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Resumo
Nesta dissertação apresentamos um estudo sistemático sobre a Teoria das Partículas de Spin Contínuos (CSPs)

e dos Táquions de Spin Contínuos (CSTs) pelo uso de métodos de Teoria de Grupos e Teoria de Campos. Para

este fim, realizamos uma breve revisão sobre Teoria de Grupos, especializando-nos nos Grupos de Lorentz e

Poincaré, no qual CSPs e CSTs aparecem como Representações Unitárias Irredutíveis (UIRs). Então, revisamos

amplitudes de emissão soft para CSPs, onde pode-se discutir a possibilidade de que interações de longo alcance

serem intermediadas por CSPs, ao invés de apenas partículas sem massa de baixa helicidade (fóton e gráviton).

Depois, analizamos a teoria de campos para CSTs, em que é discutido simetrias globais e locais da ação e calculamos

os autovalores dos operadores de Casimir quadrático e quártico. Depois, investigamos os graus de liberdade físicos

propagados pelo campo e analisamos o vértice cúbico com um CST e duas partículas massivas escalares, em que

exploramos uma corrente externa adequada que obedece uma lei de conservação generalizada. Finalizamos tomando

o limite de massa zero deste vértice para obter o vértice cúbico para uma CSP e duas partículas escalares massivas,

onde estudamos suas propriedades tanto no espaço de Minkowski quanto no espaço Euclideano. Mostramos que o

propagador obtido no espaço Euclideano é similar ao encontrado no contexto da teoria de Partículas de Altos Spins

(HSPs).

Palavras-chave:

Teoria de grupos, grupo de Poincaré, representações unitárias, táquions, partículas de spin contínuo, vértice.
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Abstract
In this dissertation, we present a systematic study of the theory of Continuous Spin Particles (CSPs) and Continuous

Spin Tachyons (CSTs) using both Group Theory and Field Theory approach. To do so, we make a brief review

of Group Theory specializing ourselves on Lorentz and Poincaré Groups, where both CSPs and CSTs appear as

Unitary Irreducible Representation (UIR). Then, we review soft amplitudes for CSPs, where one can discuss the

possibility of long-range interactions intermediated by CSPs, instead of just massless low-helicity particles (photon

and graviton). After that, we enter the realm of CST field theory, where is discussed global and local symmetries of

the action and we compute the eigenvalues of the quadratic and quartic Casimir operators. Then, we investigate the

physical degrees of freedom propagated by the field and analyze cubic vertices for one CST and two massive scalar

particles, where we explore a suitable current that obeys a generalized conservation law. We end up by taking the

massless limit of this vertex to get a CSP vertex for one CSP and two massive scalar particles, where it is studied its

properties in both Lorentz and Euclidean signatures. We show that the propagator obtained in Euclidean space is

closely related to the one encountered in the context of the theory of Higher Spin Particles (HSPs).

Keywords:

Group theory, Poincaré group, unitary representations, tachyons, continuous spin particles, soft amplitudes,

vertex.
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Introdução
Com os princípios da teoria quântica e da relativida restrita juntos, podemos prever os tipos de partículas elementares

que a natureza comporta. Por um lado, Eugine Wigner provou que qualquer transformação de simetria na mecânica

quântica é implementada por transformações unitárias e lineares ou anti-unitárias e anti-lineares sobre vetores no

espaço de Hilbert [1].1 Por outro lado, a teoria da relatividade restrita é construída com base em dois axiomas:

• As leis físicas são as mesmas em todo sistema de referência inercial;

• A velocidade da luz no vácuo c é constante em todas as direções e em todos os sistemas de referência inerciais

e independe da fonte.

Estes dois postulados implicam que o quadrado do intervalo infinitesimal entre dois eventos,

ds2 = c2dt2 − dx2 − dy2 − dz2, (0.1)

é invariante, isto é, independe do sistema de referência inercial. Dentre todas as transformações sobre quadrivetores

do espaço de Minkowski R1,3 pelas quais (0.1) é invariante, nesta dissertação será analisada em detalhes a

transformação caracterizada pelo par (Λ, b) tal que

xµ (Λ,b)−→ x′µ = Λµ
νxν + bµ, (0.2)

em que xµ ≡ (t, x, y, z),2 µ = 0, · · · , 3, bµ ∈ R1,3 é um quadrivetor constante e Λµ
ν ≡ ∂x′µ/∂xν é uma matriz

que satisfaz gµν = gαβΛα
µΛβ

ν, onde g = diag(1,−1,−1,−1) é a métrica do espaço de Minkowski. Todos os

pares de transformações (Λ, b) que agem sobre as coordenadas do espaço-tempo de acordo com (0.2) define o

grupo de Poincaré e a análise de suas representações unitárias e irredutíveis (UIRs) constitui um passo importante

no estudo das partículas elementares, como aquelas que são o tema principal desta dissertação.

No fim da década de 1930, Wigner, com o uso dos princípios da mecânica quântica e da relatividade restrita

acima mencionados, classificou as UIRs do grupo de Poincaré mostrando que o estudo das características das

partículas elementares pode ser feito através da perspectiva de teoria de grupos [4]. Segundo seu trabalho, pode-se

rotular as UIRs do grupo de Poincaré com os autovalores dos operadores de Casimir deste grupo, a saber, o operador

de Casimir quadrático C2 = P2, em que P é o operador momento, e o operador de Casimir quártico C4 = W2,

em que Wµ = 1
2 ϵµνρσPν Jρσ é o vetor de Pauli-Lubanski e Jµν é o operador momento angular total.3 A Tabela

1 mostra as possíveis UIRs do grupo de Poincaré para partículas sem massa. Nesta tabela, l rotula o vetor de

estado correspondente a cada representação e h é o autovalor do operador helicidade ĥ = S⃗ · P⃗/|P⃗|, em que S⃗

é o operador de spin e P⃗ é a parte espacial do operador momento. Os autovalores de ĥ podem ser inteiros ou

semi-inteiros. As representações de helicidade h, também chamadas representações de spin discreto ou de spin finito,

são caracterizadas por C2 = C4 = 0 e possuem dois estados de polarização, implicando que estas representações

são de dimensão finita. O fóton e o gráviton são exemplos de representações deste tipo com helicidade h = ±1
1Veja [2], pp. 91-96, para uma revisão recente sobre este resultado. Também, há uma prova devido à Wick para o caso mais simples em [3],

pp. 284-285, correspondente ao espaço de Hilbert de dimensão dois.
2Deste ponto em diante será utilizado o sistema de unidades naturais no qual c = 1.
3O operador de Casimir quártico aqui definido é válido apenas em dimensão D = 4. No Capítulo 5 utilizaremos os operadores de Casimir

em dimensão D qualquer com base nos resultados do Apêndice D.
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Representação C2 C4 l

Partículas de helicidade h 0 0 ±h

Bósons de spin contínuo 0 −ρ2 0, ±1, ±2, · · ·

Férmions de spin contínuo 0 −ρ2 ± 1
2 , ± 3

2 , ± 5
2 , · · ·

Tabela 1: UIRs de massa nula do grupo de Poincaré.

e h = ±2, respectivamente. Por outro lado, as representações de spin contínuo são caracterizadas por C2 = 0 e

C4 = −ρ2 ̸= 0, em que ρ ∈ R é um parâmetro com dimensão de energia que pode ser associado ao spin s: no

limite em que C2 = m2 → 0 e s→ ∞, então ρ→ ms é finito e diferente de zero [5]. Estas representações podem

ser decompostas em uma soma infinita de estados de helicidade e abragem infinitos estados de polarização. Devido

à esta característica, Wigner as descartou como possíveis estados físicos que representam partículas sem massa que

podem ser encontradas na natureza [6]. Ele argumentou que um gás composto por partículas de spin contínuos

(CSPs) teria capacidade térmica infinita.4

A Tabela 2 mostra todas as possíveis representações massivas do grupo de Poincaré. Neste caso, os autovalores

de C2 são não-nulos e o autovalor de C4 é rotulado pelo spin s, que pode ser inteiro ou semi-inteiro, ou pelo número

real ρ. As representações massivas de spin s compõem, ao lado das representações de helicidade h discutidas

anteriormente, o Modelo Padrão das partículas elementares. As partículas taquiônicas, por sua vez, não são

encontradas livres na natureza. Estas partículas criam uma configuração instável que decai espontaneamente sem a

presença de táquions no estado final. Isto é chamado de condensação de táquions e é o que acontece no mecanismo

de Higgs.

Representação C2 C4 l

Partículas massivas de spin s m2 −m2s(s + 1) −s, −s + 1, · · · , s− 1, s

Táquion escalar −m2 0 0

Táquion de spin s −m2 m2s(s + 1) ±(s + 1), ±(s + 2), · · ·

Táquion bosônico de spin contínuo −m2 −ρ2 0, ±1, ±2, · · ·

Táquion fermiônico de spin contínuo −m2 −ρ2 ± 1
2 , ± 3

2 , ± 5
2 , · · ·

Tabela 2: UIRs massivos do grupo de Poincaré

É importante fazer um esclarecimento sobre a denominação "spin contínuo"dada às representações de dimensão

infinita do grupo de Poincaré conforme feito pelos autores de [7]. A definição usual de spin corresponde ao maior

valor possível de l e, conforme mostrado nas Tabelas 1 e 2 , estes valores são discretos. Portanto, visto que CSPs e

táquions (à excessão do táquion escalar) não possuem valor limite para o rótulo l, estas partículas foram definidas

por Wigner como partículas de spin infinito [6]. Esta definição é mais precisa, tendo em vista que o autovalor

de C4 não é, rigorosamente, o spin. Entretanto, nesta dissertação será mantida a denominação "spin contínuo"às

4O princípio de equipartição da energia pode ser utilizado para explicar este resultado. Este princípio asserta que a cada grau de liberdade há

uma contribuição correspondente à 1
2 kB para a capacidade térmica do sistema em estudo, onde kB é a constante de Boltzmann.
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representações de dimensão infinita porque esta é a mais utilizada na literatura.

A análise feita até este ponto sobre as representações unitárias do grupo de Poincaré pode ser estendida para

dimensão D qualquer [8, 9]. Em D = 3 (duas dimensões espaciais e uma temporal), os autores de [10] mostraram

que CSPs podem ser pensadas como generalizações de anyons sem massa.5 No contexto de teoria de cordas, as

representações de spin contínuos surgem no limite de tensão nula [12–14] e como estado fundamental da teoria

apresentada em [15].

A existência de amplitudes covariantes de emissão soft para CSPs [16] trouxe uma nova perspectiva sobre a pos-

sibilidade de interações de longo alcance serem intermediadas por estas partículas, ao invés de serem intermediadas

por apenas partículas de helicidade baixa (fóton e gráviton), conforme asserta o teorema no-go de Weinberg [17,18].6

Assim, obter uma teoria de campo para CSPs propondo uma ação e quantizando-a canonicamente seria o caminho

natural para obter os detalhes sobre as possíveis interações intermediadas por CSPs. Entretanto, apenas equações de

campo covariantes obtidas por Wigner e Bargmann eram conhecidas [22, 23] e, através destas e de outras equações

covariantes, os autores de [24–28] procuraram construir uma formulação quântica das CSPs dentro e fora do

esquema da teoria quântica de campos. No entanto, eles encontraram diversos problemas, dentre os quais, violação

de causalidade e Hamiltoniana não-local.7

Os autores de [24–28] não atribuíram à teoria das CSPs uma característica fundamental compartilhada pelas

teorias que descrevem partículas sem massa: a eletrodinâmica e a relatividade geral são teorias de gauge. Neste

contexto, Bekaert & Mourad [33] obtiveram um progresso importante para obter uma teoria de campo para CSPs

como uma teoria de gauge. Eles recuperaram as equações de Wigner [22] a partir das equações de campo derivadas

da teoria de gauge para partículas massivas de altos spins [34, 35] 8 através da relação entre o grupo ortogonal

SO(D− 1) e o grupo Euclideano ISO(D− 2), denominada contração de Inönü-Wigner [37] (veja também a análise

feita em [5] e a breve discussão feita em [38], pp. 165-166).9 Assim, além da invariância de Lorentz, Bekaert &

Mourad mostraram que as equações de Wigner contêm uma simetria de gauge, de sorte que a busca por uma teoria

de gauge pela qual estas equações pudessem ser derivadas tornou-se importante na última década.

Em 2013, Natalia Toro & Philip Schuster propuseram a primeira ação que caracteriza uma teoria de gauge para

as CSPs. A ação é dada por [39]:

S =
1
2

∫
d4x d4η δ′(η2)

[
(∂xΨ)2 − 1

2
η2 (∆Ψ)2

]
, (0.3)

onde Ψ = Ψ(η, x) é um campo escalar, xµ =
(

x0, · · · , x3) são as coordenadas do espaço-tempo usuais, ηµ =(
η0, · · · , η3) são as coordenadas de um espaço auxiliar (cuja orientação está associada ao spin), ∆ ≡ ∂η · ∂x + ρ e

δ′ é a derivada da função delta com respeito ao seu argumento. A ação (0.3) é invariante sob a transformação de

5Anyons são (quasi)partículas em duas dimensões espaciais com estatística intermediária entre a estatística bosônica (estatística de

Bose-Einstein) e a estatística fermiônica (estatística de Fermi-Dirac) [11].
6Para uma revisão sobre este e outros teoremas no-go, o leitor pode consultar as referências [19–21].
7A incorporação das representações de spin contínuo em uma teoria quântica de campos de um modo compatível com causalidade foi

feita em [29, 30] onde seus autores, baseados nos resultados de [31], se valeram do uso da construção de campos localizados em cordas

semi-infinitas do tipo espaço ("string-localized fields"), em alternativa à quantização problemática de campos locais pontuais ("point-localized

fields") encontrada pelos autores acima citados. O leitor interessado pode encontrar comentários recentes sobre este tópico em [32].
8Para uma revisão mais recente sobre a teoria das partículas de altos spins, veja [36].
9Conforme será detalhado no Capítulo 3 para D = 4, os grupos SO(D− 1) e ISO(D− 2) são importantes na descrição das representações

unitárias do grupo de Poincaré associadas às partículas massivas e sem massa, respectivamente.
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gauge

δϵΨ(η, x) =
(

η · ∂x −
1
2

η2∆
)

ϵ(η, x) (0.4)

onde ϵ(η, x) é uma função arbitrária. A seguir, destacamos algumas características importantes da teoria (0.3) que

foram analisadas em [39].

A relação desta teoria com a de altos spins [34, 35] pode ser obtida como segue: primeiro, derive a equação de

campo a partir da ação (0.3),(
−□x + (ω · ∂x + iρ)∂ω · ∂x −

1
2
(ω · ∂x + iρ)2□ω

)
Ψ(ω, x) = 0, (0.5)

em que Ψ(ω, x) =
∫

d4η eiη·ωδ′(η2)Ψ(η, x) é a transformada de Fourier de Ψ(η, x) na coordenada η em

η2 = 0 e sua primeira vizinhança. Para ρ = 0, a solução polinomial de (0.5), Ψ(ω, x) = ϕ(x) + ωµ Aµ(x) +
1
2 ωµωνhµν(x) + · · · , recupera as equações de Fronsdal para partículas de altos spins [34].

A quantização canônica de (0.3) pode ser efetuada com o uso método de Dirac [40], mostrando que, portanto,

existe uma teoria de campo para CSPs que pode ser quantizada. Apesar destes resultados positivos, a ação (0.3)

contém uma característica indesejável: o campo Ψ(η, x) propaga um contínuo de CSPs, isto é, este campo carrega

todos os possíveis valores do parâmetro ρ (veja a Tabela 1), tornando problemático o acoplamento deste campo

a uma corrente externa no limite ρ → 0.10 Para resolver este problema, Schuster & Toro propuseram uma outra

ação [41],

S =
1
2

∫
d4x d4η δ′(η2 + 1)

[
(∂xΨ)2 − 1

2
(η2 + 1) (∆Ψ)2

]
, (0.6)

a qual é invariante sob as transformações

δϵΨ(η, x) =

(
η · ∂x −

1
2
(η2 + 1)∆

)
ϵ(η, x), (0.7a)

δχΨ(η, x) = (η2 + 1)2χ(η, x), (0.7b)

onde ϵ(η, x) e χ(η, x) são funções arbitrárias. Schuster & Toro assumiram que o campo Ψ tem dependência

analítica na coordenada η de modo que ele pode ser expandido em termos de tensores simétricos e sem traço como11

Ψ(η, x) = ∑
n

1
n!

ηµ1 · · · ηµn ψµ1···µn(x). (0.8)

A formulação da teoria para CSPs dada por (0.6)-(0.8) apresenta duas vantagens importantes em relação à formulação

anteriormente descrita: (i) a teoria descreve uma única CSP e (ii) no limite ρ→ 0, (0.6) faz contato direto com a

teoria de altos spins sem a necessidade de efetuar transformadas de Fourier para o campo Ψ. Em adição, a análise

feita por Rivelles em [44, 45] mostrou que (i) os parâmetros ϵ(η, x) e χ(η, x) também possuem uma simetria local

e (ii) Ψ(η, x) propaga uma única CSP no hiperbolóide η2 + 1 = 0 e sua primeira vizinhança.

O leitor pode encontrar na referência [7] mais comentários sobre a teoria das partículas de spin contínuo feitos

recentemente e, em [46], a análise da teoria de campo que descreve férmions de spin contínuo.

10Mais especificamente, os autores de [39] obtiveram a Hamiltoniana

Hlivre =
∫ d3 p
| p⃗|

dρ

ρ

dϕ

2π
| p⃗|a†

p⃗,ρ,ϕa p⃗,ρ,ϕ,

onde | p⃗, ϕ⟩ = a†
p⃗,ρ,ϕ |0⟩ define o operador de criação para o estado físico que representa a CSP com momento p⃗ e parâmetro ϕ (que será

apresentado em detalhes na Subseção 3.4.2). Esta Hamiltoniana caracteriza uma teoria para CSPs com todos os possíveis valores de ρ ≥ 0.
11Uma decomposição similar a (0.8) pode ser encontrada em [42, 43] no contexto da teoria de altos spins em espaços AdS.
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O conteúdo desta dissertação é como segue: os dois primeiros capítulos trazem uma breve revisão sobre os

principais ingredientes necessários aos capítulos subsequentes sobre a teoria de grupos e representações, com ênfase

nos grupos de Lorentz e Poincaré. No Capítulo 3, é feita uma análise sistemática sobre as possíveis representações

unitárias do grupo de Poincaré, dentre as quais, a representação de spin contínuo e taquiônica, temas centrais desta

dissertação. Estes capítulos têm por base as referências [2, 3, 16, 38, 47–52] além das notas de aula [53]. O Capítulo

4 trata da descoberta feita por Schuster & Toro a respeito da existência de amplitudes de emissão soft para CSPs [16]

construídas a partir de equações de onda covariantes. A teoria de campo para táquions de spin contínuo é introduzida

no Capítulo 5, onde são analisadas as simetrias da ação apresentada e, com o cálculo dos autovalores dos operadores

de Casimir on-shell, verifica-se que, de fato, a ação descreve táquions de spin contínuo. Em adição, estudamos

os graus de liberdade físicos que o campo taquiônico carrega e, em seguida, discutimos o vértice cúbico com um

táquion de spin contínuo e dois campos escalares massivos. No limite de massa nula, obtemos o vértice com uma

CSP e dois campos escalares massivos obtidos pelos autores de [54] com o uso de correntes de Berends-Burgers-van

Dam [55]. Por fim, no Capítulo 6 fazemos uma análise do vértice cúbico que contém uma CSP e verificamos suas

propriedades no espaço de Minkowski e Euclideano. Terminamos com nossas conclusões e perspectivas futuras.
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1 Teoria de Grupos
Neste capítulo apresentamos uma breve revisão sobre alguns tópicos de teoria de grupos que serão úteis em capítulos

subsequentes, trazendo à luz principalmente a teoria dos grupos de Lie e álgebras de Lie.

1.1 Conceitos Básicos

Seja G um conjunto não vazio. Diz-se que G é um grupo se satisfaz as seguintes propriedades:

• Para quaisquer x, y ∈ G, x · y ∈ G, ou seja, em G é definido um produto;

• Para quaisquer x, y, z ∈ G tem-se x · (y · z) = (x · y) · z, ou seja, o produto em G é associativo;

• G contém um elemento E, denominado identidade do grupo, tal que E · x = x · E = x, para qualquer x ∈

G;

• Para cada elemento x ∈ G, existe um único elemento x−1 ∈ G tal que x−1 · x = x · x−1 = E. x−1 é

denominado inverso de x.

Se para quaisquer x, y ∈ G, x · y = y · x, diz-se que G é um grupo Abeliano. Caso contrário, G é um grupo

não-Abeliano.

Qualquer subconjunto de G que possui as propriedades acima listadas é dito ser um subgrupo de G.

1.1.1 Classes de Equivalência, Cosets e Subgrupos Normais

Seja A um conjunto não vazio. Define-se uma relação de equivalência em A a relação12 que satisfaz as seguintes

propriedades:

• x ∼ x, ∀x ∈ A (reflexividade);

• ∀x, y ∈ A, se x ∼ y então y ∼ x (simetria);

• ∀x, y, z ∈ A, se x ∼ y e y ∼ z então x ∼ z (transitiva).

Uma classe de equivalência em A é descrita por todos os elementos neste conjunto que são equivalentes a um dado

elemento. Denota-se [x] = {y ∈ A; x ∼ y, x ∈ A}. Dados x e y elementos de A, tem-se duas possibilidades:

ou x ∼ y ⇒ [x] = [y] ou x ≁ y ⇒ [x] ∩ [y] = ∅, ou seja, o conjunto A pode ser "fatorado"em classes de

equivalência mutuamente disjuntas. O conjunto de todas as classes de equivalência do conjunto A é denotado por

A/ ∼= {[x], x ∈ A} e recebe o nome de espaço quociente.

Um exemplo importante de relação de equivalência que será útil em futuras discussões deste trabalho é a que

define cosets. Seja G um grupo e H um subgrupo. A relação g ∼ g′ ⇔ ∀g, g′ ∈ G, ∃ h ∈ H; g′ = g · h define

em G uma relação de equivalência cuja classe de equivalência lê-se [g] = {g · h; h ∈ H} := g · H, denominada

coset à esquerda, e cujo espaço quociente denota-se (G/H)l . Analogamente, [g] = {h · g; h ∈ H} := H · g

define o coset à direita cujo espaço quociente é denotado por (G/H)r. No que segue, introduz-se a noção de

subgrupo normal (ou invariante) que servirá para relacionar cosets à direita e esquerda.

12Relação em um conjunto não vazio A é definido como um subconjunto de A× A = {(x, y); x, y ∈ A}.
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Seja G um grupo e H um subgrupo. Diz-se que H é um subgrupo normal (invariante) de G se, ∀h ∈ H,

g · h · g−1 ∈ H, ∀g ∈ G. Notação: H ◁ G ou G ▷ H. Uma importante consequência desta definição está

na seguinte proposição: (G/H)l = (G/H)r ≡ G/H se H ◁ G. A demonstração desta proposição pode ser

encontrada, por exemplo, em [38]. Definindo o produto em G/H segundo [a] · [b] ≡ [a · b], ∀[a], [b] ∈ G/H, o

espaço quociente torna-se um grupo intitulado grupo quociente. Este grupo será importante quando for analisado o

grupo de Lorentz e o grupo de Poincaré.

1.1.2 Homomorfismo

Seja G e H dois grupos. O mapa φ : G → H é um homomorfismo se φ(g1 · g2) = φ(g1) · φ(g2), ∀g1, g2 ∈ G.

Um homomorfismo que é bijetivo é chamado isomorfismo cuja inversa também é um isomorfismo. Este conceito

permite que seja definido outra relação de equivalência em grupos: G e H são equivalentes se existe um isomorfismo

φ entre eles. Neste caso, diz-se que G é isomorfo a H: G ≃ H.

1.1.3 Produto Direto e Semidireto

É recorrente que alguns grupos mais complexos possam ser decompostos em grupos com estrutura mais simples.

Conforme será abordado em breve, o grupo Euclidiano e o grupo de Poincaré têm este perfil. Para entender como

esta simplificação funciona, introduz-se, a seguir, a noção de produto direto e semidireto de grupos.

Seja G1 e G2 dois grupos com EG1 e EG2 seus elementos identidades, respectivamente. O conjunto G =

G1 × G2 ≡ {(g1, g2); g1 ∈ G1 e g2 ∈ G2} constitui um grupo cujo produto é definido como (g1, g2) · (g′1, g′2) =

(g1 · g′1, g2 · g′2), designado produto direto de G1 e G2. Este produto é associativo, o elemento identidade de G é

EG = (EG1 , EG2) e cada elemento (g1, g2) ∈ G tem uma inversa dada por (g1, g2)
−1 = (g−1

1 , g−1
2 ).

Um importante resultado relacionado a esta definição e que será utilizado no Capítulo 3 é apresentado a seguir.

Antes, porém, faz-se necessário o uso do seguinte Lema:

Lema 1.1. Seja G e H grupos com elementos identidades EG e EH , respectivamente. Então, tem-se que H̃ =

{(EG, h); h ∈ H}◁ G× H e H̃ ≃ H.

Demonstração. Primeiramente, veja que H̃ é um subgrupo de G× H. Ademais, é um subgrupo normal, já que,

∀(EG, h̃) ∈ H̃, tem-se (g, h) · (EG, h̃) · (g, h)−1 = (g · EG · g−1, h · h̃ · h−1) = (EG, h · h̃ · h−1) ∈ H̃, ∀(g, h) ∈

G× H. Em adição, o mapa f : H̃ → H, f ((EG, h)) = h define um isomorfismo entre H e H̃. ■

Teorema 1.1. Seja G e H grupos em que seus elementos identidades são EG e EH , respectivamente. Se H̃ =

{(EG, h); h ∈ H}, então G×H
H̃ ≃ G.

Demonstração. Seja

f : G×H
H̃ → G̃ ≃ G

[(g, h)]
f7→ (g, EH)

. (1.1)

(i) Em primeiro lugar, é preciso verificar se este mapa está bem definido. Supondo [(g1, h1)] = [(g2, h2)], temos

(g1, h1) ∼ (g2, h2) ⇒ ∃(EG, h̃) ∈ H̃; (g1, h1) = (EG, h̃) · (g2, h2) = (g2, h̃ · h2) ⇒ g1 = g2 e h1 =

h̃ · h2. Logo, f ([(g1, h1)]) = (g1, EH) = (g2, EH) = f ([(g2, h2)]). (ii) f é um homomorfismo, porque
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f ([(g1, h1)] · [(g2, h2)]) = f ([(g1, h1) · (g2, h2)]) = f ([(g1 · g2, h1 · h2)]) = (g1 · g2, EH) = (g1, EH) ·

(g2, EH). (iii) Também, observe que f é um homomorfismo injetor. Para provar esta afirmação, suponha que

f ([(g1, h1)]) = f ([(g2, h2)]). Então, (g1, EH) = (g2, EH). Mas (g1, EH) ∼ (g1, h1) assim como (g2, EH) ∼

(g2, h2), porque ∃(EG, h) ∈ H̃; (gi, hi) = (EG, hi) · (gi, EH), ∀i = 1, 2. Portanto (g1, h1) ∼ (g1, EH) =

(g2, EH) ∼ (g2, h2), ou seja, [(g1, h1)] = [(g2, h2)]. (iv) Por fim, veja que f é um homomorfismo sobrejetor

porque, se (g, EH) ∈ G̃, então ∃[(g, h)] ∈ G× H/H̃ dado por [(g, h)] = [(g, EH)] de modo que f ([(g, h)]) =

(g, EH). Logo, G×H
H̃ ≃ G̃ ≃ G ⇒ G×H

H̃ ≃ G. ■

Seja G1 e G2 grupos com EG1 e EG2 seus respectivos elementos identidades. Então, G = G1 Ⓢ G2 ≡

{(g1, g2); g1 ∈ G1 e g2 ∈ G2} é um grupo cujo produto é definido por

(g1, h1) · (g2, h2) = (g1 · g2, h1 · αg1(h2)), (1.2)

em que αg : H → H, g ∈ G, é um automorfismo13 cuja inversa lê-se α−1
g (·) = αg−1(·). Neste caso, diz-se que G

é o produto semidireto de G1 e G2. Este produto é associativo, o elemento identidade de G é EG = (EG1 , EG2) e

cada elemento (g1, g2) ∈ G tem uma inversa dada por (g1, g2)
−1 =

(
g−1

1 , αg−1
1

(
g−1

2

))
.

Os resultados apresentados no Lema 1.1 e Teorema 1.1 permanecem válidos para produtos semidiretos de

grupos. A demonstração é bastante similar com a apresentada acima, portanto, não será feita aqui.

1.2 Representações de Grupos

Seja V um espaço vetorial14 no qual o operador U ∈ L (V) ={Conjunto de todos os operadores lineares inversíveis

sobre V}15 age e G um grupo. Diz-se que U é uma representação de G em V se o mapa

U : G → L (V) (1.3a)

g 7→ U(g) (1.3b)

for um homomorfismo, isto é, U(g1 · g2) = U(g1) ·U(g2), ∀g1, g2 ∈ G. A dimensão da representação é definida

como a dimensão do espaço vetorial V e, se o homomorfismo for bijetivo, então a representação é dita ser fiel, caso

contrário, é dita ser degenerada.

1.2.1 Representações Irredutíveis

Seja G um grupo e U(g) ∈ L (V), ∀g ∈ G uma representação de G sobre um espaço vetorial de dimensão finita

V. Se {|e1⟩ , · · · , |en⟩} é uma base em V, então

U(g) |ei⟩ = |ej⟩D(g)j
i, (1.4)

onde D(g) é denominado uma representação matricial de G em V.16 Suponha que V1 seja um subespaço de V

gerado por {|ei⟩ , i = 1, · · · , n1 < n}. Diz-se que V1 é um subespaço invariante se ∀ |x⟩ = αi |ei⟩ ∈ V1,

U(g) |x⟩ = αi |ej⟩D(g)j
i ∈ V1. (1.5)

13Automorfismo é um isomorfismo de um grupo nele mesmo.
14A menos que seja dito o contrário, adimite-se que o espaço vetorial seja definido sobre o corpo dos números complexos C.
15Quando o espaço vetorial em questão é de dimensão finita, digamos de dimensão n, pode-se identificar L (V) como o conjunto das matrizes

inversíveis de dimensão n com entradas complexas, denotado por GL(C, n) (General Linear group).
16Ao longo desta dissertação, será adotado a convenção de Eintein onde o símbolo de somatório é omitido.
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Observe que (1.5) implica que D(g)j
i = 0, ∀j = n1 + 1, · · · , n, já que V1 = span {|e1⟩ , · · · |en1⟩}. Portanto,

pode-se escrever D(g) como

D(g) =

D1(g) D′(g)

0 D2(g)

 , (1.6)

em que D1(g) é a representação matricial de G que age apenas em V1 de ordem n1 × n1, enquanto que D′(g) é

de ordem n1 × n− n1 e, D2(g), n− n1 × n− n1. Assim, diz-se que D(g) é redutível devido à existência de um

subespaço invariante não-trivial V1.17 Caso contrário, se não há subespaço invariantes não-triviais, a representação

é dita ser irredutível. Se o subespaço complementar V ⊃ V2 = span{|en1+1⟩ , · · · , |en⟩} é também um subespaço

invariante, então D′(g) = 0, ou seja,

D(g) =

D1(g) 0

0 D2(g)

 . (1.7)

Neste caso, se V1 e V2 não possuem subespaço invariante não-trivial, então D(g) é dita ser completamente redutível

e pode ser escrita como o produto direto de duas representações irredutíveis: D(g) = D1(g)× D2(g).

Para finalizar esta subseção, apresenta-se, a seguir, um importante resultado que será utilizado para classificar

representações irredutíveis de alguns grupos contínuos a serem estudados neste trabalho. Por ser um resultado

conhecido, não será apresentada a demonstração dele. O leitor pode encontrar na referência [53], Capítulo 23, uma

demonstração deste resultado.

Teorema 1.2 (Lema de Schur). Sejam U1 : G → L (V1) e U2 : G → L (V2) duas representações irredutíveis

de um grupo G sobre os espaços vetoriais V1 e V2, respectivamente. Se o mapa A : V1 → V2 satisfaz AU1(g) =

U2(g)A, ∀g ∈ G, então ou A = 0 ou A é bijetivo.

Corolário 1.2.1. Seja U1 : G → L (V1) e U2 : G → L (V2) duas representações irredutíveis de um grupo G sobre

os espaços vetoriais V1 e V2, respectivamente. Se o mapa A : V1 → V2 é bijetivo e AU1(g) = U2(g)A, ∀g ∈ G,

então A é único, a menos de uma multiplicação por um escalar.

Sob as hipóteses do Lema de Schur, vê-se, trivialmente, que o operador identidade 1 satisfaz 1U1(g) =

U2(g)1, ∀g ∈ G, logo, com o uso do Corolário 1.2.1, tem-se A ∝ 1. Operadores de Casimir, usados para

classificar representações irredutíveis, têm esta propriedade.

1.2.2 Representações Unitárias

Seja G um grupo e U : G ∋ g 7→ U(g) ∈ L (V) uma representação de G sobre um espaço vetorial V dotado de

um produto interno ⟨·|·⟩. Se U(g) é unitário, ou seja

⟨x|U†(g)U(g)|y⟩ = ⟨x|y⟩ , ∀g ∈ G, ∀ |x⟩ , |y⟩ ∈ V, (1.8)

então diz-se que U : G → L (V) é uma representação unitária.

17Neste exemplo, o espaço vetorial V e o espaço vetorial costituido apenas por seu elemento nulo 0 (v + 0 = v, qualquer que seja o vetor v)

são denominados subespaços invariantes triviais de V.

10



1.3 Grupos de Lie e Álgebras de Lie

Grupos que são definidos através de parâmetros contínuos permitem o uso de noções de diferenciabilidade e

continuidade assim como funções ordinárias. Grupos de Lie têm esta característica. No que segue, discutiremos

suas principais propriedades.

Seja G = {E, U(α)} um grupo de Lie parametrizado por n parâmetros reais contínuos α ≡ (α1, · · · , αn) e

E ≡ U(0) seu elemento identidade. Dado ϵ = limN→∞ α/N, U(ϵ) pode ser escrito infinitesimalmente próximo à

identidade E como

U(ϵ) = E− iϵaTa + O((ϵa)2), 0 < ϵa ≪ 1, ∀a = 1, · · · , n, (1.9)

onde i2 = −1 e cada Ta é denominado gerador do grupo. Observe que Ta, 1 ≤ a ≤ n, são operadores hermitianos

se U(ϵ) for unitário:

U†(ϵ)U(ϵ) = E + iϵaT†
a − iϵbTb + O(ϵaϵb) = E⇔ T†

a = Ta, ∀a = 1, · · · , n. (1.10)

N transformações infinitesimais sucessivas são implementadas por U(Nϵ) = [U(ϵ)]N , de modo que, no limite em

que N → ∞, qualquer transformação finita é implementada por

U(α) = e−iαaTa . (1.11)

Esta particular expressão para qualquer elemento de um grupo de Lie implica em um vínculo entre seus geradores.

Para encontrá-lo, faz-se necessário o uso da fórmula de Baker-Campbell-Housdorff: se X e Y são operadores,

então

eXeY = eX⋆Y,

X ⋆ Y ≡ X + Y + 1
2 [X, Y] + · · ·

(1.12)

em que [X, Y] = XY−YX e ′ · · ·′ indica termos envolvendo comutadores de alta ordem entre X e Y, por exemplo,

[X, [X, Y]] etc. Assim, tomando dois elementos arbitrários de G, o produto entre eles também está em G, de modo

que

G ∋ U(γ) = exp{−iγcTc} = U(α)U(β) = e−iαaTa e−iβbTb

= exp
{
−iαaTa − iβbTb +

1
2
(−i)2αaβb[Ta, Tb] + · · ·

}
⇔ αaβb[Ta, Tb] = 2i (γc − αc − βc) Tc, ∀αa, βb, γc ∈ R. (1.13)

Reescrevendo 2 (γc − αc − βc) = fab
cαaβb, fab

c ∈ R, obtém-se

[Ta, Tb] = i fab
c Tc, (1.14)

fab
c são denominadas constantes de estrutura e satisfazem a relação fab

c + fba
c = 0. Note que a operação [·, ·]

define um produto sobre o espaço vetorial (Ta,+, C) , 1 ≤ a ≤ n, com as seguintes propriedades:

• [Ta + Tb, Tc] = [Ta, Tc] + [Tb, Tc]

• [Ta, Tb + Tc] = [Ta, Tb] + [Ta, Tc]

• α [Ta, Tb] = [αTa, Tb] = [Ta, αTb]
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• [Ta, Tb] = −[Tb, Ta]

• [[Ta, Tb], Tc] + [[Tc, Ta], Tb] + [[Tb, Tc], Ta] = 0

∀a, b, c = 1, · · · , n e ∀α ∈ C. As três primeiras propriedades acima caracterizam uma álgebra sobre o espaço

vetorial (Ta,+, C). Em adição, as duas últimas propriedades caracterizam esta álgebra como uma álgebra de Lie,

denotada por (Ta, +, C; [·, ·]), ou seja, um espaço vetorial dotado com o produto [·, ·].

No que segue, revisa-se um importante exemplo que será utilizado nesta dissertação.

1.3.1 SO(3)

Seja x⃗ ∈ R3 cujas coordenadas são (x, y, z) ≡ (x1, x2, x3) em um sistema de coordenadas S. Em um sistema de

coordenadas S′, x⃗′ = (x′1, x′2, x′3) que é obtido a partir de x⃗ atravé da matriz R: x⃗′ = Rx⃗. Embora estes vetores

tenham coordenadas diferentes, em ambos os sistemas S e S′ seus comprimentos são iguais. Isto significa que a

matriz R é uma matriz ortogonal:

|x⃗′|2 = |⃗x|2 ⇔ RT R = RRT = 1, (1.15)

em que RT é a matriz transposta de R e 1 = diag(1, 1, 1) é a matriz identidade. O conjunto O(3) = {R ∈

GL(R, 3); RT R = RRT = 1} é um grupo, intitulado grupo ortogonal, cujo produto é a multiplicação usual de

matrizes.

A relação (1.15) implica que det R = ±1 de modo que pode-se dividir o grupo O(3) em duas partes:

O(3) = {R ∈ GL(R, 3); RT R = 1 e det R = 1} ∪ {R ∈ GL(R, 3); RT R = 1 e det R = −1}, (1.16)

em que apenas o primeiro conjunto do lado direito da igualdade acima constitui um subgrupo de O(3), chamado

grupo ortogonal especial SO(3) enquanto que o segundo conjunto não é, já que este não contém o elemento

identidade do grupo O(3).

