

The WFC3 data space boundaries are chosen to be approximately 3σ in

colour from the model cooling track, while the ACS data space boundaries

are chosen to be approximately 2σ from the model track. In each case, the

error in colour was determined as a function of magnitude m1 (the y-axis

magnitude in the relevant sub-figure of Fig. 7.2) from the photometric error

distribution given by artificial stars tests. These data space boundaries are

chosen such they enclose the 47 Tuc white dwarf sequence tightly enough in

colour to avoid contamination from the SMC. In Fig. 7.2, the SMC corre-

sponds to the sequence of stars located to the right of the 47 Tuc white dwarf

sequence and running approximately parallel to it. The ACS data space is

shorter than the WFC3 data space because the SMC sequence begins to

intersect with the 47 Tuc white dwarf sequence at brighter magnitudes (cor-

responding to earlier cooling times) in the ACS data than in the WFC3

data, as can be seen in Fig. 7.2.

In the case of the WFC3 data (for which the variable R is included in the

analysis), the data space definition also includes a cut in the radial distance

from the cluster centre of R ≤ 4, 000 pixels35. The WFC3/UVIS pixel scale

is 0.04 arcseconds per pixel, so this corresponds to a cut of R ≤ 160 arcsec

in physical units. This cut removes objects located at the outermost radii

of the total WFC3 field of view where there is not full coverage about the

entire circumference of a circle of that radius; thus, this cut circumvents

35This cut was also used in the analysis of Goldsbury et al. [215], though it is not
explicitly mentioned in that paper.
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any potential concerns about a reduction in completeness due to the field

geometry at these outermost radii.

The birthrate of white dwarfs for a particular data set is specific to the

field of view for those observations, so the WFC3 and ACS data are expected

to have different birthrates. A combined analysis of both of these data sets

thus depends on two birthrate parameters, which will be denoted as ṄWFC3

for WFC3 and ṄACS for ACS. This is accounted for in a combined analysis

of the WFC3 and ACS data sets as follows.

The theoretical cooling models predict separate distribution functions

for each set of data: fWFC3 (F225W,F336W, R; θ) with θ =
{
ṄWFC3, θM

}
for the WFC3 data and fACS (F435W,F555W; θ) with θ =

{
ṄACS, θM

}
for

the ACS data. Likelihoods can thus be calculated for each data set using

Eq. (7.10) for the appropriate distribution function. Letting DWFC3 and

DACS denote the set of WFC3 data points and ACS data points, respectively,

in the relevant data space for each field, i.e.

DWFC3 ≡ {F225Wi,F336Wi, Ri} for i ∈ WFC3 data points, (7.13)

DACS ≡ {F435Wi,F555Wi} for i ∈ ACS data points, (7.14)

the corresponding likelihoods LWFC3 and LACS for each of these data sets

separately are defined as

LWFC3

(
ṄWFC3, θM

)
≡ p

(
DWFC3 | ṄWFC3, θM

)
, (7.15)

LACS

(
ṄACS, θM

)
≡ p

(
DACS | ṄACS, θM

)
, (7.16)

where p denotes a probability density function. The likelihood Lcomb of both

data sets combined is defined as

Lcomb (θ) ≡ p
(
DWFC3, DACS | ṄWFC3, ṄACS, θM

)
, (7.17)

where θ =
{
ṄWFC3, ṄACS, θM

}
is the set of all parameters considered in

the combined analysis.
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Since each data point is statistically independent, it follows that

p
(
DWFC3, DACS | ṄWFC3, ṄACS, θM

)
= p

(
DWFC3 | ṄWFC3, θM

)
p
(
DACS | ṄACS, θM

)
.

(7.18)

The log-likelihood of the combined data is thus simply given by the sum of

the log-likelihoods of the separate data sets, i.e.

lnLcomb (θ) = lnLWFC3

(
ṄWFC3, θM

)
+ lnLACS

(
ṄACS, θM

)
. (7.19)

The joint posterior for the combined analysis is then given by

p (θ |DWFC3, DACS) =
p (θ) Lcomb (θ)∫
p (θ) Lcomb (θ) dθ

, (7.20)

where the joint prior distribution p (θ) for all of the parameters can be

expressed as

p (θ) = p
(
ṄWFC3

)
p
(
ṄACS

)
p (MWD, log10 qH) p (ma) (7.21)

and the integral in the denominator of Eq. (7.20) is performed over the entire

parameter space.

For the main results reported in Section 7.5 below, uniform priors were

used for both of the birthrate parameters. The option of using Gaussian

birthrate priors with the same values as used by Goldsbury et al. [215] is

considered in Appendix B. However, it is found in Appendix B (for each

data set individually) and shown below in Section 7.5 (for the combined

analysis) that the birthrate priors of Goldsbury et al. [215] both overestimate

ṄWFC3 and underestimate ṄACS by a similar amount. This suggests that

there may be a relevant effect that was not accounted for in determining

(or applying) those birthrate priors, such as the effect of cluster relaxation

[261, 262] causing stars to leave the WFC3 field and enter the ACS field over

time. Though using Gaussian priors for the birthrates could potentially give

tighter bounds on the parameters, uniform priors are used for the birthrates
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to avoid the risk of imposing an incorrect prior value.

The results of Chapter 6 provided priors for MWD and log10 qH . The

analysis presented in Section 7.5 used a joint prior p(MWD, log10 qH) for

MWD and log10 qH given by the joint posterior distribution from Chapter 6

for the standard diffusion scenario after marginalising over the birthrate.

This corresponds to the distribution plotted in the bottom panel of Fig. 6.10,

but locally normalised to that particular diffusion scenario. Using uniform

priors for MWD and log10 qH instead yields similar best-fitting parameter

values (when uniform birthrate priors are used) but a more extended poste-

rior distribution (with some degeneracy between MWD and log10 qH for the

WFC3 data in particular), so using the Chapter 6 joint prior for MWD and

log10 qH provides tighter parameter constraints. This is shown in detail in

Appendix B. In all cases considered, in both Section 7.5 and Appendix B,

the prior for ma was taken to be uniform.

7.5 Results

The results for the combined fit of the cooling models to both the WFC3/

UVIS and ACS/WFC data are presented in this section. The combined fit

to both of these data sets gives stronger constraints than fitting either one

of these data sets separately. Nevertheless, separate fits of the models to

each of these data sets should give similar results to the combined fit if each

of the data sets are reasonably well-fitted by the models, which is verified in

Appendix B. In addition to the combined analysis presented in this section,

which gives the main results of the work described in this chapter, we also

independently fitted the cooling models to each of the two data sets and

present those results in Appendix B. The results for the WFC3 data alone

are given in Appendix B.2, while the results for the ACS data alone are given

in Appendix B.3. The key results of the separate WFC3 and ACS analyses

are compared with the results of the combined analysis in Appendix B.4.
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7.5.1 Posterior Distributions

The joint posterior density distribution after marginalising over both of the

birthrates is shown in Fig. 7.3 as filled contour plots. Each plot shows a

slice of this distribution as a function of ma and log10 qH for a particular

value of MWD. In these plots, the posterior density p (marginalised over

ṄWFC3 and ṄACS) has been scaled by its maximum value p̂ attained on the

parameter grid, and the contour levels are drawn at p/p̂ values of -0.5, -2.0,

-4.5, -8.0, and -12.5. These level values correspond to the analogously scaled

probability density values of a normal distribution evaluated at 1, 2, 3, 4,

and 5 σ, with p/p̂ = exp
(
−0.5n2σ

)
for a level value corresponding to nσ σ.

Plots are only shown for the MWD values from the parameter grid that are

most significant for the posterior distribution: 0.5314 and 0.5388 M⊙. For

the case of MWD = 0.5240 M⊙, which has been omitted from Fig. 7.3, the

value of p/p̂ is less than the smallest displayed level, i.e. p/p̂ < 5 σ, for every

point on the grid of ma and log10 qH values.

It should be emphasised that the filled contours in Fig. 7.3 indicate

ranges of probability density values, not regions of enclosed probabilities, so

they are not credible regions. The two-dimensional credible regions in the

joint parameter space of ma and log10 qH are shown in Fig. 7.4. The credible

regions shown in Fig. 7.4 are more specifically the highest posterior density

credible regions calculated from the joint posterior distribution shown in

Fig. 7.3 after marginalising over MWD as well as ṄWFC3 and ṄACS. The

filled contours in Fig. 7.4 demarcate regions of enclosed probability, and the

total probability enclosed by each contour (including the regions coloured

darker than that contour level) is indicated on the colour bar in terms of the

number of standard deviations of a (spherically symmetric) two-dimensional

normal distribution that encloses the same probability. The contour levels

of 1, 2, 3, 4, and 5 σ respectively correspond to total enclosed probabilities

of 39.35, 86.47, 98.89, 99.97, and 99.9996%.

Fig. 7.3 and Fig. 7.4 both show that smaller ma and larger log10 qH val-

ues are favoured, with the peak of the joint posterior distribution occurring

for ma = 0 meV and log10 qH = −3.55 on the parameter grid. Fig. 7.3 and
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Figure 7.3: Joint posterior probability density distribution after
marginalising over the birthrates. Slices of the distribution as a function
of axion mass (ma) and envelope thickness (qH) are shown for fixed val-
ues of white dwarf mass (MWD). The probability density (p) has been
scaled by its maximum value (p̂) so that the plotted quantity is p/p̂.
The filled contours are drawn at level values corresponding to the σ lev-
els indicated on the legend for a two-dimensional normal distribution.
The lowest mass case (MWD = 0.5240 M⊙) is not shown because it is
excluded at 5 σ.
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tion for the σ levels indicated by the legend.
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Fig. 7.4 also highlight the degeneracy between ma and log10 qH : larger ma

values are more probable when the value of log10 qH is also large, though

small ma values are still favoured even at the largest log10 qH values. As can

be seen in Fig. 7.3, the morphology of the marginal posterior distribution as

a function of ma and log10 qH is similar regardless of MWD, with the distri-

bution simply becoming more tightly concentrated on the highest log10 qH

values for larger MWD. The peak in the posterior distribution occurs for

MWD = 0.5388 M⊙. This is the largest value of MWD considered in the

analysis, but larger values (on the extended parameter grid considered in

Chapter 6) are strongly disfavoured by the results of Chapter 6 (which were

used as the prior on MWD and log10 qH in this analysis).

The maximum of the posterior distribution also occurs at the (upper)

edge of the log10 qH grid, but this grid cannot be extended to larger log10 qH

values (with the current grid spacing) because this is a physical limit. In

creating the suite of white dwarf cooling simulations used in this work, white

dwarfs that started with thicker H envelopes simply burned away the extra H

in the envelope through residual nuclear burning at very early cooling times

and ended up with the same envelope thickness at the reference cooling age

of 10 Myr at which log10 qH is defined in this work. Furthermore, the cooling

models with the same log10 qH value (at this reference time) produced by

these simulations were the same over the magnitude range of interest for

this work, regardless of the initial thickness at very early times.

The one-dimensional posterior probability density distributions of each

model parameter after marginalising over all other parameters are shown

in Fig. 7.5. The posterior distribution for the WFC3 birthrate is shown in

Fig. 7.5a, while the posterior distribution for the ACS birthrate is shown in

Fig. 7.5b. For each birthrate distribution, the value of Ṅ that maximises

the posterior distribution is indicted by a dashed vertical line and the prior

value Ṅ0 used by Goldsbury et al. [215] is indicated by a dotted vertical

line for comparison. It can be seen in these plots that the posterior for

ṄWFC3 is notably smaller than the Goldsbury et al. [215] prior value, while

the posterior for ṄACS is larger than the Goldsbury et al. [215] prior value.

This may be an indication that an appreciable number of white dwarfs are
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Figure 7.5: One-dimensional posterior probability density distribu-
tions for each parameter after marginalising over all other model pa-
rameters.
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leaving the WFC3 field of view (i.e. the inner field) and entering the ACS

field of view (i.e. the outer field).

Fig. 7.5c, Fig. 7.5d, and Fig. 7.5e show the one-dimensional posterior

distributions for MWD, log10 qH , and ma, respectively. Some of the trends

noted above for these parameters based on Fig. 7.3 and Fig. 7.4 can be

seen clearly in Figs. 7.5c to 7.5e. Fig. 7.5c highlights the overall increased

probability of largerMWD values over the limited range of values considered

in this analysis, which was noted above based on Fig. 7.3. Fig. 7.5d and

Fig. 7.5e show that large log10 qH and small ma values are favoured, as

is also clearly seen in the plot of the two-dimensional credible regions for

these parameters, Fig. 7.4. Using the one-dimensional marginal posterior

distributions to calculate the individual 95% confidence levels of each of these

parameters, it is found that −3.67 ≤ log10 qH ≤ −3.55 and ma ≤ 2.85 meV

at 95% confidence. This limit for the DFSZ axion mass corresponds to

a limit for the coupling constant of gaee ≤ 0.81 × 10−13 for any axion or

axion-like particle model with an axion-electron interaction.

7.5.2 Best-Fitting Model

The combination of parameter values for which the full joint posterior distri-

bution is maximised on the discrete parameter grid for the combined analysis

is summarised in Table 7.3. These parameter values correspond to the opti-

mal model on the parameter grid for the combined analysis after accounting

for all of the priors and before marginalising over any parameters. The 95%

credible regions calculated from the one-dimensional marginal posterior dis-

tributions shown in Fig. 7.5 are given in Table 7.3 as errors on the parameter

values of the best-fitting model. Note that these parameter values are not

necessarily the values that optimise the marginal posteriors from which the

credible regions were calculated, though it can be seen from Fig. 7.5 that

these values are similar (and indeed exactly the same for MWD, log10 qH ,

and ma). Also note that although the values of MWD, log10 qH , and ma

(but not ṄWFC3 or ṄACS) for the best-fitting model are restricted to the

parameter grid of the cooling models, the limits of the credible regions are
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Parameter Value

ṄWFC3 (Myr−1) 6.91+0.82
−0.23

ṄACS (Myr−1) 3.73+0.62
−0.24

MWD (M⊙) 0.5388+0.0000
−0.0106

log10 qH −3.55+0.00
−0.12

ma (meV) 0.00+2.85
−0.00

gaee / 10
−13 0.00+0.81

−0.00

Table 7.3: Parameter values of optimal model for combined analysis.
The values are reported for the combination of parameter values that
maximises the joint posterior distribution on the full parameter grid.
The errors indicate the 95% credible region calculated from the one-
dimensional marginal posterior distribution for each parameter.

not restricted to the grid points because linear interpolation was used when

calculating the credible regions. For easy reference, the gaee values corre-

sponding to the best-fitting value and credible region limits of ma have also

been given in Table 7.3.

To visually verify the goodness of fit of the optimal model, we plot the

one-dimensional marginal cumulative number distributions predicted by the

optimal model over the corresponding empirical distributions for each data

component of each of the two data sets. These are shown in Figs. 7.6 and 7.7,

with the model prediction shown as the red curve and the data shown as

black points. In all of these cases, the incompleteness of the empirical obser-

vations is accounted for in the model instead of applying any completeness

correction to the data.

Fig. 7.6 shows the cumulative number distribution with respect to the

radial distance (R) from the cluster centre for the WFC3/UVIS data, with R

given in units of WFC3/UVIS pixels. Note that the unit conversion between

WFC3/UVIS pixels and arcseconds is 0.04 arcsec/pixel [263, 264]. The one-

dimensional marginal number density distributions with respect to R pre-

dicted by the model for the WFC3 data is calculated by integrating the full
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Figure 7.6: Cumulative number distribution of radial distance (R)
from cluster centre for optimal model (red curve) and WFC3/UVIS
data (black points).
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Figure 7.7: Inverse cumulative luminosity function of optimal model
from combined fit (red curve) compared to the two sets of HST data
used in the combined fit (black points). The different sub-figures show
the empirical distributions for the WFC3/UVIS data (top row) with
respect to F225W magnitude (left column; a) and F336W magnitude
(right column; b) and the distributions for the ACS/WFC data (bottom
row) with respect to F435W magnitude (left column; c) and F555W
magnitude (right column; d).
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three-dimensional number density distribution fWFC3 (F225W,F336W, R)

with respect to the magnitudes F225W and F336W. The corresponding

marginal cumulative number distribution with respect to R (plotted as the

red curve in Fig. 7.6) is then calculated from this marginal number density

distribution by integrating up to each value of R that is plotted. Note that

since our models for the ACS/WFC data do not depend on R, there is no

plot analogous to Fig. 7.6 to be made for the ACS/WFC data.

