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The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain
valid in future research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to

our bafflement, to wide branches of learning.

Eugene Paul Wigner

...although the symmetries are hidden from us, we can sense that they are latent in nature, governing everything
about us. That’s the most exciting idea I know: that nature is much simpler than it looks. Nothing makes me more
hopeful that our generation of human beings may actually hold the key to the universe in our hands-that perhaps in

our lifetimes we may be able to tell why all of what we see in this immense universe of galaxies and particles is

logically inevitable.

Steven Weinberg






Resumo

Nesta dissertag@o apresentamos um estudo sistematico sobre a Teoria das Particulas de Spin Continuos (CSPs)
e dos Taquions de Spin Continuos (CSTs) pelo uso de métodos de Teoria de Grupos e Teoria de Campos. Para
este fim, realizamos uma breve revisdo sobre Teoria de Grupos, especializando-nos nos Grupos de Lorentz e
Poincaré, no qual CSPs e CSTs aparecem como Representagdes Unitdrias Irredutiveis (UIRs). Entdo, revisamos
amplitudes de emissao soft para CSPs, onde pode-se discutir a possibilidade de que intera¢gdes de longo alcance
serem intermediadas por CSPs, ao invés de apenas particulas sem massa de baixa helicidade (féton e graviton).
Depois, analizamos a teoria de campos para CSTs, em que ¢ discutido simetrias globais e locais da agdo e calculamos
os autovalores dos operadores de Casimir quadratico e quartico. Depois, investigamos os graus de liberdade fisicos
propagados pelo campo e analisamos o vértice cibico com um CST e duas particulas massivas escalares, em que
exploramos uma corrente externa adequada que obedece uma lei de conservagdo generalizada. Finalizamos tomando
o limite de massa zero deste vértice para obter o vértice ctibico para uma CSP e duas particulas escalares massivas,
onde estudamos suas propriedades tanto no espagco de Minkowski quanto no espagco Euclideano. Mostramos que o
propagador obtido no espaco Euclideano € similar ao encontrado no contexto da teoria de Particulas de Altos Spins

(HSPs).

Palavras-chave:

Teoria de grupos, grupo de Poincaré, representacdes unitarias, tdquions, particulas de spin continuo, vértice.
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Abstract

In this dissertation, we present a systematic study of the theory of Continuous Spin Particles (CSPs) and Continuous
Spin Tachyons (CSTs) using both Group Theory and Field Theory approach. To do so, we make a brief review
of Group Theory specializing ourselves on Lorentz and Poincaré Groups, where both CSPs and CSTs appear as
Unitary Irreducible Representation (UIR). Then, we review soft amplitudes for CSPs, where one can discuss the
possibility of long-range interactions intermediated by CSPs, instead of just massless low-helicity particles (photon
and graviton). After that, we enter the realm of CST field theory, where is discussed global and local symmetries of
the action and we compute the eigenvalues of the quadratic and quartic Casimir operators. Then, we investigate the
physical degrees of freedom propagated by the field and analyze cubic vertices for one CST and two massive scalar
particles, where we explore a suitable current that obeys a generalized conservation law. We end up by taking the
massless limit of this vertex to get a CSP vertex for one CSP and two massive scalar particles, where it is studied its
properties in both Lorentz and Euclidean signatures. We show that the propagator obtained in Euclidean space is

closely related to the one encountered in the context of the theory of Higher Spin Particles (HSPs).

Keywords:
Group theory, Poincaré group, unitary representations, tachyons, continuous spin particles, soft amplitudes,

vertex.
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Introducao

Com os principios da teoria quintica e da relativida restrita juntos, podemos prever os tipos de particulas elementares
que a natureza comporta. Por um lado, Eugine Wigner provou que qualquer transformacao de simetria na mecéanica
quantica € implementada por transformagdes unitdrias e lineares ou anti-unitdrias e anti-lineares sobre vetores no

espacgo de Hilbert [l]E] Por outro lado, a teoria da relatividade restrita € construida com base em dois axiomas:
e As leis fisicas sdo as mesmas em todo sistema de referéncia inercial,

* A velocidade da luz no vicuo c € constante em todas as direcdes e em todos os sistemas de referéncia inerciais

e independe da fonte.

Estes dois postulados implicam que o quadrado do intervalo infinitesimal entre dois eventos,
ds? = c2df* — dx? — dy2 —dz?, (0.1

¢ invariante, isto é, independe do sistema de referéncia inercial. Dentre todas as transformagdes sobre quadrivetores
do espaco de Minkowski R1? pelas quais (0.1) ¢é invariante, nesta dissertagéo serd analisada em detalhes a

transformagdo caracterizada pelo par (A, b) tal que

X (A—'bQ = AP xY + b, 0.2)
em que x¥ = (t,x, y,z)y =0,---,3,b* € R ¢ um quadrivetor constante e A# , = 9x’#/9x" é uma matriz
que satisfaz gy = gupA* ;4/\5 v, onde ¢ = diag(1, —1, —1, —1) é a métrica do espago de Minkowski. Todos os
pares de transformagdes (A, b) que agem sobre as coordenadas do espago-tempo de acordo com define o
grupo de Poincaré e a andlise de suas representagdes unitdrias e irredutiveis (UIRs) constitui um passo importante
no estudo das particulas elementares, como aquelas que sdo o tema principal desta dissertagao.

No fim da década de 1930, Wigner, com o uso dos principios da mecénica quantica e da relatividade restrita
acima mencionados, classificou as UIRs do grupo de Poincaré mostrando que o estudo das caracteristicas das
particulas elementares pode ser feito através da perspectiva de teoria de grupos [4]. Segundo seu trabalho, pode-se
rotular as UIRs do grupo de Poincaré com os autovalores dos operadores de Casimir deste grupo, a saber, o operador
de Casimir quadrdtico C, = P2, em que P é o operador momento, e o operador de Casimir quértico Cy = W2,
em que WH = %e?‘”P”PV Joo € o vetor de Pauli-Lubanski e [, € o operador momento angular total A Tabela
mostra as possiveis UIRs do grupo de Poincaré para particulas sem massa. Nesta tabela, [ rotula o vetor de
estado correspondente a cada representacéo e /i é o autovalor do operador helicidade h=8-B/ \1_5 |, em que S
€ o operador de spin e Péa parte espacial do operador momento. Os autovalores de h podem ser inteiros ou
semi-inteiros. As representacdes de helicidade h, também chamadas representagdes de spin discreto ou de spin finito,
sdo caracterizadas por C, = C4 = 0 e possuem dois estados de polarizag¢@o, implicando que estas representagdes

sdo de dimensdo finita. O foton e o grdviton sdo exemplos de representacdes deste tipo com helicidade 1 = +1

Veja [2]], pp. 91-96, para uma revisio recente sobre este resultado. Também, ha uma prova devido 2 Wick para o caso mais simples em [3]),

pp. 284-285, correspondente ao espaco de Hilbert de dimensdo dois.
2Deste ponto em diante ser4 utilizado o sistema de unidades naturais no qual ¢ = 1.
30 operador de Casimir quirtico aqui definido é valido apenas em dimensdo D = 4. No Capl’tuloutiliza.remos os operadores de Casimir

em dimensdo D qualquer com base nos resultados do ApéndiceP}



Representacio C | C 1
Particulas de helicidade i 0 0 +h

Bésons de spin continuo 0| —p 0, &1, £2,---

Férmions de spin continuo | 0 | —p? i%, i%, :t%,- =

Tabela 1: UIRs de massa nula do grupo de Poincaré.

e h = £2, respectivamente. Por outro lado, as representagdes de spin continuo sio caracterizadas por C; =0 e
Cy = —pz # 0, em que p € R é um parimetro com dimensao de energia que pode ser associado ao spin s: no
limite em que C, = m? — 0 e s — oo, entio p — ms é finito e diferente de zero [5]]. Estas representagdes podem
ser decompostas em uma soma infinita de estados de helicidade e abragem infinitos estados de polariza¢do. Devido
a esta caracteristica, Wigner as descartou como possiveis estados fisicos que representam particulas sem massa que
podem ser encontradas na natureza [6]]. Ele argumentou que um gas composto por particulas de spin continuos
(CSPs) teria capacidade térmica inﬁnitaE]

A Tabela[2] mostra todas as possiveis representacdes massivas do grupo de Poincaré. Neste caso, os autovalores
de Cp sdo ndo-nulos e o autovalor de Cy € rotulado pelo spin s, que pode ser inteiro ou semi-inteiro, ou pelo nimero
real p. As representagdes massivas de spin s compdem, ao lado das representacdes de helicidade /i discutidas
anteriormente, o Modelo Padrio das particulas elementares. As particulas taquidnicas, por sua vez, ndo sao
encontradas livres na natureza. Estas particulas criam uma configuraco instavel que decai espontaneamente sem a

presenca de tdquions no estado final. Isto é chamado de condensacdo de tdquions e € o que acontece no mecanismo

de Higgs.
Representacio Cy Cy 1
Particulas massivas de spin s m?> | —m*s(s+1) | —s, —s+1,---,5—1,5
Taquion escalar —m? 0 0
Téquion de spin s —m? | m?s(s+1) t(s+1), £(s+2),---
Taquion bosonico de spin continuo —m? —p2 0, £1, £2,---
Taquion fermidnico de spin continuo —m? —p2 :I:l, :I:i, :I:§, e

Tabela 2: UIRs massivos do grupo de Poincaré

E importante fazer um esclarecimento sobre a denominagdo "spin continuo"dada as representagdes de dimensdo
infinita do grupo de Poincaré conforme feito pelos autores de [7]]. A defini¢do usual de spin corresponde ao maior
valor possivel de [ e, conforme mostrado nas Tabelase, estes valores sdo discretos. Portanto, visto que CSPs e
tdquions (a excessdo do tdquion escalar) ndo possuem valor limite para o rétulo [, estas particulas foram definidas
por Wigner como particulas de spin infinito [|6]. Esta defini¢do é mais precisa, tendo em vista que o autovalor

"y

de C4 nio é, rigorosamente, o spin. Entretanto, nesta dissertacdio serd mantida a denominagéo "spin continuo"as

40 principio de equiparti¢io da energia pode ser utilizado para explicar este resultado. Este principio asserta que a cada grau de liberdade ha

uma contribui¢do correspondente a %k B para a capacidade térmica do sistema em estudo, onde kg € a constante de Boltzmann.



representacdes de dimensdo infinita porque esta é a mais utilizada na literatura.

A andlise feita até este ponto sobre as representagdes unitarias do grupo de Poincaré pode ser estendida para
dimensao D qualquer [8,9]. Em D = 3 (duas dimensdes espaciais e uma temporal), os autores de [[10] mostraram
que CSPs podem ser pensadas como generalizacdes de anyons sem massaE] No contexto de teoria de cordas, as
representa¢des de spin continuos surgem no limite de tensdo nula [[12H14] e como estado fundamental da teoria
apresentada em [|15].

A existéncia de amplitudes covariantes de emissdo soft para CSPs [[16] trouxe uma nova perspectiva sobre a pos-
sibilidade de interacdes de longo alcance serem intermediadas por estas particulas, ao invés de serem intermediadas
por apenas particulas de helicidade baixa (féton e graviton), conforme asserta o teorema no-go de Weinberg [[17} 18]@
Assim, obter uma teoria de campo para CSPs propondo uma acdo e quantizando-a canonicamente seria o caminho
natural para obter os detalhes sobre as possiveis interacdes intermediadas por CSPs. Entretanto, apenas equacdes de
campo covariantes obtidas por Wigner e Bargmann eram conhecidas [22,23]] e, através destas e de outras equacdes
covariantes, os autores de [24H28|| procuraram construir uma formulacdo quantica das CSPs dentro e fora do
esquema da teoria quantica de campos. No entanto, eles encontraram diversos problemas, dentre os quais, violagao
de causalidade e Hamiltoniana ndo-local[]

Os autores de [24-28]] ndo atribuiram a teoria das CSPs uma caracteristica fundamental compartilhada pelas
teorias que descrevem particulas sem massa: a eletrodindmica e a relatividade geral sao teorias de gauge. Neste
contexto, Bekaert & Mourad [33]] obtiveram um progresso importante para obter uma teoria de campo para CSPs
como uma teoria de gauge. Eles recuperaram as equacgdes de Wigner [22] a partir das equagdes de campo derivadas
da teoria de gauge para particulas massivas de altos spins [34,35]] |°| através da relacdo entre o grupo ortogonal
SO(D — 1) e o grupo Euclideano ISO(D — 2), denominada contrag¢do de Indnii-Wigner [37] (veja também a andlise
feita em [5]] e a breve discussdo feita em [38]], pp. 165—166)E] Assim, além da invariancia de Lorentz, Bekaert &
Mourad mostraram que as equagdes de Wigner contém uma simetria de gauge, de sorte que a busca por uma teoria
de gauge pela qual estas equacdes pudessem ser derivadas tornou-se importante na dltima década.

Em 2013, Natalia Toro & Philip Schuster propuseram a primeira acdo que caracteriza uma teoria de gauge para

as CSPs. A acdo € dada por [39]:

2_1

_1 4 4 /(.2 2 2
Sz/dxdné(n){(ax?’) S (A2 0.3)

onde ¥ = ¥(#, x) é um campo escalar, x# = (x0,~ -, x3) sdo as coordenadas do espaco-tempo usuais, 7# =
(110, e, 173) sdo as coordenadas de um espago auxiliar (cuja orientagdo estd associada ao spin), A = d, -dx +pe

4’ é a derivada da funcdo delta com respeito ao seu argumento. A acdo (0.3) € invariante sob a transformagio de

3 Anyons sdo (quasi)particulas em duas dimensdes espaciais com estatistica intermedidria entre a estatistica bosdnica (estatistica de

Bose-Einstein) e a estatistica fermionica (estatistica de Fermi-Dirac) [11].
Para uma revisdo sobre este e outros teoremas no-go, o leitor pode consultar as referéncias [[19-21].
7A incorporagio das representagdes de spin continuo em uma teoria quantica de campos de um modo compativel com causalidade foi

feita em [29,30] onde seus autores, baseados nos resultados de [31]], se valeram do uso da constru¢do de campos localizados em cordas
semi-infinitas do tipo espago ("string-localized fields"), em alternativa a quantizacio problemadtica de campos locais pontuais ("point-localized

fields") encontrada pelos autores acima citados. O leitor interessado pode encontrar comentdrios recentes sobre este topico em [32].
8Para uma revisio mais recente sobre a teoria das particulas de altos spins, veja [36].
9Conforme ser4 detalhado no Capl’tulopara D = 4, os grupos SO(D — 1) e ISO(D — 2) sdo importantes na descri¢do das representagdes

unitdrias do grupo de Poincaré associadas as particulas massivas e sem massa, respectivamente.



gauge
1
Y(n,x) = (17 <0y — 2;72A> e(n,x) 0.4)
onde (1, x) é uma func@o arbitrdria. A seguir, destacamos algumas caracteristicas importantes da teoria (0.3) que
foram analisadas em [39].
A relacdo desta teoria com a de altos spins [34,35] pode ser obtida como segue: primeiro, derive a equacdo de

campo a partir da agdo (0.3),
, 1 ,
<—Dx + (W 9x +ip)0w - 0x — E(w -0y + zp)sz) Y(w,x) =0, (0.5)

em que ¥(w,x) = [d*y s (y2)¥(y7,x) é a transformada de Fourier de ¥(77, x) na coordenada 7 em
1? = 0 e sua primeira vizinhanga. Para p = 0, a solug@o polinomial de (0.5), ¥ (w, x) = ¢(x) + wh Ay (x) +
%w” w"hyy(x) + - - -, recupera as equagdes de Fronsdal para particulas de altos spins [34].

A quantizagdo candnica de (0.3) pode ser efetuada com o uso método de Dirac [40]], mostrando que, portanto,
existe uma teoria de campo para CSPs que pode ser quantizada. Apesar destes resultados positivos, a ag¢do (0.3)
contém uma caracteristica indesejdvel: o campo ¥ (#, x) propaga um continuo de CSPs, isto é, este campo carrega
todos os possiveis valores do parametro p (veja a Tabela[l), tornando problemitico o acoplamento deste campo

a uma corrente externa no limite p — OEGI Para resolver este problema, Schuster & Toro propuseram uma outra

acdo [41]],
S = % / dx dy &' (n* +1) [(ax‘f)2 — %(;72 +1) (A‘I’)z] , (0.6)
a qual € invariante sob as transformagdes
1
0¥ (n,x) = (11 <0y — 5(172 + 1)A> e(n,x), (0.72)
5¥(x) = (1" +1)x(n,), (0.7b)

onde €(17,x) e x(1,x) sdo fungdes arbitrarias. Schuster & Toro assumiram que o campo ¥ tem dependéncia
analitica na coordenada 77 de modo que ele pode ser expandido em termos de tensores simétricos € sem trago comﬂ
1

Y(n,x) = Xn: a’?m c P g (X). 0.8)

A formulagdo da teoria para CSPs dada por (0.6)-(0.8) apresenta duas vantagens importantes em relagdo a formulagdo

anteriormente descrita: (i) a teoria descreve uma tinica CSP e (ii) no limite p — 0, faz contato direto com a

teoria de altos spins sem a necessidade de efetuar transformadas de Fourier para o campo Y. Em adigdo, a andlise

feita por Rivelles em [44]/45] mostrou que (i) os pardmetros €(#, x) e x(#, x) também possuem uma simetria local
e (i) ¥ (7, x) propaga uma tnica CSP no hiperbol6ide 172 + 1 = 0 e sua primeira vizinhanga.

O leitor pode encontrar na referéncia [[7]] mais comentarios sobre a teoria das particulas de spin continuo feitos

recentemente e, em [46], a andlise da teoria de campo que descreve férmions de spin continuo.

10Mais especificamente, os autores de [[39]] obtiveram a Hamiltoniana

_ [ ®pdp d<l>
Hiipre = /WFE PP‘P AG,0,¢7
onde |p,¢) = aa .00 |0) define o operador de criagio para o estado fisico que representa a CSP com momento j e pardmetro ¢ (que serd

apresentado em detalhes na Subsecdo W» Esta Hamiltoniana caracteriza uma teoria para CSPs com todos os possiveis valores de p > 0.
"Uma decomposigdo similar a (0.8) pode ser encontrada em [42}/43|] no contexto da teoria de altos spins em espagos AdS.



O contetido desta dissertagio € como segue: os dois primeiros capitulos trazem uma breve revisao sobre os
principais ingredientes necessarios aos capitulos subsequentes sobre a teoria de grupos e representagdes, com &nfase
nos grupos de Lorentz e Poincaré. No Capitulo 3] ¢ feita uma andlise sistemdtica sobre as possiveis representagoes
unitdrias do grupo de Poincaré, dentre as quais, a representacao de spin continuo e taquidnica, temas centrais desta
dissertacdo. Estes capitulos t€ém por base as referéncias [2}|3,/16}38L|47-52] além das notas de aula [S3]]. O Capitulo
M]trata da descoberta feita por Schuster & Toro a respeito da existéncia de amplitudes de emissao soft para CSPs [16]
construidas a partir de equacdes de onda covariantes. A teoria de campo para tdquions de spin continuo € introduzida
no Capitulo[5] onde sdo analisadas as simetrias da agdo apresentada e, com o cdlculo dos autovalores dos operadores
de Casimir on-shell, verifica-se que, de fato, a acdo descreve tadquions de spin continuo. Em adi¢ao, estudamos
os graus de liberdade fisicos que o campo taquidnico carrega e, em seguida, discutimos o vértice ctibico com um
tdquion de spin continuo e dois campos escalares massivos. No limite de massa nula, obtemos o vértice com uma
CSP e dois campos escalares massivos obtidos pelos autores de [[54]] com o uso de correntes de Berends-Burgers-van
Dam [55]. Por fim, no Capitulo [f] fazemos uma andlise do vértice ciibico que contém uma CSP e verificamos suas

propriedades no espaco de Minkowski e Euclideano. Terminamos com nossas conclusdes e perspectivas futuras.






1 Teoria de Grupos

Neste capitulo apresentamos uma breve revisao sobre alguns tépicos de teoria de grupos que serdo tteis em capitulos

subsequentes, trazendo a luz principalmente a teoria dos grupos de Lie e dlgebras de Lie.

1.1 Conceitos Basicos
Seja G um conjunto ndo vazio. Diz-se que G € um grupo se satisfaz as seguintes propriedades:
e Para quaisquer x,y € G, x -y € G, ou seja, em G ¢ definido um produto;
* Para quaisquer x, 1,z € Gtem-se x- (y-z) = (x-y) - z, ou seja, o produto em G € associativo;

e G contém um elemento E, denominado identidade do grupo, tal que E - x = x - E = x, para qualquer x €
G;

« Para cada elemento x € G, existe um tnico elemento x ! € G tal que xl.x=x-x1=E x1¢

denominado inverso de x.

Se para quaisquer x,y € G, x -y = y - x, diz-se que G é um grupo Abeliano. Caso contrdrio, G € um grupo
ndo-Abeliano.

Qualquer subconjunto de G que possui as propriedades acima listadas € dito ser um subgrupo de G.

1.1.1 Classes de Equivaléncia, Cosets e Subgrupos Normais

Seja A um conjunto ndo vazio. Define-se uma relacdo de equivaléncia em A a relagﬁdlzl que satisfaz as seguintes

propriedades:
e x ~ x, Vx € A (reflexividade);
* Vx,y € A, se x ~ yentdo y ~ x (simetria);
e Vx,y,z € A, sex ~yey ~ zentdo x ~ z (transitiva).

Uma classe de equivaléncia em A é descrita por todos os elementos neste conjunto que sdo equivalentes a um dado
elemento. Denota-se [x] = {y € A; x ~ y, x € A}. Dados x e y elementos de A, tem-se duas possibilidades:
oux ~y = [x] =[yloux »y = [x]N[y] =D, ou seja, o conjunto A pode ser "fatorado"em classes de
equivaléncia mutuamente disjuntas. O conjunto de todas as classes de equivaléncia do conjunto A é denotado por
A/ ~={[x], x € A} e recebe 0 nome de espago quociente.

Um exemplo importante de relacdo de equivaléncia que serd ttil em futuras discussdes deste trabalho € a que
define cosets. Seja G um grupo e H um subgrupo. A relagio g ~ ¢’ < Vg¢,¢' € G, 3h € H; ¢’ = g- h define
em G uma relagdo de equivaléncia cuja classe de equivaléncia 1&-se [g] = {g-h; h € H} := ¢ - H, denominada
coset a esquerda, e cujo espago quociente denota-se (G/H);. Analogamente, [¢] = {h-g; h € H} := H-g
define o coset a direita cujo espago quociente € denotado por (G/H),. No que segue, introduz-se a nogio de

subgrupo normal (ou invariante) que servird para relacionar cosets a direita e esquerda.

12Relagiio em um conjunto ndo vazio A é definido como um subconjunto de A x A = {(x,y); x,y € A}.



Seja G um grupo e H um subgrupo. Diz-se que H é um subgrupo normal (invariante) de G se, Vh € H,
g-h-¢g7' € H, Vg € G. Notagdo: H<1G ou G > H. Uma importante consequéncia desta definigio estd
na seguinte proposi¢do: (G/H); = (G/H), = G/H se H <1 G. A demonstragdo desta proposi¢do pode ser
encontrada, por exemplo, em [38]]. Definindo o produto em G/ H segundo [a] - [b] = [a -], V]a], [b] € G/H, 0
espago quociente torna-se um grupo intitulado grupo quociente. Este grupo serd importante quando for analisado o

grupo de Lorentz e o grupo de Poincaré.

1.1.2 Homomorfismo

Seja G e H dois grupos. O mapa ¢ : G — H é um homomorfismo se ¢(g1 - §2) = ¢(g1) - ¢(g2), V§1,82 € G.
Um homomorfismo que € bijetivo € chamado isomorfismo cuja inversa também é um isomorfismo. Este conceito
permite que seja definido outra relacdo de equivaléncia em grupos: G e H séo equivalentes se existe um isomorfismo

@ entre eles. Neste caso, diz-se que G é isomorfoa H: G >~ H.

1.1.3 Produto Direto e Semidireto

E recorrente que alguns grupos mais complexos possam ser decompostos em grupos com estrutura mais simples.
Conforme sera abordado em breve, o grupo Euclidiano e o grupo de Poincaré tém este perfil. Para entender como
esta simplificacdo funciona, introduz-se, a seguir, a no¢do de produto direto e semidireto de grupos.

Seja Gy e G dois grupos com Eg, e Eg, seus elementos identidades, respectivamente. O conjunto G =
G1 X Gy = {(81,82); §1 € G1 e g € Gy} constitui um grupo cujo produto é definido como (g1, ¢2) - (87,85) =
(g1-81 &2 ). designado produto direto de Gy e G,. Este produto € associativo, o elemento identidade de G é
Ec = (Eg,, Eg,) e cada elemento (g1,42) € G tem uma inversa dada por (g1,2) ! = (gl_l,gz_l).

Um importante resultado relacionado a esta defini¢do e que serd utilizado no Capitulo[3|é apresentado a seguir.

Antes, porém, faz-se necessario o uso do seguinte Lema:

Lema 1.1. Seja G e H grupos com elementos identidades E¢ e Ey, respectivamente. Entdo, tem-se que H =

{(Eg,h); he H} <G x He H ~ H.

Demonstracdo. Primeiramente, veja que H é um subgrupo de G x H. Ademais, é um subgrupo normal, ji que,
V(Eg,h) € H,tem-se (g,h) - (Eg,h)-(g,h) ' = (¢-Eg-g ', h-h-h"1) = (Eg,h-h-h') € H, V(g h) €
G x H. Em adigdo, omapa f : H — H, f((Eg,h)) = h define um isomorfismo entre H e H. |

Teorema 1.1. Seja G e H grupos em que seus elementos identidades sio Eg e Ep, respectivamente. Se H =

{(Eg,h); h € H}, entdo % ~ G.

Demonstracdo. Seja

frel 5 G~G
h

/ : (1.1)
[(g:m)] = (8 En)

(i) Em primeiro lugar, é preciso verificar se este mapa estd bem definido. Supondo [(g1,/1)] = [(g2, h2)], temos

(g1,m) ~ (g2,h2) = 3(Eg,h) € H; (g1,l) = (Eg,h) - (2,h2) = (82, h-ha) = g1 = g2 ey =
h-hy. Logo, f([(g1,m)]) = (81, En) = (2, En) = f([(g2,h2)]). (i) f é um homomorfismo, porque



f(81 1)) - [(82,h2)]) = f([(81,1) - (g2,h2)]) = f([(g1-82, h1-h2)]) = (8182 En) = (81, En) -
(g2, Eg). (iii) Também, observe que f é um homomorfismo injetor. Para provar esta afirmac@o, suponha que
f([(g1,m)]) = f ([(82,h2)]). Entdo, (g1, Exy) = (g2, En). Mas (g1, Ep) ~ (81,h1) assim como (g2, Epy) ~
(g2,h2), porque I(Eg,h) € H; (gi,hi) = (Eg, hi) - (gi,Ey), Vi = 1, 2. Portanto (g1,h1) ~ (g1,En) =
(22,Ey) ~ (g2,h2), ou seja, [(g1,h1)] = [(g2,h2)]. (iv) Por fim, veja que f é um homomorfismo sobrejetor
porque, se (g, Ey) € G, entdo 3[(g,h)] € G x H/H dado por [(g,1)] = [(g, Ex)] de modo que f ([(g,})]) =

GxXH ~ A ~ GxH ~,
(8 En). Logo, *5= ~ G~ G = *5= ~G. [ |

Seja Gy e G grupos com Eg, e Eg, seus respectivos elementos identidades. Entdo, G = G; ® G =

{(81,82); §1 € G1 e g2 € Go} é um grupo cujo produto € definido por

(81,11) - (82,h2) = (81 &2, M1 - ag, (h2)), (1.2)

emqueag: H— H, g € G,éum automorﬁsm cuja inversa 1&-se “;1 ()= Xo1 (+). Neste caso, diz-se que G

é o produto semidireto de G1 e Gy. Este produto é associativo, o elemento identidade de G é Eg = (Eg,, Eg,) e

cada elemento (g1,¢2) € G tem uma inversa dada por (g1, g2) " = (gl_l, &y (gz_l) )
1

Os resultados apresentados no Lema [I.T] e Teorema [[.T] permanecem validos para produtos semidiretos de

grupos. A demonstragdo € bastante similar com a apresentada acima, portanto, ndo sera feita aqui.

1.2 Representacoes de Grupos

Seja V um espago Vetoriaﬂ no qual o operador U € £ (V) ={Conjunto de todos os operadores lineares inversiveis

sobre V}E]age e G um grupo. Diz-se que U € uma representagcdo de G em V se o mapa

Uu:G — 2() (1.3a)
g = U(g) (1.3b)

for um homomorfismo, isto &, U(g1 - g2) = U(g1) - U(82), Vg1,82 € G. A dimensdo da representagdo é definida
como a dimensdo do espago vetorial V' e, se o homomorfismo for bijetivo, entéo a representagdo ¢ dita ser fiel, caso

contrdrio, € dita ser degenerada.

1.2.1 Representacoes Irredutiveis

Seja G um grupo e U(Q) € Z(V), Vg € G uma representagdo de G sobre um espaco vetorial de dimenséo finita

V.Se{le1), -, |en)} é umabase em V, entdo
u(g) le;) = ley) D(8) i, (14)

onde D(g) é denominado uma representagdo matricial de G em VE] Suponha que Vj seja um subespaco de V

gerado por {|e;), i =1,--- ,n; < n}. Diz-se que V; é um subespaco invariante se ¥ |x) = a' |¢;) € Vi,

U(g)|x) = ' lej) D(g) ; € V1. (1.5)

13 Automorfismo é um isomorfismo de um grupo nele mesmo.

14 A menos que seja dito o contrario, adimite-se que o espaco vetorial seja definido sobre o corpo dos niimeros complexos C.

15Quando o espago vetorial em questio é de dimenso finita, digamos de dimensio 7, pode-se identificar % (V') como o conjunto das matrizes
inversiveis de dimensdo 1 com entradas complexas, denotado por GL(C, ) (General Linear group).

16 A0 longo desta dissertacdo, serd adotado a convencio de Eintein onde o simbolo de somatério é omitido.



Observe que (L.3) implica que D(g)/ ; =0, Vj = ny +1,--- ,n, ja que V; = span{|e;),- - - |en,)}. Portanto,
pode-se escrever D(g) como

Di(g) D'(g)
D(g) = , (1.6)
em que D1(g) é a representag@io matricial de G que age apenas em Vj de ordem 711 X 17, enquanto que D’(g) é
de ordem 11 X n —ny e, Da(g), n — ny X n — ny. Assim, diz-se que D(g) é redutivel devido a existéncia de um
subespaco invariante ndo-trivial V7| '| Caso contrdrio, se ndo ha subespago invariantes nfo-triviais, a representacao
é dita ser irredutivel. Se o subespago complementar V' O V, = span{|e,, 1), -+, |en)} é também um subespago

invariante, entdo D’(g) = 0, ou seja,

D(g) = Dulg) 0 . (1.7)

0 Dag)
Neste caso, se V4 e V3 ndo possuem subespaco invariante ndo-trivial, entdo D(g) € dita ser completamente redutivel
e pode ser escrita como o produto direto de duas representagdes irredutiveis: D(g) = D1(g) x D2(g).
Para finalizar esta subsecdo, apresenta-se, a seguir, um importante resultado que serd utilizado para classificar
representacdes irredutiveis de alguns grupos continuos a serem estudados neste trabalho. Por ser um resultado
conhecido, ndo serd apresentada a demonstragdo dele. O leitor pode encontrar na referéncia [53]], Capitulo 23, uma

demonstragdo deste resultado.