Veja que a relação RT R = 1 impõe seis equações algébricas independentes nas nove entradas de R. Isto

significa que cada matriz R ∈ SO(3) tem, no total, apenas três parâmetros independentes. Seja α⃗ = (α1, α2, α3) os

parâmetros contínuos de R. Porque R é um elemento do grupo de Lie SO(3), pode-se escrever

R(⃗α) = e−i⃗α·⃗L (1.17)

em que L⃗ = (L1, L2, L3) é o gerador de SO(3). Considerando α⃗ = (0, 0, α), tem-se que

SO(3) ∋ [R3(α)]
T =


R11(α) R12(α) 0

R21(α) R22(α) 0

0 0 1


T

(1.15)
=


R22(α) −R12(α) 0

−R21(α) R11(α) 0

0 0 1

 = R−1
3 (α),

ou seja, R11(α) = R22(α) e R12(α) = −R21(α). Levando em conta det R(α) = 1, tem-se que[R11(α)]
2 +

[R12(α)]
2 = 1, portanto, pode-se escolher R11(α) = cos α e R12(α) = − sin α, de modo que

R3(α) =


cos α − sin α 0

sin α cos α 0

0 0 1

 , (1.18)
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que é a matriz de rotação no plano xy pelo ângulo α. Tomando uma rotação infinitesimal, α→ δα, (1.18) pode ser

escrita da seguinte forma

R3(δα) ≈


1 −δα 0

δα 1 0

0 0 1

 =


1 0 0

0 1 0

0 0 1

− iδα


0 −i 0

i 0 0

0 0 0

 = 1− iδαL3,

em que

L3 =


0 −i 0

i 0 0

0 0 0

 (1.19)

é o correspondente gerador. Usando L2
3 = diag(1, 1, 0), é possível verificar a validade de (1.17), ou seja,

qualquer rotação finita ao longo do eixo z com ângulo α pode ser escrita através da exponenciação do gerador L3:

R3(α) = e−iαL3 . Uma análise similar pode ser feita separadamente para rotações ao longo dos eixos x e y. Seguem

os respectivos resultados:

R1(α) =


1 0 0

0 cos α − sin α

0 sin α cos α

 ↔ L1 =


0 0 0

0 0 −i

0 i 0



R2(α) =


cos α 0 sin α

0 1 0

− sin α 0 cos α

 ↔ L2 =


0 0 i

0 0 0

−i 0 0


. (1.20)

Estes geradores podem ser escritos de maneira compacta através do uso do símbolo de Levi-Civita:18

(Lk)jl = −iϵkjl , (1.21)

em que k rotula o gerador enquanto que, os outros dois índices, identificam as entradas da matriz. A partir desta

relação, pode-se determinar diretamente a álgebra de Lie do grupo SO(3):

[Lm, Ln]kl =
3

∑
r=1

(Lm)kr(Ln)rl −
3

∑
r=1

(Ln)kr(Lm)rl
(1.21)
= (−1)(−i)2

3

∑
r=1

ϵmkrϵnlr − (−1)(−i)2
3

∑
r=1

ϵnkrϵmlr

=
(

δmnδkl − δmlδkn

)
−
(

δnmδkl − δnlδkm

)
= δnlδkm − δmlδkn

=
3

∑
r=1

ϵnmrϵlkr
(1.21)
= i

3

∑
r=1

ϵmnr(Lr)kl

∴ [Lm, Ln] = i
3

∑
r=1

ϵmnrLr, (1.22)

de modo que as constantes de estrutura da álgebra são (1.14) fabc = ϵabc. Duas importantes consequências da

relação (1.22) merecem destaque. A primeira diz que cada Li se transforma como um vetor sob rotações:

R(Ls)R−1 = (Li)Ri
s, (1.23)

18ϵijk = 1(−1), i, j, k ∈ {1, 2, 3} se (i, j, k) é uma permutação par (ímpar) de (1, 2, 3) ou ϵijk = 0 se dois ou mais índices forem iguais.
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Figura 1.1: Os ângulos de Euler. Figura adaptada de [3], pp. 304.

por isso, L⃗ = (L1, L2, L3) é um operador vetorial. A segunda consequência define o operador de Casimir do

grupo SO(3):

[⃗L2, Lj] = 0, (1.24)

de modo que L2 comuta com qualquer elemento de SO(3). Assim, pelo Lema de Schur 1.2, L2 é proporcional à

identidade quando agir sobre representações irredutíveis do grupo SO(3). Isto será confirmado em breve.

A maneira mais geral de parametrizar rotações é seguindo os seguintes passos: (i) especifique a direção pela

qual a rotação será feita, digamos n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ), em que θ e ϕ são os ângulos polar e

azimutal, respectivamente, e (ii) explicite o ângulo de rotação, digamos ϖ.19 Assim, tem-se que

SO(3) ∋ Rn̂(ϖ) = e−iϖn̂·⃗L. (1.25)

Sob SO(3), (1.25) se transforma de acordo com

RRn̂(ϖ)R−1 = Rn̂′(ϖ), n̂′ = Rn̂, (1.26)

em que foi utilizado R exp
{
−iϖn̂ · L⃗

}
R−1 = exp

{
−iϖn̂ ·

(
R⃗LR−1

)}
e a propriedade (1.23).

Para descrever as representações unitárias e irredutíveis de SO(3), é necessário introduzir outros três parâmetros,

conhecidos como ângulos de Euler. A Figura 1.1 mostra como qualquer rotação pode ser descrita a partir destes

três parâmetros: (1, 2, 3)
R3(α)−→ (1′, 2′, 3′ = 3)

R2′ (β)
−→ (1′′, 2′′ = 2′, 3′′)

R3′′ (γ)−→ (1′′′, 2′′′, 3′′′ = 3′′):

R(α, β, γ) = R3′′(γ)R2′(β)R3(α),

de modo que, pelo uso da propriedade (1.26), obtém-se

R(α, β, γ) = R3(α)R2(β)R3(γ), (1.27)

em que α ∈ [0, 2π) é o ângulo de precessão, β ∈ [0, π) é o ângulo de nutação e γ ∈ [0, 2π) é o ângulo de rotação

intrínseca ("spin"), enquanto que Ri(·), i = 1, 2, 3 é o ângulo de rotação ao longo do i-ésimo eixo conforme (1.18)

e (1.20).

O próximo passo é a construção do espaço vetorial onde uma dada representação do grupo SO(3) age. Porque

L2 e L3 são ambos hermitianos e compatíveis, escolhe-se os autovetores em comum a ambos como base deste
19Na descrição do grupo de Lorentz a ser feita no capítulo seguinte, faremos uso desta parametrização do grupo SO(3).
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espaço. Este é um procedimento bastante conhecido e, de certa forma, será utilizado no contexto das representações

de dimensão infinita do grupo de Poincaré. Por isso, no que segue, serão apresentados apenas os resultados finais. O

leitor interessado nos detalhes pode consultar, por exemplo, [3].

O espaço vetorial em questão é de dimensão finita e é rotulado por dois números: |l, m⟩:

L⃗2 |l, m⟩ = l(l + 1) |l, m⟩

L3 |l, m⟩ = m |l, m⟩

L± |l, m⟩ =
√

l(l + 1)−m(m± 1) |l, m± 1⟩

, l = 0,
1
2

, 1, · · · e m = −l, −l + 1, · · · , l − 1, l,

(1.28)

em que L± ≡ L1 ± iL2.

Seja U(R(α, β, γ)) uma representação do grupo SO(3) sobre V = {|l, m⟩ , l = 0, 1
2 , 1, · · · e m = −l, −l +

1, l − 1, l}. Então, pelo uso das relações (1.4) e (1.27), obtém-se

U (R(α, β, γ)) |l, m⟩ =
l

∑
m′=−l

D(l) (α, β, γ)mm′ |l, m′⟩ , (1.29)

com

D(l) (α, β, γ)mm′ = ⟨l, m′|U (R(α, β, γ)) |l, m⟩ (1.27)
= ⟨l, m′|U (R3(α)R2(β)R3(γ)) |l, m⟩

= ⟨l, m′|U (R3(α))U (R2(β))U (R3(γ)) |l, m⟩

= ⟨l, m′|e−iαL3 e−iβL2 e−iγL3 |l, m⟩
(1.28)
= e−im′αd(l)mm′(β)e−imγ,

∴
D(l) (α, β, γ)mm′ = e−im′αd(l)mm′(β)e−imγ

d(l)mm′(β) = ⟨l, m′|e−iβL2 |l, m⟩ ,
(1.30)

o que leva a

U (R(α, β, γ)) |l, m⟩ = e−imγ
l

∑
m′=−l

d(l)mm′(β)e−im′α |l, m′⟩ , (1.31)

com

d(l)mm′(β) = (−1)m−m′
√

(l+m)!(l−m)!
(l+m′)!(l−m′)! f (β)

f (β) =
(

cos 1
2 β
)2l

∑a(−1)a(l+m′
a )( l−m′

l−m−a)
(

tan 1
2 β
)m−m′+2a . (1.32)

1.3.2 Spin

Sobre o campo escalar ⟨x⃗|l, m⟩ = ψlm(x⃗), SO(3) age como: (no que segue, utiliza-se a definição de campo escalar

ψ′lm(x⃗′) = ψlm(x⃗))

ψlm(x⃗)→ ψ′lm(x⃗) = U(Rn̂(ϖ))ψlm(x⃗) = ψlm

(
R−1

n̂ (ϖ)x⃗
)

. (1.33)

Tomando ϖ infinitesimal, (1.33) torna-se

U(Rn̂(δϖ))ψlm(x⃗)
(1.25)
=

(
1− iδϖn̂ · L⃗ + O(δϖ2)

)
ψlm(x⃗)

(1.33)
= ψlm (x⃗− δϖn̂× x⃗)

= [1− iδϖn̂ · (x⃗× p⃗)]ψlm(x⃗), p⃗ ≡ −i∇,
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ou seja,

L⃗ = x⃗× p⃗, (1.34)

que é o conhecido operador de momento angular orbital. Em geral, no entanto, ψlm(r, θ, ϕ) é incapaz de

descrever por completo o estado físico de uma partícula. Assim, introduz-se |s, ms⟩, de modo que

[
Sj, Sk

]
= i ∑l ϵjklSl ,

S⃗2 |s, ms⟩ = s(s + 1) |s, ms⟩ ,

S3 |s, ms⟩ = ms |s, ms⟩ ,

S± |s, ms⟩ =
√

s(s + 1)−ms(ms ± 1) |s, ms ± 1⟩ ,

(1.35)

com s = 0, 1
2 , 1, · · · e ms = −s, −s + 1, · · · , s− 1, s. S⃗ é denominado operador de spin e s é o spin da

partícula. Assim, veja que há duas prescrições para o momento angular de uma partícula: L⃗, associado com o

movimento orbital (1.34) e S⃗, um momento angular intrínseco, de modo que a descrição total da partícula é dada

pelo estado |l, m⟩ ⊗ |s, ms⟩.20

O operador de momento angular total é dado por

J⃗ = L⃗ + S⃗. (1.36)

Este operador satisfaz a mesma álgebra que L⃗ e S⃗:

[Jk, Jl ] = i
3

∑
r=1

ϵklr Jr. (1.37)

Em analogia ao que foi feito no fim da subseção anterior, pode-se construir, com base na relação (1.37), o espaço

vetorial gerado pela base |j, mj⟩:

J⃗2 |j, mj⟩ = j(j + 1) |j, mj⟩

J3 |j, mj⟩ = mj |j, mj⟩

J± |j, mj⟩ =
√

j(j + 1)−mj(mj ± 1) |j, mj ± 1⟩ ,

(1.38)

em que,

|s− l| ≤ j ≤ s + l e mj = ms + m ∈ {−j, −j + 1, · · · , j− 1, j}. (1.39)

Assim,

U (R(α, β, γ)) |j, mj⟩ =
j

∑
m′j=−j

D(j) (α, β, γ)mjm′j
|j, m′j⟩ , (1.40)

com

D(j) (α, β, γ)mjm′j
= e−im′jαd(j)

mjm′j
(β)e−imjγ

d(j)
mjm′j

(β) = ⟨j, m′j|e−iβJ2 |j, mj⟩ ,
(1.41)

20Uma análise curta mas elucidativa sobre a origem do spin no contexto do estudo da estrutura fina de átomos hidrogenóides pode ser

consultada em [56].
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U (R(α, β, γ)) |j, mj⟩ = e−imjγ
j

∑
m′j=−j

d(j)
mjm′j

(β)e−im′jα |j, m′j⟩ , (1.42)

d(j)
mjm′j

(β) = (−j)mj−m′j
√

(j+mj)!(j−mj)!
(j+m′j)!(j−m′j)!

f (β)

f (β) =
(

cos 1
2 β
)2j

∑a(−1)a(
j+m′j

a )(
j−m′j

j−mj−a
)
(

tan 1
2 β
)mj−m′j+2a . (1.43)

As relações (1.42)-(1.43) serão utilizadas quando forem analisadas as representações massivas do grupo de Poincaré

no Capítulo 3.
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2 Grupos de Lorentz e Poincaré
Neste capítulo apresentamos uma breve revisão sobre os grupos de simetria do espaço-tempo com destaque para o

grupo de Lorentz (ortócrono próprio) e Poincaré.

2.1 Espaço de Minkowski

Seja S um sistema de coordenadas onde cada ponto é definido por quatro números reais como

S ∋ xµ = (t, x⃗) ≡ (x0, x1, x2, x3), (2.1)

em que x0 ≡ t define a coordenada temporal e xi ≡ (x⃗)i, i = 1, 2, 3 são as coordenadas espaciais (índices latinos,

por convenção, identificam coordenadas espaciais). Cada ponto xµ ∈ S é dito ser um ponto do espaço-tempo.

A mudança do sistema de coordenadas S ∋ xµ para outro S′ ∋ x′µ implica que o intervalo infinitesimal dxµ

em S se transforma no intervalo infinitesimal dx′µ em S′ como

dxµ → dx′µ =
∂x′µ

∂xν
dxν. (2.2)

Para o operador diferencial ∂/∂xµ a transformação se dá como

∂

∂xµ ϕ(x) → ∂

∂x′µ
ϕ(x) =

∂xν

∂x′µ
∂

∂xν
ϕ(x), (2.3)

em que ϕ é uma função escalar arbitrária. Quantidades que se transformam como em (2.2) são ditas contravariantes

e aquelas que se transformam como em (2.3) são covariantes.

Produtos escalares são invariantes sob uma transformação genérica:

A · B → A′ · B′ = A′µB′µ =
∂x′µ

∂xν

∂xσ

∂x′µ
AνBσ =

∂xσ

∂xν
AνBσ = δσ

ν AνBσ = AνBν = A · B, (2.4)

em que δ
µ
ν corresponde ao delta de Kronecker generalizado. No caso particular em que A = B = dx, define-se o

elemento de linha infinitesimal ds do espaço-tempo como

ds2 = dx · dx = dxµdxµ = gµν(x)dxµdxν = gµν(x)dxµdxν, (2.5)

onde é introduzido o tensor métrico gµν(x) tal que dxµ = gµν(x)dxν. Desde que ds2 é invariante, a métrica gµν(x)

do sistema de coordenadas S se relaciona com a métrica g′µν(x′) do sistema de coordenadas S′ como

g′µν(x′)
∂x′µ

∂xα

∂x′ν

∂xβ
= gαβ(x). (2.6)

Na teoria da Relatividade Especial consideram-se transformações no espaço-tempo pelas quais

ds2 = dt2 − dx2 − dy2 − dz2 (2.7)

é invariante. Neste caso, gµν(x) = gµν = diag(1,−1,−1,−1) não depende das coordenadas do espaço-tempo

e, espaços assim definidos, são denominados espaços de Minkowski. No contexto aqui tratado há uma dimensão

relativa à cordenada temporal e três dimensões relativas às coordenadas espaciais. Portanto, o espaço de Minkowski

será denotado por R1,3.

Assim, quais transformações no espaço-tempo deixam ds2 (2.7) invariante e satisfazem (2.6) com uma métrica

constante?
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2.2 Grupo de Lorentz

Para responder à pergunta levantada no fim da seção anterior, basta tomar a derivada em ambos os membros de (2.6)

e usar que gµν(x) = gµν = gνµ:

∂

∂xξ

(
gµν

∂x′µ

∂xα

∂x′ν

∂xβ

)
= gµν

∂2x′µ

∂xξ ∂xα

∂x′ν

∂xβ
+ gµν

∂x′µ

∂xα

∂2x′ν

∂xξ ∂xβ
= 2gµν

∂2x′µ

∂xξ ∂xα

∂x′ν

∂xβ

(2.6)
=

∂

∂xξ
gαβ = 0

⇔ gµν
∂2x′µ

∂xξ ∂xα

∂x′ν

∂xβ
= 0,

em que no segundo termo da primeira igualdade da primeira linha foi trocado os índices µ e ν assim como α e β.

Mas, porque det
(

∂x′ν
∂xβ

)
̸= 0, já que a transformação inversa x′ → x deve existir, a última relação implica que

∂2x′µ

∂xξ ∂xα
= 0,

ou seja, a transformação é linear:

x′µ = Λµ
νxν + bµ, (2.8)

onde Λ ≡ ∂x′
∂x e b são parâmetros constantes. Λ é interpretado como uma rotação no espaço de Minkowski

vinculado por (2.6)

gµνΛµ
αΛν

β = gαβ ou ΛT gΛ = g, (2.9)

o qual tem uma estrutura similar com o encontrado para matrizes ortogonais (veja (1.15)). O conjunto O(1, 3) =

{Λ ∈ GL(R, 4); ΛT gΛ = g} é um grupo, denominado grupo de Lorentz, cujos elementos são chamados

transformações de Lorentz. Neste grupo, o produto é a multiplicação usual de matrizes, 1 = diag(1, 1, 1, 1) é a

identidade do grupo e qualquer transformação de Lorentz tem uma inversa, visto que O(1, 3) ⊂ GL(R, 4).

Dois resultados importantes são derivados a partir da (2.9): (i) det Λ = ±1 e

(ii) g00 =
(

Λ0
0

)2
− δijΛi

0Λj
0 = 1 ⇒

(
Λ0

0

)2
= 1 + ∑

i

(
Λi

0

)2
≥ 1 ⇔ Λ0

0 ≥ 1 or Λ0
0 ≤ −1.

(2.10)

Assim, pode-se escrever O(1, 3) como a união de quatro setores diferentes conforme mostrado na Tabela 3. Apenas

Setor det Λ Λ0
0

L ↑
+ +1 ≥ +1

L ↓
+ +1 ≤ −1

L ↑
− −1 ≥ +1

L ↓
− −1 ≤ −1

Tabela 3: O(1, 3) = L ↑
+ ∪L ↓

+ ∪L ↑
− ∪L ↓

−.

L ↑
+ ≡ SO(1, 3) ⊂ O(1, 3) é um subgrupo, intitulado grupo de Lorentz ortócrono próprio ou grupo de Lorentz

restrito que é constituído por transformações contínuas no espaço-tempo que deixam (2.7) invariante. Outros

subgrupos de O(1, 3) são transformações discretas (paridade e inversão temporal) e não serão tratadas neste trabalho.

O grupo de Lorentz restrito SO(1, 3) é um grupo de Lie e, para descrevê-lo, pode-se fazer uso dos mesmos

passos que foram utilizados na caracterização do grupo ortogonal. O número de parâmetros, por exemplo, é
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determinado pela restrição (2.9) que fornece dez diferentes equações algébricas sobre os dezesseis parâmetros da

matriz Λ. Portanto, Λ tem seis parâmetros independentes. Destes, três descrevem rotações no espaço Euclideano

R3 (já descritas no capítulo anterior) e os outros três descrevem as chamadas transformações de Lorentz especiais ou

boosts. Sob estas transformações coordenadas espaciais são misturadas com a coordenada temporal. Um exemplo

de tal transformação é um boost na direção x implementada por

Λ(ξ1) =


cosh ξ1 − sinh ξ1 0 0

− sinh ξ1 cosh ξ1 0 0

0 0 1 0

0 0 0 1

 , (2.11)

em que o parâmetro ξ1 pode ser qualquer valor real. Isto significa que o grupo de Lorentz não é compacto,

implicando que todas as suas representações unitárias são de dimensão infinita.21

Considerando ξ1 infinitesimal, pode-se expandir (2.11) como

Λ(ξ1) ≈


1 −ξ1 0 0

−ξ1 1 0 0

0 0 1 0

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− iξ1


0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0

 = 1− iξ1K1,

com

K1 =


0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0

 , (2.12)

e, porque K2
1 = diag(−1,−1, 0, 0), pode-se verificar que Λ(ξ1) = e−iξ1K1 . Uma análise similar pode ser efetuada

para as outras duas direções ξ⃗2 ≡ (0, ξ2, 0) e ξ⃗3 ≡ (0, 0, ξ3), levando a

Λ(ξ2) =


cosh ξ2 0 − sinh ξ2 0

0 1 0 0

− sinh ξ2 0 cosh ξ2 0

0 0 0 1

 ↔ K2 =


0 0 −i 0

0 0 0 0

−i 0 0 0

0 0 0 0

 (2.13)

Λ(ξ3) =


cosh ξ3 0 0 − sinh ξ3

0 1 0 0

0 0 1 0

− sinh ξ3 0 0 cosh ξ3

 ↔ K3 =


0 0 0 −i

0 0 0 0

0 0 0 0

−i 0 0 0

 . (2.14)

Uma propriedade do grupo de Lorentz que será útil no capítulo seguinte é que qualquer transformação de

Lorentz pode ser escrita como uma rotação seguida por um boost,

SO(1, 3) ∋ Λ = B(ξ⃗)R (⃗θ), (2.15)

21Em contraste, se o grupo for compacto (no sentido topológico), suas representações unitárias são de dimensão finita, como ocorre com o

grupo ortogonal SO(3). As demonstrações destas afirmações não serão feitas aqui por não fazerem parte do objetivo deste capítulo mas, para o

leitor interessado, podem ser encontradas em [57].
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em que B(ξ⃗) = exp{−iξ⃗ · K⃗} e R (⃗θ) = exp{−i⃗θ · J⃗}. Os detalhes da demonstração desta afirmação podem ser

encontradas em, por exemplo, [53].

2.2.1 Álgebra de Lorentz

Uma rotação infinitesimal no espaço-tempo transforma as coordenadas segundo δωxµ = gµνωνγxγ, em que

0 < ωνγ ≪ 1, ∀ν, γ = 0, · · · , 3. Assim, uma transformação de Lorentz infinitesimal pode ser escrita como

Λµ
ν = δ

µ
ν + ω

µ
ν , de sorte que, devido à restrição (2.9), tem-se que a matriz ω é antissimétrica: ωαβ + ωβα = 0.

Isto significa que ω tem seis parâmetros independentes: três parâmetros de rotação ωij e três de boost ω0i. Logo,

qualquer transformação de Lorentz pode ser expressa de acordo com

SO(1, 3) ∋ Λ(ω) = e−
i
2 ωµν Jµν , (2.16)

onde Jµν compõe três geradores de boosts J0i = Ki e três geradores de rotação Jij. Estes podem ser reescritos com o

uso do símbolo de Levi-Civita:22

Jkl = ∑
m

ϵklm Jm ↔ Jk =
1
2 ∑

l,m
ϵklm Jlm = −1

2
ϵklm Jlm. (2.17)

(2.17) implica que

[Jij, Jkl ] = ∑
p,q

ϵijpϵklq
[

Jp, Jq
] (1.37)

= ∑
p,q,m

i ϵijpϵklqϵpqm Jm
(2.17)
= ∑

p,q
i ϵijpϵklq Jpq. (2.18)

Mas,

ϵijpϵklq = det


δik δil δiq

δjk δjl δjq

δpk δpl δpq

 = δikδjlδpq − δilδjkδpq + δilδjqδpk − δiqδjlδpk + δiqδjkδpl − δikδjqδpl

de modo que (2.18) se torna

[Jij, Jkl ] = i ∑
p,q

(
δikδjlδpq − δilδjkδpq + δilδjqδpk − δiqδjlδpk + δiqδjkδpl − δikδjqδpl

)
Jpq

= i(δikδjl Jpp − δilδjk Jqq + δil Jkj − δjl Jki + δjk Jli − δik Jl j)

= i(gil Jjk − gjl Jik + gjk Jil − gik Jjl),

em que, na segunda linha, fez-se δab = −gab e Jab = −Jba. Assim, a álgebra de Lorentz, denotada por so(1, 3),

pode ser obtida diretamente a partir da relação anterior como:

[Jµν, Jρσ] = i(gµσ Jνρ − gνσ Jµρ + gνρ Jµσ − gµρ Jνσ). (2.19)

Portanto, além da relação (1.37), tem-se

[
Jl , Kj

] (2.17)
=

1
2 ∑

m,n
ϵlmn

[
Jmn, J0j

] (2.19)
=

i
2 ∑

m,n
ϵlmn

(
gmj Jn0 − gnj Jm0 + gn0 Jmj − gm0 Jnj

)
=

i
2 ∑

m,n
ϵlmn

(
δmjKn − δnjKm

)
= i ∑

m
ϵl jmKm

22Observe que ϵijk = giαgjβgkγϵαβγ0 = gii gjjgkkϵijk0 = (−1)3ϵijk0 = −ϵijk .
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e [
Kl , Kj

]
=
[

J0l , J0j
] (2.19)

= i
(

g0j Jl0 − gl j J00 + gl0 J0j − g00 Jl j

)
(2.17)
= −i ∑

k
ϵl jk Jk,

de modo que (2.19) é equivalente a

[Jk, Jl ] = i ∑m ϵklm Jm

[Jk, Kl ] = i ∑m ϵklmKm

[Kk, Kl ] = −i ∑m ϵklm Jm

. (2.20)

2.3 Grupo de Poincaré

A transformação sobre quadrivetores x ∈ R1,3,

x → T(b)x = x + b, b ∈ R1,3, (2.21)

define um grupo, chamado grupo de translação e será denotado por T4. O produto neste grupo é dado por

T(a) · T(b) = T(a + b), o elemento identidade é T(0) = 0µ = (0, 0, 0, 0) e, para cada T(b) ∈ T4, seu inverso é

T−1(b) = T(−b). Sobre campos escalares, elementos deste grupo agem como

U(T(b))ϕ(x) = ϕ′(x) = ϕ
(

T−1(b)x
)

= ϕ (x− b)

= ϕ(x) + (−1)bµ∂µϕ(x) +
1
2!
(−1)2bµbν∂µ∂νϕ(x) + · · ·

=
∞

∑
k=0

(−b · ∂)k

k!
ϕ(x) = eibµPµ ϕ(x),

em que

Pµ = i∂µ, (2.22)

é o correspondente gerador de T4 neste espaço identificado como operador momento. A álgebra de Lie é denotada

por t4 = span{P0, P1, P2, P3} cuja relação de comutação canônica lê-se[
Pµ, Pν

]
= 0, (2.23)

isto é, T4 é um grupo abeliano.

A transformação (2.8) é formada por uma transformação de Lorentz Λ ∈ SO(1, 3) seguida por uma translação,

T(b) ∈ T4, de modo que a ação do operador g(Λ, b) sobre quadrivetores em R1,3 é definida como

xµ → x′µ = g(Λ(ω), b)xµ = Λ(ω)µ
νxν + bµ, (2.24)

com

Λ(ω) = exp
(
− 1

2 ωµν Jµν

)
∈ SO(1, 3)

b ↔ T(b) = exp
(
− ibµPµ

)
∈ T4

. (2.25)

O conjunto de todas as transformações g (Λ(ω), b) forma um grupo conhecido como grupo de Poincaré e será

denotado por ISO(1,3). O produto neste grupo pode ser inferido ao aplicar-se sucessivamente duas transformações

de Poincaré sobre um quadrivetor genérico x ∈ R1,3. De fato, com o uso de (2.24), tem-se

x → x′ = g(Λ2, b2) · g(Λ1, b1)x = (Λ2Λ1)x + (b2 + Λ2b1),
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∴ g(Λ2, b2) · g(Λ1, b1) = g(Λ2Λ1, b2 + Λ2b1). (2.26)

Comparando (2.26) com (1.2), pode-se ver que o grupo de Poincaré é dado pelo produto semidireto entre o grupo

de Lorentz ortócrono próprio e o grupo de translação descrito no início desta seção:

ISO(1, 3) = SO(1, 3) Ⓢ T4. (2.27)

Dado a relação (2.26), pode-se dizer que qualquer transformação de Poincaré pode ser escrita como uma

transformação de Lorentz seguida por uma translação:

g(Λ, b) = T(b)Λ, T(b) ∈ T4 e Λ ∈ SO(3). (2.28)

As relações (2.26) e (2.28) implicam que elementos do grupo de translação se transformam sob transformações de

Lorentz como

T(b)→ ΛT(b)Λ−1 = T(Λb), (2.29)

de sorte que, se g(Λ, a) ∈ ISO(1, 3), então

T(b) → g(Λ, a)T(b)g−1(Λ, a) = T(Λb) ∈ T4. (2.30)

Isto significa que T4 é um é um subgrupo normal de ISO(1, 3) e, pelo uso do Teorema 1.1 aplicado ao caso do

produto semidireto, obtém-se o isomorfismo

ISO(1, 3)
T4

≃ SO(1, 3). (2.31)

Este resultado será importante na discussão da classificação das representações de ISO(1, 3) no próximo capítulo.

2.3.1 Álgebra de Poincaré

A álgebra de Poincaré é denotada por iso(1, 3) = span{J01, J02, J03, J12, J13, J23, P0, P1, P2, P3}, em que (2.19)

e (2.23) são as relações de comutação para as subálgebras so(1, 3) e t4, respectivamente. Assim, resta calcular

[Pµ, Jρσ] ∈ iso(1, 3). Isto é feito observando que o operador Pµ se transforma como um quadrivetor sob uma

transformação de Lorentz. De fato, notando que ΛT(b)Λ−1 = Λ exp
(
− ib · P

)
Λ−1 = exp

(
− ib ·ΛPΛ−1

)
,

vê-se que

Pµ → P′µ = ΛPµΛ−1 = Λµ
νPν. (2.32)

Assim, tomando uma transformação de Lorentz infinitesimal Λµ
ν = 1− i

2 ωαβ Jαβ + O(ω2), (2.32) pode ser

reescrita como

ΛPµΛ−1 =

(
1− i

2
ωαβ Jαβ

)
Pµ

(
1 +

i
2

ωαβ Jαβ

)
= Pµ − i

2
ωαβ(JαβPµ − Pµ Jαβ) + O(ω2)

(2.32)
=

(
1− i

2
ωαβ Jαβ

)µ

νPν + O(ω2)

⇔
[

Jαβ, Pµ
]
= (Jαβ)

µ
νPν. (2.33)

Mas, com o uso da transformação infinitesimal δωxµ = ωµ
νxν, tem-se

xµ → x′µ = Λµ
νxν =

(
δ

µ
ν −

i
2

ωαβ(Jαβ)
µ

ν + O(ω2)
)
xν = xµ − i

2
ωαβ(Jαβ)

µ
νxν
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∴ x′µ − xµ = δωxµ = − i
2

ωαβ(Jαβ)
µ

νxν = ωµ
νxν,

ou seja,

(Jαβ)
µ

ν = i(δµ
α gβν − δ

µ
β gαν). (2.34)

Substituindo (2.34) em (2.33), obtém-se

[Jαβ, Pµ] = −i(δµ
α gβν − δ

µ
β gαν)Pν = i(δµ

α Pβ − δ
µ
β Pα),

de modo que a álgebra de Lie do grupo de Poincaré é dada por

[
Pµ, Pν

]
= 0[

Pµ, Jαβ

]
= i(gβµPα − gαµPβ)[

Jµν, Jρσ

]
= i(gµσ Jνρ − gνσ Jµρ + gνρ Jµσ − gµρ Jνσ)

. (2.35)

2.3.2 Operadores de Casimir

Para o grupo de Poincaré, há dois operadores de Casimir. São eles:

Operador de Casimir Quadrático: C2 = P2, em que Pµ é o gerado do grupo de translações T4 (2.22). C2 é um

operador de Casimir porque (i) [C2, Pµ] = 0, ∀µ = 0, · · · , 3, como consequência da primeira relação em (2.35) e

(ii), porque produtos escalares são invariantes de Lorentz, depreende-se que [C2, Jµν] = 0.

Operador de Casimir Quártico: C4 = W2, em que o vetor de Pauli-Lubanski Wµ é assim definido 23

Wµ =
1
2

ϵµνρσPν Jρσ. (2.36)

Porque W2 é um escalar, pode-se escrever que [C4, Jµν] = 0. Também, Pµ ∈ iso(1, 3), µ = 0, · · · , 3 comutam

com C4:

[C4, Pα] = [WµWµ, Pα]

= Wµ[Wµ, Pα] + [Wµ, Pα]Wµ

=
1
2

ϵµνρσWµ[Pν Jρσ, Pα] +
1
2

ϵµνρσ[Pν Jρσ, Pα]Wµ

=
1
2

ϵµνρσWµPν[Jρσ, Pα] +
1
2

ϵµνρσWµ[Pν, Pα]Jρσ +
1
2

ϵµνρσPν[Jρσ, Pα]Wµ +
1
2

ϵµνρσ[Pν, Pα]JρσWµ

(2.35)
= −i

1
2

ϵµνρσWµPν
(

Pρδσ
α − Pσδ

ρ
α

)
− i

1
2

ϵµνρσPν

(
Pρgσα − Pσgρα

)
Wµ

= − i
2

WµϵµνραPνPρ +
i
2

WµϵµνασPνPσ − i
2

ϵµνρ
α PνPρWµ +

i
2

ϵµν
α

σ PνPσWµ

= 0,

em que, na penúltima linha, todos os termos são nulos devido às contrações entre tensores simétrico e antissimétrico.

23Esta quantidade foi primeiramente introduzido por Wolfgang Pauli e foi apresentada em [58].
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3 Representações Unitárias Irredutíveis do Grupo de Poin-
caré

Considerando todos os conceitos e resultados mostrados nos dois primeiros capítulos, podemos, neste capítulo,

investigar as Representações Unitárias Irredutíveis (UIRs) do grupo de Poincaré pelo uso do método de Wigner [4].

Dentre as possíveis representações deste grupo, destacamos as representações de spin contínuo que correspondem

ao tópico principal desta dissertação.

3.1 O Método de Wigner

Conforme mostrado no capítulo anterior, o grupo de translações no espaço de Minkowski é um subgrupo nor-

mal/invariante do grupo de Poincaré. Isto sugere que autovetores do operador momento Pµ sejam escolhidos como

base para o espaço vetorial em que uma dada representação do grupo de Poincaré age:

Pµ |p, σ⟩ = pµ |p, σ⟩ , (3.1)

em que pµ é o quadrimomento e σ rotula outros graus de liberdade que o vetor |p, σ⟩ comporta. Portanto, dado

b↔ T(b) ∈ T4 (2.25), tem-se

U (T(b)) |p, σ⟩ = e−ibµ pµ |p, σ⟩ , (3.2)

onde U (T(b)) é uma representação do grupo de translação sobre o espaço vetorial gerado por |p, σ⟩. Por outro

lado, seja U(Λ) a representação do grupo de Lorentz que age sobre estes vetores. Então, pelo uso da relação (2.29),

vê-se que U(Λ) |p, σ⟩ é autovetor de P com autovalor Λp:

PµU(Λ) |p, σ⟩ = U(Λ)U−1(Λ)PµU(Λ) |p, σ⟩ (2.29)
= U(Λ)Λµ

νPν |p, σ⟩ (3.1)
= (Λp)µU(Λ) |p, σ⟩ ,

de modo que U(Λ) |p, σ⟩ ∝ |Λp, σ⟩:

U(Λ) |p, σ⟩ = ∑
σ′

Cσσ′(Λ, p) |Λp, σ′⟩ . (3.3)

Cσσ′(Λ, p) é uma representação matricial do grupo de Lorentz porque, dado o homomorfismo U(Λ1)U(Λ2) =

U(Λ1Λ2), tem-se

U(Λ1)

[
U(Λ2) |p, σ⟩

]
= U(Λ1)∑

σ′
Cσσ′(Λ2, p) |Λ2 p, σ′⟩ = ∑

σ′σ′′
Cσσ′(Λ2, p)Cσ′σ′′(Λ1, p) |Λ1Λ2 p, σ′′⟩

= ∑
σ′′

Cσσ′′(Λ1Λ2, p) |Λ1Λ2 p, σ′′⟩

⇒ Cσσ′′(Λ1Λ2, p) = ∑
σ′

Cσσ′(Λ2, p)Cσ′σ′′(Λ1, p).

Seja W uma transformação de Lorentz e kµ um quadrimomento de modo que

kµ → W µ
ν kν = kµ. (3.4)

W é dito pertencer ao Little Group (LG) do grupo de Lorentz SO(1, 3) correspondente ao quadrimomento kµ.

Notação: W ∈ LGk ⊂ SO(1, 3). Uma possível escolha para W é

W = L−1(Λp)ΛL(p), (3.5)
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em que L(p) é uma transformação de Lorentz particular tal que

pµ = L(p)µ
νkν ↔ kµ = L−1(p)µ

ν pν, (3.6)

e Λ é uma transformação de Lorentz qualquer. Assim, a partir do vetor |k, σ⟩ pode-se gerar |p, σ⟩ como

|p, σ⟩ = N(p)U(L(p)) |k, σ⟩ , (3.7)

onde N(p) é uma constante de normalização. Portanto, sob uma transformação de Lorentz genérica U(Λ) o vetor

|p, σ⟩ se transforma de acordo com:

U(Λ) |p, σ⟩ (3.7)
= N(p)U(Λ)U(L(p)) |q, σ⟩ = N(p)U(ΛL(p)) |k, σ⟩

= N(p)U(L(Λp))U(L−1(Λp)ΛL(p)) |k, σ⟩
(3.5)
= N(p)U(L(Λp))[U(W ) |k, σ⟩]

= N(p)∑
σ′

Dσσ′(W )U(L(Λp)) |k, σ′⟩

(3.7)⇒ U(Λ) |p, σ⟩ = N(p)
N(Λp) ∑

σ′
Dσσ′(W ) |Λp, σ′⟩ , (3.8)

em que W é dado por (3.5) e Dσσ′(W ) é a representação matricial do LGk sobre span{|k, σ⟩}. Comparando as

relações (3.3) e (3.8), tem-se que as representações do grupo de Lorentz são induzidas por aquelas do correspondente

LGk a menos do termo de normalização N(p)/N(Λp). O LGk, por sua vez, é especificado com a escolha de um

quadrivetor representativo do espaço de Minkowski k ∈ R1,3, o qual pode ser tipo espaço k2 < 0, tipo luz k2 = 0

ou tipo tempo k2 > 0.24 Será visto cada uma destas possibilidades no decorrer deste capítulo.

Perceba que Dσσ′ é uma representação irredutível de SO(1, 3) sobre V = span{|p, σ⟩} porque todos os vetores

|p, σ⟩ são gerados a partir de um único vetor |k, σ⟩ pela ação de U(L(p)) ∈ SO(1, 3) (3.7). Portanto, os únicos

subespaços invariantes de V são os triviais.

Pode-se resumir o método de Wigner considerando os seguintes passos: (i) tome um quadrivetor padrão k sobre

alguma região do espaço de Minkowski, a saber, k2 < 0, k2 = 0 ou k2 > 0; (ii) construa uma transformação de

Lorentz que, sobre k, deixa-o invariante (3.4) e (iii) as representações unitárias irredutíveis do grupo de Poincaré

são aquelas correspondentes às do LGk conforme é estabelecido em (3.8).

