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Abstract: This paper is a study of a generalization of the quantum Riemannian Hamiltonian evolution,

previously analyzed by us, in the geometrization of quantum mechanical evolution in a Finsler

geometry. We find results with dynamical equations governing the evolution of the trajectories

defined by the expectation values of the position. The analysis appears to provide an underlying

geometry described by a geodesic equation, with a connection form with a second term which is an

essentially quantum effect. These dynamical equations provide a new geometric approach to the

quantum evolution where we suggest a definition for “local instability” in the quantum theory.
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1. Introduction

Let us consider the classical Hamiltonian of form (1) in a curved space [1]

HG :=
1

2m
gij(x)pi pj (1)

From the Hamilton equations, we obtain

ẍl = −Γ
mn
l ẋm ẋn (2)

where Γ
mn
l is the connection form.

From Equation (2), by looking at two nearby trajectories and studying their separation,
one can derive the geodesic deviation equation [1]

D2ξi

Dt2
= R

jlk
i ẋj ẋkξl (3)

where D/Dt is the covariant derivative, ξi are the components of the geodesic deviation

vector ξi(t) = ∂xi(α,t)
∂α |α=0, and where α is the parameter for a family of geodesics in the

neighborhood of the coordinates xi(t) of a point on a geodesic defined by Equation (2), and

R
jlk
i are the components of the Riemann curvature tensor. The stability of the geodesic flow

is locally determined by the geodesic deviation Equation (3).
The evolution of ξi and then the stability or instability of the geodesic is locally

determined by the curvature of the manifold.
We would like to apply this method to the physics of Hamiltonian dynamical systems.

Horwitz et al. [2] constructed a geometric embedding of the Hamiltonian dynamics to
study the stability of the Hamiltonian evolution generated by

H = δij
pi pj

2m
+ V(y), (4)
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One can achieve this by defining a new Hamiltonian HG with a conformal transforma-
tion of Equation (4) where the x coordinate is related to the y coordinate such that the
conformal factor is as follows:

gij(x) := Φ(x)δij, Φ(x) :=
E

E − V(y)
≡ F(y) (5)

where E is taken to be the assumed common (conserved) value of H and HG (now of
form (1)) and assuming the momentum is the same after the conformal transformation. The
curved and flat space motions are related by

E − V(y) = δij
pi pj

2m
(6)

With this transformation, we go back to (4).
The motion induced on the coordinates {x} by HG, after the local tangent space

transformation from Equations (7) and (8) ẏk = gkl(x)ẋl , results in a geometric embedding
of the original Hamiltonian motion. The geodesic deviation gives a sensitive diagnostic
criterion for the stability of the original Hamiltonian motion [2,3].

Horwitz, Yahalom et al. [4] proved by power series expansions and using the following
relations (obtained by equating the momenta derived from the Hamilton equations of the
Hamiltonians of form (1) and (4))

ẋi =
∂HG

∂pi
=

1

m
gij p

j (7)

that since the velocity field ẏj satisfies one of the Hamilton equations implied by (4),

ẏj :=
1

m
pj = gji ẋi (8)

From definition (8), one may argue [2] that the two coordinate systems are involved with
two coordinatizations, called, respectively, the Gutzwiller manifold and the Hamilton manifold,
each characterized by a different connection form, but related by δyj := gjiδxi.

It follows from Equation (8) that

ẍl = gl jÿ
j +

∂gl j

∂xn
ẋnẏj (9)

Then, with Equation (2), it follows that

ÿl = −Ml
mnẏmẏn, where Ml

mn :=
1

2
glk ∂gnm

∂yk
(10)

which has the form of a geodesic equation, with a reduced connection form that is com-
pletely covariant. As a coordinate space, the {yl}’s were called the Hamilton manifold [2].

Horwitz et al. [2] showed that following the covariant derivative for a (rank-one)
covariant tensor on the Gutzwiller manifold (defined as transforming in the same way
as ∂

∂xm
), using the connection form

Am;q =
∂Am

∂xq
− Γ

mq
k Ak (11)

resulted in a covariant derivative in the Hamilton manifold, with induced connection form
(lowering the index q with glq),

Γ
m
lk ≡ glqΓ

mq
k =

1

2
gmq(

∂glq

∂yk
−

∂gkq

∂yl
−

∂gkl

∂yq ) (12)
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This induced connection form, in the formula for curvature, would give a curvature
corresponding to the Hamilton manifold. However, it is antisymmetric in its lower indices
(l, k) (implying the existence of torsion).

Performing parallel transport on the local flat tangent space of the Gutzwiller manifold
(whose tensor metric is gij), the resulting connection results in exactly the “truncated”
connection (10) [2].

Since the coefficients Ml
mn constitute a connection form, they can be used to con-

struct a covariant derivative, which must be used to compute the rate of transport of the
geodesic deviation along the (approximately common) motion of neighboring orbits in the
Hamilton manifold.