Teorema 1.2 (Lema de Schur). Sejam Uy : G — £ (V1) e Uy : G — £ (Va) duas representagées irredutiveis
de um grupo G sobre os espagos vetoriais Vy e Vs, respectivamente. Se o mapa A : Vi — V; satisfaz AU (g) =

Ux(g)A, Yg € G, entdo ou A = 0 ou A é bijetivo.

Coroldrio 1.2.1. Sejall; : G — £ (Vq) e U, : G — £ (Vo) duas representagdes irredutiveis de um grupo G sobre
os espagos vetoriais Vy e Vy, respectivamente. Se o mapa A : Vi — V; é bijetivo e AU;(g) = Up(g)A, Vg € G,

entdo A é unico, a menos de uma multiplicacdo por um escalar.

Sob as hipéteses do Lema de Schur, vé-se, trivialmente, que o operador identidade 1 satisfaz 1U;(g) =
U, (g)]l, Vg € G, logo, com o uso do Coroldrio tem-se A o< 1. Operadores de Casimir, usados para
classificar representacdes irredutiveis, t&m esta propriedade.

1.2.2 Representacoes Unitarias

Seja Gum grupoe U : G 5 g +— U(g) € £ (V) uma representacdo de G sobre um espago vetorial V dotado de

um produto interno (-|-). Se U(g) € unitdrio, ou seja

(x|U()U(g)ly) = (x|ly), Vg € G, V|x),|y) € V, (1.8)

entdo diz-se que U : G — £ (V) é uma representagdo unitdria.

17Neste exemplo, o espaco vetorial V e o espago vetorial costituido apenas por seu elemento nulo 0 (v + 0 = v, qualquer que seja o vetor v)

sdo denominados subespagos invariantes triviais de V.

10



1.3 Grupos de Lie e Algebras de Lie

Grupos que sdo definidos através de parametros continuos permitem o uso de noc¢des de diferenciabilidade e
continuidade assim como funcdes ordindrias. Grupos de Lie t&ém esta caracteristica. No que segue, discutiremos
suas principais propriedades.

Seja G = {E, U(«)} um grupo de Lie parametrizado por 1 pardmetros reais continuos & = (a1, -+ ,&,) €
E = U(0) seu elemento identidade. Dado € = limpy _,o &/ N, U(€) pode ser escrito infinitesimalmente proximo

identidade E como

U(e) = E—ie"T, +0((e")?), 0<e <1, Va=1,---,n, (1.9)
onde i2 = —1 e cada T, é denominado gerador do grupo. Observe que T;, 1 < a < n, sdo operadores hermitianos
se U(e) for unitdrio:

Ut(e)u(e) = E+ie"Tf —ie! T, + O(e“e") =E= T} =T, Va=1,-- ,n. (1.10)

N transformagdes infinitesimais sucessivas sio implementadas por U(Ne) = [U(¢)]V, de modo que, no limite em

que N — oo, qualquer transformacao finita ¢ implementada por

U(x) = e ™', (1.11)

Esta particular expressdo para qualquer elemento de um grupo de Lie implica em um vinculo entre seus geradores.
Para encontri-lo, faz-se necessario o uso da formula de Baker-Campbell-Housdorff: se X e Y sdo operadores,

entdao

eXeY = eX*Y,

(1.12)
XxY X+Y+LiX Y]+

emque [X, Y] = XY —YXe' - indica termos envolvendo comutadores de alta ordem entre X e Y, por exemplo,
[X, [X, Y]] etc. Assim, tomando dois elementos arbitrrios de G, o produto entre eles também estd em G, de modo

que
G 2 U(y) = exp{~ir"Te} = U@)U(B) = e *Toe #T
= exp {—ia“Tﬂ — i/%bTb + %(—i)le”‘Bb[Tm Ty) 4 - - - }
& a"BY[T,, Ty) = 2i (v° —a® — ) Te, Va®, B%,9° € R. (1.13)

Reescrevendo 2 (7€ — a° — ) = fp, “a’B, fo © € R, obtém-se

\ (Ta, Tyl =ifap “ T, (1.14)

fap € sd0 denominadas constantes de estrutura e satisfazem a relacdo f,;, © + f, © = 0. Note que a operagio [-, -]

define um produto sobre o espaco vetorial (T,Z, +, C) , 1 < a < n, com as seguintes propriedades:
o [Ta+ Ty, Te] = [Ta, Te] + [Ty, T
o [To, Ty + Tc] = [Ta, Tp] + [Ta, Tc]

* a[Ty, Ty = [aTy, Ty] = [Ta, aTy]
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* [To, Ty} = —[Tp, Ti]
. [[Ta, Tb]/ TC] + [[Tc/ Ta]/ Tb] + [[Tb/ Tc]/ Ta] =0

Va,b,c =1,---, neVa € C. As trés primeiras propriedades acima caracterizam uma dlgebra sobre o espago
vetorial (T, +,C). Em adigdo, as duas iltimas propriedades caracterizam esta dlgebra como uma dlgebra de Lie,
denotada por (T,, +, C; [-,-]), ou seja, um espago vetorial dotado com o produto [-, -].

No que segue, revisa-se um importante exemplo que serd utilizado nesta dissertagdo.

1.3.1 SO@3)

Seja X € IR3 cujas coordenadas sio (x, ¥,z) = (x1, X2, x3) em um sistema de coordenadas S. Em um sistema de
coordenadas S', ¥’ = (x}, x5, x4) que ¢ obtido a partir de X atravé da matriz R: X’ = RX. Embora estes vetores
tenham coordenadas diferentes, em ambos os sistemas S e S’ seus comprimentos sdo iguais. Isto significa que a

matriz R € uma matriz ortogonal:

FR=1¥? & |RTR=RRT=1, (1.15)

em que RT ¢ a matriz transposta de R e 1 = diag(1, 1, 1) é a matriz identidade. O conjunto O(3) = {R €
GL(R,3); RTR = RRT = 1} é um grupo, intitulado grupo ortogonal, cujo produto é a multiplicagdo usual de
matrizes.

A relagdo (T.13) implica que det R = +1 de modo que pode-se dividir o grupo O(3) em duas partes:
0(3) = {R€GL(R,3); RTR=1¢ detR =1} U{R € GL(R,3); RTR =1 e detR = —1},  (1.16)

em que apenas o primeiro conjunto do lado direito da igualdade acima constitui um subgrupo de O(3), chamado
grupo ortogonal especial SO(3) enquanto que o segundo conjunto no é, ja que este ndo contém o elemento
identidade do grupo O(3).

Veja que a relacio RTR = 1 impde seis equagdes algébricas independentes nas nove entradas de R. Isto
significa que cada matriz R € SO(3) tem, no total, apenas trés parametros independentes. Seja & = («!, a2, %) os

pardmetros continuos de R. Porque R é um elemento do grupo de Lie SO(3), pode-se escrever
R@) = e *L (1.17)

em que L = (L1, Ly, L3) é o gerador de SO(3). Considerando & = (0, 0, ), tem-se que

T
Ri1(a) Rip(a) 0 Rp(a)  —Ripa(a) 0
SO(3) > [R3(w)]" = | Ryy(x) Raa() O N (@) Rp(x) 0 =Ry'(a),
0 0 1 0 0 1
ou seja, Rij(a) = Ryp(a) e Rip(a) = —Rpj(a). Levando em conta det R(a) = 1, tem-se que[Ryq(a)]? +
[R1(«)]? = 1, portanto, pode-se escolher Rj1(a) = cosa e Rip(a) = — sina, de modo que
cose¢ —sina 0
R3(a) = | sina  cosa 0], (1.18)
0 0 1
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que é a matriz de rota¢do no plano xy pelo angulo . Tomando uma rota¢do infinitesimal, « — d«, (T.18)) pode ser

escrita da seguinte forma

1 —dax 0 100 0 —i 0
Rzy(ba)~ |6« 1 Of=]0 1 0| —ida]|i 0 0| =1—idaLs,
0 0 1 001 0 0 0
em que
0 —i 0
Ly3=1i 0 0 (1.19)
0 0 0

é o correspondente gerador. Usando L% = diag(1, 1, 0), é possivel verificar a validade de (I.17), ou seja,
qualquer rotacdo finita ao longo do eixo z com angulo & pode ser escrita através da exponenciacdo do gerador Lj:
R3(a) = e~ L3, Uma andlise similar pode ser feita separadamente para rotagdes ao longo dos eixos x e y. Seguem

os respectivos resultados:

1 0 0 0 0 O
Ri(a) = [0 cosa —sina “ Li=|l0 0 —i
0 sina cosw 0 i O
(1.20)
cose 0 sina 0 0 i
RZ(“) = 0 1 0 <~ L, = 0O 0 O
—sina 0 cosa i 0 0
Estes geradores podem ser escritos de maneira compacta através do uso do simbolo de Levi—CivitaFE]
(Li)j = —iexji, (1.21)

em que k rotula o gerador enquanto que, os outros dois indices, identificam as entradas da matriz. A partir desta

relagdo, pode-se determinar diretamente a dlgebra de Lie do grupo SO(3):

3 3 3 3
(1.21) . .
Lm/ n Z Lm kr Ln rl — Z Ln kr Lm - (_1)(_1)2 Zemkrenlr - (_1)(_1)2 Zenkremlr
r=1 r=1

r=1 r=1
= (5mn5k1 - 5mz5kn> - (5nm5kl — 3410km
= (5nl§km - 5m15kn

3 21) 3
= Z Enmr€lkr  — 1 Z €mnr(Lr)ia
r=1 r=1

3
[Lm/ Ln} =i Z €mnrLy, (1.22)
r=1

de modo que as constantes de estrutura da dlgebra sdo (L.I4) f,pc = €45 Duas importantes consequéncias da

relagdo (1.22)) merecem destaque. A primeira diz que cada L; se transforma como um vetor sob rotagdes:

R(Ls)R™ = (Lj)R' s, (1.23)

Beije = 1(—1), i,j,k € {1,2,3} se (i, j,k) é uma permutagdo par (fmpar) de (1,2,3) ou &;j = 0 se dois ou mais indices forem iguais.
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Figura 1.1: Os angulos de Euler. Figura adaptada de [3]], pp. 304.

por isso, L= (L1, Ly, L3) é um operador vetorial. A segunda consequéncia define o operador de Casimir do

grupo SO(3):
(L%, L] =0, (1.24)

de modo que L? comuta com qualquer elemento de SO(3). Assim, pelo Lema de Schur L? é proporcional a
identidade quando agir sobre representacdes irredutiveis do grupo SO(3). Isto serd confirmado em breve.

A maneira mais geral de parametrizar rotagdes € seguindo os seguintes passos: (i) especifique a dire¢ao pela
qual a rotagdo serd feita, digamos 2 = (sinfcos ¢, sinfsin¢, cosf), em que 6 e ¢ sdo os angulos polar e

azimutal, respectivamente, e (ii) explicite o angulo de rotagdo, digamos (DH Assim, tem-se que

SO(3) > Ryp(@) = e @'L, (1.25)

Sob SO(3), (I:23) se transforma de acordo com

RR4(@)R™! = Ry (@), 7' =Rn, (1.26)

em que foi utilizado R exp {—ic@ﬁ : E} R l=exp {—iwﬁ . (RzRﬂ) } e a propriedade (T.23).
Para descrever as representagdes unitdrias e irredutiveis de SO(3), é necessario introduzir outros trés parametros,

conhecidos como angulos de Euler. A Figura[I.I|mostra como qualquer rotagdo pode ser descrita a partir destes

R, R
trés parAmetros: (1, 2, 3) %) (1,2,3 =3) 2—(@ (17, 2" =2,3") i(’)y) (", 2, 3" =3"):

R(a, B,7) = Ry (7)Ry (B)R3(ax),

de modo que, pelo uso da propriedade (T.26)), obtém-se

(1.27)

[R(&,B,7) = Ra(a)Ra(B)R3(7),

em que « € [0,277) é o angulo de precessdo, B € [0, 7r) é o angulo de nutagdo e 7y € [0,277) € o angulo de rotagdo
intrinseca ("spin"), enquanto que R;(-), i = 1, 2, 3 é o angulo de rotagdo ao longo do i-ésimo eixo conforme (T-18)
e (I.20).

O préximo passo é a construgdo do espago vetorial onde uma dada representacido do grupo SO(3) age. Porque

12e L3 sdo ambos hermitianos e compativeis, escolhe-se os autovetores em comum a ambos como base deste

19Na descri¢io do grupo de Lorentz a ser feita no capitulo seguinte, faremos uso desta parametrizacdo do grupo SO(3).
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espaco. Este € um procedimento bastante conhecido e, de certa forma, serd utilizado no contexto das representagdes
de dimensdo infinita do grupo de Poincaré. Por isso, no que segue, serdo apresentados apenas os resultados finais. O
leitor interessado nos detalhes pode consultar, por exemplo, [3].

O espago vetorial em questdo é de dimensdo finita e é rotulado por dois ndmeros: |I,m):

P2lLm) = 11+1)[L,m)

1
L3|l,m> - m‘l,m> 11:0/ E/lr"'em:_l/ _l+1/"'/l_1/l/
Lill,m) = II+1)—m(m=E1)|,m=*1)

emque Ly = L +ily.
Seja U(R(w, B, 7)) uma representagio do grupo SO(3) sobre V = {|l,m), 1 =0, 3, 1,---em=—1, =1 +
1, I — 1, I}. Entdo, pelo uso das relagdes (T.4) e (T.27), obtém-se

U (R(a,B,v))|l,m) Z DD (&, B,9) e 1L 1), (1.29)
m'=—1
com
O (@, B, 7y = (U (R(a, B,7)) W) B (1 [U (Ra(@) Ra(B) R (1) |1, m)
= (Lm'|U(Rs(a)) U (R2(B)) U (Rs(7)) |1, m)
_ <l, ml|efia¢L3efi‘BLzefi'yL3 |l, m>
@ e—im/adg)ml(ﬁ)e—imyl
1) . = e—ima O] —imy
(“/ﬁ/lfy)mm 4 dm'm’(‘B)e (1.30)
A (B) = (1,mle %2|1,m),
oquelevaa
1
U (R, B,7)) L) = =™ 3 dlD (B)e™™ |L,m'), (1.31)
m'=—1
com
al (B = (=1 [ f(p)
o (1.32)
1 arl+m'y 1—m' 1 +
FB) = (cos3p)” ma(-1() ) (tan 1)
1.3.2 Spin

Sobre o campo escalar (X|I, m) = p;,,(X), SO(3) age como: (no que segue, utiliza-se a defini¢do de campo escalar
V1 (X) = 1 (%))
P (%) = $1, (%) = URa(@)) 91 (F) = Y1 (R7 ' (@)F) . (1.33)

Tomando @ infinitesimal, (T.33)) torna-se

U(Ra(60)) (%) B2 (1 - i60n - T+ 0(60%) ) (7). B2y, (2 — 600 x )
= [—ibn- (% x P) pim(F), F=—iV,
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ou seja,

L=%xFp, (1.34)

que é o conhecido operador de momento angular orbital. Em geral, no entanto, ¢,,(r,0,$) ¢ incapaz de

descrever por completo o estado fisico de uma particula. Assim, introduz-se |s, #), de modo que

S, Sk] = iYi€uS,
s2 s, m = s(s+1)|s,mg),
sms) = sls+1) Js,m) 1)
Ssls,ms) = mgls, ms),
Sils,ms) = /s(s+1)—ms(msE1)|s,ms+1),
coms = 0, %, 1,---emg=—s, —s+1,---,s5s—1, s. S é denominado operador de spin e s é o spin da

particula. Assim, veja que hd duas prescricdes para o0 momento angular de uma particula: L, associado com o
movimento orbital (T.34) e S, um momento angular intrinseco, de modo que a descrigdo total da particula é dada
pelo estado |1, m) ® |s, ms>EG]

O operador de momento angular total é dado por
J=L+ (1.36)

Este operador satisfaz a mesma dlgebra que LeS:

3
U T =1 €xirlr (1.37)
r=1

Em analogia ao que foi feito no fim da subsec¢fo anterior, pode-se construir, com base na relagio (1.37)), o espaco

vetorial gerado pela base |f, m;):

Pliomp) = jG+1)j,m)

Jalj,mj) = mjlj,my) (1.38)
Jeljom) = \JiGi+1) = mj(m; £ 1) |j,m; £1),
em que,
s—Il|<j<s+lemj=ms+me{—j —j+1,--,j—1,j} (1.39)
Assim,
j ‘
U(R(wB,7) ljm) =Y D (ap, Vom0 (1.40)
m/’.:fj
com

eilm;adin)m (‘B)e—imﬂ
]

i L L (141)
w(B) = (i mle P m),
]

20Uma andlise curta mas elucidativa sobre a origem do spin no contexto do estudo da estrutura fina de dtomos hidrogenéides pode ser

consultada em [56].
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(cos 28)” o=y

i—m
j—mj—a

) (tan1p)”

m —m;+2a :

(1.42)

(1.43)

As relagdes (1.42)-(T.43) serdo utilizadas quando forem analisadas as representa¢des massivas do grupo de Poincaré

no Capitulo[3]
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2 Grupos de Lorentz e Poincaré

Neste capitulo apresentamos uma breve revisdo sobre os grupos de simetria do espago-tempo com destaque para o

grupo de Lorentz (ortécrono préprio) e Poincaré.

2.1 Espaco de Minkowski

Seja S um sistema de coordenadas onde cada ponto € definido por quatro nimeros reais como
Soxt=(t %) = (2% x1, 22, %), (2.1)

em que ¥ = t define a coordenada temporal e x' = (5(’)", i =1, 2, 3sdo0 as coordenadas espaciais (indices latinos,
por convengdo, identificam coordenadas espaciais). Cada ponto x# € S € dito ser um ponto do espaco-tempo.

A mudanga do sistema de coordenadas S > x# para outro S’ > x/# implica que o intervalo infinitesimal dx*
em S se transforma no intervalo infinitesimal dx'* em S’ como

u
A = g, 2.2)
axv

Para o operador diferencial d/dx# a transformagdo se dd como
0 0 ox’ 0
—¢p(x) — ¢(x) = =—0¢(x 23
S0 > o) = s =g(x), 23
em que ¢ é uma funcdo escalar arbitrdria. Quantidades que se transformam como em (2.2) sdo ditas contravariantes
e aquelas que se transformam como em (2.3) sdo covariantes.

Produtos escalares sdo invariantes sob uma transformagéo genérica:

ox'tox? ., ox?
oxv oxm 7 9xv

AB — A B =A"B, = A'B, = 67A"B, = A'B, = A - B, (2.4)

em que o corresponde ao delta de Kronecker generalizado. No caso particular em que A = B = dx, define-se o

elemento de linha infinitesimal ds do espago-tempo como
ds?> = dx - dx = dxydxt = gy (x)dxtdx? = g (x)dx,dx,, (2.5)

onde ¢ introduzido o tensor métrico gy (x) tal que dx), = guy (x)dx". Desde que ds? ¢ invariante, a métrica gy (x)

do sistema de coordenadas S se relaciona com a métrica g;w(x’ ) do sistema de coordenadas S’ como

ox'* ox"
g;w(x/)ﬁw = Qup(%). (2.6)

Na teoria da Relatividade Especial consideram-se transformagdes no espago-tempo pelas quais
ds* = dt* — dx® — dy? — dz® 2.7)

¢ invariante. Neste caso, g,y (X) = guv = diag(1, —1, —1, —1) ndo depende das coordenadas do espago-tempo
e, espagos assim definidos, sdo denominados espagos de Minkowski. No contexto aqui tratado hd uma dimensio
relativa a cordenada temporal e trés dimensdes relativas as coordenadas espaciais. Portanto, o espaco de Minkowski
serd denotado por R13.

Assim, quais transformagdes no espago-tempo deixam ds? invariante e satisfazem (2.6) com uma métrica

constante?
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2.2 Grupo de Lorentz

Para responder a pergunta levantada no fim da sec¢do anterior, basta tomar a derivada em ambos os membros de (2.6)
e usar que gy (¥) = guv = Sup:

d ax'# ox"V 92x't 9xv ox't xv ?x't 9x" @y 9
SE\ 8w A5 F7 :g‘uvii"'gm/ =2g;w —= -
xS 0x* 9xP 9x60x% 9xB 0x* 9xSoxh 0x69x* 9xB

~ outfe =0

azx/y axlv
9xCoxx 9xB

em que no segundo termo da primeira igualdade da primeira linha foi trocado os fndices i e v assim como « e B.

-~ g],“/

v ., ~ . o« L. s ~ . .
Mas, porque det (%) # 0, ja que a transformagdo inversa x’ — x deve existir, a dltima relago implica que

92x'H
—— =0,
9xxn
ou seja, a transformacio € linear:
= AP xV 4+ bH, (2.8)
onde A = aix/ e b sdo parAmetros constantes. A é interpretado como uma rota¢do no espaco de Minkowski
vinculado por (2.6)
AP WA g =gu| ou |ATgA =g, (2.9)

o qual tem uma estrutura similar com o encontrado para matrizes ortogonais (veja (I.13)). O conjunto O(1, 3) =
{A € GL(R,4); ATgA = g} é um grupo, denominado grupo de Lorentz, cujos elementos sio chamados
transformagdes de Lorentz. Neste grupo, o produto é a multiplicagdo usual de matrizes, 1 = diag(1, 1, 1, 1) é a
identidade do grupo e qualquer transformag@o de Lorentz tem uma inversa, visto que O(1, 3) C GL(R, 4).

Dois resultados importantes sdo derivados a partir da (2.9): (i) detA = +1e
2 . . 2 .\ 2
(ii)go(]:([\oo) —5i]'A10A]0:1:> (Aoo) :1+2(AZQ) 21 = AOQZIOI'AOOg—l.
i

(2.10)

Assim, pode-se escrever O(1, 3) como a unido de quatro setores diferentes conforme mostrado na Tabela Apenas

Setor | detA | AY
KZA N IS N
25 41 <1
R S R |
zv -1 <1

Tabela 3: O(1, 3) = £ U2t U2 U2

ﬁl = SO(1, 3) C O(1, 3) é um subgrupo, intitulado grupo de Lorentz ortécrono prdprio ou grupo de Lorentz
restrito que € constituido por transformacdes continuas no espago-tempo que deixam invariante. Outros
subgrupos de O(1, 3) sdo transformacées discretas (paridade e inversdo temporal) e ndo serdo tratadas neste trabalho.

O grupo de Lorentz restrito SO(1, 3) é um grupo de Lie e, para descrevé-lo, pode-se fazer uso dos mesmos

passos que foram utilizados na caracterizagdo do grupo ortogonal. O nidmero de parametros, por exemplo, é
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determinado pela restricdo (2.9) que fornece dez diferentes equagdes algébricas sobre os dezesseis pardmetros da
matriz A. Portanto, A tem seis pardmetros independentes. Destes, trés descrevem rotacdes no espago Euclideano
IR3 (j4 descritas no capitulo anterior) e os outros trés descrevem as chamadas transformacdes de Lorentz especiais ou
boosts. Sob estas transformagdes coordenadas espaciais sdo misturadas com a coordenada temporal. Um exemplo

de tal transformag@o € um boost na dire¢do x implementada por

cosh¢; —sinh{y

0
— sinh h
A(&) = sinh¢y - coshéy (1) , (2.11)
0

0 0
0 0

= O O O

em que o parimetro ¢ pode ser qualquer valor real. Isto significa que o grupo de Lorentz niao é compacto,
implicando que todas as suas representagdes unitdrias sdo de dimensédo inﬁnitaEr]

Considerando ¢ infinitesimal, pode-se expandir (2.1T)) como

1 —¢1 0 0 1 0 0 O 0 —7 0 0
—¢1 0 0 01 0 0 ) —i 0 0 0 )
A1) = = —ié1 =1-1i¢Kq,
0 1 0 0 010 00
0 0 0 1 0 0 0 1 0 0O 0 O
com
0O —i 0 O
—1i 0 0 0
Ky = ) 2.12)

0 0O 00
0 0O 0 O

e, porque K2 = diag(—1, —1, 0, 0), pode-se verificar que A(¢;) = e~ 6151, Uma andlise similar pode ser efetuada

para as outras duas direcdes & = (0, &, 0)e & = (0, 0, ¢3), levando a

coshé; 0 —sinhg, O 0 0 -1 0
0 1 0 0 0 0 0 O
A(§2> = ) <~ K2 = (2.13)
—sinh¢, 0 coshé, O —-i 0 0 O
0 0 0 1 0 0 0 O
coshés 0 0 —sinh({s 0 0 0 —i
0 10 0 0 00 O
A(G3) = & K3 = . (2.14)
0 0 1 0 0 00 O
—sinh¢s; 0 0 cosh(s —-i 0 0 0

Uma propriedade do grupo de Lorentz que sera ttil no capitulo seguinte é que qualquer transformacdo de

Lorentz pode ser escrita como uma rotagdo seguida por um boost,

SO(1,3) 3 A = B(E)%(6), (2.15)

21Em contraste, se o grupo for compacto (no sentido topolgico), suas representacdes unitarias sdo de dimenso finita, como ocorre com o
grupo ortogonal SO(3). As demonstragdes destas afirmagdes ndo serdo feitas aqui por ndo fazerem parte do objetivo deste capitulo mas, para o

leitor interessado, podem ser encontradas em [57]].
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em que B(8) = exp{—i{f K} e 2(0) = exp{—i6 - 6 - J}. Os detalhes da demonstragdo desta afirmacio podem ser

encontradas em, por exemplo, [53].

2.2.1 Algebra de Lorentz

Uma rotagdo infinitesimal no espaco-tempo transforma as coordenadas segundo J,x* = ¢"w,,x7, em que
0 <wyy <1, Vv,v=0,---,3. Assim, uma transformacdo de Lorentz infinitesimal pode ser escrita como
At =6 + Wl de sorte que, devido a restrigdo (2.9)), tem-se que a matriz w é antissimétrica: wyp + wpy = 0.
Isto significa que w tem seis pardmetros independentes: trés pardmetros de rotagdo wj; e trés de boost wy;. Logo,

qualquer transformacéo de Lorentz pode ser expressa de acordo com
SO(1, 3) 3 A(w) = e~ 2" I, (2.16)

onde ],y compde trés geradores de boosts Jo; = K; e trés geradores de rotagdo J;;. Estes podem ser reescritos com o

uso do simbolo de Levi—Civita

Ju=Y eamln ¢ Zekzmhm = —fe"”"hm 2.17)
"
implica que
) e 2.18
Uz]r Jui Zezmequ Jps Iq Z leljpequepqm]m ZZ el]pequ]pq (2.18)
Mas,
dik  Oi Oig
€ijp€klg = det 5]']( 5jl (5]'q = 5ik5j15pq — 5i15jk(5pq + 5i15jq5pk J; 5]15pk + 51q5]k(5p1 5'1(5]'6]5;11
Opk Opi Opg

de modo que (2.18) se torna
Ui Ja) = i), (5ik5j15pq — 0i10jkOpq + 0i16jq0pk — 0igdj10pk + digljkdp1 — 5ikf5jq5p1) Jpq
P
= i(0djt)pp — SitdjxJaq + Sitlkj — OjtJki + OjxJii — OicJj)
= i(gulix — &)k + gixJi — SixJit),

em que, na segunda linha, fez-se d,, = —gup € Jop = —Jps- Assim, a dlgebra de Lorentz, denotada por so(1,3),

pode ser obtida diretamente a partir da relacdo anterior como:

Uyw ]pv] = i(g;w]vp — 8voJup + SupJue — gyp]va)- (2.19)

Portanto, além da relagdo (1.37)), tem-se

T7) 1
Ui K] > Y €tmn Jnns Joj] ED 1 2 €tmn (8mjJno — SnjJmo + &n0Jmj — §moJnj)

m,n

N

N

= Py Zelmn 5m]Kn 5anm)
m,n

= zZelm m
m

3ik0 — _ ik

220bserve que € = gingjpSky P = giigjigkke ™ = (—1)
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. 2.17) .
(K1, Ki] = [Joi, Joj] ED, (80]']10 — &1iJoo + g10Joj — gooflj) en —i)_ el
K
de modo que (2.19) é equivalente a
U il = 15 m €ximIm
Uk Kil = i €amKm (2.20)
Ky, Ki] = —i ¥ €kim]m
2.3 Grupo de Poincaré
A transformagio sobre quadrivetores x € R,
x — T(b)x =x+b, becRY, (2.21)

define um grupo, chamado grupo de translagdo e serd denotado por T4. O produto neste grupo é dado por
T(a)-T(b) = T(a+b), o elemento identidade ¢ T(0) = O# = (0, 0, 0, 0) e, para cada T(b) € Ty, seu inverso é

T~1(b) = T(—Db). Sobre campos escalares, elementos deste grupo agem como
U(T(b)p(x) = ¢/ (x) = ¢ (T (0)x) = ¢(x—b)

= 900+ (~DHP(x) + (12D AAP(x) +

sl —_ . k .
I R ]

k=0

¢ o correspondente gerador de T4 neste espaco identificado como operador momento. A algebra de Lie € denotada

em que

por t4 = span{ Py, P;, P>, P;} cujarelagio de comutagdo candnica 1é-se

[Pu, Py} =0, (2.23)

isto €, T4 € um grupo abeliano.
A transformagdo (2-8)) € formada por uma transformacéo de Lorentz A € SO(1, 3) seguida por uma translago,

T(b) € T4, de modo que a agdo do operador ¢(A, b) sobre quadrivetores em R ¢ definida como
= M= g(Alw), b)xt = Alw)* yx¥ + bF, (2.24)

com

Aw) = exp <— %aﬂ”]w) € S0(1,3)
(2.25)
b o TO) = exp (—ib”Py) €T,

O conjunto de todas as transformagdes g (A(w), b) forma um grupo conhecido como grupo de Poincaré e serd
denotado por ISO(1,3). O produto neste grupo pode ser inferido ao aplicar-se sucessivamente duas transformacdes

de Poincaré sobre um quadrivetor genérico x € R'3. De fato, com o uso de (Z:24), tem-se

x = X' =g(Ay, ba)-g(A1, b)x = (AaA1)x + (by + Agby),
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< [8(Ag, b2) - g(Ay, by) = g(AaAy, b+ Agby). | (2.26)

Comparando (2.26) com (I.2), pode-se ver que o grupo de Poincaré é dado pelo produto semidireto entre o grupo

de Lorentz ortécrono préprio e o grupo de translagdo descrito no inicio desta secao:
ISO(1,3) = SO(1,3) ® Ty. (2.27)

Dado a relacdo (2.26), pode-se dizer que qualquer transformag@o de Poincaré pode ser escrita como uma

transformacdo de Lorentz seguida por uma translagio:
g(AB) =T(b)A, T(b) € Tae A € SO(3). (2.28)

As relagdes (2.26) e (2.28)) implicam que elementos do grupo de transla¢do se transformam sob transformacdes de

Lorentz como
T(b) — AT(b)A™t = T(AD), (2.29)
de sorte que, se g(A,a) € ISO(1, 3), entdo
T(b) — g(A,a)T(b)g ' (A,a) = T(Ab) € Ty. (2.30)

Isto significa que T4 é um é um subgrupo normal de ISO(1, 3) e, pelo uso do Teorema aplicado ao caso do

produto semidireto, obtém-se o isomorfismo

150(1,3) SO(1,3). 2.31)

Ty

Este resultado serd importante na discussdo da classificagio das representagdes de 1SO(1,3) no préximo capitulo.