3.2 Álgebra do LGk

Seja W (Ω) = exp{−iΩ · G} ∈ LGk ⊂ SO(1, 3) onde G = (G1, · · · , Gm) e Ω = (Ω1, · · · , Ωm) definem os

geradores e parâmetros do LGk, respectivamente. Uma condição suficiente para que a relação (3.4) seja satisfeita é

(Gm)α
βkβ = 0, ∀m = 1, · · · , n, (3.9)

pois na expansão W (Ω)µ
νkν = exp

(
− iΩ · G

)µ

νkν apenas o primeiro termo é não-nulo. Porque G ∈

so(1, 3) = span{Jµν}, tem-se que G pode ser escrito como uma combinação linear dos geradores de SO(1, 3)

como

G =
1
2

ϵµνρσYµν Jρσ, (3.10)

24Há também o caso do quadrivetor nulo kµ = (0, 0, 0, 0) que não será tratado neste trabalho.
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em que ϵµνρσ é o símbolo de Levi-Civita e Yµν = −Yνµ ∈ R. Dessa forma, a ação de G sobre k pode ser escrita

como

(G)α
βkβ =

1
4

ϵµνρσYµν(Jρσ)
α

βkβ (2.34)
=

1
4

ϵµνρσYµνi(δα
ρ kσβ − δα

σkρβ)kβ =
1
2

iϵµνασYµνkσ
(3.9)
= 0,

⇒ Yµν = yµkν − yνkµ,

para qualquer quadrivetor yµ. Substitutindo esta equação em (3.10) obtém-se uma forma geral para os geradores G

do LGk:

G =
1
4

ϵµνρσ(yµkν − yνkµ)Jρσ = yµwµ,

com

wµ =
1
2

ϵµνρσkν Jρσ, (3.11)

e, porque w · k = 0, existem três componentes independentes de wµ. Veja que o vetor de Pauli-Lubanski (2.36) age

sobre |k, σ⟩ como

Wµ |k, σ⟩ = wµ |k, σ⟩ , (3.12)

de modo que a álgebra do LGk é determinada pela relação de comutação [Wµ, Wν]. Para determiná-la, observe que

[Wµ, Jαβ]
(2.34)
= i(δµ

βWα − δ
µ
α Wβ),

e

[Wµ, Pν] =
1
2

ϵµαβγ[Pα Jβγ, Pν] =
1
2

ϵµαβγ

(
Pα[Jβγ, Pν] + [Pα, Pν]Jβγ

)
(2.35)
= −i

1
2

ϵµαβγPα(δ
ν
γPβ − δν

βPγ)

= 0,

em que a quarta igualdade é zero tendo em vista a contração entre os tensores simétrico e antisimétrico. Portanto,

[Wα, Wβ] = −iϵαβρµWρPµ. (3.13)

Conforme será visto a seguir, esta relação será útil na identificação do LGk.

3.3 Partículas Massivas

Considerando um sistema de referência em que a partícula está em repouso, seu quadrimomento pode ser escrito

como

kµ = (m, 0, 0, 0), m ∈ R, (3.14)

e com o uso da relação (3.11) as componentes de wµ são dadas por

w0 = 0,

wi = mJi.

Com estas componentes a álgebra de Lie correspondente ao LGk é calculada diretamente pelo uso da relação (3.13)

em que, no que segue, faz-se a substituição do operador momento pelo seu valor quando age no vetor |k, σ⟩ segundo

(3.12):

[wi, wj] = iϵijµνkµwν = iϵij0lk0wl = iϵijlmJl . (3.15)
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A menos da constante multiplicativa m, vê-se que esta álgebra corresponde à álgebra do grupo ortogonal SO(3)

(1.37) de modo que o vetor de estado físico pode ser escrito como |p, j, mj⟩, onde p = L(p)k (3.6) e o par (j, mj)

são especificados nas relações (1.38)-(1.39) da Subseção 1.3.1. Portanto, dado que o espaço gerado por |p, j, mj⟩ é

de dimensão finita, pode-se dizer que a representação do grupo de Poincaré sobre este espaço é de dimensão finita

em consequência do LGk ser um grupo de Lie compacto [57].

Os autovalores dos operadores de Casimir sobre os estados físicos |p, j, mj⟩ são:

C2 |p, j, mj⟩ = P2 |p, j, mj⟩ = p2 |p, j, mj⟩ = k2 |p, j, mj⟩ = m2 |p, j, mj⟩

C4 |p, j, mj⟩ = W2 |p, j, mj⟩ = w2 |p, j, mj⟩ = −m2 J⃗2 |p, j, mj⟩ = −m2 j(j + 1) |p, j, mj⟩
. (3.16)

A partir do quadrimomento padrão (3.14), obtém-se (K3k)µ = (m cosh ξ3, 0, 0,−m sinh ξ3) através de um

boost na direção z (2.14) e, com duas rotações sucessivas R(θ, ϕ) = R3(ϕ)R2(θ) (1.18)-(1.20), este quadrimomento

é levado em pµ = (m cosh ξ3,−m sinh ξ3 sin θ cos ϕ,−m sinh ξ3 sin θ sin ϕ,−m sinh ξ3 cos θ) de modo que a

transformação de Lorentz

L(p) = R(θ, ϕ)K3 (3.17)

é tal que p = L(p)k. Finalmente, dado U(T(b)) ∈ T4 e U(Λ) ∈ SO(1, 3), tem-se:

U (T(b)) |p, j, mj⟩ = e−ip·b |p, j, mj⟩

U(Λ) |p, j, mj⟩ = ∑
j
m′j=−j D(j)

mjm′j
(W ) |Λp, j, m′j⟩

, (3.18)

com W dado por (3.5), L(p) dado por (3.17) e D(j)(W ) é a representação de SO(3) sobre o espaço vetorial gerado

por |p, j, mj⟩ correspondente ao momento angular j (1.41)-(1.43).

A teoria de campo para partículas massivas de spin arbitrário inteiro foi formulado por Singh e Hagen em [59].

3.4 Partículas sem Massa

Com o quadrimomento padrão tipo luz

kµ = (ω, 0, 0, ω), (3.19)

pode-se calcular explicitamente as componentes de wµ com o uso da relação (3.11):

wµ =
1
2

ϵµνρσkν Jρσ = ω
1
2

ϵµ0ρσ Jρσ −ω
1
2

ϵµ3ρσ Jρσ.

Os resultados são:

w0 = ω J12 = ω J3,

w1 = ω(−J23 − J02) = −ω(J1 + K2),

w2 = ω(J31 − J01) = ω(J2 − K1),

w3 = ω J12 = ω J3.

Introduzindo

ϵ
µ
1 = (0, 1, 0, 0) ϵ

µ
2 = (0, 0, 1, 0), ϵi · ϵj = δij, i, j = 1, 2, (3.20)

wµ pode ser escrito como

wµ = kµ J3 + ϵ
µ
1 [−ω(J1 + K2)] + ϵ

µ
2 [ω(J2 − K1)], (3.21)
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em que, além de w · k = k2 = 0, tem-se k · ϵ1 = k · ϵ2 = 0, ou seja, ϵ1,2 caracterizam direções transversais

ao quadrimomento no espaço de Minkowski. A relação (3.21) estabelece que há três transformações de Lorentz

geradas por w0 = w3, w1 e w2 que, em ação sobre kµ, deixa-o invariante. São elas: uma rotação −R ≡ J3 =

w0/ω = w3/ω e duas translações T1 ≡ ω(J1 + K2) = w1 e T2 ≡ ω(J2 − K1) = w2,25 de sorte que

wµ = −kµR + ϵ
µ
1 T1 + ϵ

µ
2 T2. (3.22)

A álgebra do LGk neste caso é:

[T1, T2] = [w1, w2] = 0

e

[R, Ti] = − 1
ω
[w0, wi] = −iϵ0ij3wj,

isto é,

[R, T1,2] = ±iT2,1, [T1, T2] = 0, (3.23)

que é a álgebra correspondente ao grupo de isometria em duas dimensões ISO(2). Definindo T± = T1 ± iT2,

(3.23) pode ser reescrita como

[R, T±] = ±T±, [T±, T∓] = 0 (3.24)

de modo que o operador de Casimir quártico é expresso como (para detalhes, veja o Apêndice A)

C4 = −T+T−. (3.25)

Da mesma forma que qualquer elemento do grupo de Poincaré é dado por uma transformação de Lorentz

seguida de uma translação, conforme é estabelecido em (2.28), tem-se que W ∈ ISO(2) é dado por uma rotação

R ∈ SO(2) seguida por uma translação T ∈ T2:

W (θ, b⃗) = T (⃗b)R(θ) b⃗ ∈ R2, θ ∈ [0, 2π) (3.26)

com

R(θ) = exp{−iθR} (3.27)

e

T (⃗b) = exp{−i⃗b · T⃗} = exp
{

i√
2
(β∗T+ + βT−)

}
, (3.28)

em que β ≡ −(b1 + ib2)/
√

2. Em termos de ϵ±(k) = (ϵ1 ± iϵ2)/
√

2, pode-se mostrar que os geradores do LGk

são dados por (para detalhes, veja o Apêndice A):

Rµ
ν = ϵ

µ
−ϵ+ν − ϵ

µ
+ϵ−ν (T±)µ

ν = ±
√

2(ϵµ
±kν − kµϵ±ν). (3.29)

25Caracterizamos estas duas transformações como "translações"em decorrência do isomorfismo entre a álgebra do LGk, equação (3.23) ou

(3.24), e a álgebra do grupo euclideano ISO(2), definido pelo produto semidireto entre o grupo ortogonal especial em duas dimensões e o grupo

de translação em duas dimensões: ISO(2) = SO(2) Ⓢ T2.
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Com o uso destas duas últimas expressões e das propriedades ϵ2
±(k) = 0 e ϵ±(k) · ϵ∓(k) = −1, tem-se

Rµ
νϵν

+ = ϵ
µ
−ϵ+νϵν

+ − ϵ
µ
+ϵ−νϵν

+ = ϵ
µ
+, (3.30a)

Rµ
νϵν
− = ϵ

µ
−ϵ+νϵν

− − ϵ
µ
+ϵ−νϵν

− = −ϵ
µ
−, (3.30b)

(T+)
µ

νϵν
+ =

√
2(ϵµ

+kνϵν
+ − kµϵ+νϵν

+) = 0, (3.30c)

(T+)
µ

νϵν
− =

√
2(ϵµ

+kνϵν
− − kµϵ+νϵν

−) =
√

2kµ, (3.30d)

(T−)µ
νϵν

+ = −
√

2(ϵµ
−kνϵν

+ − kµϵ−νϵν
+) = −

√
2kµ, (3.30e)

(T−)µ
νϵν
− = −

√
2(ϵµ
−kνϵν

− − kµϵ−νϵν
−) = 0, (3.30f)

(T−)2ϵ+ = −
√

2T−k = −2T+T−ϵ− = 0 (3.30g)

(T+)
2ϵ− = 0. (3.30h)

Assim, a ação de um elemento genérico do LGk sobre as direções ϵ± lê-se:

W (θ, β)ϵ+(k)
(3.26)
= exp

{
i√
2
(β∗T+ + βT−)

}
[exp {−iθR} ϵ+(k)] ← [T±, T∓] = 0

(3.30a)
= e−iθe

i√
2

βT−
[

e
i√
2

β∗T+ϵ+(k)
]

(3.30c)
= e−iθe

i√
2

βT−ϵ+(k)
(3.30g)
= e−iθ

(
ϵ+ +

i√
2

βT−ϵ+(k)
)

∴ W (θ, β)ϵ+(k) = e−iθ (ϵ+(k)− iβk) . (3.31)

Analogamente,

W (θ, β)ϵ−(k) = eiθ (ϵ−(k) + iβ∗k) . (3.32)

É importante destacar que os "quadrivetores"26 ϵ± são construídos como função do quadrimomento padrão k de

modo que, se k → p = L(p)k, tem-se ϵ±(k) → ϵ±(p) = L(p)ϵ±(k) e as propriedades de ϵ±(k) continuam

válidas para ϵ±(p):

ϵ∗±(p) = ϵ∓(p), ϵ±(p) · ϵ∓(p) = −1, p · ϵ±(p) = 0, ∀p ∈ R1,3. (3.33)

Representações de Helicidade e Spin Contínuo

O método de Wigner nos ensina que as UIRs do grupo ISO(1, 3) correspondente ao caso k2 = 0 são obtidas a

partir das UIRs do LGk e, pelo já discutido acima, LGk = ISO(2) = SO(2) Ⓢ T2 cuja álgebra de Lie é denotada

por iso(2). O operador de Casimir deste grupo é dado por C = −T+T− = C4 que, em conjunto com o autovalor

de C2 = P2, define uma base para o espaço vetorial onde elementos de ISO(1, 3) agirá:

C2 |k, ρ, σ⟩ = P2 |k, ρ, σ⟩ = k2 |k, ρ, σ⟩ = 0

C4 |k, ρ, σ⟩ = −T+T− |k, ρ⟩ = −ρ2 |k, ρ, σ⟩
, (3.34)

26Conforme é demonstrado no Apêndice A, ϵ± não são quadrivetores porque não se transformam como um quadrivetor genérico sob uma

transformação de Lorentz: R1,3 ∋ vµ → Λµ
νvν.
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onde ρ e σ são números reais. Dado W (θ, 0) = R(θ) = e−iθĥ ∈ SO(2) ≃ ISO(2)/T2, pode-se identificar σ

como o autovalor do operador helicidade ĥ sobre os vetores de estado:

ĥ |k, ρ, h⟩ = h |k, ρ, h⟩

W (θ, 0) |k, ρ, h⟩ = e−iθh |k, ρ, h⟩
. (3.35)

Com a álgebra de Lie iso(2) (3.24),

[ĥ, T±] = ±T±, (3.36)

vê-se que a ação dos operadores T± sobre |k, ρ, h⟩ é dada por:

ĥT± |k, ρ, h⟩ = (h± 1)T± |k, ρ, h⟩ ,

implicando que T± |k, ρ, h⟩ é autovetor de ĥ com autovalor h± 1, ou seja, T± |k, ρ, h⟩ ∝ |k, ρ, h± 1⟩ . Assim, a par-

tir de um vetor de estado normalizado |k, ρ, h⟩ (⟨k, ρ, h′|k, ρ, h⟩ = δkk′ ) e definindo a constante de proporcionalidade

κ ∈ C, tem-se

T± |k, ρ, h⟩ = κ |k, ρ, h± 1⟩ ⇒ ⟨k, ρ, h| T∓T± |k, ρ, h⟩ = ρ2 = |κ|2

∴ κ = ±iρ, ρ2 ≥ 0,

em que escolhe-se arg(κ) = ±π/2.27 Assim,

T± |k, ρ, h⟩ = ±iρ |k, ρ, h± 1⟩ . (3.37)

No que segue, estuda-se os possíveis valores de ρ2:

3.4.1 Estados de Helicidade: ρ2 = 0

O espaço gerado por |k, ρ = 0, h⟩ ≡ |k, h⟩ é constituído por apenas um vetor para cada h conforme a relação (3.37)

estabelece, ou seja, este espaço é unidimensional. Partículas sem massa que são observadas na natureza são descritas

por estes estados de helicidade. O fóton, por exemplo, tem helicidade h = ±1.

Sobre estes estados de helicidade, pode-se determinar a ação dos elementos do grupo de Poincaré. De fato,

translações agem neste espaço como

T(b) |p, h⟩ = e−ib·p |p, h⟩ , p = L(p)k, (3.38)

em que L(p) é definido em (3.17). Rotações no espaço de Minkowski, por sua vez, agem sobre |k, h⟩ como

U(Λ) |p, h⟩ (3.8)
= ∑

h′
Dhh′(W ) |Λp, h′⟩ , ISO(2) ∋ W = L−1(Λp)ΛL(p) = T (β)R(θ) (3.39)

com

Dhh′(W ) = ⟨k, h′|W |k, h⟩ = ⟨k, h′| exp
{

i√
2
(βT− + β∗T+)

}
exp{−iθĥ} |k, h⟩

(3.35),(3.37)
= e−iθhδhh′ ,

de modo que

U(Λ) |p, h⟩ = e−ihθ(Λ,p) |Λp, h⟩ . (3.40)

27arg(z) denota o argumento do número complexo z.
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Nesta equação, θ = θ(Λ, p) é solução de

⟨k, h| L−1(Λp)ΛL(p) |k, h⟩ = ⟨k, h|T (β)R(θ) |k, h⟩ = e−iθh.

A teoria de campo para partículas sem massa de spin arbitrários inteiro e semi-inteiro foram formuladas por

Fang e Fronsdal em [34, 35] (para uma revisão recente deste formalismo o leitor pode consultar [21, 36, 60]).

3.4.2 Estados de Spin Contínuo: ρ2 > 0

Neste caso há duas maneiras de descrever os vetores de estado físico: através da helicidade h da partícula conforme

visto anteriormente ou pelo uso de um rótulo contínuo ϕ a ser definido nesta subseção. No primeiro caso a base de

estados físicos é denominada base de spin e, no segundo, base de ondas planas. Será visto nesta subseção que estas

duas bases são relacionadas por uma transformada de Fourier.

(a) Base de Spin

Levando-se em conta a relação (3.37), vê-se que para cada ρ ̸= 0 o espaço vetorial V = span{|k, ρ, h⟩ ,

|k, ρ, h± 1⟩ , |k, ρ, h± 2⟩ , · · · } é de dimensão infinita. Isto implica que a representação do grupo de Poin-

caré sobre este espaço é de dimensão infinita.

Elementos do grupo de translação T4 agem sobre |p, ρ, h⟩ como

U(T(b)) |p, ρ, h⟩ = e−ib·p |p, ρ, h⟩ , p = L(p)k, (3.41)

em que L(p) é dado por (3.17). Por outro lado, rotações no espaço de Minkowski U(Λ) ∈ SO(1, 3) atuam sobre

|p, ρ, h⟩ como (3.8):

U(Λ) |p, ρ, h⟩ = ∑
h′

Dhh′(W ) |Λp, ρ, h′⟩ , LGk ∋ W = L−1(Λp)ΛL(p) = T (β)R(θ), (3.42)

com

Dhh′(W ) = ⟨k, ρ, h′|W |k, ρ, h⟩ , (3.43)

e

W (θ, β) = T (β)R(θ) = exp
{

i√
2
(β∗T+ + βT−)

}
exp{−iθĥ}. (3.44)

Os elementos de matriz (3.43) podem ser calculados com o uso de:

⟨k, ρ, h′|R(θ) |k, ρ, h⟩ = e−iθhδhh′ (3.45)

⟨k, ρ, h′|T (β) |k, ρ, h⟩ = ⟨k, ρ, h′| exp
{

i√
2
(β∗T+ + βT−)

}
|k, ρ, h⟩

(3.24)
= ⟨k, ρ, h′| exp

{
i√
2

β∗T+

}
exp

{
i√
2

βT−

}
|k, ρ, h⟩

= ∑
l,j

(
i√
2

)l+j (β∗)l βj

l!j!
⟨k, ρ, h′| (T−)j(T+)

l |k, ρ, h⟩

(3.37)
=

∞

∑
l=0

∞

∑
j=0

(
− ρ√

2

)l+j
(−1)j (β∗)l βj

l!j!

∣∣∣∣∣
j−l=h−h′

. (3.46)
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Redefinindo o índice j como n− l, n ∈ Z, e levando em conta que j− l = h− h′, tem-sej + l = n

j− l = h− h′
⇔

j = 1
2 (n + h− h′)

l = 1
2 (n− h + h′)

(3.47)

de modo que (3.46) é simplificada a:

⟨k, ρ, h′|T (β) |k, ρ, h⟩ =
∞

∑
n=|h−h′ |

(
− ρ√

2

)n
(−1)

1
2 (n+h−h′) (β∗)

1
2 (n−h+h′)β

1
2 (n+h−h′)

[ 1
2 (n− h + h′)]![ 1

2 (n + h− h′)]!

=

(
− β

β∗

) h−h′
2 ∞

∑
n=h−h′

(−1)
n
2

(ρ|β|/
√

2)n

[ 1
2 (n− h + h′)]![ 1

2 (n + h− h′)]!

=

(
β

β∗

) h−h′
2 ∞

∑
t=0

(−1)t

t!(t + h− h′)!

(
ρ
√

2|β|
2

)2t+h−h′

=

(
β

β∗

) h−h′
2

Jh−h′
(

ρ
√

2|β|
)

= ei(h−h′)α Jh−h′
(

ρ|⃗b|
)

, (3.48)

em que na primeira linha foi assumido sem perda de generalidade que h > h′, na segunda linha o índice de soma n

foi redefinido como t ≡ 1
2 (n− h + h′), na terceira linha foi utilizado a definição da função de Bessel de primeira

espécie [61]:

Jν(x) =
∞

∑
t=0

(−1)t

t!Γ(t + ν + 1)

( x
2

)2t+ν
, Γ(z) = (z− 1)!, z ∈ Z+ : Função Gama,

e na quarta linha o parâmetro β foi reescrito como β = − b1+ib2√
2

com b⃗ = (b1, b2) = (|⃗b| cos α, |⃗b| sin α). Assim,

com (3.45) e (3.48) pode-se calcular os elementos de matriz (3.43):

Dhh′(W (θ, b⃗)) = ⟨k, ρ, h′|W (θ, b⃗) |k, ρ, h⟩

= ⟨k, ρ, h′|T (⃗b)R(θ) |k, ρ, h⟩

= ∑
h′′
⟨k, ρ, h′|T (⃗b) |k, ρ, h′′⟩ ⟨k, ρ, h′′|R(θ) |k, ρ, h⟩

= e−iθh ⟨k, ρ, h′|T (⃗b) |k, ρ, h⟩

∴ Dhh′(W (θ, b⃗)) = e−iθhei(h−h′)α Jh−h′
(

ρ|⃗b|
)

. (3.49)

Finalmente, substituindo esta relação em (3.42), obtém-se

U(Λ) |p, ρ, h⟩ = e−iθh ∑
h′

ei(h−h′)α Jh−h′
(

ρ|⃗b|
)
|Λp, ρ, h′⟩ , (3.50)

em que θ = θ(Λ, p) e b⃗ = b⃗(Λ, p) são parâmetros do LGk dados por

Dhh′(W ) = ⟨k, ρ, h′|W (θ, b⃗) |k, ρ, h⟩ = ⟨k, ρ, h′| L−1(Λp)ΛL(p) |k, ρ, h⟩ . (3.51)

No limite ρ→ 0, obtém-se

Jh−h′(ρ|⃗b|)→ δhh′ ,

de modo que (3.50) se torna

U(Λ) |p, 0, h⟩ = e−iθh |Λp, 0, h⟩ ,
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que é precisamente o resultado obtido para os estados de helicidade (3.40). Isto sugere uma maneira de definir as

representações de spin contínuo: sob boosts, elas se tornam uma superposição de todos os possíveis estados de

helicidade se ρ ̸= 0 e, no limite ρ→ 0, os estados de spin contínuo se tornam estados de helicidade.

Unitariedade

No que segue vamos verificar se a representação dada por (3.50) é unitária. Com a escolha ⟨p′, h′|p, h⟩ =

δhh′2p0δ3( p⃗− p⃗′), tem-se

⟨p2, h2|U†(Λ)U(Λ) |p1, h1⟩

= e−iθ(h1−h2) ∑
h′1h′2

ei(h1−h′1)αe−i(h2−h′2)α Jh1−h′1

(
ρ|⃗b|

)
Jh2−h′2

(
ρ|⃗b|

)
⟨Λp2, h′2|Λp1, h′1⟩

= e−iθ(h1−h2) ⟨Λp2|Λp1⟩ ∑
h′1h′2

ei(h1−h′1)αe−i(h2−h′2)α Jh1−h′1

(
ρ|⃗b|

)
Jh2−h′2

(
ρ|⃗b|

)
⟨h′2|, h′1⟩

= 2p0
1δ3( p⃗1 − p⃗2)e−iθ(h1−h2) ∑

h′1

ei(h1−h′1)αe−i(h2−h′1)α Jh1−h′1

(
ρ|⃗b|

)
Jh2−h′1

(
ρ|⃗b|

)
= 2p0

1δ3( p⃗1 − p⃗2)e−iθ(h1−h2)ei(h1−h2)α ∑
n

Jh1−h2−n

(
ρ|⃗b|

)
Jn

(
−ρ|⃗b|

)
= p0

1δ3( p⃗1 − p⃗2)e−i(θ−α)(h1−h2) Jh1−h2(0)

= p0
1δ3( p⃗1 − p⃗2)δh1h2 ,

em que na terceira linha foi usado ⟨Λp2|Λp1⟩ = ⟨p2|p1⟩ , ∀Λ ∈ SO(1, 3) e ⟨h′2|h′1⟩ = δh′1h′2
, na quarta linha o

índice de soma foi redefinido como n ≡ h′1− h2 e foi utilizado a propriedade Jn(z) = J−n(−z), ∀z ∈ C, ∀n ∈ Z

e, na quinta linha, fez-se uso do teorema de adição das funções de Bessel

Jm(x + y) =
+∞

∑
n=−∞

Jn(x)Jm−n(y), ∀x, y ∈ C, ∀n, m ∈ Z. (3.52)

Portanto, pode-se concluir que U†(Λ)U(Λ) = 1.

(b) Base de Ondas Planas

Neste caso os autovetores dos geradores de translação T⃗ ∈ iso(2), denominados estados de onda plana, são

utilizados para definir o espaço vetorial sob o qual a representação do grupo de Poincaré age. Estes vetores são

denotados por |k, ρ, t⃗⟩ e a ação de T⃗ sobre eles é dada por

T⃗ |k, ρ, t⃗⟩ = t⃗ |k, ρ, t⃗⟩ , t⃗ = (t1, t2)

de modo que a ação dos operadores T± e C4 sobre estes vetores lê-se

T± |k, ρ, t⃗⟩ = (t1 ± it2) |k, ρ, t⃗⟩

⇒ C4 |k, ρ, t⃗⟩ (3.25)
= −|⃗t|2 |k, ρ, t⃗⟩

.

Este resultado sugere parametrizar t⃗ com coordenadas polares (ρ, ϕ):

t⃗ϕ = (ρ cos ϕ, ρ sin ϕ),

de sorte que C4 = −ρ2 como esperado (3.34). Desta forma, os estados de spin contínuo são identificados com o

parâmetro contínuo ϕ no qual

T± |k, ρ, t⃗ϕ⟩ = ρe±iϕ |k, ρ, t⃗ϕ⟩ .
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Assim, T (β) ∈ ISO(2) age sobre |k, ρ, t⃗ϕ⟩ segundo:

T (β) |k, ρ, t⃗ϕ⟩ = exp
{

i√
2
(β∗T+ + βT−)

}
|k, ρ, t⃗ϕ⟩ = exp

{
iρ
√

2 Re
[

βe−iϕ
]}
|k, ρ, t⃗ϕ⟩ , (3.53)

onde Re[z] é a parte real do número complexo z.

O efeito de rotações R(θ) ∈ ISO(2) sobre |k, ρ, t⃗ϕ⟩ pode ser obtido ao calcular-se o autovalor de Ti, i = 1, 2,

sobre R(θ) |k, ρ, t⃗ϕ⟩:

TiR |k, ρ, t⃗ϕ⟩ = R[R−1TiR] |k, ρ, t⃗ϕ⟩ = R
(
R i

jT j
)
|k, ρ, t⃗ϕ⟩ =

(
R i

j tj
ϕ

)
R |k, ρ, t⃗ϕ⟩ , (3.54)

ou seja, R |k, ρ, t⃗ϕ⟩ é autovetor de T⃗ com autovalor R t⃗ϕ.28 Isto é possível se

R(θ) |k, ρ, t⃗ϕ⟩ = |k, ρ, R(θ)⃗tϕ⟩ = |k, ρ, t⃗ϕ+θ⟩ . (3.55)

Assim, vê-se que a ação de R(θ) sobre |k, ρ, t⃗ϕ⟩ ↔ |k, ρ, ϕ⟩ é uma rotação: t⃗ϕ
R(θ)−→ t⃗ϕ+θ .

Com os resultados (3.53) e (3.55), tem-se que a ação de W (θ, β) ∈ LGk sobre a base |k, ρ, ϕ⟩ é dada por

W (θ, β) |k, ρ, ϕ⟩ = exp
{

iρ
√

2 Re
[

βe−i(ϕ+θ)
]}
|k, ρ, ϕ + θ⟩

=
∫ dϕ′

2π
2π exp

{
iρ
√

2 Re
[

βe−iϕ′
]}

δ(ϕ′ − ϕ− θ) |k, ρ, ϕ′⟩

∴ W (θ, β) |k, ρ, ϕ⟩ =
∫ dϕ′

2π
Dϕϕ′ [θ, β] |k, ρ, ϕ′⟩ , (3.56)

onde

Dϕϕ′ [θ, β] = ⟨k, ρ, ϕ′|W (θ, β) |k, ρ, ϕ⟩ = 2π exp
{

iρ
√

2 Re
[

βe−iϕ′
]}

δ(ϕ′ − ϕ− θ). (3.57)

Na primeira linha de (3.56) foi utilizado a relação de completeza
∫ dϕ′

2π |k, ρ, ϕ′⟩ ⟨k, ρ, ϕ′| = 1.

Unitariedade

Com a escolha ⟨k, ρ, ϕ|k, ρ, ϕ′⟩ = 2πδ(ϕ− ϕ′) e com o resultado (3.57), pode-se verificar diretamente que

⟨k, ρ, ϕ|W †(θ, β)W (θ, β) |k, ρ, ϕ′⟩ = 2π δ(ϕ− ϕ′),

ou seja, W é um operador unitário:

W †(θ, β)W (θ, β) = 1. (3.58)

(c) Relação entre as bases de spin e onda plana

Porque ambas as bases são constituídas por autovetores de operadores hermitianos, uma é a transformada de Fourier

da outra. Para verificar esta afirmação, defina

|k, ρ, h̃⟩ =
∫ dϕ

2π
eihϕ |k, ρ, ϕ⟩ . (3.59)

Este vetor é autovetor de R(θ):

R(θ) |k, ρ, h̃⟩ (3.55)
=

∫ dϕ

2π
eihϕ |k, ρ, ϕ + θ⟩ = e−ihθ

∫ dϕ′

2π
eihϕ′ |k, ρ, ϕ′⟩ = e−ihθ |k, ρ, h̃⟩ ,

28A rigor, é preciso diferenciar a ação do operador R(θ) sobre quadrivetores tµ ∈ R1,3 e sobre vetores de estado físico |k, ρ, t⃗ϕ⟩, mas, para

simplificar a notação, isto não é feito aqui.
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ou seja, |k, ρ, h̃⟩ é proporcional a |k, ρ, h⟩ (veja (3.45)). Com a escolha |k, ρ, h⟩ = i−h |k, ρ, h̃⟩, (3.59) se torna

|k, ρ, h⟩ =
∫ dϕ

2π
eih(ϕ+ π

2 ) |k, ρ, ϕ⟩ . (3.60)

Veja que com este vetor e a relação (3.57), pode-se obter a representação matricial sobre os estados de spin (3.49).

De fato,

Dhh′(θ, β) = ⟨k, ρ, h′|W (θ, β) |k, ρ, h⟩

=
∫ dϕdϕ′

(2π)2 ⟨k, ρ, h′|k, ρ, ϕ′⟩ ⟨k, ρ, ϕ′|W (θ, β) |k, ρ, ϕ⟩ ⟨k, ρ, ϕ|k, ρ, h⟩

(3.60)
=

∫ dϕdϕ′

(2π)2 ei(hϕ−h′ϕ′)ei π
2 (h−h′) ⟨k, ρ, ϕ′|W (θ, β) |k, ρ, ϕ⟩

(3.57)
=

∫ dϕdϕ′

(2π)2 2π exp
{

iρ
√

2 Re
[

βe−iϕ′
]}

δ(ϕ′ − ϕ− θ)ei(hϕ−h′ϕ′)ei π
2 (h−h′)

= e−iθh′
∫ dϕ

2π
exp

{
iρ
√

2 Re
[

βe−i(θ+ϕ)
]}

ei(h−h′)(ϕ+ π
2 ). (3.61)

Mas, porque β ≡ −(b1 + ib2)/
√

2 = |⃗b|eiα/
√

2, com b⃗ = (b1, b2) = (|⃗b| cos α, |⃗b| sin α), tem-se

exp
{

iρ
√

2 Re
[

βe−i(θ+ϕ)
]}

= exp

{
iρ
√

2 Re

[
− |⃗b|√

2
e−i(ϕ+θ−α)

]}
= e−iρ|⃗b| cos(α−ϕ−θ)

de modo que (3.61) se torna

Dhh′(θ, β) = e−iθh′
∫ dϕ

2π
e−iρ|⃗b| cos(α−ϕ−θ)ei(h−h′)(ϕ+ π

2 )

= e−iθh′
∫ dΨ

2π
e−iρ|⃗b| cos( π

2 −Ψ)ei(h−h′)(Ψ+α−θ)

= e−iθh′ ei(h−h′)(α−θ)
∫ dΨ

2π
e−iρ|⃗b| sin Ψei(h−h′)Ψ

∴ Dhh′(θ, β) = e−iθheiα(h−h′) Jh−h′(ρ|⃗b|), (3.62)

em que na primeira linha fez-se a mudança de variável α− ϕ− θ = π
2 − Ψ e, na terceira linha, foi utilizado a

representação integral das funções de Bessel de primeira espécie

Jn(z) =
∫ dψ

2π
einψ−iz sin ψ.

A teoria de campo para partículas sem massa bosônica de spin contínuo foi formuladas por Schuster e

Toro em [41], enquanto que para partículas fermiônicas sem massa de spin contínuo foi formulada por Bekaert,

Najafizadeh e Setare em [46].

3.5 Táquions

Com a escolha

kµ = (0, 0, 0, m), (3.63)

calcula-se explicitamente as componentes de wµ com o uso da relação (3.11):

w0 = mJ3, (3.64)

wi = −mϵi30j J0j,
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∴ w1 = mK2, w2 = −mK1 e w3 = 0 . (3.65)

Os valores de wµ acima especificados identificam o LGk correspondente a k2 = −m2 < 0 como boosts ao longo

das direções x e y além de uma rotação do plano formado por estes eixos ao longo da direção z. Logo, tem-se que

LGk = SO(1, 2) é o grupo de Lorentz em uma dimensão temporal e duas dimensões espaciais cuja álgebra de Lie é

denotada por so(1, 2) e a relação de comutação (3.13) é dada por:

[wµ, wν] = −imϵµν3σwσ, (3.66)

com

[K1, K2] = −i J3

[J3, K1] = iK2

[J3, K2] = −iK1

. (3.67)

Qualquer elemento de SO(1, 2) pode ser escrito como o produto de uma rotação R3(θ) com um boost B(ξ⃗) (2.15):

SO(1,2) ∋ W (θ, ξ⃗) = B(ξ⃗)R3(θ), (3.68)

com

R3(θ) = exp{−iθ J3} (3.69)

e

B(ξ⃗) = exp
{
−iξ⃗ · K⃗

}
= exp

{
i√
2
(ζ∗K+ + ζK−)

}
, (3.70)

em que ζ ≡ −(ξ1 + iξ2)/
√

2 e K± = K1 ± iK2. As relações de comutação (3.67) podem ser reescritas em função

destes operadores como

[K±, K∓] = ∓2J3, (3.71a)

[J3, K±] = ±K±, (3.71b)

e, porque K∓K±
(3.67)
= K2

1 + K2
2 ± J3, o operador de Casimir quártico pode ser escrito da seguinte forma:

C4 = w2 = −m2(K2
1 + K2

2 − J2
3 ) = −m2(K∓K± ∓ J3 − J2

3 ). (3.72)

O próximo passo é construir uma base de estados físicos que representam as partículas taquiônicas.29 Sejam λ

e −ρ2 os autovalores de J3 e C4, respectivamente:

J3 |k, ρ, λ⟩ = λ |k, ρ, λ⟩ , λ ∈ {0, ±1, ±2, · · · } (3.73)

C4 |k, ρ, λ⟩ = −ρ2 |k, ρ, λ⟩ . (3.74)

Pelo uso da equação (3.71b), tem-se

J3K± |k, ρ, λ⟩ = (λ± 1)K± |k, ρ, λ⟩ , (3.75)

29As partículas taquiônicas são conhecidas (teoricamente) por violarem causalidade: porque possuem quadrimomento tipo luz, a velocidade

dessas partículas é maior que a velocidade da luz no vácuo.
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ou seja, K± |k, ρ, λ⟩ é um autovetor de J3 com autovalor λ± 1. Isto é possível se K± |k, ρ, λ⟩ ∝ |k, ρ, λ± 1⟩:

K± |k, ρ, λ⟩ = κ |k, ρ, λ± 1⟩ , κ = κ(ρ, λ) ∈ C. (3.76)

Assim, dado (3.74) e a escolha ⟨k, ρ, λ|k, ρ, λ′⟩ = δλλ′ , pode-se obter o valor de κ em função dos parâmetros λ e ρ:

⟨k, ρ, λ|K∓K± |k, ρ, λ⟩ = |κ(ρ, λ)|2 (3.72)
= ⟨k, ρ, λ|

(
− 1

m2 C4 ± J3 + J2
3

)
|k, ρ, λ⟩ = ρ2

m2 ± λ + λ2 ≥ 0,

isto é,

κ(ρ, λ) =

√
ρ2

m2 + λ(λ± 1), (3.77)

em que escolhe-se arg(κ) = 0. Substituindo a relação (3.77) em (3.76), pode-se gerar toda a base de estados físicos

|k, ρ, λ⟩ para cada ρ pela aplicação de K±:

J3 |k, ρ, λ⟩ = λ |k, ρ, λ⟩

K± |k, ρ, λ⟩ =
√

ρ2

m2 + λ(λ± 1) |k, ρ, λ± 1⟩
, (3.78)

com

R ∋ ρ2 ≥ −m2λ(λ± 1) e λ ∈ Z. (3.79)

Os possíveis valores de ρ determinam duas possibilidades de representação taquiônica:

3.5.1 Táquions de Spin s: ρ2 = −m2s(s + 1), s = 0, 1, 2, · · ·

Neste caso, a condição (3.79) leva à seguinte condição sobre os valores de λ:−s(s + 1) + λ(λ + 1) ≥ 0

−s(s + 1) + λ(λ− 1) ≥ 0
⇔ λ ∈ {0, ±(s + 1), ±(s + 2), · · · , ±∞} . (3.80)

Se s = λ = 0, (3.78) implica que K± |k, ρ = 0, λ = 0⟩ = 0. Assim, há apenas um vetor de estado físico que

representa a partícula taquiônica, denominada táquion escalar. Esta é uma representação unidimensional de

SO(1, 2) que, por ser de dimensão finita, também é unitária tendo em vista que o setor não-compacto do grupo

SO(1, 2) age trivialmente sobre |k, ρ = 0, λ = 0⟩:

B(ζ) |k, ρ = 0, λ = 0⟩ = |k, ρ = 0, λ = 0⟩ . (3.81)

Sob uma translação U(T(b)) ∈ T4 o vetor |p, ρ = 0, λ = 0⟩ ≡ |p, 0⟩ se transforma como

U(T(b)) |p, 0⟩ = e−ib·p |p, 0⟩ , p = L(p)k, (3.82)

com L(p) = R3(ϕ)K1(ξ)K3(χ). Sob uma transformação de Lorentz U(Λ) ∈ SO(1, 3), |p, 0⟩ se transforma como

(3.8),

U(Λ) |p, 0⟩ = ∑
λ′

D(0)
0λ′(W ) |Λp, λ′⟩ , SO(1, 2) ∋ W = L−1(Λp)ΛL(p) = B(ζ)R(θ) (3.83)

com

D(0)
0λ′ = ⟨p, λ′|W (ζ, θ) |p, 0⟩ = ⟨p, λ′|B(ζ) exp{−iθ J3} |p, 0⟩ = e−iθλ′δλ′0, (3.84)
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de modo que

U(Λ) |p, 0⟩ = |Λp, 0⟩ . (3.85)

Se s ̸= 0 e λ ̸= 0, obtém-se uma representação de dimensão infinita e unitária do grupo SO(1, 2):

U(T(b)) |p, s, λ⟩ = e−ib·p |p, s, λ⟩

U(Λ) |p, s, λ⟩ = ∑λ′ D(s)
λλ′(W ) |p, s, λ′⟩

, (3.86)

com λ′ ∈ Z (3.80) e D(s)
λλ′ a representação matricial de SO(1, 2).