For the second-order geodesic deviation equations, one obtains [2]

D2ξ l

Dt2
= Rl

qmnẏqẏnξm (13)

and what was called the dynamical curvature is given by

Rl
qmn =

∂Ml
qm

∂yn
−

∂Ml
qn

∂ym
+ Mk

qm Ml
nk − Mk

qn Ml
mk (14)

However, this curvature associated with the geodesic deviation in the Hamilton manifold
is not the same as the intrinsic curvature of that manifold determined by Γ

m
lk but rather

a special curvature form associated with the geodesic deviation.
This theory was applied to study the stability of an important class of potentials

obtained from the perturbation of an oscillator-type Hamiltonian in agreement with nu-
merical simulations. This criterion, for example, gives a clear local signal for the presence
of instability in the Hénon–Heiles model. It provides a clear indication of the local regions
of instability giving rise to chaotic motion in the Hénon–Heiles model [3].

In the present work, we attempt to extend these ideas to a quantum mechanical framework.
In previous work [5], we studied the quantum theory associated with a Hamiltonian

of the form

ĤG :=
1

2m
pigij(x)pj (15)

with canonical commutation relations

[xi, pj] = ih̄δ
j
i (16)

implying that the Heisenberg picture results in

ẋk =
1

2m
{pi, gik} (17)

and
pl =

m

2
{ẋk, gkl} (18)

We obtained the quantum mechanical form of the “geodesic” equation for ẍl generated by
the Hamiltonian ĤG,

ẍl =
1

16
({{{gnm, ẋm},

∂gln

∂xi
}, gij{gjp, ẋp}} − 2{gip, ẋp}gln

∂gij

∂xn
{gjp, ẋq}) (19)

In the classical limit, where all anticommutators become just simple products (up to a factor
of 2),

ẍl = −Γ
pq
l ẋp ẋq (20)

with

Γ
pq
l =

1

2
gln(

∂gnq

∂xp
+

∂gnp

∂xq
−

∂gpq

∂xn
) (21)
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i.e., the classical geodesic formula generated by a classical Hamiltonian of the form (1) [2].
Therefore, (19) is a proper quantum generalization of the classical geodesic formula.
In analogy to the classical case, a new set of operators was defined (analogous to

what were called {ẏj} in our discussion above of the classical case; here, we use the
same notation)

ẏl :=
1

2
{ẋk, gkl} (22)

so that, by (18),
pl = mẏl (23)

Note that the {ẏl}’s form a commutative set [5].
The second-order equation for the dynamical variable {y}, following the Heisenberg

picture, results in

ÿl = −
1

2
ẏi

∂gij

∂xl
ẏj (24)

closely related to the form obtained in the classical case for the “geodesic” equation
(Equation (10)) with reduced connection [2]. In the classical case, this formula was used to
compute geodesic deviation for the geometrical embedding of Hamiltonian motion (for a
Hamiltonian of the form 1

2m pi pjδij +V(y)), as discussed above, for which the corresponding
metric was of the conformal form given in Equation (5) [2].

It follows from the Heisenberg equations applied directly to (22) that

ÿi =
1

2
{ẍk, gki}+

1

8
{ẋk, {

∂gki

∂xm
gmn, {ẋa, gan}} (25)

There should be a strong relation between instability, sensitive to acceleration, in x and
y variables.

Finally, expressing the quantum “geodesic” formula (19) explicitly in terms of the
canonical momenta using (22) and (23), we write the result in terms of a bilinear momentum
ordered to bring momenta to the left and right and obtain

ẍl =
1

2m2
pi(

∂gli

∂xn
gnj +

∂gl j

∂xn
gni −

∂gij

∂xn
gln)pj +

1

4m2

∂

∂xj
(

∂2gln

∂xi∂xn
gij) (26)

expressing the quantum mechanical form of the “geodesic” equation for the evolution of ẍl .
The first term is closely related to the classical connection form, and the second term is an
essentially quantum effect.

We now introduce a criterion for unstable behavior, where for a “geodesic deviation”,
we induce a shift of x, inducing a deviation in the Ehrenfest approximation to the trajectory,
as follows,

ψt(x) → ψt(x + ξ) (27)

That is, since p is the generator of a translation, for a smooth function ψt(x),

ψt(x + ξ) = e
i
h̄ plξl ψt(x) (28)

Computing δ(ψt, ÿlψt)(t) results in

−
1

2
⟨ψt|ẏ

i(
∂

∂xa
(

∂gij

∂xl
))ẏj|ψt⟩ξa := ξ̈l(t) (29)

where we define the left-hand side of expression (29) as the second derivative of ξl , the
distance between the two trajectories as a function of time. We then define

ˆ̈ξal := −
1

2
ẏi(

∂

∂xa
(

∂gij

∂xl
))ẏj (30)



Symmetry 2024, 16, 1077 5 of 15

as the operator for geodesic deviation.
In the {yj} set of coordinates, it follows from [5] that the commutation relation between

the momenta and the coordinate operators {yj} is

[pn, yl ] = −ih̄gnl(x) (31)