2.3.1 Algebra de Poincaré

A dlgebra de Poincaré é denotada por iso(1,3) = span{Jo1, Joz, Jos, J12, J13, J23, Do, P1, P2, P3}, em que (2.19)
e (2:23) sao as relagdes de comutacdo para as subdlgebras s0(1,3) e t,, respectivamente. Assim, resta calcular
[Py, Joo] € is0(1,3). Isto é feito observando que o operador P¥ se transforma como um quadrivetor sob uma
transformacéo de Lorentz. De fato, notando que AT(b)A‘1 = Aexp ( —ib- P) Al = exp ( —1ib- APA_l),
vé-se que

PF — P* = APFATL = AM PV, (2.32)

Assim, tomando uma transformagdo de Lorentz infinitesimal A¥ , = 1 — %w"‘ﬁ Jap + O(w?), (2.32) pode ser

reescrita como
APIAT = (1 - ;waﬁ]aﬁ) pr (1 + ;w“ﬁfa[;) = Pr- %w“ﬁ(hﬁp’l — P']ap) + O(w?)
=2 (1 - ;w“ﬁ]a‘5># VP’ 4 0(w?)
& [Jup P'] = (Jup)¥ vP. (2.33)

Mas, com o uso da transformacao infinitesimal J,x# = w ,x", tem-se

o x = A = (8 = S0 Jap) s+ Ow?))x = 3t — S (o) v
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i
Lat = Sxlt = _Qw“ﬁ(]aﬁw vx’ = wh yxt,

ou seja,

(Lx,ﬂ)y v = i(‘sf):gﬁv - (sgglxv)- (2.34)
Substituindo (2.34) em (2.33), obtém-se
Uag: P! = —i(0k8py — S 8uv) P’ = i(d3Pp — Oy Fa),

de modo que a algebra de Lie do grupo de Poincaré ¢ dada por

[Pu, P.] = 0
[Pu, Jup) = 1(8puPu — GunPp) : (2.35)
va/ ]pa] = i(gpm]vp - gva]yp + gvp];w - gyp]va)

2.3.2 Operadores de Casimir

Para o grupo de Poincaré, ha dois operadores de Casimir. Sdo eles:

Operador de Casimir Quadratico: C; = P2, em que Py € o gerado do grupo de translagdes Ty (2.22). C € um
operador de Casimir porque (i) [C2, Py] =0, Vu =0, - - -, 3, como consequéncia da primeira relagdo em (Z.33) e

(ii), porque produtos escalares sio invariantes de Lorentz, depreende-se que [Cy, Jv] = 0.

. .

Operador de Casimir Quartico: C; = W2, em que o vetor de Pauli-Lubanski W* é assim deﬁnido@
M 1 Hvpo
WH = Ee Py ] oo (2.36)

Porque W? é um escalar, pode-se escrever que [Cy, Juw] = 0. Também, Py € iso(1, 3), p =0, - ,3 comutam

com Cy:
[C4,P1x] == [WHW]/I,P“}
= WH [WV,PN} + [WV,P,X]WH
1 1
= Ee‘uvpawy [PV]‘D(T/ Prx] + Eeyv‘oa[PvIpm Ptx]wy

1 1 1 1
= Ee}WP‘TWHPVUW/ P, + EEWWWH [PY, Pu] ] + EeVVPUPV[]pg, Po] Wy, + EewpU[Pw Pu] Joo Wy

B
133

1 1
— iz €urpa WP (PP — P68 ) —iZ e P, (Pogon — Pogon) Wi

— S WiepaP PP + S WHeuag PYPT — 2" o PR, Wy+ 26 o 7 Py P,

0,

em que, na penultima linha, todos os termos sdo nulos devido as contracdes entre tensores simétrico e antissimétrico.

23Esta quantidade foi primeiramente introduzido por Wolfgang Pauli e foi apresentada em [S8].
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3 Representacoes Unitarias Irredutiveis do Grupo de Poin-
caré

Considerando todos os conceitos e resultados mostrados nos dois primeiros capitulos, podemos, neste capitulo,
investigar as Representagdes Unitdrias Irredutiveis (UIRs) do grupo de Poincaré pelo uso do método de Wigner [4]).
Dentre as possiveis representacdes deste grupo, destacamos as representacoes de spin continuo que correspondem

ao tépico principal desta dissertaco.

3.1 O Método de Wigner

Conforme mostrado no capitulo anterior, o grupo de translagdes no espago de Minkowski é um subgrupo nor-
mal/invariante do grupo de Poincaré. Isto sugere que autovetores do operador momento Py, sejam escolhidos como

base para o espago vetorial em que uma dada representacdo do grupo de Poincaré age:

Pylp,o) =pulp, o), (3.1

em que py, € o quadrimomento e ¢ rotula outros graus de liberdade que o vetor |p, o) comporta. Portanto, dado
b+ T(b) € T4 2.23), tem-se
U(T(b)) |p,o) = e " |p,o), 3.2)

onde U (T (b)) é uma representacdo do grupo de translagdo sobre o espago vetorial gerado por |p, o). Por outro

lado, seja U (A) a representacdo do grupo de Lorentz que age sobre estes vetores. Entdo, pelo uso da relagdo (2:29),

(
vé-se que U(A) |p, o) é autovetor de P com autovalor Ap:
PHU(A) [p,o) = U(AUH(A)PFU(A) [p, o) == U(A)A PV [p,0) "= (Ap)'U(A) |p,0),
de modo que U(A) |p,0) « |Ap,0):
U(A) lp,o) =} Cor (A p) [Ap, @) (3.3)
o

Cyo' (A, p) é uma representag@o matricial do grupo de Lorentz porque, dado o homomorfismo U(A1)U(Ap) =

U(A1A), tem-se

u<A1>[u<Az>|p,a>} = U(A) Y Coor (A2 p) [Aap, ) = Y Caor(Ag, p)Corgr(Ar, p) [ A1 A2p, ")
0—/ ‘7/0-//
= ZC(TO'”(AIAZIP) |A1A2P,0’”>
U—//
= Cmf”(AlAZI P) = ZCUU/(AZ’ P)CU’U”(AL P)~
U-/

Seja # uma transformag@o de Lorentz e k¥ um quadrimomento de modo que
| e (3.4)

# € dito pertencer ao Little Group (LG) do grupo de Lorentz SO(1,3) correspondente ao quadrimomento k.
Notagdo: # € LGy C SO(1,3). Uma possivel escolha para # é

# =L (Ap)AL(p), (3.5)
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em que L(p) é uma transformagdo de Lorentz particular tal que
pr=L(ptk" o k=L p)" p, (3.6)
e A é uma transformagdo de Lorentz qualquer. Assim, a partir do vetor |k, o) pode-se gerar |p, o) como
[p,o) = N(p)U(L(p)) |k, o), 3.7)

onde N(p) é uma constante de normaliza¢do. Portanto, sob uma transformagio de Lorentz genérica U(A) o vetor

|p, o) se transforma de acordo com:

u(n) |p,oy B N(pUAU(L(p) lg.0) = N(pU(AL(p)) [k o)
= N(p)U(L(Ap)U(L (Ap)AL(p)) K, 0)
B Npyumap)um) ko)
= N(p) L Do (NU(L(AP)) [k, )
_ N(p) ,
& U(A) |1} = a5 LD () AP, ) (3.8)

em que % ¢é dado por (3.3) e D, (#') é a representagio matricial do LGy sobre span{|k, o) }. Comparando as
relagdes (3.3) e (3.8), tem-se que as representacdes do grupo de Lorentz séo induzidas por aquelas do correspondente
LGy a menos do termo de normalizacdo N (p)/N(Ap). O LGy, por sua vez, é especificado com a escolha de um
quadrivetor representativo do espaco de Minkowski k € IR, o qual pode ser tipo espaco k < 0, tipo luz k? = 0
ou tipo tempo k% > OE] Sera visto cada uma destas possibilidades no decorrer deste capitulo.

Perceba que D, é uma representagio irredutivel de SO(1,3) sobre V = span{|p, o) } porque todos os vetores
|p, o) sdo gerados a partir de um unico vetor |k, o) pela acdo de U(L(p)) € SO(1,3) (3.7). Portanto, os tinicos
subespacos invariantes de V sdo os triviais.

Pode-se resumir o método de Wigner considerando os seguintes passos: (i) tome um quadrivetor padréo k sobre
alguma regido do espaco de Minkowski, a saber, k2 <0,k =00uk®>0; (i1) construa uma transformacao de
Lorentz que, sobre k, deixa-o invariante e (iii) as representacdes unitdrias irredutiveis do grupo de Poincaré

sdo aquelas correspondentes as do LGy, conforme € estabelecido em (3.8).

3.2 Algebra do LG;

Seja #(Q)) = exp{—iQ- G} € LGy C SO(1,3) onde G = (Gy,- -+ ,Gp) e Q = (O, -+, Q) definem os

geradores e parAmetros do LGy, respectivamente. Uma condi¢do suficiente para que a relagdo (3.4) seja satisfeita é
(G™M)* gk =0, Vm=1,---,n, (3.9)

H
pois na expansdo # (Q)F kY = exp( —iQ- G) vkY apenas o primeiro termo € ndo-nulo. Porque G €
50(1,3) = span{J,y}, tem-se que G pode ser escrito como uma combinagio linear dos geradores de SO(1,3)
como

1
G = 5" Y Jor, (3.10)

24H4 também o caso do quadrivetor nulo k# = (0,0,0,0) que ndo serd tratado neste trabalho.
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em que €7 é o stmbolo de Levi-Civita e Y,y = —Yy;, € RR. Dessa forma, a agéo de G sobre k pode ser escrita

como

(G)(X ngﬁ = %elﬂ/p(fyyv (]pg’)‘x ‘Bkﬁ GVVPUYHVl((SgkU—ﬁ - (Sg-kpﬁ)kﬁ = %ieﬂvﬂéayl/“/kg O,

N

= Y = yuky — yvky,

para qualquer quadrivetor y*. Substitutindo esta equa¢do em (3.10) obtém-se uma forma geral para os geradores G

do LGy:
1
G= Eeyvpg(]/ykv - yvky)]pa = yywﬂr

com

1
wh = Ee”“pvkvjpa, (3.11)

e, porque w - k = 0, existem trés componentes independentes de w*. Veja que o vetor de Pauli-Lubanski (2.36) age
sobre |k, o) como

WH |k, o) = wt |k, o), (3.12)

de modo que a dlgebra do LGy, € determinada pela relagdo de comutagdo [W#, W"]. Para determiné-la, observe que
W Tl B2 iew, - swy),

1 1 1
[WH' PV] = Eeﬂaﬁy[PtX]ﬂ’y/ PV} = Eeylxﬁ’y (Pa[]ﬁ'y/ PV] + [szr PV]]ﬁfy) @ _1§€V“/37P“(51;Pﬁ — 5;137)
= 0,

em que a quarta igualdade € zero tendo em vista a contragio entre os tensores simétrico e antisimétrico. Portanto,

[(W*, WP] = —ie*FPrW, P, (3.13)

Conforme serd visto a seguir, esta relag@o serd util na identificacdo do LGy.

3.3 Particulas Massivas

Considerando um sistema de referéncia em que a particula estd em repouso, seu quadrimomento pode ser escrito
como

k' = (m,0,0,0), mecR, (3.14)

e com o uso da relagdo (3.11) as componentes de w" sdo dadas por

w = 0,
w = m]i.

Com estas componentes a dlgebra de Lie correspondente ao LGy é calculada diretamente pelo uso da relagdo (3.13)

em que, no que segue, faz-se a substitui¢do do operador momento pelo seu valor quando age no vetor |k, o) segundo

W', w] = ieMkyw, = ie™kow, = ie’'m]. (3.15)
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A menos da constante multiplicativa m, vé-se que esta dlgebra corresponde a dlgebra do grupo ortogonal SO(3)
de modo que o vetor de estado fisico pode ser escrito como |p, j, m;), onde p = L(p)k (3.6) e o par (j, m;)
séo especificados nas relagdes (1.38)-(1.39) da Subsegﬁo Portanto, dado que o espago gerado por |p, j, m]'> é
de dimensao finita, pode-se dizer que a representacao do grupo de Poincaré sobre este espago € de dimensao finita
em consequéncia do LGy ser um grupo de Lie compacto [57]].

Os autovalores dos operadores de Casimir sobre os estados fisicos |p, j, m;) sio:

Calpjsm) = Pp,jom) = p*|p,j,m) =K |p,j,m;) = m?* |p, j,m;) (.16
Calpjym;) = W2|p,j,mj) =w?|p,jm;) = —m?J?|p,j,m;) = —m%j(j+ 1) |p, j, mj)

A partir do quadrimomento padrio (3.14), obtém-se (Kzk)# = (m cosh &3,0,0, —m sinh {3) através de um
boost na dire¢do z e, com duas rotacdes sucessivas R(6, ¢) = Rz(¢)Ry(0) (L.I8)-(T.20), este quadrimomento
é levado em p* = (m cosh &3, —m sinh {3 sin 0 cos ¢, —m sinh {3 sin 0 sin ¢, —m sinh &3 cos §) de modo que a
transformacdo de Lorentz

L(p) = R(6,¢)K3 (3.17)

é tal que p = L(p)k. Finalmente, dado U(T (b)) € T4 e U(A) € SO(1,3), tem-se:

U(TO) Ipjomy) = e #? |p,j,m)
A Ip g,y = Tpy_ Doy () |Ap )

!
m/mj

(3.18)

com # dado por (3.3), L(p) dado por (3.17) e DU) (#) é a representaciio de SO(3) sobre o espaco vetorial gerado
por |p, j,m;) correspondente a0 momento angular j (LAT)-(T.43).

A teoria de campo para particulas massivas de spin arbitrario inteiro foi formulado por Singh e Hagen em [59]].

3.4 Particulas sem Massa

Com o quadrimomento padrdo tipo luz

K = (w,0,0,w), (3.19)

pode-se calcular explicitamente as componentes de w* com o uso da relagdo (3.11):

1 1 1
wh = Ee””pvky]pa = w§€”09‘7]pg - wieye’p"]w.

Os resultados sio:

w = wfp=w]s
w' = w(-Ji—Jo) = —w(h+Ka),
w = w(fn—Jon) =w(h—Ky),
w = why=wh
Introduzindo
e} =(0,1,0,00 €, =(0,0,1,0), €€ =0;1j=12 (3.20)
w! pode ser escrito como
W =K' + €l [~w (] + K2)] + eb[w(]2 — K1)], (3.21)
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em que, além de w - k = k2 = 0, tem-se k - €1 = k-ey = 0, ou seja, €1 caracterizam direcdes transversais

ao quadrimomento no espago de Minkowski. A relagdo (3.21)) estabelece que ha trés transformacdes de Lorentz

3 1

geradas por w° = w®, w! e w? que, em acdo sobre k¥, deixa-o invariante. Sdo elas: uma rotacio —R = J3 =

w'/w = w?/w e duas translagdes T} = w(J; + Ko) =w' e To = w(J, — K1) = wzde sorte que

wh = —k'R+ €Ty + €4 T (3.22)
A dlgebra do LGy neste caso é:
T, To] = [wl, wz] =0
e
R, T] = ——[u° w']=—ie"Bw,
isto é,

‘ R, Tip] = £iTo4, [Ty, To] =0, (3.23)

que € a algebra correspondente ao grupo de isometria em duas dimensdes 1SO(2). Definindo Ty = Ty +iT5,

(3:23) pode ser reescrita como

[[R, Te] =+Ts,  [Ts, T5] =0] (3.24)

de modo que o operador de Casimir quértico é expresso como (para detalhes, veja o Apéndice[A)

529

Da mesma forma que qualquer elemento do grupo de Poincaré é dado por uma transformacdo de Lorentz
seguida de uma translagio, conforme € estabelecido em (2.28), tem-se que # € 1SO(2) é dado por uma rotagdo

Z € SO(2) seguida por uma translagio 7 € Tp:
w(0,b) = T(b)%#0) beR>? 0el0,2m) (3.26)

com

#(0) = exp{—iOR} (3.27)

V2

em que B = —(by +iby)/+/2. Em termos de e+ (k) = (€1 %+ i€2)/+/2, pode-se mostrar que os geradores do LGy

7 (b) = exp{—ib- T} = exp { (B T+ + ,BT)} , (3.28)

sdo dados por (para detalhes, veja o Apéndice[A):

RV, =€ey, — eﬁe_v (T = i\@(e’ikv —ktesy). (3.29)

23 Caracterizamos estas duas transformagdes como "translagdes"em decorréncia do isomorfismo entre a dlgebra do LGy, equagio (3:23) ou
(B:24), e a dlgebra do grupo euclideano 1SO(2), definido pelo produto semidireto entre o grupo ortogonal especial em duas dimensdes e o grupo

de translagdo em duas dimensdes: 1ISO(2) = SO(2) ® T,.
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Com o uso destas duas dltimas expressdes e das propriedades €3 (k) = 0e e4 (k) - ex (k) = —1, tem-se

RF e, = eﬁ‘ewel’r — eﬁe_vei = eﬁ, (3.30a)
RFev = eleppel —elle el = —€", (3.30b)
(To)* vl = V2(elkvel —klerve’) =0, (3.30¢)
T F e = V2(e' kye’ —kte e”) = V2kH, (3.30d)
+

(T-)" el = —\/i(e}_'kve:’_ —ktle_yel) = —V2kH, (3.30e)
(T e = —V2(e" ke’ —kte e ) =0, (3.30f)
(T )e;, = —V2T k=-2T,T e =0 (3.302)
(Ty)?e. = 0. (3.30h)

Assim, a a¢do de um elemento genérico do LGy, sobre as direcdes €+ 1&-se:

v o, pe ) = exp{\%(ﬁ*ﬂJrﬁT)}[exp{—iGR}e+(k)] e [Te, To] =0

G -0, 73PT- {e\}iﬁ*T+e+(k)}
(3.309) e_iee\%ﬂl&r(k)

e 0 <€+ + \;§5T€+(k)>

W (0,B)er (k) = e (e, (k) —ipk). (3.31)

Analogamente,

W (0,B)e_(k) = e (e_(k) + iB*k). (3.32)

E importante destacar que os "quadrivetores’ €+ sdo construidos como fungdo do quadrimomento padréo k de
modo que, se k — p = L(p)k, tem-se €+ (k) — €+(p) = L(p)e+ (k) e as propriedades de e+ (k) continuam

vélidas para €+ (p):

ei(p) =ex(p), ex(p)-ex(p)=-1, p-ex(p)=0, VpeR"7 (3.33)

Representacoes de Helicidade e Spin Continuo

O método de Wigner nos ensina que as UIRs do grupo ISO(1, 3) correspondente ao caso k? = 0 sdo obtidas a
partir das UIRs do LGy e, pelo ja discutido acima, LG, = ISO(2) = SO(2) ® T, cuja dlgebra de Lie € denotada
por is0(2). O operador de Casimir deste grupo é dado por C = — T+ T_ = C4 que, em conjunto com o autovalor

de C; = P2, define uma base para o espago vetorial onde elementos de ISO(1, 3) agira:

G lkp,0) = Pkp,0) =k |k p,0) =0

) , (3.34)
Cilk,p,0) = —TLT-|kp) = —p* |k p,0)

26Conforme é demonstrado no Apéndice@ €+ ndo sdo quadrivetores porque nio se transformam como um quadrivetor genérico sob uma

transformagdo de Lorentz: R'3 3 o — AF 0.
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onde p e ¢ sdo nimeros reais. Dado #/(0,0) = Z(0) = e~ih ¢ SO(2) =~ ISO(2) /Ty, pode-se identificar

como o autovalor do operador helicidade J1 sobre os vetores de estado:

hlk,o,h)y = hlkph
Ik, o, 1) |'p ) (335)
#(0,0)|k,p,h) = e |kp,h)
Com a dlgebra de Lie is0(2) (3.24),
(h, Ti] = T4, (3.36)

vé-se que a a¢do dos operadores T+ sobre |k, o, 1) é dada por:
hTy |k,p,h) = (hE1)Tx |k p,h),

implicando que T |k, p, h) é autovetor de J com autovalor i + 1, ou seja, T |k, p,h) o< |k,p,h £ 1) . Assim, a par-
tir de um vetor de estado normalizado |k, o, i) ((k, p, W' |k, p, ) = 6y € definindo a constante de proporcionalidade
x € C, tem-se
T+ |k, o,h) =x|k,p,h+£1) = (k,p,h| T+Tx |k, p,h) = pz = |1<|2
.k = =ip, p2 >0,

em que escolhe-se arg(x) = :|:77:/2 Assim,

| T [k p, ) = +ip|k,p,h £1) .| (3.37)

No que segue, estuda-se os possiveis valores de pzz

3.4.1 Estados de Helicidade: p> = 0

O espago gerado por |k, 0 = 0,h) = |k, h) é constituido por apenas um vetor para cada /i conforme a relagio
estabelece, ou seja, este espaco € unidimensional. Particulas sem massa que sio observadas na natureza sdo descritas
por estes estados de helicidade. O féton, por exemplo, tem helicidade & = +1.

Sobre estes estados de helicidade, pode-se determinar a acdo dos elementos do grupo de Poincaré. De fato,

translagdes agem neste espagco como

T(b) |p,h) =e P |p,h),  p=L(p)k, (3.38)

em que L(p) é definido em (3:17). Rotagdes no espaco de Minkowski, por sua vez, agem sobre |k, i) como
A)|ph) Zth, )|Ap, K'Yy, 1SO(2) > # = L Y (Ap)AL(p) = 7 (B)%(0) (3.39)
com

D O#) = (W ) = (kb lexp { o (BT + 67T fexp{—i0h 1)
G3DE3ID  —ion
= e~ op,

de modo que

U(A) |p, k) = e M0WAP) | Ap, ) . (3.40)

?Targ(z) denota o argumento do nimero complexo z.

33



Nesta equagdo, 0 = 6(A, p) € solugdo de
(1 L™ (A)AL(p) [k, ) = (K, h] 7 (B)22(6) [k, ) = e~

A teoria de campo para particulas sem massa de spin arbitrarios inteiro e semi-inteiro foram formuladas por

Fang e Fronsdal em [34}|35] (para uma revisdo recente deste formalismo o leitor pode consultar [21},36,60]).

3.4.2 Estados de Spin Continuo: p> > 0

Neste caso hd duas maneiras de descrever os vetores de estado fisico: através da helicidade /i da particula conforme
visto anteriormente ou pelo uso de um rétulo continuo ¢ a ser definido nesta subse¢do. No primeiro caso a base de
estados fisicos é denominada base de spin e, no segundo, base de ondas planas. Sera visto nesta subsecio que estas

duas bases sdo relacionadas por uma transformada de Fourier.

(a) Base de Spin

Levando-se em conta a relagdo (3:37), vé-se que para cada p # 0 o espago vetorial V' = span{|k,p, &),
lk,o,h£1), |k,p,h£2),---} é de dimensio infinita. Isto implica que a representagdo do grupo de Poin-
caré sobre este espaco € de dimensao infinita.

Elementos do grupo de translagdo T4 agem sobre |p, p, 1) como

U(T(b))|p,p,h) =e P |p,p,h),  p=L(p)k, (3.41)

em que L(p) é dado por (3.17). Por outro lado, rotagdes no espago de Minkowski U(A) € SO(1,3) atuam sobre

p.p, h) como (3.8):

U(A) |p,p,h) ZDW ) Ap.p, i), LG > # =L (Ap)AL(p) = T (B)%Z(9),  (3.42)

com
Dy (W) = (k, 0, W'|# |k, p,h), (3.43)
V) = T(ERE) = exp{ (BT +BT) pexp( i) (3.44)

Os elementos de matriz (3.43) podem ser calculados com o uso de:

(k,o,W'|2(0) |k, p,h)y = e oy, (3.45)

(k1] 7 (B) Ik, p, ) o exp { S (BT +BT) } 1)

(k,p, 1| exp {}ﬁ*ﬂ} exp {\ifﬁT} Ik, o, 1)

i I+j i .
() ELE wer (o

@ o

Lj
0o 00 I+j (B*\ pj

E37 _P) 1 ](ﬁ )'B ) (3.46)
I;OJ;) ( V2 = Iyt j—l=h—h
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Redefinindo o indice j comon — I, n € Z, e levandoem contaque j — = h — K, tem-se

i+l = n - j=%(n+h—H) 347
i—1 = h—¥ I=L(n—h+H) '
de modo que (3:46) é simplificada a:
. _ ) P n T (/3*> (n— h-i—h/)lB2 (n+h—H")
e L7 B e n-mz-hf( 7)o Tt it )b (n b )]
_ (ﬁ)hzh’ £ (olBl/v2)"
P n=h—h' [3(n =R+ 1) (n+h—h)]!
(BT e (evas)T
- (ﬁ) t;)t!(t—l—h—h’)!( 2 )
_ (B
= (ﬁ*) Jn—w (P\fz|ﬁ|)
= g (plBl) (3.48)

em que na primeira linha foi assumido sem perda de generalidade que & > h’, na segunda linha o indice de soma 1
foi redefinido como t = %(n — h + I'), na terceira linha foi utilizado a defini¢do da fungdo de Bessel de primeira

espécie [61]:

i (_1)f X\ 2t+v . _
Ju(x) = E At rv ) (§> , I'(z) = (z—1)!, z € Z : Fung¢do Gama,

e na quarta linha o pardmetro f8 foi reescrito como p = f% comb = (by,by) = (|b] cosa, |b| sin ). Assim,

com (3.45) e (3.48) pode-se calcular os elementos de matriz (3.43):

Dy (#(8,6)) = (k,p,W'| 7 (8,b) |k, p, 1)
= (kp,W| T [0)%(0) |k p,h)

= Y (koW |T®)|kp,n") (ko h'| %)k p,h)
h//

= k| 7(b) Ik, p,h)

Dy (#(8,8)) = e~ heith=t)ay (p|E\) . (3.49)

Finalmente, substituindo esta relagdo em (3.42)), obtém-se

A)lp,p, ) = e Oy g, (plB]) [Ap,p ), (3.50)
h/

—

emque 6 = (A, p) e b = b(A, p) sdo parametros do LGy, dados por
Dy (#') = (k, 0, 1| #/(8,) |k, p, 1) = (k, p, /| L™} (Ap)AL(p) |k, p, 1) - (3.51)

No limite p — 0, obtém-se
Jn—w (p|bl) = Sppr,

de modo que (3:50) se torna
U(A) |p,0,n) = e~ |Ap,0,h),
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que é precisamente o resultado obtido para os estados de helicidade (3.40). Isto sugere uma maneira de definir as
representa¢des de spin continuo: sob boosts, elas se tornam uma superposi¢do de todos os possiveis estados de

helicidade se p # 0 e, no limite p — 0, os estados de spin continuo se tornam estados de helicidade.

Unitariedade
No que segue vamos verificar se a representagdo dada por (3:30) € unitdria. Com a escolha (p’,I'|p,h) =

S 2p°83 (P — '), tem-se

(p2, b2 | UT(A)U(A) |p1, )

e i0(h—h) Z ei(hl—hﬁ)“e_i(hz—hlz)a]hliha (p|§|) ]hthlz (p|g|) <Ap2, h/2|AP1,h/1>
ik,

- pif(h—hy) <AP2|AP1 Z olh— )oc —i(hy—hy) Dthl (pﬁﬂ) ]h2fh’2 (p|E|) <h/2|,h/1>
hy k)

208% (s — pa)e 00 ) el Mweitaing, (o)) i, (olB)
"

= 2p06% (i — po)e et Yy, L (olBl) T (—plB)
n
= P(1)(53(F71 _ ﬁ‘z)e—iw—a)(hl—hz)]hl_hz (0)
= P& (P — P2)Onyny,
em que na terceira linha foi usado (Apa2|Ap1) = (p2|p1), VA € SO(1,3) e (hh|H}) = Oy py» na quarta linha o

indice de soma foi redefinido como 1 = h} — hj e foi utilizado a propriedade J,,(z) = J_n(—2), Vz€ C, Vn € Z
e, na quinta linha, fez-se uso do teorema de adi¢do das funcdes de Bessel
m(x+y) = 2 Jn(X)Jm-n(y), Vx,y € C, ¥n,m € Z. (3.52)
n=-—0co

Portanto, pode-se concluir que UT(A)U(A) = 1.

(b) Base de Ondas Planas

Neste caso os autovetores dos geradores de translagdo T e 150(2), denominados estados de onda plana, sdo
utilizados para definir o espaco vetorial sob o qual a representacdo do grupo de Poincaré age. Estes vetores sao

denotados por |k, p,ﬂ e a agdo de T sobre eles é dada por

—

TlkpB) =Flkp,f),  F=(t,t)

de modo que a agdo dos operadores T+ e Cy4 sobre estes vetores 1€-se

Tilkpf) = (h*it)|kpb)
=Gl B 2D

Este resultado sugere parametrizar f com coordenadas polares (p, ¢):
fp = (pcos ¢, psing),

de sorte que C4 = —p? como esperado (3:34). Desta forma, os estados de spin continuo sio identificados com o

parametro continuo ¢ no qual
Ty \k,p,?¢> = peiiq’ |k,p,?¢) .
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Assim, .7 (B) € 1SO(2) age sobre |k, p, £) segundo:

T(B) ko, Ep) = exp {\%(ﬁ*ﬂ + ,BT)} Ik, 0,Ep) = exp {ip\/i Re [ﬁe-iﬂ } Ik, 0,E5), (3.53)

onde Re[z] é a parte real do niimero complexo z.
O efeito de rotagdes Z(0) € ISO(2) sobre |k, p, fy) pode ser obtido ao calcular-se o autovalor de T', i =1, 2,
sobre Z(0) |k, p, tg):

T# ko) = RBTR |k 0,F) =% (ggi ],Tf) Ik, 0, Fp) = (@i ; t{P) Z k0, Ep), (3.54)
ou seja, Z |k, p, ?4,) ¢ autovetor de T com autovalor %Ep Isto € possivel se

- - Z0) -
Assim, vé-se que a agdo de Z(0) sobre |k, p,tp) <> |k, 0, ¢p) é uma rotagdo: £y *(Q toro-

Com os resultados (3.53) e (3.55), tem-se que a agdo de #/(6, B) € LGy sobre a base |k, p, ¢) é dada por

N

w0,8) ko, ¢) = ap&mﬁRﬂ&4W”ﬂMhn¢+m
= [ B anexp {iovare [ ] L olg' o 0) [0, 47)

#(6,B) |k, 0, ¢ / D¢¢/ [0, B] |k, p,¢'), (3.56)

onde

Dyg'[6, 8] = (k.0 ¢'| 7/(6,B) [k, ¢) = 27w exp {ipv2Re [ | L o(¢/ — ¢ — 0). (3.57)

Na primeira linha de (3:36) foi utilizado a relagdo de completeza | ‘%/ lk,0,¢") (k,0,¢'| =1.