Fig. 7.7 shows the inverse cumulative luminosity functions for each mag-

nitude of each data set. Note that the cumulative luminosity function with

respect to a particular magnitude is simply the cumulative number distribu-

tion for that magnitude. For a particular magnitude, the model prediction

is given by the cumulative number density distribution after marginalising

over R (if applicable) and the other magnitude that f depends on. The top

row of Fig. 7.7 shows the (inverse) distributions for the WFC3 data with re-

spect to the two different WFC3 magnitudes, m1 = F225W in Fig. 7.7a and

m2 = F336W in Fig. 7.7b. The theoretical distributions (predicted by the

optimal model) that are shown in Figs. 7.7a and 7.7b are both calculated

from the same distribution function fWFC3 (F225W,F336W, R), but with

a different magnitude marginalised over in each case (and R marginalised

over in both cases). Likewise, the bottom row of Fig. 7.7 shows the (in-

verse) distributions for the ACS data with respect to the two different ACS

magnitudes, m1 = F435W in Fig. 7.7c and m2 = F555W in Fig. 7.7d, and

the theoretical distributions that are shown in Figs. 7.7c and 7.7d are both

calculated from the same distribution function fACS (F435W,F555W), but

with a different magnitude marginalised over in each case.

It can be seen from Figs. 7.6 and 7.7 that the distribution predicted by

the optimal model for each data variable well reproduces the corresponding

empirical distribution for that variable, indicating good agreement between

the optimal model and the data. Fig. 7.6 shows that the form of the radial

density distribution fR used for the model was a reasonable choice. The

small differences between the model distribution and the empirical distribu-

tion for the cumulative number with respect to R seen in Fig. 7.6 are well

balanced across the range of R values, so allowing the King radius (or tidal
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radius) to vary as another parameter of the model is not likely to provide

much improvement to the fit. Fig. 7.7 shows how well the optimal cooling

model fits the data. Note that the cumulative number is shown on a linear

scale in Fig. 7.6, whereas a logarithmic scale is used for the cumulative num-

ber in each of the plots shown in Fig. 7.7. The minor differences between

the model and the empirical distributions with respect to magnitude seen

in Fig. 7.7 occur at smaller magnitudes where there are fewer white dwarfs.

These early (small magnitude) regions of the distributions in Fig. 7.7 are

emphasised in the plots due the logarithmic scale used for the cumulative

number, but they are actually less important to the fit than the later (larger

magnitude) regions where there are much more white dwarfs and where the

model distributions very closely match the empirical distributions.

As a quick and simple quantitative test of the goodness of fit of the opti-

mal model, we perform a set of one-sample Kolmogorov-Smirnov (KS) tests

for each of the one-dimensional marginal distribution functions predicted by

the optimal model for each of the two data sets used in the combined fit.

The results of the KS tests for each of the cases considered are summarised

in Table 7.4. The pairs of model and empirical distributions compared by

these KS tests correspond to the distributions shown in Figs. 7.6 and 7.7

after normalisation. Note that the KS test actually compared the cumula-

tive probability density distributions (measured by the cumulative fraction),

rather than the (inverse) cumulative number distributions shown in Figs. 7.6

and 7.7. The p-value returned by the (one-sample) KS test is the proba-

bility that, for a sample drawn from the model distribution, the resultant

sample distribution differs from the model distribution by at least as much

as the observed empirical distribution differs from the model distribution.

The large p-values found for the KS tests comparing the optimal model to

the data (see Table 7.4) are indicative of a good fit. These p-values are all

well above a reasonable threshold value of 10−4. The KS test results are

particularly good for the ACS data, and are also quite reasonable for the

WFC3 data.

196



7.6. Discussion

Data Set Data Variable p-value

WFC3/UVIS R 0.0156
F225W 0.0362
F336W 0.0132

ACS/WFC F435W 0.3527
F555W 0.2739

Table 7.4: Results of KS tests for combined analysis comparing the
one-dimensional marginal cumulative probability distribution functions
predicted by the optimal model to the corresponding empirical (cumu-
lative fraction) distribution.

7.6 Discussion

The constraints found in this chapter could potentially be improved upon

by applying non-uniform priors for the white dwarf birthrates in the un-

binned likelihood analysis, but determining appropriate prior values for

these birthrates requires further analysis that is beyond the scope of this

work. The birthrate priors used by Goldsbury et al. [215], which were cal-

culated from red giant branch stars that have just left the main sequence,

seem to simultaneously overestimate the birthrate for the WFC3 field and

underestimate it for the ACS field. Goldsbury et al. [215] used a WFC3

birthrate prior of ṄWFC3 = 8.2 ± 0.3 Myr and an ACS birthrate prior of

ṄACS = 2.61± 0.07 Myr. In contrast, the optimal model found in our work

has a WFC3 birthrate of ṄWFC3 = 6.91+0.82
−0.23 Myr, which is smaller than the

corresponding Goldsbury et al. [215] prior value, and an ACS birthrate of

ṄACS = 3.73+0.62
−0.24 Myr, which is larger than the corresponding Goldsbury

et al. [215] prior value. A similar difference between the posterior and prior

birthrate values can also be seen in the results of Goldsbury et al. [215],

though it was not discussed in that work. From the one-dimensional poste-

rior distributions plotted in Goldsbury et al. [215], it can be seen that the

posterior distribution for the WFC3 birthrate is concentrated about smaller

values than the corresponding prior value while the distribution for the ACS

birthrate is concentrated about larger values than the corresponding prior

197



7.6. Discussion

value, with the average posterior value in each case differing by more than

3 σ from the prior.

This may indicate that cluster relaxation has a measurable effect that

needs to be accounted for when determining the white dwarf birthrate. Stars

move away from the centre of a star cluster over time due to diffusion, a

phenomena that was observed for 47 Tuc by Heyl et al. [261, 262]. Stars

leaving the inner WFC3 field over time should cause ṄWFC3 to decrease over

time. The stars that leave the WFC3 field then enter the ACS field, which

would cause ṄACS to increase (as long as there are more stars entering than

leaving the field). This effect could potentially be accounted for by modelling

the change in ṄWFC3 and ṄACS over time as part of the analysis, in which

case these parameters would really be an “effective” birthrate equal to the

net rate of white dwarf formation minus the rate of white dwarfs leaving (or

plus the rate of white dwarfs entering) the field of view. However, this is an

additional complication that requires careful consideration, so it is left for

future work.

Using horizontal branch stars instead of red giant branch stars could

also potentially give a better estimate of the white dwarf birthrate, since

horizontal branch stars are closer to reaching their white dwarf stage. How-

ever, since axions affect the length of time that stars spend on the horizontal

branch, this effect would need to be accounted for in the stellar evolution

models used to calculate the prior. While axions can also have an effect on

stellar evolution along the red giant branch, this effect is less important at

the start of the red giant branch (instead being more important for the tip

of the red giant branch).

Stronger constraints could also potentially be achieved if the ACS data

space could be extended to larger magnitudes, but this would require care-

fully accounting for the SMC. In this chapter, the issue of SMC contamina-

tion has been avoided by simply ending the ACS data space before the SMC

begins to intersect the 47 Tuc white dwarf sequence. The ACS data space

could be extended by modelling the SMC and incorporating the model for

the SMC contaminants into the full model used for the analysis. However, as

the ACS data alone favours similar cooling model parameters to the WFC3
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data alone (see Appendix B), with both data sets favouring large log10 qH

and small ma values, extending the ACS data space to larger magnitudes

would likely only provide a minor improvement in the final credible regions.

Even without any of these potential improvements to the analysis, the

bounds derived for the axion-electron coupling (and DFSZ axion mass) are

an improvement upon previous bounds reported in the literature. For com-

parison, a recent summary of bounds (and hints) for various axion couplings

(including gaee and gaγγ) from stellar evolution is given by Di Luzio et al.

[84] (see especially Table 1 of Di Luzio et al. [84]). The new bound on

gaee found in our work improves upon the leading bound from white dwarf

cooling (derived using the Galactic white dwarf luminosity function) [48],

as well as the slightly stronger bound from the tip of the red giant branch

[92, 93]. Of particular interest is that our newly derived (DFSZ axion)

bound of ma ≤ 2.85 meV (at 95% confidence) excludes the favoured range

of ma ∼ 4−10 meV hinted at by the cooling anomaly reported for the white

dwarf luminosity functions of the Galactic disc and halo [47, 49].

7.7 Conclusions

If axions exist and couple to electrons, then axions can be produced in the

electron-degenerate core of a white dwarf via axion bremsstrahlung from

electrons scattering off ions. The emission of these axions from the white

dwarf would provide an extra energy loss mechanism that would affect the

rate of white dwarf cooling. For a sufficiently large axion-electron coupling

strength, this would have an observable effect on the shape of the white

dwarf luminosity function, and hints of axions affecting the rate of white

dwarf cooling have been suggested based on a cooling anomaly observed in

Galactic white dwarf luminosity functions [47, 49].

In this chapter, we analysed the cooling of white dwarfs in the globular

cluster 47 Tuc to search for indirect evidence of axions produced via axion

bremsstrahlung from electrons in the white dwarf interiors. White dwarf

cooling models were created by using the stellar evolution software MESA to

perform simulations of white dwarf cooling that accounted for the energy loss
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associated with the emission of axions produced in the white dwarf. A suite

of such models was created for a grid of parameter values that varied the

axion-electron coupling strength, the white dwarf mass, and the thickness

of the H envelope of the white dwarf. These cooling models were compared

to HST observations of young white dwarfs, for which axion emission is

expected to be the dominant cooling mechanism, by performing an unbinned

likelihood analysis similar to that of Goldsbury et al. [215] and Chapter 6.

The white dwarf mass and envelope thickness are nuisance parameters in

the analysis which were constrained using prior information from Chapter 6.

The results of Chapter 6, which analysed the cooling of older white dwarfs

in 47 Tuc using a separate set of HST data that included white dwarfs old

enough for their envelopes to have become convectively coupled to their

cores, are particularly important for constraining the envelope thickness.

There is some degeneracy between the axion-electron coupling constant and

the envelope thickness, so including this prior information for the envelope

thickness in particular is important for constraining the value of the coupling

constant. From the analysis performed in this chapter, we find that models

with thick envelopes and no axion emission are favoured.

We find that the axion-electron coupling constant is constrained to be

gaee ≤ 0.81× 10−13 at 95% confidence. This bound applies for any axion or

axion-like particle model that includes a coupling to electrons. For a DFSZ

model, this corresponds to a constraint on the axion mass (and angular

parameter) of ma sin
2 β ≤ 2.85 meV. The bound on gaee found in this work

is more stringent than previous astrophysical bounds from both the Galactic

white dwarf luminosity function [48] and the tip of the red giant branch of

globular clusters [92, 93]. We do not see evidence of any cooling anomaly in

the cooling of 47 Tuc white dwarfs, and the updated bound on gaee excludes

the values favoured for the hint of axions suggested by the white dwarf

luminosity functions of the Galactic disc and halo [49].
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Chapter 8

Prospective axion search

using ZTF J1901+1458

8.1 Introduction

The X-ray emission from magnetic hot white dwarfs may reveal evidence

for axions or axion-like particles [53, 54], which have been a major focus

of studies to go beyond the Standard Model and to explain dark matter

[265–267]. The QCD axion, proposed to solve the strong CP problem [73,

74, 77, 78], is a well motivated addition to the Standard Model. Axion-like

particles, which are pseudo-scalar particles with properties similar to the

QCD axion but that do not necessarily relate to the strong CP problem,

also arise naturally in many other extensions to the Standard Model, such

as compactified string theories [268–275].

Interactions of axions with photons and nucleons are generic features

of QCD axion models, including the benchmark KSVZ [79, 80] and DFSZ

[81, 82] models, and are common features of axion-like particle models (see

e.g. Di Luzio et al. [85] for a recent review). Many axion models also include

a coupling of axions to electrons, including the DFSZ model.

Axions couple to photons through the Lagrangian density interaction

term L ⊃ −gaγγaF F̃ , where gaγγ is the axion-photon coupling constant, a

is the axion field, and F is the electromagnetic field strength tensor. The

axion interaction with a fermion species occurs through the operator L ⊃
−igaffaf̄γ5f , where gaff is the axion-fermion coupling constant and f is the

fermion field, such as for electrons, protons, or neutrons (i.e. f = e, p, n). An

effective coupling constant geffaNN can also be defined for the axion interaction
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with the nucleon doublet field N = (p, n)T in terms of the axion-proton and

axion-neutron couplings (gapp and gann, respectively). For axion production

through the 57Fe nuclear transition, which is the focus of this chapter, it

is convenient to adopt the definition geffaNN = 0.16gapp + 1.16gann for this

coupling [56].

The axion couplings to nucleons, photons, and electrons each have a

model-dependent relation to the axion mass, ma. To summarize, typical

values of the QCD axion couplings for the DFSZ (type I) model are36 [85,

276, 277]

geffaNN = 1.6× 10−8
(
4.3 sin2 β − 2.2

) ( ma

1 eV

)
, (8.1)

gaγγ = 1.5× 10−10
( ma

1 eV

)
GeV−1, (8.2)

gaee = 3.0× 10−11 sin2 β
( ma

1 eV

)
, (8.3)

where β is a parameter of the DFSZ model defined in the perturbative do-

main tanβ ∈ [0.25, 170]. The axion-nucleon and axion-photon couplings for

the KSVZ model are similar (typically within a factor of a few) to those of

the DFSZ model, while axion-like particles can have couplings much larger

than either the KSVZ or DFSZ benchmark models [85]. For both benchmark

QCD axion models, the axion-nucleon coupling is typically three orders of

magnitude larger than the DFSZ axion-electron coupling. As X-ray observa-

tions of white dwarfs searching for evidence of axions have focused on axions

produced through the axion-electron interaction, the greater strength of the

axion-nucleon interaction highlights the potential power of similar X-ray

searches for evidence of axions produced through nuclear interactions.

Astrophysical observations are often used to search for signatures indica-

tive of the various possible axion interactions with Standard Model particles

and to constrain the axion coupling constants. The axion-nucleon coupling

36These expressions use the updated relation between the axion mass and symmetry
breaking scale summarized in e.g. section 2.8 of Di Luzio et al. [85] instead of the relation
used by Raffelt [51] to derive Eqs. (7.1) and (7.2) used for gaγγ and gaee in Chapter 7.
Using this updated relation instead results in only very minor differences in the values of
the coefficients in these equations.
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has been probed indirectly through the observed neutrino emission from SN

1987A [51, 278–283] and the cooling of neutron stars [284–289]. Helioscope

experiments, which search for axions produced in the Sun, have also been

used to constrain the axion-nucleon coupling. Axions can be produced in

the Sun through the decay of excited nuclear states such as the first ex-

cited state of 57Fe. The CERN Axion Solar Telescope (CAST [290, 291])

has searched for axions produced in this way, setting current constraints for

the axion-nucleon coupling [55, 56]. A similar search has been proposed for

the future planned International Axion Observatory (IAXO [56, 292, 293]),

along with improved calculations for the axion flux from the 57Fe transition

[56] using updated nuclear matrix elements [294].

White dwarfs are another popular target of searches for axions produced

from astrophysical sources and have typically been used to probe the axion-

electron coupling, which enables the production of axions within a white

dwarf through axion bremsstrahlung. This extra source of energy loss would

modify the cooling of white dwarfs and thus the white dwarf luminosity

function, which in comparison to the observed luminosity function has been

used to constrain the axion-electron coupling (e.g. [47, 48, 215, 295, 296] and

Chapter 7 of this dissertation). Furthermore, in the strong field surround-

ing magnetic white dwarfs, axions can convert to photons and vice versa.

Axions produced by bremsstrahlung which then convert to photons in the

surrounding magnetic field produce a blackbody-like spectrum in the X-ray,

which was the focus of a 100 ks observation of the magnetic white dwarf

RE J0317-853 [54] with Chandra.