Next, we define Ml
mn := glk ∂gnm

∂yk (as in the classical case, Equation (10)), where we think for-

mally of a transformation between the two coordinate bases, {xi} and {yj}, defined locally
by δxl := glmδym [2], and expressing δ(ψt, ÿlψt)(t) in the {y} coordinate system, assum-
ing the physical state is subjected to an infinitesimal translation as before, i.e., y → y + ξ,
results in

ˆ̈ξ l
m := −ẏiRl

imjẏ
j (32)

where Rl
imj :=

∂Ml
im

∂yj −
∂Ml

ij

∂ym + Mk
im Ml

jk − Mk
ij M

l
mk, classically defined by Horwitz et al. [2],

Equation (14), and called the dynamical curvature.
We define, as before (Equation (29)),

−⟨ψt|ẏ
iRl

imjẏ
j|ψt⟩ξ

m := ξ̈ l(t) (33)

where we define the left-hand side of expression (33) as the second derivative with respect
to ξ l , the distance between the two trajectories as a function of time.

Horwitz et al. showed in the classical case [2,3] that this structure of Rl
imj was the

matrix coefficient in the second-order geodesic deviation equations (in the {y} coordinate
system). Instability in the classical case occurs if at least one of the eigenvalues of the
dynamical curvature is negative [2,3].

Moreover, in simulations of several quantum dynamical systems, we followed the
orbits of expectation values of {y} to observe their behavior, as exhibited by the expectation
values, and found a remarkable correlation between the simulated orbits and the predictions
of local instability (following Equations (32) and (33)). The expectation values contain
important diagnostic behavior and could well be incorporated into a new definition of
“quantum chaos”. We showed through simulations that the results of Equation (33) provided
good agreement with the behavior of the corresponding classical problem [6–11].

In this work, we provide a geometric underlying framework that embeds the structure
of the geodesic deviation operator (Equation (32)) in terms of a quantum mechanical
formulation, in an attempt to formally define local instability in quantum theory.

2. Geometrization of Quantum Mechanical Evolution with Finsler Geometry

A motivation for studying the generalized Finsler type Hamiltonian operator lies
within the particular case where H = 1

2m (pi − Ai)gij(x)(pj − Aj) + ϕ(x) of a particle
moving in a Riemannian space, with an electromagnetic field and scalar fields, suggesting
a generalization of the previous notion of “geodesic equation” (Equation (24)) for the
dynamical variables.

In this case, the Hamiltonian could be put in the form H = 1
2m pigij(x))pj + V(x, p),

where the potential, V(x, p), is a function of the operators x and p to account explicitly for
the Lorentz force.

In our case, classically, the requirement of dynamical equivalence between the gener-
alized geometrical picture, H = 1

2m pigij(x))pj + V(x, p), and the geometrical embedding

picture, ĤG = 1
2m pi g̃ij(z)pj (defined by setting the momenta generated by the two pictures

to be equal for all times), is sufficient to establish the basis for the geometrical embedding.
One can determine an expansion of the conformal factor, defined on the geometrical coordi-
nate representation, in its domain of analyticity with coefficients to all orders determined by



Symmetry 2024, 16, 1077 6 of 15

functions of the potential of the generalized geometrical picture, defined on the generalized
geometrical coordinate representation, and its derivatives

g̃ij(z) ≡
E

E − V(x, p)
ηij := G(x, p)ηij (34)

for some constant E (energy surface).
Following the equivalence to first order in the power series expansions of the functions

G(x, p) and F(z) (assuming a conformal metric g̃ij(z) := F(z)δij, in the special coordinate
choice for which F(z) = G(x, p) is valid) [4] results in

F(z) = G(x, p)

∂F

∂zl
żl ≈

∂G

∂xl
ẋl +

∂G

∂pl
ṗl , ∀(x, p)

(35)

Given that G(x, p) is weakly dependent on p, a variation δzl in the neighborhood of a given
point, for a given common domain of analyticity (x, p0), results in

∂F

∂zl
δzl ≈

∂G

∂xl
δxl , {x|p ≡ p0} (36)

We therefore see that relation (36) is in agreement with the work of Horwitz, Yahalom
et al. [4]. Therefore, this process may be carried out in such a way that it establishes a
correspondence between the coordinatizations {x} and {z} in the sense that G(x, p0) can
be expressed as a series expansion in F(z) and its derivatives, and conversely, F(z) can be
expressed as a series expansion in G(x, p0) and its derivatives, in a common domain of
analyticity, for a given p0 [3,12].

Note that the underlying geometry, classically, is in an extended configuration space,
(M, gij(x, p)), endowed with a Finsler metric tensor depending on momenta of the tangent
space where the manifold is spanned by the generalized coordinates and momenta.

2.1. Representation Theory in the {x} Coordinates

Following our discussion above, we start first by defining the position and momentum
operators x and p to satisfy the canonical commutation relation

xp − px = ih̄I (37)

and
[xi, xj] = [pi, pj] = 0 (38)

Next, we introduce the geometric Hamiltonian operator in a generalized form defined by

Definition 1. (Generalized Hamiltonian operator)
Let HG(R

n) := L2(Rn) be a Hilbert space corresponding to a given quantum mechanical system.
We define the generalized geometric Hamiltonian operator to be

ĤG :=
1

2m
pigij(x, p)pj (39)

Let ĤG be the self-adjoint generalized geometric Hamiltonian operator generating the evolution of
the system where x and p are as above.