Unitariedade

Com a escolha (k, p, p|k, p,¢') = 276(¢ — ¢’) e com o resultado (3.57), pode-se verificar diretamente que

(k,p, 9| 7 (0,B)7 (6,B) [k, p,¢') =27 5(¢p — @),

ou seja, # é um operador unitério:

76,87 (6,B) =1. (3.58)

(c) Relacio entre as bases de spin e onda plana

Porque ambas as bases sdo constituidas por autovetores de operadores hermitianos, uma € a transformada de Fourier

da outra. Para verificar esta afirmacgao, defina

. do
lk,0,h) = / %em"’ k,p,¢) . (3.59)

Este vetor é autovetor de Z(0):

7 ¢ ; —i ap" ingy —i 7
20 lop i) [T g+ 0) = [ S8 1,41y = Mk p, ),

28 A rigor, é preciso diferenciar a agio do operador 2(0) sobre quadrivetores ' € R'3 e sobre vetores de estado fisico |k, o, ?4,), mas, para

simplificar a notacdo, isto néo € feito aqui.
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ou seja, |k, p, 1) & proporcional a |k, p, k) (veja (3.45)). Com a escolha |k, p, h) = i ™" |k, p, 1), (359) se torna

. d . .
Ik, p, ) = / 29 1(0+5) 1k, 0, ). (3.60)
J 2r
Veja que com este vetor e a relagdo (3.57), pode-se obter a representacdo matricial sobre os estados de spin (3.49).
De fato,
Dur(0,) = (ko 7(6,8) ko0

dgdg’ , , )
- / (;Pn()i)z (ko W'k, p,9") (k, 0, ¢"| #(0, ) |k, p, ¢) <k, p, p|k, p, 1)

G [ dPdY’ g1 ,iF (1) /

2 [ oy ! (k.91 7/(6,8) K p,0)

= o oy 7 2mexp {ipV2Re [Be | fa(g/ — g — @) 000D

_ it /2 exp {ipV/ZRe [pe(0+9)] } 01(9+3), (3.61)

Mas, porque B = — (b1 +iby) /2 = |ble™® / /2, com b = (by,by) = (|b| cosa, |b| sina), tem-se

exp {Zp\ﬁ Re [ﬁe—i(9+¢)}} = exp {Zp\ﬁ Re | — |b| e—i((/H—G—oc)] } _ €_iP|E| cos(a—¢p—0)

V2

de modo que (3:61) se torna

Lo [0 o i (e

Do) _ ioh ip|b| cos(a—p—0) i(h—1") (¢p+%)
e (6, B) e 7 € e
_ i [ Y ipfB cos(§—¥) i) (¥ +a—0)
27
e—ieh’ei(h—h’)(a—e)/dje—ip|5|sin‘fei(h—h')‘f
27
. Dy (8, ) = e e 1 4 (olB]), (3.62)

em que na primeira linha fez-se a mudanga de varidvel x — ¢ — 6 = g — Y e, na terceira linha, foi utilizado a

representacdo integral das fun¢des de Bessel de primeira espécie

d o
]n(z) — % ezm/J lZSlnl‘lJ'

A teoria de campo para particulas sem massa bosonica de spin continuo foi formuladas por Schuster e
Toro em [41]], enquanto que para particulas fermidnicas sem massa de spin continuo foi formulada por Bekaert,

Najafizadeh e Setare em [46].

3.5 Taquions

Com a escolha

k* = (0,0,0,m), (3.63)
calcula-se explicitamente as componentes de w* com o uso da relagdo (3.11):

0

w’' = mjs (3.64)

W = —meB Joj,
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w' =mK,, w?*=-mK; e w>=0. (3.65)

Os valores de w* acima especificados identificam o LGy correspondente a k2 = —m? < 0 como boosts ao longo
das diregdes x e y além de uma rotagdo do plano formado por estes eixos ao longo da dire¢@o z. Logo, tem-se que
LGy = SO(1,2) é o grupo de Lorentz em uma dimenséo temporal e duas dimensdes espaciais cuja dlgebra de Lie é

denotada por s0(1,2) e a relagdo de comutacdo (3.13) é dada por:

[wh, w'] = —ime!3w,, (3.66)
com

K1, K2] = —if3

s, Ki] = iKy - (3.67)

3, K] = —iKy

=,

Qualquer elemento de SO(1,2) pode ser escrito como o produto de uma rotagdo #3(6) com um boost A(¢) @.13):

S0(1,2) > 7 (6,&) = B(E)%5(6), (3.68)
com
%5(0) = exp{—i0]3} (3.69)
e
BE) = exp{ficf-l_{} :exp{\i@(C*KerLgK)}, (3.70)

emque { = — (&' +i¢?)/v/2 e K+ = Ky +iKy. As relagdes de comutagio (3.67) podem ser reescritas em fungdo

destes operadores como

K+, K£] = F2J3, (3.71a)

[, Ky] = =£Kg, (3.71b)
e, porque K+ K4 Gz K% + K% = J3, 0 operador de Casimir quartico pode ser escrito da seguinte forma:
Cy=w? = —m?*(K2+ K3 — J2) = —m*(K&Ks F J3 — J3). (3.72)

O préximo passo € construir uma base de estados fisicos que representam as particulas taquiénicas@ Sejam A

e —p2 os autovalores de J3 e Cy4, respectivamente:

BlkoA) = AlkpA),  Aefo, £1, £2,--} (3.73)
Cslk,p,A) = —p*|kp,A). (3.74)

Pelo uso da equagdo (3.71b), tem-se

Kz |k p,A) = (A+1)Kilkp,A), (3.75)

29 As particulas taquidnicas sdo conhecidas (teoricamente) por violarem causalidade: porque possuem quadrimomento tipo luz, a velocidade

dessas particulas € maior que a velocidade da luz no vacuo.
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ou seja, K4 |k, p, A) é um autovetor de J3 com autovalor A £ 1. Isto € possivel se K+ |k, p, A) « |k, p, A £ 1):
Ky |k,p,A) =xlk,p,AL£1), x=x(p,A) € C. (3.76)
Assim, dado 1| e aescolha (k,p, Ak, p, A") = &, s, pode-se obter o valor de k¥ em fungéo dos pardmetros A e p:
, B 1 ) 0> )
(ko Al KeKe [k p, A) = (o, )T =" (kp Al = 5Cat s +]5) kpA) = 5 £A+A7 20,
isto €,

2
x(o,A) = % FAM£D), 3.77)

em que escolhe-se arg(x) = 0. Substituindo a relagio (3.77) em (3.76), pode-se gerar toda a base de estados fisicos
|k, p, A) para cada p pela aplicacdo de K.:

]3 |k/P/)\> /\|k/p/A>

> ’ (3.78)
Kilkp,A) = /2 +AA£1) [k A+1)

com
R3p*> > —m?A(A+1) e AEZ (3.79)

Os possiveis valores de p determinam duas possibilidades de representagdo taquidnica:

3.5.1 Taquions de Spin s: p> = —m?s(s+1),s=0,1,2,---
Neste caso, a condi¢do (3.79) leva a seguinte condi¢@o sobre os valores de A:

—s(s+1)+A(A+1)

>
0 & ae {0, £(s+1), £(s+2),- -+, Fool}. (3.80)
—s(s+1)+AA-1) > 0

Ses = A =0, (3.78) implica que K+ |k,p = 0,A = 0) = 0. Assim, hd apenas um vetor de estado fisico que
representa a particula taquidnica, denominada tdquion escalar. Esta € uma representacao unidimensional de
SO(1,2) que, por ser de dimenséo finita, também € unitéria tendo em vista que o setor ndo-compacto do grupo

SO(1,2) age trivialmente sobre |k, 0 = 0,A = 0):
B kp=0,A=0)=|kp=0A=0). (3.81)

Sob uma translagdo U(T (b)) € T4 o vetor |p,p = 0,A = 0) = |p,0) se transforma como

U(T(b)) |p,0) =e P |p,0),  p=L(p)k, (3.82)

com L(p) = R3(¢)K1(&)K3()x). Sob uma transformagdo de Lorentz U(A) € SO(1,3), |p,0) se transforma como
(3.8),

A) |p,0) ZDON A A, SO(1,2) 3% = LN (Ap)AL(p) = B(Z(0)  (3.83)
com
DY) = (p N[ #(5,0)|p,0) = (p, | B(T) exp{—i6]3} |p,0) = e X 6,0, (3.84)

0A!
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de modo que

[u(A)[p,0) = Ap,0).| (3.85)

Se s #0e A # 0, obtém-se uma representagio de dimensdo infinita e unitéria do grupo SO(1, 2):

U(T()) [p,s,A) = e P |p,s,A) (3.86)
U(A) [p,s,A) = TuDEL(#) |p,s, V)

comA € Z (3.80) e Dg, a representagdo matricial de SO(1,2).

3.5.2 Taquions de Spin Continuo: pz >0

Neste caso a condi¢do em (3.79) permite que A =0, £1, £2,- - -, assim, tem-se uma representagio unitdria de

dimensao infinita de SO(1,2)

U(T®))lp.e, Ay = e Plp,p,A) 357
U(A) |p,o,A) = Ty D) |po, V)

com p? = k> = —m?,80(1, 2) > # = L~ Y(Ap)AL(p) = B()%#(0) e Dg’j\), sendo a representagdo matricial
de SO(1, 2).
A teoria de campo para particulas taquidnicas de spin continuo pode ser encontrada em [[62,[63]] e no Capitulo 3]

desta dissertacdo.
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4 Equacoes de Onda e Amplitudes de Emissao Soft para

Particulas de Spin Continuo

Neste capitulo exploramos func¢des de onda para Particulas de Spin Continuo (CSPs) com o uso de uma varidvel
auxiliar (além da varidvel habitual x do espago-tempo) associada ao spin. Em seguida impomos covariancia de
Lorentz e obtemos equacdes de onda que serdo tteis na descricdo das amplitudes de emissdo soft para CSPs.
Estas amplitudes foram encontradas por Shuster e Toro [[16] e sugerem a possibilidade de interagdes de longo
alcance serem intermediadas por CSPs, ndo apenas por particulas de baixa helicidade conforme o teorema no-go de
Weinberg asserta [[17] (veja o Apéndice[B|para uma breve revisdo sobre o teorema de Weinberg).

Seja P(k, a,1) a fun¢do de onda que representa uma particula com quadrimomento k, onde a e I sdo rétulos
associados ao LGy e ao grupo de Lorentz, respectivamente. Sob uma transformagéo de Lorentz U(A), ¥ (k,a,1) é

covariante se satisfaz a seguinte condi¢ao:
U(N)(k,a,l) ZDM/ K)p(Ak,a',1) ZD” p(k,a,l), 4.1)

em que D,y [# (A, k)] é a representagdo matricial do LGy 3 # (A, k) e Djj[A] é a representagio matricial do
grupo de LorentZP;O] Se 1 representa uma CSP, o rétulo a pode ser identificado como a varidvel continua ¢ utilizada
para descrever a representacdo de spin continuo na base de ondas planas (veja a relagdo (3.56))). O rétulo I, por sua
vez, € escrito em termos de um quadrivetor auxiliar do espago de Minkowski 77 € R'3, de sorte que 0 campo P seja

escalar em 7. Com base nestas definicdes, a relagdo (@.1I) pode ser reescrita como:

g’ , .
U gn) = [ SEDgy 1 (A BIp(AK 9 1) = pllg, A7), YAESO(L3).| @2

Esta relac@o € o ponto de partida na construgdo das fun¢des de onda para as CSPs conforme serd analisado a seguir.

4.1 Equacoes de Onda

A condi¢do (@.2) origina trés equagdes diferenciais ao escolher-se A como transformagdes infinitesimais do
LGy = ISO(2) expressas pelas relagoes (3.27) e (3.28), a saber, Aq(B) = exp{ifT-/v2} = 1+ ﬁ,@T, +
O(B?), Aa(B*) = exp{ip*T+/V2} =1+ %ﬁ*]@ +0 (ﬁ*z) e A3(0) = exp{—ifR} = 1 — ifR + O(6?).
Sob a transformag@o de Lorentz U (A1) o campo ¢ se transforma como (denote por E o elemento identidade do

LGy):

unpied,n) = (ue) —iLum)) vieon B p(kon-iLry)

= ¢k ¢,n)— i\%Tﬂ ok, ¢,1), (4.3)

ou seja,

U(T-)p(k, ¢, 1) = (T-1) - 9y p(k, ¢, 17 ) &2 - V2[(y-e-)(k-0y) = (1K) (e—-ay) ¢k, @,1),  (44)

30Qriginalmente Wigner e Barmann construiram funcdes de onda para CSPs e, por conseguinte, equacdes de onda, postulando principios de

covariancia semelhantes a relagdo @) [221123]). Este procedimento € diferente do que ¢ utilizado atualmente o qual postula uma ago e, a partir
dela, deriva-se as equacdo de campo com o uso das equacdes de Euler-Lagrange. O leitor interessado pode encontrar em [_2], capitulo cinco, uma

discussio recente sobre este assunto no contexto das representacdes de helicidade.

43



em que €+ = €+ (k). Analogamente,

U(To )k ¢,m) = +V2[(n-ep)(k-0y) — (7-k)(ey-9y)] 9k, 1) '
U(As0) vk ) = wk¢,n) =i [(n-e-)(er-y) — (17-€+)(e—- )] (k ¢, 1)

A transformacdo de Lorentz L(p) € definida segundo p = L(p)k de modo que e+ (k) — €+ (p). Como as relagdes

(4.5)

(@4)-(@3) sao escritas de forma covariante, elas continuam validas para ¢ (p, ¢, 7).
A acdo das transformagdes U (T+) e U(A3(6)) sobre o campo ¢ (p, ¢, 1) pode ser inferida com base nas
relagoes (3.53) e (3.55) do capitulo anterior:

U(Te)p(p,¢,m) = pe*Py(p,¢,1)
Uns@)y(pon) = ¢po+0,1)

que em conjunto com as relagdes (@.4)-({@.3) obtém-se o sistema de trés equagdes diferenciais para o campo

w(p. 1)

(4.6)

[(7-€)(p-0y) = (n-p)e -] wp.oy) = —L5e p(p,g,n)
[(7-€0)(p-0y) = (n-p)er -] wpbn) = Lsep(p.gn) (4.7)

[(-e-)(er-0y)—(1-es)(e— -0y p(p.¢n) = idpp(p,d,1)

em que foi utilizado Y(p, ¢+ 6,7) = P(p, ¢, 1) + 099 (p, ¢, 17) + O(6%). O operador de Casimir quértico € dado
por U(Cq) = —U(T4)U(T-) e pode ser calculado com o uso das relagdes (@.4)-@.3) e @.6) e das propriedades
€1(p)-ex(p) = —lep-esr(p) = 0= p? Oresultado é:

U(C)yp = 2{(€+"7)(€—"7)(P'av1)2—(U'P)(P'aﬂ)[(€+'ﬂ)(€—'an)+(€—"7)(€+'anﬂ.

(4.8)
+(7-p)2(er-9y)(e—-9y) + (1-p)(p-9y) } = —p*¢

O primeiro passo para resolver o sistema de equagdes diferenciais (@.7)) é notar que o autovalor de U(R) =

(7-€-)(ex-9y) — (7-€4)(e—-9y) énulosobre 2,77 - pen-q,onde g> = 0 e q- e+ = 0. Em adigdio,
UR)-ex = =n5-e4.

Com estas consideragdes pode-se escrever a solugdo geral da terceira equagdo em (4.7) como

Y(p,¢,n) = g(z,z%4a,b,0), z=1n-ee?, az—:,pwy;ﬁO, b=y-p e c=n% (49

onde ¢ é uma fungdo arbitraria. Em termos destes pardmetros as duas primeiras relacdes em (4.7) podem ser

reescritas como:

20, + boy+ — bzo.) ¢(z,z*,a,b,c =  Lo(z,2%,a,b,c

8 28 4.10)
2%0, + bd, — bz*9.) ¢(z,2*,a,b,¢c) = —-L-¢(z,2*a,b,c ' .

8 ﬁg

Ha duas classes de solugdo em (4.10): aquela que € singular em b = 7 - p e aquela que t8ém dependéncia suave em

b =1 - p. A seguir serdo exploradas ambas as possibilidades.
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4.1.1 Solucio Singular em 7 - p
Se b = 0 as equagdes em (@.10) implicam que

20,9 = —7"0:¢ & (z+2%)9,4=0, Vg, (4.11)

P o
V2t
ou seja, g estd localizada em z 4 z* = 0: ¢ ~ d(z + z*). Também, a primeira igualdade em ([@.11) implica que

£oa
g o« ev2Z, de sorte que a solugdo geral de [@.10) para o caso em que ¢ « d(b) é dada por

a
z

S

2

Q(z,z%,a,b,¢c) =6(b)f(c)h(z)ev2=d(z 4+ z¥),

em que f e h sdo fungdes arbitrdrias. Voltando as varidveis originais, obtém-se:

o(p.gn) = 8(p-p)d (11~e+e‘i4’+17-ee"‘P)exp{\pﬁw_lMe@}f(ﬁh (q.e+e—i¢),

4.12)

No suporte z + z* = 0, obtém-se |z|> = —z2 enquanto que se 7 - p = 0 = 7 - k, obtém-se 7j° = 7> dado que
k= (w,0,0,w) = L™ (p)p B-6) é o quadrimomento padrio e 7 = L~!(p)n. Com o uso de 7j - e(k) = 1 - €(p)

ez =1-e4(p)e '?, pode-se demonstrar que
172 =272,

de sorte que a fun¢éo de onda (@.12) pode ser reescrita como:

_ —i i % m-q ip | 7 —i
lP(Pz4’/’7)—5(’7'P)5<’7'€+€ ¢+U'€€¢)exp{ﬁmwe¢}f(’7'€+e ¢>, (4.13)

f(n-exe™) = f(z) = F2)h(2).

No suporte 77 - p = 0 e com as relagdes 7%/2 = z2 = —|z|> = z*z = (- €+)(n - €_), a expressio para o

operador de Casimir qudrtico U(Cy) ([@.8) é simplificada a:

U(Cy)p = —1(p - 9y)*p = —p7. (4.14)

A partir da fung@o de onda @.13) pode-se obter equagdes de onda covariantes conhecidas como equagdes de
Wigner [22]). Por exemplo, a equacéo

n-pp=0 (4.15)

€ consequéncia da propriedade da fungfo delta de Dirac x6(x) = 0, Vx € R. Outra equagio pode ser obtida ao
aplicar-se o operador p - 9, sobre a fungio de onda (@#.13)) mas, devidoa e+ (p) - p =0 = pz, tem-se que a acdo de

p - 9y tem efeito apenas no terceiro termo do lado direito em (@.13):

) n-q i p n-q w| P €Y
-0y ex {e¢} = ex {eq’} .
Pron®PA 2 tr-en(p-a) PIV2tr-en(p-a) 27 €
Portanto,

1

el 1
progy = PIPW—PIPE—P%\/_—%
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(i —n2p-oy — p) Pp=0, (4.16)
em que na primeira linha de (#.16)) foi utilizado z = 7 - ere e 7% = 222 = —2|z|?. Em consequéncia da relagio

(@16) e porque [p CITRY —772} P o<1 - pyp = 0, tem-se
2
<i —2p -9y —p> g = [Py =0,
que é a agdo do operador de Casimir quértico obtida anteriormente (.14). Em adicgo, (@.13)-(@.16) implica que
(i\/ —1% POy —p) (7-py) = i/ =29+ (1 p)p- 9yl =0
o PRy =0, (4.17)

que € consistente com p2 = 0, ou seja, 0 campo 1§ representa uma particula sem massa. Na linha anterior a @.17),

foi utilizado que p - Iy x P ey - pyp = 0.

Escolhendo em (#:13)
f(2) = f@2)(E) = ForP)h (n-ere™) = 02 + i (- ™), (4.18)
tem-se
(1 +1)yp =0. (4.19)
Com as relacdes
n-9y8(n-p) = —6(n-p)
n-0y0(n-ere @ +n-e_e?) = —5(n-ere”®+n-e_e?),
. B i 1) =
1 ep{ Galne?) = 0
obtém-se
73y =0, (4.20)
desde que & seja solucdo de
-9y {5(172 +1)h (17 . €+efi¢>} =20(2 + 1)h (;7 : e+e*i¢) . 4.21)

Um exemplo (trivial) de solugdo da equacdo (@.21)) é
h(z) =1+ 277, 222 = 42, (4.22)

Com todos os resultados apresentados até aqui nesta subsec¢do, pode-se escrever o seguinte conjunto de equacoes de

onda covariantes para CSPs [22]:

Py =0

n-py = 0
(—i\/—72p~a,7+p)¢ =0, (4.23)

PP+l = 0

n-opp = 0

onde todas as equagdes acima sdo tomadas no suporte 77 - p = 0 e as duas dltimas sdo consequéncia da escolha de f

(relagdes (@.18) e (@.21)-(.22)).
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4.1.2 Solucio Suaveemy# - p

Multiplicando a primeira equagio em (@.10) por z, a segunda por z* e em seguida tomando a diferenca entre elas,
obtém-se:

(270 —20;) §(z,2%,a,b,c) = (z+2")g(z,2%,a,b,¢),

P
V2b
cuja solucdo é dada por

¢(z,z%,a,b,¢c) = h(a,b,c, |z|2) exp (\/pib(z* — z)> , (4.24)

onde /1 é uma fungio arbitraria. Com o uso de

— O (o oh . 0
g = oxp (Y5 —2) (w3l + fgh) (429
tem-se que a primeira equagio em (#.10) pode ser reescrita como:

oh oh oh
Z% + bZTZ‘Z — bz& =0. (4.26)

Escolhendo /i de modo que Oh a—’; = constante, tem-se que |z

|2
d|z|? d

= ¢ = 5? de modo que a relagio [@#26) pode
ser reescrita como

Zg =0, 4.27)
oa
com f(a,b,c) = h(a,b,c,|z%| = c). Portanto, no suporte z # 0, f = f(b,c) = f(17 - p,n?) e a solugdo suave de
é dada por

g(z,z%,b,c) = f(b,c)exp <_\/p§b(z —z*))

ou, em termos das varidveis originais,

W(p, o) = f(n-p.y?)exp {—iﬁp Im [ﬁe""’} } : (4.28)

Com o uso da fung@o de onda (#.28)) pode-se derivar duas equagdes de onda covariantes, a saber:

p-ogp = 0 (4.29)
se
of _
(7 P)a? =0, (4.30)
€
;7 : 81747 = n¢/
N
. of 20f
(1 p)a(q.p)+2’7 a7 nf=0, nez. (4.31)

As relagdes (@.30) e(@.3T) fixam completamente a dependéncia de f em seus pardmetros. Com todos os resultados
apresentados até aqui nesta subse¢@o, pode-se escrever o seguinte conjunto de equacdes de onda covariantes para

CSPs:

Py = 0
progp =0 (4.32)
nooyp = mp ‘

(—(ﬂ-p)28%+pz)w =0
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em que a tltima equagdo € obtida com o uso de p - 9y = 0 em [@.§). As equagdes em (#.32) foram obtidas

recentemente pelos autores de [16].

4.2 Matriz S e Regime Soft

O objetivo principal desta secdo € descrever amplitudes de emissdo soft covariantes para CSPs com o uso da funcio
de onda (#28). A existéncia destas amplitudes é uma caracteristica importante das CSPs porque estabelece a
possibilidade de intera¢des de longo alcance serem intermediadas ndo apenas por particulas de baixa helicidade,
conforme estabelece o Teorema de Weinberg [17]1321 mas também por CSPs. Neste contexto, ao desenvolver-se
uma teoria de campos completa para CSPs, as amplitudes calculadas nesta se¢cdo podem ser obtidas a partir das

amplitudes da teoria completa no regime soft a ser definido na Subse¢do
4.2.1 Covariancia da Matriz S

Seja Sgy = (Bl S|a), StS = 5SS =1, o elemento de matriz que descreve a reagdo |a) — |B) tal que

la) = TTiqlpioai)
1B) = TITi-ilpi,a)

onde u (v) € o nimero de particulas antes (depois) da reagdo, u + v = n é o nimero total de particulas que

, (4.33)

participam da reacdo e p;, 4; (p;, a;) sdo o momento e o pardmetro do LG da i-ésima particula antes (depois) da

reacdo, respectivamente. No que segue, assume-se que S é invariante sob transformacdes de Lorentz, isto é,
s — uf(a)su(a) =s. (4.34)
Sob a transformagdo de Lorentz U(A) a amplitude do processo |a) — |B) se transforma como:

A({prar,- -+ puau, } = {p1a1, -, poas}) = Spa = (Bl S |a)

u [
€2 (pl, | UT(A)SU(A) |pi, i)
j =1

=
=
SET

3 N _ _
2 ¥ Dy (A, o)) Da [ (A, )] (A9, 1S | Api )
] a4

]

s

Il
—_
~.
I
—_

A({prar, - puau,} = {phai, - phal})

.| (4.35)
= ( i1 Y4, Daa; (7 (A, Pi)]) (H}J_l Ya D:;_,;]/_ 7 (A, P;)]) A ({Api‘ji} - {Ap;ﬁ; )

em que D [# (A, p;)] é a representagdo matricial do LGp,, # (A, p;) € LGy, e, na segunda linha, utilizou-se a
decomposi¢do do operador U como U(A) = [T; U;(A;). A lei de transformagio (@.33)) € similar a dada para
a fungo de onda (@#2)) (com a substituicio a — ¢ e}, — [ d¢p/2m) de sorte que pode-se usar @28) para a

constru¢do de amplitudes de espalhamento que envolvam processos com CSPs. Isto € feito a seguir.

4.2.2 Fatores Soft

Considere um processo onde hd n particulas massivas (1 particulas massivas iniciais e v particulas massivas

finais, u + v = n) cada qual com quadrimomento p;, plz = mlz, i=1,---,n, e uma particula sem massa com

31Veja o Apéndicepara uma breve revisdo do Teorema de Weinberg.
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Emissao de Uma Particula Soft

Figura 4.1: Amplitude para um processo envolvendo u particulas massivas reagindo dando v outras, u + v = n, com
a emissdo de uma particula sem massa em regime soft com momento k. Neste diagrama, p; + k é o quadrimomento

da i-ésima particula massiva saindo e p; — k é o quadrimomento da i-ésima particula massiva entrando.

quadrimomento k em regime soft, isto &, k- p; < p; - pj, Vi, j=1,--- ,n(veja Figura. A amplitude associada

a este processo pode ser escrita como

™=

A({k/a}/plr"’rpn>: A(Plz"'rﬁiik/"‘/Pn)( gi . Si({k/ﬂ}/Pi)/0<€<<1/

pi £ k)2 —m? +ie
(4.36)

Il
—

em que g; e s; sdo a constante de acoplamento e o fator soft associados a i-ésima particula massiva, respectivamente.
Em consonéncia com a notagdo da subse¢@o precedente, o leitor pode observar que: (pl, e, Pus p’l, cee, p;) =

(pll e /pi/ o /Pn)’ ou seja, p/] = pu—i—lz e /P;; = pu+v = Pn~
No limite em que k - p; < p; - pjs Vi, j=1,---,n, tem-se

A(pr--- pitk,pu) —  A(pr- . pi--,pn) +O(K))

1 1 , (4.37)
em que fez-se uso de p? = m?. Assim, a expressio @.30) € simplificada a
A ({k,ﬂ}, p1, - /Pn) =A (Pl; e /p'rl)f({kla}l P, rpn) + O(‘ko|)/ (4383.)
com
n .
fkal,p1, - pn) = Z — & si({k,a}, pi). (4.38b)

= £2p;-k+ie
A relacdo (.384) é a maior contribuigéo para a amplitude em regime soft.
Em consequéncia da relagao (4.33) vé-se que f, dada por (.38b), satisfaz uma condi¢do semelhante a dada

para a fungdo de onda i (@.I)). De fato, analogamente ao feito na obtengdo de {#.33), pode-se demonstrar que
A({k,a};p1,a1;- - pn,an)
- (HZDH a7 (4, p:ﬂ) IT S 0ia 7 ()] ) A ({Apai} = (Ap )
i=1 a; j=u+1 a;
x L DGl (AR (AkT) Apy,- -, Apn). (4.39)
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Mas,

A({k,a};pr,a15-- - pn,an) €3 A(py,a1;-- s pnoan) f({k,a}, p1, -+, pn)

&2 (HZDM, An)]) I—[ZD*a/ (A pj] | A({Apiait — {Apja;})

i=1 a; j=u+1 a;
xf({k,a}, p1,- -+, pn). (4.40)

Portanto, comparando {#.39) e (@.40), obtém-se:

f(ka}, p1, - pn) ZD )]f({Ak a}, Apy, -+ Apn). (4.41)

Isto implica que o fator soft dado em (4.38b) satisfaz a seguinte relagdo:

si({k,a}, p;) ZD Isi({Ak,a},Ap;)) Vi=1,---,n. (4.42)

4.3 Fatores Soft para CSPs

O resultado (#-42) sugere que a fungao de onda (#28) calculada em 17# = p!' seja escolhida como fator soft:

e(k, ) —i¢p € (k) i
sl p)e = Frk-pomd)e ™ T = £ (k. pym2)e TPV (443)

em que o sinal de mais (menos) da relacdo anterior significa fator de emissdo (absor¢o) soft. Com esta escolha
a relacdo ([@42) ¢ satisfeita ao fazer-se ¢ — ae [dp/2m — Y, em [@2). Esta afirmagdo serd verificada na
Subsecdo|.3.1

Pelo uso da representagdo integral da funcio de Bessel,

d¥

li’l‘Y*iZ sin‘I” (444)
27T

Jn(z) =

pode-se obter o fator soft na base de spin. De fato, com o uso da relagdo (3.39) a transformada de Fourier

correspondente a s;({k, ¢}, p;)+ é dada por:

sl p)e = [ e, (), pi)s = £ pind) [ 2LesineT I (4

sin [arg (61: : ';i) - (P} ,

de modo que substituindo esta expressdo em ([@.43)) e com o uso de (#.44) e da propriedade da fungéo de Bessel
J-n(z) = (=1)"](z), obtém-se

Mas,porque z = |z| exp {iarg(z) }, Vz € C, obtém-se:

Im MM}
[ k- p;

€+ pi
k-pi

€+ Pi

si({k,n},pi)+ = fii(k - Pi, m%)(—l)” exp {j:m arg ( = p’) } In (P\@ T pi' ) , (4.46)

4.3.1 Covariancia

Por completeza, verifica-se, a seguir, se o fator soft (#.43) satisfaz a lei de transformagéo dada por @.42) que garante

a covariancia da amplitude de espalhamento deduzida anteriormente. De fato, na base correspondente ao pardmetro
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do LG, os fatores soft s; satisfazem a equacio de covariancia :
i quag

Ae(k, ) - Ap;
fi (Ak- Api,m )eXP{—ZPW}

[e(Ak, ¢ +0) +alk] - Ap; }
Ak - Api

si({k, ¢}, pi)-

@
B (A Apym )eXp{—iP
= [ WD, o, plsiAk ) Ap)

em que na segunda linha foi utilizado que a4 = v/2Re [ﬁeii("’*e)} (veja o Apéndice . Assim, a amplitude

construida a partir do fator soft (#.43) satisfaz a lei de covariancia (#.33) segundo

d /
Ak ¢} p1, - pn) —>/ il = Doy [0, BIALAK @'}, Ap1, -+, Apn). (4.47)

Analogamente, na base de spin (4.46) pode-se verificar que a amplitude satisfaz também a lei de covariancia (@.33)

segundo
A({kn},p1,- ,pn) ZDW K)]A ({Akn'}, Apy, -+, Apn). (4.48)
4.3.2 Invaridncia

A amplitude para um processo que envolva a emissao de uma CSP soft € calculada pelo uso da relacao (4.43)

1 1 . € k, - Pi
AUy o) = Ay o) Esige e itk pumd) o {ip S0 01
= Apy- po) T ik filk - pim?) exp { —ipy/2 Im [emi0 s}

ou pela relagdo (4.46)

B 1 ‘ 1 ' I €+ Pi
Ak h}, p1,pn) = Apr, /Pn)l;&mfz(k pirm;)Jn <P\@ k- p;

> , (4.50)

em que J, = (—l)h exp {izh arg ( + Pi ) } Ji. Estas amplitudes ndo sdo invariantes de Lorentz mas a se¢io

de choque o o [dp|A(¢p)|> ou o Y, |A(n)|? é. Ao considerar-se por exemplo a amplitude em termos do

parametro ¢ (@.49), tem-se

e e WITCH )
- Ap;)(Ak - Apj) — (Aep (k) - Ap;)(Ak - Ap;)
(Ak-Ap;) (Ak-Ap;)

}

= Zexp{—iP\fZIm le_i‘f’( e+ (k)
ij

e+ (k) +iB7AK] - Api(ak- Ap)
(Ak- Ap;)(Ak- Apj)

&3 Zexp{ zp\flm{ i(p+0)
ij

oo [ (AK) + iB" Ak - Ap;(Ak- Api)] }
e
(Ak- Api)(Ak- Apj)
B2 Ak g+0}, Apy, ) @51)
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A(h)|? ndo é invariante mas

Por outro lado, ao considerar-se a amplitude em termos do pardmetro h (#.49),

o« Y, |A(h)|? é: (no que segue, redefine-se o argumento da fungdo de Bessel como z; = v/2€ - p;/ (k- pi)):

—+o0

Y [A{kRY), pr- - P

h=—co

1 o
= |A(pr, - .pn) I*Y gigi : — fifi DT (plzi]) . 452
[A(pr -+ pn) | ;jgg] (Zp,'-k—i-ze)(ij-k—l—ze)ff]h;w]h (olzil) Ji (plzjl) . @.52)

Mas o dltimo termo desta expressdo € invariante:

—+oo —+o00 —+o0
hz Tn (olzil) Ti; (olzjl) = hz Jn (plzil) Tn (o) :hz Tn (olzil) T—r (—plzil) = Jo (0lzi = zj]) =1,

em que na segunda igualdade foi utilizado a propriedade J, (x) = J_,(—x), Vn € Z, Vx € C, naterceira igualdade
foi utilizado o teorema de adi¢do das fun¢des de Bessel e, na Gltima igualdade, Jo(x) =1, Vx € C.