In this chapter, we show that hot, highly magnetized white dwarfs are

also ideal targets to probe the axion-nucleon coupling via the 57Fe transition,

and searches for the associated signal with an X-ray telescope can in fact

probe this coupling with better sensitivity than both current and planned

future helioscope searches for axions produced in the Sun through nuclear

transitions. If the temperature of the white dwarf is sufficiently high, low-

lying nuclear states may be excited within the star, and these states may

decay through the emission of an axion. Among all of the low-lying nu-

clear states, the excited state of 57Fe at 14.4 keV stands out through the
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combination of low energy and relatively large abundance within the star

[297]. In general, these axions would stream out of the star unimpeded and

unnoticed. However, in the case of a strongly magnetized white dwarf like

ZTF J1901+1458 [57], these axions have a chance to transform into X-ray

photons at 14.4 keV as they pass through the magnetosphere of the white

dwarf. White dwarfs are ideal targets for measurements of this signature

because their thermal emission in the hard X-rays is negligible, and there-

fore they provide the chance for a very clean detection. We demonstrate

the potential sensitivity of X-ray searches for the 57Fe axion signal from

magnetic white dwarfs by calculating the projected sensitivity to the axion-

nucleon and axion-photon couplings that could be obtained with a 100 ks

observation of ZTF J1901+1458 by NuSTAR.

8.2 Calculations

The spectrum of axions produced through the 57Fe nuclear transition is a

narrow peak at the nuclear excitation energy, E∗ = 14.4 keV. The resultant

photon number flux at Earth induced by axions being produced via the

nuclear transition process in the core of a white dwarf and then converting

to photons in the magnetosphere is [53]

Φγ = Na MWD × pa→γ ×
1

4πd2WD

, (8.4)

where Na is the emission rate per unit mass of axions produced in the white

dwarf interior (which we consider to be isothermal),MWD is the white dwarf

mass, pa→γ is the probability of an axion with energy E∗ converting into a

photon in the magnetosphere of the white dwarf, and dWD is the distance

to the white dwarf from the point of observation. The product NaMWD is

the mass averaged number of axions produced by the white dwarf per unit

time, and multiplying this quantity by E∗ yields the luminosity of axion

production under the assumption of an isothermal white dwarf core.

Modeling the core of the white dwarf as isothermal, the number density

of axions produced from the 57Fe nuclear transition in the white dwarf core
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is [56]

Na = N57 ω1(Tc)
1

τ0

1

(1 + α)

Γa

Γγ
, (8.5)

where N57 is the 57Fe number density per unit mass of stellar matter, ω1

is the occupation number of the first excited state at the temperature Tc of

the white dwarf core, τ0 is the lifetime of the excited state, α is the internal

conversion coefficient, and Γa/Γγ is the branching ratio of axion emission

relative to photon emission.

The axion emission rate depends on the axion-nucleon coupling through

the term Γa/Γγ . For axions produced by the 57Fe transition, the axion flux

from the Sun has recently been calculated by Di Luzio et al. [56] using the

updated nuclear matrix elements of Avignone et al. [294]. This yielded an

updated axion-to-photon branching ratio for ultrarelativistic axions of

Γa

Γγ
= 2.32

(
geffaNN

)2
, (8.6)

where geffaNN is the effective axion-nucleon coupling constant, defined as

geffaNN = 0.16gapp + 1.16gann in terms of the axion couplings to protons and

neutrons [56].

The core temperature of the white dwarf is another important parameter

for the calculation of Na, as the occupation number ω1 is temperature-

dependent. We determined the core temperature of ZTF J1901+1458 using

the published photometry and fitting technique of Caiazzo et al. [57], with

Tc used as one of the free parameters instead of the effective temperature

Teff . We related Tc to the photon luminosity Lγ (and thus Teff and radius)

using [53]

kTc ≃ (0.3 keV)

(
Lγ

10−4 L⊙

)0.4

, (8.7)

where k is the Boltzmann constant. The results of the joint fit for Tc along

with the radius of the white dwarf, RWD, and colour excess due to interstellar

reddening, E(B − V ), are shown in Fig. 8.1. Based on these results, we use

a core temperature of kTc = 2.85+1.58
−0.63 keV for our calculation of the axion

emission rate.
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Figure 8.1: Constraints on the core temperature of ZTF J1901+1458
from the published photometry [57].
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The thermal occupation number of an excited state with excitation en-

ergy E∗ as a function of temperature T is ω1 = (2J1+1)e−E∗/kT / [(2J0+1)+

(2J1 +1)e−E∗/kT ], where J0 and J1 are the angular momenta of the ground

and excited state, respectively [56]. These angular momenta are J0 = 1/2

and J1 = 3/2 for the 57Fe ground and first excited state, respectively [298],

giving a thermal occupation number of ω1 = 2e−E∗/kT /
(
1 + 2e−E∗/kT

)
.

This further simplifies to approximately ω1 ∼ 2e−E∗/kTc for the core tem-

perature of ZTF J1901+1458 and an isothermal core.

A large core temperature can also broaden the width of the expected

axion signal. In the case of the Sun, the energy of the axion is broadened by

the thermal motion of the nuclei, yielding a width of a few eV [56]. As the

temperature in the core of the white dwarf is larger than in the Sun, so is

the thermal broadening (5 eV for ZTF J1901+1458); however, the varying

gravitational potential through the core has a larger effect through the grav-

itational redshift, which is about 280 km/s at the surface and 980 km/s at

the centre, yielding a width of 33 eV that dominates over the thermal effects.

These broadening effects are negligible compared to the spectral resolution

of NuSTAR (≈ 400 eV), so we work in terms of the total flux rather than

the spectral flux and approximate that all of the axions are emitted with

the same energy E∗.

The values for all of the other parameters used in the calculation of Na

are taken from the literature. For the parameters characterizing the first ex-

cited state of 57Fe, we use values from Röhlsberger [298] of τ0 = 141 ns and

α = 8.56. To get the number density of 57Fe nuclei, we use the solar elemen-

tal abundances reported by Lodders [297]. We use a proto-solar hydrogen

mass fraction of 0.71 and a number fraction of 57Fe nuclei relative to protons

of 7.34× 10−7 (see Table 9 of Lodders [297]). The corresponding 57Fe num-

ber density per unit mass is N57 = 6.24× 1050 M−1
⊙ . As the observations of

Caiazzo et al. [57] indicate that ZTF J1901+1458 is young (with its cooling

age estimated to be only 10−100 Myr), is located in the solar neighbourhood

(at about 40 pc), and has kinematics consistent with the Galactic disc, we

conclude that, like other stars in the local disc, the ZTF J1901+1458 pro-

genitor abundances were similar to the solar abundances. Furthermore, we
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performed stellar evolution simulations using MESA to verify that stellar

evolution processes do not alter the iron abundance in the stellar core from

the initial value. Finally, for the white dwarf parameters needed in the rest

of the flux calculation, we use the values for ZTF J1901+1458 reported in

Caiazzo et al. [57], for which the mass is MWD = 1.346± 0.019 M⊙ and the

distance is dWD = 41.4± 0.1 pc.

To determine the observable photon flux Φγ that would be induced by

axions produced at the rate Na in the white dwarf, we must also calculate

the probability of the axions converting into photons as they propagate

outward through the magnetic field surrounding the white dwarf. Under

the approximation that the axions travel along radial trajectories (relative

to the centre of the white dwarf), the propagation of the axion-photon field

is described by the equations [299][
i∂r + E +

(
∆∥ ∆B

∆B ∆a

)](
A∥

a

)
= 0, (8.8)

∆∥(r) = (7/2) (αEM/45π)E [B(r)/Bcrit]
2 sin2Θ, (8.9)

∆B(r) = (1/2) gaγγ B(r) sinΘ, (8.10)

∆a = −m2
a/(2E), (8.11)

where r is the radial coordinate, B(r) is the magnetic field strength, a(r)

is the axion field, and A∥(r) is the component of the electromagnetic vec-

tor potential corresponding to the parallel photon polarization (i.e. the

polarization such that the electric field of the wave has a component par-

allel to the stellar magnetic field). The parameter E ≈ E∗ is the ax-

ion energy, αEM ≈ 1/137 is the electromagnetic fine structure constant,

Bcrit = 4.414× 1013 G is the quantum electrodynamics (QED) critical field

strength, and Θ is the angle between the magnetic field and the radial prop-

agation direction. For details on the origin and solution of the axion-photon

propagation equations for magnetic stars, see e.g. Raffelt and Stodolsky

[299] or Lai and Heyl [300].
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The expression for ∆∥ describes strong-field QED effects in vacuum.

In general, ∆∥ includes an additional term −ω2
pl/(2E) arising from plasma

effects, where the plasma frequency is ωpl = 28.71
√
Ye ρ/ (1 g cm−3) eV

for an electron plasma [300], with Ye the electron fraction and ρ the mass

density. Modeling the white dwarf as surrounded by an isothermal plasma

of fully ionized hydrogen (Ye = 1) with the density profile from Gill and Heyl

[301], of the form ρ(r) = ρ0 exp [−(r −RWD)/Hρ] + ρ∞, the density drops

from ρ0 = 10−10 g cm−3 at the surface to ρ∞ = 10−20 g cm−3 far from the

white dwarf with a density scale height of Hρ = (2kTeff)/(mpg0), where mp

is the proton mass and g0 is the surface gravity. For ZTF J1901+1458, with

g0 = 4.0×109 cm s−2 and Teff = 4.6×104 K [57], the plasma frequency drops

to ωpl ≈ 2.9× 10−9 eV ≪ E, ma with scale height Hρ ≈ 0.019 km ≪ RWD.

Thus, the plasma term is negligible compared to the vacuum QED and ∆a

terms for the scenario we consider.

To calculate the probability of an axion converting to a photon in the

magnetosphere, we solve Eq. (8.8) numerically for an initial pure axion state.

The probability pa→γ is given by the squared magnitude of the asymptotic

solution for A∥. For this calculation, we model the external magnetic field

of the white dwarf as a magnetic dipole, B(r) = B0 (RWD/r)
3, where B0 is

the magnetic field at the surface of the white dwarf. For this form of the

magnetic field, sinΘ has a fixed value along the radial trajectory, which we

take to be unity. The values of the relevant magnetic field parameters for

ZTF J1901+1458 are B0 ∼ 800 MG and RWD = 2, 140+160
−230 km [57].

As Θ always appears in Eq. (8.8) through the factor B0 sinΘ, setting

sinΘ = 1 effectively makes B0 the transverse magnetic field at the surface,

BT,0 ≡ B0 sinΘ. For magnetic field strengths relevant to this work, pa→γ

is approximately ∝ B
2/5
T,0 (Dessert et al. [53], Supplemental Material). This

dependence is much weaker than the exponential dependence of the cor-

responding photon flux on Tc. As the core temperature is the dominant

source of uncertainty in our sensitivity estimate, more detailed modeling of

the magnetic field is beyond the scope of this work.

The key parameter values used to calculate the X-ray photon flux at

Earth are summarized in Table 8.1. The observable photon flux induced
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Parameter Value

E∗ 14.4 keV
J0 1/2
J1 3/2
τ0 141 ns
α 8.56

N57 6.24× 1050 M−1
⊙

MWD 1.34 M⊙
dWD 41.44 pc
B0 800 MG
RWD 2,100 km

kTc 2.85+1.58
−0.63 keV

Table 8.1: Parameter values used to calculate the X-ray flux induced
by axions produced in the 57Fe nuclear transition process for ZTF J1901
+1458. The properties of the first excited state of 57Fe come from
Röhlsberger [298]. The abundances used to determine N57 come from
Lodders [297]. The ZTF J1901+1458 white dwarf parameters come
from Caiazzo et al. [57], except for Tc which is calculated in this work.

by the 57Fe transition depends on both the axion-nucleon coupling and

the axion-photon coupling. The emission rate of axions produced by the
57Fe nuclear transition in the white dwarf interior goes as (geffaNN )2, while

the probability of the axions converting into photons in the external mag-

netic field goes as (gaγγ)
2. Thus, observations of the hard X-ray emission

from magnetic white dwarfs are sensitive to the product of the couplings:

geffaNNgaγγ . Furthermore, the probability of an axion converting to a photon

depends on the axion mass, so the sensitivity to geffaNNgaγγ of such X-ray ob-

servations will be a function of axion mass, which we evaluate numerically

over a grid of axion mass values.

We calculate the sensitivity to geffaNNgaγγ that could be achieved from

NuSTAR observations with a total exposure time of 100 ks. Using XSPEC

simulations, we determined the minimum flux for a three-sigma detection of

a narrow (width of 0.03 keV), Gaussian spectral line at 14.4 keV above the

background (30-arcsecond extraction region and one arcminute off-axis) to
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be 1.6 × 10−6 photons s−1 cm−2. In the background, we also included the

thermal emission from the white dwarf atmosphere modeled as a blackbody

at a temperature kTeff = 3.88 eV with a radius of 2,100 km. For a given

axion mass, the value of geffaNNgaγγ for which the photon number flux given by

Eq. (8.4) equals (or exceeds) the detector threshold sets the limit defining the

sensitivity. In the case of a non-detection, this sensitivity would correspond

to a constraint on geffaNNgaγγ (as a function of ma) set by the observations.

8.3 Results

The potential NuSTAR signature of axion production through nuclear pro-

cesses is a narrow emission line at 14.4 keV (the excitation energy of the
57Fe nucleus). The projected sensitivity curve for a 100 ks NuSTAR obser-

vation of the white dwarf ZTF J1901+1458 is depicted in Fig. 8.2, where

it is compared to both current constraints and the predicted sensitivity of

the future observatory IAXO. For reference, the parameter relations of the

benchmark KSVZ and DFSZ (with sinβ ≈ 1) models are also shown. The

blue shaded region shows the statistical uncertainty in the projected sensi-

tivity curve due to the measurement error of Tc, where a dipolar magnetic

field has been assumed. More complicated magnetic field geometries can ad-

ditionally shift the projected sensitivity to a lesser extent in either direction

through the axion-photon conversion probability (e.g. [53, 301, 302], noting

that the sensitivity curve for |geffaNNgaγγ | is only proportional to the square

root of the axion-photon conversion probability). However, the magnetic

field structure of ZTF J1901+1458 is currently not well understood, so a

more detailed analysis of the field geometry and its associated uncertainty

is left for future work.

Compared to helioscope searches for an analogous 57Fe axion signal,

a 100 ks NuSTAR observation of ZTF J1901+1458 would be sensitive to

|geffaNNgaγγ | values smaller than the existing constraints from CAST for all

axion masses and would even be more sensitive than the planned search by

the future proposed IAXO by an order of magnitude for small axion masses.

The shaded orange region in Fig. 8.2 shows the current CAST constraints
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([55] with correction by [56]), and the solid black curves show the sensitivity

limits for the four different configurations of both the proposed intermediate-

stage BabyIAXO and the proposed fully operational IAXO (see Tab. I of Di

Luzio et al. [56] for a summary of these configurations).

These helioscope searches for axions produced by the 57Fe transition are

sensitive to the same quantity, |geffaNNgaγγ |, as our proposed search, mak-

ing them the most directly comparable to our work. However, a current

bound that is stronger than the CAST bound from 57Fe axion searches is

achieved by combining the SN 1987A constraint on geffaNN with the inde-

pendent constraint on gaγγ from helioscope searches for axions produced

through the (axion) Primakoff process. From an updated analysis of the SN

1987A neutrino signal [281], the bound on the axion-nucleon couplings is

g2ann + 0.6g2app + 0.5ganngapp ≲ 8.3 × 10−19. Following the procedure of Di

Luzio et al. [56], this limit can be translated into a bound on geffaNN by choos-

ing the ratio gapp/gann that minimizes the left hand side while keeping geffaNN

constant (gapp/gann ≈ 0.2), which gives |geffaNN | ≲ 1.1×10−9. This saturated

SN 1987A limit for geffaNN , in conjunction with the CAST Primakoff axion

limit for gaγγ [303], is shown as the red curve in Fig. 8.2, which falls between

the lowest two IAXO curves for ma ≲ 0.02 eV. Our projected sensitivity

would thus even improve upon current bounds from SN 1987A (and CAST)

for small axion masses.

In addition to probing the combination of couplings geffaNNgaγγ , X-ray

observations of ZTF J1901+1458 could also probe the combination gaeegaγγ

as white dwarfs can produce axions through electron bremsstrahlung, which

yields a blackbody-like spectrum of axions. This was the focus of a 100 ks

observation of a cooler magnetic white dwarf, RE J0317-853 [54], with the

X-ray telescope Chandra. These axions are typically produced at lower

energies (near the temperature of the core at a few keV), so the resulting

X-rays lie squarely in the energy range probed by Chandra, but a search

could be performed using NuSTAR observations as well.