Here, gij(x, p) is a Hermitian function of the operators x and p acting on HG. First,
we study the basic operator properties of the coordinate and momentum observables
associated with a Hamiltonian operator of type (39) (with gij = gji invertible).

We show here that the variables corresponding to {p} in the Heisenberg picture satisfy
dynamical equations closely related to those corresponding to (18). We then construct
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the quantum counterpart of relations (22)–(24), and therefore, when the Ehrenfest corre-
spondence is valid, the expectation values of the variables, {y}, describe a corresponding
observable flow. The Heisenberg equations for the generalized coordinates are

ẋk =
1

2m
{pi, gik(x, p)}+

i

2mh̄
pi[gij(x, p), xk]p

j (40)

closely related to relations (17) with a second term which is essentially a quantum effect
originating from the underlying Finsler geometry.

The anticommutator of ẋk with gkl is

ẋkgkl + gkl ẋk = (
1

2m
{pi, gik}+

i

2mh̄
pi[gij, xk]p

j)gkl + gkl(
1

2m
{pi, gik}+

i

2mh̄
pi[gij, xk]p

j) =

1

2m
(pigikgkl + gik pigkl) +

i

2mh̄
pi[gij, xk]p

jgkl +
1

2m
(gkl pigik + gkl gik pi) +

i

2mh̄
gkl pi[gij, xk]p

j =

1

2m
(pigikgkl + pigikgkl + [gik, pi]gkl) +

i

2mh̄
pi[gij, xk]p

jgkl +
1

2m
(gkl gik pi + gkl [pi, gik] + gkl gik pi) +

i

2mh̄
gkl pi[gij, xk]p

j

(41)

and therefore,

{ẋk, gkl} =
2

m
pl +

1

2m
[[gik, pi], gkl ] +

i

2mh̄
{pi[gij, xk]p

j, gkl} (42)

Let us define pk := {pi, gik} so that

[[gik, pi], gkl ] = [gik pi − pigik, gkl ] =

gik[p
i, gkl ]− [pi, gkl ]gik = gik pigkl − gikgkl pi − pigkl gik + gkl pigik

(43)

and therefore,
[[gik, pi], gkl ] = {pk, gkl} − 4pl (44)

Substituting Equation (44) in Equation (42) results in

{ẋk, gkl} =
1

2m
{pi i

h̄
[gij, xk]p

j + pk, gkl} (45)

Next, define the following relation between the momentum operator pl and the operator
pk to be

pl ≡
1

4
{pk, gkl} (46)

In the following, we use a similar form (Equation (52)) to define the momentum
operator p′l .

The condition in Equation (46) is equivalent to the following relation between the
momentum and the metric operator

pl ≡
1

2
(gik pigkl + gkl pigik) (47)

which is close to the form obtained in Equation (18). Note that the substitution of Equation (17)
in the right-hand side of Equation (18) results in p̃l = 1

2 (g̃ik(x)pi g̃kl(x) + g̃kl(x)pi g̃ik(x)),
where g̃ik(x) is a function of x.

Therefore, Equation (45) results in

{ẋk, gkl} =
2

m
pl +

i

2mh̄
{pi[gij, xk]p

j, gkl} (48)

so that

{ẋk −
i

2mh̄
pi[gij, xk]p

j, gkl} =
2

m
pl (49)
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Substituting Equation (40) on the left-hand side of Equation (49) results in

pl =
m

2
{

1

2m
{pi, gik}, gkl} =

1

4
{{pi, gik}, gkl} (50)

consistent with Equation (46) and (47), closely related to the form obtained in Equation (18)
which results in p̃l = m

2 {
1

2m{ p̃i, g̃ik(x)}, g̃kl(x)}.

2.2. Representation Theory in the {y} Coordinates

As in Equation (22), we define a new set of Hermitian operators yl(x, p) such that
the commutation relations between the momenta and the operators {yj} are given by
a generalized form of the corresponding formula Equation (31), given in our previous
work [5],

[pn, yl ] := −ih̄gnl(x, p) (51)

with a metric operator in a general operator-valued Hermitian form.
In analogy to DeWitt’s work, we now use the primes to designate general transfor-

mations between the momentum operator p and p′, to define the quantum analog of the
classical case of the form of a geodesic equation, with a reduced connection form as in
Equation (10), correctly symmetrizing it so as to make it Hermitian.
We define

p′l := gli p
i +

1

2
[pi, gli] = −ih̄gli

∂

∂xi
− ih̄

1

2

∂gli

∂xi
=

1

2
{gli, pi} (52)

Note that in the special case where the metric operator g̃ij(x) and y(x) are functions of x [5],

one may obtain a local relation between the two sets of coordinates {xj} and {yi} such that
∂g̃ij

∂xl
= g̃lm ∂g̃ij

∂ym , and then the momentum operator p′l becomes

p′l = −ih̄
∂

∂yl
− ih̄M̃i

li, where M̃i
li :=

1

2
g̃in ∂g̃li

∂yn
(53)

so that M̃i
li has the same form as the reduced connection form in the classical case (Equation (10)).