Todos os resultados deste capitulo apresentados até aqui estabelecem uma caracteristica importante sobre
a teoria de interagdo para CSPs: a existéncia de amplitudes covariantes de emissdo/absor¢cdo soft. Com estas
amplitudes, os autores de [64]] encontraram que sob a escala de energia E > p, os fatores soft para particulas
escalares, fotons e gravitons sdo recuperadas . Assim, se existe uma teoria de campo completa para CSPs, no limite

de baixa energia para a CSP emitida/absorvida, deve-se recuperar as amplitudes (4.49)-(@.50).
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5 Teoria de Campo Para Taquions de Spin Continuo

Neste capitulo analisamos uma teoria de campo para tdquions de spin continuo (CSTs) propondo uma agao,
verificando suas simetrias e, com a equacdo de campo, verificamos que o campo carrega a representag¢do do grupo de
Poincaré correspondente ao tadquion de spin continuo através do calculo dos autovalores dos operadores de Casimir
deste grupo. Apoés esta certificacio, estudamos os graus de liberdade fisicos do campo e, por fim, estudamos um
vértice cibico similar ao proposto por Rivelles em [[62]] que, no limite de massa nula, obtemos o vértice ctibico para

CSPs que os autores de [54]] obtiveram com o uso de correntes de Berends-Burgers-van Dam (BBvD) [55].

5.1 Acao

Seja ¥ = ¥(5,&, x) um campo escalar complexo que representa o CST, em que x* = (xo, cee, xD_l) sdo as

coordenadas usuais do espago-tempo e y# = (170,~ s, 17D _1) e ¢ sdo as coordenads de um espago auxiliar (a
semelhanca das coordenadas ## que caracterizam a fungéo de onda da CSP estudada no capitulo anterior). A teoria

do CST é em dimensdo D com a métrica ¢ = diag(1, —1,---, —1) e a agdo é dada por

So[¥,¥*] =
I [dydg dx ‘I’*{é’(iyz + &%+ p2) [Op — m? — (- 0y — imZ) (A — im0 )] ) 5.1)

=362 + &8+ p2) (A - imag)z}‘l’

em que m é amassado CST, A = 8,7 Oy +p,p €ER, &' é a derivada da funcfio delta com respeito ao seu argumento
e y é um parametro real que pode ser fixado igual a um com a reescalay — uy, & — ué e p — p/u. Devido a
presenca da derivada da fung@o delta na agdo acima, a dinamica do campo taquidnico ¥ € localizada no hiperboléide
172 + 52 + y2 = (0 e em sua primeira vizinhaga assim como os autovalores dos operadores de Casimir do grupo de
Poincaré. Estas afirmagdes serdo verificadas nas Secdes [5.3]e[5.4] respectivamente.

Ha4 outras duas maneiras em que a agdo (5.1) pode ser escrita. Em verdade, escrevendo Sy como

So[¥,¥*] = SV, ] + S, ¥ + SSU T, v, (5.2)
com
s\, ¥ = 1 [dydEdx s (i + &+ 1) ¥ (Ox — m2)¥,
SPW, ¥ ) = —1[dydEdxd (5 +E+u2)¥*(n - 9y — imf)(A — imdg)¥ (5.3)
SOTY, W] =~k [y dgdy (2 + 8 + )Y (A — imdg)? ¥

S(()l) [¥,¥*] pode ser reescrita ao fazer-se uso de integrag@o por partes
(1) s 1 1,2 A2 2 2 2192
Sy ¥, ¥*] = 5 dyn d¢dx &' (n” + ¢~ +u”) (0¥ +m”|¥|") +t.s. (5.4)

em que t. s. significa termo de superficie. Também, dado f = f(#,¢,x) e ¢ = g(1,&, x), tem-se por integra¢do

por partes que

/dn dx 5(n* + &+ p?)f (9, - 9x 8)

= /dn dx [25’(;72 + &+ Uy O f (7 + &+ u?)ox - 9y f} g+ts. (5.5)
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[dzeP+8+42) £ (0. 8) = = [ 4 [280'07 + &4 ) f+ 502 + &+ 12)0; f] g +1 5, (56)
de sorte que, fazendo f = ¥* e g = (A — imdg)¥, SV [¥, ¥*] 1e-se
sy, 9 & —i /dn 4 dx 6(n + & +12) [(A + imdg)¥*] (A — imde)¥ — S [¥, ¥ +t.s.,
ou seja,
SR ANE U A SN —% / dny dg dx 5(% + & + 12)|(D — imdg ) ¥~ (5.7)

Finalmente, somando os resultados (5.4) e (5.7) obtém-se@a menos de termos de superficie,

1 1 .
Sol¥, ¥ = —3 /dngdx {5'(;72 +2+12) (10 P+ m2 ¥ ) + S0P+ 8+ 1) [(8 - zmaé)‘]ﬁ"|2} ,
(5.8)

ou, com o uso da primeira linha em (5.3),

Sol¥, 7] = 3 [y dx {807+ 4 g (Os = )Y - 3002 + & 442 (8~ imd) .
(5.9)

Esta forma serd explorada na préxima se¢ao.

5.2 Simetrias

Nesta se¢do serdo investigadas as simetrias locais e algumas simetrias globais que a agdo (5.9) apresenta. Conforme
serd visto na Se¢do[5.5] uma das simetrias locais é uma simetria de gauge e serd usada para a andlise dos graus de
liberdade fisicos que o campo ¥ comporta. Dentre as simetrias globais, serd demonstrado que a a¢do € invariante
sob transformacdes de Lorentz no espago-tempo e no espago auxiliar, além de translagcdes no espago-tempo@ Os
geradores destas transformagdes sdo [,y = ix[yaxv] + iiy[yanv] e P, = idyy, respectivamente, os quais serdo

utilizados na construgio dos operadores de Casimir no Apéndice D}

5.2.1 Simetrias Globais

a) Simetria de Translacao

Uma translacio infinitesimal sobre as coordenadas do espago-tempo pode ser escrita como:
't — xt = xt =€V, 0<e!<«1,Vu=0,---,D—1. (5.10)
A transformag@o acima implica na transformacéo do campo taquiénico como

Y(x) = ¥ (x) = ¥(x) +6.¥(x). (5.11)

32Uma agdo similar & (5.8) foi apresentada em [62].

33 Além das simetrias globais descritas neste paragrafo, a acio ¢ invariante sob a transformagio dx" = w"'#,, onde w!¥ & antissimétrico
[45].

34Notagio: ApB, = AuBy — AyBy.
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(Por simplicidade serd omitida a dependéncia em 7 e ¢ de ¥ no estudo desta simetria.) Portanto, dado que o campo
taquidnico é um campo escalar, tem-se

0¥ (x) = ie" P, ¥ (x), (5.12)

onde

define os geradores de translagdo sobre o campo ¥ (2.22)). O complexo conjugado de (5.12) define a variagdo do

campo ¥* com a transformagéo (5.10) como
0¥ (x) = ie" P,Y " (x). (5.14)
Portanto, a transformag@o (5.10) implica que a agéo (5.9) se transforma como:
6eSo = 3 [dndZdx &' (n* + &% + u?) [591” (Oy —m?)¥ +¥*(0x — mz)ée‘l’]
—1 [ dydgdxs(n® + &% + u?) {(A +imdg)¥* (A — imdg) e ¥ + (A +imdg) e ¥* (A — imag)ﬂ ,
em que a primeira integral € dada por
1 102 | &2 2 * 2 * 2
3 ] xS0+ 4 1) | (e ) O = )Y + (O = ) (e )|
= —e#%/ dx Oy {5’(;72 +8+ )Y (O - mz)‘P} =ts.

Similarmente, porque [ax,,, A+ imag] = 0, pode-se escrever que a segunda integral em ¢Sy também é um termo

de superficie. Logo, Sg ¢ invariante sob a transformagéo (5.10).

b) Simetria de Lorentz

Uma transformagcéo de Lorentz infinitesimal sobre ambas as coordenadas x* e ## pode ser escrita como:

X' —xt =oxt = whx,
, O<w" <1, Vuv=0,---,D—1. (5.15)
17/}4 — ;7}4 = (5;//V = w}wﬂv

As transformagdes acima implicam que campo taquidnico se transforma como
) =¥ (xn) =¥ n) + 0¥ (x, 7). (5.16)

(Por simplicidade serd omitida a dependéncia em ¢ de ¥ no estudo desta simetria.) Portanto, dado que

Y(x, ) =Y (x+wx,n+wy) = ¥(x,1)+w"x0q¥(x 1) + 01,0, ¥ (x, 1) + O(w?)
= Y(nx)+ éw””IVVT(x,n) + O(w?), (5.17)
tem-se ‘
o (x,17) = —%w””hw‘l’(x,n) (5.18)
onde
Juv = 1(x0xy — x4 0xp) + i(1,0yy — 1uOyu) (5.19)
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define os geradores de rotagdo. Na segunda linha de (5.17) foi escrita apenas a componente antissimétrica de
XyOyy € 1fydyy Visto que a componente simétrica quando contraida com w*? € zero (recorde-se que w € um tensor

antissimétrico no comeco da Subsecio[2.2.T). Observe que
1
L =8 (P + &+ )Y (e —m?)¥ — 5607 + 8+ 1%)| (A — imdg) ¥ P2, (5.20)

¢ um escalar sob transformagdes de Lorentz. Portanto, pode-se demonstrar que com as transformacdes (5.13)) a

Lagrangiana (5.20) se transforma como:
0L = WM (xy0xy + 1y0yu) L.
O primeiro termo do lado direito desta relagdo pode ser escrito como
W' xy0xy L = Oy (W%, L) — W' gL = Oxp (W' x,.2).

Analogamente,
w0yl = oyu(wh'n, L).

Portanto,
550 = / dy d¢ dx 6.2 = Wi / dy dE dx Dy ("%, L) + ! / dy dE dx By (W L) =t. s,

isto é, S € invariante sob as transformagdes em (3.15).

5.2.2 Simetrias Locais

Nesta subsecdo serdo exploradas simetrias da a¢do (5.9) através de duas transformagdes locais sobre o campo ¥,
denominadas simetria-€ e simetria-). Porque os parametros destas transformagdes sdo fungdes das coordenadas,
estas simetrias s3o denominadas simetrias locais e, conforme serd apresentado na Segﬁo@ a simetria-€ sera util na
andlise dos graus de liberdade fisicos carregados pelo campo taquidnico ¥ enquanto que a simetria-x serd utilizada

na expansdo deste campo em torno do hiperboldide 172 + &+ ;42 = 0 e sua primeira vizinhanga.

a) Simetria-¢

A agdo (5.9) é invariante sob a transformago
— T O BT S N
oc Y 7 0x —imé 2(17 + &%+ %) (A —imog) | €, (5.21)

onde € = €(1,, x) é uma fungio arbitréria@ De fato, a variacdo da acdo (3.9) com a transformacdo (3.21)) pode
ser escrita como

580 = / dy dE dx 6.2, (5.22)
em que, definindo £ = 16" (2 + &2 + p2)¥* (O —m?)¥ e £ = — 162 + E2 + 1) [(A + imdg)¥*] (A —
imdg) 'Y, tem-se que a variagio total de & = & (1) + 2@ pela transformagio (5.21) ¢ dada por

5.2 = 6.0 15,720, (5.23)

35Uma andlise similar ao desenvolvida para o campo ¥ pode ser feita com o campo complexo-conjugado ¥*, a saber, a acio (5-9) € invariante
sob a transformacio
. 1 .
0ex¥* = |17+ 0y +img — 5(172 +&+ ) (b + imog) | €,

onde €* = €*(1,{, x) é uma fungdo arbitréria.
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onde
52 = 182 4+ @2+ 1) (O — m2)6:F

. (5.24)
6 2? = 15+ +p2) [(D+imdg)¥*] (A — imdg)sc ¥

Com o uso das relagdes de comutagio (C-I) e (C2) do Apéndice[C] pode-se reescrever a segunda relagio em (5.24)

como:
be2? = —35(;72 + 4+ 1% [(A+imdg)¥*] | (Ox — m?) + (- 9x — im&) (A — imdy)

3 2070 — imE)(A — imdg) — 2 (1P + &+ ) (A imdg)? e

RSP ) (At imag)¥] 525)
em que €’ = (Jy — m?)e e a propriedade xJ(x) = 0, Vx foi utilizada. Integrando a relagio (5.23)), obtém-se
/dn dé dx 6.2 = —% /d;y dE dx 5(7% + & + 12) [(A + imdg ) ¥7] €
= —i /d;y g dx 6(n* + & + ) ¥* [(A — imdg)€']
—% /d17 d& dx &' (> + & + p?) [(17 - 0x — im&)e'] ¥*
= [dndgax s (o + @+ )y (O n?) ¥
€3 _ / dy ¢ dx 6.2, (5.26)

ou seja,

5.S0 = / ay dg dx (62 + 6.2 =0, (5.27)

A segunda igualdade em (5.26)) é resultado de integragdes por partes.

b) Simetria-x

A agdo (5.9) € invariante sob a transformagdo
1

oY =57+ + )k, (528)
onde x = x(#,¢, x) é uma funcdo arbitrériam De fato, a variagdo da acdo (3.9) com a transformagéo (5.28) pode
ser escrita como

5ySo = / dy d¢ dx 6,2, (5.29)
em que
68 = 5. 2W 46,20,

onde

5}(3(1)

S8 P + @4 )Y (O — m)i¥

1 1
= S0P+ T+ )Y (Ox —m?) | 2 (0 + 3+ p2)%x| =0,

36Uma andlise similar ao desenvolvida para o campo ¥ pode ser feita com o campo complexo-conjugado ¥*, a saber, a acio (5-9) € invariante
sob a transformacio
1
JX*‘F* — 1(7]2 + 62 +.“2)2X*

onde x* = x*(,¢, x) é uma fungdo arbitraria.
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visto que [17% + &2 + u?, Oy —m?] = 0e x5(x) =0, Vx, e

52D = 1507 + 8+ 2) [(A+ imd)¥°] (& — imdg)o, ¥

—}15(;72 + 82+ p?) [(A+ imde)¥*] (A — imd;) [1(172 +3+ yz)zx]

502+ 8+ 1) [207 -3 — im) + O + 8 42 (A — imdg)] (7 + & + 1)
X [(A+imdg)¥*]
= 0,

visto que [17 - 9y — im&, 7%+ & + u?] = O e, outra vez, x6(x) = 0, Vx. Assim, pode-se concluir que

5,50 = / dy d¢ dx 6, = / dndy dx (6,20 + 8.2 =0, (5.30)

¢) Reducibilidade

As simetrias (5.21) e (5.28)) sdo redutiveis, isto é, ao fazer-se a variagcdo dos pardmetros locais € e y como

5 — 12221 2)A
A€ 2(17 + 8%+ p7) (5.31)
Iax = (A—imdg)A
em que A = A(7,&, x) é uma fungdo arbitrdria, entdo
1 1
Sex ¥ = {77 H0x —img — S (7 + 8+ p?) (A - ima@)} e+ 5+ +1%)°x (532)
¢ invariante. De fato,
) 1 )
S (Bex ) = 135 = imE = 302+ 8+ 12)(8 = imdy) | Sne+ F07 + 8+ 10an
1 . 1 )
e 507 + 4 p2) (-0 — imE)A — L (7 + 8+ ) (A — imde) [ + 8 + )]
+ (77 + &+ ) (A — imdg) A (5.33)

O terceiro termo do segundo membro em pode ser reescrito como:
1 )
2P+ 8+ 12) [0 48+ 1) (A& — imdg) A
1 ) .
&P+ @) [(a—imdp) (07 + 8+ §)A) =20y -0 — imE) A,

que corresponde aos dois primeiros termos do segundo membro em (5.33) com sinal oposto. Portanto, pode-se

concluir que

(SA (55/)(?) - 0. (5.34)

5.3 Equacao de Campo

As equacdes de Euler-Lagrange derivadas da acdo léem-se

.7 0.7 0.7 .7
¥ %0 T a0, 0w T o) (350
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L N
Y*  Ca(0:¥F) T TFa(9y - 9. T¥)
em que a Lagrangiana . ¢ dada por (5.20). Com esta Lagrangiana pode-se calcular as derivadas em (5.35b). O

=0, (5.35b)

resultado é a equacgdo de campo para ¥':

' (112 + 6+ 1) [ (O = m2) — (- 3x — im&) (A — imde) + 3 (7 + & + ) (A — imdg)?| ¥ = 0.| (5.36)

E importante destacar que esta equacio de campo estd restrita ao hiperboléide 172 + 52 + yZ = 0 e sua primeira
vizinhanga. Isto pode ser verificado como segue: definindo A(,¢,x) = [(Oy — m?) — (17 - 0x — im&) (A —
imdg) + 5 (12 + &% + u?) (A — imdg)?] ¥ (1, &, x), tem-se que (5:36) l&-se

&' + &+ 1) A(n,&x) = 0. (5.37a)
Multiplicando ambos os membros desta equagdo por 172 +E2 4 ;42, obtém-se:
8( + &%+ p?) A, &,x) = 0. (5.37b)

Esta equacdo implica que A(#, &, x) calculado no hiperbol6ide 172 +2+ yz = 0 vale zero, porque, ao integrar
(5376) em 1% + &2 + p?, obtém-se
[ 0P+ + 80P + @+ 1AM EN) =0 = AW,E) ~o0.
12+ +p2=0
Analogamente, integrando em 7% + &2 + p?, obtém-se

9
o A, =0.
e e )qz+gz+yzzo

Estes dois resultados significam que a equagdo A(#, ¢, x) = 0 estd localizada no hiperbol6ide 172 + &+ y2 e sua
primeira vizinhanca.
Na préxima secdo verifica-se se o campo Y carrega a representagdo taquidnica de spin continuo do grupo de

Poincaré com o uso da equagdo de campo (5.36).

5.4 Autovalores dos Operadores de Casimir

Nesta secdo é verificado se o campo ¥ carrega a representagdo taquionica do grupo de Poincaré (veja a Secdo [3.5)
através do célculo dos autovalores dos operadores de Casimir deste grupo com o uso da equagdo de campo (5.36).
As expressoes destes operadores em dimensdo D foram desenvolvidas no Apéndice D] relagdes (D.I) e (D.14). De
acordo com o mostrado na Tabela[2]e ao analisado na Subsecdo [3.5] espera-se encontrar que os autovalores dos

Ze —p2 (para u = 1), respectivamente. Dado que a equagdo

operadores de Casimir quadratico e quartico sdo —m
de campo (5.36) é localizada no hiperboléide 172 + &+ ;42 = 0 e sua primeira vizinhanga, serd demonstrado que
os autovalores dos operadores de Casimir sao os esperados para a representacdo taquidnica de spin continuo neste
hiperboldide e sua primeira vizinhanca, a menos de uma transformagao de gauge e de um rearranjo das componentes

do campo Y. Estas componentes serdo definidas na andlise dos graus de liberdade fisicos feita na Subse¢do

(relagdo (5.76)).
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5.4.1 Autovalor do Operador de Casimir Quadratico
Com o uso da equacdo de campo (5.36) pode-se escrever que

87 + 8+ 1) Y = &' (1 + & + p*)m*Y
. 1 . .
+8' (* + E + ) |57 - 9y — im¢ — 5(172 + &+ ) (A - imog) | (A —imdg)¥

de modo que o autovalor de C, = —[]; sobre ¥ no hiperboléide 172 + &+ yz = 0 e sua primeira vizinhanca é
dado por
S+ +p2)CY = 8P+ &+ pP) (—mPY + 5 Y) , 538)
e = —(A—imox)¥

com 6¢¥ dado por (5.21). Assim, a menos de uma transformacdo de gauge, o autovalor de C, sobre o campo ¥ no
hiperboléide 712 + &4 y2 = 0 e sua primeira vizinhanga é dado por —m? < 0, ou seja, ¥ é um campo escalar
complexo taquidnico. Para concluir que ¥ carrega a representag@o taquidnica de spin cantinuo do grupo de Poincaré,

€ preciso determinar o autovalor do operador de Casimir quértico sobre este campo. Isto é feito a seguir.

5.4.2 Autovalor do Operador de Casimir Quartico

O autovalor do operador de Casimir quartico C4 sobre ¥ no hiperboléide 172 + &2+ ]/12 = 0 e sua primeira

vizinhanga pode ser escrito como
8+ 8+ 12)Cy¥ = Cod' (i + 82+ )Y + |/ (7 + 3 +41%), G Y. (5.39)

Com o uso da equagdo de campo (5.36) e da expressdo para C4 derivada no Apéndice D] relagdo (D.14), pode-se

reescrever o primeiro termo do lado direito em (5.39) como

Cad' (7> + &+ )Y = (- 9y — 1°0y) (D =3 +17-9)8" (" + & + ) [(Ox — m*)¥ + m¥]
—2(17-3y) (17 - 9x) (3 - 9)0' (1* + &% + W)Y + (7 - 9:)°0y0 (n* + &% + p*)¥
—(D —4)(57 - 9x) (9 - 02)8" (17> + &% + )Y + 77 (9 - 9x)%0' (* + & + p*) ¥
= S+ +p?)
| (600 =350 =20, ) (0035 = mE)(& — imdg) — J07+ 4 p2) (8~ ima
—2(17-9y) (17 - 9x)(y - 9x) + (17 - 0x)*0y — (D — 4) (17 - 9x) (B - x) + 1% (3y - ax)z]‘l’

+m2(<n 8,)(D—347-3;) 1 Dn)s’w%cuzﬂw

_|_

[(n 3 (D —3+1-3y) — 1?0y, 5’(772+§2+V2)]
X ( -9y —imé)(A imag)—;(T]2+§2+y2)(A—im8§)2)‘f
+{[ (7-3y)(7-2) By - 32), 5'<n2+¢2+y2>} + [wax)ZDm 5'<n2+¢2+y2>}

+| = (D —4)(-3x)(3y - 3x), 5’(;72+52+y2)]+[;72(a,7.ax)2, (5’(172—|—§2+;42)} }‘I’ (5.40)
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em que o termo &’ (172 + &4+ yz) (Dx — mz) na primeira linha foi substituido pelos correspondentes termos da
equagdo de campo (5.36) e a segunda igualdade foi obtida com o uso dos comutadores entre &’ e os operadores
(1-9y)(D=3+1-9y) — 7725711 —2(1-9y) (17 - 9x)(9y - 9x), (- ax)ZDn/ —(D—4)(17-0x)(9y - 9x) e 772(317 )

dx)2. O termo entre parénteses em (5.40) pode ser escrito como
— |0+ ), ol |0+ ), (-0, (D =3+ -0y) 0y | O,

de sorte que (5.40) pode ser reescrita da seguinte maneira:

Cad' (1 + &+ p?)¥

= I+ +p)

| (600 =350 20, ) (0035 = mE) (& — imdg) — J07+ &+ p2) (8 — ima
=2(17 - 0y) (17 9x) (3 - 0x) + (17 - 8x) Ty — (D — 4) (17 - 3x) (9 - B) + 17 (9y - ax)z]‘l’
+m2<(17 +9y)(D—3+1-3y) - 772517>5’(172 + 824+ ) — [0/ (2 + 8+ ), Ca| ¥
|02 =303~ 20y, 07+ )| (= Oak -35 = imE) (8 — imdy)
_%(,72 + &+ ) (A - im8§)2> Y. (5.41)

O dltimo termo em (5.41) pode ser simplificado com o uso da equagdo de campo (5.36), visto que o comutador

entre &' e o operador diferencial (7 - 9, ) (D — 3 + 17 - 9,)) — 57?0, é proporcional a &':
010D =3 +7-0,) — 0y, 07+ &+ )| (= ot (25 = imE) (8 — imdy)
1 )
—5(112 + &4 yz)(A — lmag)z)‘{’
639

B —mZ[w-aq)(D—swaq)—rﬁmq, 5’<n2+¢2+u2>}1f,

Substituindo esta relagdo em (SAT) e levando [6'(n% 4 &2 + p2), C4] para o primeiro membro desta relagdo,
obtém-se

Cadl (2 + &+ 12 + [0/07 + & +12), C) BB 0P + 2+ i)cye
= JP+ 3+ ) [((’7'317)(13 —3417-9) - 7725;7> ((77~8x — img) (A — imde)
30 8 42) (8 = imdg 2 ) 202y 1-30) By 30) + (120070
—(D —4)(17-9x)(3y - 9x) + 1% (9 ~8x)2]‘{’, (5.42)

que € o que se objetiva calcular. Com um rearranjo adequado de termos nesta tltima equagdo pode-se obter uma
simetria local do tipo € (5.21)) segundo a qual o autovalor de C4 no hiperboldide 172 + &+ ;42 = 0 e sua primeira
vizinhanga é expresso. Isto ¢ feito reescrevendo em (5:42) os operadores 9y, - 9y — (A — imdg) + imdg — p

en -0y = (7-9x—img)+ im¢ e com o uso dos comutadores (C.8)-(C.1T) de modo a levar 17 - dx — im¢ e
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7]2 + &+ yz para a esquerda do segundo membro de (5.42). O resultado apés um trabalho algébrico é:
1 )
P+ &+ )CY =0 (1 + E 4+ 1?)oeY + 8 (1 + & + u?) { E(;72 + 1P (A — imdyg)
X |17-9y(D —3+1-09y)(A—imdg) + [17 - Oy + im& — 7> (A — imdg)|0,

+p = imdg) (21-y+ D =) = 302 + 8 + 1) - (0 — i ?

D—-3 . 1 )
== (7 + & ) (- 0y) (A = imdg)? + 5% (? + 8+ §?) 0y (A — imde)? + 2m2 (7 - 0) 50
+m?(D —2)&9g + 20img (17 - 3y) + p(D — 2)img + p*> — 2pn%imdy — m*n*0z — m*(§* + n*)0y,
+m2;7~a,7(D—3+;7-a,7)}‘P, (5.43)
onde 4.¥ € dado por (5.21) com
€ = {;7 9y(D = 3+1-09y)(A—imdg) + [17 - 0x + im — (A — imdg )]0y
(5.44)

+(o —imdg) (217 -9y + D — 2)}‘Y
Para finalizar, no segundo termo do lado direito da igualdade (3.43)),

38 (o + 2+ 1P (n* + 3 + u?) (A — imog) {q.aﬂ(p —3+1-9y)(A — imdyg)
, (5.45)
+[17 - 0x + im& — n?(A — imdg)|0y + (o — imdg) (27 -9y + D —2) | ¥

leva-se o operador A — imdg exterior aos colchetes para a direita com o uso dos comutadores (C.12)-(C.T3). Ao
escrever o resultado do comutador (C.14) na relagéo (5.43)), pode-se fazer uso da equac@o de campo (5.36) de modo
a escrever o operador [y em termos de 77 - 9y — im¢, A — imdg e 1% + & + u? para obter-se mais simplificagdes

no autovalor de Cy4. O resultado final é:

8 (17 + &+ uH)Ca¥ = 0 (i + & + 1?) < — 1P0%Y + 0 + R‘F), (5.46)
com € dado por (5.44) e
RY = [ — 707 +m? (5% + p?) 9z + m* POy + 20(8% + p?)imdg + 2m* (17 - 9y) 50z
+m?(D — 2)¢dg + 2pim& (17 - 9y) + p(D — 2)im& + m*(D — 3)51 - 9y . (5.47)

+m?(y -8,7)2}‘1’

O operador R nfo possui derivadas em x. Isso significa que se considerarmos as componentes de ¥ segundo
a expansdo ¥ (17,8, x) = Y, 71 - - ¥y, .., (x), entdo RY € apenas um rearranjo das componentes 1, (x),
Puv(x),---. Por isso esse termo ndo pode ser reescrito como uma transformagdo de gauge de ¥. Portanto,
3'CY = -4 ]/t2p2‘1’ a menos de uma transformac@o de gauge e de um rearranjo das componentes de ¥. Para que
isto seja verdade € necessdrio que RY tenha as mesmas propriedades de ¥, a saber, satisfaca a mesma equagio de

campo e tenha as mesmas simetrias locais. Isto ¢ demonstrado no Apéndice
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5.5 Escolha de Gauge e Graus de Liberdade Fisicos
5.5.1 Escolha de Gauge

Com o gauge

(A —imdg)¥ =0, (5.48)
a equacdo de campo (5.36) ¢ simplificada a
& + &+ u?) (O — m®)¥ = 0. (5.49)
Resolvendo a condi¢do imposta pela fungdo delta nesta equagao, tem-se
(Oy —m?)¥ = i(ﬂz + &+ 1), (5.50)

onde w = w(#,{, x) é uma fungdo arbitrdria. A simetria-y (5.28) pode ser utilizada em (5.50) para eliminar w.
De fato, se ((Jy — m?)x = w, entio (5.50) pode ser reescrita como ([, — m?)¥ = 0. A equacio para x nio o
determina completamente porque hd uma simetria residual x g pela qual (A — imdg)dy, ¥ =0 = (Oy — m2)5,. ¥,

isto é,
-9 —im§+1( 21 & 4 u?) (A —imog) =0 (5.51a)
;7 X 4 77 l/l C XR 7 .
(O —m*)xg = 0. (5.51b)

Por outro lado, levando em conta a simetria-€ (5.21)), o gauge (5.48)) em conjunto com (O, — mz)‘I’ = 0 implicam

que (A — imdg)0e¥ = 0 = (Ox — m?)5: ¥, isto &,
[Dx —m?— % (172 +u? + §2> (A— imag)z] e = 0, (5.52a)
[,7 Dy — imE — % (P +&+12) (8- imag)} (Ov—m?)e = 0. (5.52b)

A primeira transformagio em (53.31)) pode ser utilizada neste ponto ao fazer-se a escolha do seguinte gauge para o
parametro €:

(A —imog)e = 0. (5.53)

Com esta escolha, a equagio (3.524) é simplificada a
(Oy —m?)e =0, (5.54)

que, é claro, é compativel com a equacdo (5.52b). O gauge (5.53)) fixa parcialmente o pardmetro A em (5.31) porque

hd uma simetria residual Ag pela qual (A — imdg)dp,€ = 0 = (O — m?)dp €, isto é,

(17 -9y — im€) + %(;72 +&+u?)(A—imdg) | AR = O, (5.55a)

(P + &+ p?) (O —m*)Ag = 0. (5.55b)
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Sumarizando todos os resultados desta subsecio, tem-se:

Oy —m?)¥ = (A—imds)¥ =0, (5.56a)
Sepr¥ = (-0 —im)e+ %(172 +8+ %) K, (5.56b)
(Oy—m?)e = (A—imdz)e =0, (5.56¢)
Sag€ = %('72 +8%+ 1) AR, (5.56d)

SagXR = (A —imdg)Ag, (5.56¢)

em que o parametro x satisfaz (5.51b)) e (5.51a), enquanto que Ay satisfaz (5.55a) e (5.55b).