ZTF J1901+1458 is a prime target to search for axion signatures in the

X-rays because it is one of the hottest and most strongly magnetized white

dwarfs known. Both of these properties increase the predicted strength of
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Figure 8.2: Projected sensitivity to the product of the axion-nucleon
and axion-photon couplings that would be obtained with a 100 ks Nu-
STAR observation of ZTF J1901+1458 in blue. The band accounts
for the uncertainty in the core temperature of the white dwarf. The
shaded orange region is excluded by CAST 57Fe axion searches [55, 56].
The black curves give sensitivity limits predicted for 57Fe axion searches
with the future IAXO [56] for both the intermediate-stage BabyIAXO
(upper four) and the fully operational IAXO (lower four). The red
curve shows the SN 1987A bound on geffaNN [281] in combination with
the current CAST Primakoff axion bound on gaγγ [303].
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the 57Fe nuclear transition line and bremsstrahlung emission, and therefore

the chance of detection, or the significance of the constraints in the case of a

non-detection. Recently published photometry and spectroscopy [57] yield

somewhat broad constraints on the core temperature of the white dwarf

(see Fig. 8.1) that result in a broad range for the implied sensitivity curve of

the axion search (the shadowed blue area in Fig. 8.2). Fortunately, follow-

up ultraviolet spectroscopy observations are scheduled for the current HST

cycle [304] that should provide stronger constraints on the effective temper-

ature and therefore the core temperature of the white dwarf, which would

narrow the band for the sensitivity that could be achieved with NuSTAR

observations.

8.4 Conclusions

White dwarfs are a popular target of indirect searches for axions. While

observations of white dwarfs have been used to constrain the coupling of

axions to electrons, white dwarfs have not previously been identified as a

target for probing the axion coupling to nucleons. In this chapter, we have

shown for the first time that observations of white dwarfs can be used to

probe the axion-nucleon coupling through searches for the X-ray signal from

hot, highly magnetized white dwarfs that would be induced by the process

of axions being produced in the core via the nuclear transition of the first

excited state of 57Fe and then converting into photons in the magnetosphere.

The recently discovered white dwarf ZTF J1901+1458 is a compelling

target to search for an X-ray signal arising from axions produced via the 57Fe

transition. We have shown that a 100 ks observation of ZTF J1901+1458 by

NuSTAR would probe the coupling of axions with nucleons and photons at

a level below current helioscope constraints for all axion masses and would

furthermore be more sensitive than what is predicted for planned future

terrestrial experiments at small masses. This would provide a dramatic

improvement in our knowledge of these particles that are critical to our

understanding of the Standard Model and possibly dark matter as well.
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Conclusions

This dissertation has demonstrated various ways in which observations of

white dwarfs can be used as probes of new phenomena in physics, partic-

ularly as tests of hypothesised particles such as axions in models beyond

the Standard Model of particle physics. The statistical analysis of distribu-

tions constructed from large samples of white dwarfs is especially powerful

for this purpose. If white dwarf cooling is well understood, then the white

dwarf luminosity function in particular provides a good test of new physics

that can affect the rate of white dwarf cooling, such as axion models that

include an axion-electron coupling. A slower rate of white dwarf cooling

over a particular luminosity range, as would be induced by a cooling delay,

manifests as a larger number of white dwarfs over that range, while a faster

rate of cooling, as would be induced by the emission of extra particles such

as axions, manifests as a smaller number of white dwarfs. Observations of

the emission spectra of individual white dwarfs can also be useful in looking

for evidence of new physics, and in particular such observations can be used

to probe axion couplings that the cooling rates of most white dwarfs are not

sensitive to.

While white dwarf cooling is generally thought to be well-understood,

some Gaia DR2 observations of ultramassive white dwarfs in the solar neigh-

bourhood challenged the conventional understanding of white dwarf cooling,

and in particular the understanding of core crystallisation. Based on Gaia

DR2 observations, Cheng et al. [43] noted an excess of ultramassive white

dwarfs on the Q branch, where these white dwarfs are in the process of un-

dergoing core crystallisation, and furthermore found that a small fraction

of ultramassive white dwarfs on the Q branch were moving faster than ex-

pected based on the young ages inferred from their photometry using cooling
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models. Cheng et al. [43] argued that this could only be explained by an

anomalous cooling delay, with ∼ 6% of ∼ 1.08− 1.23 M⊙ white dwarfs ex-

periencing an extra cooling delay of ∼ 8 Gyr, and suggested modification

to the treatment of 22Ne sedimentation as a possible mechanism for this de-

lay. This cooling delay explanation argues that the anomalously fast-moving

white dwarfs are actually much older than suggested by their photometric

ages, as the velocities of stars in the local Galactic disc have been observed

to become more dispersed over time, and that the transverse velocities mea-

sured for the fast-movers are actually what is expected based on their true

ages according to the AVRs of local disc stars. These anomalous features of

ultramassive white dwarfs in the solar neighbourhood and the corresponding

cooling delay explanation were re-investigated in Chapters 4 and 5 using the

improved Gaia EDR3 observations. New features not previously considered

were also analysed in these chapters.

In Chapter 4, the number density distribution of white dwarfs as a func-

tion of cooling age and mass was analysed for Gaia EDR3 white dwarfs

within 200 pc of the Sun with masses in the range 0.95 − 1.25 M⊙. The

cooling age and mass of each white dwarf were inferred from the photom-

etry using white dwarf cooling models, and the full analysis was done for

a variety of different publicly available cooling models. In each case, the

sample was subdivided into the three equally-spaced mass bins 0.95− 1.05,

1.05 − 1.15, and 1.15 − 1.25 M⊙, and the empirical distribution of cooling

ages was constructed for each bin. For each of these mass bins, it was found

that the number density increases over the first ∼ 3 Gyr of cooling time.

If a uniform birthrate is assumed, then this corresponds to an apparent ex-

cess number of white dwarfs both on the Q branch and below it, and the

excess reaches a peak after core crystallisation has already ended. Further-

more, this peak coincides with a burst of star formation that occurred in the

Galaxy ∼ 2−3 Gyr ago, according to the star formation history determined

from Gaia DR2 main sequence stars [106].

For white dwarfs of the large masses considered in Chapter 4, the distri-

bution of cooling ages is expected to closely track the star formation rate if

the white dwarfs formed through single stellar evolution, and for the lightest
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two mass bins, 0.95−1.05 and 1.05−1.15M⊙, it was found that the empirical

distribution of cooling ages is statistically consistent with this expectation

for the thick-envelope Montreal models, i.e. the cooling models of Bédard

et al. [109] with thick H envelopes for DA white dwarfs. For the more mas-

sive 1.15−1.25M⊙ white dwarfs, it was found that the empirical distribution

of cooling ages constructed using these same models is well-fitted by a linear

combination of the distribution expected for single stellar evolution and the

distribution expected for double white dwarf merger products, the latter of

which was taken to be the convolution of the star formation rate from Mor

et al. [106] and the merger delay time distribution from Cheng et al. [126],

with the best fit given when ∼ 51% of the 1.15−1.25 M⊙ white dwarfs that

formed over the last 4 Gyr are the product of double white dwarf mergers.

This merger fraction is further supported by the recent empirical evidence

presented by Kilic et al. [125, 164] indicating a similarly large fraction of

double white dwarf merger products amongst ultramassive white dwarfs.

It is interesting to note that the results of Chapter 4 favour cooling mod-

els with C/O cores even for white dwarfs more massive than the threshold

mass (∼ 1.05 − 1.15 M⊙) above which white dwarfs are typically thought

to have O/Ne cores. Though simulations favour O/Ne cores at these high

masses, they have also shown the potential for ultramassive white dwarfs to

have C/O cores, and the composition of ultramassive white dwarfs is still an

open question that warrants further examination. After the completion of

the work described in Chapter 4, the La Plata group published new cooling

models for ultramassive white dwarfs with C/O cores [159], and it would

be interesting to redo the analysis of Chapter 4 (and possibly Chapter 5)

using these new models. A similar analysis could also be done using custom

MESA models for more control over the composition and other parameters

of the cooling models, and it would be interesting to extend that analysis

to larger masses than those spanned by the set of publicly available models

considered in Chapter 4. More detailed investigation like this into the com-

position of ultramassive white dwarfs is not necessary for the purposes of

this work, but it would be an interesting topic for future research to explore.

Overall, the results of Chapter 4 show that the empirical number density
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distribution of cooling ages for massive and ultramassive white dwarfs is

consistent with the expected distribution when, in addition to accounting

for merger products in the case of the most massive white dwarfs, the time-

dependent star formation history is properly accounted for. These results

indicate that it is not necessary to invoke an extra ∼ 8 Gyr cooling delay

to explain the previously reported excess in the number of white dwarfs on

the Q branch, and thus that conventional cooling models do not need to be

modified to explain this feature.

In Chapter 5, the work of Chapter 4 was followed up with an analysis

of the kinematics of the same sample of 0.95− 1.25 M⊙ Gaia EDR3 white

dwarfs within 200 pc of the Sun that was considered in Chapter 4. The sam-

ple was subdivided into the same mass bins of 0.95− 1.05, 1.05− 1.15, and

1.15 − 1.25 M⊙, and the masses and photometric cooling ages were deter-

mined using the best-fitting models from Chapter 4, i.e. the thick-envelope

Montreal models [109]. The transverse motions of these white dwarfs were

analysed, including in particular the three-dimensional components U⊥, V⊥,

and W⊥ of the transverse velocity vectors, which had not previously been

examined. Further subdividing the mass-binned subsamples into age bins,

the empirical distributions of the three-dimensional transverse velocity com-

ponents were constructed for each mass and age bin, and these distributions

were compared to the expectation for stars in the local Galactic disc based

on the observed AVRs of local main-sequence stars.

As was found for Gaia DR2 data by Cheng et al. [43], a population of

photometrically young, ultramassive white dwarfs that are moving anoma-

lously fast was found in the analysis of Gaia EDR3 data in Chapter 5. The

population of fast-movers found in Chapter 5 is concentrated to the mass

range 1.15− 1.25 M⊙ and photometric cooling age range 0.5− 1.5 Gyr, and

the white dwarfs comprising this anomalous population are moving faster

than expected, according to observed AVRs, for stars from the local disc

with the young ages inferred from photometry. Contrary to the explanation

proposed by Cheng et al. [43], however, the results of Chapter 5 show that

these fast-movers cannot be explained solely by an extra cooling delay in

white dwarfs originating from the local disc. It was found in Chapter 5
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that the dispersion of V⊥ for the fast-movers is too large to be achieved in

the age of the Galactic disc and that the dispersion ratio of V⊥ to U⊥ is

inconsistent with a disc in equilibrium. Both of these features indicate that

the fast-movers do not originate from the local Galactic disc and that the

explanation of the fast-movers lies in this non-local origin.

Of importance to note is that an extra cooling delay alone cannot explain

either of these kinematic features, and even if other measurements of the

local AVR or the age of the disc were to find that it is possible to achieve

the large dispersion observed for V⊥ within the age of the disc, a cooling

delay would still not account for the dispersion ratio of the fast-movers. A

disc in equilibrium, like the Galactic disc, should have a dispersion ratio

of σV /σU ∼ 2/3 for the velocity components V and U of the full motion

before projection onto the tangent plane (including both transverse and

radial motion), with the dispersion of V expected to be notably smaller

than the dispersion of U . A similar relation was shown in Chapter 5 to hold

for the transverse velocity components V⊥ and U⊥ after projection onto the

tangent plane; however, it was found empirically that the dispersion of V⊥

is actually larger than the dispersion of U⊥ for the fast-moving population.

A cooling delay does not address this discrepancy, and while it is possible

to incorporate an extra cooling delay as part of an explanation of the fast-

movers that additionally has some other mechanism to address the kinematic

features that the cooling delay does not explain, it is also possible to explain

these kinematic features without invoking an extra cooling delay.

Some possible explanations of the fast-moving population, such as a halo

origin or production through dynamical effects of stellar triple systems, were

discussed in Chapter 5. However, the exact origin of this population is still

unknown, and the task of further determining the correct explanation of the

fast-movers has been left for future work. To this end, it would be useful

to more precisely characterise the kinematic features of this population in

the future, for instance by fitting models to the empirical distributions of

the three-dimensional transverse velocity components. It would also be in-

teresting to search for other features such as strong magnetic fields, which

are associated with mergers, that might characterise the fast-movers and
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provide more hints as to their origin.

While determining the precise origin of the fast-moving ultramassive

white dwarfs and further characterising this population is an interesting

topic for future research, it is beyond the scope of this work. The results of

Chapter 5 are sufficient to show that the fast-movers do not originate from

the local Galactic disc, which points to the explanation of this population

being a question of dynamics rather than a problem with white dwarf cool-

ing models. A cooling delay is not sufficient to explain the key kinematic

features highlighted in Chapter 5, and it was furthermore found in Chap-

ter 4 that the cooling age distributions are well-fitted by standard cooling

models when the time-dependent star formation rate is properly accounted

for, without needing to invoke an extra cooling delay. Neither the cooling

age distributions analysed in Chapter 4 nor the distributions of the three-

dimensional transverse velocity components analysed in Chapter 5 show

specific evidence of an extra cooling delay. The results presented in these

chapters can be explained without modifying standard white dwarf cooling

models, and in particular do not indicate a need to modify the treatment of

core crystallisation in white dwarf cooling models.

Properly determining the parameters of white dwarf cooling models,

however, is still an important task if observations of the white dwarf lumi-

nosity function are to be used to constrain other exotic physics that would

affect white dwarf cooling rates, such as axion models that couple to elec-

trons. This task was the focus of the work presented in Chapter 6, where

the main goal was to constrain the parameters that characterise white dwarf

cooling in the globular cluster 47 Tuc for later use in the work of Chapter 7

to constrain axion models based on the cooling of white dwarfs in 47 Tuc.

In Chapter 6, models of white dwarf cooling without axion emission were

fit to observations of white dwarfs in 47 Tuc that are old enough that any

potential cooling by axion emission would be negligible. The results of these

fits were then used as priors in the analysis of Chapter 7, where models of

white dwarf cooling that included energy loss due to axion emission were

fit to separate observations of younger white dwarfs in 47 Tuc that are still

in the cooling regime where the emission of axions would be a dominant
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cooling process.

In Chapter 6, white dwarf cooling models were created by performing

stellar evolution simulations using MESA for a parameter grid of different

white dwarf mass values, envelope thickness values, and element diffusion

scenarios. Three different treatments of element diffusion were considered: i)

the standard MESA implementation that approximates the ions as an ideal

gas, ii) a custom modified treatment of diffusion to account for non-ideal gas

effects that suppress diffusion, and iii) the scenario of no diffusion. These

cooling models were compared to deep HST observations of white dwarfs

in 47 Tuc by performing an unbinned likelihood analysis similar to that of

Goldsbury et al. [215]. As the white dwarf cooling sequence of 47 Tuc suffers

from SMC contamination for this deep HST data, particularly at the late

cooling times that are of the most interest for this analysis, a careful cleaning

and associated calibration procedure was performed to remove these SMC

contaminants and account for the reduction in completeness associated with

this cleaning procedure in the analysis.

The data space used in the analysis performed in Chapter 6 extended

to faint enough magnitudes (and thus old enough cooling times) to resolve

the bump in the cumulative luminosity function associated with the convec-

tive coupling of the white dwarf envelope to the core. The thickness of this

bump is sensitive to the H envelope thickness of the white dwarfs, so using a

data space that includes white dwarfs old enough that their envelopes have

convectively coupled to their cores is important for constraining the typical

white dwarf envelope thickness for this population. At such late cooling

times, the white dwarfs in 47 Tuc have also begun to undergo core crystalli-

sation. As shown by the earlier work of Obertas et al. [30], which used the

same deep HST observations of 47 Tuc as were analysed in Chapter 6, the

convective coupling of the envelope to the core for white dwarfs in 47 Tuc

coincides with the onset of core crystallisation in these white dwarfs. Both

of these phenomena produce a bump in the white dwarf luminosity func-

tion, and Obertas et al. [30] showed that these features overlap in the case

of 47 Tuc. At these late cooling times, the white dwarf cores should thus

no longer be approximated as an ideal gas from a theoretical standpoint,
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though the usual implementation of element diffusion in stellar evolution

code like MESA approximates ions as an ideal gas even for simulations of

white dwarf cooling in order to make the diffusion equations tractable. In

addition to constraining the values of parameters like the envelope thickness

that are important for modelling the cooling of white dwarfs in 47 Tuc, the

analysis performed in Chapter 6 thus also provides a good test of the pa-

rameter regime over which the standard MESA implementation of element

diffusion can be used.