Therefore, in the special case g̃ij(x) and y(x), Equation (53) is DeWitt’s point transfor-
mation formula for the quantum transformation law for the momentum operators [13]; to
designate general point transformations between the momentum operator p expressed in
{x} space representation and the p′ expressed in the {y} space representation

p′l :=
∂xi

∂yl
pi +

1

2
[pi,

∂xi

∂yl
] (54)

Expression (54) is therefore covariant under point transformations between the {x} space
representation and the {y} space representation. In this sense, Equation (52) is a generaliza-
tion of DeWitt’s point transformation formula.

Furthermore, in this special case, Equation (40) results in the form of Equation (17), so
that Equation (52) for the momentum operator p′l implies the following relation

p′l = mẋl (55)

while the dynamical variable y, introduced in Equation (22) [5], results in the form of
Equation (23) (dependent on x alone)

pl = mẏl (56)

Therefore, by introducing the momentum operator p′l , we generalize our previous work [5],
expressing Equation (52) in the following form
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p′l := −ih̄gli(x, p)
∂

∂xi
− ih̄Mi

li(x, p), where Mi
li :=

1

2

∂gli(x, p)

∂xi
(57)

to account for the Finsler geometry. The relations between the two momentum operators,
substituting pi → −ih̄ ∂

∂xi
in Equation (57), are p′l = gli p

i − ih̄Mi
li.

Then, the commutation relations result in

[pn, xl] = −ih̄δn
l

[pn, yl] = −ih̄gnl

[p′n, xl] = −ih̄gnl + [gni, xl ]p
i − ih̄[Mi

ni, xl ]

[p′n, yl] = −ih̄δl
n + [gni, yl ]pi − ih̄[Mi

ni, yl ]

(58)

where with the metric operator g̃nl(x), the commutation relations between p′n and xl be-
come [p′n, xl] = −ih̄g̃nl(x) and assuming y(x), [p′n, yl] = −ih̄δl

n.
The relations between the momenta and the velocities {ẋl} are (Equation (49) and substi-
tuting Equation (52), so that p′l =

1
2{gli, pi}, in Equation (40))

pl = {
m

2
ẋk −

i

4h̄
pi[gij, xk]p

j, gkl}

p′l = mẋl −
i

2h̄
pi[gij, xl ]p

j
(59)

Next, the y’s satisfy

ẏl =
i

h̄
[ĤG, yl ] =

i

2mh̄
[pigij p

j, yl ] =

i

2mh̄
([pi, yl ]gij p

j + pi[gij, yl ]pj + pigij[p
j, yl ])

(60)

Substituting Equations (51) and (52) (p′l =
1
2{gli, pi}) in Equation (60) results in

pl = mẏl −
i

2h̄
pi[gij, yl ]pj

p′l =
1

2
{mẏn −

i

2h̄
pi[gij, yn]pj, gln}

(61)

In the special case g̃ij(x) and y(x), from Equations (59) and (61), it follows that

pl = mẏl = {
m

2
ẋk, gkl}

p′l =
1

2
m{ẏn, gln} =

1

2
{pn, gln} = mẋl

(62)

consistent with Equations (17) and (18) and with the definition in Equations (22) and (23) [2]
along with the definition for p′l (Equation (52)).

Therefore, in analogy to the work of Horwitz et al. [2] on the stability of classical
Hamiltonian systems by geometrical methods, where as a coordinate space, {yl}, which is
called the Hamilton manifold, is endowed with a connection form Ml

mn (Equation (10)), and
what is called the dynamical curvature. It is not uniquely defined in terms of the original
manifold {xl}, which is called the Gutzwiller manifold.
We now work with two space representations:

Definition 2. (Gutzwiller representation)
Let HG be a Hilbert space corresponding to a given quantum mechanical system, and let ĤG be
the self-adjoint geometric Hamiltonian generating the evolution of the system as before. Let the
position and momentum operators, x and p, be as before and satisfy the canonical commutation



Symmetry 2024, 16, 1077 10 of 15

relations (CCR).
The position space wavefunctions, expressed in the {x} space representation

ψ(x, t) =
∫

R
ψ(x′, t)⟨x|x′⟩dx′ (63)

where ψ(x, t) ∈ L2(R, dx), are then said to be the Gutzwiller representation.