5.5.2 Graus de Liberdade Fisicos

Nesta subsecdo ¢ investigado como a escolha do gauge (5.48) pode ser utilizada no estudo dos graus de liberdade

fisicos carregados pelo campo . Isto € feito considerando a transformada de Fourier do campo ¥ na coordenada x:

D
vwen=[ o5

Em seguida, faz-se a escolha de um sistema de referéncia inercial pelo qual o momento k; tem apenas uma

Y(y,¢, k)eik"‘.

componente espacial diferente de zero:

ky = (0,---,0, m).
Neste caso, os operadores em (5.56a)-(5.56¢) podem ser reescritos no espago dos momentos como
O:¥(n,6,x) = —K¥(n,8,k)

AY(n,¢,x) — (—ik-9y+p)¥(n,¢k) (5.57)

n-0xY(n,¢x) — —ik-n¥(n,¢k)
onde as flechas indicam a passagem do espacgo das posi¢des ao espaco dos momentos. Definindo
+  _ 4+ D1
¢ c= , (5.58)
+ = Cxnpa

tem-se ¥ =¥ (#4,8+,¢—, k), «=0,---, D — 2, de modo que, com o uso da segunda linha em (5.37)), a segunda
igualdade em no espaco dos momentos 1&-se:

[imd, (1) +p — imd|¥ = —2ima§_‘f’ 4 oY =0.

A solugdo desta equacio é dada por
_ _lps—
Y(1,6", 87 k) = e 27 (1, & k) (5.59)

em que (7, ¢, k) é uma fungéo arbitraria. Analogamente, dado que €(#, ¢, k) é a transformada de Fourier na

coordenada x de (7, {, x), tem-se que a segunda igualdade em no espago dos momentos 1&-se

. 0€
— szaéT +pe =0, (5.60)

cuja solucdo é:

e, CT,8 k) = e e(a, €T, k) (5.61)
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em que &(7, {—, k) é uma func@o arbitrdria. A simetria-€ em (5.56b) no espago dos momentos é dada por

E57)

\P(Uﬂél €+/ (:*/k) (imTID—l - l.m(:)E(U,x, C+/ (:ff,k) = —im(ffe(’?m ng/ C*/k)/

de modo que
0ep(Na, G-, k) = —imE_€(1a, $—, k), (5.62)
a qual pode ser utilizada para eliminar a dependéncia em ¢_ de 1. Isto é possivel apenas se ¢ satisfazer a condi¢do
dz_Ocp = Om Portanto,
¥ (1, -, K) = e 5 (0, K). (5.63)
O proximo passo € expandir o campo taquidnico em torno do hiperboldide 172 + &+ yz = (. Isto ¢ feito
introduzindo varidveis que identificam hiperboléides diferentes e pontos sobre eles. Redefinindo as coordenadas do

espaco auxiliar como

[N 7 | 7
T er— (o), (564
¢ = i=g
7]
as quais satisfazem a equacao
N+ & =-1, (5.65)

vé-se que || caracteriza hiperbol6ides diferentes, visto que ao inserir (5.64) em (3.63)), tem-se
7 +8+p* =0. (5.66)

Por outro lado, 7 e & parametrizam pontos sobre o hiperboléide (3.66). Com estas defini¢des, a expansdo do campo
taquidnico em torno do hiperboléide 72 + &2 + u? = 0 é dada por
= 1 M"Y .
Y(n,¢ k) = —(p* — 7,6, k). 5.67
(1,8,k) L i =) s ey (14 K) (5.67)

n=0

Definindo
_ A 2 2 2 a‘P N A
Yor(1,8,k) =¥ (7,8 k) + (u” — || )—a(n2+§2+;42) (1,¢,k), (5.68)

tem-se que a expansdo (5.67) pode ser reescrita como
Y(,8k) = Yye(n,8 k) + 0 ¥ (1,8, k),
onde Jy, ¥ ¢ a simetria-y g em com
-2 oY :
k) =4 V) —_ S— 5 58 5.69
Xr (1,8, k) ;2 (V nP?) s ek (5.69)

Os dois termos do segundo membro em (5.68) sdo

¥(h,Ek) =e 20 (i, k), (5.70)

dado que com (5.64) pode-se definir &1 = &+ /5|, e

oY . 0 ity iody ]
O 3 Ek) = k) e e —— (i k).
8(112+€2+u2)('7 ¥ (e o(u® — |n?) a(V2—|’7|2)lP<W )

37Um exemplo (trivial) de e(170, &, k) que satisfaca esta condigfio é (174, &—, k) = f(1a,k)/&—, onde f(71a, k) é uma funcio arbitraria.
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Assim, visto que as derivadas desta tltima igualdade resultam em,

_ipdy _ippéy 4
{a(ﬁanz)e Zm} - 4115# 26
W‘/’(ﬁwk) = %Wz}\(ﬂ /k)

e, em conjunto com o resultado (5.70), a expressdo para o campo ¥, (5.68) se torna:

W§+ at,b
a7

Deste ponto em diante serd explorado a analiticidade de 1 (74, k) na coordenada 7j,. Com esta hipétese, pode-se

_inpls ¢ R 1
Fagl o) =5 [ 1+ G2 DB o ) = 220 = P)e 5 Zh ). 670

expandir o campo §(7y, k) em termos de suas componentes como:
[o 0]

P (fa, k) 2 Mg, (K), @;=0,---,D—2,Vi=1,---,n, (5.72)

em que Yy, ...q,, (k) € um tensor completamente simétrico. A expansao (5.72)) pode ser reescrita como

N o 1 . N .
P(ark) = D g Y g g, (K)
n=0 """
= Toloq B a5 g e, () ;o Vij=1 (5.73)
F o AN A Y Y g Y gy (K)

. . . 2 . . A oans ([ A0\2 ~A1\2

Veja que na primeira somatoria da segunda igualdade em (3.73) hé o termo 7y, 7% = (7°)* — (7°)* —
(7P=2)? 65 _,_ &, ¢ ,paracadai =1,---,n. Portanto, o segundo membro da equacio (5.73) tem dependén-
cia em é+, <f, e 7], contradizendo o primeiro membro que tem dependéncia apenas em 7j,. Esta inconsisténcia
€ resolvida se o tensor §y, ...y, tiver todos os tragos nulos, ou seja, g””"fwm...yi...m,..yn (k)y=0,Vi,j=1,--,n

Neste caso, a equacdo (5.72) é reescrita como

1 e
n!

0= L

Y, (K), (5.74)

em que o superescrito 'T” indica que 0 tensor ..., € sem trago.
O dltimo passo para analisar os graus de liberdade fisicos carregados pelo campo ¥ ¢ substituir (5.74) em

(3-7T). Para calcular 9y /9|1 | é conveniente voltar as varidveis originais 77,

g, (K),

Q
‘3
HM8

P & (=)t a1 T _ own Mgty
a|;7|( k) M‘:y - 7;] n' 17 17 1)0061- an( ) ‘}7‘ " - n;or“ ‘u ¢u1-~~an(k)'
(5.75)
Substituindo (5.74) e (5.73) em (5.71)), obtém-se
oA e 201 " 1 1
Tl b ) =5 T L[4 L - ) (4 + PC*)}/JM w676
n=0 """

Com base nesta relagdo, investiga-se, a seguir, os graus de liberdade fisicos que ¥ carrega de acordo com os valores

possiveis de — 1202

66



(i) TAquion de spin s: p*> = —'Z}—js(D —3+5s) <0

Escrevendo como duas somas, tem-se

_inpdy 5

ha, & k) = | L, o 1o ooofn ipe\] 7
Yr (G, G4 k) = e 2 n:0+n:§rl a’?“l st 1+ ﬂ(ﬂ = Iyl )<F + m)]‘l’al---an (k).
5.77)

Esta equagdo implica que ¥, tem duas componentes: uma de dimenso finita correspondente a primeira soma com
s 4 1 tensores de ordem crescente de 0 a s, e a componente de dimenséo infinita descrita pela segunda soma. Se
s = 0, entdo p = 0, implicando que C4 = 0. Neste caso, apenas a componente de dimenso finita (unidimensional)
€ unitéria porque representa o tdquion escalar onde o setor ndo-compacto do grupo SO(1,D — 2) (o LG da
representacdo taquionica conforme analisado na Segﬁopara D = 4) age. Por outro lado, se s # 0 a componente
infinita de ¥y, é o tAquion de spin s com tensores de ordem s + 1, s + 2, - - -. Esta componente caracteriza a
representago unitdria do grupo SO(1, D — 2) porque € de dimensdo infinita. Neste caso, a componente de dimensdo

finita é ndo-unitaria.

(i1) Taquions de spin continuo: pz >0

Neste caso caracteriza a representagiio de dimensdo infinita do grupo SO(1, D — 2), portanto, unitaria.

Os tensores em sdo de todas as ordens.

5.6 Vértice Cuabico
Seja

S[¥,¥",],J*] = So[¥, ¥*] + Sc[¥,¥*, ], "] (5.78)
em que Sy é dada por (5.1)), ou(3.9 e

Se[¥, ¥, 1,17 = —¢ / dndgdx ' (i + & + 1) (T +¥]%) (5.79)

é o vértice ciibico composto pelo campo taquidnico ¥ e pela corrente | = J(#,, x) além de seus respectivos
complexos conjugados que, conforme serd analisado na Subse¢éo[5.6.3] depende de dois campos escalares massivos
€ suas derivadasFE] Neste vértice, ¢ € uma constante de acoplamento.

Devido a presenca da derivada da funcéo delta, S, € invariante sob as transformagdes

do] =
5¥ =

1,2 | z2 2\2
Y2+ 2+ )%
i(ﬂz Cz Vz)z ’ (5.30)
1P+ &+ )

emque ® = O(7,¢,x) e x = x(1,¢, x) sdo fungdes arbitrdrias.

38Nas referéncias [[65}/66] o leitor pode encontrar uma lista com todos os possiveis vértices ciibicos que sio invariantes sob transformagio de
paridade, dentre os quais, o estudado neste secdo. Nestas referéncias, o autor expressa os vértices ctibicos em termos das coordenadas no cone de

luz; portanto, tais vértices ndo sdo covariantes.
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5.6.1 Equacao de Continuidade

A equagio de campo derivada da agdo (5.78)) é dada por

6S
oY

=0 = &P+ +u*)(QY —gJ) =0, (5.81)

emque Q = (Oy — m?) — (- 9y — im&) (A — imdg) + (1?4 &2 + p2)(A — imdg)2. Multiplicando ambos os
membros da equagdo (5.81) por 172 +2 4+ ;42 e em seguida aplicando o operador (A — imdg ), obtém-se

(A —imdg)8(n? + & + u*) (QY — gJ)
= (P + &+ u*) (A —imde) (QY — gJ) +2(17 - 0x — imE)& (> + &%+ p*) (Q¥ —gJ) =0
gO(* + &+ u?) (D —imdg)] = 6(* + & + ) (A — imdz) QY, (5.82)

em que na primeira igualdade em 1} foi utilizada a relagdo de comutacdo [A —imdg, & (> + &+ ;42)] =
2(n7 - 9y — im&)d' (4% + & + p?) e a equagio de campo (3.81). Com o uso das relagdes de comutagio (C.I) e
(C2), o comutador [A — imdg, Q] é dado por

[A—imdz, Q] = —(Ox —m?)(A—imdg) + (- 9x — im&) (A — imdg)?,
de modo que (5.82) 1&-se

g6(n* + &% + u?)(A — imdg)]
= S+ +1P) [Q(A — imdg) — (Ox — m2) (A — imdg) + (17 - dx — im€) (A — imag)z} ¥ =0

ou seja,

5(1* + &%+ p?) (A — imdg)] = 0, (5.83)

que é uma equaciio de continuidade restrita ao hiperboléide 1% + &2 + u? = 0 para a corrente .

Resolvendo o vinculo imposto pela func¢do delta em (3.83), tem-se
. 1
(A —imdg)] = 5 (7 + & + p?)w, (5.84)

em que w = w(n, &, x) é uma fungdo arbitrdria que pode ser eliminada com o uso da primeira transformag@o em

(5:80). De fato, fazendo | — | + dgJ em (5.84), tem-se que

(A —imdg)] =0, (5.85)

se, € somente se, (A — imaé)(S@] = w, ou seja,

. 1 ) 1
7+ 0x —imé + 21(172+§2+y2)(A—zm8§) 0= Ew.

5.6.2 Invariancia de Gauge

Com a transformagéo (5.21) a agéo se transforma como 6¢S = 6¢Sg + J¢Sc onde, conforme jé demonstrado

na Subsec¢io[5.2.2] tem-se 6¢Sy = 0 a menos de um termo de superficie. Por outro lado, J¢S. pode ser escrito como

6eSe = 0S8 + 5.8, (5.86)
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com

oS = —g [andzax s (P ++ ) (705 — imE)e]
— g / dn & dx &' (1 + & + u2)e (1 - 35 +im&) J* + ts. (5.87)
e
5es) = —%/dﬂ dg dx 8(n* + % + p?) [(9 - 0 — imdg + p)e] J*

—s.5W /d17 dE dx e 5(n2 + &+ 12) (A + imdg)]* + s, (5.88)
em que na primeira linha em ambas as equagdes (5.87) e (5.88) foi efetuado integragdes por partes. Assim,
be5c =% / dy dE dx € 5(n2 + & + p2) (A + imdg) [ + ts.. (5.89)
O complexo conjugado da equagdo de continuidade (5.83) é
5(n* + &%+ p*) (A +imdg)J* =0, (5.90)
portanto, pode-se concluir que a variagdo (5.89) é nula:

o1

Assim, vé-se que a equacdo de continuidade dada por (5.90) é uma condi¢do necessdria para que a teoria (3.78) seja

invariante sob a transformacdo de gauge (5.21).

5.6.3 Calculo da Corrente

Com o uso da primeira transformag@o em (5.80), pode-se expandir a corrente | em torno do hiperboléide 172 +
(;‘2 + yz = 0 e de sua primeira vizinhanca de maneira andloga a feita para o campo ¥ na Subsecado De
fato, com as varidveis #* = n# /|| e & = &/|y|, || € R, que parametrizam pontos sobre cada hiperbolSide

7%+ &% + ||*> = 0 e sdo vinculadas por 72 + &2 = —1, tem-se

g \77|2—P‘) "] -
](U,(:,X) - nZ%) . (;72+€2+ ‘77|2)n (U/glx) ‘;ﬂ:y
= ]@(U,C,x)+5@](17,§,x) (592)
em que
Jo(1,6,x) = {] U RN U R N p— — é,x)} (5.93)
o2 + &2+ u?) PAE =0
e dpJ é a primeira relagdo em (5.80) com
= n+é‘2+u) - "] o
’ —4 ,C, . 5.94
O(1,¢,x) ; o Ay e PR (5.94)
Definindo os termos em (5.93) como
_ d] P
]O(W/‘:/x) = 8(172 +€2 +‘112) (77/‘: x) 7]2+§2+H2:0/
L(n,6x) = J(#,& %)
24-224u2=0



obtém-se
Jo(n,8,x) = J1(1,&,%) + (1 + & + 1) Jo (1,€, x). (5.95)
Aplicando a equag@o de continuidade (5.83) a corrente (5.92)), tem-se

S + 2+ 1) (A —imdg)] = 6(n* + & + p) (A — imdg)Jo + 6 (> + & + u?) (A — imdg)d ]

=0

= S0P+ + (B —imdg) [ + (1 + & + ¥
D0 € (B = mdg) -+ 007+ 42 O+ 8+ 1) (8 — i) +201-35 = ) o
= S0P+ 8+ [(A— imdg) Iy + 207 -9 — imE) Jo] S o,
que, por conta da restricio imposta pela funcéo delta, tem-se
, : ooz, 2
(& —imdg) ]y +2(y - 9x — im&)Jo = 5 (1" +&* + p)a,

onde & = a(#,{, x) é uma funcdo arbitraria. Escolhendo & = 0, obtém-se uma rela¢do entre as duas primeiras

componentes de J:

(A —imdg) 1 +2(17 - 9x — im¢)Jo = 0. (5.96)

Com uma expressdo adequada para J; esta equagdo permite o cdlculo de Jj e, por conseguinte, Jo (3.93).

A corrente [, assim como Jo, é fungio de dois campos escalares massivos ¢1(x) e ¢p(x),
(Ox + MP)gi(x) =0(g) i =1, 2,. (5.97)

e de suas derivadas. Levando em conta invariancia de Lorentz, as derivadas mais simples que podem estar presentes
na corrente J; sdo Ly e 77 - dy. Descarta-se [, porque a relacgdo (5.97) implica que Ly¢p; o ¢;. Assim, um ansatz

para que a equacdo (5.96) seja satisfeita é a escolha

01,8 x) = (795 — img)™ (£ g1 fi24), (5.98)

€m que os operadores

far = N (. 9y —img)", i =1, 2 (5.99)

agem apenas no primeiro campo em sua frente@ Nestas duas tltimas expressoes, 1, 11, Hp € N e A, Ay € R.

Aplicando o operador A — imdz em (5.98) e com o uso da relagio de comutagio (C.3)), tem-se

(& — imdg)Jy = (A= imde) [0 — im)" (£ 1 £1202)]
= (-3 — im&)" "} (D —nr?) (£ 122 ) + (- 0 — im)"0 (A — imde) (11 £122) -
(5.100)

No primeiro termo do segundo membro em (5.100), tem-se

O =) (Fllonfizpe) = —(M3+ M3+ ) Fin fipa +2 (F10sn ) - (fi20a2) , (5.101)

%Em [62] hd uma corrente similar a (5.98).
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em que foram utilizados [ax, f;’l] =0eUy¢p; = —Ml-qul-, i =1, 2. No segundo termo do segundo membro em

(3-100), tem-se

(8= imdg) [flgnfiiga] = [(A - ). Vn] £129
A (A= imdg) f290) + [0Sl ] - [0 F200] — oSl 1 £

em que foi utilizado o resultado (C.44). Nos dois primeiros termos em (5.102), tem-se

(5.102)

(A - lmag)f)}zlq)l = ( —_ imag)e)‘i(ﬂ'ax—imc) (17 . ax _ im(’;’)i’li¢i

— imdg) 2 (17 - 9y — m&)"itkg,

3 & )\f o 0k - ‘
Z k— nl —|—k “O0y — lm(;‘)”l+k 1( )4’1 Z k7(77 0y zm(f)”’+k(A o Zmag)(l’i
k=0 k=0
= —(MP+md) Yy, kf;(ni + k) (5 - 9y — im&)"i TR, Z k71 7+ 0y — im&)" kg,
k=0 ** =

>

k
(079 — img)“e;
k-1

Sy (-0 = img) gy

agk
x|

= —ni(Mi2 + mz)(iy <Oy — img)”f*1

o

—Ai(MF +m?) (1 - 9y — im)"
k

|
08 1

o (K
- Ai( ; ni+k
) F(’? -0y —img)" T p;
k=0
= (M} m?) (9 — img)" NSy,
A (ME ) (35— im0 4 (B — i) 10,

= —m(MF 4 ?) £ = A (ME 4 ?) £+ o (5.103)

onde i =1, 2. Com o uso do comutador[C.7] tem-se que

(a"f)’\?th) ' (aﬂf/yxlzz‘l’Z) = ( xf), <P1) Iy i 2:( (17 - 9y — im&)™ kg,

k

o A . _
= 11 (9kn) Yo 22+ K) (-9 — i) 1o
k=0 "

n . AL ,
= mf)] (a%’l) (7-9x —img)"™"1 Y k*,z(ﬂ 9 — im&)
k=0 "
o )kal
+A2f)r\lll (3§¢1) (77 <0y — im@)’” Z (k i 1), (77 <0y — im@)kilax}t(lh
k—1=0 .

= ”Zf;f (ag(pl(x)) (17 -9y — img)nzfleAz(n-axfimr;‘)axwz
+A2f)r\lll (%4’1) (77 Oy — img)n%/\z(ﬂ.axiimg)ax}t(l)z
= an/’\q]l (ag‘Pl) f)’gilaxy(]bZ + Aszll (35%) f;lzzaxy(f’z (5.104)

Analogamente,

(0201) - (0ufi2) = mfi ™t (3en ) Fi2omupa + Mfit (3hn) 20 (5.105)
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Substituindo (5.103)), (3.104) e (5.103) em (5.102)), obtém-se
(8= imdg) (Fgnfi2ga) = —m(ME +m2) £ 1 f1290
_nz(MZ‘ + mz)f:\qllq)lf)rz*l(l)z + (Alfglll +m ;11*1) 854)1 (x) ;’jaw@ . (5.106)
FF 0 (Aafi2 +mafi2) dliga + [ — M(ME + %) = Ao (M3 + 1i2)] £ f12

Assim, substituindo este resultado com

p = A (M2 4+ m?) + Ay (M3 +m?) #0, (5.107)

e o resultado em (5.100), obtém-se
(8= imdg)Jy = no(1 - 35 — )"0t [~(MR + M +12) 11 F12 2 + 201001 20
+ (17 9x — img)"o [ =y (M3 -+ m2) F 7y 2 — mp(ME + m2) 1 £32 o (5.108)
—1 -1
(A e m ) oot + on (Rafi2 +mafys ) o).

Finalmente, resolvendo (5.96)) para Jy com o uso de (5.108), obtém-se

Jo = %no(ﬂ + Dy — img)™ [(M% + M3+ 1) 1 2
_2f;1118§f4>1f}\1228w¢2] + 3(17 - 95 —img)™ 1 {m(M% + mz)ffllflci)lfj\lzquz
(M3 ) {1 2 (Mt f) ) 5 S0 |
+3, 01 (Azfif +mafy; _1) 354&]

(5.109)

Considerando que esta corrente seja local, tem-se duas possibilidades: ng > 2, ny > 0enp, > Ooung =ny =

n, =0e A7 = —Ay = A. Neste ultimo caso,

Jo = 0

= A(1y-0x—img) —A(y-9x—img)
h {e 4)1} {e ¢2] . (5.110)
Joe = N
p = A(MZ—M3) #0

5.6.4 Vértice Cibico para uma CSP e dois Campos Escalares Massivos
A teoria livre para a CSP € descrita pela acdo de Shuster & Toro [41]]:

1 r 1

So[¥] = 5 / dydx &' (7> + p?) [(a,pif)2 - E(’72 +u?)(AY)?], (5.111)

onde ¥ = ¥(#, x) é um campo escalar real que representa a CSP. O acoplamento deste campo a corrente | = J (77, x)

caracteriza o vértice ctibico dado por

Scl¥, ) = =g [ dndzx &' (2 + 12)¥ . (5.112)
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Veja que todos os resultados obtidos nas Subse¢des se aplicam no presente contexto com a remogao da

integral em ¢ e com m = ¢ = 0. As correntes sio:

ho= (-00™ (fleuf29)

Jo = Amoly-0:)0 2 [(MF + M3) ¢2*2fxla§¢1ffzax;44’2}
10000 1[11 MEF gy £ + maMBFLI 1 £
(MfA +nify )aﬁqblffjaxm (5.113)

+ 3 dxun ()\ZfAz +m ff_l) 3?492}

Jo = h+ 4o
p = MM:+AM;#£0,

onde (Oy + M?)¢i(x) = 0(g), Vi=1, 2, e
fal =M (- 9x)" n € Ne A €Ri=1,2 (5.114)

sdo operadores que agem no primeiro campo em sua frente. No caso mais simplesem que ng =ny =npy =0e

A = —Ay = A, tem-se

Jo=0, (5.115)
p =AM —M3), My # My, (5.116)
‘
Ji,3) = M09 (x)e g (x) = [i,ﬂ (Mg -22) <>] léll( A2 ()
= X )ga(x0),
ou seja,

\](Xi) = ¢1(XT)pa(X7), (5.117)

onde X* = x + An. Esta corrente é precisamente aquela encontrada pelos autores de [[54]] os quais se valeram do

uso do formalismo das correntes BBvD [55]. No préximo capitulo serd apresentada uma andlise mais detalhada do

vértice ctibico (5.112) com o estudo de suas propriedades.
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6 Analise do Vértice Cabico com uma CSP

Neste capitulo analisamos as propriedades do vértice cibico que envolve uma CSP discutido no fim do capitulo

anterior. Todos os resultados apresentados neste capitulo foram obtidos pelos autores de [[54].

6.1 Vértice Cubico no Espaco de Minkowski

A partir da a¢do
S[Y,]J] = So[¥] + Sc[Y¥,]l, 6.1)

onde Sg e S, sdo dados por (5.111) e (5.112), respectivamente, pode-se derivar a equagdo de campo:
5/( 2 _l:l . _ 1 2 2 — —
n°+ U') x+ 7 dxA 5 (77 + U)A Y—-J| =0, (6.2)

em que 0 = yz é definido por conveniéncia para deixar a notacao mais simples nesta e nas se¢des seguintes. (Na
Secdo[6.2] por exemplo, as integrais serdo tomadas como fungdo do pardmetro ¢ e de derivadas em relagdo a este
parametro.) O operador A corresponde aquele ja definido no capitulo anterior. O leitor pode observar que a agio
corresponde 2 teoria taquidnica ao fazer-se ¥ = ¥*, m = 0 = ¢ e com a eliminago da integragio na
varidvel ¢, portanto, os resultados obtidos no capitulo anterior podem ser aplicados no presente contexto com estas

consideracdes. De fato, a corrente | satisfaz a seguinte equacao de continuidade:
s +0)AJ(n,x) = 0. (6.3)
Devido a presenca da derivada da func¢do delta, a acdo ¢ invariante sob a transformacao
1/, 2
w¥(mx) = 7 (11 + a) x(n,x), (6.4a)

em que x (77, x) é uma fungdo arbitrdria. Em adi¢@o, levando em conta a equagdo de continuidade (6.3)), tem-se que

a agdo (6.1) é invariante sob a transformacao de gauge

(172 + 0) A} e(n,x), (6.4b)

N =

S¥(1,0) = [0 -

onde €(#, x) também é uma fungao arbitréria.

Resolvendo o vinculo imposto pela fungdo delta em (6.2)), tem-se
1 1
—Oy + (17 - 9x)A — 2(112+(7)A2} Y-J= Z(;72+a)2w, (6.5)

em que w = w(7, x) é uma fun¢do qualquer. Observe que o segundo membro desta equagio estd sob a forma da

transformagao (6.4a) e, em adi¢@o a transformacdo de gauge (6.4b), (6.5) pode ser reescrita como

— O Y =] +6.F + 6, ¥

com € = —AY. Com o uso da transformada de Fourier na coordenada x, ¥ (17, x) = [ deD Y (15, p)eiP*, esta
(2m)2
equagdo pode ser reescrita como
1 1
Yl p) =2 )0 p) + 25 (¥ +00¥) (1, p). (6.6)
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Porém, o tltimo termo do segundo membro ndo contribui para o vértice S, no espago dos momentos, denotado por

S¢, porque
' 1
/ 4%y dp (" + )1, p) 5 0u¥ (1,p) =0

e, devido 2 integra¢es por partes e & equagdo de continuidade (6.3)) no espaco dos momentos,

5(* +0) (—ip-9y+p) I(n,p) =0, 6.7)

tem-se

/dDU dPp &' (n* +0)] (1, p)plzée‘Y(m p) = /an d’p ;26(77, PSP + ) (=ip-ay+p) J(n,p) 0,
(6.8)

(O leitor pode verificar diretamente a validade do resultado com o uso dos desenvolvimentos que foram feitos
nas relagoes (5.86)-(5.91) no espago dos momentos, eliminando a integra¢do na varidvel ¢ e fazendom = 0 = ¢.)

Portanto, substituindo (6.6 no vértice ctibico no espago dos momentos

Sc[¥, 7 = /dDU dp ¥ (17, p)] (1, p),

obtém-se
~ , 1
Sl =~ [ @ pa®y 807 + ) (n.—p) 3 (0, ) ©9)

Resolvendo a restri¢do imposta pela fungdo delta em (6.7), tem-se

(=ip- 9y +p)](n,p) = (1> + o)a(n, p), (6.10)

onde «a(7, p) é uma funcdo arbitrdria. Para que a solu¢do desta equag@o seja a mais simples, faz-se a escolha

a(n, p) = 0. Em adi¢do, com um sistema de referéncia pelo qual o quadrimomento p, expresso em coordenadas do

1 D-2 4+ _ pl+pP7! + oz -
cone-de-luz (p PR /) , P = T)’ tenha apenas a componente p™ ndo-nula, a (6.10) pode ser reescrita

como
) )
<p+817+ + zp) J(n,p) =0. (6.11)
A solugdo desta equacao € dada por
— P+ J . —
J(n,p) = j(n,p)exp (—lpw ) E)?J(’?’P) =0, (6.12)
que, substituindo em (6.9), obtém-se
- ) 1.
Sclj) = —/dDPdDU &' (i )i, =p) 2100, p)- (6.13)
Definindo
F,p) =i -p) i p), L —o 6.14)
U’p *]17’ ppzj U’p’ 817"'_ 7 .
tem-se
. d
Selil =~ [ dPpdPn 6 + @) (n,p) = — [ dPp 1(cp), (6.15)
com
d
I(o,p) = %/d% S0P + ) f(n,p)- (6.16)
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(Até o final desta secdo e na se¢do seguinte serd omitida a dependéncia em p da fungio f para simplificar a notagéo.
Na Segﬁo a dependéncia em p de f serd retomada.) Com a mudanga de varidveis § — 7 = %17, esta integral

pode ser reescrita como

o) = g2 |81 a0 + s = o8 2 [aq o+ 1) | (5 1) + 55| v
(6.17)

Escolhendo o = 1Fﬂtem-se 1 = 7j e o ultimo termo da segunda igualdade em l) pode ser reescrito como

17D, 52 w9 _1/ D, (2 -9 9
2/d o+t f(n) =5 [din o+ ) (g5 =055 ) fn), (6.18)
comi=1,---,D — 2, visto que 8,7+f=0. Portanto,

0

D W=
z/d 7807+ 1)y a7

) =3 [ 4202 +1) |17 5=r0n) + 5 (4'70) ~ (D =270,

de modo que ao trazer-se o dltimo termo do segundo membro desta igualdade para o primeiro membro, obtém-se a

integral original (6.17):

10) = 3 [ aPy ot +1) [ 5=f ) + 57 ()| (6.19)

2
oy~
Em coordenadas de cone-de-luz, 72 = 2577~ + 75" e, com o uso da propriedade da fungdo delta 6(ax) =

\37\‘5(9‘)' Vx € R, Ya € R — {0}, tem-se que

1 1
S(n* +1 :5(++ 1i+1>. 6.20
(" +1) 1o\ 2;7,(1717 ) (6.20)
Substituindo (6.20) em (6.19), obtém-se:
_ 1 D2 R -9 9 (i
I = Z/dn 2y 2,”5(17 +2|;7|(11m+1)) {17 o T+ 5 (ﬂf(ﬂ))}
_ Yoo [0 9 too KB }
= e[ e cngsm [ ar ngs)
_ 1 D-2_i - _ i
= 5 [ (=0 ), 621)

de modo que o vértice ctbico (6.9) resulta em

Se =3 [dPpd®y'j (1= =0,1,—p) i (1~ =01, p). (622)

Na primeira linha de (6.21) foi efetuado a integragdio em 77" na segunda, a integral da divergéncia nas coordenadas
transversais 17i € zero porque assume-se que os campos vao a zero suficientemente rapido no infinito.