3.5.2 Táquions de Spin Contínuo: ρ2 > 0

Neste caso a condição em (3.79) permite que λ = 0, ±1, ±2, · · · , assim, tem-se uma representação unitária de

dimensão infinita de SO(1,2)

U(T(b)) |p, ρ, λ⟩ = e−ib·p |p, ρ, λ⟩

U(Λ) |p, ρ, λ⟩ = ∑λ′ D(ρ)
λλ′(W ) |p, ρ, λ′⟩

, (3.87)

com p2 = k2 = −m2, SO(1, 2) ∋ W = L−1(Λp)ΛL(p) = B(ζ)R(θ) e D(ρ)
λλ′ sendo a representação matricial

de SO(1, 2).

A teoria de campo para partículas taquiônicas de spin contínuo pode ser encontrada em [62, 63] e no Capítulo 5

desta dissertação.
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4 Equações de Onda e Amplitudes de Emissão Soft para
Partículas de Spin Contínuo

Neste capítulo exploramos funções de onda para Partículas de Spin Contínuo (CSPs) com o uso de uma variável

auxiliar (além da variável habitual x do espaço-tempo) associada ao spin. Em seguida impomos covariância de

Lorentz e obtemos equações de onda que serão úteis na descrição das amplitudes de emissão soft para CSPs.

Estas amplitudes foram encontradas por Shuster e Toro [16] e sugerem a possibilidade de interações de longo

alcance serem intermediadas por CSPs, não apenas por partículas de baixa helicidade conforme o teorema no-go de

Weinberg asserta [17] (veja o Apêndice B para uma breve revisão sobre o teorema de Weinberg).

Seja ψ(k, a, l) a função de onda que representa uma partícula com quadrimomento k, onde a e l são rótulos

associados ao LGk e ao grupo de Lorentz, respectivamente. Sob uma transformação de Lorentz U(Λ), ψ(k, a, l) é

covariante se satisfaz a seguinte condição:

U(Λ)ψ(k, a, l) = ∑
a′

Daa′ [W (Λ, k)]ψ(Λk, a′, l) = ∑̄
l

D−1
ll̄ [Λ]ψ(k, a, l̄), (4.1)

em que Daa′ [W (Λ, k)] é a representação matricial do LGk ∋ W (Λ, k) e Dll̄ [Λ] é a representação matricial do

grupo de Lorentz.30 Se ψ representa uma CSP, o rótulo a pode ser identificado como a variável contínua ϕ utilizada

para descrever a representação de spin contínuo na base de ondas planas (veja a relação (3.56)). O rótulo l, por sua

vez, é escrito em termos de um quadrivetor auxiliar do espaço de Minkowski η ∈ R1,3, de sorte que o campo ψ seja

escalar em η. Com base nestas definições, a relação (4.1) pode ser reescrita como:

U(Λ)ψ(k, ϕ, η) =
∫ dϕ′

2π
Dϕϕ′ [W (Λ, k)]ψ(Λk, ϕ′, η) = ψ(k, ϕ, Λ−1η), ∀Λ ∈ SO(1, 3). (4.2)

Esta relação é o ponto de partida na construção das funções de onda para as CSPs conforme será analisado a seguir.

4.1 Equações de Onda

A condição (4.2) origina três equações diferenciais ao escolher-se Λ como transformações infinitesimais do

LGk = ISO(2) expressas pelas relações (3.27) e (3.28), a saber, Λ1(β) ≡ exp{iβT−/
√

2} = 1 + i√
2

βT− +

O(β2), Λ2(β∗) ≡ exp{iβ∗T+/
√

2} = 1 + i√
2

β∗T+ + O
(

β∗2
)

e Λ3(θ) ≡ exp{−iθR} = 1− iθR + O(θ2).

Sob a transformação de Lorentz U(Λ1) o campo ψ se transforma como (denote por E o elemento identidade do

LGk):

U(Λ1)ψ(k, ϕ, η) =

(
U(E)− i

β√
2

U(T−)
)

ψ(k, ϕ, η)
(4.2)
= ψ

(
k, ϕ, η − i

β√
2

T−η

)
= ψ(k, ϕ, η)− i

β√
2

T−η · ∂ηψ(k, ϕ, η), (4.3)

ou seja,

U(T−)ψ(k, ϕ, η) = (T−η) · ∂ηψ(k, ϕ, η)
(3.29)
= −

√
2
[
(η · ϵ−)(k · ∂η)− (η · k)(ϵ− · ∂η)

]
ψ(k, ϕ, η), (4.4)

30Originalmente Wigner e Barmann construíram funções de onda para CSPs e, por conseguinte, equações de onda, postulando princípios de

covariância semelhantes à relação (4.1) [22, 23]. Este procedimento é diferente do que é utilizado atualmente o qual postula uma ação e, a partir

dela, deriva-se as equação de campo com o uso das equações de Euler-Lagrange. O leitor interessado pode encontrar em [2], capítulo cinco, uma

discussão recente sobre este assunto no contexto das representações de helicidade.
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em que ϵ± = ϵ±(k). Analogamente,

U(T+)ψ(k, ϕ, η) = +
√

2
[
(η · ϵ+)(k · ∂η)− (η · k)(ϵ+ · ∂η)

]
ψ(k, ϕ, η)

U (Λ3(θ))ψ(k, ϕ, η) = ψ(k, ϕ, η)− iθ
[
(η · ϵ−)(ϵ+ · ∂η)− (η · ϵ+)(ϵ− · ∂η)

]
ψ(k, ϕ, η)

. (4.5)

A transformação de Lorentz L(p) é definida segundo p = L(p)k de modo que ϵ±(k)→ ϵ±(p). Como as relações

(4.4)-(4.5) são escritas de forma covariante, elas continuam válidas para ψ(p, ϕ, η).

A ação das transformações U(T±) e U(Λ3(θ)) sobre o campo ψ(p, ϕ, η) pode ser inferida com base nas

relações (3.53) e (3.55) do capítulo anterior:

U(T±)ψ(p, ϕ, η) = ρe±iϕψ(p, ϕ, η)

U (Λ3(θ))ψ(p, ϕ, η) = ψ(p, ϕ + θ, η)
, (4.6)

que em conjunto com as relações (4.4)-(4.5) obtém-se o sistema de três equações diferenciais para o campo

ψ(p, ϕ, η):

[
(η · ϵ−)(p · ∂η)− (η · p)(ϵ− · ∂η)

]
ψ(p, ϕ, η) = − ρ√

2
e−iϕψ(p, ϕ, η)[

(η · ϵ+)(p · ∂η)− (η · p)(ϵ+ · ∂η)
]

ψ(p, ϕ, η) = ρ√
2

eiϕψ(p, ϕ, η)[
(η · ϵ−)(ϵ+ · ∂η)− (η · ϵ+)(ϵ− · ∂η)

]
ψ(p, ϕ, η) = i∂ϕψ(p, ϕ, η)

, (4.7)

em que foi utilizado ψ(p, ϕ + θ, η) = ψ(p, ϕ, η) + θ∂ϕψ(p, ϕ, η) +O(θ2). O operador de Casimir quártico é dado

por U(C4) = −U(T+)U(T−) e pode ser calculado com o uso das relações (4.4)-(4.5) e (4.6) e das propriedades

ϵ±(p) · ϵ∓(p) = −1 e p · ϵ±(p) = 0 = p2. O resultado é:

U(C4)ψ = 2
{
(ϵ+ · η)(ϵ− · η)(p · ∂η)2 − (η · p)(p · ∂η)[(ϵ+ · η)(ϵ− · ∂η) + (ϵ− · η)(ϵ+ · ∂η)]

+(η · p)2(ϵ+ · ∂η)(ϵ− · ∂η) + (η · p)(p · ∂η)
}

ψ = −ρ2ψ
. (4.8)

O primeiro passo para resolver o sistema de equações diferenciais (4.7) é notar que o autovalor de U(R) =

(η · ϵ−)(ϵ+ · ∂η)− (η · ϵ+)(ϵ− · ∂η) é nulo sobre η2, η · p e η · q, onde q2 = 0 e q · ϵ± = 0. Em adição,

U(R)η · ϵ± = ±η · ϵ±.

Com estas considerações pode-se escrever a solução geral da terceira equação em (4.7) como

ψ(p, ϕ, η) = g(z, z∗, a, b, c), z ≡ η · ϵ+e−iϕ, a ≡ η · q
p · q , p · q ̸= 0, b ≡ η · p e c ≡ η2, (4.9)

onde g é uma função arbitrária. Em termos destes parâmetros as duas primeiras relações em (4.7) podem ser

reescritas como:

(z∂a + b∂z∗ − bz∂c) g(z, z∗, a, b, c) = ρ√
2

g(z, z∗, a, b, c)

(z∗∂a + b∂z − bz∗∂c) g(z, z∗, a, b, c) = − ρ√
2

g(z, z∗, a, b, c)
. (4.10)

Há duas classes de solução em (4.10): aquela que é singular em b = η · p e aquela que têm dependência suave em

b = η · p. A seguir serão exploradas ambas as possibilidades.
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4.1.1 Solução Singular em η · p

Se b = 0 as equações em (4.10) implicam que

z∂ag =
ρ√
2

g = −z∗∂ag ⇔ (z + z∗)∂ag = 0, ∀g, (4.11)

ou seja, g está localizada em z + z∗ = 0: g ∼ δ(z + z∗). Também, a primeira igualdade em (4.11) implica que

g ∝ e
ρ√
2

a
z , de sorte que a solução geral de (4.10) para o caso em que g ∝ δ(b) é dada por

g(z, z∗, a, b, c) = δ(b) f (c)h(z)e
ρ√
2

a
z δ(z + z∗),

em que f e h são funções arbitrárias. Voltando às variáveis originais, obtém-se:

ψ(p, ϕ, η) = δ(η · p)δ
(

η · ϵ+e−iϕ + η · ϵ−eiϕ
)

exp
{

ρ√
2

η · q
(η · ϵ+)(p · q) eiϕ

}
f (η2)h

(
η · ϵ+e−iϕ

)
.

(4.12)

No suporte z + z∗ = 0, obtém-se |z|2 = −z2 enquanto que se η · p = 0 = η̃ · k, obtém-se η̃0 = η̃3 dado que

k = (ω, 0, 0, ω) = L−1(p)p (3.6) é o quadrimomento padrão e η̃ = L−1(p)η. Com o uso de η̃ · ϵ(k) = η · ϵ(p)

e z = η · ϵ+(p)e−iϕ, pode-se demonstrar que

η2 = 2z2,

de sorte que a função de onda (4.12) pode ser reescrita como:

ψ(p, ϕ, η) = δ(η · p)δ
(

η · ϵ+e−iϕ + η · ϵ−eiϕ
)

exp
{

ρ√
2

η · q
(η · ϵ+)(p · q) eiϕ

}
f̄
(

η · ϵ+e−iϕ
)

, (4.13)

com

f̄
(

η · ϵ+e−iϕ
)
= f̄ (z) ≡ f (2z2)h(z).

No suporte η · p = 0 e com as relações η2/2 = z2 = −|z|2 = z∗z = (η · ϵ+)(η · ϵ−), a expressão para o

operador de Casimir quártico U(C4) (4.8) é simplificada a:

U(C4)ψ = −η2(p · ∂η)
2ψ = −ρ2ψ. (4.14)

A partir da função de onda (4.13) pode-se obter equações de onda covariantes conhecidas como equações de

Wigner [22]. Por exemplo, a equação

η · pψ = 0 (4.15)

é consequência da propriedade da função delta de Dirac xδ(x) = 0, ∀x ∈ R. Outra equação pode ser obtida ao

aplicar-se o operador p · ∂η sobre a função de onda (4.13) mas, devido à ϵ±(p) · p = 0 = p2, tem-se que a ação de

p · ∂η tem efeito apenas no terceiro termo do lado direito em (4.13):

p · ∂η exp
{

ρ√
2

η · q
(η · ϵ+)(p · q) eiϕ

}
= exp

{
ρ√
2

η · q
(η · ϵ+)(p · q) eiϕ

}
ρ√
2

eiϕ

η · ϵ+
.

Portanto,

p · ∂ηψ = ρψ
eiϕ

√
2η · ϵ+

= ρψ
1√
2z

= ρψ
1

i
√
−η2
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∴
(

i
√
−η2 p · ∂η − ρ

)
ψ = 0, (4.16)

em que na primeira linha de (4.16) foi utilizado z = η · ϵ+e−iϕ e η2 = 2z2 = −2|z|2. Em consequência da relação

(4.16) e porque
[

p · ∂η ,
√
−η2

]
ψ ∝ η · pψ = 0, tem-se(

i
√
−η2 p · ∂η − ρ

)2
ψ =

[
η2(p · ∂η)

2 − ρ2
]

ψ = 0,

que é a ação do operador de Casimir quártico obtida anteriormente (4.14). Em adição, (4.15)-(4.16) implica que(
i
√
−η2 p · ∂η − ρ

)
(η · pψ) = i

√
−η2[p2ψ + (η · p)p · ∂ηψ] = 0

∴ p2ψ = 0, (4.17)

que é consistente com p2 = 0, ou seja, o campo ψ representa uma partícula sem massa. Na linha anterior à (4.17),

foi utilizado que p · ∂ηψ ∝ ψ e η · pψ = 0.

Escolhendo em (4.13)

f̄ (z) = f (2z2)h(z) = f (η2)h
(

η · ϵ+e−iϕ
)
= δ(η2 + 1)h

(
η · ϵ+e−iϕ

)
, (4.18)

tem-se

(η2 + 1)ψ = 0. (4.19)

Com as relações

η · ∂ηδ(η · p) = −δ(η · p)

η · ∂ηδ
(
η · ϵ+e−iϕ + η · ϵ−eiϕ) = −δ

(
η · ϵ+e−iϕ + η · ϵ−eiϕ)

η · ∂η exp
{

ρ√
2

η·q
(η·ϵ+)(p·q) eiϕ

}
= 0

,

obtém-se

η · ∂ηψ = 0, (4.20)

desde que h seja solução de

η · ∂η

[
δ(η2 + 1)h

(
η · ϵ+e−iϕ

)]
= 2δ(η2 + 1)h

(
η · ϵ+e−iϕ

)
. (4.21)

Um exemplo (trivial) de solução da equação (4.21) é

h(z) = 1 + 2z2, 2z2 = η2. (4.22)

Com todos os resultados apresentados até aqui nesta subseção, pode-se escrever o seguinte conjunto de equações de

onda covariantes para CSPs [22]:

p2ψ = 0

η · pψ = 0(
−i
√
−η2 p · ∂η + ρ

)
ψ = 0

(η2 + 1)ψ = 0

η · ∂ηψ = 0

, (4.23)

onde todas as equações acima são tomadas no suporte η · p = 0 e as duas últimas são consequência da escolha de f̄

(relações (4.18) e (4.21)-(4.22)).

46



4.1.2 Solução Suave em η · p

Multiplicando a primeira equação em (4.10) por z, a segunda por z∗ e em seguida tomando a diferença entre elas,

obtém-se:

(z∗∂z∗ − z∂z) g(z, z∗, a, b, c) =
ρ√
2b

(z + z∗)g(z, z∗, a, b, c),

cuja solução é dada por

g(z, z∗, a, b, c) = h(a, b, c, |z|2) exp
(

ρ√
2b

(z∗ − z)
)

, (4.24)

onde h é uma função arbitrária. Com o uso de

∂z∗g = exp
(

ρ√
2b
(z∗ − z)

) (
z ∂h

∂|z|2 +
ρ√
2b

h
)

, (4.25)

tem-se que a primeira equação em (4.10) pode ser reescrita como:

z
∂h
∂a

+ bz
∂h

∂|z|2 − bz
∂h
∂c

= 0. (4.26)

Escolhendo h de modo que ∂h
∂|z|2 = ∂h

∂c = constante, tem-se que |z|2 = c = η2 de modo que a relação (4.26) pode

ser reescrita como

z
∂ f
∂a

= 0, (4.27)

com f (a, b, c) ≡ h(a, b, c, |z2| = c). Portanto, no suporte z ̸= 0, f = f (b, c) = f (η · p, η2) e a solução suave de

(4.10) é dada por

g(z, z∗, b, c) = f (b, c) exp
(
− ρ√

2b
(z− z∗)

)
ou, em termos das variáveis originais,

ψ(p, ϕ, η) = f (η · p, η2) exp
{
−i
√

2ρ Im
[

η · ϵ+
η · p e−iϕ

]}
. (4.28)

Com o uso da função de onda (4.28) pode-se derivar duas equações de onda covariantes, a saber:

p · ∂ηψ = 0 (4.29)

se

(η · p) ∂ f
∂η2 = 0, (4.30)

e

η · ∂ηψ = nψ,

se

(η · p) ∂ f
∂(η · p) + 2η2 ∂ f

∂η2 − n f = 0, n ∈ Z. (4.31)

As relações (4.30) e(4.31) fixam completamente a dependência de f em seus parâmetros. Com todos os resultados

apresentados até aqui nesta subseção, pode-se escrever o seguinte conjunto de equações de onda covariantes para

CSPs:

p2ψ = 0

p · ∂ηψ = 0

η · ∂ηψ = nψ(
−(η · p)2∂2

η + ρ2
)

ψ = 0

, (4.32)
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em que a última equação é obtida com o uso de p · ∂ηψ = 0 em (4.8). As equações em (4.32) foram obtidas

recentemente pelos autores de [16].

4.2 Matriz S e Regime Soft

O objetivo principal desta seção é descrever amplitudes de emissão soft covariantes para CSPs com o uso da função

de onda (4.28). A existência destas amplitudes é uma característica importante das CSPs porque estabelece a

possibilidade de interações de longo alcance serem intermediadas não apenas por partículas de baixa helicidade,

conforme estabelece o Teorema de Weinberg [17],31 mas também por CSPs. Neste contexto, ao desenvolver-se

uma teoria de campos completa para CSPs, as amplitudes calculadas nesta seção podem ser obtidas a partir das

amplitudes da teoria completa no regime soft a ser definido na Subseção 4.2.2.

4.2.1 Covariância da Matriz S

Seja Sβα = ⟨β| S |α⟩ , S†S = SS† = 1, o elemento de matriz que descreve a reação |α⟩ −→ |β⟩ tal que

|α⟩ = ∏u
i=1 |pi, ai⟩

|β⟩ = ∏v
i=1 |p′i, a′i⟩

, (4.33)

onde u (v) é o número de partículas antes (depois) da reação, u + v = n é o número total de partículas que

participam da reação e pi, ai (p′i, a′i) são o momento e o parâmetro do LG da i-ésima partícula antes (depois) da

reação, respectivamente. No que segue, assume-se que S é invariante sob transformações de Lorentz, isto é,

S → U†(Λ)SU(Λ) = S. (4.34)

Sob a transformação de Lorentz U(Λ) a amplitude do processo |α⟩ −→ |β⟩ se transforma como:

A
(
{p1a1, · · · , puau, } → {p′1a′1, · · · , p′va′v}

)
≡ Sβα = ⟨β| S |α⟩

(4.34)
=

u

∏
i=1

v

∏
j=1
⟨p′j, a′j|U†(Λ)SU(Λ) |pi, ai⟩

(3.8)
=

u

∏
i=1

v

∏
j=1

∑
ā′j

∑̄
ai

D∗a′j ā′j
[W (Λ, p′j)]Dai āi [W (Λ, pi)] ⟨Λp′j, ā′j| S |Λpi, āi⟩

∴
A
(
{p1a1, · · · , puau, } → {p′1a′1, · · · , p′va′v}

)
=

(
∏u

i=1 ∑āi
Dai āi [W (Λ, pi)]

) (
∏v

j=1 ∑ā′ D∗a′j ā′j
[W (Λ, p′j)]

)
A
(
{Λpi āi} → {Λp′j ā

′
j}
) , (4.35)

em que D [W (Λ, pi)] é a representação matricial do LGpi , W (Λ, pi) ∈ LGpi e, na segunda linha, utilizou-se a

decomposição do operador U como U(Λ) = ∏i Ui(Λi). A lei de transformação (4.35) é similar à dada para

a função de onda (4.2) (com a substituição a → ϕ e ∑a →
∫

dϕ/2π) de sorte que pode-se usar (4.28) para a

construção de amplitudes de espalhamento que envolvam processos com CSPs. Isto é feito a seguir.

4.2.2 Fatores Soft

Considere um processo onde há n partículas massivas (u partículas massivas iniciais e v partículas massivas

finais, u + v = n) cada qual com quadrimomento pi, p2
i = m2

i , i = 1, · · · , n, e uma partícula sem massa com

31Veja o Apêndice B para uma breve revisão do Teorema de Weinberg.
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Figura 4.1: Amplitude para um processo envolvendo u partículas massivas reagindo dando v outras, u+ v = n, com

a emissão de uma partícula sem massa em regime soft com momento k. Neste diagrama, pi + k é o quadrimomento

da i-ésima particula massiva saindo e pi − k é o quadrimomento da i-ésima partícula massiva entrando.

quadrimomento k em regime soft, isto é, k · pi ≪ pi · pj, ∀ i, j = 1, · · · , n (veja Figura 4.1). A amplitude associada

a este processo pode ser escrita como

A ({k, a}, p1, · · · , pn) =
n

∑
i=1

A (p1, · · · , pi ± k, · · · , pn)
gi

(pi ± k)2 −m2
i + iϵ

si ({k, a}, pi) , 0 < ϵ≪ 1,

(4.36)

em que gi e si são a constante de acoplamento e o fator soft associados à i-ésima partícula massiva, respectivamente.

Em consonância com a notação da subseção precedente, o leitor pode observar que: (p1, · · · , pu, p′1, · · · , p′v) ≡

(p1, · · · , pi, · · · , pn), ou seja, p′1 ≡ pu+1, · · · , p′v ≡ pu+v = pn.

No limite em que k · pi ≪ pi · pj, ∀ i, j = 1, · · · , n, tem-se

A (p1, · · · , pi ± k, · · · , pn) → A (p1, · · · , pi, · · · , pn) + O(|k0|)
1

(pi±k)2−m2
i +iϵ

→ 1
±2pi ·k+iϵ

, (4.37)

em que fez-se uso de p2
i = m2

i . Assim, a expressão (4.36) é simplificada a

A ({k, a}, p1, · · · , pn) = A (p1, · · · , pn) f ({k, a}, p1, · · · , pn) + O(|k0|), (4.38a)

com

f ({k, a}, p1, · · · , pn) ≡
n

∑
i=1

gi
±2pi · k + iϵ

si ({k, a}, pi) . (4.38b)

A relação (4.38a) é a maior contribuição para a amplitude em regime soft.

Em consequência da relaçao (4.35) vê-se que f , dada por (4.38b), satisfaz uma condição semelhante à dada

para a função de onda ψ (4.1). De fato, analogamente ao feito na obtenção de (4.35), pode-se demonstrar que

A ({k, a}; p1, a1; · · · ; pn, an)

=

(
u

∏
i=1

∑̄
ai

Dai āi [W (Λ, pi)]

) n

∏
j=u+1

∑̄
aj

D∗aj āj
[W (Λ, pj)]

 A
(
{Λpi, āi} → {Λpj, āj}

)
× ∑̄

a
D∗aā[W (Λ, k)] f ({Λk, ā}, Λp1, · · · , Λpn). (4.39)
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Mas,

A ({k, a}; p1, a1; · · · ; pn, an)
(4.38a)
= A(p1, a1; · · · ; pn, an) f ({k, a}, p1, · · · , pn)

(4.35)
=


(

u

∏
i=1

∑̄
ai

Dai āi [W (Λ, pi)]

) n

∏
j=u+1

∑̄
aj

D∗aj āj
[W (Λ, pj)]

 A
(
{Λpi āi} → {Λpj āj}

)
× f ({k, a}, p1, · · · , pn). (4.40)

Portanto, comparando (4.39) e (4.40), obtém-se:

f ({k, a}, p1, · · · , pn) = ∑̄
a

D∗aā[W (Λ, k)] f ({Λk, ā}, Λp1, · · · , Λpn). (4.41)

Isto implica que o fator soft dado em (4.38b) satisfaz a seguinte relação:

si({k, a}, pi) = ∑̄
a

D∗aā[W (Λ, k)]si({Λk, ā}, Λpi) ∀i = 1, · · · , n. (4.42)

4.3 Fatores Soft para CSPs

O resultado (4.42) sugere que a funçao de onda (4.28) calculada em ηµ = pµ
i seja escolhida como fator soft:

si({k, ϕ}, pi)± = f±i (k · pi, m2
i )e
±iρ ϵ(k,ϕ)·pi

k·pi = f±i (k · pi, m2
i )e
∓iρ
√

2 Im
[
e−iϕ ϵ+(k)·pi

k·pi

]
, (4.43)

em que o sinal de mais (menos) da relação anterior significa fator de emissão (absorção) soft. Com esta escolha

a relação (4.42) é satisfeita ao fazer-se ϕ → ā e
∫

dϕ/2π → ∑ā em (4.2). Esta afirmação será verificada na

Subseção 4.3.1.

Pelo uso da representação integral da função de Bessel,

Jn(z) =
∫ dΨ

2π
einΨ−iz sin Ψ, (4.44)

pode-se obter o fator soft na base de spin. De fato, com o uso da relação (3.59) a transformada de Fourier

correspondente a si({k, ϕ}, pi)± é dada por:

si({k, n}, pi)± =
∫ dϕ

2π
e±inϕsi({k, ϕ}, pi)± = f±i (k · pi, m2

i )
∫ dϕ

2π
e±inϕe

∓iρ
√

2 Im
[
e−iϕ ϵ+ ·pi

k·pi

]
. (4.45)

Mas,porque z = |z| exp {iarg(z)}, ∀z ∈ C, obtém-se:

Im
[

e−iϕ ϵ+ · pi
k · pi

]
=

∣∣∣∣ ϵ+ · pi
k · pi

∣∣∣∣ sin
[

arg
(

ϵ+ · pi
k · pi

)
− ϕ

]
,

de modo que substituindo esta expressão em (4.45) e com o uso de (4.44) e da propriedade da função de Bessel

J−n(z) = (−1)n J(z), obtém-se

∴ si({k, n}, pi)± = f±i (k · pi, m2
i )(−1)n exp

{
±in arg

(
ϵ+ ·pi
k·pi

)}
Jn

(
ρ
√

2
∣∣∣∣ ϵ+ ·pi

k·pi

∣∣∣∣) , (4.46)

4.3.1 Covariância

Por completeza, verifica-se, a seguir, se o fator soft (4.43) satisfaz a lei de transformação dada por (4.42) que garante

a covariância da amplitude de espalhamento deduzida anteriormente. De fato, na base correspondente ao parâmetro
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ϕ do LG, os fatores soft si satisfazem a equação de covariância (4.42):

si({k, ϕ}, pi)−
(2.4)
= f−i (Λk ·Λpi, m2

i ) exp
{
−iρ

Λϵ(k, ϕ) ·Λpi
Λk ·Λpi

}
(A.28)
= f−i (Λk ·Λpi, m2

i ) exp
{
−iρ

[ϵ(Λk, ϕ + θ) + aΛk] ·Λpi
Λk ·Λpi

}
=

∫ dϕ′

2π
D∗ϕϕ′ [θ, β]si({Λk, ϕ′}, Λpi)−,

em que na segunda linha foi utilizado que a =
√

2Re
[

βe−i(ϕ+θ)
]

(veja o Apêndice A.3). Assim, a amplitude

construída a partir do fator soft (4.43) satisfaz a lei de covariância (4.35) segundo

A({k, ϕ}, p1, · · · , pn)
Λ→
∫ dϕ′

2π
D∗ϕϕ′ [θ, β]A({Λk, ϕ′}, Λp1, · · · , Λpn). (4.47)

Analogamente, na base de spin (4.46) pode-se verificar que a amplitude satisfaz também a lei de covariância (4.35)

segundo

A ({k, n}, p1, · · · , pn) = ∑
n′

D∗nn′ [W (Λ, k)] A
(
{Λk, n′}, Λp1, · · · , Λpn

)
. (4.48)

4.3.2 Invariância

A amplitude para um processo que envolva a emissão de uma CSP soft é calculada pelo uso da relação (4.43)

A ({k, ϕ}, p1, · · · , pn) = A (p1, · · · , pn)
n

∑
i=1

gi
1

2pi · k + iϵ
fi(k · pi, m2

i ) exp
{

iρ
ϵ(k, ϕ) · pi

k · pi

}
= A (p1, · · · , pn)∑n

i=1 gi
1

2pi ·k+iϵ fi(k · pi, m2
i ) exp

{
−iρ
√

2 Im
[
e−iϕ ϵ+(k)·pi

k·pi

]} , (4.49)

ou pela relação (4.46)

A ({k, h}, p1, · · · , pn) = A (p1, · · · , pn)
n

∑
i=1

gi
1

2pi · k + iϵ
fi(k · pi, m2

i ) J̃h

(
ρ
√

2
∣∣∣∣ ϵ+ · pi

k · pi

∣∣∣∣) , (4.50)

em que J̃h ≡ (−1)h exp
{
±ih arg

(
ϵ+ ·pi
k·pi

)}
Jh. Estas amplitudes não são invariantes de Lorentz mas a seção

de choque σ ∝
∫

dϕ|A(ϕ)|2 ou σ ∝ ∑n |A(n)|2 é. Ao considerar-se por exemplo a amplitude em termos do

parâmetro ϕ (4.49), tem-se

|A({k, ϕ}, p1, · · · )|2 ∝ ∑
i,j

exp

{
−iρ
√

2 Im
[

e−iϕ ϵ+(k) · pi
k · pi

]
+ iρ
√

2 Im

[
e−iϕ ϵ+(k) · pj

k · pj

]}
(2.4)
= ∑

i,j
exp

{
−iρ
√

2 Im

[
e−iϕ (Λϵ+(k) ·Λpi)(Λk ·Λpj)− (Λϵ+(k) ·Λpj)(Λk ·Λpi)

(Λk ·Λpi)(Λk ·Λpj)

]}

(A.26)
= ∑

i,j
exp

{
− iρ
√

2 Im
[

e−i(ϕ+θ)

[
ϵ+(Λk) + iβ∗Λk

]
·Λpi(Λk ·Λpj)

(Λk ·Λpi)(Λk ·Λpj)

−e−i(ϕ+θ)

[
ϵ+(Λk) + iβ∗Λk

]
·Λpj(Λk ·Λpi)

(Λk ·Λpi)(Λk ·Λpj)

]}
(4.49)

∝ |A({Λk, ϕ + θ}, Λp1, · · · )|2. (4.51)
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Por outro lado, ao considerar-se a amplitude em termos do parâmetro h (4.49), |A(h)|2 não é invariante mas

σ ∝ ∑h |A(h)|2 é: (no que segue, redefine-se o argumento da função de Bessel como zi ≡
√

2ϵ+ · pi/(k · pi)):

+∞

∑
h=−∞

|A({k, h}), p1, · · · |2

= |A (p1, · · · , pn) |2 ∑
i,j

gigj
1

(2pi · k + iϵ)(2pj · k + iϵ)
fi f j

+∞

∑
h=−∞

Jh (ρ|zi|) J∗h
(
ρ|zj|

)
. (4.52)

Mas o último termo desta expressão é invariante:

+∞

∑
h=−∞

Jh (ρ|zi|) J∗h
(
ρ|zj|

)
=

+∞

∑
h=−∞

Jh (ρ|zi|) Jh
(
ρ|zj|

)
=

+∞

∑
h=−∞

Jh (ρ|zi|) J−h
(
−ρ|zj|

)
= J0

(
ρ|zi − zj|

)
= 1,

em que na segunda igualdade foi utilizado a propriedade Jn(x) = J−n(−x), ∀n ∈ Z, ∀x ∈ C, na terceira igualdade

foi utilizado o teorema de adição das funções de Bessel (3.52) e, na última igualdade, J0(x) = 1, ∀x ∈ C.

Todos os resultados deste capítulo apresentados até aqui estabelecem uma característica importante sobre

a teoria de interação para CSPs: a existência de amplitudes covariantes de emissão/absorção soft. Com estas

amplitudes, os autores de [64] encontraram que sob a escala de energia E ≫ ρ, os fatores soft para partículas

escalares, fótons e grávitons são recuperadas . Assim, se existe uma teoria de campo completa para CSPs, no limite

de baixa energia para a CSP emitida/absorvida, deve-se recuperar as amplitudes (4.49)-(4.50).
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5 Teoria de Campo Para Táquions de Spin Contínuo
Neste capítulo analisamos uma teoria de campo para táquions de spin contínuo (CSTs) propondo uma ação,

verificando suas simetrias e, com a equação de campo, verificamos que o campo carrega a representação do grupo de

Poincaré correspondente ao táquion de spin contínuo através do cálculo dos autovalores dos operadores de Casimir

deste grupo. Após esta certificação, estudamos os graus de liberdade físicos do campo e, por fim, estudamos um

vértice cúbico similar ao proposto por Rivelles em [62] que, no limite de massa nula, obtemos o vértice cúbico para

CSPs que os autores de [54] obtiveram com o uso de correntes de Berends-Burgers-van Dam (BBvD) [55].

5.1 Ação

Seja Ψ = Ψ(η, ξ, x) um campo escalar complexo que representa o CST, em que xµ =
(

x0, · · · , xD−1) são as

coordenadas usuais do espaço-tempo e ηµ =
(
η0, · · · , ηD−1) e ξ são as coordenads de um espaço auxiliar (à

semelhança das coordenadas ηµ que caracterizam a função de onda da CSP estudada no capítulo anterior). A teoria

do CST é em dimensão D com a métrica g = diag(1,−1, · · · ,−1) e a ação é dada por

S0[Ψ, Ψ∗] =

1
2

∫
dη dξ dx Ψ∗

{
δ′(η2 + ξ2 + µ2)

[
□x −m2 − (η · ∂x − imξ)(∆− im∂ξ)

]
− 1

2 δ(η2 + ξ2 + µ2)(∆− im∂ξ)
2
}

Ψ

, (5.1)

em que m é a massa do CST, ∆ ≡ ∂η · ∂x + ρ, ρ ∈ R, δ′ é a derivada da função delta com respeito ao seu argumento

e µ é um parâmetro real que pode ser fixado igual a um com a reescala η → µη, ξ → µξ e ρ → ρ/µ. Devido à

presença da derivada da função delta na ação acima, a dinâmica do campo taquiônico Ψ é localizada no hiperbolóide

η2 + ξ2 + µ2 = 0 e em sua primeira vizinhaça assim como os autovalores dos operadores de Casimir do grupo de

Poincaré. Estas afirmações serão verificadas nas Seções 5.3 e 5.4, respectivamente.

Há outras duas maneiras em que a ação (5.1) pode ser escrita. Em verdade, escrevendo S0 como

S0[Ψ, Ψ∗] = S(1)
0 [Ψ, Ψ∗] + S(2)

0 [Ψ, Ψ∗] + S(3)
0 [Ψ, Ψ∗], (5.2)

com

S(1)
0 [Ψ, Ψ∗] = 1

2

∫
dη dξ dx δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)Ψ,

S(2)
0 [Ψ, Ψ∗] = − 1

2

∫
dη dξ dx δ′(η2 + ξ2 + µ2)Ψ∗(η · ∂x − imξ)(∆− im∂ξ)Ψ

S(3)
0 [Ψ, Ψ∗] = − 1

4

∫
dη dξ dx δ(η2 + ξ2 + µ2)Ψ∗(∆− im∂ξ)

2 Ψ

, (5.3)

S(1)
0 [Ψ, Ψ∗] pode ser reescrita ao fazer-se uso de integração por partes

S(1)
0 [Ψ, Ψ∗] = −1

2

∫
dη dξ dx δ′(η2 + ξ2 + µ2)

(
|∂xΨ|2 + m2|Ψ|2

)
+ t. s. (5.4)

em que t. s. significa termo de superfície. Também, dado f = f (η, ξ, x) e g = g(η, ξ, x), tem-se por integração

por partes que ∫
dη dx δ(η2 + ξ2 + µ2) f

(
∂η · ∂x g

)
=

∫
dη dx

[
2δ′(η2 + ξ2 + µ2)η · ∂x f + δ(η2 + ξ2 + µ2)∂x · ∂η f

]
g + t. s. (5.5)
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e ∫
dξ δ(η2 + ξ2 + µ2) f

(
∂ξ g

)
= −

∫
dξ
[
2ξδ′(η2 + ξ2 + µ2) f + δ(η2 + ξ2 + µ2)∂ξ f

]
g + t. s., (5.6)

de sorte que, fazendo f ≡ Ψ∗ e g ≡ (∆− im∂ξ)Ψ, S(3)
0 [Ψ, Ψ∗] lê-se

S(3)
0 [Ψ, Ψ∗]

(5.3)
= −1

4

∫
dη dξ dx δ(η2 + ξ2 + µ2)

[
(∆ + im∂ξ)Ψ∗

]
(∆− im∂ξ)Ψ− S(2)

0 [Ψ, Ψ∗] + t. s.,

ou seja,

S(3)
0 [Ψ, Ψ∗] + S(2)

0 [Ψ, Ψ∗] = −1
4

∫
dη dξ dx δ(η2 + ξ2 + µ2)|(∆− im∂ξ)Ψ|2. (5.7)

Finalmente, somando os resultados (5.4) e (5.7) obtém-se,32 a menos de termos de superfície,

S0[Ψ, Ψ∗] = −1
2

∫
dηdξdx

{
δ′(η2 + ξ2 + µ2)

(
|∂xΨ|2 + m2|Ψ|2

)
+

1
2

δ(η2 + ξ2 + µ2)|(∆− im∂ξ)Ψ|2
}

,

(5.8)

ou, com o uso da primeira linha em (5.3),

S0[Ψ, Ψ∗] =
1
2

∫
dη dξ dx

{
δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)Ψ− 1

2
δ(η2 + ξ2 + µ2)|(∆− im∂ξ)Ψ|2

}
.

(5.9)

Esta forma será explorada na próxima seção.

5.2 Simetrias

Nesta seção serão investigadas as simetrias locais e algumas simetrias globais que a ação (5.9) apresenta. Conforme

será visto na Seção 5.5, uma das simetrias locais é uma simetria de gauge e será usada para a análise dos graus de

liberdade físicos que o campo Ψ comporta. Dentre as simetrias globais, será demonstrado que a ação é invariante

sob transformações de Lorentz no espaço-tempo e no espaço auxiliar, além de translações no espaço-tempo.33 Os

geradores destas transformações são Jµν = ix[µ∂xν] + iη[µ∂ην]
34 e Pµ = i∂xµ, respectivamente, os quais serão

utilizados na construção dos operadores de Casimir no Apêndice D.