Definition 3. (Hamilton representation)
Let HG be a Hilbert space corresponding to a given quantum mechanical system, and let ĤG be the
self-adjoint geometric Hamiltonian generating the evolution of the system as before.
Let the position and momentum operators, x and p, be as before, and let the position and momentum
operators, y and p′, be as before

p′l := −ih̄gli(x, p)
∂

∂xi
− ih̄Mi

li(x, p), Mi
li :=

1

2

∂gli(x, p)

∂xi
(64)

and satisfy the commutation relations

[p′n, yl] = −ih̄δl
n + [gni, yl ]pi − ih̄[Mi

ni, yl ] (65)

The position space wavefunctions are said to be the Hamilton representation, when expressed in the
{y} space representation

φ̃(y, t) := ⟨y|φ⟩(t) =
∫
M

φ(y′, t)⟨y|y′⟩dω′ (66)

where dω′ denotes the volume element, and the integration is to be carried out over the entire range
of coordinate values, φ̃(y, t) ∈ L2.

2.3. Operator-Valued Analysis in Quantum Theory

In this section, we follow our point of view that has been introduced in the previous
section for the representation theory in the {y} coordinates on the Hilbert space HG

corresponding to the Hamilton representation of a given quantum mechanical system.
We study the quantum theory associated with a general operator-valued Hermitian

geometric Hamiltonian of the form (39) following the Heisenberg algebra with the geometric
Hamiltonian. We then construct a generalized form of our previous dynamical equations in
the Heisenberg picture, Equations (22)–(24), and show that these results may be related to
the quantum dynamics associated with a Hamiltonian operator of the form (15) and satisfy
closely related dynamical equations, with terms that are an essentially quantum effect.

We start by applying the Heisenberg picture for the variables corresponding to {y}
as Heisenberg dynamical variables, satisfying the Heisenberg’s form for the equations of
motion. From Equation (61),

ẏl =
1

m
pl +

i

2mh̄
pi[gij, yl ]pj (67)

where the second term is a bilinear form in terms of momentum, ordered to bring momenta
to the left and right, an essentially quantum effect.

Next, applying the Heisenberg picture for the variables corresponding to {ÿl}, and
substituting Equation (67), satisfies the following dynamical equations

ÿl =
i

h̄
[ĤG, ẏl ] =

i

h̄
[ĤG, (

1

m
pl +

i

2mh̄
pi[gij, yl ]pj)] =

i

2m2h̄
[pngnm pm, (pl +

i

2h̄
pi[gij, yl ]pj)] =

−1

2m2
pn ∂gnm

∂xl
pm +

i

2mh̄

d

dt
(pi[gij, yl ]pj)

(68)
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so that

ÿl =
−1

m2
pn Ml

nm pm +
i

2mh̄

d

dt
(pi[gij, yl ]pj), Ml

nm :=
1

2

∂gnm(x, p)

∂xl
(69)

closely related to the form of a geodesic equation, with a truncated connection form,
obtained in the classical case (Equation (10)). In fact, a relation between the momentum pl

and velocity ẏl can be established by Equation (67) to obtain −ẏn Ml
nmẏm with terms that are

an essentially quantum effect. Therefore, Equation (69) is a proper quantum generalization
of the classical geodesic formula.

The second term in Equation (69) is an essentially quantum effect where the underlying
geometric approach described here may provide an underlying geometric interpretation
associated with the Heisenberg picture for the quantum mechanical form of the “geodesic
flow” ÿl . It gives a quantum evolution of a ”geodesic flow” ÿl evolved also by a “driving”
operator, in a second term, contributing to the first term of the “geodesic” equation with a
reduced connection.

We now consider the adiabatic case of a slowly changing momentum operator where
ṗ is considered small in a manner which ensures that

i

2mh̄

d

dt
(pi[gij, yl ]pj) =

i

2mh̄
( ṗi[gij, yl ]pj + pi

d[gij, yl ]

dt
pj + pi[gij, yl ] ṗj) ≈

i

2mh̄
pi

d[gij, yl ]

dt
pj (70)

Next, we perform an explicit computation of Equation (70) from the Heisenberg picture
to find results with the following dynamical equation

d

dt
[

i

h̄
gij, yl ] =

i

h̄
[ĤG, [

i

h̄
gij, yl ]] =

−1

2mh̄2
[pngnm pm, [gij, yl ]] =

−1

2mh̄2
([pn, [gij, yl ]]gnm pm + pn[gnm, [gij, yl ]]pm + pngnm[p

m, [gij, yl ]]) =

−1

2mh̄2
([pn, gij]y

l gnm pm + gij[p
n, yl ]gnm pm − [pn, yl ]gijgnm pm − yl [pn, gij]gnm pm

+pngnm[p
m, gij]y

l + pngnmgij[p
m, yl ]− pngnm[p

m, yl ]gij − pngnmyl [pm, gij]

+pn[gnm, [gij, yl ]]pm)

(71)

which results in

d

dt
[

i

h̄
gij, yl ] =

−1

mh̄2
(−ih̄Mn

ijy
l gnm pm +

−ih̄

2
gijg

nl gnm pm −
−ih̄

2
gnl gijgnm pm −−ih̄yl Mn

ijgnm pm+

−ih̄pngnm Mm
ij yl +

−ih̄

2
pngnmgijg

ml −
−ih̄

2
pngnmgml gij −−ih̄pngnmyl Mm

ij +

pn[gnm, [gij, yl ]]pm)

(72)

