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Then even nothingness was not, nor existence,
There was no air then, nor the heavens beyond it.
What covered it? Where was it? In whose keeping

Was there then cosmic water, in depths unfathomed?

Naasadiiya Suktha (Rigveda)
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Chapter 1

Introduction

1.1 A Brief History Of Elementary Particle Physics

The discovery of the electron by J.J Thompson in 1897, using a
simple particle accelerator - a cathode-ray tube - set the stage for
modern particle physics. Electrons are elementary particles within
the current experimental resolution. The proton and neutron were
discovered subsequently and initially regarded as elementary par-
ticles. But soon there was a proliferation in the inventory of the
so called elementary particles. The study of cosmic rays led to the
discovery of muons in 1937, pions and strange particles followed a
decade later. In the 1950’s, after world war II, the focus of par-
ticle physicists shifted from cosmic rays to man-made particle ac-
celerators - a transition from particle hunters to particle farmers.
The use of particle accelerators with bubble chambers revealed a
great number of new particles, including mesons of spin higher than

zero and baryons of spin higher than half with various values for



charge and strangeness. All these new particles, generically called
hadrons, though unstable, exhibit behaviour broadly similar to pro-
tons and neutrons. So now physicists had to deal with dozens of
these hadrons, including the nucleons, which transformed to each
other in various befuddling ways. Instead of nuclear force, the in-
teraction between hadrons came to be known by a new name, the
strong interaction.

The rapidly multiplying number of hadrons clearly indicated that
they could not all be elementary. In the early 1960’s Murray Gell-
Mann and George Zweig independently put forth the quark model as
a step towards a classification scheme based on certain regularities in
the observed spectra of hadrons. According to the quark model all
known hadrons are constituted of much more fundamental particles,
which Gell-Mann called ”quarks” and which came in three flavors
- the up, down and strange (later charm, top and bottom quarks
were added to the model)- SU(3) being the relevant symmetry group
[1, 2, 3]. Baryons are composed of three quarks and mesons comprise
a quark anti-quark pair. The observed patterns in masses, lifetimes,
spins of the known baryons and mesons fell into place once they
were assumed to have a quark substructure. The quark model gained
strength by the discovery of the 2~ particle belonging to the baryon
decuplet, as predicted by the model. Quarks being fermions, in
order that the Pauli principle is not violated, it was proposed by
Greenberg, Han, Nambu [4, 5] that the quarks be endowed with
an additional quantum number, which was later named the quark

"color’ ( The introduction of color as a new degree of freedom was



necessitated by the discovery of A** particle with a substructure
involving identical u quarks ). Since a baryon is composed of three
quarks it is quite natural to let color degrees of freedom take on
three different values or we can say that each quark of a particular
flavor comes in any of the three colors, say red, green or blue. Again
the 7% — 2v decay rate is found to support the assignment of three
colors to each flavor of quark. All observed hadrons are color neutral.

Despite its power to predict the existence of new particles the
quark model did not receive a warm response from theorists at the
time. The reason was that quarks were never detected in isola-
tion. Even Gell-Mann regarded quarks to be mere mathematical
constructs rather than a physical reality. The first experimental
evidence for quarks as the real dynamical constituents of hadrons
came from the deep inelastic electron-proton scattering experiments
performed at the Stanford Linear Accelerator Center (SLAC) in
1968. The scattering cross-sections gave evidence of elastic scatter-
ing from point like objects inside the proton [6, 7]. The experimental
results at SLAC could be explained only if quarks inside a proton
are nearly free, subject to no force, as was proposed by Feynman
(He used the name ’partons’ for the proton constituents instead of
quarks) [8, 9]. Now,there arose a paradox. The strong interaction
is powerful enough to permanently confine quarks within hadrons
(isolated quarks are never seen) but Feynman’s suggestion requires
the interaction to be weak enough at short distances so that quarks
behave as if they are free particles. A solution to the paradox was

provided subsequently by David Gross, Wilczek and Politzer.



The theory of strong interactions was developed in the 1970’s as
a generalization of the existing gauge theory of electromagnetic in-
teraction - quantum electrodynamics (QED). In the electromagnetic
case the force carriers are massless vector bosons, the photons. Anal-
ogously in the case of strong interactions the corresponding massless
vector gauge bosons are called the gluons. Now the color symmetry
is an exact SU(3) symmetry and the gluons form an SU(3) color
octet. The fundamental difference between the theory of strong in-
teraction which came to be called quantum chromodynamics (QCD)
and QED is that in QCD the generators of the symmetry do not
commute with each other. The theory is therefore a non-Abelian
gauge field theory, the prototype of which is the Yang-Mills field.
Non-Abelian gauge field theories have some peculiar properties one
of which proved to provide the solution to the paradox posed by the

SLAC experiment.