5.2.1 Simetrias Globais

a) Simetria de Translação

Uma translação infinitesimal sobre as coordenadas do espaço-tempo pode ser escrita como:

x′µ − xµ ≡ δϵxµ = ϵµ, 0 < ϵµ ≪ 1, ∀µ = 0, · · · , D− 1. (5.10)

A transformação acima implica na transformação do campo taquiônico como

Ψ(x)→ Ψ′(x) = Ψ(x) + δϵΨ(x). (5.11)

32Uma ação similar à (5.8) foi apresentada em [62].
33Além das simetrias globais descritas neste parágrafo, a ação (5.9) é invariante sob a transformação δxµ = ωµνην, onde ωµν é antissimétrico

[45].
34Notação: A[µBν] = AµBν − AνBµ.
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(Por simplicidade será omitida a dependência em η e ξ de Ψ no estudo desta simetria.) Portanto, dado que o campo

taquiônico é um campo escalar, tem-se

δϵΨ(x) = iϵµPµΨ(x), (5.12)

onde

Pµ = i∂xµ (5.13)

define os geradores de translação sobre o campo Ψ (2.22). O complexo conjugado de (5.12) define a variação do

campo Ψ∗ com a transformação (5.10) como

δϵΨ∗(x) = iϵµPµΨ∗(x). (5.14)

Portanto, a transformação (5.10) implica que a ação (5.9) se transforma como:

δϵS0 = 1
2

∫
dηdξdx δ′(η2 + ξ2 + µ2)

[
δϵΨ∗(□x −m2)Ψ + Ψ∗(□x −m2)δϵΨ

]
− 1

4

∫
dηdξdxδ(η2 + ξ2 + µ2)

[
(∆ + im∂ξ)Ψ∗(∆− im∂ξ)δϵΨ + (∆ + im∂ξ)δϵΨ∗(∆− im∂ξ)Ψ

]
,

em que a primeira integral é dada por

1
2

∫
dx δ′(η2 + ξ2 + µ2)

[
(−ϵµ∂xµΨ∗)(□x −m2)Ψ + Ψ∗(□x −m2)(−ϵµ∂xµΨ)

]
= −ϵµ 1

2

∫
dx ∂xµ

[
δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)Ψ

]
= t. s..

Similarmente, porque [∂xµ, ∆± im∂ξ ] = 0, pode-se escrever que a segunda integral em δϵS0 também é um termo

de superfície. Logo, S0 é invariante sob a transformação (5.10).

b) Simetria de Lorentz

Uma transformação de Lorentz infinitesimal sobre ambas as coordenadas xµ e ηµ pode ser escrita como:

x′µ − xµ ≡ δxµ = ωµνxν

η′µ − ηµ ≡ δηµ = ωµνην

, 0 < ωµν ≪ 1, ∀µ, ν = 0, · · · , D− 1. (5.15)

As transformações acima implicam que campo taquiônico se transforma como

Ψ(x, η)→ Ψ′(x, η) = Ψ(x, η) + δωΨ(x, η). (5.16)

(Por simplicidade será omitida a dependência em ξ de Ψ no estudo desta simetria.) Portanto, dado que

Ψ(x, η) = Ψ′(x + ωx, η + ωη) = Ψ′(x, η) + ωµνxν∂xµΨ(x, η) + ωµνην∂ηµΨ(x, η) + O(ω2)

= Ψ′(η, x) +
i
2

ωµν JµνΨ(x, η) + O(ω2), (5.17)

tem-se

δωΨ(x, η) = − i
2

ωµν JµνΨ(x, η) (5.18)

onde

Jµν = i(xµ∂xν − xν∂xµ) + i(ηµ∂ην − ην∂ηµ) (5.19)
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define os geradores de rotação. Na segunda linha de (5.17) foi escrita apenas a componente antissimétrica de

xν∂xµ e ην∂ηµ visto que a componente simétrica quando contraída com ωµν é zero (recorde-se que ω é um tensor

antissimétrico no começo da Subseção 2.2.1). Observe que

L = δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)Ψ− 1
2

δ(η2 + ξ2 + µ2)|(∆− im∂ξ)Ψ|2, (5.20)

é um escalar sob transformações de Lorentz. Portanto, pode-se demonstrar que com as transformações (5.15) a

Lagrangiana (5.20) se transforma como:

δL = ωµν(xν∂xµ + ην∂ηµ)L .

O primeiro termo do lado direito desta relação pode ser escrito como

ωµνxν∂xµL = ∂xµ(ω
µνxνL )−ωµνgµνL = ∂xµ(ω

µνxνL ).

Analogamente,

ωµνην∂ηµL = ∂ηµ(ω
µνηνL ).

Portanto,

δS0 =
∫

dη dξ dx δL = ωµν
∫

dη dξ dx ∂xµ(ω
µνxνL ) + ωµν

∫
dη dξ dx ∂ηµ(ω

µνηνL ) = t. s.,

isto é, S0 é invariante sob as transformações em (5.15).

5.2.2 Simetrias Locais

Nesta subseção serão exploradas simetrias da ação (5.9) através de duas transformações locais sobre o campo Ψ,

denominadas simetria-ϵ e simetria-χ. Porque os parâmetros destas transformações são funções das coordenadas,

estas simetrias são denominadas simetrias locais e, conforme será apresentado na Seção 5.5, a simetria-ϵ será útil na

análise dos graus de liberdade físicos carregados pelo campo taquiônico Ψ enquanto que a simetria-χ será utilizada

na expansão deste campo em torno do hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira vizinhança.

a) Simetria-ϵ

A ação (5.9) é invariante sob a transformação

δϵΨ =

[
η · ∂x − imξ − 1

2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
ϵ, (5.21)

onde ϵ = ϵ(η, ξ, x) é uma função arbitrária.35 De fato, a variação da ação (5.9) com a transformação (5.21) pode

ser escrita como

δϵS0 =
∫

dη dξ dx δϵL , (5.22)

em que, definindo L (1) ≡ 1
2 δ′(η2 + ξ2 +µ2)Ψ∗(□x−m2)Ψ e L (2) ≡ − 1

4 δ(η2 + ξ2 +µ2)
[
(∆ + im∂ξ)Ψ∗

]
(∆−

im∂ξ)Ψ, tem-se que a variação total de L = L (1) +L (2) pela transformação (5.21) é dada por

δϵL = δϵL
(1) + δϵL

(2), (5.23)
35Uma análise similar ao desenvolvida para o campo Ψ pode ser feita com o campo complexo-conjugado Ψ∗, a saber, a ação (5.9) é invariante

sob a transformação

δϵ∗Ψ∗ =
[

η · ∂x + imξ − 1
2
(η2 + ξ2 + µ2)(∆ + im∂ξ )

]
ϵ∗,

onde ϵ∗ = ϵ∗(η, ξ, x) é uma função arbitrária.
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onde

δϵL (1) ≡ 1
2 δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)δϵΨ

δϵL (2) ≡ − 1
4 δ(η2 + ξ2 + µ2)

[
(∆ + im∂ξ)Ψ∗

]
(∆− im∂ξ)δϵΨ

. (5.24)

Com o uso das relações de comutação (C.1) e (C.2) do Apêndice C, pode-se reescrever a segunda relação em (5.24)

como:

δϵL
(2) = −1

4
δ(η2 + ξ2 + µ2)

[
(∆ + im∂ξ)Ψ∗

] [
(□x −m2) + (η · ∂x − imξ)(∆− im∂ξ)

−1
2

2(η · ∂x − imξ)(∆− im∂ξ)−
1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2
]

ϵ

= −1
4

δ(η2 + ξ2 + µ2)
[
(∆ + im∂ξ)Ψ∗

]
ϵ′, (5.25)

em que ϵ′ ≡ (□x −m2)ϵ e a propriedade xδ(x) = 0, ∀x foi utilizada. Integrando a relação (5.25), obtém-se∫
dη dξ dx δϵL

(2) = −1
4

∫
dη dξ dx δ(η2 + ξ2 + µ2)

[
(∆ + im∂ξ)Ψ∗

]
ϵ′

= −1
4

∫
dη dξ dx δ(η2 + ξ2 + µ2)Ψ∗

[
(∆− im∂ξ)ϵ

′]
−1

2

∫
dη dξ dx δ′(η2 + ξ2 + µ2)

[
(η · ∂x − imξ)ϵ′

]
Ψ∗

= −1
2

∫
dη dξ dx δ′(η2 + ξ2 + µ2)Ψ∗

(
□x −m2

)
δϵΨ

(5.24)
= −

∫
dη dξ dx δϵL

(1), (5.26)

ou seja,

δϵS0 =
∫

dη dξ dx
(

δϵL
(1) + δϵL

(2)
)
= 0. (5.27)

A segunda igualdade em (5.26) é resultado de integrações por partes.

b) Simetria-χ

A ação (5.9) é invariante sob a transformação

δχΨ =
1
4
(η2 + ξ2 + µ2)2χ, (5.28)

onde χ = χ(η, ξ, x) é uma função arbitrária.36 De fato, a variação da ação (5.9) com a transformação (5.28) pode

ser escrita como

δχS0 =
∫

dη dξ dx δχL , (5.29)

em que

δχL = δχL (1) + δχL (2),

onde

δχL (1) ≡ 1
2

δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)δχΨ

=
1
2

δ′(η2 + ξ2 + µ2)Ψ∗(□x −m2)

[
1
4
(η2 + ξ2 + µ2)2χ

]
= 0,

36Uma análise similar ao desenvolvida para o campo Ψ pode ser feita com o campo complexo-conjugado Ψ∗, a saber, a ação (5.9) é invariante

sob a transformação

δχ∗Ψ∗ =
1
4
(η2 + ξ2 + µ2)2χ∗

onde χ∗ = χ∗(η, ξ, x) é uma função arbitrária.
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visto que [η2 + ξ2 + µ2, □x −m2] = 0 e xδ(x) = 0, ∀x, e

δχL (2) ≡ −1
4

δ(η2 + ξ2 + µ2)
[
(∆ + im∂ξ)Ψ∗

]
(∆− im∂ξ)δχΨ

= −1
4

δ(η2 + ξ2 + µ2)
[
(∆ + im∂ξ)Ψ∗

]
(∆− im∂ξ)

[
1
4
(η2 + ξ2 + µ2)2χ

]
(C.1)
= − 1

16
δ(η2 + ξ2 + µ2)

[
2(η · ∂x − imξ) + (η2 + ξ2 + µ2)(∆− im∂ξ)

]
(η2 + ξ2 + µ2)χ

×
[
(∆ + im∂ξ)Ψ∗

]
= 0,

visto que [η · ∂x − imξ, η2 + ξ2 + µ2] = 0 e, outra vez, xδ(x) = 0, ∀x. Assim, pode-se concluir que

δχS0 =
∫

dη dξ dx δχL =
∫

dη dχ dx
(

δχL (1) + δχL (2)
)
= 0. (5.30)

c) Reducibilidade

As simetrias (5.21) e (5.28) são redutíveis, isto é, ao fazer-se a variação dos parâmetros locais ϵ e χ como

δΛϵ = 1
2 (η

2 + ξ2 + µ2)Λ

δΛχ = (∆− im∂ξ)Λ
, (5.31)

em que Λ = Λ(η, ξ, x) é uma função arbitrária, então

δϵ,χΨ =

[
η · ∂x − imξ − 1

2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
ϵ +

1
4
(η2 + ξ2 + µ2)2χ (5.32)

é invariante. De fato,

δΛ(δϵ,χΨ) =

[
η · ∂x − imξ − 1

2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
δΛϵ +

1
4
(η2 + ξ2 + µ2)2δΛχ

(5.31)
=

1
2
(η2 + ξ2 + µ2)(η · ∂x − imξ)Λ− 1

4
(η2 + ξ2 + µ2)(∆− im∂ξ)

[
(η2 + ξ2 + µ2)Λ

]
+

1
4
(η2 + ξ2 + µ2)2(∆− im∂ξ)Λ. (5.33)

O terceiro termo do segundo membro em (5.33) pode ser reescrito como:

1
4
(η2 + ξ2 + µ2)

[
(η2 + ξ2 + µ2)(∆− im∂ξ)Λ

]
(C.1)
=

1
4
(η2 + ξ2 + µ2)

[
(∆− im∂ξ)

(
(η2 + ξ2 + µ2)Λ

)
− 2(η · ∂x − imξ)Λ

]
,

que corresponde aos dois primeiros termos do segundo membro em (5.33) com sinal oposto. Portanto, pode-se

concluir que

δΛ(δϵ,χΨ) = 0. (5.34)

5.3 Equação de Campo

As equações de Euler-Lagrange derivadas da ação (5.9) lêem-se

∂L

∂Ψ
− ∂ξ

∂L

∂(∂ξΨ)
+ ∂η · ∂x

∂L

∂(∂η · ∂xΨ)
+□x

∂L

∂(□xΨ)
= 0, (5.35a)
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e
∂L

∂Ψ∗
− ∂ξ

∂L

∂(∂ξΨ∗)
+ ∂η · ∂x

∂L

∂(∂η · ∂xΨ∗)
= 0, (5.35b)

em que a Lagrangiana L é dada por (5.20). Com esta Lagrangiana pode-se calcular as derivadas em (5.35b). O

resultado é a equação de campo para Ψ:

δ′(η2 + ξ2 + µ2)
[
(□x −m2)− (η · ∂x − imξ)(∆− im∂ξ) +

1
2 (η

2 + ξ2 + µ2)(∆− im∂ξ)
2
]

Ψ = 0. (5.36)

É importante destacar que esta equação de campo está restrita ao hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira

vizinhança. Isto pode ser verificado como segue: definindo A(η, ξ, x) ≡
[
(□x − m2) −(η · ∂x − imξ)(∆ −

im∂ξ) +
1
2 (η

2 + ξ2 + µ2)(∆− im∂ξ)
2]Ψ(η, ξ, x), tem-se que (5.36) lê-se

δ′(η2 + ξ2 + µ2)A(η, ξ, x) = 0. (5.37a)

Multiplicando ambos os membros desta equação por η2 + ξ2 + µ2, obtém-se:

δ(η2 + ξ2 + µ2)A(η, ξ, x) = 0. (5.37b)

Esta equação implica que A(η, ξ, x) calculado no hiperbolóide η2 + ξ2 + µ2 = 0 vale zero, porque, ao integrar

(5.37b) em η2 + ξ2 + µ2, obtém-se∫
d(η2 + ξ2 + µ2)δ(η2 + ξ2 + µ2)A(η, ξ, x) = 0 ⇒ A(η, ξ, x)

∣∣∣∣
η2+ξ2+µ2=0

= 0.

Analogamente, integrando (5.37a) em η2 + ξ2 + µ2, obtém-se

∂

∂ (η2 + ξ2 + µ2)
A(η, ξ, x)

∣∣∣∣
η2+ξ2+µ2=0

= 0.

Estes dois resultados significam que a equação A(η, ξ, x) = 0 está localizada no hiperbolóide η2 + ξ2 + µ2 e sua

primeira vizinhança.

Na próxima seção verifica-se se o campo Ψ carrega a representação taquiônica de spin contínuo do grupo de

Poincaré com o uso da equação de campo (5.36).

5.4 Autovalores dos Operadores de Casimir

Nesta seção é verificado se o campo Ψ carrega a representação taquiônica do grupo de Poincaré (veja a Seção 3.5)

através do cálculo dos autovalores dos operadores de Casimir deste grupo com o uso da equação de campo (5.36).

As expressões destes operadores em dimensão D foram desenvolvidas no Apêndice D, relações (D.1) e (D.14). De

acordo com o mostrado na Tabela 2 e ao analisado na Subseção 3.5, espera-se encontrar que os autovalores dos

operadores de Casimir quadrático e quártico são −m2 e −ρ2 (para µ = 1), respectivamente. Dado que a equação

de campo (5.36) é localizada no hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira vizinhança, será demonstrado que

os autovalores dos operadores de Casimir são os esperados para a representação taquiônica de spin contínuo neste

hiperbolóide e sua primeira vizinhança, a menos de uma transformação de gauge e de um rearranjo das componentes

do campo Ψ. Estas componentes serão definidas na análise dos graus de liberdade físicos feita na Subseção 5.5.2

(relação (5.76)).
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5.4.1 Autovalor do Operador de Casimir Quadrático

Com o uso da equação de campo (5.36) pode-se escrever que

δ′(η2 + ξ2 + µ2)□xΨ = δ′(η2 + ξ2 + µ2)m2Ψ

+δ′(η2 + ξ2 + µ2)

[
η · ∂x − imξ − 1

2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
(∆− im∂ξ)Ψ,

de modo que o autovalor de C2 = −□x sobre Ψ no hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira vizinhança é

dado por

δ′(η2 + ξ2 + µ2)C2Ψ = δ′(η2 + ξ2 + µ2)
(
−m2Ψ + δϵΨ

)
ϵ ≡ −(∆− im∂ξ)Ψ

, (5.38)

com δϵΨ dado por (5.21). Assim, a menos de uma transformação de gauge, o autovalor de C2 sobre o campo Ψ no

hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira vizinhança é dado por −m2 < 0, ou seja, Ψ é um campo escalar

complexo taquiônico. Para concluir que Ψ carrega a representação taquiônica de spin cantínuo do grupo de Poincaré,

é preciso determinar o autovalor do operador de Casimir quártico sobre este campo. Isto é feito a seguir.

5.4.2 Autovalor do Operador de Casimir Quártico

O autovalor do operador de Casimir quártico C4 sobre Ψ no hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira

vizinhança pode ser escrito como

δ′(η2 + ξ2 + µ2)C4Ψ = C4δ′(η2 + ξ2 + µ2)Ψ +

[
δ′(η2 + ξ2 + µ2), C4

]
Ψ. (5.39)

Com o uso da equação de campo (5.36) e da expressão para C4 derivada no Apêndice D, relação (D.14), pode-se

reescrever o primeiro termo do lado direito em (5.39) como

C4δ′(η2 + ξ2 + µ2)Ψ = (η · ∂η − η2□η)(D− 3 + η · ∂η)δ
′(η2 + ξ2 + µ2)[(□x −m2)Ψ + m2Ψ]

−2(η · ∂η)(η · ∂x)(∂η · ∂x)δ
′(η2 + ξ2 + µ2)Ψ + (η · ∂x)

2□ηδ′(η2 + ξ2 + µ2)Ψ

−(D− 4)(η · ∂x)(∂η · ∂x)δ
′(η2 + ξ2 + µ2)Ψ + η2(∂η · ∂x)

2δ′(η2 + ξ2 + µ2)Ψ

= δ′(η2 + ξ2 + µ2)

×
[(

(η · ∂η)(D− 3 + η · ∂η)− η2□η

)(
(η · ∂x − imξ)(∆− im∂ξ)−

1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2
)

−2(η · ∂η)(η · ∂x)(∂η · ∂x) + (η · ∂x)
2□η − (D− 4)(η · ∂x)(∂η · ∂x) + η2(∂η · ∂x)

2
]

Ψ

+m2
(
(η · ∂η)(D− 3 + η · ∂η)− η2□η

)
δ′(η2 + ξ2 + µ2)Ψ

+

[
(η · ∂η)(D− 3 + η · ∂η)− η2□η , δ′(η2 + ξ2 + µ2)

]
×
(
(η · ∂x − imξ)(∆− im∂ξ)−

1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2
)

Ψ

+

{[
− 2(η · ∂η)(η · ∂x)(∂η · ∂x), δ′(η2 + ξ2 + µ2)

]
+

[
(η · ∂x)

2□η , δ′(η2 + ξ2 + µ2)

]
+

[
− (D− 4)(η · ∂x)(∂η · ∂x), δ′(η2 + ξ2 + µ2)

]
+

[
η2(∂η · ∂x)

2, δ′(η2 + ξ2 + µ2)

]}
Ψ, (5.40)
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em que o termo δ′
(
η2 + ξ2 + µ2) (□x −m2) na primeira linha foi substituído pelos correspondentes termos da

equação de campo (5.36) e a segunda igualdade foi obtida com o uso dos comutadores entre δ′ e os operadores

(η · ∂η)(D− 3+ η · ∂η)− η2□η , −2(η · ∂η)(η · ∂x)(∂η · ∂x), (η · ∂x)2□η , −(D− 4)(η · ∂x)(∂η · ∂x) e η2(∂η ·

∂x)2. O termo entre parênteses em (5.40) pode ser escrito como

−
[

δ′(η2 + ξ2 + µ2), C4

]
Ψ +

[
δ′(η2 + ξ2 + µ2), (η · ∂η)(D− 3 + η · ∂η)− η2□η

]
□xΨ,

de sorte que (5.40) pode ser reescrita da seguinte maneira:

C4δ′(η2 + ξ2 + µ2)Ψ

= δ′(η2 + ξ2 + µ2)

×
[(

(η · ∂η)(D− 3 + η · ∂η)− η2□η

)(
(η · ∂x − imξ)(∆− im∂ξ)−

1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2
)

−2(η · ∂η)(η · ∂x)(∂η · ∂x) + (η · ∂x)
2□η − (D− 4)(η · ∂x)(∂η · ∂x) + η2(∂η · ∂x)

2
]

Ψ

+m2
(
(η · ∂η)(D− 3 + η · ∂η)− η2□η

)
δ′(η2 + ξ2 + µ2)Ψ−

[
δ′(η2 + ξ2 + µ2), C4

]
Ψ

+

[
(η · ∂η)(D− 3 + η · ∂η)− η2□η , δ′(η2 + ξ2 + µ2)

](
−□x + (η · ∂x − imξ)(∆− im∂ξ)

−1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2
)

Ψ. (5.41)

O último termo em (5.41) pode ser simplificado com o uso da equação de campo (5.36), visto que o comutador

entre δ′ e o operador diferencial (η · ∂η)(D− 3 + η · ∂η)− η2□η é proporcional a δ′:[
(η · ∂η)(D− 3 + η · ∂η)− η2□η , δ′(η2 + ξ2 + µ2)

](
−□x + (η · ∂x − imξ)(∆− im∂ξ)

−1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2
)

Ψ

(5.36)
= −m2

[
(η · ∂η)(D− 3 + η · ∂η)− η2□η , δ′(η2 + ξ2 + µ2)

]
Ψ,

Substituindo esta relação em (5.41) e levando
[
δ′(η2 + ξ2 + µ2), C4

]
para o primeiro membro desta relação,

obtém-se

C4δ′(η2 + ξ2 + µ2)Ψ +
[
δ′(η2 + ξ2 + µ2), C4

]
(5.39)
= δ′(η2 + ξ2 + µ2)C4Ψ

= δ′(η2 + ξ2 + µ2)

[(
(η · ∂η)(D− 3 + η · ∂η)− η2□η

)(
(η · ∂x − imξ)(∆− im∂ξ)

−1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2 + m2
)
− 2(η · ∂η)(η · ∂x)(∂η · ∂x) + (η · ∂x)

2□η

−(D− 4)(η · ∂x)(∂η · ∂x) + η2(∂η · ∂x)
2
]

Ψ, (5.42)

que é o que se objetiva calcular. Com um rearranjo adequado de termos nesta última equação pode-se obter uma

simetria local do tipo ϵ (5.21) segundo a qual o autovalor de C4 no hiperbolóide η2 + ξ2 + µ2 = 0 e sua primeira

vizinhança é expresso. Isto é feito reescrevendo em (5.42) os operadores ∂η · ∂x →
(
∆− im∂ξ

)
+ im∂ξ − ρ

e η · ∂x → (η · ∂x − imξ) + imξ e com o uso dos comutadores (C.8)-(C.11) de modo a levar η · ∂x − imξ e
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η2 + ξ2 + µ2 para a esquerda do segundo membro de (5.42). O resultado após um trabalho algébrico é:

δ′(η2 + ξ2 + µ2)C4Ψ = δ′(η2 + ξ2 + µ2)δϵΨ + δ′(η2 + ξ2 + µ2)

{
1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

×
[

η · ∂η(D− 3 + η · ∂η)(∆− im∂ξ) + [η · ∂x + imξ − η2(∆− im∂ξ)]□η

+(ρ− im∂ξ)(2η · ∂η + D− 2)
]
− 1

2
(η2 + ξ2 + µ2)(η · ∂η)

2(∆− im∂ξ)
2

−D− 3
2

(η2 + ξ2 + µ2)(η · ∂η)(∆− im∂ξ)
2 +

1
2

η2(η2 + ξ2 + µ2)□η(∆− im∂ξ)
2 + 2m2(η · ∂η)ξ∂ξ

+m2(D− 2)ξ∂ξ + 2ρimξ(η · ∂η) + ρ(D− 2)imξ + ρ2η2 − 2ρη2im∂ξ −m2η2∂2
ξ −m2(ξ2 + η2)□η

+m2η · ∂η(D− 3 + η · ∂η)

}
Ψ, (5.43)

onde δϵΨ é dado por (5.21) com

ϵ =

{
η · ∂η(D− 3 + η · ∂η)(∆− im∂ξ) + [η · ∂x + imξ − η2(∆− im∂ξ)]□η

+(ρ− im∂ξ)(2η · ∂η + D− 2)
}

Ψ
. (5.44)

Para finalizar, no segundo termo do lado direito da igualdade (5.43),

1
2 δ′(η2 + ξ2 + µ2)(η2 + ξ2 + µ2)(∆− im∂ξ)

[
η · ∂η(D− 3 + η · ∂η)(∆− im∂ξ)

+[η · ∂x + imξ − η2(∆− im∂ξ)]□η + (ρ− im∂ξ)(2η · ∂η + D− 2)
]

Ψ
, (5.45)

leva-se o operador ∆− im∂ξ exterior aos colchetes para a direita com o uso dos comutadores (C.12)-(C.15). Ao

escrever o resultado do comutador (C.14) na relação (5.45), pode-se fazer uso da equação de campo (5.36) de modo

a escrever o operador □x em termos de η · ∂x − imξ, ∆− im∂ξ e η2 + ξ2 + µ2 para obter-se mais simplificações

no autovalor de C4. O resultado final é:

δ′(η2 + ξ2 + µ2)C4Ψ = δ′(η2 + ξ2 + µ2)

(
− µ2ρ2Ψ + δϵΨ + RΨ

)
, (5.46)

com ϵ dado por (5.44) e

RΨ ≡
[
− ρ2ξ2 + m2(ξ2 + µ2)∂2

ξ + m2µ2□η + 2ρ(ξ2 + µ2)im∂ξ + 2m2(η · ∂η)ξ∂ξ

+m2(D− 2)ξ∂ξ + 2ρimξ(η · ∂η) + ρ(D− 2)imξ + m2(D− 3)η · ∂η

+m2(η · ∂η)2
]

Ψ

. (5.47)

O operador R não possui derivadas em x. Isso significa que se considerarmos as componentes de Ψ segundo

a expansão Ψ(η, ξ, x) = ∑n ηµ1 · · · ηµn ψµ1···µn(x), então RΨ é apenas um rearranjo das componentes ψµ(x),

ψµν(x),· · · . Por isso esse termo não pode ser reescrito como uma transformação de gauge de Ψ. Portanto,

δ′C4Ψ = −δ′µ2ρ2Ψ a menos de uma transformação de gauge e de um rearranjo das componentes de Ψ. Para que

isto seja verdade é necessário que RΨ tenha as mesmas propriedades de Ψ, a saber, satisfaça a mesma equação de

campo e tenha as mesmas simetrias locais. Isto é demonstrado no Apêndice E.
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5.5 Escolha de Gauge e Graus de Liberdade Físicos

5.5.1 Escolha de Gauge

Com o gauge

(∆− im∂ξ)Ψ = 0, (5.48)

a equação de campo (5.36) é simplificada a

δ′(η2 + ξ2 + µ2)(□x −m2)Ψ = 0. (5.49)

Resolvendo a condição imposta pela função delta nesta equação, tem-se

(□x −m2)Ψ =
1
4
(η2 + ξ2 + µ2)2ω, (5.50)

onde ω = ω(η, ξ, x) é uma função arbitrária. A simetria-χ (5.28) pode ser utilizada em (5.50) para eliminar ω.

De fato, se (□x −m2)χ = ω, então (5.50) pode ser reescrita como (□x −m2)Ψ = 0. A equação para χ não o

determina completamente porque há uma simetria residual χR pela qual (∆− im∂ξ)δχR Ψ = 0 = (□x −m2)δχR Ψ,

isto é, [
η · ∂x − imξ +

1
4
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
χR = 0, (5.51a)

(□x −m2)χR = 0. (5.51b)

Por outro lado, levando em conta a simetria-ϵ (5.21), o gauge (5.48) em conjunto com (□x −m2)Ψ = 0 implicam

que (∆− im∂ξ)δϵΨ = 0 = (□x −m2)δϵΨ, isto é,[
□x −m2 − 1

2

(
η2 + µ2 + ξ2

) (
∆− im∂ξ

)2
]

ϵ = 0, (5.52a)[
η · ∂x − imξ − 1

2

(
η2 + ξ2 + µ2

) (
∆− im∂ξ

)] (
□x −m2

)
ϵ = 0. (5.52b)

A primeira transformação em (5.31) pode ser utilizada neste ponto ao fazer-se a escolha do seguinte gauge para o

parâmetro ϵ:

(∆− im∂ξ)ϵ = 0. (5.53)

Com esta escolha, a equação (5.52a) é simplificada a

(□x −m2)ϵ = 0, (5.54)

que, é claro, é compatível com a equação (5.52b). O gauge (5.53) fixa parcialmente o parâmetro Λ em (5.31) porque

há uma simetria residual ΛR pela qual (∆− im∂ξ)δΛR ϵ = 0 = (□x −m2)δΛR ϵ, isto é,[
(η · ∂x − imξ) +

1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
ΛR = 0, (5.55a)

(η2 + ξ2 + µ2)(□x −m2)ΛR = 0. (5.55b)
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Sumarizando todos os resultados desta subseção, tem-se:

(□x −m2)Ψ = (∆− im∂ξ)Ψ = 0, (5.56a)

δϵ,χR Ψ = (η · ∂x − imξ)ϵ +
1
4
(η2 + ξ2 + µ2)2χR, (5.56b)

(□x −m2)ϵ = (∆− im∂ξ)ϵ = 0, (5.56c)

δΛR ϵ =
1
2
(η2 + ξ2 + µ2)ΛR, (5.56d)

δΛR χR = (∆− im∂ξ)ΛR, (5.56e)

em que o parâmetro χR satisfaz (5.51b) e (5.51a), enquanto que ΛR satisfaz (5.55a) e (5.55b).

5.5.2 Graus de Liberdade Físicos

Nesta subseção é investigado como a escolha do gauge (5.48) pode ser utilizada no estudo dos graus de liberdade

físicos carregados pelo campo Ψ. Isto é feito considerando a transformada de Fourier do campo Ψ na coordenada x:

Ψ(η, ξ, x) =
∫ dDk

(2π)
D
2

Ψ(η, ξ, k)eik·x.

Em seguida, faz-se a escolha de um sistema de referência inercial pelo qual o momento kµ tem apenas uma

componente espacial diferente de zero:

kµ = (0, · · · , 0, m).

Neste caso, os operadores em (5.56a)-(5.56e) podem ser reescritos no espaço dos momentos como

□xΨ(η, ξ, x) → −k2Ψ(η, ξ, k)

∆Ψ(η, ξ, x) → (−ik · ∂η + ρ)Ψ(η, ξ, k)

η · ∂xΨ(η, ξ, x) → −ik · ηΨ(η, ξ, k)

, (5.57)

onde as flechas indicam a passagem do espaço das posições ao espaço dos momentos. Definindo

ξ± = ξ ± ηD−1

ξ± = ξ ± ηD−1

, (5.58)

tem-se Ψ = Ψ(ηα, ξ+, ξ−, k), α = 0, · · · , D− 2, de modo que, com o uso da segunda linha em (5.57), a segunda

igualdade em (5.56a) no espaço dos momentos lê-se:

[im∂η(D−1) + ρ− im∂ξ ]Ψ
(5.58)
= −2im

∂

∂ξ−
Ψ + ρΨ = 0.

A solução desta equação é dada por

Ψ(ηα, ξ+, ξ−, k) = e−
iρξ−
2m ψ(ηα, ξ+, k) (5.59)

em que ψ(ηα, ξ−, k) é uma função arbitrária. Analogamente, dado que ϵ(η, ξ, k) é a transformada de Fourier na

coordenada x de ϵ(η, ξ, x), tem-se que a segunda igualdade em (5.56c) no espaço dos momentos lê-se

− 2im
∂ϵ

∂ξ−
+ ρϵ = 0, (5.60)

cuja solução é:

ϵ(ηα, ξ+, ξ−, k) = e−
iρξ−
2m ε(ηα, ξ+, k) (5.61)
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em que ε(ηα, ξ−, k) é uma função arbitrária. A simetria-ϵ em (5.56b) no espaço dos momentos é dada por

δϵΨ(ηα, ξ+, ξ−, k)
(5.57)
= (imηD−1 − imξ)ϵ(ηα, ξ+, ξ−, k) = −imξ−ϵ(ηα, ξ+, ξ−, k),

de modo que

δεψ(ηα, ξ−, k) = −imξ−ε(ηα, ξ−, k), (5.62)

a qual pode ser utilizada para eliminar a dependência em ξ− de ψ. Isto é possível apenas se ε satisfazer a condição

∂ξ−δεψ = 0.37 Portanto,

Ψ(ηα, ξ+, k) = e−
iρξ+
2m ψ(ηα, k). (5.63)

O próximo passo é expandir o campo taquiônico em torno do hiperbolóide η2 + ξ2 + µ2 = 0. Isto é feito

introduzindo variáveis que identificam hiperbolóides diferentes e pontos sobre eles. Redefinindo as coordenadas do

espaço auxiliar como

ηµ → η̂µ = ηµ

|η|

ξ → ξ̂ = ξ
|η|

, |η| ∈ R− {0}, (5.64)

as quais satisfazem a equação

η̂2 + ξ̂2 = −1, (5.65)

vê-se que |η| caracteriza hiperbolóides diferentes, visto que ao inserir (5.64) em (5.65), tem-se

η2 + ξ2 + |η|2 = 0. (5.66)

Por outro lado, η̂µ e ξ̂ parametrizam pontos sobre o hiperbolóide (5.66). Com estas definições, a expansão do campo

taquiônico em torno do hiperbolóide η2 + ξ2 + µ2 = 0 é dada por

Ψ(η, ξ, k) =
∞

∑
n=0

1
n!
(µ2 − |η2|)n ∂nΨ

∂(η2 + ξ2 + µ2)n (η̂, ξ̂, k). (5.67)

Definindo

ΨχR(η, ξ, k) ≡ Ψ(η̂, ξ̂, k) + (µ2 − |η|2) ∂Ψ
∂(η2 + ξ2 + µ2)

(η̂, ξ̂, k), (5.68)

tem-se que a expansão (5.67) pode ser reescrita como

Ψ(η, ξ, k) = ΨχR(η, ξ, k) + δχR Ψ(η, ξ, k),

onde δχR Ψ é a simetria-χR em (5.56b) com

χR(η, ξ, k) ≡ 4 ∑
n≥2

1
n!

(
µ2 − |η|2

)n−2 ∂Ψ
∂ (η2 + ξ2 + µ2)

(
η̂, ξ̂, k

)
. (5.69)

Os dois termos do segundo membro em (5.68) são

Ψ(η̂, ξ̂, k) = e−
iµρξ̂+

2m ψ(η̂α, k), (5.70)

dado que com (5.64) pode-se definir ξ̂± = ξ±/|η|, e

∂Ψ
∂(η2 + ξ2 + µ2)

(η̂, ξ̂, k) = ψ(η̂α, k)
∂

∂(µ2 − |η|2) e−
iρξ+
2m + e−

iρξ+
2m

∂

∂(µ2 − |η|2)ψ(η̂α, k).

37Um exemplo (trivial) de ε(ηα, ξ−, k) que satisfaça esta condição é ε(ηα, ξ−, k) = f (ηα, k)/ξ−, onde f (ηα, k) é uma função arbitrária.
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Assim, visto que as derivadas desta última igualdade resultam em,[
∂

∂(µ2−|η|2) e−
iρξ+
2m

]
= iρ

4mµ e−
iρµξ̂+

2m ξ̂+

∂
∂(µ2−|η|2)ψ(η̂α, k) = − 1

2µ
∂ψ

∂|η| (η̂α, k)
,

e, em conjunto com o resultado (5.70), a expressão para o campo ΨχR (5.68) se torna:

ΨχR(ηα, ξ+, k) = e−
iµρξ̂+

2m

[
1 + (µ2 − |η|2) iρξ̂+

4µm

]
ψ(η̂α, k)− 1

2µ
(µ2 − |η|2)e−

iµρξ̂+
2m

∂ψ

∂|η| (η̂α, k). (5.71)

Deste ponto em diante será explorado a analiticidade de ψ(η̂α, k) na coordenada η̂α. Com esta hipótese, pode-se

expandir o campo ψ(η̂α, k) em termos de suas componentes como:

ψ(η̂α, k) =
∞

∑
n=0

1
n!

η̂α1 · · · η̂αn ψα1···αn(k), αi = 0, · · · , D− 2, ∀i = 1, · · · , n, (5.72)

em que ψα1···αn(k) é um tensor completamente simétrico. A expansão (5.72) pode ser reescrita como

ψ(η̂α, k) =
∞

∑
n=0

1
n!

η̂α1 · · · η̂αi · · · η̂
αj · · · η̂αn ψα1···

αi ···αj ···αn(k)

= ∑∞
n=0

1
n! η̂α1 · · · η̂αi · · · η̂αi · · · η̂αn ψα1···

αi ···αi ···αn(k)

+∑∞
n=0

1
n! η̂α1 · · · η̂αi · · · η̂

αj · · · η̂αn ψα1···
αi ···αj ···αn(k)

∣∣∣∣
αi ̸=αj

, ∀i, j = 1, · · · , n. (5.73)

Veja que na primeira somatória da segunda igualdade em (5.73) há o termo η̂αi η̂
αi = (η̂0)2 − (η̂1)2 − · · · −

(η̂D−2)2 (5.65)
= −1− ξ̂+ ξ̂−, para cada i = 1, · · · , n. Portanto, o segundo membro da equação (5.73) tem dependên-

cia em ξ̂+, ξ̂− e η̂α, contradizendo o primeiro membro que tem dependência apenas em η̂α. Esta inconsistência

é resolvida se o tensor ψµ1···µn tiver todos os traços nulos, ou seja, gµiµj ψµ1···µi ···µj ···µn(k) = 0, ∀i, j = 1, · · · , n.

Neste caso, a equação (5.72) é reescrita como

ψ(η̂α, k) =
∞

∑
n=0

1
n!

η̂α1 · · · η̂αn ψT
α1···αn(k), (5.74)

em que o superescrito ′T′ indica que o tensor ψα1···αn é sem traço.

O último passo para analisar os graus de liberdade físicos carregados pelo campo Ψ é substituir (5.74) em

(5.71). Para calcular ∂ψ/∂|η| é conveniente voltar às variáveis originais ηα:

ψ(ηα, k) =
∞

∑
n=0

|η|−n

n!
ηα1 · · · ηαn ψT

α1···αn(k),

⇒ ∂ψ

∂|η| (η̂α, k)
∣∣∣∣
|η|=µ

=
∞

∑
n=0

(−n)|η|−(n+1)

n!
ηα1 · · · ηαn ψT

α1···αn(k)
∣∣∣∣
|η|=µ

= −
∞

∑
n=0

n
n!

η̂α1 · · · η̂αn

µ
ψT

α1···αn(k).

(5.75)

Substituindo (5.74) e (5.75) em (5.71), obtém-se

ΨχR(η̂α, ξ̂+, k) = e−
iµρξ̂+

2m
∞

∑
n=0

1
n!

η̂α1 · · · η̂αn

[
1 +

1
2µ

(µ2 − |η|2)
(

n
µ
+

iρξ̂+
2m

)]
ψT

α1···αn(k). (5.76)

Com base nesta relação, investiga-se, a seguir, os graus de liberdade físicos que Ψ carrega de acordo com os valores

possíveis de −µ2ρ2:
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(i) Táquion de spin s: ρ2 = −m2

µ2 s(D− 3 + s) ≤ 0

Escrevendo (5.76) como duas somas, tem-se

ΨχR(η̂α, ξ̂+, k) = e−
iµρξ̂+

2m

(
s

∑
n=0

+
∞

∑
n=s+1

)
1
n!