The results of Chapter 6 show that the standard MESA implementation

of element diffusion produces white dwarf cooling models that well reproduce

the empirical cumulative white dwarf luminosity function even at cooling

times old enough that the core has begun to crystallise. The best-fitting

model from the work of Chapter 6 corresponds to the case of standard MESA

diffusion, and models with very thick envelopes (−3.75 ≤ log10 qH ≤ −3.55)

and white dwarf masses in the limited rangeMWD = 0.5314−0.5338M⊙ are

strongly favoured (at the 3 σ level in the posterior probability distribution)

for that diffusion scenario. The best-fitting model was specifically given by

the case of standard diffusion withMWD = 0.5314M⊙ and log10 qH = −3.55.

There is some degeneracy between which diffusion scenario is used and the

most likely H envelope thickness (as well as the white dwarf mass to a

lesser degree), with the cases of modified diffusion and no diffusion favouring

slightly thinner (though still quite thick) envelopes. The modified treatment

of diffusion, in particular, produces some cooling models that are nearly as

likely (within 1 σ) as the best-fitting model that used the standard treatment

of diffusion.

Further distinguishing between the standard and modified treatments of

diffusion and breaking the degeneracy between the diffusion scenarios and

the envelope thickness at a statistically significant level could potentially be

accomplished in the future if new data is obtained with higher completeness

at the faint magnitude end of the white dwarf cooling sequence, but that is

beyond the scope of what can be accomplished with the deep HST data anal-

ysed in Chapter 6. The careful cleaning and calibration procedure performed

in Chapter 6 has already pushed the limit of what can be done with the deep
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HST data considered in that chapter. The data is magnitude-limited and its

completeness decreases significantly with increasing magnitude at the faint

end of the 47 Tuc white dwarf cooling sequence where the fit is most sen-

sitive to the envelope thickness and core crystallisation. As the analysis of

Chapter 6 cannot distinguish between the modified and standard diffusion

scenarios at a statistically significant level, there is no reason to perform

a more detailed analysis in this work of precisely how diffusion should be

modified to best account for non-ideal gas effects, though this would be an

interesting topic to explore in future work if better data becomes available in

the future, such as from future observations performed by a newer telescope

like JWST. This potential future work is also not necessary for the use of

the Chapter 6 results in the analysis of Chapter 7.

In Chapter 7, simulations were performed using MESA to create white

dwarf cooling models analogous to those of Chapter 6 but that also ac-

counted for the additional energy loss associated with the emission of axions

produced in the interior of the white dwarf via axion bremsstrahlung from

electrons. The results of Chapter 6 were used in Chapter 7 to choose which

treatment of element diffusion to use when creating white dwarf cooling

models and as prior information to constrain the white dwarf mass and en-

velope thickness values. Only the standard MESA treatment of diffusion was

used, and the cooling models were restricted to the limited white dwarf mass

range MWD = 0.5240− 0.5388 M⊙ based on the 5 σ level of the Chapter 6

results for the standard diffusion scenario. Cooling models were created for

a grid of parameter values, varying the white dwarf mass (over this limited

range), the H envelope thickness, and the axion-electron coupling constant.

These cooling models were compared to HST observations of young white

dwarfs in 47 Tuc using an unbinned likelihood analysis procedure similar

to that of Chapter 6 (and Goldsbury et al. [215]). The data analysed in

Chapter 7 are separate sets of HST observations that are independent from

the deep HST data analysed in Chapter 6. The data considered in Chapter 7

also consist of observations by two HST instruments, WFC3 and ACS, that

both observed 47 Tuc as part of the same observation scheme, and both

the WFC3 and ACS data sets were analysed simultaneously in a combined
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analysis to produce the final results of Chapter 7. These are furthermore the

same data that were analysed by Goldsbury et al. [215] to study neutrino

cooling in 47 Tuc.

The results of Chapter 7 favour white dwarf cooling models with thick

envelopes and negligible axion emission. The best-fitting model from the

analysis in Chapter 7 was found to correspond to parameter values (on the

discrete parameter grid) of MWD = 0.5388 M⊙, log10 qH = −3.55, and

gaee = 0, and it was found that the cumulative white dwarf luminosity

functions predicted by this model for both the WFC3 and ACS data sets

well-reproduce the corresponding empirical white dwarf luminosity func-

tions. The analysis of Chapter 7 furthermore provides an improved bound

on the axion-electron coupling of gaee ≤ 0.81×10−13 at 95% confidence. For

a DFSZ model, this corresponds to a bound on the axion mass (and angular

parameter) of ma sin
2 β ≤ 2.85 meV at 95% confidence. This new constraint

on gaee (and ma for the DFSZ model) is more stringent than the previous

bound from the Galactic white dwarf luminosity function [48], as well as

the stronger (and previously leading) bounds from the tip of the red giant

branch of globular clusters [92, 93]. Contemporaneous with this dissertation,

the bound on gaee from the tip of the red giant branch (at 95% confidence)

has been updated by Carenza et al. [305] from gaee ≤ 1.5 × 10−13 [92] to

gaee ≤ 0.96×10−13 [305] using the updated distances provided by Gaia DR3

for 21 of the 22 globular clusters used by Straniero et al. [92] to derive the

previous bound. However, the new bound of gaee ≤ 0.81 × 10−13 found in

Chapter 7 is more stringent than even the updated bound from the tip of

the red giant branch [305]. This improved constraint on gaee furthermore

excludes the range of values favoured by the hints of axions from Galactic

disc and halo white dwarf luminosity functions [49].

This bound on gaee could potentially be further improved in the future

by using non-uniform priors for the white dwarf birthrates. The analysis of

Goldsbury et al. [215] used Gaussian birthrate priors that were determined

from stars on the red giant branch, similar to what was done in Chapter 6,

and the birthrate priors from Goldsbury et al. [215] were considered for

the analysis in Chapter 7. However, it was shown in Chapter 7 that these
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priors appear to simultaneously underestimate the birthrate in the inner

WFC3 field and overestimate the birthrate in the outer ACS field by a

similar, appreciable amount. This suggests that white dwarfs may be leaving

the inner WFC3 field and entering the outer ACS field at a measurable

rate, which could be due to a phenomenon like cluster relaxation [261, 262].

This would be an important phenomenon to account for in modelling and

determining a prior for the birthrate if a non-uniform prior is to be used,

and it also presents interesting possibilities for future research.

Astrophysical axion searches using observations of white dwarfs typically

probe the axion-electron coupling, as was done in Chapter 7. While other

astrophysical objects have been recognised as targets for axion searches that

probe the coupling of axions to nucleons, such as helioscope searches that

look for axions produced by the 57Fe transition in the Sun, white dwarfs

have not previously been recognised as a target for searches that probe this

coupling. The work presented in Chapter 8 showed, for the first time, the

potential for observations of very hot, magnetic white dwarfs to probe the

coupling of axions to nucleons. The proposed mechanism was the production

of axions through the decay of the first excited state of 57Fe in the core of the

white dwarf, with the emitted axions subsequently converting to photons in

the strong magnetic field surrounding the white dwarf. The signal associated

with this process would be a narrow peak in the X-ray spectrum of the white

dwarf at ∼ 14.4 keV, the excitation energy of the first excited state of 57Fe.

The white dwarf ZTF J1901+1458 was identified as a particularly good

target to search for this signal, and the projected sensitivity that could be

achieved by observing ZTF J1901+1458 with the X-ray telescope NuSTAR

was calculated.

In Chapter 8, it was shown that a 100 ks observation of ZTF J1901

+1458 with NuSTAR would be sensitive to the product of the effective

axion-nucleon and axion-photon couplings, |geffaNNgaγγ |, at a level below that

of both current and future helioscope searches that look for an analogous

signal for axions produced in the Sun through the 57Fe transition. Such

an observation would also be sensitive to |geffaNNgaγγ | at a level below the

strongest current bound, given by combining the saturated bound on geffaNN
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from SN 1987A and the most recent bound on gaγγ from CAST searches for

Primakoff axions produced in the Sun.

While the sensitivity curve calculated in Chapter 8 is currently just a

projection of what could be achieved, this work demonstrates the potential

for probing the coupling of axions to nucleons using observations of very hot,

magnetic white dwarfs. Future work will be able to determine new results

for |geffaNNgaγγ | by applying the procedure detailed in Chapter 8 to actual

data from NuSTAR, and observation time has been awarded by NuSTAR

for this purpose [5]. Observation time has also been awarded by HST for

ultraviolet spectroscopy observations of ZTF J1901+1458 [304], which will

allow the temperature of ZTF J1901+1458 to be determined more precisely.

The NuSTAR observations have in fact already been performed, but an

accurate determination of the temperature of ZTF J1901+1458 from HST

observations is still needed before proceeding with the final analysis of this

NuSTAR data. The emission rate of axions produced by the 57Fe transition

is highly sensitive to the core temperature of the white dwarf, so the precise

implications for |geffaNNgaγγ | rely on accurately determining this temperature.

The results also depend on the magnetic field strength of the magneto-

sphere through the axion-photon conversion probability, though this depen-

dence on the magnetic field strength is less significant than the dependence

on the core temperature. Given the current very large uncertainty in the

value of the temperature of ZTF J1901+1458, in addition to the stronger

dependence of the results on the core temperature compared to the magnetic

field strength, the uncertainty associated with modelling the magnetic field

of ZTF J1901+1458 was only a sub-dominant effect that could be neglected

in the calculations performed in Chapter 8. For future calculations where

the uncertainty in the temperature has been significantly reduced, however,

accurately modelling the magnetic field and accounting for the uncertainty

in the field strength will become a more important consideration.

It should also be noted that the mechanism proposed in Chapter 8 of

axions being produced in the core of a hot white dwarf through the 57Fe

transition and then converting to photons in the magnetosphere of a strongly

magnetic white dwarf would occur in any sufficiently hot and magnetic white

226



Chapter 9. Conclusions

dwarf with enough 57Fe in its core. While ZTF J1901+1458 is a particularly

good target to search for the signal associated with this process, other white

dwarfs may also make good targets to search for this signal. Furthermore,

while the calculations of Chapter 8 assumed a 100 ks observation, longer

observations could also be performed to probe smaller values of |geffaNNgaγγ |.
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[49] J. Isern, E. Garćıa-Berro, S. Torres, R. Cojocaru, and S. Catalán,

Axions and the luminosity function of white dwarfs: the thin and thick

discs, and the halo, MNRAS 478, 2569 (2018), arXiv:1805.00135.

[50] J. Binney and S. Tremaine, Galactic Dynamics: Second Edition

(Princeton University Press, Princeton, NJ USA, 2008).

[51] G. G. Raffelt, Astrophysical methods to constrain axions and other

novel particle phenomena, Phys. Rep. 198, 1 (1990).

[52] G. G. Raffelt, Stars as laboratories for fundamental physics: The as-

trophysics of neutrinos, axions, and other weakly interacting particles

(University of Chicago Press, Chicago, USA, 1996).

[53] C. Dessert, A. J. Long, and B. R. Safdi, X-Ray Signatures of Axion

Conversion in Magnetic White Dwarf Stars, Phys. Rev. Lett. 123,

061104 (2019), arXiv:1903.05088.

[54] C. Dessert, A. J. Long, and B. R. Safdi, No Evidence for Axions from

Chandra Observation of the Magnetic White Dwarf RE J0317-853,

Phys. Rev. Lett. 128, 071102 (2022), arXiv:2104.12772.

[55] S. Andriamonje et al. (CAST Collaboration), Search for 14.4 keV so-

lar axions emitted in the M1-transition of 57Fe nuclei with CAST,

J. Cosmol. Astropart. Phys. 2009 (12), 002, arXiv:0906.4488.

233

https://doi.org/10.1111/j.1365-2966.2011.18976.x
https://arxiv.org/abs/1102.3193
https://doi.org/10.1086/591042
https://arxiv.org/abs/0806.2807
https://doi.org/10.1088/1475-7516/2014/10/069
https://arxiv.org/abs/1406.7712
https://doi.org/10.1093/mnras/sty1162
https://arxiv.org/abs/1805.00135
https://doi.org/10.1016/0370-1573(90)90054-6
https://doi.org/10.1103/PhysRevLett.123.061104
https://doi.org/10.1103/PhysRevLett.123.061104
https://arxiv.org/abs/1903.05088
https://doi.org/10.1103/PhysRevLett.128.071102
https://arxiv.org/abs/2104.12772
https://doi.org/10.1088/1475-7516/2009/12/002
https://arxiv.org/abs/0906.4488


Bibliography

[56] L. Di Luzio et al., Probing the axion-nucleon coupling with the next

generation of axion helioscopes, European Physical Journal C 82, 120

(2022), arXiv:2111.06407.

[57] I. Caiazzo et al., A highly magnetized and rapidly rotating white dwarf

as small as the Moon, Nature 595, 39 (2021), arXiv:2107.08458.

[58] L. Mestel, On the theory of white dwarf stars. I. The energy sources

of white dwarfs, MNRAS 112, 583 (1952).

[59] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs and neu-

tron stars. The physics of compact objects (Wiley, 1983).

[60] H. M. van Horn, Cooling of White Dwarfs, in White Dwarfs, IAU

Symposium, Vol. 42, edited by W. J. Luyten (1971) p. 97.

[61] M. Schwarzschild, Structure and evolution of the stars. (Princeton Uni-

versity Press, 1958).

[62] N. Itoh, T. Adachi, M. Nakagawa, Y. Kohyama, and H. Munakata,

Neutrino Energy Loss in Stellar Interiors. III. Pair, Photo-, Plasma,

and Bremsstrahlung Processes, ApJ 339, 354 (1989).

[63] N. Itoh, H. Mutoh, A. Hikita, and Y. Kohyama, Neutrino Energy

Loss in Stellar Interiors. IV. Plasma Neutrino Process for Strongly

Degenerate Electrons, ApJ 395, 622 (1992).

[64] N. Itoh, H. Hayashi, A. Nishikawa, and Y. Kohyama, Neutrino Energy

Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung,

and Recombination Neutrino Processes, ApJS 102, 411 (1996).

[65] M. Nakagawa, Y. Kohyama, and N. Itoh, Axion Bremsstrahlung in

Dense Stars, ApJ 322, 291 (1987).

[66] M. Nakagawa, T. Adachi, Y. Kohyama, and N. Itoh, Axion Brems-

strahlung in Dense Stars. II. Phonon Contributions, ApJ 326, 241

(1988).

234

https://doi.org/10.1140/epjc/s10052-022-10061-1
https://doi.org/10.1140/epjc/s10052-022-10061-1
https://arxiv.org/abs/2111.06407
https://doi.org/10.1038/s41586-021-03615-y
https://arxiv.org/abs/2107.08458
https://doi.org/10.1093/mnras/112.6.583
https://doi.org/10.1002/9783527617661
https://doi.org/10.1002/9783527617661
https://doi.org/10.1086/167301
https://doi.org/10.1086/171682
https://doi.org/10.1086/192264
https://doi.org/10.1086/165724
https://doi.org/10.1086/166085
https://doi.org/10.1086/166085


Bibliography
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[127] G. Strömberg, The Motions of the Stars Within 20 Parsecs of the Sun,

ApJ 104, 12 (1946).

[128] N. G. Roman, Some characteristics of the spectra of F-, G-, and K-type

stars, AJ 55, 182 (1950).

[129] N. G. Roman, A Correlation Between the Spectroscopic and Dynami-

cal Characteristics of the Late F- and Early G- Type Stars, ApJ 112,

554 (1950).