This leads to the following dynamical equation

d

dt
[

i

h̄
gij, yl ] =

i

mh̄
[Mn

ij, yl ]gnm pm +
i

mh̄
pngnm[M

m
ij , yl ] +

−1

mh̄2
pn[gnm, [gij, yl ]]pm (73)

Next, we define the right-hand side of Equation (73) as follows:

d

dt
[

i

h̄
gij, yl ] = −

2

m
Ξ

l
ij

where Ξ
l
ij :=

−i

2h̄
[Mn

ij, yl ]gnm pm +
−i

2h̄
pngnm[M

m
ij , yl ] +

1

2h̄2
pn[gnm, [gij, yl ]]pm

(74)

Then, Equation (69) results in the following dynamical equation

ÿl =
−1

m2
pi Ml

ij p
j +

−1

m2
pi

Ξ
l
ij p

j, Ml
ij :=

1

2

∂gij(x, p)

∂xl

(75)



Symmetry 2024, 16, 1077 12 of 15

such that two of the indices of the operator Ξ
l
ij are contracted with momentum.

It gives a new meaning to the underlying geometric structure involved with the
Heisenberg picture. The dynamical equation has two terms, where the first term is the
quantum mechanical form of the “geodesic flow”, closely related to the classical truncated
connection form (Equation (10)) [2]. We then suggest a geometric approach to relate the
second term with an underlying geometric structure. We associate the second term with
the emergence of an underlying “geometric flow” in quantum theory, originated from an
essentially quantum effect which we call the Finsler geometric flow.

Conjecture 1. (Short-time existence) Let HG be a Hilbert space corresponding to a given quantum
mechanical system, and let ĤG be the self-adjoint geometric Hamiltonian generating the evolution
of the system as before.

Given the underlying Finsler geometric flow defined by

d

dt
[

i

h̄
gij, yl ] = −

2

m
Ξ

l
ij

where Ξ
l
ij :=

−i

2h̄
[Mn

ij, yl ]gnm pm +
−i

2h̄
pngnm[M

m
ij , yl ] +

1

2h̄2
pn[gnm, [gij, yl ]]pm

(76)

Then, there exists a constant ϵ > 0 such that the classical initial value problem ({·, ·} is the
Poisson bracket)

∂

∂t
{gij, yl} =

2

m
Ξ

l
ij

where Ξ
l
ij := {Mn

ij, yl}gnm pm +
−1

2
pn{gnm, {gij, yl}}pm

such that {gij, yl}(0, x, p) = {gij, yl}(x, p)

(77)

has a unique smooth solution {gij, yl}(t, x, p) for some short time interval [0, ϵ).

In fact, Equation (77) reflects a geometric flow, referring to the geometry of the Finsler
manifold, altered by changing {gij, yl} (a one-parameter family of {gij, yl}(t)) via a PDE

with the initial condition {gij, yl}(0, x, p) = {gij, yl}(x, p). In this sense, it is a geometric
evolution equation.

Next, we study the Heisenberg picture in the adiabatic limit, to find results for sug-
gesting a definition for the unstable behavior of the dynamical evolution.

In our previous work, we introduced a criteria for unstable behavior, where for the
“geodesic deviation”, we induced a translation [5]. We follow here the same procedure
where we define ξ as a common number such that

ψ(x, t) → ψ(x + ξ, t) (78)

that is, since p is the generator of translation, for a smooth function ψ(x, t),

ψ(x + ξ, t) = e
i
h̄ pqξq ψ(x, t) (79)

Computing δ(ψ, ÿlψ)(t) and assuming now the physical state is subjected to an infinitesimal
translation as before (i.e., x → x + ξ, where we define ξ as a common number) results in

⟨ψ|
−1

m2
pi([

i

h̄
pq, (Ml

ij + Ξ
l
ij)])pj|ψ⟩ξq := ξ̈ l(t) (80)

such that we define the left-hand side of expression (80) as the second derivative with
respect to the common number ξ l , the distance between the two trajectories as a function
of time. We then study the expectation values of
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ˆ̈ξql :=
−i

m2h̄
pi([pq, (Ml

ij + Ξ
l
ij)])pj (81)

which we call the geodesic deviation operator. It is a generalization of the operator for geodesic
deviation, Equation (30), defined in our previous work [5], where orbits, as exhibited by the
expectation values, show the correlation between the simulated orbits and the predictions
of local instability in this way (following Equation (29)) and provide good agreement with
the behavior of the corresponding classical problem [2,3,5].

Note that the geometric approach described here may provide an underlying geo-
metric interpretation associated with the Heisenberg picture for the quantum mechanical
“Finslerian evolution” with a quantum mechanical form of the “geodesic flow” ÿl . The first
term in Equation (81) corresponds to the operator for geodesic deviation Equation (30) [5]
and refers to the underlying geometry of the Hamilton manifold, while the second term
accounts for the underlying “geometric flow” altering the Hamilton manifold. In this sense,
Equation (75) accounts for an underlying “geometric evolution” equation and may be
thought of as emerging from the underlying alteration of the connection form.