η̂α1 · · · η̂αn

[
1 +

1
2µ

(µ2 − |η|2)
(

n
µ
+

iρξ̂+
2m

)]
ψT

α1···αn(k).

(5.77)

Esta equação implica que ΨχR tem duas componentes: uma de dimensão finita correspondente à primeira soma com

s + 1 tensores de ordem crescente de 0 a s, e a componente de dimensão infinita descrita pela segunda soma. Se

s = 0, então ρ = 0, implicando que C4 = 0. Neste caso, apenas a componente de dimensão finita (unidimensional)

é unitária porque representa o táquion escalar onde o setor não-compacto do grupo SO(1, D − 2) (o LG da

representação taquiônica conforme analisado na Seção 3.5 para D = 4) age. Por outro lado, se s ̸= 0 a componente

infinita de ΨχR é o táquion de spin s com tensores de ordem s + 1, s + 2, · · · . Esta componente caracteriza a

representação unitária do grupo SO(1, D− 2) porque é de dimensão infinita. Neste caso, a componente de dimensão

finita é não-unitária.

(ii) Táquions de spin contínuo: ρ2 > 0

Neste caso (5.76) caracteriza a representação de dimensão infinita do grupo SO(1, D − 2), portanto, unitária.

Os tensores em (5.76) são de todas as ordens.

5.6 Vértice Cúbico

Seja

S[Ψ, Ψ∗, J, J∗] = S0[Ψ, Ψ∗] + Sc[Ψ, Ψ∗, J, J∗] (5.78)

em que S0 é dada por (5.1), (5.8) ou (5.9) e

Sc[Ψ, Ψ∗, J, J∗] = −g
∫

dηdξdx δ′(η2 + ξ2 + µ2) (Ψ∗ J + ΨJ∗) (5.79)

é o vértice cúbico composto pelo campo taquiônico Ψ e pela corrente J = J(η, ξ, x) além de seus respectivos

complexos conjugados que, conforme será analisado na Subseção 5.6.3, depende de dois campos escalares massivos

e suas derivadas.38 Neste vértice, g é uma constante de acoplamento.

Devido à presença da derivada da função delta, Sc é invariante sob as transformações

δΘ J = 1
4 (η

2 + ξ2 + µ2)2Θ

δχΨ = 1
4 (η

2 + ξ2 + µ2)2χ
, (5.80)

em que Θ = Θ(η, ξ, x) e χ = χ(η, ξ, x) são funções arbitrárias.

38Nas referências [65, 66] o leitor pode encontrar uma lista com todos os possíveis vértices cúbicos que são invariantes sob transformação de

paridade, dentre os quais, o estudado neste seção. Nestas referências, o autor expressa os vértices cúbicos em termos das coordenadas no cone de

luz; portanto, tais vértices não são covariantes.
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5.6.1 Equação de Continuidade

A equação de campo derivada da ação (5.78) é dada por

δS
δΨ∗

= 0 ⇒ δ′(η2 + ξ2 + µ2) (QΨ− gJ) = 0, (5.81)

em que Q ≡ (□x −m2)− (η · ∂x − imξ)(∆− im∂ξ) +
1
2 (η

2 + ξ2 + µ2)(∆− im∂ξ)
2. Multiplicando ambos os

membros da equação (5.81) por η2 + ξ2 + µ2 e em seguida aplicando o operador (∆− im∂ξ), obtém-se

(∆− im∂ξ)δ(η
2 + ξ2 + µ2) (QΨ− gJ)

= δ(η2 + ξ2 + µ2)(∆− im∂ξ) (QΨ− gJ) + 2(η · ∂x − imξ)δ′(η2 + ξ2 + µ2) (QΨ− gJ) = 0

∴ gδ(η2 + ξ2 + µ2)(∆− im∂ξ)J = δ(η2 + ξ2 + µ2)(∆− im∂ξ)QΨ, (5.82)

em que na primeira igualdade em (5.82) foi utilizada a relação de comutação
[
∆− im∂ξ , δ(η2 + ξ2 + µ2)

]
=

2(η · ∂x − imξ)δ′(η2 + ξ2 + µ2) e a equação de campo (5.81). Com o uso das relações de comutação (C.1) e

(C.2), o comutador
[
∆− im∂ξ , Q

]
é dado por

[
∆− im∂ξ , Q

]
= −(□x −m2)(∆− im∂ξ) + (η · ∂x − imξ)(∆− im∂ξ)

2,

de modo que (5.82) lê-se

gδ(η2 + ξ2 + µ2)(∆− im∂ξ)J

= δ(η2 + ξ2 + µ2)
[

Q(∆− im∂ξ)− (□x −m2)(∆− im∂ξ) + (η · ∂x − imξ)(∆− im∂ξ)
2
]

Ψ = 0

ou seja,

δ(η2 + ξ2 + µ2)(∆− im∂ξ)J = 0, (5.83)

que é uma equação de continuidade restrita ao hiperbolóide η2 + ξ2 + µ2 = 0 para a corrente J.

Resolvendo o vínculo imposto pela função delta em (5.83), tem-se

(∆− im∂ξ)J =
1
2
(η2 + ξ2 + µ2)ω, (5.84)

em que ω = ω(η, ξ, x) é uma função arbitrária que pode ser eliminada com o uso da primeira transformação em

(5.80). De fato, fazendo J → J + δΘ J em (5.84), tem-se que

(∆− im∂ξ)J = 0, (5.85)

se, e somente se, (∆− im∂ξ)δΘ J = ω, ou seja,[
η · ∂x − imξ +

1
4
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
Θ =

1
2

ω.

5.6.2 Invariância de Gauge

Com a transformação (5.21) a ação (5.78) se transforma como δϵS = δϵS0 + δϵSc onde, conforme já demonstrado

na Subseção 5.2.2, tem-se δϵS0 = 0 a menos de um termo de superfície. Por outro lado, δϵSc pode ser escrito como

δϵSc = δϵS(1)
c + δϵS(2)

c , (5.86)
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com

δϵS(1)
c ≡ −g

∫
dη dξ dx δ′(η2 + ξ2 + µ2) [(η · ∂x − imξ) ϵ] J∗

= g
∫

dη dξ dx δ′(η2 + ξ2 + µ2)ϵ (η · ∂x + imξ) J∗ + t.s. (5.87)

e

δϵS(2)
c ≡ − g

2

∫
dη dξ dx δ(η2 + ξ2 + µ2)

[
(∂η · ∂x − im∂ξ + ρ)ϵ

]
J∗

= −δϵS(1)
c −

g
2

∫
dη dξ dx ϵ δ(η2 + ξ2 + µ2)(∆ + im∂ξ)J∗ + t.s., (5.88)

em que na primeira linha em ambas as equações (5.87) e (5.88) foi efetuado integrações por partes. Assim,

δϵSc = −
g
2

∫
dη dξ dx ϵ δ(η2 + ξ2 + µ2)(∆ + im∂ξ)J∗ + t.s.. (5.89)

O complexo conjugado da equação de continuidade (5.83) é

δ(η2 + ξ2 + µ2)(∆ + im∂ξ)J∗ = 0, (5.90)

portanto, pode-se concluir que a variação (5.89) é nula:

δϵSc = 0. (5.91)

Assim, vê-se que a equação de continuidade dada por (5.90) é uma condição necessária para que a teoria (5.78) seja

invariante sob a transformação de gauge (5.21).

5.6.3 Cálculo da Corrente

Com o uso da primeira transformação em (5.80), pode-se expandir a corrente J em torno do hiperbolóide η2 +

ξ2 + µ2 = 0 e de sua primeira vizinhança de maneira análoga a feita para o campo Ψ na Subseção 5.5.2. De

fato, com as variáveis η̂µ = ηµ/|η| e ξ̂ = ξ/|η|, |η| ∈ R, que parametrizam pontos sobre cada hiperbolóide

η2 + ξ2 + |η|2 = 0 e são vinculadas por η̂2 + ξ̂2 = −1, tem-se

J(η, ξ, x) =
∞

∑
n=0

(
|η|2 − µ2)n

n!
∂n J

∂(η2 + ξ2 + |η|2)n (η̂, ξ̂, x)
∣∣∣∣
|η|=µ

= JΘ(η, ξ, x) + δΘ J(η, ξ, x) (5.92)

em que

JΘ(η, ξ, x) ≡
{

J(η̂, ξ̂, x) + (η2 + ξ2 + µ2)
∂J

∂(η2 + ξ2 + µ2)
(η̂, ξ̂, x)

}∣∣∣∣
η2+ξ2+µ2=0

(5.93)

e δΘ J é a primeira relação em (5.80) com

Θ(η, ξ, x) ≡ 4
∞

∑
n=2

(
η2 + ξ2 + µ2)n−2

n!
∂n J

∂(η2 + ξ2 + µ2)n (η̂, ξ̂, x)
∣∣∣∣
η2+ξ2+µ2=0

. (5.94)

Definindo os termos em (5.93) como

J0(η, ξ, x) ≡ ∂J
∂(η2 + ξ2 + µ2)

(η̂, ξ̂, x)
∣∣∣∣
η2+ξ2+µ2=0

,

J1(η, ξ, x) ≡ J(η̂, ξ̂, x)
∣∣∣∣
η2+ξ2+µ2=0

,
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obtém-se

JΘ(η, ξ, x) = J1(η, ξ, x) + (η2 + ξ2 + µ2)J0(η, ξ, x). (5.95)

Aplicando a equação de continuidade (5.83) à corrente (5.92), tem-se

δ(η2 + ξ2 + µ2)(∆− im∂ξ)J = δ(η2 + ξ2 + µ2)(∆− im∂ξ)JΘ + δ(η2 + ξ2 + µ2)(∆− im∂ξ)δΘ J︸ ︷︷ ︸
=0

= δ(η2 + ξ2 + µ2)(∆− im∂ξ)
[

J1 + (η2 + ξ2 + µ2)J0

]
(C.1)
= δ(η2 + ξ2 + µ2)(∆− im∂ξ)J1 + δ(η2 + ξ2 + µ2)

[
(η2 + ξ2 + µ2)(∆− im∂ξ) + 2(η · ∂x − imξ)

]
J0

= δ(η2 + ξ2 + µ2)
[
(∆− im∂ξ)J1 + 2(η · ∂x − imξ)J0

] (5.83)
= 0,

que, por conta da restrição imposta pela função delta, tem-se

(∆− im∂ξ)J1 + 2(η · ∂x − imξ)J0 =
1
2
(η2 + ξ2 + µ2)α,

onde α = α(η, ξ, x) é uma função arbitrária. Escolhendo α = 0, obtém-se uma relação entre as duas primeiras

componentes de J:

(∆− im∂ξ)J1 + 2(η · ∂x − imξ)J0 = 0. (5.96)

Com uma expressão adequada para J1 esta equação permite o cálculo de J0 e, por conseguinte, JΘ (5.95).

A corrente J1, assim como J0, é função de dois campos escalares massivos ϕ1(x) e ϕ2(x),

(□x + M2
i )ϕi(x) = O(g) i = 1, 2, . (5.97)

e de suas derivadas. Levando em conta invariância de Lorentz, as derivadas mais simples que podem estar presentes

na corrente J1 são □x e η · ∂x. Descarta-se □x porque a relação (5.97) implica que □xϕi ∝ ϕi. Assim, um ansatz

para que a equação (5.96) seja satisfeita é a escolha

J1(η, ξ, x) = (η · ∂x − imξ)n0
(

f n1
λ1

ϕ1 f n2
λ2

ϕ2

)
, (5.98)

em que os operadores

f ni
λi

= eλi(η·∂x−imξ)(η · ∂x − imξ)ni , i = 1, 2 (5.99)

agem apenas no primeiro campo em sua frente.39 Nestas duas últimas expressões, n0, n1, n2 ∈N e λ1, λ2 ∈ R.

Aplicando o operador ∆− im∂ξ em (5.98) e com o uso da relação de comutação (C.3), tem-se

(∆− im∂ξ)J1 = (∆− im∂ξ)
[
(η · ∂x − imξ)n0

(
f n1
λ1

ϕ1 f n2
λ2

ϕ2

)]
= n0(η · ∂x − imξ)n0−1(□x −m2)

(
f n1
λ1

ϕ1 f n2
λ2

ϕ2

)
+ (η · ∂x − imξ)n0(∆− im∂ξ)

(
f n1
λ1

ϕ1 f n2
λ2

ϕ2

)
.

(5.100)

No primeiro termo do segundo membro em (5.100), tem-se

(□x −m2)
(

f n1
λ1

ϕ1 f n2
λ2

ϕ2

)
= −(M2

1 + M2
2 + m2) f n1

λ1
ϕ1 f n2

λ2
ϕ2 + 2

(
f n1
λ1

∂xϕ1

)
·
(

f n2
λ2

∂xϕ2

)
, (5.101)

39Em [62] há uma corrente similar a (5.98).
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em que foram utilizados
[
∂x, f ni

λi

]
= 0 e □xϕi = −M2

i ϕi, i = 1, 2. No segundo termo do segundo membro em

(5.100), tem-se

(∆− im∂ξ)
[

f n1
λ1

ϕ1 f n2
λ2

ϕ2

]
=
[
(∆− im∂ξ) f n1

λ1
ϕ1

]
f n2
λ2

ϕ2

+ f n1
λ1

ϕ1

[
(∆− im∂ξ) f n2

λ2
ϕ2

]
+
[
∂(x f n1

λ1
ϕ1

]
·
[
∂η) f n2

λ2
ϕ2

]
− ρ f n1

λ1
ϕ1 f n2

λ2
ϕ2

, (5.102)

em que foi utilizado o resultado (C.44). Nos dois primeiros termos em (5.102), tem-se

(∆− im∂ξ) f ni
λi

ϕi = (∆− im∂ξ)eλi(η·∂x−imξ)(η · ∂x − imξ)ni ϕi

= (∆− im∂ξ)
∞

∑
k=0

λk
i

k!
(η · ∂x −mξ)ni+kϕi

(C.3)
=

∞

∑
k=0

λk
i

k!
(ni + k)(η · ∂x − imξ)ni+k−1(□x −m2)ϕi +

∞

∑
k=0

λk
i

k!
(η · ∂x − imξ)ni+k(∆− im∂ξ)ϕi

= −(M2
i + m2)

∞

∑
k=0

λk
i

k!
(ni + k)(η · ∂x − imξ)ni+k−1ϕi + ρ

∞

∑
k=0

λk
i

k!
(η · ∂x − imξ)ni+kϕi

= −ni(M2
i + m2)(η · ∂x − imξ)ni−1

∞

∑
k=0

λk
i

k!
(η · ∂x − imξ)kϕi

−λi(M2
i + m2)(η · ∂x − imξ)ni

∞

∑
k−1=0

λk−1
i

(k− 1)!
(η · ∂x − imξ)k−1ϕi

+ρ
∞

∑
k=0

λk
i

k!
(η · ∂x − imξ)ni+kϕi

= −ni(M2
i + m2)(η · ∂x − imξ)ni−1eλi(η·∂x−imξ)ϕi

−λi(M2
i + m2)(η · ∂x − imξ)ni eλi(η·∂x−imξ)ϕi + ρ(η · ∂x − imξ)ni eλi(η·∂x−imξ)ϕi

= −ni(M2
i + m2) f ni−1

λi
ϕi − λi(M2

i + m2) f ni
λi

ϕi + ρ f ni
λi

ϕi, (5.103)

onde i = 1, 2. Com o uso do comutador C.7, tem-se que(
∂x f n1

λ1
ϕ1

)
·
(

∂η f n2
λ2

ϕ2

)
=
(

∂
µ
x f n1

λ1
ϕ1

)
∂ηµ

∞

∑
k=0

λk
2

k!
(η · ∂x − imξ)n2+kϕ2

= f n1
λ1

(
∂

µ
x ϕ1

) ∞

∑
k=0

λk
2

k!
(n2 + k)(η · ∂x − imξ)n2+k−1∂xµϕ2

= n2 f n1
λ1

(
∂

µ
x ϕ1

)
(η · ∂x − imξ)n2−1

∞

∑
k=0

λk
2

k!
(η · ∂x − imξ)k∂xµϕ2

+λ2 f n1
λ1

(
∂

µ
x ϕ1

)
(η · ∂x − imξ)n2

∞

∑
k−1=0

λk−1
2

(k− 1)!
(η · ∂x − imξ)k−1∂xµϕ2

= n2 f n1
λ1

(
∂

µ
x ϕ1(x)

)
(η · ∂x − imξ)n2−1eλ2(η·∂x−imξ)∂xµϕ2

+λ2 f n1
λ1

(
∂

µ
x ϕ1

)
(η · ∂x − imξ)n2 eλ2(η·∂x−imξ)∂xµϕ2

= n2 f n1
λ1

(
∂

µ
x ϕ1

)
f n2−1
λ2

∂xµϕ2 + λ2 f n1
λ1

(
∂

µ
x ϕ1

)
f n2
λ2

∂xµϕ2. (5.104)

Analogamente,(
∂η f n1

λ1
ϕ1

)
·
(

∂x f n2
λ2

ϕ2

)
= n1 f n1−1

λ1

(
∂

µ
x ϕ1

)
f n2
λ2

∂xµϕ2 + λ1 f n1
λ1

(
∂

µ
x ϕ1

)
f n2
λ2

∂xµϕ2. (5.105)
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Substituindo (5.103), (5.104) e (5.105) em (5.102), obtém-se

(∆− im∂ξ)
(

f n1
λ1

ϕ1 f n2
λ2

ϕ2

)
= −n1(M2

1 + m2) f n1−1
λ1

ϕ1 f n2
λ2

ϕ2

−n2(M2
2 + m2) f n1

λ1
ϕ1 f n2−1

λ2
ϕ2 +

(
λ1 f n1

λ1
+ n1 f n1−1

λ1

)
∂

µ
x ϕ1(x) f n2

λ2
∂xµϕ2

+ f n1
λ1

∂xµϕ1

(
λ2 f n2

λ2
+ n2 f n2−1

λ1

)
∂

µ
x ϕ2 +

[
ρ− λ1(M2

1 + m2)− λ2(M2
2 + m2)

]
f n1
λ1

ϕ1 f n2
λ2

ϕ2

. (5.106)

Assim, substituindo este resultado com

ρ = λ1(M2
1 + m2) + λ2(M2

2 + m2) ̸= 0, (5.107)

e o resultado (5.101) em (5.100), obtém-se

(∆− im∂ξ)J1 = n0(η · ∂x − imξ)n0−1
[
−(M2

1 + M2
2 + m2) f n1

λ1
ϕ1 f n2

λ2
ϕ2 + 2 f n1

λ1
∂

µ
x ϕ1 f n2

λ2
∂xµϕ2

]
+(η · ∂x − imξ)n0

[
− n1(M2

1 + m2) f n1−1
λ1

ϕ1 f n2
λ2

ϕ2 − n2(M2
2 + m2) f n1

λ1
ϕ1 f n2−1

λ2
ϕ2

+
(

λ1 f n1
λ1

+ n1 f n1−1
λ1

)
∂

µ
x ϕ1 f n2

λ2
∂xµϕ2 + f n1

λ1
∂xµϕ1

(
λ2 f n2

λ2
+ n2 f n2−1

λ1

)
∂

µ
x ϕ2

]
.

(5.108)

Finalmente, resolvendo (5.96) para J0 com o uso de (5.108), obtém-se

J0 =
1
2

n0(η · ∂x − imξ)n0−2
[
(M2

1 + M2
2 + m2) f n1

λ1
ϕ1 f n2

λ2
ϕ2

−2 f n1
λ1

∂
µ
x ϕ1 f n2

λ2
∂xµϕ2

]
+ 1

2 (η · ∂x − imξ)n0−1
[

n1(M2
1 + m2) f n1−1

λ1
ϕ1 f n2

λ2
ϕ2

+n2(M2
2 + m2) f n1

λ1
ϕ1 f n2−1

λ2
ϕ2 +

(
λ1 f n1

λ1
+ n1 f n1−1

λ1

)
∂

µ
x ϕ1 f n2

λ2
∂xµϕ2

+ f n1
λ1

∂xµϕ1

(
λ2 f n2

λ2
+ n2 f n2−1

λ1

)
∂

µ
x ϕ2

]
. (5.109)

Considerando que esta corrente seja local, tem-se duas possibilidades: n0 ≥ 2, n1 ≥ 0 e n2 ≥ 0 ou n0 = n1 =

n2 = 0 e λ1 = −λ2 ≡ λ. Neste último caso,

J0 = 0

J1 =
[
eλ(η·∂x−imξ)ϕ1

] [
e−λ(η·∂x−imξ)ϕ2

]
JΘ = J1

ρ = λ
(

M2
1 −M2

2
)
̸= 0

. (5.110)

5.6.4 Vértice Cúbico para uma CSP e dois Campos Escalares Massivos

A teoria livre para a CSP é descrita pela ação de Shuster & Toro [41]:

S0[Ψ] =
1
2

∫
dηdx δ′(η2 + µ2)

[
(∂xΨ)2 − 1

2
(η2 + µ2)(∆Ψ)2

]
, (5.111)

onde Ψ = Ψ(η, x) é um campo escalar real que representa a CSP. O acoplamento deste campo à corrente J = J(η, x)

caracteriza o vértice cúbico dado por

Sc[Ψ, J] = −g
∫

dηdx δ′(η2 + µ2)ΨJ. (5.112)
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Veja que todos os resultados obtidos nas Subseções 5.6.1-5.6.3 se aplicam no presente contexto com a remoção da

integral em ξ e com m = ξ = 0. As correntes são:

J1 = (η · ∂x)n0
(

f n1
λ1

ϕ1 f n2
λ2

ϕ2

)
J0 = 1

2 n0(η · ∂x)n0−2
[
(M2

1 + M2
2) f n1

λ1
ϕ1 f n2

λ2
ϕ2 − 2 f n1

λ1
∂

µ
x ϕ1 f n2

λ2
∂xµϕ2

]
+ 1

2 (η · ∂x)n0−1
[

n1M2
1 f n1−1

λ1
ϕ1 f n2

λ2
ϕ2 + n2M2

2 f n1
λ1

ϕ1 f n2−1
λ2

ϕ2

+
(

λ1 f n1
λ1

+ n1 f n1−1
λ1

)
∂

µ
x ϕ1 f n2

λ2
∂xµϕ2

+ f n1
λ1

∂xµϕ1

(
λ2 f n2

λ2
+ n2 f n2−1

λ1

)
∂

µ
x ϕ2

]
JΘ = J1 + (η2 + µ2)J0

ρ = λ1M2
1 + λ2M2

2 ̸= 0,

(5.113)

onde (□x + M2
i )ϕi(x) = O(g), ∀i = 1, 2, e

f ni
λi

= eλiη·∂x (η · ∂x)
ni , ni ∈N e λi ∈ R, i = 1, 2 (5.114)

são operadores que agem no primeiro campo em sua frente. No caso mais simples em que n0 = n1 = n2 = 0 e

λ1 = −λ2 = λ, tem-se

J0 = 0, (5.115)

ρ = λ(M2
1 −M2

2), M1 ̸= M2, (5.116)

e

J1(η, x) = eλ(η·∂x)ϕ1(x)e−λ(η·∂x ϕ2(x) =

[
∞

∑
k=0

1
k!
(λη · ∂x)

kϕ1(x)

] [
∞

∑
l=0

1
l!
(−λη · ∂x)

lϕ2(x)

]
= ϕ1(X+)ϕ2(X−),

ou seja,

J(X±) = ϕ1(X+)ϕ2(X−), (5.117)

onde X± ≡ x± λη. Esta corrente é precisamente aquela encontrada pelos autores de [54] os quais se valeram do

uso do formalismo das correntes BBvD [55]. No próximo capítulo será apresentada uma análise mais detalhada do

vértice cúbico (5.112) com o estudo de suas propriedades.
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6 Análise do Vértice Cúbico com uma CSP
Neste capítulo analisamos as propriedades do vértice cúbico que envolve uma CSP discutido no fim do capítulo

anterior. Todos os resultados apresentados neste capítulo foram obtidos pelos autores de [54].

6.1 Vértice Cúbico no Espaço de Minkowski

A partir da ação

S[Ψ, J] = S0[Ψ] + Sc[Ψ, J], (6.1)

onde S0 e Sc são dados por (5.111) e (5.112), respectivamente, pode-se derivar a equação de campo:

δ′(η2 + σ)

[(
−□x + η · ∂x∆− 1

2
(η2 + σ)∆2

)
Ψ− J

]
= 0, (6.2)

em que σ ≡ µ2 é definido por conveniência para deixar a notação mais simples nesta e nas seções seguintes. (Na

Seção 6.2, por exemplo, as integrais serão tomadas como função do parâmetro σ e de derivadas em relação a este

parâmetro.) O operador ∆ corresponde àquele já definido no capítulo anterior. O leitor pode observar que a ação

(6.1) corresponde à teoria taquiônica (5.78) ao fazer-se Ψ = Ψ∗, m = 0 = ξ e com a eliminação da integração na

variável ξ, portanto, os resultados obtidos no capítulo anterior podem ser aplicados no presente contexto com estas

considerações. De fato, a corrente J satisfaz a seguinte equação de continuidade:

δ(η2 + σ)∆J(η, x) = 0. (6.3)

Devido à presença da derivada da função delta, a ação (6.1) é invariante sob a transformação

δχΨ(η, x) =
1
4

(
η2 + σ

)2
χ(η, x), (6.4a)

em que χ(η, x) é uma função arbitrária. Em adição, levando em conta a equação de continuidade (6.3), tem-se que

a ação (6.1) é invariante sob a transformação de gauge

δϵΨ(η, x) =

[
η · ∂x −

1
2

(
η2 + σ

)
∆
]

ϵ(η, x), (6.4b)

onde ϵ(η, x) também é uma função arbitrária.

Resolvendo o vínculo imposto pela função delta em (6.2), tem-se[
−□x + (η · ∂x)∆−

1
2
(η2 + σ)∆2

]
Ψ− J =

1
4
(η2 + σ)2ω, (6.5)

em que ω = ω(η, x) é uma função qualquer. Observe que o segundo membro desta equação está sob a forma da

transformação (6.4a) e, em adição à transformação de gauge (6.4b), (6.5) pode ser reescrita como

−□xΨ = J + δϵΨ + δωΨ

com ϵ = −∆Ψ. Com o uso da transformada de Fourier na coordenada x, Ψ(η, x) =
∫ dD p

(2π)
D
2

Ψ(η, p)eip·x, esta

equação pode ser reescrita como

Ψ(η, p) =
1
p2 J(η, p) +

1
p2 (δϵΨ + δωΨ) (η, p). (6.6)
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Porém, o último termo do segundo membro não contribui para o vértice Sc no espaço dos momentos, denotado por

S̃c, porque ∫
dDη dD p δ′(η2 + σ)J(η, p)

1
p2 δωΨ(η, p) = 0

e, devido à integrações por partes e à equação de continuidade (6.3) no espaço dos momentos,

δ(η2 + σ)
(
−ip · ∂η + ρ

)
J(η, p) = 0, (6.7)

tem-se∫
dDη dD p δ′(η2 + σ)J(η, p)

1
p2 δϵΨ(η, p) =

∫
dDη dD p

1
p2 ϵ(η, p)δ(η2 + σ)

(
−ip · ∂η + ρ

)
J(η, p)

(6.7)
= 0,

(6.8)

(O leitor pode verificar diretamente a validade do resultado (6.8) com o uso dos desenvolvimentos que foram feitos

nas relaçoes (5.86)-(5.91) no espaço dos momentos, eliminando a integração na variável ξ e fazendo m = 0 = ξ.)

Portanto, substituindo (6.6) no vértice cúbico no espaço dos momentos

S̃c[Ψ, J] =
∫

dDη dD p Ψ(η, p)J(η, p),

obtém-se

S̃c[J] = −
∫

dD pdDη δ′(η2 + σ)J(η,−p)
1
p2 J(η, p). (6.9)

Resolvendo a restrição imposta pela função delta em (6.7), tem-se

(−ip · ∂η + ρ)J(η, p) = (η2 + σ)α(η, p), (6.10)

onde α(η, p) é uma função arbitrária. Para que a solução desta equação seja a mais simples, faz-se a escolha

α(η, p) = 0. Em adição, com um sistema de referência pelo qual o quadrimomento p, expresso em coordenadas do

cone-de-luz
(

p1, · · · , pD−2, p± = p0±pD−1
√

2

)
, tenha apenas a componente p+ não-nula, a (6.10) pode ser reescrita

como (
p+

∂

∂η+
+ iρ

)
J(η, p) = 0. (6.11)

A solução desta equação é dada por

J(η, p) = j(η, p) exp
(
−i

ρ

p+
η+

)
,

∂

∂η+
j(η, p) = 0, (6.12)

que, substituindo em (6.9), obtém-se

S̃c[j] = −
∫

dD pdDη δ′(η2 + σ)j(η,−p)
1
p2 j(η, p). (6.13)

Definindo

f (η, p) ≡ j(η,−p)
1
p2 j(η, p),

∂ f
∂η+

= 0, (6.14)

tem-se

S̃c[j] = −
d

dσ

∫
dD pdDη δ(η2 + σ) f (η, p) = −

∫
dD p I(σ, p), (6.15)

com

I(σ, p) ≡ d
dσ

∫
dDη δ(η2 + σ) f (η, p). (6.16)
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(Até o final desta seção e na seção seguinte será omitida a dependência em p da função f para simplificar a notação.

Na Seção 6.3, a dependência em p de f será retomada.) Com a mudança de variáveis η → η̃ = 1√
σ

η, esta integral

pode ser reescrita como

I(σ) =
d

dσ

[
σ

D
2 −1

∫
dD η̃ δ(η̃2 + 1) f (

√
ση̃)

]
= σ

D
2 −2

∫
dD η̃ δ(η̃2 + 1)

[(
D
2
− 1
)
+

1
2

η̃µ ∂

∂η̃µ

]
f (
√

ση̃).

(6.17)

Escolhendo σ = 1,40 tem-se η = η̃ e o último termo da segunda igualdade em (6.17) pode ser reescrito como

1
2

∫
dDη δ(η2 + 1)ηµ ∂

∂ηµ f (η) =
1
2

∫
dDη δ(η2 + 1)

(
η−

∂

∂η−
+ ηi ∂

∂ηi

)
f (η), (6.18)

com i = 1, · · · , D− 2, visto que ∂η+ f = 0. Portanto,

1
2

∫
dDη δ(η2 + 1)ηµ ∂

∂ηµ f (η) =
1
2

∫
dDη δ(η2 + 1)

[
η−

∂

∂η−
f (η) +

∂

∂ηi

(
ηi f (η)

)
− (D− 2) f (η)

]
,

de modo que ao trazer-se o último termo do segundo membro desta igualdade para o primeiro membro, obtém-se a

integral original (6.17):

I(1) =
1
2

∫
dDη δ(η2 + 1)

[
η−

∂

∂η−
f (η) +

∂

∂ηi

(
ηi f (η)

)]
. (6.19)

Em coordenadas de cone-de-luz, η2 = 2η+η− + ηiη
i e, com o uso da propriedade da função delta δ(αx) =

1
|α| δ(x), ∀x ∈ R, ∀α ∈ R− {0}, tem-se que

δ(η2 + 1) =
1

2|η−| δ
(

η+ +
1

2η−
(ηiηi + 1)

)
. (6.20)

Substituindo (6.20) em (6.19), obtém-se:

I(1) =
1
2

∫
dη−dD−2ηidη+ 1

2|η−| δ

(
η+ +

1
2|η−| (η

iηi + 1)
) [

η−
∂

∂η−
f (η) +

∂

∂ηi

(
ηi f (η)

)]
=

1
4

∫
dD−2ηi

[∫ 0

−∞
dη−(−1)

∂

∂η−
f (η) +

∫ +∞

0
dη−(+1)

∂

∂η−
f (η)

]
= −1

2

∫
dD−2ηi f

(
η− = 0, ηi

)
, (6.21)

de modo que o vértice cúbico (6.9) resulta em

Sc =
1
2

∫
dD p dD−2ηi j

(
η− = 0, ηi,−p

) 1
p2 j
(
η− = 0, ηi, p

)
. (6.22)

Na primeira linha de (6.21) foi efetuado a integração em η+; na segunda, a integral da divergência nas coordenadas

transversais ηi é zero porque assume-se que os campos vão a zero suficientemente rápido no infinito.

O resultado (6.22) mostra que o vértice (6.2) não propaga uma única CSP mas sim um contínuo de CSPs

porque a única restrição à coordenada η extraída de (6.22) é η2|η−=0 = −∑i(η
i)2 < 0 em vez de η2|η−=0 =

−∑i(η
i)2 = −σ = −1 imposta pela equação de Wigner (η2 + σ)Ψ = 0 que descreve uma CSP [22, 23] (veja

a Subseção 4.1.1, equação (4.23)). Porém, pode-se estudar características deste vértice cúbico que apresentam

similaridades no contexto das partículas de alto spin. Para fazer este estudo, é necessário desenvolver o formalismo

das funções geradoras. Isto é feito a seguir.

40Veja que este parâmetro sempre pode ser escolhido igual a um através das seguntes redefinições η →
√

ση e ρ→ ρ/
√

σ.
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6.2 Integrais no Espaço Auxiliar

A função geradora de grau l é dada pela seguinte expressão:

G(l)(ω; σ) ≡
∫

dDη δ(l)(η2 + σ)e−iη·ω =

(
∂

∂σ

)l
G(0)(ω; σ), (6.23)

onde δ(l) é a l-ésima derivada da função delta com respeito à σ e ω ∈ R1,D−1, que é o espaço de Minkowski de

dimensão D. Nesta dissertação, apenas os casos l = 0, 1 serão utilizados. Com esta definição, integrais como

(6.16) podem ser escritas como

∫
dDη δ(l)(η2 + σ) f (η) =

∫
dDη δ(l)(η2 + σ)

[
f (i∂ω)e−iη·ω

] ∣∣∣∣∣
ω=0

=
[

f (i∂ω)G(l)(ω; σ)
] ∣∣∣∣∣

ω=0

=
[

G(l)(i∂η ; σ) f (η)
] ∣∣∣∣∣

η=0

.(6.24)

Vê-se, portanto, que para calcular esta integral basta conhecer a correspondente função geradora. Esta seção objetiva

desenvolver o cálculo de funções geradoras no espaço de Minkowski e no espaço Euclideano.

Se ω = 0, (6.23) resulta ser infinita porque é calculada no hiperbolóide η2 + σ = 0, que é um espaço de

Anti-de Sitter não-compacto. Neste caso, a estratégia é manter nesta integral os termos que resultam ser regulares

em ω = 0 e ignorar aqueles que não são. Por outro lado, a integral (6.23) no espaço Euclideano (com métrica

g = −diag(1, · · · , 1)) resulta ser finita em ω = 0 porque é calculada na hiperesfera η2 + σ = 0, que é um espaço

de de Sitter compacto. Nesta seção serão investigadas ambas as possibilidades.

6.2.1 Funções Geradoras no Espaço de Minkowski

Para l = 0 a integral (6.23) é calculada levando-se em conta se ω é do tipo tempo ou do tipo espaço:

Tipo Tempo: ω2 > 0. Neste caso faz-se a escolha ω = (ω0, 0, · · · , 0) sem perda de generalidade porque o

resultado final será escrito sob uma forma covariante. Neste caso, a integral (6.23) para l = 0 pode ser calculada

como:

G(0)(ω; σ) =
∫

dDη δ(η2 + σ)e−iη0ω0

= σ
D−2

2

∫
dη0dD−1η⃗ δ

(
(η0)2 − (η⃗2 − 1)

)
e−i
√

ση0ω0

= σ
D−2

2

∫
η⃗2>1

dD−1η⃗
1√

η2 − 1
cos

(√
σ(η⃗2 − 1)ω0

)
, (6.25)

em que na primeira linha a variável de integração η foi redefinida como η → 1√
σ

η, na segunda linha foi utilizado a

propriedade da função delta δ(x2 − a2) = 1
2|a| (δ(x− a) + δ(x + a)) , ∀x ∈ R e ∀a ∈ R− {0} e, na terceira

linha, foi efetuado a integração na coordenada η0. Ao fazer-se t =
√

η⃗2 − 1 e com o uso dos resultados mostrados

no Apêndice F, tem-se

R2 ≡ η2 = 1 + t2

dD−1η⃗ = dVD−1 = SD−1(R)dR
(F.10)
= 2π

D−1
2

Γ( D−1
2 )

RD−2dR
.
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Substituindo estes resultados em (A.1), obtém-se

G(0)(ω; σ) = σ
D−2

2
2π

D−1
2

Γ
(

D−1
2

) ∫ ∞

0
dt (1 + t2)

D−3
2 cos

(
t
√

σω2
)

. (6.26)

Com o uso da função esférica de Bessel modificada de segunda espécie [61],

Kν(z) =
1√
π

(
2
z

)ν

Γ
(

ν +
1
2

) ∫ ∞

0
dt

cos (tz)

(1 + t2)ν+ 1
2

, z > 0 e Re(ν) > −1
2

,

(6.26) pode ser reescrita ao fazer-se ν = 1− D/2 e z =
√

σω2:

G(0)(ω; σ) = 2 cos
(

2−D
2 π

) ( √
ω2

2π
√

σ

) 2−D
2 K 2−D

2

(√
σω2

)
, D ≤ 2, (6.27)

em que a propriedade da função gama de Euler,

Γ(z)Γ(1− z) = π/ sin(πz), z ̸∈ Z, (6.28)

foi utilizada.

Tipo Espaço: ω2 < 0. Neste caso faz-se a escolha ω = (0, ω1, · · · , ωD−1) = (0, ω⃗) sem perda de generalidade,

porque o resultado final será escrito sob uma forma covariante. Neste caso, a integral (6.23) pode ser calculada de

maneira similar à feita em (A.1). O resultado é:

G(0)(ω; σ) =
∫

dDη δ(η2 + σ)ei⃗η·ω⃗ = σ
D−2

2

∫
η⃗2>1

dD−1η⃗
1√

η⃗2 − 1
ei⃗η·ω⃗.

Esta integral pode ser efetuada em coordenadas esféricas (F.1) com n = D− 1 onde a coordenada radial é definida

como R = |⃗η| e a primeira coordenada angular ϕ1 é dada por cos ϕ1 = η⃗ · ω⃗/|⃗η||ω⃗|, de modo que

G(0)(ω; σ) = σ
D−2

2

∫ ∞

1
d|⃗η| |⃗η|D−2 1√

|⃗η|2 − 1

∫ π

0
dϕ1 (sin ϕ1)

D−3 ei
√

σ|⃗η||ω⃗| cos(ϕ1)

×
∫ π

0 dϕ2 (sin ϕ2)
D−4 · · ·

∫ π
0 dϕD−3 sin ϕD−3

∫ 2π
0 dϕD−2.

(6.29)

Com o uso da forma integral da função de Bessel de primeira espécie [61],

Jν(z) =

(
1
2 z
)ν

π
1
2 Γ
(

ν + 1
2

) ∫ π

0
dθ (sin θ)2νe±iz cos θ , Re(ν) > −1

2
,

a segunda integral em (6.29) pode ser reescrita ao fazer-se z =
√

σ|⃗η||ω⃗| e ν = D−3
2 :

∫ π

0
dϕ1 sinD−3(ϕ1)ei

√
σ|⃗η||ω⃗| cos(ϕ1) =

(
1
2
√

σ|⃗η||ω⃗|
)− D−3

2
π

1
2 Γ
(

D− 2
2

)
J D−3

2
(
√

σ|⃗η||ω⃗|). (6.30)

Em adição, com o uso da função beta [53]

B(p, q) = 2
∫ π

2

0
dθ (cos θ)2p−1(sin θ)2q−1, Re(p) > 0 e Re(q) > 0,

a qual está associada com a função gama como

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

, (6.31)
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pode-se escrever que∫ π

0
dϕi(sin ϕi)

D−i−2 = 2
∫ π

2

0
dϕi(sin ϕi)

D−i−2 = B
(

1
2

,
D− i− 1

2

)
, i = 2, · · · , D− 3.