241

https://doi.org/10.1086/149446
https://doi.org/10.3847/0004-637X/823/2/102
https://arxiv.org/abs/1604.08592
https://doi.org/10.3847/1538-4357/ac45fc
https://arxiv.org/abs/2110.03837
https://doi.org/10.1051/0004-6361/201936889
https://arxiv.org/abs/1910.05335
https://doi.org/10.1134/S1063772909030032
https://arxiv.org/abs/0901.4899
https://doi.org/10.1093/mnras/stab767
https://arxiv.org/abs/2103.06906
https://doi.org/10.3847/1538-4357/ab733c
https://doi.org/10.3847/1538-4357/ab733c
https://arxiv.org/abs/1910.09558
https://doi.org/10.1086/144830
https://doi.org/10.1086/106403
https://doi.org/10.1086/145367
https://doi.org/10.1086/145367


Bibliography

[130] R. Wielen, The Diffusion of Stellar Orbits Derived from the Observed

Age-Dependence of the Velocity Dispersion, A&A 60, 263 (1977).

[131] B. Nordström, M. Mayor, J. Andersen, J. Holmberg, F. Pont, B. R.

Jørgensen, E. H. Olsen, S. Udry, and N. Mowlavi, The Geneva-

Copenhagen survey of the Solar neighbourhood. Ages, metallicities,

and kinematic properties of ∼14 000 F and G dwarfs, A&A 418, 989

(2004), arXiv:astro-ph/0405198.

[132] J. Holmberg, B. Nordström, and J. Andersen, The Geneva-

Copenhagen survey of the Solar neighbourhood II. New uvby cali-

brations and rediscussion of stellar ages, the G dwarf problem, age-

metallicity diagram, and heating mechanisms of the disk, A&A 475,

519 (2007), arXiv:0707.1891.

[133] J. Holmberg, B. Nordström, and J. Andersen, The Geneva-

Copenhagen survey of the solar neighbourhood. III. Improved dis-

tances, ages, and kinematics, A&A 501, 941 (2009), arXiv:0811.3982.

[134] G. M. Seabroke and G. Gilmore, Revisiting the relations: Galactic

thin disc age-velocity dispersion relation, MNRAS 380, 1348 (2007),

arXiv:0707.1027.
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du mouvement des comètes périodiques, Astronomische Nachrichten

183, 345 (1910).

[183] Y. Kozai, Secular perturbations of asteroids with high inclination and

eccentricity, AJ 67, 591 (1962).

[184] M. L. Lidov, The evolution of orbits of artificial satellites of plan-

ets under the action of gravitational perturbations of external bodies,

Planet. Space Sci. 9, 719 (1962).

[185] S. Naoz, The Eccentric Kozai-Lidov Effect and Its Applications,

ARA&A 54, 441 (2016), arXiv:1601.07175.

[186] T. Ito and K. Ohtsuka, The Lidov-Kozai Oscillation and Hugo von

Zeipel, Monographs on Environment, Earth and Planets 7, 1 (2019),

arXiv:1911.03984.

[187] O. Blaes, M. H. Lee, and A. Socrates, The Kozai Mechanism and the

Evolution of Binary Supermassive Black Holes, ApJ 578, 775 (2002),

arXiv:astro-ph/0203370.

[188] T. A. Thompson, Accelerating Compact Object Mergers in Triple Sys-

tems with the Kozai Resonance: A Mechanism for “Prompt” Type Ia

Supernovae, Gamma-Ray Bursts, and Other Exotica, ApJ 741, 82

(2011), arXiv:1011.4322.

[189] A. S. Hamers, O. R. Pols, J. S. W. Claeys, and G. Nelemans, Popu-

lation synthesis of triple systems in the context of mergers of carbon-

oxygen white dwarfs, MNRAS 430, 2262 (2013), arXiv:1301.1469.

[190] J. M. Antognini, B. J. Shappee, T. A. Thompson, and P. Amaro-

Seoane, Rapid eccentricity oscillations and the mergers of com-

pact objects in hierarchical triples, MNRAS 439, 1079 (2014),

arXiv:1308.5682.

248

https://doi.org/10.1002/asna.19091832202
https://doi.org/10.1002/asna.19091832202
https://doi.org/10.1086/108790
https://doi.org/10.1016/0032-0633(62)90129-0
https://doi.org/10.1146/annurev-astro-081915-023315
https://arxiv.org/abs/1601.07175
https://doi.org/10.5047/meep.2019.00701.0001
https://arxiv.org/abs/1911.03984
https://doi.org/10.1086/342655
https://arxiv.org/abs/astro-ph/0203370
https://doi.org/10.1088/0004-637X/741/2/82
https://doi.org/10.1088/0004-637X/741/2/82
https://arxiv.org/abs/1011.4322
https://doi.org/10.1093/mnras/stt046
https://arxiv.org/abs/1301.1469
https://doi.org/10.1093/mnras/stu039
https://arxiv.org/abs/1308.5682


Bibliography

[191] F. Antonini, S. Toonen, and A. S. Hamers, Binary Black Hole Merg-

ers from Field Triples: Properties, Rates, and the Impact of Stellar

Evolution, ApJ 841, 77 (2017), arXiv:1703.06614.

[192] B. Liu and D. Lai, Spin-Orbit Misalignment of Merging Black

Hole Binaries with Tertiary Companions, ApJ 846, L11 (2017),

arXiv:1706.02309.

[193] B. Liu and D. Lai, Black Hole and Neutron Star Binary Mergers in

Triple Systems: Merger Fraction and Spin-Orbit Misalignment, ApJ

863, 68 (2018), arXiv:1805.03202.

[194] K. Silsbee and S. Tremaine, Lidov-Kozai Cycles with Gravitational

Radiation: Merging Black Holes in Isolated Triple Systems, ApJ 836,

39 (2017), arXiv:1608.07642.

[195] A. S. Hamers, B. Bar-Or, C. Petrovich, and F. Antonini, The Impact

of Vector Resonant Relaxation on the Evolution of Binaries near a

Massive Black Hole: Implications for Gravitational-wave Sources, ApJ

865, 2 (2018), arXiv:1805.10313.

[196] B.-M. Hoang, S. Naoz, B. Kocsis, F. A. Rasio, and F. Dosopoulou,

Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai-

Lidov Effect, ApJ 856, 140 (2018), arXiv:1706.09896.

[197] L. Randall and Z.-Z. Xianyu, Induced Ellipticity for Inspiraling Binary

Systems, ApJ 853, 93 (2018), arXiv:1708.08569.

[198] L. Randall and Z.-Z. Xianyu, An Analytical Portrait of Binary

Mergers in Hierarchical Triple Systems, ApJ 864, 134 (2018),

arXiv:1802.05718.

[199] S. Toonen, H. B. Perets, and A. S. Hamers, Rate of WD-WD head-

on collisions in isolated triples is too low to explain standard type Ia

supernovae, A&A 610, A22 (2018), arXiv:1709.00422.

[200] G. Fragione and A. Loeb, Black hole-neutron star mergers from triples,

MNRAS 486, 4443 (2019), arXiv:1903.10511.

249

https://doi.org/10.3847/1538-4357/aa6f5e
https://arxiv.org/abs/1703.06614
https://doi.org/10.3847/2041-8213/aa8727
https://arxiv.org/abs/1706.02309
https://doi.org/10.3847/1538-4357/aad09f
https://doi.org/10.3847/1538-4357/aad09f
https://arxiv.org/abs/1805.03202
https://doi.org/10.3847/1538-4357/aa5729
https://doi.org/10.3847/1538-4357/aa5729
https://arxiv.org/abs/1608.07642
https://doi.org/10.3847/1538-4357/aadae2
https://doi.org/10.3847/1538-4357/aadae2
https://arxiv.org/abs/1805.10313
https://doi.org/10.3847/1538-4357/aaafce
https://arxiv.org/abs/1706.09896
https://doi.org/10.3847/1538-4357/aaa1a2
https://arxiv.org/abs/1708.08569
https://doi.org/10.3847/1538-4357/aad7fe
https://arxiv.org/abs/1802.05718
https://doi.org/10.1051/0004-6361/201731874
https://arxiv.org/abs/1709.00422
https://doi.org/10.1093/mnras/stz1131
https://arxiv.org/abs/1903.10511


Bibliography

[201] J. Iben, I. and A. V. Tutukov, On the production by triple stars of bi-

nary blue stragglers and cataclysmic variables, in 11th European Work-

shop on White Dwarfs, Astronomical Society of the Pacific Conference

Series, Vol. 169, edited by S. E. Solheim and E. G. Meistas (1999) p.

432.

[202] J. A. Ahumada and E. Lapasset, New catalogue of blue stragglers in

open clusters, Boletin de la Asociacion Argentina de Astronomia La

Plata Argentina 48, 177 (2005).

[203] J. A. Ahumada and E. Lapasset, New catalogue of blue stragglers in

open clusters, A&A 463, 789 (2007).

[204] F. de Marchi, F. de Angeli, G. Piotto, G. Carraro, and M. B. Davies,

Search and analysis of blue straggler stars in open clusters, A&A 459,

489 (2006), arXiv:astro-ph/0608464.

[205] F. R. Ferraro, B. Lanzoni, E. Dalessandro, G. Beccari, M. Pasquato,

P. Miocchi, R. T. Rood, S. Sigurdsson, A. Sills, E. Vesperini,

M. Mapelli, R. Contreras, N. Sanna, and A. Mucciarelli, Dynamical

age differences among coeval star clusters as revealed by blue strag-

glers, Nature 492, 393 (2012), arXiv:1212.5071.

[206] J. Parada, H. Richer, J. Heyl, J. Kalirai, and R. Goldsbury, Formation

and Evolution of Blue Stragglers in 47 Tucanae, ApJ 830, 139 (2016),

arXiv:1609.02115.

[207] C. Soubiran, T. Cantat-Gaudin, M. Romero-Gómez, L. Casamiquela,
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Appendix A

Supplemental material for

the cooling of old white

dwarfs in 47 Tucanae

A.1 SMC Contamination

Let the subscript “D” indicate the full SHARP-cleaned dataset before any

proper motion cuts or CMD cuts, and let the subscripts “S” and “T” denote

the subsets of the true SMC stars and the true 47 Tuc stars, respectively,

within the full dataset. If a proper motion cut has been applied to one of

these population (“D”, “S”, or “T”), that will be denoted with the subscript

“ps” for the SMC proper motion cut and “pt” for the 47 Tuc proper motion

cut. If a CMD cut has been applied, that will be denoted with the subscript

“cs” for the SMC CMD cut, “cw” for the 47 Tuc white dwarf CMD cut, and

“cm” for the 47 Tuc main-sequence CMD cut.

The 47 Tuc white dwarf sample used in the main analysis of Chapter 6

is selected by applying both the 47 Tuc proper motion cut and the 47 Tuc

CMD cut, and the number of stars in this sample is ND,pt,cw Assuming SMC

stars are the only contaminants in this sample after SHARP cleaning, then

ND,pt,cw = NT,pt,cw +NS,pt,cw, (A.1)

where NT,pt,cw is the true number of 47 Tuc white dwarfs in the sample and

NS,pt,cw is the true number of SMC contaminants in the sample. We want to

estimate NS,pt,cw using numbers that can actually be calculated by applying

cuts to the full dataset.
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A.1. SMC Contamination

If the SMC proper motion cut is chosen such that all of the objects

selected by this cut, when applied to the full dataset, are actually SMC

stars, then

NS,ps,cs = ND,ps,cs, (A.2)

NS,ps,cw = ND,ps,cw, (A.3)

where NS,ps,cs is the number of objects selected when both the SMC proper

motion cut and SMC CMD cut are applied to the true SMC stars, ND,ps,cs

is the number of objects selected when both the SMC proper motion cut

and SMC CMD cut are applied to the full dataset, NS,ps,cw is the number of

objects selected when both the SMC proper motion cut and 47 Tuc white

dwarf CMD cut are applied to the true SMC stars, and ND,ps,cw is the

number of objects selected when both the SMC proper motion cut and 47

Tuc white dwarf CMD cut are applied to the full dataset.

Likewise, if the SMC CMD cut is chosen such that all of the objects

selected by this cut, when applied to the full dataset, are actually SMC

stars, then

NS,pt,cs = ND,pt,cs, (A.4)

where NS,pt,cs is the number of objects selected when both the 47 Tuc proper

motion cut and SMC CMD cut are applied to the full dataset and ND,pt,cs

is the number of objects selected when both the 47 Tuc proper motion cut

and SMC CMD cut are applied to the true SMC stars.

In practice, Eqs. (A.2) to (A.4) are only approximately true, as some

47 Tuc stars could potentially survive the relevant cuts, particularly the

SMC CMD cut in combination with the 47 Tuc proper motion. This makes

ND,pt,cs in particular an upper limit on NS,pt,cs, which will translate to our

estimate of NS,pt,cw really being an upper limit on NS,pt,cw. However, the

SMC cuts are chosen such that Eqs. (A.2) to (A.4) are good approximations.

Assuming the ratio of SMC stars that survive the 47 Tuc white dwarf

CMD cut to SMC stars that survive the SMC CMD cut is the same for both
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A.2. Element Diffusion

the 47 Tuc and SMC proper motion cuts, as it should be, then

NS,pt,cw = NS,pt,cs
NS,ps,cw

NS,ps,cs
(A.5)

≈ ND,pt,cs
ND,ps,cw

ND,ps,cs
. (A.6)

The expression on the right-hand side of Eq. (A.6) is equivalent to the

definition of Ncontam in Eq. (6.23), used in Section 6.4.3 to estimate the

number of SMC contaminants in the 47 Tuc white dwarf data space.

Note that the numbers corresponding to samples selected using a cut

designed to select 47 Tuc stars, i.e. ND,pt,cs (47 Tuc proper motion cut)

and ND,ps,cw (47 Tuc white dwarf CMD cut), both occur in the numerator.

These are the numbers for which 47 Tuc stars are most likely to be mis-

counted as SMC stars. Whereas ND,ps,cs, which appears in the denominator

of Eq. (A.6), is calculated from the sample that is least likely to contain any

misclassified 47 Tuc stars as it is selected by applying both the SMC proper

motion cut and the SMC CMD cut. Thus, Eq. (A.6) is really an upper

limit on NS,pt,cw, though this upper limit should also be close to the value of

NS,pt,cw. As the value of Ncontam is found in Section 6.4.3 to be small at all

magnitudes of interest, knowing the upper limit on NS,pt,cw is sufficient for

our purpose of determining that the number of SMC contaminants in the

47 Tuc white dwarf data space after proper motion cleaning is small enough

to be neglected.

A.2 Element Diffusion

The implementation of element diffusion in MESA assumes an ideal gas law

through the form of the diffusion equations that MESA solves. While this

is a reasonable approximation for many regimes of stellar evolution, we are

interested in white dwarf cooling regimes where the core is in a liquid or

even solid state. As part of our parameter grid of cooling models, we thus

consider a modified form of element diffusion that allows for non-ideal gas

behaviour. To understand how this modified diffusion is implemented, it is
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A.2. Element Diffusion

useful to first review the treatment of diffusion in standard MESA.

A.2.1 Diffusion in MESA

MESA’s implementation of element diffusion is described in detail in the in-

strument papers Paxton et al. [219] (hereafter MESA III) and Paxton et al.

[220] (hereafter MESA IV), more specifically Section 9 of MESA III and

both Section 3 and Appendix C of MESA IV. Some changes were made to

MESA’s treatment of element diffusion between MESA III and MESA IV

to properly account for degenerate electrons, for which an ideal gas approx-

imation is not appropriate. However, this update did not address the po-

tential inaccuracies of the ideal gas approximation for other particle species.

The updated code documented in MESA IV directly solves the equations

of Burgers [306] describing diffusion, rather than the rescaled versions of

those equations introduced by Thoul et al. [307] that were solved in earlier

versions of MESA and documented in MESA III. As part of this update,

one of Burgers’ equations for electrons was also dropped by treating the

gravitational acceleration as a fixed input to the diffusion equations instead

of a variable that needed to be solved for in the diffusion routine. Note that

despite these updates, many of the details of element diffusion described by

MESA III still apply for MESA IV. Of particular note is that the schematic

derivation of Burgers’ equations given in Section 9.1.1 of MESA III is still

relevant for MESA IV.