The evolving dynamical equation of ÿl follows a behavior such that the underlying
geodesic flow, as exhibited by the expectation values, is subjected to the presence of
an additional kind of “force” term, which is an essentially quantum effect, and has the
consequence of contributing to the forces driving the system. Classically, the sign of the
eigenvalues of matrix Ξ

l
ij may contribute to the local stability properties of the geodesic

flow on the Hamilton manifold, reflecting different behaviors of its geometric evolution. A
unique smooth short-time solution {gij, yl}(t, x, p) is governing the local geometric flow.
Motivated by our previous work [5], we suggest a conjecture for “local instability” in
quantum theory.

Conjecture 2. (Local instability). Let HG be a Hilbert space corresponding to a given quantum
mechanical system, and let ĤG be the self-adjoint geometric Hamiltonian generating the evolution
of the system as before.

Define the trajectory Φ corresponding to an initial state φ(0) ∈ HG and φ(0) ∈ L2 to
be [14,15]

Φ := {yl(t)|yl(t) = U†(t)ylU(t) = e
i
h̄ HGtyle

−i
h̄ HGt, yl(0) ∈ HG}t∈R+ (82)

i.e., Φ is the set of yl(t) reached in the course of the evolution of the system from an initial yl(0).
The quantum mechanical system in HG is then said to be locally unstable along the trajectory

Φ in yl(t) if the expectation values of the geodesic deviation operator, given by

⟨φ(0)| ˆ̈ξql(t)|φ(0)⟩ := −i
m2 h̄

⟨φ(0)|U†(t)pi([pq, (Ml
ij + Ξ

l
ij)])pjU(t)|φ(0)⟩, U(t) := e

−i
h̄ HGt (83)

have at least one positive sign of the corresponding eigenvalues.
Let the quantum mechanical system in HG have a corresponding classical system satisfying

the following dynamical equation

ÿl =
−1

m2
pi Ml

ij p
j +

1

m2
pi

Ξ
l
ij p

j, Ml
ij :=

1

2

∂gij(x, p)

∂xl

∂

∂t
{gij, yl} =

2

m
Ξ

l
ij

where Ξ
l
ij := {Mn

ij, yl}gnm pm +
−1

2
pn{gnm, {gij, yl}}pm

such that {gij, yl}(0, x, p) = {gij, yl}(x, p)

(84)

with a unique smooth solution {gij, yl}(t, x, p) for some short time interval [0, ϵ).
Local instability in the quantum mechanical system in HG should occur in the presence of

local instability in the classical system; however, in case that local instability is presented in the
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quantum mechanical system in HG, it may not have a corresponding local instability in its associated
classical system.

Note that Conjecture 2 is not in the if and only if sense. One may use the Ehrenfest
approximation (when valid) here only to show the consistency of our operator formulation
with the classical structure. We showed in our previous work [5] that even after the Ehren-
fest correspondence failed in the case of chaotic behavior, the collection of all expectation
values of coordinate operators satisfied dynamical equations closely related to those for
which the classical ensemble averages described the possible configurations for a classical
system in phase space.

3. Conclusions

We have derived a new geometrical formulation of quantum evolution with geometric
structures. This new geometric approach is applicable to a Finsler geometry where a
“deviation operator” is introduced and an attempt to define “local instability” in quantum
theory is made.

The detailed analysis carried out here led to conjectures which tried to address the
basic problem of quantum chaos to understand the relation to a classical Hamiltonian
system whose dynamics are “chaotic”.
From this point of view, our conjectures were concerned with the relation between the
quantum mechanics and its classical counterpart to find a method which brings into the
analysis the quantum mechanical dynamics (on the level of the expectation values), valid
along the evolution of the wave function, beyond the Ehrenfest approximation, to relate
it to the instability properties of the classical counterpart system.The expectation values
contain important diagnostic behavior and could well be incorporated into a new definition
of “quantum chaos”, corresponding to deviation under small perturbation.

The necessity for dealing with a Finsler geometry appears to arise from the essen-
tially nonlinear relation between quantum and classical dynamics such as discussed in
Bracken [16]. Although our formulation is quite different (we did not introduce the formu-
lation of Bohm [17–19]), the structure of the underlying dynamics appears to be closely
related. A geometric framework for a Finsler type geometrization of quantum mechanics
were also discussed in previous studies [20–22].

Our results appear to provide a new contribution to the subject of quantum dynamical
instability, and new geometric meanings give an interesting insight into the geometric
structures of quantum evolution and the geometrical nature of quantum theory.

As another important motivation for the study of Finsler spaces, one may refer to
a driven nonlinear nanomechanical resonator [23]. For a nanoelectromechanical system
(NEMS), our geometrical formulation of quantum evolution may provide a sensitive diag-
nostic tool for identifying signatures for the passage from a classical to a quantum domain.

As a careful discussion of the geometry of Finsler spaces and an excellent treatment
of the quantum dynamics of Finsler spaces, one may refer to the work of Grifone [24,25].
However, he does not study the stability of the corresponding Hamiltonian flow as we
did here.
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