Portanto,

D−3

∏
i=2

∫ π

0
dϕi(sin ϕi)

D−i−2 =
D−3

∏
i=2

B
(

1
2

,
D− i− 1

2

)
(6.31)
=

D−3

∏
i=2

Γ
(

1
2

)
Γ
(

D−i−1
2

)
Γ
(

D−i
2

) =
π

D−4
2

Γ
(

D−2
2

) . (6.32)

Trazendo os resultados (6.30) e (6.32) à (6.29), tem-se

G(0)(ω; σ) = 2
(
π
√

σ
) D−1

2

(
2
|ω⃗|

) D−3
2 ∫ ∞

1
d|⃗η| |⃗η|

D−1
2√

|⃗η|2 − 1
J D−3

2

(√
σ|⃗η||ω⃗|

)
. (6.33)

Por fim, reescrevendo esta expressão como

G(0)(ω; σ) = 2
(
π
√

σ
) D−1

2

(
2
|ω⃗|

) D−3
2

lim
b→0

∫ ∞

1
d|⃗η| |⃗η|

D−1
2√

|⃗η|2 − 1
exp

[
−b
(
|⃗η|2 − 1

)]
J D−3

2

(√
σ|⃗η||ω⃗|

)
,

pode-se fazer uso da relação entre a função de Bessel de primeira espécie Jν e a função de Bessel de segunda espécie

Yν [67], ∫ ∞

a
dx

xν+1
√

x2 − a2
exp

[
−b(x2 − a2)

1
2

]
Jν(xy)

= −
(π

2

) 1
2 aν+ 1

2 yν(y2 + b2)−
ν
2−

1
4 Yν+ 1

2

(
a(y2 + b2)

1
2

)
, a, b > 0, Re(ν) > −1, (6.34)

de modo que definindo os parâmetros nesta expressão como x = |⃗η|, a = 1, y =
√

σ|ω| e ν = D−3
2 , a função

geradora de grau zero se torna:

G(0)(ω; σ) = −π
(

2π
√

σ√
−ω2

) D−2
2 YD−2

2

(√
−σω2

)
, D ≥ 2. (6.35)

Funções Geradoras no Espaço de Minkowski. Com os resultados (6.27) e (6.35) em (6.23) e, com o uso da

identidade [61]

∂z [zνLν(z)] = zνLν−1(z), (6.36)

onde Lν denota Jν, eiπνKν ou Yν, as funções geradores de grau l no espaço de Minkowski podem ser calculadas. O

resultado é:

G(l)(ω; σ) =


2πl cos

(
2−D

2 π + πl
) ( √

ω2

2π
√

σ

) 2−D
2 +l

Kl+ 2−D
2

(√
σω2

)
, ω2 > 0 e D ≤ 2(l + 1)

−π1+l
(

2π
√

σ√
−ω2

) D−2
2 −l

YD−2
2 −l

(√
−σω2

)
, ω2 < 0 e D ≥ 2(l + 1)

.

(6.37)

As funções Kν e Yν têm o seguinte comportamento assintótico [61]:

z→ 0 ⇒


Yν(z) → − 1

π Γ(ν)
(

1
2 z
)−ν

Kν(z) → 1
2 Γ(ν)

(
1
2 z
)−ν

, Re(ν) > 0, (6.38)
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de modo que no limite ω → 0, (6.37) lê-se

G(l)(ω; σ) =


πl cos

(
2−D

2 π + πl
) (

1√
πσ

)2(l+1)−D
Γ
(

2−D
2 + l

)
, ω → 0+ e D ≤ 2(l + 1)

π1+l
(

2
√

π√
−ω2

)D−2(l+1)
Γ
(

D−2
2 − l

)
, ω → 0− e D ≥ 2(l + 1)

. (6.39)

A primeira relação em (6.39) é regular na origem ω = 0 mas, se D é impar, então esta função geradora é zero

devido ao cosseno e, se D é par, ela diverge porque a função gama não é definida para inteiros negativos. Vê-se,

assim, que no caso ω2 > 0 não há características relevantes quando ω → 0+. Por outro lado, a segunda relação

em (6.39) é irregular na origem. Porém, pode-se extrair a parte regular desta função geradora ao escrever a função

de Bessel de segunda espécie em termos da função de Bessel de primeira espécie com o uso da função de Hankel

Hν(z) = Jν(z) + iYν(z):

G(l)(ω; σ) = iπ1+l
(

2π
√

σ√
−ω2

) D−2
2 −l [

H D−2
2 −l

(√
−σω2

)
− J D−2

2 −l

(√
−σω2

)]
, D ≥ 2(l + 1),

e, portanto, a parte regular na origem ω = 0 desta função geradora é dada por

G(l)
R (ω; σ) = −iπ1+l

(
2π
√

σ√
−ω2

) D−2
2 −l

J D−2
2 −l

(√
−σω2

)
, D ≥ 2(l + 1), (6.40)

porque, no limite ω → 0, tem-se

G(l)
R (ω; σ)→ −i π

D
2 σ

D−2
2 −l

Γ( D
2 −l)

< ∞, 0 < −ω2 ≪ D−2l
2σ e D ≥ 2(l + 1). (6.41)

Para obter esta relação, foi utilizado o comportamento assintótico da função de Bessel de primeira espécie [61],

qual seja,

z→ 0 ⇒ Jα(z)→
1

Γ (α + 1)

( z
2

)α
α /∈ {−1, −2, · · · } e 0 < z≪

√
α + 1. (6.42)

As irregularidades discutidas neste subseção podem ser evitadas uma vez que a integral (6.23) seja calculada

sobre uma superfície compacta [41, 68]. Isto será feito na próxima subseção em que o resultado (6.41) será

recuperado no espaço Euclideano.

6.2.2 Funções Geradoras no Espaço Euclideano

Definindo

η̄µ ≡
(

iη0, η1, · · · , ηD−1
)

,

ω̄µ ≡
(

iω0, ω1, · · · , ωD−1
)

,

tem-se

η2 = η̄2 ≡ ηµνη̄µη̄ν,

onde ηµν ≡ −diag(1, · · · , 1) = −δµν define uma métrica no espaço Euclideano e

η ·ω = η̄ · ω̄ ≡ ηµνη̄µω̄ν
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caracteriza um produto interno no espaço Euclideano. Com estas relações, pode-se escrever a função geradora de

grau zero no espaço de Minkowski em termos da função geradora de grau zero no espaço Euclideano como

G(0)(ω; σ) = −iG(0)
E (ω̄; σ), (6.43)

onde,

G(0)
E (ω̄; σ) =

∫
dD η̄ δ(η̄2 + σ)e−iη̄·ω̄ (6.44)

é a função geradora no espaço Euclideano. Para simplificar a notação, as barras sobre as variáveis serão omitidas

a partir deste ponto. Observe que a integral (6.44) é calculada no suporte compacto correspondente à esfera

(η0)2 + · · ·+ (ηD−1)2 = σ, portanto, espera-se que ela seja finita na origem ω = 0. Para verificar esta afirmação,

veja que a função geradora (6.44) satisfaz a equação(
∂2

ω − σ
)

G(0)
E (ω; σ) = 0. (6.45)

Assumindo que G(0)
E seja rotacionalmente simétrica, tem-se que esta função depende de ω como r =

√
−ω2. Com

esta hipótese, a equação (6.45) pode ser reescrita como(
d2

dr2 +
D− 1

r
d
dr

+ σ

)
G(0)

E (ω; σ)

∣∣∣∣∣
r=
√
−ω2

= 0.

A mudança da variável r para r′ =
√

σr leva esta última igualdade à equação de Bessel(
d2

dr′2
+

D− 1
r′

d
dr′

+ 1
)

G(0)
E (ω; σ) = 0, (6.46)

cuja solução geral é dada por

G(0)
E (ω; σ) = (

√
σr)1− D

2

[
C1 J D

2 −1(
√

σr) + C2YD
2 −1(
√

σr)
] ∣∣∣∣∣

r=
√
−ω2

,

onde C1 e C2 são constantes. Escolhe-se C2 = 0 para que G(0)
E seja regular na origem ω = 0. Assim,

G(0)
E (ω; σ) = C1 r1− D

2 J D
2 −1(
√

σr)

∣∣∣∣∣
r=
√
−ω2

Com o resultado (F.12) e fazendo uso do comportamento assintótico da função de Bessel de primeira espécie (6.42),

pode-se calcular o valor de C1. O resultado é

C1 = π
D
2 (2
√

σ)
D
2 −1,

o qual implica que

G(0)
E (ω; σ) = π

(
2π
√

σ

r

) D
2 −1

J D
2 −1(
√

σr)

∣∣∣∣∣
r=
√
−ω2

. (6.47)

Levando este resultado à última igualdade de (6.23) e, com o uso da relação de recorrência (6.36), pode-se calcular

a função geradora de grau l no espaço Euclideano. O resultado é:

G(l)
E (ω; σ) = π1+l

(
2π
√

σ
r

) D
2 −1−l

J D
2 −1−l(

√
σr)

∣∣∣∣∣
r=
√
−ω2

. (6.48)
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No limite r → 0 esta relação é reescrita com o uso de (6.42):

G(l)
E (ω → 0; σ)→ π

D
2 (
√

σ)D−2(l+1)

Γ( D
2 −l)

, (6.49)

que é a relação encontrada para a função geradora no espaço de Minkowski (6.41) a menos do fator −i (veja a

relação (6.43)).

6.3 Vértice Cúbico no Espaço Euclideano

Com os resultados desenvolvidos na seção precedente, analisa-se, a seguir, a integral (6.24) no espaço Euclideano.

Definindo em (6.24) f (η, p) ≡ F1(η, p)F2(η, p) e com o uso do resultado (6.48) para l = 1, obtém-se

IE(σ) = G(1)
E (i∂η ; σ)F1(η, p)F2(η, p)

∣∣∣∣∣
η=0

= π
D
2

(
2
√

σ

r

) D−4
2

J D−4
2

(√
σr
)

F1(η, p)F2(η, p)

∣∣∣∣∣
η=0

, (6.50)

em que r ≡
√
−ω2 =

√
∂η · ∂η cujas derivadas são calculadas em η = 0.41 A relação (6.50) pode ser reescrita

como

I(σ) = G(1)
E (i(∂η1 + ∂η2); σ)F1(η1)F2(η2)

∣∣∣∣∣
η1=0=η2

= π
D
2

(
2
√

σ

r̂

) D−4
2

J D−4
2

(√
σr̂
)

F1(η1)F2(η2)

∣∣∣∣∣
η1=0=η2

,(6.51)

em que r̂ ≡
√
−(ω1 + ω2)2 =

√
r2

1 + r2
2 − 2r12, ri ≡

√
−ω2

i =
√

∂ηi · ∂ηi , i = 1, 2 e r12 ≡ ω1 · ω2 =

−∂η1 · ∂η2 . A relação (6.51) pode ser reescrita com o uso do teorema de adição de Gegenbauer para as funções de

Bessel [69]:
Jν(ω)

ων
= 2ν Γ(ν)

∞

∑
k=0

(ν + k)Cν
k (z)

Jν+k(x)
xν

Jν+k(y)
yν

, (6.52)

com ω2 = x2 + y2 − 2xyz e

Cν
k (z) =

⌊k/2⌋

∑
n=0

(−1)n

n!
Γ(ν + k− n)
Γ(ν)(k− 2n)!

(2z)k−2n, ν > −1
2

e ν ̸= 0, (6.53)

onde ⌊x⌋ denota o maior número inteiro menor ou igual ao número real x. De fato, definindo os parâmetros de

(6.52)-(6.53) como ω =
√

σr̂, x =
√

σr1, y =
√

σr2, z = r12/(r1r2) e ν = (D− 4)/2, tem-se

I(σ) = π
D
2 (2σ)

D−4
2

 J D−4
2

(√
σr̂
)

(√
σr̂
) D−4

2

 F1(η1)F2(η2)

= π
D
2 2D−4Γ

(
D− 4

2

)[ ∞

∑
k=0

(
D− 4

2
+ k
)

C
D−4

2
k

(
r12

r1r2

) J D−4
2 +k(

√
σr1)J D−4

2 +k(
√

σr2)

(r1r2)
D−4

2

]
F1(η1)F2(η2),

(6.54)

calculado em η1 = 0 = η2. Com o uso da identidade entre a função hipergeométrica 0F1 e a função de Bessel de

primeira espécie J [61],

0F1(ν + 1;−z2/4) =
Γ(ν + 1)
(z/2)ν

Jν(z),

41Porque em (6.50) o argumento da função de Bessel de primeira espécie é um operador pseudo-diferencial, esta igualdade é definida em

termos da expansão em série de potências [61]:

Jν(z) =
∞

∑
m=0

(−1)m

m!Γ(m + ν + 1)

( z
2

)2m+ν
.
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onde

0F1(ν; z) =
∞

∑
n=0

1
(ν)n

zn

n!
, (ν)n ≡

Γ(ν + n)
Γ(ν)

, n ∈N e ν ∈ R (símbolo de Pochhammer),

pode-se reescrever a relação (6.54) com ν = (D− 4)/2 e zi =
√

σri, i = 1, 2. O resultado é:

I(σ) = σ
D−4

2 ∑∞
k=0(−1)k π

D
2

22k
Γ( D−4

2 )( D−4
2 +k)

[Γ( D−2
2 +k)]

2 C
D−4

2
k

(
∂η1 ·∂η2

(∂η1 ·∂η1 )
1/2 (∂η2 ·∂η2 )

1/2

)
(∂η1 · ∂η1)

k/2

× (∂η2 · ∂η2)
k/2 F̃1( D−4

2 ,k)(η1; σ)F̃2( D−4
2 ,k)(η2; σ)

∣∣∣∣∣
η1=0=η2

, (6.55)

em que a propriedade Cν
k (−z) = (−1)kCν

k (z) foi utilizada e foram feitas as seguintes definições:

F̃i(ν,k)(ηi, p; σ) ≡ σk/2
0F1

(
1 + ν + k;−σ

4
∂ηi · ∂ηi

)
Fi(ηi, p) i = 1, 2.

Observe que
Γ
(

D−4
2

) (
D−4

2 + k
)

Γ
(

D−2
2 + k

) =
Γ(ν)(ν + k)
Γ(ν + 1 + k)

=
Γ(ν)

Γ(ν + k)
=

1
(ν)k

, (6.56)

onde a propriedade da função gama Γ(z + 1) = zΓ(z), ∀z ∈ C foi utilizada. Em adição, o termo em (6.55),

C
D−4

2
k

(
∂η1 · ∂η2

(∂η1 · ∂η1)
1/2 (∂η2 · ∂η2)

1/2

)
(∂η1 · ∂η1)

k/2(∂η2 · ∂η2)
k/2 F̃1( D−4

2 ,k)(η1; σ)F̃2( D−4
2 ,k)(η2; σ)

∣∣∣∣∣
η1=0=η2

,

(6.57)

pode ser reescrito de forma mais simétrica como

F̃1( D−4
2 ,k)(η1; σ)(

←−
∂ η1 ·

←−
∂ η1)

k/2C
D−4

2
k

( ←−
∂ η1 ·

−→
∂ η2

(
←−
∂ η1 ·

←−
∂ η1)

1/2 (
−→
∂ η2 ·

−→
∂ η2)

1/2

)
(
−→
∂ η2 ·

−→
∂ η2)

k/2 F̃2( D−4
2 ,k)(η2; σ),

(6.58)

em que o operador
−→
∂ η age apenas na função à direita ao passo que

←−
∂ η age apenas na função à esquerda. Com esta

notação em mente, pode-se retomar à variável original η1, η2 → η de modo que substituindo (6.56) e (6.58) em

(6.55), obtém-se

I(σ) = σ
D−4

2 ∑∞
k=0 A( D−4

2 ,k)

[
F̃1( D−4

2 ,k)(η; σ)
] (k)

P D−4
2

(←−
∂ η ,
−→
∂ η

) [
F̃2( D−4

2 ,k)(η; σ)
] ∣∣∣∣∣

η=0

, (6.59)

com

A(ν,k) ≡ (−1)k πD/2

k!2kΓ(1 + ν + k)
(6.60)

e
(k)
P ν

(←−
∂ η ,
−→
∂ η

)
≡ k!

2k(ν)k
(
←−
∂ η ·
←−
∂ η)

k/2 Cν
k

( ←−
∂ η ·
−→
∂ η

(
←−
∂ η ·
←−
∂ η)1/2 (

−→
∂ η ·
−→
∂ η)1/2

)
(
−→
∂ η ·
−→
∂ η)

k/2,

o qual é chamado operador corrente de troca de spin k [54]. Com o uso da definição de Cν
k (6.53) e notando que

Γ(ν + k− n)
Γ(ν)(ν)k

=
Γ(ν + k− n)

Γ(ν + k)
(6.28)
=

Γ(1− ν− k)
Γ(1− ν− k + n)

sin (π(ν + k))
sin (π(ν + k− n))

=
(−1)n

(1− ν− k)n
,

o operador de troca pode ser simplificado a:

(k)
P ν

(←−
∂ η ,
−→
∂ η

)
= ∑

⌊k/2⌋
n=0

1
22n(1−ν−k)n

k!
n!(k−2n)!

(←−
∂ η ·
←−
∂ η

)n (←−
∂ η ·
−→
∂ η

)k−2n (−→
∂ η ·
−→
∂ η

)n
. (6.61)
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Assim, a expressão final de (6.50) é:

I(σ) = σ
D−4

2

∞

∑
s=0

⌊s/2⌋

∑
n=0

A( D−4
2 ,k)

1

22n
(

3− D
2 − s

)
n

s!
n!(s− 2n)!

×
[

F̃1( D−4
2 ,s)(η; σ)

] (←−
∂ η ·
←−
∂ η

)n (←−
∂ η ·
−→
∂ η

)s−2n (−→
∂ η ·
−→
∂ η

)n [
F̃2( D−4

2 ,s)(η; σ)
] ∣∣∣∣∣

η=0

. (6.62)

6.3.1 Aplicação: Cálculo do Vértice Cúbico (6.9) no Espaço Euclideano

Definindo

F1(η, p) ≡ J(η,−p)

F2(η, p) ≡ − 1
p2 J(η, p)

,

o vértice cúbico (6.9) no espaço Euclideano é, com o uso do resultado (6.59):

S(E)
c = −σ

D−4
2 ∑∞

k=0
∫

dD p A( D−4
2 ,k)

[
J( D−4

2 ,k)(η,−p; σ)
] (k)

P D−4
2

(←−
∂ η ,
−→
∂ η

)
p2

[
J( D−4

2 ,k)(η, p; σ)
] ∣∣∣∣∣

η=0

,

(6.63)

onde o operador P é dado por (6.61) e

J(ν,k)(η, p; σ) ≡ σk/2
0F1

(
1 + ν + k;−σ

4
∂η · ∂η

)
J(η, p). (6.64)

Assumindo que a corrente J seja uma função analítica em η, então pode-se expandi-la como ( para simplificar a

análise que segue, faz-se σ = 1):

J (η, p) =
∞

∑
r=0

1
r!

ηµ1 · · · ηµr
(r)
J µ1···µr

(p),

tal que

[J (η,−p)]
(s)
P D−4

2

(←−
∂ η ,
−→
∂ η

)
[J (η, p)]

∣∣∣∣∣
η=0

=
⌊s/2⌋

∑
n=0

1

22n
(

3− D
2 − s

)
n

s!
n!(s− 2n)!

×
{[

∞

∑
u=0

1
u!

ηµ1 · · · ηµu
(u)
J µ1···µu

(−p)

] (←−
∂ η ·
←−
∂ η

)n (←−
∂ η ·
−→
∂ η

)s−2n (−→
∂ η ·
−→
∂ η

)n

×
[

∞

∑
v=0

1
v!

ηµ1 · · · ηµv
(v)
J µ1···µv

(p)

]}∣∣∣∣∣
η=0

. (6.65)

Para que esta relação seja diferente de zero, é necessário que os tensores
(u)
J e

(v)
J sejam de ordem s porque,

efetivamente, há s derivadas à esquerda e s derivadas à direita em (6.65), de modo que se u > s ou v > s, a relação

(6.65) se anula, visto que as derivadas nesta relação são calculadas na origem η = 0. Em adição, observe que

(∂η · ∂η)η
µ1 · · · ηµs

(s)
J µ1···µs

(p) = ηµ3 · · · ηµs
(s−2)
J µ3···µs

(p) + ηµ2 ηµ5 · · · ηµs
(s−2)
J µ2µ5···µs

(p)

+ · · ·+ ηµ1 · · · ηµs−2
(s−2)
J µ1···µs−2

(p),

onde cada tensor
(s−2)
J do segundo membro desta equação é obtido tomando um traço do tensor

(s)
J como em

(s−2)
J µ3···µs

(p) =
(s)
J µ2

µ2µ3···µsµs−1µs(p).
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Assim, pode-se inferir que o efeito do operador (∂η · ∂η)n sobre
(s)
J µ1···µs

é

(s)
J µ1···µs

(p)
(∂η ·∂η)n

−→
(s−2n)
J µ1···µs−2n

[n](p),

em que [n], n < s/2, denota todos os possíveis n traços do tensor
(s)
J . Analogamente, o efeito do operador(←−

∂ η ·
−→
∂ η

)s−2n
sobre a expressão remanescente de (6.65) é:[

1
(s− 2n)!

ηµ1 · · · ηµs−2n
(s−2n)
J µ1···µs−2n

[n](−p)

] (←−
∂ η ·
−→
∂ η

)s−2n

×
[

1
(s−2n)! η

µ′1 · · · ηµ′s−2n
(s−2n)
J µ′1···µ′s−2n

[n](p)

]

=
(s−2n)
J

µ1···µs−2n
[n](−p)

(s−2n)
J µ1···µs−2n

[n](p) ≡
(s−2n)
J [n](−p) ·

(s−2n)
J [n](p),

o qual substituindo em (6.65), obtém-se

[J (η,−p)]
(s)
P D−4

2

(←−
∂ η ,
−→
∂ η

)
[J (η, p)]

∣∣∣∣∣
η=0

=
⌊s/2⌋

∑
n=0

1

22n
(

3− D
2 − s

)
n

s!
n!(s− 2n)!

(s−2n)
J [n](−p) ·

(s−2n)
J [n](p). (6.66)

Finalmente, substituindo (6.66) em (6.63), obtém-se

S(E)
c = σ

D−4
2 ∑∞

s=0 A( D−4
2 ,s) ∑

⌊s/2⌋
n=0

1
22n(3− D

2 −s)n

s!
n!(s−2n)!

∫
dD p

(s−2n)
J [n](−p) ·

(s−2n)
J [n](p). (6.67)

Para cada s, este vértice é precisamente aquele encontrado pelos autores de [70] no contexto da teoria das partículas

de altos spins não vinculadas.
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Conclusões
Nesta dissertação apresentamos um estudo sistemático sobre a teoria das CSPs e CSTs com ênfase em sua descrição

por meio de teoria de grupos, conforme feito originalmente por Wigner em [4], e por uma teoria de campo. Nos dois

primeiros capítulos apresentamos os ingredientes básicos necessários em teoria de grupos, com destaque aos grupos

de Lorentz e Poincaré, para que, no Capítulo 3, as representaçoes de spin contínuo e táquions de spin contínuo deste

grupo fossem completamente caracterizadas. Em seguida a esta análise, obtivemos, no Capítulo 4, equações de

onda que descrevem as representações de spin contínuo cuja solução foi utilizada na construção de amplitudes de

emissão/absorção soft. O Capítulo 5 foi destinado ao estudo de uma teoria de campo para um CST, onde uma ação

foi apresentada com a análise de suas simetrias globais e locais. O cálculo explícito dos autovalores dos operadores

de Casimir do grupo de Poincaré permitiu que pudéssimos verificar que, de fato, a ação apresentada propaga um

único CST. Em seguida, a escolha de um gauge permitiu que, na expansão do campo taquiônico em tensores

completamente simétricos e de todas as ordens, as componentes com traços nulos fossem eliminadas. Finalizamos

este capítulo acoplando ao CST uma corrente externa escolhida como função de dois campos escalares massivos.

Verificamos que ela satisfaz uma equação de continuidade e obtivemos explicitamente uma expressão local para ela.

No limite de massa nula, o vértice cúbico com uma CSP e dois campos escalares massivos obtidos pelos autores

de [54] foi recuperado. Por fim, no Capítulo 6 apresentamos uma análise sistemática do vértice cúbico com uma CSP,

mostrando que, no espaço de Minkowski, este vértice não comporta os graus de liberdade físicos compatíveis com

uma CSP. No espaço Euclideano, por sua vez, mostramos que este vértice apresenta uma similaridade com aquele

encontrado pelos autores de [70] no contexto da teoria das partículas de altos spins não-vinculadas, característica

essa que, a nosso ver, necessita ser melhor esclarecida em trabalhos futuros.

A existência de amplitudes de emissão/absorção soft covariantes para CSPs demonstra que interações de longo

alcance podem ser intermediadas por estas partículas, de modo que a teoria das CSPs pode oferecer novos ingredi-

entes na descrição da eletrodinâmica e da teoria da gravidade. De fato, em [64], Schuster & Toro demonstraram

que as amplitudes de emissão soft de uma CSP se aproximam muito bem àquelas correspondentes ao fóton e ao

gráviton no regime de altas energias E≫ ρ. Por um lado, esta correspondência é adequada para resolver o problema

levantado por Wigner [6] sobre a capacidade térmica infinita de um sistema térmico constituído por CSPs porque,

fenomenologicamente, apenas as suas três primeiras componentes (veja a expansão dada pela (0.8)) têm relevância

no regime de altas energias (mundo real) E≫ ρ para a capacidade térmica deste sistema térmico. Por outro lado,

as amplitudes de emissão/absorção soft para CSPs não correspondem àquelas da teoria de altos spins no limite de

massa nula e spin arbitrariamente alto [64]. Isto significa que através deste limite não é possível obter uma teoria

com interações de CSPs a partir da teoria de partículas massivas de altos spins, em contrapartida à análise cinemática

feita em [5, 33]. Portanto, a busca por uma teoria de campo completa onde as amplitudes de emissão/absorção de

uma CSP soft possam ser recuperadas, a nosso ver, constitui o problema central sobre a teoria das CSPs. A ação de

Schuster & Toro [41], embora descreva adequadamente a CSP livre, não parece ser um bom começo em resolver

este problema porque o acoplamento da CSP a uma corrente externa não propaga os graus de liberdade físicos

corretos [54].

Alguns pontos sobre a teoria dos CSTs não foram discutidos nesta dissertação e, a nosso ver, merecem destaque

em estudos futuros: a extração do propagador a partir da ação apresentada no Capítulo 5 e verificação se o mesmo
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propaga os graus de liberdade físicos corretos correspondente à representação taquiônica de spin contínuo.

Generalizar a formulação Lagrangiana dado por Schuster & Toro [41] e pelos autores de [46] à espaços de

(Anti-)de Sitter constitui um caminho natural no estudo das representações de spin contínuo. Isto foi feito por

Metsaev [63,71] com a extensão do formalismo dado às partículas de altos spins massivas [72,73] às CSPs bosônicas

e fermiônicas.42 Neste contexto, destacamos dois resultados importantes obtidos por Metsaev: representações de

spin contínuo unitárias em espaços de de Sitter inexiste e, em espaços de Anti-de Sitter, as soluções unitárias não

foram ainda identificadas com as representações unitárias do grupo de Anti-de Sitter; este constitui um problema

em aberto. Estes resultados foram obtidos também pelos autores de [76] com o uso do formalismo do tipo frame às

CSPs (veja também [77] para mais discussões sobre este formalismo aplicado às CSPs).

42Veja também [74] onde o autor obtém a ação de Metsaev a partir da ação que descreve partículas massivas de altos spins [73, 75] atravé do

limite m→ 0 e s→ ∞, onde m é a massa da partícula e s é o spin.
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A Geradores do LG Massivo e Não-Massivo
Seja kµ um quadrivetor tipo tempo (k2 = m2 > 0) e qµ um quadrivetor tipo luz (q2 = 0) de modo que k · q ̸= 0.

Então, o quadrivetor

kµ
b = kµ − M2

2k · q qµ. (A.1)

é do tipo luz e, para a escolha kb = (kb, 0, 0, kb), define-se os vetores de polarização ϵ± como

ϵ±(kb) =
1√
2
(ϵ1 ± iϵ2), (A.2)

com ϵ1,2 dados por (3.20). Veja que ϵ± = ϵ±(kb) são funções do quadrimomento kµ
b de modo que se L(p) é uma

transformação de Lorentz tal que se kb
L(p)−→ p, então ϵ±(kb) −→ ϵ±(p). Com o uso das propriedades

• ϵ∗± = ϵ∓;

• ϵ2
± = 0;

• ϵ± · ϵ∓ = −1;

• ϵ±(kb) · k = ϵ±(kb) · kb = ϵ±(kb) · q = 0;

• kb · q = k · q ̸= 0,

pode-se demonstrar que ϵ±, kb e q são linearmente independentes e podem ser utilizados para escrever a métrica

gµν e o símbolo de Levi-Civita ϵµνρσ da seguinte forma:

gµν = −(ϵµ
+ϵν
− + ϵν

+ϵ
µ
−) +

1
kb · q

(kµ
b qν + kν

bqµ) (A.3)

ϵµνρσ = − i
kb · q

(ϵ
µ
+ϵν
−kρ

bqσ ± perms), (A.4)

em que ’perms’ significa todas as possíveis permutações dos índices µ, ν, ρ e σ em ϵ
µ
+ϵν
−kρ

bqσ.

O "quadrivetor"

ϵ
µ
0 =

1
m

(
kµ − m2

k · q qµ

)
=

1
m

(
kµ

b −
m2

2kb · q
qµ

)
(A.5)

satisfaz ϵ0 · (k, ϵ±) = 0, ϵ0 · kb = −m/2 e ϵ2
0 = −1. Veja que quando m → 0, tem-se ϵ0m → kb. Este limite

será utilizado na Seção A.2.

A.1 Caso Massivo

Neste caso k2 = m2 e as componentes wµ (3.11) podem ser escritas em termos de ϵ0 como:

w0 = w · ϵ0 =
1
M

w ·
(

k− M2

k · q q
)

(A.4)
= − M

k · q qµ
1
2

ϵµνρσkν Jρσ

= − M
2k · q

[
− i

k · q (ϵ
µ
+ϵν
−kρ

bqσ ± perms)
]

qµkν Jρσ

= i
M

2(k · q)2

(
ϵ

ρ
+ϵσ
−kµ

b qν − ϵσ
+ϵ

ρ
−kµ

b qν

)
qµkν Jρσ

= i
M

(k · q)2 ϵ
ρ
+ϵσ
− (kb · q)︸ ︷︷ ︸

=k·q

(q · k)Jρσ

= iMϵ
ρ
+ϵσ
− Jρσ, (A.6)
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em que na terceira linha eliminou-se todos os termos que são contrações entre ϵ± e os quadrimomentos kb e q.

Portanto,

(w0)
µ

ν = iMϵ
ρ
+ϵσ
−(Jρσ)

µ
ν

(2.34)
= i2Mϵ

ρ
+ϵσ
−(δ

µ
ρ gσν − δ

µ
σ gρν) = M(ϵ+νϵ

µ
− − ϵ

µ
+ϵ−ν). (A.7)

As outras duas componentes w± podem ser caluladas de maneira análoga:

w+ =
√

2w · ϵ+ =
√

2
1
2

ϵµνρσkν Jρσϵ+µ

= −
√

2
i

2k · q (ϵ
µ
+ϵν
−kρ

bqσ ± perms)kν Jρσϵ+µ

= −
√

2
i

2k · q (ϵ
ρ
+ϵ

µ
−kν

bqσ − ϵσ
+ϵ

µ
−kν

bqρ + ϵσ
+ϵ

µ
−kρ

bqν − ϵ
ρ
+ϵ

µ
−kσ

b qν)kν Jρσϵ+µ

= −
√

2
i

k · q

[
(ϵ− · ϵ+)︸ ︷︷ ︸

=−1

(kb · k)ϵ
ρ
+qσ + (q · k) (ϵ− · ϵ+)︸ ︷︷ ︸

=−1

ϵσ
+kρ

b

]
Jρσ

= i
√

2
[

kb · k
k · q ϵ

ρ
+qσ + ϵσ

+kρ
b

]
Jρσ, (A.8)

em que foi utilizado ϵ− · ϵ+ = −1. A partir da definição (A.1), pode-se calcular kb · k:

kb · k = k2 − M2

2
= M2 − M2

2
=

M2

2
, (A.9)

de modo que

w+ = i
√

2
[

1
2

M2

k · q ϵ
ρ
+qσ + ϵσ

+kρ
b

]
Jρσ = i

√
2ϵ

ρ
+

(
1
2

M2

k · q qσ − kσ
b

)
Jρσ

(A.5)
= i

√
2ϵ

ρ
+ (−Mϵσ

0 ) Jρσ

= i
√

2Mϵ
ρ
0ϵσ

+ Jρσ. (A.10)

Analogamente,

w− = −i
√

2Mϵ
ρ
0ϵσ
− Jρσ. (A.11)

Com o uso da relação (2.34), pode-se calcular as entradas de w±:

(w±)µ
ν = ±i

√
2Mϵσ

±ϵ
ρ
0
(

Jρσ

)µ
ν = ±i2

√
2Mϵσ

±ϵ
ρ
0

(
δ

µ
ρ gσν − δ

µ
σ gρν

)
= ∓

√
2M

(
ϵ±νϵ

µ
0 − ϵ

µ
±ϵ0ν

)
= ±

√
2M

(
ϵ

µ
±ϵ0ν − ϵ±νϵ

µ
0

)
.

(A.12)

As relações de comutação canônica neste caso são dadas por

[w0, w±] = ±
√

2(iM)2(ϵ
µ
+ϵν
−)(ϵ

ρ
0ϵσ
±)[Jµν, Jρσ]

(2.35)
= ±

√
2(−i)(iM)2(ϵ

µ
+ϵν
−ϵ

ρ
0ϵσ
±)(gµσ Jρν − gνσ Jρµ + gνρ Jσµ − gµρ Jσν)

= ±
√

2(−i)(iM)2
[
(ϵ+σϵσ

±)(ϵ
ν
−ϵ

ρ
0 Jρν)− (ϵ−σϵσ

±)(ϵ
µ
+ϵ

ρ
0 Jρµ) + (ϵ−ρϵ

ρ
0)(ϵ

µ
+ϵσ
± Jσµ)

−(ϵ+ρϵ
ρ
0)(ϵ

ν
−ϵσ
± Jσν)

]
,
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com

[w0, w+] = +(−i)
√

2(iM)2
[
(ϵ+σϵσ

+)︸ ︷︷ ︸
=0

(ϵν
−ϵ

ρ
0 Jρν)− (ϵ−σϵσ

+)︸ ︷︷ ︸
=−1

(ϵ
µ
+ϵ

ρ
0 Jρµ) + (ϵ−ρϵ

ρ
0)︸ ︷︷ ︸

=0

(ϵ
µ
+ϵσ

+ Jσµ)

− (ϵ+ρϵ
ρ
0)︸ ︷︷ ︸

=0

(ϵν
−ϵσ

+ Jσν)

]
= −i(iM)[i

√
2Mϵ

ρ
0ϵ

µ
+ Jρµ]

= Mw+.

Analogamente,

[w0, w−] = −Mw−.

Em adição,

[w+, w−] = −2(iM)2(ϵ
µ
0 ϵν

+ϵ
ρ
0ϵσ
−)
[

Jµν, Jρσ

]
(2.35)
= −2(−i)(iM)2(ϵ

µ
0 ϵν

+ϵ
ρ
0ϵσ
−)(gµσ Jρν − gνσ Jρµ + gνρ Jσµ − gµρ Jσν)

= 2i(iM)2

(ϵ0σϵσ
−)︸ ︷︷ ︸

=0

(ϵν
+ϵ

ρ
0 Jρν)− (ϵ+σϵσ

−) (ϵ
µ
0 ϵ

ρ
0 Jρµ)︸ ︷︷ ︸
=0

+ (ϵ+ρϵ
ρ
0)︸ ︷︷ ︸

=0

(ϵσ
−ϵ

µ
0 Jσµ)− (ϵ0ρϵ

ρ
0)︸ ︷︷ ︸

=−1

(ϵν
+ϵσ
− Jσν)


= 2i(iM)(iMϵν

+ϵσ
− Jσν︸︷︷︸

=−Jνσ

)

(A.6)
= 2Mw0.