O resultado ( mostra que o vértice (| ndo propaga uma unica CSP mas sim um continuo de CSPs
porque a tdnica restri¢do a coordenada 7 extraida de ény |,77:0 = —Y;(7")* < 0em vez de 5 |,]7:0 =
—Yi(#")? = —0 = —1 imposta pela equagdo de Wigner (2 + ¢)¥ = 0 que descreve uma CSP [22,23] (veja
a Subsecdo [4.1.1] equacdo @.23))). Porém, pode-se estudar caracteristicas deste vértice ciibico que apresentam
similaridades no contexto das particulas de alto spin. Para fazer este estudo, é necessario desenvolver o formalismo

das funcdes geradoras. Isto € feito a seguir.

“OVeja que este pardmetro sempre pode ser escolhido igual a um através das seguntes redefinigdes n—\onep— p/\o.
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6.2 Integrais no Espaco Auxiliar
A fungdo geradora de grau | é dada pela seguinte expressdo:

1
GD(w;0) = /an SO (2 + o)e e = (8?7) GO (w;0), (6.23)

onde 6() & a I-ésima derivada da funcdo delta com respeito a 0 e w € RYP~1, que é 0 espaco de Minkowski de
dimensdo D. Nesta dissertagdo, apenas os casos I = 0, 1 serdo utilizados. Com esta defini¢do, integrais como

(6.16) podem ser escritas como

- [f(iaw)c;(’) (w; a)}

/an s + o) f () = / a2y 60 (1P + ) [ f (i3 )e 7]

w=0 w=0

(6.24)
=0

=[G (iay;0)£()]

Vé-se, portanto, que para calcular esta integral basta conhecer a correspondente fungdo geradora. Esta se¢do objetiva
desenvolver o calculo de fun¢des geradoras no espago de Minkowski e no espaco Euclideano.

Sew =0, li resulta ser infinita porque € calculada no hiperboldide 172 + 0 = 0, que é um espago de
Anti-de Sitter ndo-compacto. Neste caso, a estratégia € manter nesta integral os termos que resultam ser regulares
em w = 0 e ignorar aqueles que ndo sdo. Por outro lado, a integral (6.23) no espaco Euclideano (com métrica
g = —diag(1,---,1)) resulta ser finita em w = 0 porque ¢ calculada na hiperesfera 172 + 0 = 0, que é um espago

de de Sitter compacto. Nesta secdo serdo investigadas ambas as possibilidades.

6.2.1 Funcoes Geradoras no Espaco de Minkowski

Para ] = 0 a integral (6.23)) € calculada levando-se em conta se w é do tipo tempo ou do tipo espago:

Tipo Tempo: w? > 0. Neste caso faz-se a escolha w = (w?,0,---,0) sem perda de generalidade porque o

resultado final serd escrito sob uma forma covariante. Neste caso, a integral (6.23) para [ = 0 pode ser calculada

Ccomo:
GV(w;0) = /dDiy 5(n2 + o)e "
= o [ana® 176 (1) - (7 - 1)) e Ve
- o7 /772>1 dP~lij \/17217_1 cos ( o(i? — 1)w0> , (6.25)

em que na primeira linha a varidvel de integracdo 7 foi redefinida como 17 — %17, na segunda linha foi utilizado a

propriedade da funcio delta §(x? — a?) = ﬁ (6(x—a)+d(x+a)), Vx € ReVa € R— {0} e, na terceira

linha, foi efetuado a integracdo na coordenada 170. Ao fazer-se t = /7% — 1 e com o uso dos resultados mostrados

no Apéndice[H tem-se

RZ = p’=1++
D-1 .
de1,7 = dVp_1=5Sp_1(R)dR @I’ l%(nDszl)RDizdR
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Substituindo estes resultados em (A.T), obtém-se
(0) D2 272 © 2\ D=3 >
GV (w;o)=07 —/——— dt (141t7) 2 cos(t\/(rw). (6.26)
P=1 0

Com o uso da funcio esférica de Bessel modificada de segunda espécie [61]],

1 [/2)" 1\ [ cos (tz) 1
Ky =— |- T = dt ————, 0 R —=,
(z) = (z) <v+2> /0 T z>0 e Re(v)> 5

l) pode ser reescrita ao fazer-se v =1—D/2e z = Vow?:

GO (wio) = 2008 (227) (2) 7 Kap Vo), D <2, 62)

em que a propriedade da funcdo gama de Euler,
I'(z2)I(1—-2z) =mn/sin(nz), z¢Z, (6.28)
foi utilizada.

Tipo Espaco: w? < 0. Neste caso faz-se aescolhaw = (0,w!, -+ ,wP 1) = (0,&) sem perda de generalidade,
porque o resultado final serd escrito sob uma forma covariante. Neste caso, a integral (6.23) pode ser calculada de
maneira similar a feita em (A.I)). O resultado é:
(0) D 2 iif-c D2 D-1 1 iif-@
G Nw;o)= [d"né(y*+0)e"? = o2 v ———=e"T".
i2>1 72 —1
Esta integral pode ser efetuada em coordenadas esféricas (FI) com n = D — 1 onde a coordenada radial é definida

como R = |7j| e a primeira coordenada angular ¢, é dada por cos ¢1 = 7j - &/ |ij||@|, de modo que

- d Sln )D 3 l\f‘WHW‘COS(‘Pl)
Vi |2 / #1 (sin (6.29)

xfo de, (sin )P fo d¢p_3 singp_ 3f0 dpp—».

D=2 [® . _p_
c@wwo=az/’ﬂmmP2

Com o uso da forma integral da fun¢@o de Bessel de primeira espécie [61]],

1 v
Jv(z) = 1(2)1/ o (Sin@)zvei’“(’sg, Re(v) > _%,
2l (1/+ ) 0

a segunda integral em ti pode ser reescrita ao fazer-se z = \/0|if||@| e v = B53:

/wmlwwﬂwm%z(wmm)zﬁﬂifyswwwu (630)

2
Em adi¢do, com o uso da funcdo beta [53]]

B(p,q) = 2/7 d6 (cos0)*P~1(sin9)*~!, Re(p) >0 e Re(q) >0,
0

a qual estd associada com a fun¢do gama como

_ L(p)I(q) 631)
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pode-se escrever que

T . s ) s
/ dgi(sing;)" 2 = 2/2 di(sing;)P "2 =B <;D211) , i=2,---,D—3.
0 0

Portanto,

_ p-3 T (1)1 (2= D4
H/dqblsm@“z HB(lD = 1>@ <2)D( ) T 63
2oor() ()
Trazendo os resultados (6.30) e (6.32)) a (6.29), tem-se
e g 1T
GO(w;o) = (4> 7 A — ill@l) - 6.33
o) = 200 T (i5) s (VD). 63

Por fim, reescrevendo esta expressdo como

D-3

GVwre) = 2wy T () T pim [ e [ (1 1)) s (vl

pode-se fazer uso da relacdo entre a fungdo de Bessel de primeira espécie [, e a fungdo de Bessel de segunda espécie

Yy [67],
0 v+1
| xS exp [0 = )] Lo (ay)
a x2—a2
1
TN\ 2 1 _v_1 1
- —(E)Za’”%y”(f—i-bz) iy, (a(y2+b2)5), a,b>0, Re(v)>-1, (634

D

de modo que definindo os pardmetros nesta expressdo como x = |ij|,a = 1,y = /o|w|ev = %3, a fun¢ao

geradora de grau zero se torna:

GO (w; ) = (f/’ii) T Yo_2 (\/W) D>2. (6.35)

Funcdes Geradoras no Espaco de Minkowski. Com os resultados (6.27) € (6.35) em (6.23)) e, com o uso da
identidade [|61]]

2: 2" % (2)] =24 1(2), (6.36)

onde .%, denota J,, ¢™K, ouY,, as funcdes geradores de grau I no espaco de Minkowski podem ser calculadas. O

resultado é:

271:’(:05(2 Dn—i—nl) (m)%+ll<l+@( (7(4)2), w?>0eD <2(14+1)
G (w;0) =

— 2

b2y
A () Py, (VEew?), @ <0eD>2(1+1)
(6.37)

As fungoes K, e Y;, tém o seguinte comportamento assintdtico [61]]:

z—0 = , Re(v) >0, (6.38)
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de modo que no limite w — 0, 1&-se

nlcos(¥7r+7rl)( 1 )Z(ZH)_DF(¥+Z>, w—=0teD<2(1+1)

NG
60 (csor) — . (6.39)
D—2(1+1) B _
n1+l(2ﬁ2) r(%—l), w—0"eD>2(1+1)

A primeira relagdo em (6.39) é regular na origem w = 0 mas, se D é impar, entdo esta fungéo geradora é zero
devido ao cosseno e, se D € par, ela diverge porque a fungdo gama ndo € definida para inteiros negativos. Vé-se,
assim, que no caso w? > 0 ndo h4 caracteristicas relevantes quando w — 0. Por outro lado, a segunda relacdo
em (6.39)) € irregular na origem. Porém, pode-se extrair a parte regular desta fun¢do geradora ao escrever a funcao
de Bessel de segunda espécie em termos da fungdo de Bessel de primeira espécie com o uso da fun¢ido de Hankel

Hv(z) = ]v(z) + in(Z):

D2
(s o) = 11+ [TV 2 o) — -
GV (w;o) =im <\/—7a)2 [H¥_l( Ucu) ]¥_l (\/ ow )},D_Z(Z—i—l),
e, portanto, a parte regular na origem «w = 0 desta fungdo geradora é dada por
N D2
Dy — i 14 [ 27TV 0
GV (w;0) = —in (\/—Tﬂ) Jnz (\/ aw),DZZ(H—l), (6.40)

porque, no limite w — 0, tem-se

T2 e <o, 0<-w?< B2 eD>2(+1). 6.41)

Para obter esta relacao, foi utilizado o comportamento assintdtico da fungdo de Bessel de primeira espécie [61]],
qual seja,

1 Z\ &
Z%Oﬁla(z)%m(i) g {1, -2--te0<z<Vatl (6.42)

As irregularidades discutidas neste subsegdo podem ser evitadas uma vez que a integral (6.23)) seja calculada
sobre uma superficie compacta [41,/68]]. Isto serd feito na proxima subsecdo em que o resultado (6.41) serd

recuperado no espaco Euclideano.

6.2.2 Funcoes Geradoras no Espaco Euclideano

Definindo
i o= (it P,
ot = (iwo,wl,--' ,wD_l) ,
tem-se
0t =1t = i,
onde 17,y = —diag(1,---,1) = —Jj, define uma métrica no espago Euclideano e



caracteriza um produto interno no espaco Euclideano. Com estas relagdes, pode-se escrever a fungdo geradora de

grau zero no espago de Minkowski em termos da fung@o geradora de grau zero no espago Euclideano como
GO(w;r) = -G (@;0), (6.43)

onde,

Gg’) (@;0) = / AP 8(77? + o)e T (6.44)

¢ a funcdo geradora no espaco Euclideano. Para simplificar a notagdo, as barras sobre as varidveis serdo omitidas
a partir deste ponto. Observe que a integral (6.44) é calculada no suporte compacto correspondente a esfera
(170)2 + -+ (17D _1)2 = 0, portanto, espera-se que ela seja finita na origem w = 0. Para verificar esta afirmacao,

veja que a fungdo geradora (6.44) satisfaz a equagdo

(aﬁ, - a) GV (w;0) = 0. (6.45)

(0)

Assumindo que G seja rotacionalmente simétrica, tem-se que esta fun¢do depende de w como r = v/ —w?. Com

esta hipétese, a equacéo (6.43) pode ser reescrita como

+ =0.

ar? r dr

2 _
(d b 1d+a) Gg))(w;a)

r=v-w?
A mudanca da varidvel r para '’ = /o7 leva esta Gltima igualdade 4 equacgdo de Bessel

@2 D-14d
<dr/2 P 1> Gy (w;0) =0, (6.46)

cuja solucao geral € dada por

7

6 (wio) = (Vo' B [y, (Ver) + CoYy (V)]

r=v—w?

(0)

onde Cq e C; sdo constantes. Escolhe-se C; = 0 para que G’ seja regular na origem w = 0. Assim,

Géo)(w;ﬁ) —Cy % ]%_1(\/Er)

r=v—w?
Com o resultado (F.12) e fazendo uso do comportamento assintético da func@o de Bessel de primeira espécie (6.42),

pode-se calcular o valor de Cy. O resultado é
C = 7‘[% (2\/&)%71,

o qual implica que

D
cW(w;0) = n(W) Jp_4(vor) (6.47)

r=v—w?
Levando este resultado a dltima igualdade de (6.23) e, com o uso da relagdo de recorréncia (6.36)), pode-se calcular

a funcdo geradora de grau / no espaco Euclideano. O resultado é:

D_14
G (w;0) = nH! (%) ’ Jo 1y (var) (6.48)

r=v—w?
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No limite r — 0 esta relagdo é reescrita com o uso de (6.42):

D _
GV (w = 0;0) —» 2o T (@Z;“H), (6.49)

que € a relacdo encontrada para a funcio geradora no espaco de Minkowski (6.41)) a menos do fator —i (veja a

relagdo (6.43)).

6.3 Vértice Cuabico no Espaco Euclideano

Com os resultados desenvolvidos na segdo precedente, analisa-se, a seguir, a integral (6.24) no espago Euclideano.

Definindo em (6.24) f(1,p) = Fi(y7, p)F2(y7, p) e com o uso do resultado (6.48) para | = 1, obtém-se

::%Gf) hfwwammMmm

=0

Ie(0) = G (idy; o) Fy (7, p) Fa (17, ) . (6:50)

=0
emquer =V — \/9y - 9y cujas derivadas sdo calculadas em 7 = Ol A relagdo (6.50) pode ser reescrita

como

I(o) = Ig)((aﬂl+aﬂz) o)Fi(n1)F2(72) (6.51)

11=0=m

em que ? = \/—(w1 +w2)? = /13 +15—2rp, 1 = \/—w? = [0y, -0y, i =1,2erp = w-wp =

—dy, + Oy, Arelago (6:3T) pode ser reescrita com o uso do teorema de adi¢do de Gegenbauer para as fungdes de

Bessel [[69]:

:2({) h#wmammw>

11=0=13

]V(w) — v r(v) i(v—i—k)C%(z) ]v+kv<x) ]erk(y)

w = oy

, (6.52)

com (Uz

=x2+y?—2xyze
K721 (1) T(v 4k —n)

C%(Z):EO n T(v)(k—2n)!

(2z)F2, v > —% ev#0, (6.53)

onde | x| denota o maior nimero inteiro menor ou igual ao ndmero real x. De fato, definindo os parAmetros de

(6:32)-(6.33) como w = /0P, x = \Jor1,y = /012, 2 =112/ (r112) e v = (D — 4) /2, tem-se

I(c) =7r2 (20) 7 | —*——5= | F(n)Ek(n)
(V)

= n92D4r(D_4> Loo <D_4+k> CI% <712) ]%”‘(\/Erl) ot (Vo) Fi(m)F(n2),

- - 2
2 =0 2 Y1t b4

(rir2) 2
(6.54)

calculado em 771 = 0 = 772. Com o uso da identidade entre a fungdo hipergeométrica oF e a funcdo de Bessel de

primeira espécie | [61]],
I'(v+1)
(z/2)¥

4IPorque em (6-50) o argumento da funcdo de Bessel de primeira espécie ¢ um operador pseudo-diferencial, esta igualdade ¢ definida em

oFi(v+1;-22/4) = ———L]u(2),

termos da expansdo em série de poténcias [61]]:

Z:: W):m <2>2m+u.
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onde

d r
(V)n = M, n € Nev e R (simbolo de Pochhammer),

= I'(v)

pode-se reescrever a relagdo (6.54) comv = (D — 4)/2e z; = \/or;, i = 1, 2. O resultado é:

OFli/Z

77 T(22) (Bt+k) Bt Ay 0
I0) = o7 L1 2221: ([rzDszk)]z)Ckz ((am-am) 7 (giza )1/2) (3y, - 9y,)"2
_ . ,  (6.55)
X (8772'a'72>k/2Fl(Tf4,k)(771;(7)F2(D7 ¥ (12;0)

11=0=12

em que a propriedade C}/ (—z) = (—1)kC;;’ (z) foi utilizada e foram feitas as seguintes definigdes:
By (i p;0) = 082 oF; (1 k;—2ay, -0y, ) Ei(nip) i=1,2
z(v,k)(771/ p;o) =0/ oF (1+v+k 4% Oni (i, p) i , 4

Observe que

r%) (5 k) rwek T (6:56)

( —2 ) TTwrl+k) Tk )

onde a propriedade da fungdo gama I'(z + 1) = zI'(z), Vz € C foi utilizada. Em adi¢éo, o termo em (6.53),

D—4 dy, - 0 - -
G 0, >(a 292 (3, 09y PP s g (715 0) B Dot (112 0) ,
¢ ((8,71 '8771)1/2 (aﬂz '8772)1/2 e S ( : ,k) ( : ,k> m=0=mn,

(6.57)

pode ser reescrito de forma mais simétrica como

= =
. = = D4 0y, - 0 - = .
£ (o5 k)(’h/ 7) (9, 0 m)k/zckz ((% (5 Uil 5}172 )1/2> (0y,- 0 ,72)k/2F2(%/k)(772;a),
m- 9 1
1 (6.58)

<

- . =y 05
em que o operador d , age apenas na fungdo a direita ao passo que 9 , age apenas na fungéo a esquerda. Com esta

notagdo em mente, pode-se retomar a varidvel original #7, 1, — 1 de modo que substituindo (6.56) e (6.38) em

(6.33), obtém-se
(k) = = .
10) =% Do Arossy (Ao 08)] Pogs (90 90) [Beppm)]| | @59
=0
com ,
D/2
A S L L — 6.60
wi = (=1) k12T (1+ v + k) (6.60)
) k) i~ = S 9,9 - =
P 9 , Ei(a .9 )k/ZCV n’ Ui (a .9 )k/ZI
v( U ’7) %K), oo k (3;7}5 )1/2(317.?)1/2 7
o qual € chamado operador corrente de troca de spin k [54]. Com o uso da definigdo de C; (6 e notando que
I'v+k—n) Tw+k—n) @2 T(1-v—k) sin(m(v+k))  (=1)"
Tv)(v)y,  Tw+k)  T(A—-v—k+n)sin(nr(v+k—n)) (Q—v—k),

o operador de troca pode ser simplificado a:

B (9, 7) =nl (5,5, (5,9 (3, 7)) e
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Assim, a expressdo final de (6.50) é:

n .| (6.62)

6.3.1 Aplicaciio: Calculo do Vértice Cubico (6.9) no Espaco Euclideano

Definindo

Fi(n,p) = J(n,—p)

E(np) = —5]0p)
o vértice cubico (6.9) no espago Euclideano é, com o uso do resultado (6.59):
(k) — =
Pp_ys( 0y 0
(E) _ _ Dot ‘ -4 (94,9y) ‘
57 = 0" Lo [ Aoy [ St 1 —pi)| g [ g (1) 0
]7:
(6.63)
onde o operador IP é dado por (6.61) e
o
g, po) = /2 oF (1 +v+k —Zan : 8,7> J(n,p). (6.64)

Assumindo que a corrente _# seja uma funcdo analitica em 7, entdo pode-se expandi-la como ( para simplificar a

analise que segue, faz-se o = 1):

® 1 (r)
S (n,p) = ZO S g, (P

tal que
(s) — [s/2] 1 gl
r D—4 a ,a , =
P Po (T, WM/WPNWO’gz%@_g_QmeN
— 1 () e\ = \52n = —» 1
x{ Lgbmnm...ﬂﬂu/m“_y”(_p)] (9;7- aﬂ) (an. 8,7) <8,7~ an)

(6.65)

[e] 1 " VU(‘U)
X z;)aﬂ ] /Pfl"‘llv(p)

n=0
() (v)

Para que esta relacdo seja diferente de zero, € necessdrio que os tensores _# e _¢ sejam de ordem s porque,
efetivamente, hd s derivadas a esquerda e s derivadas a direita em @, de modo que se u > s ou v > s, arelagdo
(6.63) se anula, visto que as derivadas nesta relagéo sdo calculadas na origem # = 0. Em adig#o, observe que
" e ©) " w7 2 i w7
(COREIIL LR Ll N 02) B LR L NN ¢ ) Il L/ EER L N ()
(s—2)
e 1. .. pyHs—
SaRRE o/ LR Ll RN ()

(s=2) (s)
onde cada tensor _# do segundo membro desta equacéo é obtido tomando um trago do tensor _# como em

(s—=2) (s)
4 y3~~-ys(p) = I paws g (P)-
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S
Assim, pode-se inferir que o efeito do operador (9;, - 9;;)" sobre _# Jyees €

(3y-0)" (s—2n)

j M1 Hs—2n [n](p)'
(s)

em que [n], n < s/2, denota todos os possiveis n tragos do tensor #. Analogamente, o efeito do operador
— — \s—2n
( dy- 0 77) sobre a expressdo remanescente de (6.63) é:

(s)
s (P)

1 (s—2n) <_ s—2n
[@_2@’7’” WS P ] 7y 3)
1 y y (s—Zn)
X my]]ﬂ s—2n f Vs o
(s—2n) F1 " Hs=2n (s—2n) (s—2n) (s—2n)
= J M=p) I e M) = 7 W (=p) 7 ),

o qual substituindo em (6.63), obtém-se

(5)
(7 (1, =p)] P os (<_

[s/2] 1 sl (s—2n) (s—2n)

= - ml_py. [n]
;;)22”(3_[2)_5)1111!(5—271)! S M(=p)- 7 "(p). (6.66)

Finalmente, substituindo (6.66) em (6.63), obtém-se

(s—2n) (s—2n)
s =T R0 Ao ) B ity S A0 S M) )| 66D

S

Para cada s, este vértice € precisamente aquele encontrado pelos autores de [[7/0] no contexto da teoria das particulas

de altos spins nao vinculadas.
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Conclusoes

Nesta dissertag@o apresentamos um estudo sistematico sobre a teoria das CSPs e CSTs com énfase em sua descri¢ao
por meio de teoria de grupos, conforme feito originalmente por Wigner em [4]], e por uma teoria de campo. Nos dois
primeiros capitulos apresentamos os ingredientes bdsicos necessarios em teoria de grupos, com destaque aos grupos
de Lorentz e Poincaré, para que, no Capitulo [3] as representacoes de spin continuo e tiquions de spin continuo deste
grupo fossem completamente caracterizadas. Em seguida a esta andlise, obtivemos, no Capitulo @] equagdes de
onda que descrevem as representacdes de spin continuo cuja solucao foi utilizada na constru¢do de amplitudes de
emissdo/absor¢do soft. O Capitulo[5]foi destinado ao estudo de uma teoria de campo para um CST, onde uma ag@o
foi apresentada com a andlise de suas simetrias globais e locais. O calculo explicito dos autovalores dos operadores
de Casimir do grupo de Poincaré permitiu que pudéssimos verificar que, de fato, a acao apresentada propaga um
unico CST. Em seguida, a escolha de um gauge permitiu que, na expansdao do campo taquidnico em tensores
completamente simétricos e de todas as ordens, as componentes com tragos nulos fossem eliminadas. Finalizamos
este capitulo acoplando ao CST uma corrente externa escolhida como fun¢do de dois campos escalares massivos.
Verificamos que ela satisfaz uma equacgdo de continuidade e obtivemos explicitamente uma expressdo local para ela.
No limite de massa nula, o vértice ctibico com uma CSP e dois campos escalares massivos obtidos pelos autores
de [54] foi recuperado. Por fim, no Capitulo[6|apresentamos uma andlise sistemdtica do vértice ctibico com uma CSP,
mostrando que, no espaco de Minkowski, este vértice ndo comporta os graus de liberdade fisicos compativeis com
uma CSP. No espago Euclideano, por sua vez, mostramos que este vértice apresenta uma similaridade com aquele
encontrado pelos autores de [[70] no contexto da teoria das particulas de altos spins ndo-vinculadas, caracteristica
essa que, a nosso ver, necessita ser melhor esclarecida em trabalhos futuros.

A existéncia de amplitudes de emissado/absor¢do soft covariantes para CSPs demonstra que interagdes de longo
alcance podem ser intermediadas por estas particulas, de modo que a teoria das CSPs pode oferecer novos ingredi-
entes na descri¢@o da eletrodinamica e da teoria da gravidade. De fato, em [64]], Schuster & Toro demonstraram
que as amplitudes de emissdo soft de uma CSP se aproximam muito bem aquelas correspondentes ao féton e ao
grdviton no regime de altas energias E >> p. Por um lado, esta correspondéncia € adequada para resolver o problema
levantado por Wigner [[6] sobre a capacidade térmica infinita de um sistema térmico constituido por CSPs porque,
fenomenologicamente, apenas as suas trés primeiras componentes (veja a expansdo dada pela (0.8)) tém relevancia
no regime de altas energias (mundo real) E >> p para a capacidade térmica deste sistema térmico. Por outro lado,
as amplitudes de emissdo/absorcdo soft para CSPs nio correspondem aquelas da teoria de altos spins no limite de
massa nula e spin arbitrariamente alto [64]]. Isto significa que através deste limite ndo € possivel obter uma teoria
com interacdes de CSPs a partir da teoria de particulas massivas de altos spins, em contrapartida a andlise cinemadtica
feita em [5}33]]. Portanto, a busca por uma teoria de campo completa onde as amplitudes de emissdo/absor¢do de
uma CSP soft possam ser recuperadas, a nosso ver, constitui o problema central sobre a teoria das CSPs. A agéo de
Schuster & Toro [41]], embora descreva adequadamente a CSP livre, ndo parece ser um bom comeco em resolver
este problema porque o acoplamento da CSP a uma corrente externa ndo propaga os graus de liberdade fisicos
corretos [54]).

Alguns pontos sobre a teoria dos CSTs ndo foram discutidos nesta dissertag@o e, a nosso ver, merecem destaque

em estudos futuros: a extragdo do propagador a partir da agéo apresentada no Capitulo [5e verificagdo se o mesmo
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propaga os graus de liberdade fisicos corretos correspondente a representacdo taquidnica de spin continuo.
Generalizar a formulac¢do Lagrangiana dado por Schuster & Toro [41]] e pelos autores de [46] a espagos de
(Anti-)de Sitter constitui um caminho natural no estudo das representagcdes de spin continuo. Isto foi feito por
Metsaev [63)/71]] com a extensdo do formalismo dado as particulas de altos spins massivas [72}[73]] as CSPs bosonicas
e fermi()nicasf'z] Neste contexto, destacamos dois resultados importantes obtidos por Metsaev: representacdes de
spin continuo unitdrias em espacos de de Sitter inexiste e, em espacos de Anti-de Sitter, as solu¢des unitdrias ndo
foram ainda identificadas com as representa¢des unitdrias do grupo de Anti-de Sitter; este constitui um problema
em aberto. Estes resultados foram obtidos também pelos autores de [[76] com o uso do formalismo do tipo frame as

CSPs (veja também [77]] para mais discussdes sobre este formalismo aplicado as CSPs).

42Veja também [74] onde o autor obtém a acdo de Metsaev a partir da acio que descreve particulas massivas de altos spins [73,{75] atravé do

limite m — 0 e s — oo, onde m € a massa da particula e s € o spin.
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A Geradores do LG Massivo e Nao-Massivo

Seja k* um quadrivetor tipo tempo (k* = m? > 0) e g* um quadrivetor tipo luz (4> = 0) de modo que k - g # 0.

Entdo, o quadrivetor

M?
K= ", Al
b 2k - qq ( )
€ do tipo luz e, para a escolha k;, = (kj, 0,0, k;,), define-se os vetores de polariza¢do €+ como
1
e+ (ky) = —=(e1 tiey), A2
+ (kp) ﬁ( 1t iep) (A2)

com €1, dados por (3.20). Veja que €+ = €+ (kj) sdo fungdes do quadrimomento kZ’ de modo que se L(p) é uma

L
transformacio de Lorentz tal que se k;, ﬂ p, entdo €+ (k) — €+ (p). Com o uso das propriedades

€l =ex;
-ei:O,
* €64 -ex =—1;

s ex(ky) k=esr(ky) ky =ex(ky)-q=0;
. khq:kq#o,

pode-se demonstrar que €+, kj, e g sdo linearmente independentes e podem ser utilizados para escrever a métrica

" e o stmbolo de Levi-Civita e#'P? da seguinte forma:

1
g = —(eleV +etel)+ m(kgq” + kigt) (A.3)

chveo

- khl~ p (eieli kgqg + perms), (A.4)

em que ‘perms’ significa todas as possiveis permutacdes dos indices y, v, p e ¢ em eiei kgq”.

1 m2 1 m2
P~ [kt — gt ) = — [k — H
0T (k kq ) m (k" 2%k, -q" ) A

satisfaz ey - (k,e+) = 0, € -k, = —m/2 e e = —1. Veja que quando m — 0, tem-se egm — k;. Este limite

O "quadrivetor"

serd utilizado na Se¢do[A.2]

A.1 Caso Massivo

2

Neste caso k> = m? e as componentes w! (3.11)) podem ser escritas em termos de €y como:

1 M? ) M 1
Wo =W e = w0 <k‘k~q‘7) = kgt e
M 1
= —Tq |: — kliq(eliezkfb)qg + perms)] kav]pa
: M P oM v o P K v
= IW e €k, q" —ele kyq" | quky]os

M .,
= lweﬁe—&w(Q'k)]pa
= iMefe Jor, (A.6)
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em que na terceira linha eliminou-se todos os termos que sdo contragdes entre €+ e os quadrimomentos kj, e 4.