The equations of Burgers [306] that describe element diffusion and heat

flow in a plasma, under the assumptions37 of spherical symmetry (appropri-

ate for MESA) and that all of the particles in the plasma obey the ideal gas

37It has also been assumed that there is no magnetic field.
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law, are

dPs

dr
+ ρsg − ρesE

=
∑
t̸=s

Kst (wt − ws) +
∑
t̸=s

Kstzst

(
mtrs −msrt
ms +mt

)
,

(A.7)

5

2
nskB

dT

dr

= −2

5
Kssz

′′
ssrs −

5

2

∑
t̸=s

Kstzst
mt

(ms +mt)
(wt − ws)

−
∑
t̸=s

Kst

[(
3m2

s +m2
t z

′
st

)
(ms +mt)

2 +
4

5

msmt

(ms +mt)
2 z

′′
st

]
rs

+
∑
t̸=s

Kst
msmt

(ms +mt)
2

(
3 + z′st −

4

5
z′′st

)
rt,

(A.8)

where the subscripts s and t denote plasma species (which can be either

electrons or ions). The parameters in these equations are defined as follows.

Independent of species, r is the radial distance from the centre of the white

dwarf, g(r) is the gravitational acceleration, E(r) is the quasi-static electric

field, kB is Boltzmann’s constant, and T (r) is the temperature, where it is

assumed that all species are in thermal equilibrium and thus have the same

temperature. For a specific species labelled by the index s, the parameter

Ps(r) is the partial pressure, ρs(r) is the mass density, ρes(r) is the charge

density (given by ρes = eZsns, where Zs is the charge number and e is the

charge of an electron), ns(r) is the number density, and ms is the mass of

one particle. The parameters Kst, zst, z
′
st, and z

′′
st are resistance coefficients,

which arise due to particle collisions, ws are the diffusion velocities, and rs

are the heat flow vectors. These resistance coefficients, diffusion velocities,

and heat flow vectors are defined below, and the interpretation of these

quantities is discussed.
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The resistance coefficients are defined through the equations

Kst = Kts =
2

3
nsntµstαstΣ

(11)
st , (A.9)

Σ
(12)
st /Σ

(11)
st =

5

2
(1− zst) , (A.10)

Σ
(13)
st /Σ

(11)
st =

25

4
− 25

2
zst +

5

2
z′st, (A.11)

Σ
(22)
st /Σ

(11)
st = z′′st, (A.12)

where µst = msmt/ (ms +mt) is the reduced mass of species s and t, α2
st =

2kBT/µst, and Σ
(ℓj)
st are cross-sections that result from taking moments

of the collision terms in the Boltzmann equation in Burgers’ derivation of

Eqs. (A.7) and (A.8). Note that Burgers [306] derived Eqs. (A.7) and (A.8)

by taking moments of the Boltzmann equation using a 13-moment approx-

imation as a closure scheme and assuming an approximately Maxwellian

distribution function.

The cross-sections that appear in the definitions of the resistance terms,

i.e. in Eqs. (A.9) to (A.12), are given by the expression

Σ
(ℓj)
st =

4π

π3/2

∫ ∞

0
dν exp

(
−ν2

α2
st

)
ν2j+3

α2j+4
st

S
(ℓ)
st (A.13)

in terms of the collision integrals

S
(ℓ)
st = 2π

∫ ∞

0
db
(
1− cosℓ χst

)
b, (A.14)

where ν is the relative velocity of the colliding particles, b is the impact

parameter, and χst(ν, b) is the angle of deviation, which depends on both ν

and b.

The diffusion velocities and heat flow vectors are defined relative to the

mean mass flow velocity of the gas as a whole. Let us be the mean velocity of

species s, and let u be the mean velocity of the gas, averaged over all plasma

species. Both us and u are functions of position and time. For a species

s described by the distribution function fs, the ith Cartesian component of
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the mean species velocity is formally defined as

usi =
1

ns

∫
dξ ξi fs, (A.15)

where fs (x , ξ, t) is a function of the three-dimensional position vector x

(with components xi), the three-dimensional velocity vector ξ (with compo-

nents ξi), and time t. The mean velocity of the gas is

u =
1

ρ

∑
s

ρsus, (A.16)

where ρ =
∑

s ρs is the mass density of the whole gas, whereas ρs is the

mass density of a particular species.

The three-dimensional diffusion velocities are defined as

w s = us − u , (A.17)

which is simply the mean species velocity relative to the mean velocity of

the plasma. The residual heat flow vectors are defined by Burgers [306] in

terms of their Cartesian components as

rsi =

[
ms

2nskBT

∫
d3ξ (ξi − ui) |ξ − u |2 fs

]
− 5

2
wsi. (A.18)

The heat flow vectors r s represent the kinetic energy carried by diffusing

particles along a temperature gradient.

The form of Burgers’ equations given by Eqs. (A.7) and (A.8) assumes

spherical symmetry (as does MESA). Under this assumption, w s = wsr̂ and

r s = rsr̂ , and thus Eqs. (A.7) and (A.8) depend on the magnitudes of the

diffusion velocities and heat flow vectors, ws = |w s| and rs = |r s|. For a

plasma with NS species, Burgers’ equations represent a set of 2NS equations

in 2NS +2 unknowns (ws for NS species, rs for NS species, g, and E). This

system of equations is closed by including the two additional constraints of
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A.2. Element Diffusion

no net flow of mass or electric current,∑
s

ρsws = 0, (A.19)∑
s

ρesws = 0. (A.20)

Taking the set of 2NS equations given by Eqs. (A.7) and (A.8) together

with Eqs. (A.19) and (A.20) gives a set of 2NS + 2 equations in 2NS + 2

unknowns.

To accommodate the case of degenerate electrons, the copy of Eq. (A.7)

for electrons is dropped from this system of equations. Dropping Eq. (A.7)

for electrons circumvents the difficulty presented by the dPe/dr term when

trying to apply Eq. (A.7) for degenerate electrons, in which case dPe/dr does

not take the simple analytic form of an ideal gas. However, dropping this

equation reduces the total number of equations in the system to 2NS + 1.

To close the system of equations, the number of unknowns is also reduced

by one by treating g as a fixed input into the MESA diffusion routine, given

by g = Gm/r2, instead of treating g as a variable that needs to be solved

for.

As of MESA IV, the MESA implementation of diffusion then casts

Eq. (A.7) for the remaining NS − 1 ion species into the form

nskBT
d lnT

dr
+ nskBT

d lnns
dr

+ nsAsmpg − nsZseE

=
∑
t̸=s

Kst (wt − ws) +
∑
t̸=s

Kstzst

(
Atrs −Asrt
As +At

) (A.21)

using the ideal gas law, Ps = nskBT , and the relations ρ = nsAsmp and

ρes = nsZse, where As is the atomic mass number and mp is the proton

mass. Also substituting these density relations in the conservation equa-
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tions, Eqs. (A.19) and (A.20), gives∑
s

nsAsws = 0, (A.22)∑
s

nsZsws = 0. (A.23)

The implementation of the ideal gas law in Eq. (A.21) follows the pro-

cedure of Burgers [306] in deriving the left-hand side of Eq. (A.8), where

the temperature of each species was defined as Ts ≡ Ps/(nskB) and thermal

equilibrium was assumed between all species so that T ≡ Ts. Note that the

quantities Ps and ns are defined in terms of moments of a Maxwellian distri-

bution function. If the distribution function of a species differs sufficiently

from the assumed Maxwellian form, then the ideal gas law no longer holds,

and if the species remains in thermal equilibrium with the surroundings

while failing to satisfy this law, then the Burgers treatment does not assign

the correct temperature in Eqs. (A.8) and (A.21). MESA avoids this issue

with Eq. (A.21) in the case of degenerate electrons, for which the Fermi-

Dirac distribution no longer reduces to a Maxwellian form, by simply not

including Eq. (A.21) for electrons in the system of equations. But this ideal

gas assumption persists for the ion species.

This ideal gas assumption is also still present for both ions and electrons

in the heat flow equation, Eq. (A.8). As discussed in MESA IV, however,

temperature gradients in the core of a white dwarf are typically small, and

thus the heat flow vectors become negligible (rs ≪ ws for all ws) in white

dwarf cores, which is where electrons are most strongly degenerate (and

where the liquid or solid state of the ions becomes a concern). In this

case, the NS equations given by Eq. (A.8) can be neglected and the NS − 1

equations given by Eq. (A.21) can be simplified to

kBT

(
d lnT

dr
+

d lnns
dr

)
+Asmpg = ZseE +

1

ns

∑
t̸=s

Kst (wt − ws) , (A.24)

where the heat flow vectors have been set to rs = 0. As the dependence on rs

has been removed from Eq. (A.24), the set of these equations in combination
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with the two conservation relations Eqs. (A.19) and (A.20) is a set of NS+1

equations in NS + 1 unknowns.

The MESA diffusion routine packs Eqs. (A.8) and (A.21) to (A.23) into

a single matrix equation modelled after the approach of Thoul et al. [307]

but without the re-scaling of that approach. This matrix formulation is

documented in Appendix C of MESA IV.

In solving for the diffusion velocities, MESA separates the diffusion ve-

locities into two terms following the approach of Iben and MacDonald [308]

wi = wg
i −

∑
j

σij
d lnCj

dr
, (A.25)

where Cj ≡ nj/ne is the concentration of species j. The term wg
i captures

the effects of gravitational settling, while the other term captures the effects

of ordinary diffusion.

A.2.2 Modified Diffusion

We modify diffusion in MESA by multiplying the velocity diffusion term for

concentration diffusion (i.e. ordinary diffusion) in Eq. (A.25) by a position-

dependent correction factor fSIG that can account for non-ideal gas effects

of the ions, so that Eq. (A.25) becomes

wi = wg
i − fSIG

∑
j

σij
d lnCj

dr
. (A.26)

We use a correction factor of the general form

fSIG (r) =
f0SIG

1 + Γ(r)
A

, (A.27)

which is parameterised by the constants A and f0SIG and is a function of

the plasma coupling parameter Γ. We take the fiducial values of these

parameters to be A = 0.0625 and f0SIG = 1. We performed a small suite of

molecular dynamics simulations of hydrogen-helium plasmas with different

values of Γ to obtain this function form and estimate the parameter A.
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MESA provides a control parameter diffusion_SIG_factor that mul-

tiplies the term in Eq. (A.25) for concentration diffusion,
∑

j σij
d lnCj

dr , by

a user-specified constant factor, which by default is set to unity. To allow

for possible non-ideal gas effects of the ions, we want to use a re-scaling

factor similar to diffusion_SIG_factor, but it should have the flexibil-

ity to vary with position. In the MESA routine that implements diffusion,

MESA privately uses another parameter SIG_factor that is set to the value

of diffusion_SIG_factor for each cell in the position grid, and it is this

parameter SIG_factor that is actually used to multiply the concentration

diffusion term. This enables us to implement our modification to diffu-

sion in MESA by modifying what value is assigned to SIG_factor, with

SIG_factor = fSIG and diffusion_SIG_factor = f0SIG related through

Eq. (A.27) instead of being equal at all positions.

In MESA revision r15140, the relevant modules through which diffusion

is implemented are the private modules element_diffusion, diffusion,

and diffusion_support. The module element_diffusion uses subrou-

tines defined in the module diffusion, which in turn use subroutines defined

in the module diffusion_support. The parameter SIG_factor that we

want to modify is defined in the get_matrix_coeffs subroutine contained

in the private diffusion_support module. To avoid modifying private

files in MESA (which would change the whole installation), we make local

copies of the relevant code and make changes to the local version, which

is then implemented via the other_diffusion subroutine of the module

run_stars_extras.
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Appendix B

Supplemental material for

axion constraints from white

dwarfs in 47 Tucanae

B.1 Overview

In Appendix B.2 and Appendix B.3, results are presented for analyses anal-

ogous to the analysis in Chapter 7 but performed separately for each of the

data sets used in the combined analysis of Chapter 7. The results of fitting

only the WFC3/UVIS data are presented in Appendix B.2, while the results

of fitting only the ACS/WFC data presented in Appendix B.3. For each of

these data sets, the analysis of that data in isolation is performed for three

different cases of priors, which are summarised in Table B.1. In the first

case, all priors are taken to be uniform. Case 2 (in comparison to case 1)

tests the effect of using the Gaussian prior from Goldsbury et al. [215] for

the birthrate, with the other parameters taken to have the same uniform

priors as in case 1. These birthrate priors are ṄWFC3 = 8.2 ± 0.3 Myr for

the WFC3 data and ṄACS = 2.61± 0.07 Myr for the ACS data. Case 3 (in

comparison to case 1) tests the effect of using the results of Chapter 6 for

the priors on MWD and log10 qH , with the birthrate taken to have the same

uniform prior as in case 1. In all three cases, a uniform prior is used for ma.

Note that case 3 is the combination of priors that was used in Chapter 7

for the combined (WFC3 and ACS) analysis. In Appendix B.4, the final

results of the WFC3 only and ACS only analyses for case 3 of the priors are

compared to the results of the combined analysis from Chapter 7.
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B.1. Overview

Ṅ MWD log10 qH

Case 1 Uniform Uniform Uniform
Case 2 Gaussian Uniform Uniform
Case 3 Uniform Chapter 6 Chapter 6

Table B.1: Summary of priors used in each case for the analysis of
only the WFC3 data and only the ACS data. The Gaussian prior for
the birthrate (Ṅ) is the same prior used for the corresponding field
in Goldsbury et al. [215]. The Chapter 6 priors for the white dwarf
mass (MWD) and envelope thickness parameter (log10 qH) refer to the
joint posterior distribution from Chapter 6 for the standard diffusion
scenario after marginalising over the birthrate.

For the WFC3 only analyses in Appendix B.2, plots of the posterior

distributions and credible regions for each case of priors are shown in Ap-

pendix B.2.1. Three figures are shown for each case in Appendix B.2.1.

The first figure shows slices of the three-dimensional joint posterior distri-

bution after marginalising over the birthrate, the second figure shows the

two-dimensional joint credible regions for log10 qH and ma, and the third

figures shows the one-dimensional marginal posterior distributions of all the

parameters. These figures are analogous to Fig. 7.3, Fig. 7.4, and Fig. 7.5,

respectively, from Chapter 7. The corresponding figures for the WFC3 only

analyses are: i) Fig. B.1, Fig. B.2, and Fig. B.3 for WFC3 case 1, ii) Fig. B.4,

Fig. B.5, and Fig. B.6 for WFC3 case 2, and iii) Fig. B.7, Fig. B.8, and

Fig. B.9 for WFC3 case 3. Note that for Figs. B.1, B.4 and B.7 showing the

joint posterior distribution (analogous to Fig. 7.3), all three MWD slices are

shown instead of just the two slices shown in Fig. 7.3. In Appendix B.2.2,

plots of the (inverse) cumulative luminosity functions and cumulative radial

distributions for the best-fitting model of each case are shown. The cumu-

lative luminosity functions for the best-fitting models of all three cases are

compared in Fig. B.10, which shows a set of plots analogous to (the top row

of) Fig. 7.7. Each row of Fig. B.10 corresponds to a separate case. Like-

wise, Fig. B.11 shows a set of plots analogous to Fig. 7.6, with each row

showing the cumulative radial distribution for the best-fitting model of a
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particular case. Tables summarising the best-fitting model results for each

WFC3 case, Table B.2 and Table B.3, are also given in Appendix B.2.2.

Table B.2 gives the best-fitting model parameters for each case. Table B.3

gives the p-values from KS tests comparing the distributions predicted by

the best-fitting model of each case to the corresponding empirical distribu-

tion. Finally, the results of the WFC3 only analyses are also discussed in

Appendix B.2.2.