Assim, vê-se que w±, w0 caracteriza a álgebra de SO(3). Em termos destas três componentes, obtém-se

wµ = − 1√
2

(
ϵ

µ
−w+ + ϵ

µ
+w−

)
− ϵ

µ
0 w0, (A.13)

de modo que o operador de Casimir quártico é dado por:

C4 = w2 =
1
2
(
ϵ−w+ + ϵ+w−

)2
+

1√
2

(
ϵ

µ
−w+ + ϵ

µ
+w−

)
·
(

ϵ0w0
)
+
(

ϵ0w0
)2

=
1
2
[
(ϵ− · ϵ+)w+w− + (ϵ+ · ϵ−)w−w+

]
+ (ϵ0)

2(w0)2

∴ C4 = −1
2
(
w+w− + w−w+

)
− (w0)2. (A.14)

A.2 Caso não-Massivo

No limite em que m é zero, tem-se que Mϵ0 → k conforme a definição (A.5) estabelece. De acordo com

(A.10)-(A.11), w± são finitos e não-nulos; denote-os por T±:

m → 0 ⇒ mϵ0 → k ⇒ w± → T± ≡ ±i
√

2kρϵσ
± Jρσ, (A.15)

com

(T±)µ
ν = ±i

√
2kρϵσ

±(Jρσ)
µ

ν
(2.34)
= ±i2

√
2kρϵσ

±

(
δ

µ
ρ gσν − δ

µ
σ gρν

)
= ±
√

2
(

ϵ
µ
±kν − kµϵ±ν

)
. (A.16)
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Por outro lado, w0 → 0 à medida que m → 0 conforme a relação (A.6) estabelece. Mas, com o uso da relação

(A.1), tem-se que

w · q = −(ϵ0 · q)w0 = − 1
m

(
k · q− m2

k · q q2
)

w0 = −(k · q)w0

m
, (A.17)

que é finito à medida que m→ 0. Isto sugere a seguinte definição:

R ≡ −w · q
k · q =

w0

m
= iϵρ

+ϵσ
− Jρσ, (A.18)

com

Rµ
ν = iϵρ

+ϵσ
−(Jρσ)

µ
ν

(2.34)
= i2ϵ

ρ
+ϵσ
−

(
δ

µ
ρ gνσ − δ

µ
σ gνρ

)
= −

(
ϵ

µ
+ϵ−ν − ϵ+νϵ

µ
−

)
= ϵ

µ
−ϵ+ν − ϵ

µ
+ϵ−ν. (A.19)

Em termos de T± e R, pode-se escrever (A.13) notando que quando m→ 0, obtém-se ϵ
µ
0 w0 = (ϵ

µ
0 M)R → kµR:

wµ = − 1√
2

(
ϵ

µ
−T+ + ϵ

µ
+T−

)
− kµR , (A.20)

e a álgebra de Lie corresponde àquela encontrada para o grupo ISO(2) (3.24)

[T±, T∓] = 0, [R, T±] = ±T±. (A.21)

O operador de Casimir quártico é obtido diretamente a partir da relação (A.14) com w0 = 0 e w+w− =

w−w+ = T+T−:

C4 = −T+T−. (A.22)

A.3 "Vetores de Polarização"ϵ±(k): a Questão da Covariância

Para finalizar este tópico, vamos verificar se ϵ±(k) e

ϵ(k, ϕ) =
i√
2

(
ϵ+(k)e−iϕ − ϵ−(k)eiϕ

)
= −
√

2 Im
[
ϵ+(k)e−iϕ

]
, (A.23)

onde Im(z) denota a parte imaginária do número complexo z, se transformam como quadrivetores. Pelo uso das

relações (3.31)-(3.32), pode-se calcular a ação de W ∈ LGk sobre ϵ(k):

W (θ, β)ϵ(k, ϕ) =
i√
2

(
e−iϕW (θ, β)ϵ+(k)− eiϕW (θ, β)ϵ−(k)

)
=

i√
2

[
e−iϕe−iθ (ϵ+(k)− iβk)− eiϕeiθ (ϵ−(k) + iβ∗k)

]
=

i√
2

(
ϵ+(k)e−i(ϕ+θ) − ϵ−(k)ei(ϕ+θ)

)
+

k√
2

(
βe−i(θ+ϕ) + β∗ei(θ+ϕ)

)
= ϵ(k, θ + ϕ) +

√
2 Re

[
βe−i(ϕ+θ)

]
k

= ϵ′ + ak, (A.24)

com ϵ′ ≡ ϵ(k, θ + ϕ) e a ≡
√

2Re
[

βe−i(ϕ+θ)
]
. Com as relações

LGk ∋ W (θ, β) = L−1(Λp)ΛL(p) ↔ Λ = L(Λp)W (θ, β)L−1(p)

p = L(p)k, ϵ±(p) = L(p)ϵ±(k) ↔ k = L−1(p)p, ϵ±(k) = L−1(p)ϵ±(p)
, (A.25)
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obtém-se

Λϵ+(p) = L(Λp)W (θ, β)
[

L−1(p)ϵ+(p)
]

(3.31)
= L(Λp) [W (θ, β)ϵ+(k)]

= L(Λp)e−iθ [ϵ+(k)− iβk]

= e−iθ [ϵ+(Λp)− iβΛp] . (A.26)

Analogamente,

Λϵ−(p) = eiθ [ϵ−(Λp) + iβ∗Λp] . (A.27)

Em adição,

Λϵ(p, ϕ) = L(Λp)W (θ, β)
[

L−1(p)ϵ(p, ϕ)
]

= L(Λp) [W (θ, β)ϵ(k, ϕ)]

(A.24)
= L(Λp)ϵ(k, ϕ + θ) + aL(Λp)k

= ϵ(Λp, ϕ + θ) + aΛp. (A.28)

Portanto, pode-se concluir que ϵ±(p) e ϵ(p, ϕ) não são quadrivetores em virtude dos termos iβΛp, iβ∗Λp e aΛp

em (A.26)-(A.28). Esta característica sobre ϵ±(k) e ϵ(k, ϕ) é o ponto de partida tomado por Weinberg na discussão

de seu teorema no-go [17].
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B Teorema de Weinberg
Steven Weinberg mostrou [17] 43 uma consequência interessante da condição de covariância (4.35). Considere um

processo genérico envolvendo n partículas cada qual rotuladas pelo seu quadrimomento pi e pelo parâmetro do LG

ai, com i = 1, · · · , n. Considere que neste processo ocorra a emissão de uma partícula sem massa com helicidade

±j e quadrimomento k. Em símbolos, a reação é dada por:

∏
⊗i
|pi, ai⟩ →∏

⊗i
|p′i, a′i⟩ ⊗ |k,±h⟩ . (B.1)

Weinberg demonstrou que sempre é possível escrever a amplitude do processo acima como o produto escalar entre j

’vetores’ de polarização ϵ±(k) e um tensor completamente simétrico de ordem j Mµ1···µj(k, p1, · · · , pn) ortogonal

ao quadrimomento da partícula sem massa k, kµi Mµ1···µi ···µj(k, p) = 0 para algum i ∈ {1, · · · , j}, de modo a

preservar a condição de covariância (4.35):

A(k,±j, p1, · · · , pn) ∝ ϵ
∗µ1
± (k) · · · ϵ∗µj

± (k)Mµ1···µj({k,±j}, p1, · · · , pn)

kµi Mµ1···µi ···µj({k,±j}, p1, · · · , pn) = 0
. (B.2)

As duas condições em (B.2) leva a uma consequência importante no que tange a teorias de interações intermediadas

por partículas sem massa, a saber, apenas partículas com helicidade menor ou igual a dois podem intermediar

interações de longo alcance. Isto pode ser provado notando que

f ({k,±h}, p1, · · · , pn) =
n

∑
i=1

gi
1

2pi · k + iϵ
si({k,±j}, pi)

!
= ϵ

∗µ1
± (k) · · · ϵ∗µj

± (k)Mµ1···µj({k,±j}, p1, · · · , pn).

(B.3)

Resolvendo esta última igualdade para a função M com o uso da propriedade ϵ±(k) · ϵ∓(k) = ϵ±(k) · ϵ∗±(k) = −1,

tem-se

Mµ1···µj({k,±j}, p1, · · · , pn) = (−1)jϵ±µ1(k) · · · ϵ±µj(k)
n

∑
i=1

gi
1

2pi · k + iϵ
si({k,±h}, pi). (B.4)

Veja que o fator soft si depende de cada quadrimomento pi e do quadrimomento da partícula sem massa k. Também,

o lado esquerdo da relação (B.4) é um tensor simétrico, então a única possibilidade para o fator soft é que haja uma

dependência polinomial em cada pi, ∀i = 1, · · · , n como

si({k,±j}, pi) = ϵ
∗µ1
± (k) · · · ϵ∗µj

± (k)piµ1
· · · piµj

= (ϵ∗±(k) · pi)
j (B.5)

que, substituindo nas relações (B.3)-(B.4), obtém-se

f ({k,±j}, p1, · · · , pn) = ∑n
i=1 gi

1
2pi ·k+iϵ (ϵ

∗
±(k) · pi)

j

Mµ1···µj({k,±j}, p1, · · · , pn) = ∑n
i=1 gi

1
2pi ·k+iϵ piµ1

· · · piµj
,

kµi Mµ1···µj = 0

. (B.6)

Vejamos, a seguir, as consequências das relações em (B.6):

43A Seção 13.1 de [2] e o Apêndice G de [78] fazem uma explanação didádica sobre o teorema de Weinberg.
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B.1 Eletrodinâmica: j=1

Neste caso, (B.6) leva a

Mµ1({k,±j}, p1, · · · , pn) =
n

∑
i=1

gi
1

2pi · k + iϵ
piµ1

⇒ kµ1 Mµ1({k,±j}, p1, · · · , pn) =
1
2

n

∑
i=1

gi = 0

∴
n

∑
i=1

gi = 0 → Conservação de Carga. (B.7)

B.2 Gravitação: j=2

Neste caso, (B.6) leva a

Mµ1µ2({k,±j}, p1, · · · , pn) =
n

∑
i=1

gi
1

2pi · k + iϵ
piµ1

piµ2

⇒ kµ1 Mµ1µ2({k,±j}, p1, · · · , pn) =
1
2

n

∑
i=1

gi piµ2
= 0

⇔
n

∑
i=1

gi piµ2
= 0, ∀µ2 = 0, 1, 2, 3. (B.8)

Uma possível solução de (B.8) é dada por

gi = g, universal → Princípio de Equivalência (B.9)

o qual torna a relação (B.8) uma setença verdadeira, dado que ∑i pi = 0 é uma lei da natureza.

B.3 Alto Spin: j>2

Neste caso não há solução geral para as condições em (B.6). Por exemplo, se j = 3, tem-se

n

∑
i=1

gi piµ1
piµ2

= 0, ∀µ1, µ2 = 1, · · · , 4, (B.10)

o qual pode estar relacionado à conservação da energia cinética do conjunto de partículas se gi ∝ 1/2mi, onde mi é

a massa de cada partícula que participa do processo (exceto àquelas que não têm massa). Assim, o processo seria

elástico e torna a condição (B.10) restrita. Contudo, conforme Weinberg concluiu [17]:

"Estes resultados não significam que partículas de spin três ou mais não existam, apenas que elas não podem gerar

campos macroscópicos."
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C Algumas Identidades Úteis
Neste apêndice são apresentadas diversas relações de comutação e uma identidade para o operador ∆− im∂ξ que

são úteis para o texto principal e para os próximos dois apêndices desta dissertação.

As relações de comutação são:[
∆− im∂ξ , η2 + ξ2 + µ2

]
= 2(η · ∂x − imξ), (C.1)[

∆− im∂ξ , η · ∂x − imξ
]

= □x −m2, (C.2)[
∆− im∂ξ , (η · ∂x − imξ)N

]
= N(η · ∂x − imξ)N−1(□x −m2), ∀N ∈N, (C.3)[

∂η · ∂x, η · ∂x − imξ
]

= □x, (C.4)[
∂η · ∂x, (η · ∂x − imξ)N

]
= N (η · ∂x −mξ)N−1 □x, ∀N ∈N, (C.5)[

∂ηµ, η · ∂x − imξ
]

= ∂xµ, (C.6)[
∂ηµ, (η · ∂x − imξ)N

]
= N (η · ∂x − imξ)N−1 ∂xµ, ∀N ∈N, (C.7)[

(η · ∂η)(D− 3 + η · ∂η), η2 + ξ2 + µ2
]

= 2(D− 1)η2 + 4η2(η · ∂η), (C.8)[
□η , η · ∂x − imξ

]
= 2∂η · ∂x, (C.9)[

□η , η2 + ξ2 + µ2
]

= 2D + 4(η · ∂η), (C.10)[
(η · ∂η)(D− 3 + η · ∂η), η · ∂x − imξ

]
= (η · ∂x)[2(η · ∂η) + D− 2], (C.11)[

∆− im∂ξ , η · ∂η(D− 3 + η · ∂η)

]
= (2η · ∂η + D− 2)(∂η · ∂x), (C.12)[

∆− im∂ξ , D− 2 + 2η · ∂η

]
= 2∂η · ∂x, (C.13)[

∆− im∂ξ , η · ∂x + imξ

]
= □x + m2, (C.14)[

∆− im∂ξ , η2
]

= 2η · ∂x, (C.15)[
∂

ρ
x, xµ∂σ

x ∂xα

]
= gµρ∂σ

x ∂xα, (C.16)[
∂xµ∂

ρ
x, xα∂

β
x ∂xγ

]
= gαρ∂xµ∂

β
x∂xγ + δα

µ∂
ρ
x∂

β
x ∂xγ, (C.17)[

□x, xα∂
β
x ∂xγ

]
= 2∂α

x∂
β
x ∂xγ, (C.18)[

∆− im∂ξ , −ρ2ξ2
]

= 2ρ2imξ, (C.19)[
∆− im∂ξ , m2(ξ2 + µ2)∂2

ξ

]
= −2m2(imξ)∂2

ξ , (C.20)[
∆− im∂ξ , 2ρ(ξ2 + µ2)im∂ξ

]
= 4ρm2ξ∂ξ , (C.21)
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[
∆− im∂ξ , 2m2(η · ∂η)ξ∂ξ

]
= 2m2(ξ∂ξ)(∆− im∂ξ) + 2m2(imξ)∂2

ξ − 2ρm2ξ∂ξ

−2m2(η · ∂η)im∂ξ , (C.22)[
∆− im∂ξ , m2(D− 2)ξ∂ξ

]
= −m2(D− 2)im∂ξ , (C.23)[

∆− im∂ξ , 2ρimξ(η · ∂η)

]
= 2ρ(imξ)(∆− im∂ξ)− 2ρm2ξ∂ξ − 2ρ2(imξ)

+2ρm2(η · ∂η), (C.24)[
∆− im∂ξ , ρ(D− 2)imξ

]
= ρ(D− 2)m2, (C.25)[

∆− im∂ξ , m2(D− 3)η · ∂η

]
= m2(D− 3)(∆− im∂ξ) + m2(D− 3)im∂ξ −m2(D− 3)ρ,(C.26)[

∆− im∂ξ , m2(η · ∂η)
2
]

= 2m2(η · ∂η)(∆− im∂ξ) + m2(∆− im∂ξ) + 2m2(η · ∂η)im∂ξ

+m2im∂ξ − 2m2ρ(η · ∂η)− ρm2, (C.27)[
η · ∂x − imξ, m2(ξ2 + µ2)∂2

ξ

]
= 2m2(ξ2 + µ2)im∂ξ , (C.28)[

η · ∂x − imξ, m2µ2□η

]
= −2m2µ2(∆− im∂ξ)− 2m2µ2(im∂ξ) + 2ρm2µ2, (C.29)[

η · ∂x − imξ, 2ρ(ξ2 + µ2)im∂ξ

]
= −2ρm2(ξ2 + µ2), (C.30)[

η · ∂x − imξ, 2m2(η · ∂η)ξ∂ξ

]
= −2m2ξ∂ξ(η · ∂x − imξ)− 2m2(imξ)ξ∂ξ − 2m2(imξ)

+2m2(imξ)(η · ∂η), (C.31)[
η · ∂x − imξ, m2(D− 2)ξ∂ξ

]
= m2(D− 2)imξ, (C.32)[

η · ∂x − imξ, 2ρimξ(η · ∂η)

]
= −2ρ(imξ)(η · ∂x − imξ) + 2ρm2ξ2, (C.33)[

η · ∂x − imξ, m2(D− 3)η · ∂η

]
= −m2(D− 3)(η · ∂x − imξ)−m2(D− 3)imξ, (C.34)[

η · ∂x − imξ, m2(η · ∂η)
2
]

= −2m2(η · ∂η)(η · ∂x − imξ) + m2(η · ∂x − imξ)

−2m2(imξ)η · ∂η + m2(imξ), (C.35)[
η2 + ξ2 + µ2, m2(ξ2 + µ2)∂2

ξ

]
= −4m2(ξ2 + µ2)ξ∂ξ − 2m2(ξ2 + µ2), (C.36)[

η2 + ξ2 + µ2, m2µ2□η

]
= −2Dm2µ2 − 4m2µ2η · ∂η , (C.37)[

η2 + ξ2 + µ2, 2ρ(ξ2 + µ2)im∂ξ

]
= −4ρ(ξ2 + µ2)imξ, (C.38)[

η2 + ξ2 + µ2, 2m2(η · ∂η)ξ∂ξ

]
= −4m2η2ξ∂ξ − 4m2ξ2η · ∂η , (C.39)[

η2 + ξ2 + µ2, m2(D− 2)ξ∂ξ

]
= −2m2(D− 2)ξ2, (C.40)[

η2 + ξ2 + µ2, 2ρimξ(η · ∂η)

]
= −4ρimξη2, (C.41)[

η2 + ξ2 + µ2, m2(D− 3)η · ∂η

]
= −2m2(D− 3)η2, (C.42)[

η2 + ξ2 + µ2, m2(η · ∂η)
2
]

= −4m2η2 − 4m2η2(η · ∂η). (C.43)
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Seja f = f (η, ξ, x) e g = g(η, ξ, x). Então a regra de Leibniz para o operador ∆− im∂ξ , útil no contexto do

cálculo dos parâmetros do vértice cúbico para táquions de spin contínuo feito na Subseção 5.6.3, é dada por:

(∆− im∂ξ)( f g) =
[
(∆− im∂ξ) f

]
g + f

(
∆− im∂ξ

)
g + ∂(x f · ∂η)g− ρ f g, (C.44)

em que ∂(x f · ∂η)g ≡ ∂x f · ∂η g + ∂η f · ∂xg.
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D Operadores de Casimir em Teoria de Campo

D.1 Operador de Casimir Quadrático

Visto que o operador momento é dado por Pµ = i∂xµ, o operador de Casimir quadrático é:

C2 = P2 = −□x. (D.1)

D.2 Operador de Casimir Quártico

Seja gµν = diag(1,−1, · · · ,−1) a métrica do espaço de Minkowski em dimensão D. O operador de Casimir

quártico é dado por [8, 9]

C4 = −1
2

P2 Jµν Jµν + JµρPρ JµσPσ. (D.2)

Com o uso das relações (5.13) e (5.19), efetua-se, a seguir, o cálculo explícito de C4 em termos de operadores

diferenciais. De fato, o termo J2 é dado por

Jµν Jµν = −(xµ∂xν − xν∂xµ)(xµ∂ν
x − xν∂

µ
x )− (xµ∂xν − xν∂xµ)(η

µ∂ν
η − ην∂

µ
η)

−(ηµ∂ην − ην∂ηµ)(xµ∂ν
x − xν∂

µ
x )− (ηµ∂ην − ην∂ηµ)(η

µ∂ν
η − ην∂

µ
η), (D.3)

em que

−(xµ∂xν − xν∂xµ)(xµ∂ν
x − xν∂

µ
x ) = −xµ∂xν (xµ∂ν

x) + xµ∂xν

(
xν∂

µ
x

)
+ xν∂xµ (xµ∂ν

x)− xν∂xµ

(
xν∂

µ
x

)
= −

(
xµ∂

µ
x + xµxµ∂xν∂ν

x

)
+
(

Dxµ∂
µ
x + xµxν∂

µ
x ∂xν

)
+
(

Dxµ∂
µ
x + xµxν∂

µ
x ∂xν

)
−
(

xµ∂
µ
x + xµxµ∂xν∂ν

x

)
= 2(D− 1)xµ∂

µ
x − 2xµxµ∂xν∂ν

x + 2xµxν∂
µ
x ∂xν, (D.4)

em que as relações de comutação
[
xµ∂xν, xµ∂ν

x
]
= xµ∂

µ
x e
[

xµ∂xν, xν∂
µ
x

]
= Dxµ∂

µ
x foram utilizadas. Analoga-

mente,

− (ηµ∂ην − ην∂ηµ)(η
µ∂ν

η − ην∂
µ
η) = 2(D− 1)ηµ∂

µ
η − 2ηµηµ∂ην∂ν

η + 2ηµην∂
µ
η ∂ην. (D.5)

O segundo termo do segundo membro em (D.3) é igual ao terceiro e é dado por

−(xµ∂xν − xν∂xµ)(η
µ∂ν

η − ην∂
µ
η) = −xµηµ∂xν∂ν

η + xµην∂xν∂
µ
η + xνηµ∂xµ∂ν

η − xνην∂xµ∂
µ
η

= −2xµηµ∂xν∂ν
η + 2xµην∂xν∂

µ
η . (D.6)

Aplicando P2 = −□x em (D.4)-(D.6), tem-se

− (−□x)
[
(xµ∂xν − xν∂xµ)(xµ∂ν

x − xν∂
µ
x )
]
= 2

(
−(D− 1)x · ∂x + x2□x − ( ¯x · ∂x)

2
)
□x, (D.7)

com ¯(x · ∂x)
2 ≡ xµxν∂xν∂

µ
x ,

− (−□x)
[
(ηµ∂ην − ην∂ηµ)(η

µ∂ν
η − ην∂

µ
η)
]
= 2

(
−(D− 1)η · ∂η + η2□η − ( ¯η · ∂η)

2
)
□x, (D.8)

com ( ¯η · ∂η)2 ≡ ηµην∂ην∂
µ
η e

− (−□x)
[
(xµ∂xν − xν∂xµ)(η

µ∂ν
η − ην∂

µ
η)
]
= 2

(
(x · η)(∂x · ∂η)− ¯(x · ∂η)(η · ∂x)

)
□x, (D.9)
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com ¯(x · ∂η)(η · ∂x) ≡ xµην∂
µ
η ∂xν.44 Assim, o primeiro termo em (D.2) é dado por

−1
2

P2 Jµν Jµν =
(
(D− 1)x · ∂x − x2□x + ( ¯x · ∂x)

2
)
□x +

(
(D− 1)η · ∂η − η2□η + ( ¯η · ∂η)

2
)
□x

−2
(
(x · η)(∂x · ∂η)− ¯(x · ∂η)(η · ∂x)

)
□x. (D.10)

Por outro lado, com o uso de

JµρPρ = −xµ∂xρ∂
ρ
x + xρ∂xµ∂

ρ
x − ηµ∂ηρ∂

ρ
x + ηρ∂ηµ∂

ρ
x,

o segundo termo em (D.2) pode ser calculado como

JµρPρ JµσPσ

= xµ∂xρ∂
ρ
x (xµ∂σ

x ∂xσ)− xµ∂xρ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
+ xµ∂xρ∂

ρ
x

(
ηµ∂σ

η∂xσ

)
− xµ∂xρ∂

ρ
x

(
ησ∂

µ
η ∂xσ

)
−xρ∂xµ∂

ρ
x (xµ∂σ

x ∂xσ) + xρ∂xµ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
− xρ∂xµ∂

ρ
x

(
ηµ∂σ

η∂xσ

)
+ xρ∂xµ∂

ρ
x

(
ησ∂

µ
η ∂xσ

)
+ηµ∂ηρ∂

ρ
x (xµ∂σ

x ∂xσ)− ηµ∂ηρ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
+ ηµ∂ηρ∂

ρ
x

(
ηµ∂σ

η∂xσ

)
− ηµ∂ηρ∂

ρ
x

(
ησ∂

µ
η ∂xσ

)
−ηρ∂ηµ∂

ρ
x (xµ∂σ

x ∂xσ) + ηρ∂ηµ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
− ηρ∂ηµ∂

ρ
x

(
ηµ∂σ

η∂xσ

)
+ ηρ∂ηµ∂

ρ
x

(
ησ∂

µ
η ∂xσ

)
. (D.11)

Com as relações de comutação dadas em (C.16)-(C.18) cada termo em (D.11) pode ser calculado diretamente. Os

resultados são:

xµ∂xρ∂
ρ
x (xµ∂σ

x ∂xσ) = (x · ∂x)□x + x2□2
x, (D.12a)

xµ∂xρ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
= 2 (x · ∂x)□x + ( ¯x · ∂x)

2□x, (D.12b)

xµ∂xρ∂
ρ
x

(
ηµ∂σ

η∂xσ

)
= (x · η)(∂η · ∂x)□x, (D.12c)

xµ∂xρ∂
ρ
x

(
ησ∂

µ
η ∂xσ

)
= ¯(x · ∂η)(η · ∂x)□x, (D.12d)

xρ∂xµ∂
ρ
x (xµ∂σ

x ∂xσ) = (D + 1)(x · ∂x)□x + ( ¯x · ∂x)
2□x, (D.12e)

xρ∂xµ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
= 2(x · ∂x)□x + ( ¯x · ∂x)

2□x, (D.12f)

xρ∂xµ∂
ρ
x

(
ηµ∂σ

η∂xσ

)
= (x · ∂x)(η · ∂x)(∂η · ∂x), (D.12g)

xρ∂xµ∂
ρ
x

(
ησ∂

µ
η ∂xσ

)
= (x · ∂x)(η · ∂x)(∂η · ∂x), (D.12h)

ηµ∂ηρ∂
ρ
x (xµ∂σ

x ∂xσ) = (η · ∂η)□x + (η · x)(∂η · ∂x)□x, (D.12i)

ηµ∂ηρ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
= (η · ∂x)(∂η · ∂x) + (x · ∂x)(η · ∂x)(∂η · ∂x), (D.12j)

ηµ∂ηρ∂
ρ
x

(
ηµ∂σ

η∂xσ

)
= (η · ∂x)(∂η · ∂x) + η2(∂η · ∂x)

2, (D.12k)

ηµ∂ηρ∂
ρ
x

(
ησ∂

µ
η ∂xσ

)
= (η · ∂η)□x + (η · ∂x)(η · ∂η)(∂η · ∂x), (D.12l)

ηρ∂ηµ∂
ρ
x (xµ∂σ

x ∂xσ) = (η · ∂η)□x + (η · ∂x)(x · ∂η)□x, (D.12m)

ηρ∂ηµ∂
ρ
x (xµ∂σ

x ∂xσ) = (η · ∂η)□x + ¯(x · ∂η)(η · ∂x)□x, (D.12n)

ηρ∂ηµ∂
ρ
x

(
xσ∂

µ
x ∂xσ

)
= (η · ∂x)(∂η · ∂x) + (x · ∂x)(η · ∂x)(∂η · ∂x), (D.12o)

ηρ∂ηµ∂
ρ
x

(
ηµ∂σ

η∂xσ

)
= D(η · ∂x)(∂η · ∂x) + (η · ∂x)(η · ∂η)(∂η · ∂x), (D.12p)

ηρ∂ηµ∂
ρ
x

(
ησ∂

µ
η ∂xσ

)
= (η · ∂x)(∂η · ∂x) + (η · ∂x)

2□η . (D.12q)

44É importante observar a diferença entre os operadores ¯(x · ∂x)
2

e (x · ∂x)2 = (xµ∂xµ)(xν∂xν), ( ¯η · ∂η)2 e (η · ∂η)2 = (ηµ∂ηµ)(ην∂ην) e
¯(x · ∂η)(η · ∂x) e (x · ∂η)(η · ∂x) = (xµ∂ηµ)(ην∂xν).
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Substituindo estas expressões em (D.11), obtém-se

JµρPρ JµσPσ = x2□2
x − (D− 1)(x · ∂x)□x − ( ¯x · ∂x)

2□x + 2(x · η)(∂η · ∂x)□x

−2 ¯(x · ∂η)(η · ∂x)□x − (η · ∂η)□x − 2(η · ∂x)(η · ∂η)(∂η · ∂x)− (D− 2)(η · ∂x)(∂η · ∂x)

+(η · ∂x)2□η + η2(∂η · ∂x)2.

Substituindo este resultado e (D.10) em (D.2), obtém-se

C4 = (D− 2)(η · ∂η)□x + ( ¯η · ∂η)
2□x − η2□η□x + (η · ∂x)

2□η − 2(η · ∂x)(η · ∂η)(∂η · ∂x)

−(D− 2)(η · ∂x)(∂η · ∂x) + η2(∂η · ∂x)
2. (D.13)

O operador ( ¯η · ∂η)2 pode ser escrito em termos de (η · ∂η)2 como ( ¯η · ∂η)2 = (η · ∂η)2 − η · ∂η . Substituindo

esta expressão em (D.13) e levando em conta a relação de comutação
[
η · ∂x, η · ∂η

]
= −η · ∂x para o quinto

termo do segundo membro em (D.13), tem-se que a expressão final para o operador de Casimir quártico é dada por:

C4 = (η · ∂η)(D− 3 + η · ∂η)□x − η2□η□x − 2(η · ∂η)(η · ∂x)(∂η · ∂x) + (η · ∂x)2□η

−(D− 4)(η · ∂x)(∂η · ∂x) + η2(∂η · ∂x)2
. (D.14)
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E Propriedades de RΨ

Este apêndice objetiva verificar que o campo RΨ definido em (5.47) tem as mesmas propriedades do campo

taquiônico Ψ estudado no Capítulo 5.

E.1 Dinâmica

A seguir demonstra-se que o campo RΨ satisfaz a equação de campo (5.36). Isto é feito calculando o comutador

entre o operador R e cada um dos operadores presentes em (5.36). O primeiro comutador é trivial:[
□x −m2, R

]
= 0. (E.1)

Com o uso dos comutadores (C.19)-(C.27), obtém-se[
∆− im∂ξ , R

]
=

(
2m2ξ∂ξ + 2m2(η · ∂η) + 2ρimξ + m2(D− 2)

)
(∆− im∂ξ)

⇒
[
(∆− im∂ξ)

2, R
]

=

(
4m2ξ∂ξ + 4m2(η · ∂η) + 2m2(D− 1) + 4ρ(imξ)

)
(∆− im∂ξ)

2
. (E.2)

Com o uso dos comutadores (C.28)-(C.35), obtém-se[
η · ∂x − imξ, R

]
= −2m2µ2(∆− im∂ξ)−

(
m2(D− 4) + 2m2ξ∂ξ + 2ρ(imξ)

+2m2(η · ∂η)

)
(η · ∂x − imξ)

. (E.3)

Com o uso dos comutadores (C.36)-(C.43), obtém-se[
η2 + ξ2 + µ2, R

]
= −4m2µ2 − 4m2(η2 + ξ2 + µ2)

(
ξ∂ξ + η · ∂η + 4ρimξ + 2(D− 1)m2

)
. (E.4)

Assim, com os resultados (E.1)-(E.4), obtém-se[
□x −m2 − (η · ∂x − imξ)(∆− im∂ξ) +

1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2, R
]
= 0. (E.5)

Definindo

Q ≡ □x −m2 − (η · ∂x − imξ)(∆− im∂ξ) +
1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

2, (E.6)

a equação de campo (5.36) é dada por

δ′(η2 + ξ2 + µ2)QΨ = 0. (E.7)

Com o uso do resultado (E.5), vê-se que RΨ é solução desta equação:

δ′(η2 + ξ2 + µ2)QRΨ = δ′(η2 + ξ2 + µ2)RQΨ + δ′(η2 + ξ2 + µ2)

[
G, R

]
Ψ

(E.5)
= R δ′(η2 + ξ2 + µ2)QΨ︸ ︷︷ ︸

=0, on-shell

+

[
δ′(η2 + ξ2 + µ2), R

]
︸ ︷︷ ︸

∝ δ′(η2+ξ2+µ2)

QΨ

︸ ︷︷ ︸
=0, on-shell

= 0,

∴ δ′(η2 + ξ2 + µ2)QRΨ = 0. (E.8)
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E.2 Simetrias

A variação de Ψ através das transformações locais (5.21) + (5.28),

Ψ→ Ψ + δϵ,χΨ, (E.9)

implica que o campo RΨ se transforma como

RΨ→ R(Ψ + δϵ,χΨ) = RΨ + Rδϵ,χΨ. (E.10)

A seguir será demonstrado que Rδϵ,χΨ pode ser escrito como (5.21) + (5.28), ou seja, Rδϵ,χΨ = δϵ̄,χ̄RΨ, onde ϵ̄ e

χ̄ são funções de ϵ e χ, respectivamente. Esta demonstração é feita considerando separadamente a Simetria-χ e a

Simetria-ϵ:

E.2.1 Simetria-χ

Veja que

RδχΨ = R
(

1
4
(η2 + ξ2 + µ2)2χ

)
=

1
4

{
(η2 + ξ2 + µ2)2R +

[
R, (η2 + ξ2 + µ2)2

]}
χ. (E.11)

Com o uso da relação de comutação (E.4), pode-se obter que[
R, (η2 + ξ2 + µ2)2

]
= 4(η2 + ξ2 + µ2)2

(
2m2(ξ∂ξ + η · ∂η) + 2ρimξ + (D + 1)m2

)
. (E.12)

Portanto, substituindo esta relação em (E.11), obtém-se

δχ̄RΨ ≡ RδχΨ(η, ξ, x) =
1
4
(η2 + ξ2 + µ2)2χ̄, (E.13)

onde

χ̄(η, ξ, x) =
(

R + 8m2(η · ∂η + ξ∂ξ) + 8ρimξ + 4(D + 1)m2
)

χ(η, ξ, x). (E.14)

E.2.2 Simetria-ϵ

Veja que

RδϵΨ = R
(

η · ∂x − imξ − 1
2 (η

2 + ξ2 + µ2)(∆− im∂ξ)

)
ϵ

=

{(
η · ∂x − imξ − 1

2 (η
2 + ξ2 + µ2)(∆− im∂ξ)

)
R

+

[
R, η · ∂x − imξ − 1

2 (η
2 + ξ2 + µ2)(∆− im∂ξ)

]}
ϵ

(E.15)

Com o uso das relações de comutação (E.2)-(E.4), obtém-se[
η · ∂x − imξ − 1

2
(η2 + ξ2 + µ2)(∆− im∂ξ), R

]
= −

(
η · ∂x − imξ − 1

2 (η
2 + ξ2 + µ2)(∆− im∂ξ)

)
×
(

m2(D− 2) + 2m2(η · ∂η + ξ∂ξ) + 2ρ(imξ)

) . (E.16)

Portanto, substituindo (E.16) em (E.15), obtém-se:

δϵ̄RΨ ≡ RδϵΨ =

[
η · ∂x − imξ − 1

2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
ϵ̄, (E.17)
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com

ϵ̄(η, ξ, x) =
[

R + m2(D− 2) + 2m2(η · ∂η + ξ∂ξ) + 2ρ(imξ)

]
ϵ(η, ξ, x). (E.18)

Juntando os resultados (E.13) e (E.17), vê-se que o campo RΨ se transforma da mesma forma que Ψ

(5.21)+(5.28):

RΨ→ RΨ + δϵ̄,χ̄RΨ, (E.19)

em que os parâmetros locais (ϵ̄, χ̄) são dados em termos de (ϵ, χ) conforme (E.14) e (E.18).

E.2.3 Reducibilidade

Verifica-se a seguir se os parâmetros (ϵ̄ e χ̄) se transformam da mesma maneira que ϵ e χ (5.31) de modo que

δϵ̄,χ̄RΨ
[

η · ∂x − imξ − 1
2
(η2 + ξ2 + µ2)(∆− im∂ξ)

]
ϵ̄ +

1
4

(
η2 + ξ2 + µ2

)2
χ̄ (E.20)

seja invariante. De fato, ao fazer χ→ χ + δΛχ em (E.14), obtém-se

δχ̄ =

[
R + 8m2(η · ∂η + ξ∂ξ) + 8ρimξ + 4(D + 1)m2

]
δΛχ

=

[
R + 8m2(η · ∂η + ξ∂ξ) + 8ρimξ + 4(D + 1)m2

]
(∆− im∂ξ)Λ

= (∆− im∂ξ)

[
R + 6m2(η · ∂η + ξ∂ξ) + 6ρimξ + 3Dm2

]
Λ, (E.21)

em que foram utilizadas as relações de comutação (E.2), (C.23), (C.25) e (C.26). Por outro lado, ao fazer ϵ →

ϵ + δΛϵ em (E.18), obtém-se

δϵ̄ =

[
R + m2(D− 2) + 2m2(η · ∂η + ξ∂ξ) + 2ρ(imξ)

]
δΛϵ

=

[
R + m2(D− 2) + 2m2(η · ∂η + ξ∂ξ) + 2ρ(imξ)

]
1
2
(η2 + ξ2 + µ2)Λ

=
1
2
(η2 + ξ2 + µ2)

[
R + 6m2(η · ∂η + ξ∂ξ) + 6ρimξ + 3Dm2

]
Λ, (E.22)

em que foram utilizadas as relações de comutação (E.4), (C.40) e (C.42). Portanto, definindo

Λ̄(η, ξ, x) =
[

R + 6m2(η · ∂η + ξ∂ξ) + 6ρimξ + 3Dm2
]

Λ(η, ξ, x), (E.23)

vê-se que ϵ̄ e χ̄, de fato, transformam-se da mesma forma que ϵ e χ:

δΛ̄χ̄(η, ξ, x) = (∆− im∂ξ)Λ̄(η, ξ, x)

δΛ̄ ϵ̄(η, ξ, x) = 1
2 (η

2 + ξ2 + µ2)Λ̄(η, ξ, x)
, (E.24)

e, sob estas transformações, (E.20) é invariante.
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F Coordenadas Esféricas
Parte dos métodos revisados neste apêndice tiveram como fonte os Apêndices A.2 e A.4 de [79].

Sejam x1, · · · , xn coordenadas cartesianas. As coordenadas esféricas são denotadas por R, ϕ1, · · · , ϕn−1, de

modo que 

x1 = R cos(ϕ1)

x2 = R sin(ϕ1)cos(ϕ2)

x3 = R sin(ϕ1) sin(ϕ2) cos(ϕ3)

.

.

.

xn−1 = R sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1)

xn = R sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1)

, (F.1)

com ϕ1, · · · , ϕn−2 ∈ [0, π), ϕn−1 ∈ [0, 2π) e R =
√

x2
1 + · · · x2

n. Portanto, o volume infinitesimal em coordena-

das esféricas é dado por:

dVn = dx1 · · · dxn = Rn−1 sinn−2(ϕ1) sinn−3(ϕ2) · · · sin(ϕn−2) dR dϕ1 · · · dϕn−1. (F.2)

F.1 Área e Volume da Hiperesfera

A conhecida integral

I0(a) =
∫ +∞

−∞
dx e−ax2

=
(π

a

) 1
2 a > 0, (F.3)

tem sua generalização dada por

In =
∫ +∞

−∞
dx xne−ax2

=
1
2

a−
n+1

2 Γ
(

n + 1
2

)
, (F.4)

em que

Γ(n + 1) =
∫ ∞

0
dx xne−x,

é a função gama de Euler. Assim, pode-se escrever a seguinte integral em, pelo menos, duas maneiras diferentes:(∫ +∞

−∞
dx e−ax2

)n
(F.3)
=
(π

a

) 1
2 n

(F.5)

ou (∫ +∞

−∞
dx e−ax2

)n
=

∫ +∞

−∞
dx1 e−ax2

1 · · ·
∫ +∞

−∞
dxn e−ax2

n
(F.2)
=
∫ +∞

−∞
dVn e−aR2

, (F.6)

Em termos de coordenas esféricas, pode-se expressar o volume infinitesimal dVn como o volume de uma coroa

hiperesférica de espessura dR:

dVn = Sn(R)dR, (F.7)

em que Sn é a área da hiperesfera de dimensão n e raio R. Dado que Vn ∝ Rn, ou seja, Vn = AnRn, com An um

parâmetro que depende apenas da dimensionalidade n, vê-se que dVn = nAnRn−1dR
(F.7)⇒ Sn(R) = nAnRn−1.

Portanto, a integral (F.6) é dada por:(∫ +∞

−∞
dx e−ax2

)n
=
∫ ∞

0
dR nAnRn−1e−aR2 (F.4)

= nAn
1
2

a−
(n−1)+1

2 Γ
(
(n− 1) + 1

2

)
= An

n
2

a−
n
2 Γ
(n

2

)
,
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a qual, levando em conta o resultado (F.5), tem-se

An =
π

n
2

n
2 Γ
( n

2
) , (F.8)

implicando que

Sn =
2π

n
2

Γ
( n

2
)Rn−1 (F.9)

e

dVn =
2π

n
2

Γ
( n

2
)Rn−1dR ⇒ Vn =

2π
n
2

nΓ
( n

2
)Rn. (F.10)

F.2 A Integral da Função Delta

A integral

G(0)
E (0; σ) =

∫
dDη δ(η2 + σ) (F.11)

pode ser calculada com o uso dos resultados da subseção anterior. De fato, definindo

R2 ≡ −η2 = (η0)2 + · · ·+ (ηD−1)2 = −A(η) + σ,

tem-se

dR =
1

dA
dR

dA = − 1
2
√

σ− A(η)
dA

de modo que

G(0)
E (0; σ) =

2π
D
2

Γ
(

D
2

) ∫ ∞

0
dR RD−1δ(−R2 + σ)

=
2π

D
2

Γ
(

D
2

) ∫ −∞

σ
dA

1
(−2)

√
σ− A

(σ− A)
D−1

2 δ(A)

=
π

D
2

Γ
(

D
2

) ∫ σ

−∞
dA (σ− A)

D−2
2 δ(A)

⇒ G(0)
E (0; σ) = π

D
2

Γ( D
2 )

σ
D−2

2 . (F.12)
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