Portanto,
(wo)ty = iMeﬂe‘i(]pa)" v 239 izMe‘ie‘i ((ﬂ;gw — 5ggpv) = M(ey ! — eie_v). (A7)

As outras duas componentes w4 podem ser caluladas de maneira andloga:

wy =V2w-e, = ﬁéew‘wkv]paew
i
= —\/Ezk q(e+e kg7 + perms)ky Jor€
— —\@zkl_ ; (ef el khg” — eTel kg + et k" — e e kq" kv Jpoeu

i
= ﬁm{(€'€+2(kb'k)€ﬁqg+(4' k) (e~ - ey) eTky | oo

= z\f{ el q” + €%k, :|]p(7r (A.8)
em que foi utilizado €_ - €, = —1. A partir da defini¢do (A:I)), pode-se calcular kj, - k:
M? M> M
2 2_ = _ 7
ky k=K - - =M - = o (A.9)
de modo que
1 M? @3 .
= VRt ik o= v (30 i) B A e

= iV2Mebel oo (A10)

Analogamente,

w_ = —ivV2Mehe” Jpo. (A.11)
Com o uso da relagdo ([2.34), pode-se calcular as entradas de w:
(we)ty = :I:i\fZMe‘ieS (Joo)" v = j:zzfoeieo <(5£‘gm, — (Sggp,,) = FV2M (ei,,eg — eieo,,)
= +v2M (eieo,, — eiveg) .
(A.12)

As relacdes de comutacdo candnica neste caso sdo dadas por

[wo, we] = :I:\/E(iM)z(eie'i)(epeft)[]w, Joo]
@ i\fZ(—i) (1M) (6161/ Ggei)(gya]pv - guvfpy + gvp]zry - gyp]m/)

= £V2(-i)(iM)? {(ewe‘i)(e”egfpv) — (e—e) (e ef]on) + (e—peh) (€ €L Jo)

- (€+p€8) (E’/_G‘i]av)] ’

90



com

[wo, wi] = +(—i)V2(iM)? [ (e406%) (€ ehTpn) — (€% ) (€ eh o) + (e—peh) (€ e Joy)
\_;r \_::_1 — ‘:0__/

-

- (exs)(e € )|
——

=0
= —i(iM)[iv2Mehe!; Jou]
= Mw;.
Analogamente,
[wo, w-] = —Muw_.
Em adicdo,
[wy, w-] —2(iM)*(ege’iege?) [Juv, Joo]

€3 —2(—i)(iM)2(63€”+686‘3)(gwlpv — 8voJop + 8vpJoy — SWJIUV)

2i(iM)? (eoge‘i)(eieg]pv) — (e40€7) (egef;]py) + (e+peg)(e‘ieg]w) — (eopeg)(eﬁ_e‘ilw)

N—— e N’
=0 =0 =0 =—1
N~
=—Jvo
B g,

Assim, vé-se que w, wq caracteriza a dlgebra de SO(3). Em termos destas trés componentes, obtém-se

1
wh = — (djw* 4 eﬁw*) — e, (A.13)

V2

de modo que o operador de Casimir qudrtico é dado por:

1 1 2
Cyp=w? = 5 (e—w® +e+w_)2 + 7 (el‘wJr + e’iw‘) . (eowo) + (eowo)
= % [(e--ep)ww™ + (1 -e_)w w'] + (€)*(w’)?
Cy= —% (whrw™ +w wh) — ()% (A.14)

A.2 Caso nao-Massivo

No limite em que m é zero, tem-se que Mey — k conforme a defini¢do (A3) estabelece. De acordo com

(A.10)-(A.T1), w+ sdo finitos e ndo-nulos; denote-os por T
m— 0= me — k = wy - T4 = ii\kaPef_’t]pg, (A.15)
com

(Ta)" ) = £V (Joo ) v B2 £2V/2KPeS, (éﬁgw — (5#ng) = +V2 (eikv - k”eiv> . (A.16)
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Por outro lado, wy — 0 & medida que m — 0 conforme a relagdo (A.6) estabelece. Mas, com o uso da relagdo

(A1), tem-se que
g = —(eo- e = — L (keg— g2 ) 0 = (k- )2 (A.17)
que € finito & medida que m — 0. Isto sugere a seguinte defini¢do:
R=-ZT_ 50 _jebery,, (A.18)
k-q
com
RV, = ieie‘f(]pg)” v e izeﬁref ((Sggw — 5ggup) = — (eie,v — e+veﬁ> =e'e,, — e}fre,u. (A.19)

Em termos de T+ e R, pode-se escrever (A.13) notando que quando m — 0, obtém-se (—:g w = (eg M)R — KkMR:

1
wh = —— (! TH 4} T7) KR} (A20)

V2

e a algebra de Lie corresponde aquela encontrada para o grupo ISO(2) (3:24)

[Te, T5] =0, [R Ti]=+T.] (A21)

O operador de Casimir qudrtico é obtido diretamente a partir da relacio (A.14) com wy = O e wyw_ =

w_wy = T+T_I

a2)

A.3 '"Vetores de Polarizacdo' e (k): a Questdo da Covariincia

Para finalizar este tdpico, vamos verificar se €1 (k) e

e(k ¢) = é (e+(®e™™® e (K)e) = —v21m [e; ()], (A23)

onde Im(z) denota a parte imaginaria do nimero complexo z, se transformam como quadrivetores. Pelo uso das

relacdes (3.31)-(3-32), pode-se calcular a agdo de # € LGy sobre €(k):

7 (6, Ble(k, ¢)

Sl 5l 5l

(=07 (6, B)e-- (k) — e (0, B)e- (k)
[e_i"’e_ie (e4 (k) —iBk) — e'?e® (e_ (k) + i,B*k)}
(€+(k)67i(¢+9) e (k)ei(¢+9)) + \/ki <ﬁ671‘(9+¢) + ﬁ*ei(ew))

= e(k,6+¢)+V2Re {ﬁe_i(‘/’w) } k
— ¢k, (A24)

come =e(k,0+¢)ea=+2Re [[Se*i(‘l’*e)] Com as relagdes
LGe > W (0.) = L APAL) & A= LA (0,HL () s,

p=L(p)k ex(p) =L(ples(k) <+ k=L (p)p, ex(k) =L (p)ex(p)
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obtém-se

Aei(p) = LA (0,8) [L 7 (es(p)] B Lap) (0, pes (k)
= L(Ap)e e (k) — Bk
= ¢ Pler(Ap) —ipAp].

Analogamente,
Ae(p) = &%le (Ap)+iB*Ap].
Em adicdo,

Ae(p,9) = LAY (6,8) (L (p)e(p.@)] = L(AP) [#/(6,p)e(k, )]

B3 [ (Ap)e(k, ¢ +0) +aL(Ap)k

=  e(Ap,p+0)+aAp.

(A.26)

(A.27)

(A.28)

Portanto, pode-se concluir que e+ (p) e €(p, ¢) ndo sido quadrivetores em virtude dos termos iBAp, if*Ap e aAp

em (A:26)-(A28). Esta caracteristica sobre €+ (k) e €(k, ¢) é o ponto de partida tomado por Weinberg na discussdo

de seu teorema no-go [17].
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B Teorema de Weinberg

Steven Weinberg mostrou [[17]] uma consequéncia interessante da condig@o de covariancia (4.33)). Considere um
processo genérico envolvendo 7 particulas cada qual rotuladas pelo seu quadrimomento p; e pelo parametro do LG
a;,comi=1,---,n. Considere que neste processo ocorra a emissdo de uma particula sem massa com helicidade

=+j e quadrimomento k. Em simbolos, a reacdo é dada por:
H|pi,ai> —>H\p§,a§>®|k,:th). (B.1)
®1 ®i

Weinberg demonstrou que sempre € possivel escrever a amplitude do processo acima como o produto escalar entre j
"vetores” de polarizacio €+ (k) e um tensor completamente simétrico de ordem j M, . " (k,p1,- -+ , pn) ortogonal
ao quadrimomento da particula sem massa k, k" My,...,;....; (k, p) = O para algum i € {1,---,j}, de modo a

preservar a condigdo de covariancia (.33):

Alk,£j,p1,- -, pn) ei}tl(k)...e’;i*/(k)Mm...yj({k,i]’},pll...,pn)
kP‘iMHl...M...P].({k, +it,p1,-- ) = 0

(B.2)

As duas condigdes em (B.2]) leva a uma consequéncia importante no que tange a teorias de interagdes intermediadas
por particulas sem massa, a saber, apenas particulas com helicidade menor ou igual a dois podem intermediar

interacdes de longo alcance. Isto pode ser provado notando que

f({kr ih}/ pP1,- 'p” Zglm { i]} pz = e*im (k) e 'ejtyj(k)Myr"m({kr ij}/P1,' .- ,Pn)-
i

(B.3)

Resolvendo esta dltima igualdade para a fun¢do M com o uso da propriedade €+ (k) - e (k) = e+ (k) - €% (k) = —1,
tem-se

My ()P ) = (1w (92, () L s ges( (bbb p). (B

Veja que o fator soft s; depende de cada quadrimomento p; e do quadrimomento da particula sem massa k. Também,
o lado esquerdo da relagéo (B.4) € um tensor simétrico, entdo a tnica possibilidade para o fator soft é que haja uma

dependéncia polinomial em cada p;, Vi =1, -, 1 como

*

si({k £}, pi) = €L (k) e Rypi, - i, = (€1.00) - p) (B.5)
que, substituindo nas relagdes (B-3)-(B.4), obtém-se
Fk A pr - p) = T Sigrr (€100 pi)!

My (e i} p1e - pn) = T Qi Piny  Pir (B.6)
KHiMyyop; =0

Vejamos, a seguir, as consequéncias das relagdes em (B.6):

43A Seciio 13.1 de [2] e o Apéndice G de [78] fazem uma explanacio didadica sobre o teorema de Weinberg.
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B.1 Eletrodinamica: j=1

Neste caso, (B.6) leva a

n
, 1
Min k7)) = LS P

. 1
= KMy, ({k £} peepn) =5 )8 =0
i=1

2 gi=0 — Conservacio de Carga. B.7)

B.2 Gravitacido: j=2

Neste caso, (B.6) leva a
. U 1
My, ({k, 7} 1,0+ pn) = ;gimpim Pi,,
. 1&
= KMy, (1K £} p1cc o pn) = 5 Zgipim =0
i=1
n
& ) 8&iPi, =0, Vip =0,1,2 3 (B.8)
i=1

Uma possivel solugéo de ¢ dada por

gi = &, universal — Principio de Equivaléncia (B.9)

o qual torna a relagdo uma setenca verdadeira, dado que }_; p; = 0 é uma lei da natureza.

B.3 Alto Spin: j>2
Neste caso ndo hd solugdo geral para as condi¢des em (B.6). Por exemplo, se j = 3, tem-se
n
Y. 8iPi, Piy, =0, Vi, pp =1,--- 4, (B.10)
i=1

o qual pode estar relacionado & conservagdo da energia cinética do conjunto de particulas se g; o< 1/2m;, onde m; é
a massa de cada particula que participa do processo (exceto aquelas que ndo tém massa). Assim, 0 processo seria

eldstico e torna a condig¢@o (B.10) restrita. Contudo, conforme Weinberg concluiu [17]:

"Estes resultados ndo significam que particulas de spin trés ou mais ndo existam, apenas que elas ndo podem gerar

campos macroscopicos."
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C Algumas Identidades Uteis

Neste apéndice sao apresentadas diversas relacdes de comutacio e uma identidade para o operador A —

sdo uteis para o texto principal e para os préximos dois apéndices desta dissertagao.

As relacdes de comutacdo sdo:

& —imdg, 12 + &+
[A — imdg, 1 - dx — im{]
& — imdg, (1 -0y — img)" |
[0y - Ox, 17 Ox — im(]

[a'l dx, (17 0x — img) N}

(O 1 0 — im¢]

-0 (D =3 +7-2y), -3, — |
[A—imaé, 7-9y(D—=3+7 -8,])-
[A—imag, D—2+2y ~8,7—

{A —imdg, 1 -y + im{,‘-

[A — imag, 172—

[Bg, x%‘agam_

[awaﬂ, x“aﬁam-

{Dx, e

[A — imag, —pzé‘z—

{A — imdg, m* (& + p*)o

{A — imdg, 2p(&% + p?)imdy;
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2(n - 0x —img),

0, — m?

N(y -9y — im&N"1(O, — m?), VN € N,
DXI

N (-9 —m&N"'0,, VN €N,
axy/

N (17 9x — im&)N "9y, VN € N,
2(D — 1) + 47 (17 - 9y),

2877 N ax,

2D +4(1 - 9y),

(-0x)[2(n-9y) + D = 2],

(217 -9y +D —2)(9y - x),

2877 N ax,

Oy + m?2,

277 : ax,

g;‘pa‘;am,

ga‘oaxyagax'y + 5;0:8‘;858;(7/
20%90,.,,

20%img,

—2m?(im¢)a?,

4pm2§8§,

imog que

(C.1)
(C.2)
(C.3)
(C.4)
(C.5)
(C.6)

(C.7)

(C.8)

(C.9

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)



{A — imdg, 2m?*(n - 0y)G0¢

[A — imdg, m*(D — 2)&0g

{A — imdg, 2pim&(n - 9y)

{A —imdg, p(D —2)im¢
[A — imadg, m?(D — 3)1y - 9y

{A — imag, m?(1 - 8,7)2

10— i, (@ -+ )02
[17 -0y —img, mzyan
[17 -0y —img, 2p(& + p?)imdg

[;7 -0y — imé, 2m2(17 . a,,)gag-

[,7 9y — im¢, mP(D — 2)Z0; |
[17 < 0x —img, 2pim¢ (1) - 9y)
[;7 -9y — imé&, m*(D —3)n - 8,]-

[17 -dy — imc, mz(;y . 8,7)2

{772 + 3P, M (8 uz)aé_

|:172 +§2 +I’l2/ mZVZDU_

{172 3112, 20(82 + i2)im|
[172 £ 3 g2, 20y 9,)E0

[172 £, (D - 2)20,

[112 3442, 2pim(y-3y)

{;72 + &+ p?, m*(D-3)y -9y

[112 + &+ P, mP(n - 9y)?

2m*(£9g) (A — imdg) + 2m2(im§)aé — 20m*&o;
—2m?( - 9y )imag,

—m?(D — 2)imog,

20(img) (A — imdg) — 2pm*Edz — 2p* (im¢)
+2pm? (1 - ),

(D —2)m?,

(C.22)

(C.23)

(C24)

(C.25)

m*(D —3)(A — imdg) + m*(D — 3)imdz — m*(D — 3)p,(C.26)

2m (1 - dy)(A — imdg) + m?(A — imog) + 2m?(n -0y )imog

—i—mzimag —2mo(y - dy) — om?,

2m? (&2 + p?)imdg,

—Zmzyz(A — imog) — 2m2‘uz(im8§) + 2pm2}12,
~20m* (&% +11%),

—2mPZ0x (17 - 0x — im&) — 2m* (im&)Edg — 2m* (img)

+2m? (img) (17 - 9y),

m*(D — 2)imé,
~20(img) (i - 9x — img) + 20m>¢?,
—m?(D —3)(y7 - 9x — im&) — m*(D — 3)im¢,

—2m? (- 3y) (1 - Oy — im&) + m>(y - O — img)
—2m?(im&)1 - 9y + m*(img),

—4m? (&% + p?)Eo; — 2m* (& + i),
—2DmPp? — dm?p2y - 3y,

—4p (&% + p?)img,

—4m2y2Ed; — Am>En - 9y,
—2m*(D - 2)¢?,

—dpimgr?,

—2m*(D = 3)1?,

—4m*p? — dmPy? (17 - 9y).
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(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

(C41)

(C.42)

(C43)



Seja f = f(1,¢,x) e g = g(1,&, x). Entdo a regra de Leibniz para o operador A — imdg, ttil no contexto do

cdlculo dos pardmetros do vértice ctbico para tdquions de spin continuo feito na Subsecao[5.6.3] é dada por:
(A —imdg)(fg) = [(A—imdg)f] g+ f (A —imdg) g+ f - 9,)8 — pfg, (C.44)

emque d(,f - 9,)8 = 0xf - 9yg +Jyf - 0x8.
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D Operadores de Casimir em Teoria de Campo

D.1 Operador de Casimir Quadratico

Visto que o operador momento é dado por P, = idyy, o operador de Casimir quadratico é:

(=P = 0. D.1)

D.2 Operador de Casimir Quartico

Seja guy = diag(1, —1,---,—1) a métrica do espago de Minkowski em dimensdo D. O operador de Casimir

quértico é dado por [8.[9]

1
Ca=—5PJu]"™ + Ju P J"Po. (D.2)

Com o uso das relacdes (3.13) e (5.19), efetua-se, a seguir, o célculo explicito de C4 em termos de operadores

diferenciais. De fato, o termo J2 é dado por

]]41/]]/“/ - _(xyaxy - xyax’,[)(xya; - Xvaz) - (x’,{axy - xyaxy)(ﬂya:; - 7]1/8’;:;)

*(Wyam/ - 771/877;4)(9(;43; - xvail) - (ﬂyanv - 77var];¢)(77yav - 7]1/81}71); (D.3)
Ul
em que

(XD — XuDp) (243 — xO) = — 2, (x43Y) + XDy (m%) + XDy (X3Y) — X,y (xvaz)
= — (xyaz + xyxﬂaxva’;) + (nyaz + xyxvag‘axv) + (nyaz + x”xvaiﬁaxv) — (xyail + xﬂxﬂaxva‘;)

= 2(D —1)x,0% — 2x,x"94,0% + 2x,x" 0y, (D.4)

em que as relacdes de comutacédo [xyaxy, x”E)‘ﬁ = xyafé e {xyé)xv, x"aﬂ = nya;’ foram utilizadas. Analoga-
mente,

— (70w — 1u0yu) ("3} — 1" 9y) = 2(D — 1)1,,9 — 207" w0y, + 217,170}y (D.5)

O segundo termo do segundo membro em (D.3) é igual ao terceiro e é dado por

— (X0 — X0 00) (10 — 9)) = —x" 0}y + X" OOl + X1 dy — xu77" 0l

= —2x,n"9n ) + 2x,17" 930 (D.6)
Aplicando P? = —[, em (D.4)-(D.6), tem-se
—(-Oy) [(xyaxv — X, y) (x0Y, — xvaz)} —2 (f(D —1)x-0y + 220, — (x .‘ax)Z) O, (D7)
com (x -_E)x)z = x,,x" 90k,
—(—0) [(Wanv — 1u9yy) (79 — '7”35)] =2 (—(D — 1)y 3y + 170y — (1 '_977)2) e, (D)
N2 — v H
com (77 - 9y)* = 1u11" 0y €

—(—0) [(xyaxv — X0 ) (179 — anf;)} =2((x-17)(9x-3y) — (x-3y) (1 9x)) Oy, (D.9)
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com (x-9y) (17 - 9x) = xwvagaxv Assim, o primeiro termo em (D.2) é dado por

_%szwf’” = (D= 1)x 9 =20 + (x70:)2) Oe + (D = 1) -3y = 20y + (5 9,)%) O
=2 ((x-17)(3x - 9y) — (x-9y) (17 - 9x)) O (D.10)

Por outro lado, com o uso de
TuoPP = —x,0xp0% + Xp0xudy — 7,95p0% + 1700y, 0%,
o segundo termo em (D:2)) pode ser calculado como
Juo PP T Py
= x03p0% (X100 ) — XD (xﬂa,fjam) + XD (Uua;;am) — X9 (wagam)

gDy (x1050xs) + XDy (X7 ) — 3% (195020 ) + 2000 (17900 ) - (D1
100 (1950s0) — 1 dyod (x79K0ac ) + Do (1795050 ) — 1ydyod’ (1700 )
~pdyud% (x19%dxe) + 1150y 0% (x”aﬁam) — 100 (W”agaw) + 170 0% (n”ﬁgaxa)

Com as rela¢des de comutacdo dadas em (C.16)-(C.18) cada termo em pode ser calculado diretamente. Os

resultados sdo:

Xu0xp0hy (xF350xe) = (x-0y) Oy + 2702, (D.12a)
X, Dxpd (x a"am) = 2(x-3y) Oy + (x 0y)20y, (D.12b)
xyaxpa( aﬁaxg) = (x-7)(3y 90, (D.12¢)
xp,axpap( “3}d U) = (x-3y)(7- )0 (D.12d)
Xp0xudhy (x1950xs) = (D +1)(x0x)Ox + (x - 0x)*Oy, (D.12e)
xpawap( x99 U) = 2(x-0y)0x + (x9x)20y, (D.12f)
5o (190x0) = (x-3:) (- 0:)(3y - 3x), (D.12g)
xpawaf’(‘fa”am) = (x-3:)(7-9:)(3y - D), (D.12h)
Mudypdk (¥1950x0) = (17-9y)0x + (17 - 1) (3 - 9x) Oy, (D.12i)
Midged (2700a0) = (-92) @y - 2) + (x-92) (- 923y - 92), (D.12))
Do (;7 3 am) = (7-90) 3y - ) + 723y - 00)%, (D.12K)
Muded (1°90x0) = (7 9y) 05+ (7 3) (- ,) (3 - 3x), (D.121)
Npdyudy (¢"950xs) = (17 3y)0x + (17 - 9x) (x - 9y) Oy, (D.12m)
1p0yudt (xF050x0) = (7-9y)Ox + (x-9y) (17 - 9x) Oy, (D.12n)
109y (x d ag) = (7-9)(3y - 3x) + (x-92) (17 - ) (3 - ), (D.120)
Moyd (19050 ) = D+ 92)(@y - 0x) + (- x) (- 9y) (3 - ), (D.12p)
Mo (1°90x0) = (1-92)@y - 92) + (- 0220y, (D.12q)

4E importante observar a diferenca entre os operadores (x -78,5)2 e (x-0x)% = (x"0y) (x¥0w), (17 - 9y)% € (17 - 9y)% = (7"0yy) (17" 0py) €
(x- 311)_(’7 -dy)e(x- 311)(’7 “0y) = (x}‘a,”,)(iy'/va).
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Substituindo estas expressdes em (D.11)), obtém-se

JuoPP M Py = x*002 — (D — 1) (x - 0x) 0y — (x +0x)?Ox +2(x - 7) (3 - 0x) O

—2(x- 8,7)(17 -0x)0x — (77 'arl)Dx —2(n-9x)(17 - 877)(817 -9x) — (D —2)(n 'ax)(aiy )
+(17 - 0x)20y + 12 (9y - 0x)2.

Substituindo este resultado e (D-10) em (D.2), obtém-se
G = (D=2)(-9y)0x+ (1 '_817)2Dx - WZDUDX + (7 ax)ZDr] = 2(17 - 9x) (17 - 9y) (9y - 0x)
—(D —2)(57-0x)(3y - 9x) + 179y - 0x)%. (D.13)
O operador (17 - 9;)? pode ser escrito em termos de (17 - 9, )% como (17 - 9,)* = (17 - 9y)* — 17 - 9. Substituindo

esta expressdo em (D-13) e levando em conta a relagdo de comutagdo [17 - Ox, 17 - 9y] = —1] - x para o quinto

termo do segundo membro em (D.T3), tem-se que a expressdo final para o operador de Casimir quértico é dada por:

G = (77'ary)(D_3+’7‘an)Dx_WZDan_z(’Y'an)(ﬂ'aX)(an'ax)+(77‘ax)2Dr]

—(D —4)(17-0x)(3y - x) + 17(3y - 9x)? (D.14)
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E Propriedades de RY

Este apéndice objetiva verificar que o campo RY definido em tem as mesmas propriedades do campo

taquidnico ¥ estudado no Capitulo 3]

E.1 Dinamica

A seguir demonstra-se que o campo RY satisfaz a equagdo de campo (5.36). Isto é feito calculando o comutador

entre o operador R e cada um dos operadores presentes em (5.36). O primeiro comutador & trivial:
{Dx —m?, R} =0. (E.1)

Com o uso dos comutadores (C.19)-(C.27), obtém-se

[A — imog, R} = <2m2§85 +2m? (17 - 9y) + 2pim¢& + m*(D — 2)) (A — imdg) )
= {(A — imdg)?, R} = (41712(;‘85 +4m?(n - 9y) +2m*(D — 1) + 4p(imc§)> (A — imog)?
Com o uso dos comutadores (C.28)-(C.33)), obtém-se
{17 -0y — imé, R} = —2m*u*(A —imdg) — (mz(D —4) +2m?Z + 2p(imE)
. (E.3)
#2020, ) (1 — i)
Com o uso dos comutadores (C.36)-(C.43), obtém-se
{172 + &2+l R] = —4m?u? — 4m®(n? + & 4 u?) (gaé + 17+ 9y + 4pimg +2(D — l)m2> . (E4)
Assim, com os resultados (E-I)-(E-4), obtém-se
2 (A i o [ R S NV 2 _
Oy —m* — (17 - 0x — im¢) (A — imdg) + 5 (174 &=+ pu°) (A — imdg)*, R| = 0. (E.5)
Definindo
M 2 (A _ Lo 22 2viaA o2
Q =0y —m* — (- 9y —iml) (A — imdg) + 5 (7”4 & 4 pu°) (A — imdg)?, (E.6)
a equacdo de campo (5.36) é dada por
&'(n* + 3+ 1) Q¥ =0. (E.7)
Com o uso do resultado (E.3)), vé-se que RY é solugdo desta equagio:
O+ +u)QRY = &+ 8+ p)RQY + (o + 2%+ 41%) {GI R} ¥
B ropP+2+i)0v+ [5’(772 + 2+ 4), R} Q¥ =0,
=0, on-shell -
o & (1> +¢2+12)
=0, on-shell
&' (n* + & + u®)QRY = 0. (E.8)
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E.2 Simetrias
A variagdo de ¥ através das transformacdes locais (3.21)) + (3.28),
¥ ¥+ 5, F, (E.9)
implica que o campo RY se transforma como
RY — R(Y +6¢x¥) = RY + R, ¥. (E.10)
A seguir serd demonstrado que Rde ¥ pode ser escrito como (5.21) + (5.28)), ou seja, Re ¥ = ¢y RY, onde € e
X sdo fungdes de € e x, respectivamente. Esta demonstracdo € feita considerando separadamente a Simetria-x e a
Simetria-€:
E.2.1 Simetria-y
Veja que
REY = R(i(vz ++ #)2%) = i{(vz + 3+ )R+ R, (8 u2>z] }x. (E11)
Com o uso da relagdo de comutagdo (E.4), pode-se obter que
[R, (i + &+ yz)z} =4 + &+ u?)? <2m2(§a,§ +1-9y) +2pimé + (D + 1)m2). (E.12)

Portanto, substituindo esta relagdo em (E.IT)), obtém-se

1
5xRY = R6,¥(17,&,x) = Z(”z +&+u?)%g, (E.13)

onde

x(n,&x) = (R + 8m?(n - dy + &0¢) + 8pim +4(D + 1)m2>x(17, ¢, x). (E.14)
E.2.2 Simetria-¢
Veja que

R6:Y = R(;y Oy —imE — L(P + 2+ u?) (A - imag))e
= {(q.aximg;(q2+52+y2)(Aimag)>R (E.15)
+[R, 79 — img — %(172+CZ+V2)(A—imag)} }e
Com o uso das relagdes de comutagio (E2)-(E-4), obtém-se
10— i = 07+ 4 42)(8 i), R]
= —(q-ax—imé— %(ﬂ2+§2+y2)(A—imag)> ) (E.16)
(2D~ 2) 4 2201, + €05) + 2p(im)

Portanto, substituindo em (E-I3), obtém-se:

6:RY = RS Y = {;7 - Qy — imE — %(;72 +&8 412 (A - imag)} 3 (E.17)

106



com

é(n,¢,x) = {R + mZ(D -2)+ 2m2(17 -y +Cog) + 2p(im§)] e(n, &, x). (E.18)

Juntando os resultados (EI3) e (EI7), vé-se que o campo RY se transforma da mesma forma que ¥

G20+E-28):

|RY — RY + 5¢¢RY,

(E.19)

em que os pardmetros locais (€, ¥) sdo dados em termos de (€, x) conforme (E-14) e (E.I8).

E.2.3 Reducibilidade

Verifica-se a seguir se os parAmetros (€ e §) se transformam da mesma maneira que € e x (53.31) de modo que
Je s RY [;7 Dy — imé — %(;72 FE 4+ P (A - imaé)] e+ % (;72 +E+ yz)zx (E.20)
seja invariante. De fato, ao fazer x — x + o5 x em (E-14), obtém-se
oK = [R + 8m? (1 - 9y + £0z) + 8pimE +4(D + 1)m2} OAX
= [R + 8m?* (17 - 9y + £0z) + 8pimé +4(D + 1)m2] (A —imdz) A
= (A —imdg) [R +6m? (1 - 9y + €0g) + 6pimE + 3Dm2] A, (E21)

em que foram utilizadas as relagdes de comutagio (E.2), (C:23), (C.23) e (C.26). Por outro lado, ao fazer € —
€ + dp€ em (ET8), obtém-se

e = [R +m?(D —2) 4 2m*(17 - 9y + €9z) + 2p(img) | Sp€

= {R +m*(D = 2) +2m* (1 - 9 + §0¢) + 2p(im§)] %(;72 +E+pP)A
= %(172 + &+ u?) [R + 6m* (17 - 9y + £0g) + 6pimé + 3Dm2] A, (E.22)
em que foram utilizadas as relagdes de comutagio (E-4), (C-40) e (C.42). Portanto, definindo
A, & x) = [R + 6m* (17 - 9y + €9z + 6pimE + 3Dm2} A, & x), (E23)

vé-se que € e J, de fato, transformam-se da mesma forma que € e x:

A — imd)A(1, &, %)

oax(n,x) = (
32+ &+ pA)A (1,8, x)

51-\@(17, C! x)

(E.24)

e, sob estas transformagdes, (E-20) € invariante.
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F Coordenadas Esféricas

Parte dos métodos revisados neste apéndice tiveram como fonte os Apéndices A.2 e A.4 de [79].

Sejam x1, - - - , x, coordenadas cartesianas. As coordenadas esféricas sdo denotadas por R, ¢, -+, ¢,_1, de

modo que
X = R cos(¢1)
Xy o= Rsin(¢1)cos(¢2)
X3 = Rsin(¢ ) sin(¢2) cos(¢3)
, (F.1)
Xy—1 = Rsin(¢q)---sin(¢,—2) cos(¢p,_1)
Xp = Rsin(¢y)---sin(¢p,_)sin(¢,—1)

comgy, -, Pn_2 € [0,7), ¢py_1 € [0,277) e R = {/x? + - - - x2. Portanto, o volume infinitesimal em coordena-

das esféricas é dado por:

AV, = dxy - -dx, = R" Lsin®2(¢py) sin® 3 (¢pp) - - - sin(¢,_2) AR dpy - - - dp,_1. (F2)

F.1 Areae Volume da Hiperesfera

A conhecida integral

+00 3
Ip(a) = / dxe™ = (2) a>o, (F3)
— 00 a
tem sua generaliza¢do dada por
+oo 1 _a 1
I, = / dx xe™" = Ea*%l r (n;— ) , (F.4)
—o0

em que
I'n+1) = / dx x"e™™,
0

¢é a funcdo gama de Euler. Assim, pode-se escrever a seguinte integral em, pelo menos, duas maneiras diferentes:

</+: dx e_”x2>n €3 (%) " (F.5)

+o00 n 400 00 o0
( / dxe”xz) - / dxy e . / dx, e~ B / AV, e (F6)

—00 —00 —00

ou

Em termos de coordenas esféricas, pode-se expressar o volume infinitesimal dV;, como o volume de uma coroa
hiperesférica de espessura dR:

dV, = S, (R)dR, (E7)
em que Sy, é a drea da hiperesfera de dimenséo 7 e raio R. Dado que V,, « R", ou seja, V;; = A, R", com A, um
parimetro que depende apenas da dimensionalidade 7, vé-se que dV,, = nA,R"1dR Su(R) = nA,R" 1,
Portanto, a integral é dada por:

+oo _2\" o 1 P2 1 _(m-p+1 n—1)+1 n _n_ (N
(/oo dxe ”x> :/0 dR nA,R" e~k @nAnEa 2 1"((2)) :A"Ea ZF(E)'
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a qual, levando em conta o resultado (E.5)), tem-se

implicando que

T2
Ay = p
TAr(3)
_ 277,'% n—1
Tyt
_ 277 1 _ 277 "
dv, = T (%) R" 7R = V,= T (%) R".

F.2 A Integral da Funcao Delta

A integral

Géo) 0;0) = /an 5(772 +0)

pode ser calculada com o uso dos resultados da subsecao anterior. De fato, definindo

tem-se

1
dR = -

de modo que

Y (0;0) =

(P2 = —A) +o,
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