The structure of Appendix B.3 for the ACS only analyses is the same as

Appendix B.2. Plots of the posterior distributions and credible regions are

given in Appendix B.3.1 for each case. Like for the WFC3 only analysis, the

three figures shown for each case of the ACS only analysis in Appendix B.3.1

are analogous to Fig. 7.3, Fig. 7.4, and Fig. 7.5 from Chapter 7. The equiv-

alent figures for the ACS only analyses are: i) Fig. B.12, Fig. B.13, and

Fig. B.14 for ACS case 1, ii) Fig. B.15, Fig. B.16, and Fig. B.17 for ACS

case 2, and iii) Fig. B.18, Fig. B.19, and Fig. B.20 for ACS case 3. Results for

the best-fitting models of all of these cases are given in Appendix B.3.2, in-

cluding plots of the cumulative luminosity functions and tables summarising

the results. The cumulative luminosity functions for the best-fitting models

of the three ACS cases are compared in Fig. B.21. This plot is analogous to

Fig. B.10 of the WFC3 only analysis and contains a set of plots analogous to

(the bottom row of) Fig. 7.7, with each row of Fig. B.21 corresponding to a

different case. Note that for the ACS only analysis, there is no radial distri-

bution figure (like Fig. B.11 or Fig. 7.6) because the ACS analysis does not

include R dependence. Table B.4 gives the best-fitting model parameters

for the ACS cases, and Table B.5 gives the p-values of KS tests comparing

the best-fitting model distributions to the corresponding empirical distribu-

tions. Table B.4 and Table B.5 are both given in Appendix B.3.2, along

with a discussion of the results.
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B.2 WFC3/UVIS Data Only

B.2.1 Posterior Distributions

B.2.1.1 Case 1
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Figure B.1: WFC3, case 1: joint posterior probability density distri-
bution after marginalising over the birthrate.
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Figure B.2: WFC3, case 1: two-dimensional joint credible regions of
axion mass (ma) and envelope thickness (qH) after marginalising over
the other parameters.
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Figure B.3: WFC3, case 1: one-dimensional posterior density dis-
tributions for each parameter after marginalising over all other model
parameters.
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B.2.1.2 Case 2
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Figure B.4: WFC3, case 2: joint posterior probability density distri-
bution after marginalising over the birthrate.
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Figure B.5: WFC3, case 2: two-dimensional joint credible regions of
axion mass (ma) and envelope thickness (qH) after marginalising over
the other parameters.
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Figure B.6: WFC3, case 2: one-dimensional posterior density dis-
tributions for each parameter after marginalising over all other model
parameters.
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B.2.1.3 Case 3

4.0 3.9 3.8 3.7 3.6
log10 qH

0

2

4

6

8

m
a (

m
eV

)

MWD = 0.5240 M

5 

4 

3 

2 

1 

0 
p / p

4.0 3.9 3.8 3.7 3.6
log10 qH

0

2

4

6

8

m
a (

m
eV

)

MWD = 0.5314 M

5 

4 

3 

2 

1 

0 
p / p

4.0 3.9 3.8 3.7 3.6
log10 qH

0

2

4

6

8

m
a (

m
eV

)

MWD = 0.5388 M

5 

4 

3 

2 

1 

0 
p / p

Figure B.7: WFC3, case 3: joint posterior probability density distri-
bution after marginalising over the birthrate.
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Figure B.8: WFC3, case 3: two-dimensional joint credible regions of
axion mass (ma) and envelope thickness (qH) after marginalising over
the other parameters.
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Figure B.9: WFC3, case 3: one-dimensional posterior density dis-
tributions for each parameter after marginalising over all other model
parameters.
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B.2.2 Best-Fitting Models Comparison
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Figure B.10: WFC3, all cases: inverse cumulative luminosity function
of optimal model (red curve) compared to the data (black points) for
both F225W (left column) and F336W (right column). Each row shows
a different case: case 1 (top), case 2 (middle), and case 3 (bottom).
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Figure B.11: WFC3, all cases: cumulative number distribution of
radial distance (R) from cluster centre for optimal model (red curve)
and WFC3/UVIS data (black points). Each row shows a different case:
case 1 (top), case 2 (middle), and case 3 (bottom).
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Ṅ (Myr−1) MWD (M⊙) log10 qH ma (meV)

Case 1 7.28 0.5388 −3.65 1.0
Case 2 8.06 0.5240 −5.15 0.0
Case 3 6.91 0.5388 −3.55 0.0

Table B.2: Parameter values of optimal model for the different WFC3
cases. In each case, this is the combination of parameter values that
maximises the joint posterior distribution on the parameter grid.

F225W F336W R

Case 1 0.0343 0.0124 0.0097
Case 2 0.0057 4× 10−6 0.0087
Case 3 0.0362 0.0132 0.0156

Table B.3: Results of KS tests for the different WFC3 cases. The
p-values are reported for KS tests comparing the one-dimensional
marginal cumulative probability distribution functions predicted by the
optimal model for each case to the corresponding empirical distribution.

Table B.2 summarises the parameter values of the optimal model for each

of the cases considered in the analysis of the WFC3 data alone. The op-

timal models for cases 1 and 3 (which both use uniform birthrate priors)

correspond to very similar parameter values, both notably favouring large

log10 qH values. This is in contrast to case 2 (which used a Gaussian birthrate

prior), which favours a much smaller log10 qH value and larger Ṅ . The case

2 result is pushed to larger Ṅ values by the Gaussian birthrate prior used

in this case, which seems to overestimate the birthrate. Forcing a birthrate

value that is too large drives the fit to smaller log10 qH values (for the data

space considered in this work). Note that regardless of which priors are

used, all of the cases favour ma values near zero.

Table B.3 summarises the results of the one-sample KS tests for the

WFC3 cases. Cases 1 and 3 have very similar p-values (when comparing the

same data variable), and these p-values are reasonable for all of the data

variables (i.e. F225W, F336W, and R). This is particularly the case for
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the magnitudes (F225W and F336W); the p-value for R is somewhat better

for case 3 than case 1, though both are reasonable. The KS test p-values

are not a direct measure of goodness-of-fit, they simply provide a check as

to whether it is reasonably likely that the data are drawn from the model

distribution (and can be used to reject this null hypothesis in the case of a

poor fit if the p-values are sufficiently small). The similarity of the KS test

results for cases 1 and 3 is expected given the similarity of the best-fitting

parameter values summarised in Table B.2. The smaller p-values for case

2 (which used a Gaussian instead of uniform birthrate prior) compared to

case 1 (and case 3) are indicative of a worse fit. This is particularly notable

in the p-values for the F336W magnitude (and to a lesser extent the F225W

magnitude), with the case 2 value for F336W so small (< 10−4) that we can

reject the null hypothesis that the empirical F336W values are drawn from

the corresponding distribution predicted by the best-fitting model of case

2. This suggests that the Gaussian WFC3 birthrate prior from Goldsbury

et al. [215] is not an appropriate choice, at least for the data space used in

this work. This may be due to the different definitions of the data space

between this work and Goldsbury et al. [215]; axion emission can effect white

dwarf cooling until later cooling times than the neutrino emission that was

the focus of Goldsbury et al. [215], so we use a data space that extends to

larger magnitudes (corresponding to older white dwarfs) than did Goldsbury

et al. [215]. The older white dwarfs included in our data space could have a

different birthrate than the younger white dwarfs.
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B.3 ACS/WFC Data Only

B.3.1 Posterior Distributions

B.3.1.1 Case 1
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Figure B.12: ACS, case 1: joint posterior probability density distri-
bution after marginalising over the birthrate.
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Figure B.13: ACS, case 1: two-dimensional joint credible regions of
axion mass (ma) and envelope thickness (qH) after marginalising over
the other parameters.
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Figure B.14: ACS, case 1: one-dimensional posterior density dis-
tributions for each parameter after marginalising over all other model
parameters.
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B.3.1.2 Case 2
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Figure B.15: ACS, case 2: joint posterior probability density distri-
bution after marginalising over the birthrate.
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Figure B.16: ACS, case 2: two-dimensional joint credible regions of
axion mass (ma) and envelope thickness (qH) after marginalising over
the other parameters.
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Figure B.17: ACS, case 2: one-dimensional posterior density dis-
tributions for each parameter after marginalising over all other model
parameters.
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B.3.1.3 Case 3
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Figure B.18: ACS, case 3: joint posterior probability density distri-
bution after marginalising over the birthrate.
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Figure B.19: ACS, case 3: two-dimensional joint credible regions of
axion mass (ma) and envelope thickness (qH) after marginalising over
the other parameters.
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Figure B.20: ACS, case 3: one-dimensional posterior density dis-
tributions for each parameter after marginalising over all other model
parameters.
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B.3.2 Best-Fitting Models Comparison
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(b) Case 1, F555W
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(c) Case 2, F435W

100 101 102 103

Cumulative Number

23.2

23.4

23.6

23.8

24.0

24.2

24.4

24.6

F5
55

W

Model
Data

(d) Case 2, F555W
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(e) Case 3, F435W

100 101 102 103

Cumulative Number

23.2

23.4

23.6

23.8

24.0

24.2

24.4

24.6

F5
55

W

Model
Data

(f) Case 3, F555W

Figure B.21: ACS, all cases: inverse cumulative luminosity function
of optimal model (red curve) compared to the data (black points) for
both F435W (left column) and F555W (right column). Each row shows
a different case: case 1 (top), case 2 (middle), and case 3 (bottom).
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Ṅ (yrs−1) MWD (M⊙) log10 qH ma (meV)

Case 1 3.94× 10−6 0.5240 −3.65 0.0
Case 2 2.82× 10−6 0.5240 −3.55 0.0
Case 3 3.79× 10−6 0.5314 −3.55 1.5

Table B.4: Parameter values of optimal model for the different ACS
cases. In each case, this is the combination of parameter values that
maximises the joint posterior distribution on the parameter grid.

F435W F555W

Case 1 0.2098 0.2979
Case 2 0.3490 0.4693
Case 3 0.2660 0.2787

Table B.5: Results of KS tests for the different ACS cases. The
p-values are reported for KS tests comparing the one-dimensional
marginal cumulative probability distribution functions predicted by the
optimal model for each case to the corresponding empirical distribution.

It can be seen from Fig. B.21 that the best-fitting models for both case 1

and case 3 fit the data well (for both magnitudes), as was also found for

these cases when analysing the WFC3 data alone in Appendix B.2. This is

expected because the optimal combination of parameter values is similar for

case 1 and case 3. The benefit of case 3 (using the Chapter 6 priors forMWD

and log10 qH) over case 1 (using uniform priors forMWD and log10 qH) is that

case 3 provides tighter credible regions. To see this, compare Fig. B.13 and

Fig. B.19 (and likewise Fig. B.2 and Fig. B.8 for the WFC3 only analysis)

and note that Fig. B.19 (and Fig. B.8) are plotted over a smaller range of

log10 qH values (with the plot truncated at a lower limit of log10 qH = −4.0

instead of log10 qH = −4.5). The joint posterior and credible region plots for

case 3 are shown over a smaller range of log10 qH values than case 1 or case

2 for the sake of visualisation because the posterior distribution for case 3

drops below the 5-σ level at larger values of log10 qH than the other cases;

in other words, the posterior distribution (and credible regions) for case 1
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(and case 2) are more extended in log10 qH than for case 3.

It can also be seen from Fig. B.21 that the best-fitting model for case 2

(using the Goldsbury et al. [215] Gaussian birthrate prior) does not fit the

data as well as the best-fitting models of case 1 or case 3 (using a uniform

birthrate prior). The distributions predicted by the best-fitting model for

case 2 in Fig. B.21 are shifted to the left (to smaller cumulative number val-

ues) compared to the corresponding empirical distributions, indicating that

the birthrate is too small. Aside from the birthrate being too small (which

just affects the overall normalisation of the distribution), the morphology of

each of the case 2 model distributions appears reasonable. This is confirmed

by the results of the KS tests (see Table B.5), which asses the morphology

but not overall normalisation of the distributions. A reasonable morphology

for the distributions for ACS case 2 should be expected because the best-

fitting parameter values on the cooling model parameter grid are similar for

all three cases in the ACS only analysis. In all three cases, the posterior

probability is concentrated at the small ma and large log10 qH limits of the

parameter grid (which are also physical limits, as discussed in Chapter 7).

It can be seen from Fig. B.15 (and Fig. B.16) that imposing a prior that

underestimates the value of the birthrate drives the most likely parameter

values to smaller ma and larger log10 qH values, but as the posterior distri-

butions for the uniform birthrate cases are already concentrated near the

limiting values of ma and log10 qH (Fig. B.12 and Fig. B.18), the posterior

distribution for case 2 simply ends up being very tightly concentrated in the

low ma, high log10 qH corner of the plots while being optimised at a similar

location in parameter space.

This is in contrast to what is seen for case 2 of the WFC3 only analy-

sis, where the WFC3 birthrate prior from Goldsbury et al. [215] seems to

overestimate the birthrate (instead of underestimating it like for the ACS

birthrate). Imposing this likely overestimated value of the WFC3 birthrate

prior drives the most likely parameter values to smaller log10 qH values,

with some degeneracy between log10 qH , MWD, and ma. This resulted in

the log10 qH value of the best-fitting model for WFC3 case 2 being much

lower than for the other WFC3 (and ACS) cases, so the cumulative number
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distribution functions for WFC3 case 2 had a notably different morphology

that the other cases in additional to a notably different birthrate value (see

Fig. B.10). This different morphology is why the p-values of the KS tests

for WFC3 case 2 were much smaller than the values for the other cases

(especially for the magnitude variables).
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B.4 Comparison of WFC3, ACS, and Combined

Analyses

Tables B.6 to B.8 summarise and compare the results of the combined anal-

ysis of the WFC3 and ACS data from Chapter 7 to the results of the in-

dividual analyses of the WFC3 data alone and the ACS data alone for the

same choice of priors as were used in the combined analysis. This choice

of priors consisted of uniform priors for the white dwarf birthrates and the

prior from the Chapter 6 results for MWD and log10 qH , which corresponds

to case 3 for both the WFC3 only analysis in Appendix B.2 and the ACS

only analysis in Appendix B.3.

The 95% credible regions are reported directly in Table B.6. These

credible regions were calculated from the one-dimensional marginal posterior

distribution of each parameter. In Table B.7, these same credible regions are

given as errors on the best-fitting combination of parameters on the discrete

parameter grid for MWD, log10 qH , and ma. These best-fitting values are

the combination of values that optimise the full joint posterior distribution.

These results show that analysing the WFC3 and ACS data individually

gives similar best-fitting values. The combined analyses likewise gives a

similar result to analysing either of the data sets individually, but with

tighter credible regions. Compared to the WFC3 only credible regions, the

combined analysis gives only a minor improvement. The tightening of the

credible region is much more dramatic when comparing the result of the

ACS only analysis to the combined analysis. This is to be expected because

there are less white dwarfs in the ACS data space than the WFC3 data space

(for reasons discussed in Chapter 7), so the WFC3 data has more weight in

the combined analysis. The KS test results to check the goodness-of-fit are

given in Table B.8 and have reasonable values in all cases.
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WFC3 ACS Combined

ṄWFC3 (Myr−1) 6.66− 7.60 − 6.68− 7.73

ṄACS (Myr−1) − 3.48− 5.22 3.49− 4.35
MWD (M⊙) 0.5327− 0.5388 0.5254− 0.5371 0.5282− 0.5388
log10 qH −3.65−−3.55 −3.69−−3.55 −3.67−−3.55
ma (meV) 0.00− 2.93 0.00− 5.64 0.00− 2.85

gaee / 10
−13 0.00− 0.83 0.00− 1.60 0.00− 0.81

Table B.6: Comparison of 95% credible regions given by the analysis
of only WFC3, only ACS, and combined WFC3 and ACS data. The
same priors and parameter grid were used in all three cases (where
applicable). These priors correspond to case 3 for the WFC3 only and
ACS only analyses and correspond to the main results presented in
Chapter 7 for the combined analysis.

WFC3 ACS Comb.

ṄWFC3 (Myr−1) 6.91+0.69
−0.25 − 6.91+0.82

−0.23

ṄACS (Myr−1) − 3.79+1.43
−0.31 3.73+0.62

−0.24

MWD (M⊙) 0.5388+0.0000
−0.0061 0.5314+0.0057

−0.0060 0.5388+0.0000
−0.0106

log10 qH −3.55+0.00
−0.10 −3.55+0.00

−0.14 −3.55+0.00
−0.12

ma (meV) 0.00+2.93
−0.00 1.50+4.14

−1.50 0.00+2.85
−0.00

gaee / 10
−13 0.00+0.83

−0.00 0.42+1.17
−0.42 0.00+0.81

−0.00

Table B.7: Comparison of best-fitting model parameters for the WFC3
only (case 3), ACS only (case 3), and combined (Chapter 7) analyses.
The 95% credible regions from Table B.6 are reported as errors on the
best-fitting combination of parameter values on the parameter grid.
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WFC3 ACS Comb.

R 0.0156 − 0.0156
F225W 0.0362 − 0.0362
F336W 0.0132 − 0.0132
F435W − 0.2660 0.3527
F555W − 0.2787 0.2739

Table B.8: Comparison of KS test results for WFC3 only (case 3),
ACS only (case 3), and combined analyses.
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