1.2 Discovery Of Asymptotic Freedom And The

Principle Of Quark Confinement

One of the unique properties of non-abelian gauge theories and hence
QCD is that they are asymptotically free. Thus for QCD, as the en-
ergy momentum transfer increases the effective interaction between
quarks decreases and as these variables tend to infinity, the the-
ory approaches a free field theory. This property is called asymp-
totic freedom as discovered by David Gross, Wilczek and Politzer

[10, 11, 12, 13]. The asymptotic freedom is a result of the anti-
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screening of color charge. Since the gluon fields themselves have
color and hence have self coupling, a bare color charge centered at
origin gathers in space a thundercloud of gluons. Thus as one tries to
find the bare quark by moving up closer through the gluonic cloud
the color charge appears smaller and smaller. As a consequence,
with decrease in the typical length scale or with increase in the en-
ergy scale, the coupling strength decreases in QCD. This explains
the SLAC results where quarks behave as if they are free particles,
though they are indeed strongly interacting and ultimately confined.
Asymptotic freedom established QCD as the fundamental theory of
strong interactions.

Since the strong coupling constant (ay) becomes small at short
distances/ high momentum transfers, the interactions between quarks
and gluons can be treated using perturbation theory. In field theo-
ries, the Feynman diagrams with closed loops corresponding to the
quantum corrections, calculated in perturbation theory have ultravi-
olet divergences originating from the intermediate virtual states with
high momenta. Renormalization is the procedure through which all
the divergences arising from the Feynman diagrams at all orders are
absorbed into a redefinition of fields masses and coupling constants.
Gerard 't Hooft proved the renormalizability of the whole family
of Yang-Mills theories and hence QCD [14, 15]. In the framework
of perturbative QCD (pQCD) the renormalized effective coupling
constant or the running (scale dependent) coupling constant is ex-
pressed as a function of p which is the energy scale at which the

divergences are renormalized. When one takes p close to the scale
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of the momentum transfer Q then a,(u? = Q?) and gives the effec-
tive strength of coupling for the process. The coupling satisfies the

following renormalization group equation:

o dag

dyi? = Blos) = —(Boc + froi + .....) (1.1)

where fy = ;=(11—32n;) is referred to as the one loop beta-function
coefficient, (1 is the two loop beta-function coefficient and so on and
ny is the number of quark flavors. With ny = 3 in the one loop
approximation an exact analytic solutin exists for eqn(1) and is given
by

() = (1.2

B In(z)

Here A is a constant of integration which gives the scale at which
the perturbatively defined coupling constant diverges. A therefore
corresponds to the non-perturbative scale of QCD. It is called the
QCD scale parameter, to be determined from experiments. The
equation (1.2) clearly indicates that at large momentum transfers,
the coupling strength ay; — 0. The quarks therefore behave as if
they are free particles(asymptotic freedom). On the other hand, at
low momentum transfers or equivalently, larger distances, () ~ A,
as becomes quite large and the perturbation theory is no longer reli-
able. This behaviour may be linked to the confinement of quarks and
gluons within hadrons and is known by the name ‘infrared slavery’.
Since QCD in the non perturbative regime is intractable analyti-

cally, phenomenological models are employed in order to compute

the various properties of hadrons.
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At small distances where the coupling constant which deter-
mines the strength of quark-gluon interaction is small, it is expected
that the quark-quark interaction should bear some resemblance to
electron-electron interaction. According to phenomenological po-
tential models, at small distances the dominant contribution to the
qq interaction is the one gluon exchange interaction. The one gluon
exchange potential (OGP) is mostly of the Coulomb type and very
similar to one photon exchange potential between electrons, gluon
and photon being both massless. The main difference apart from
the difference in coupling strength is a numerical factor (generally
called the Casimir factor), arising from the non-abelian nature of
the colored gluons. Accordingly the strength of quark-antiquark

interaction in a color singlet state is given by —4% and that for

quark-quark interaction in a color singlet state by —23‘5 ( The anal-
ogous strengths in the electron-positron and electron-electron case
are —« and 4« respectively, a being the fine structure constant).
The long distance confining potential does not follow directly
from field theory. A number of possible options for the potential
at large distances is available phenomenologically, subject to the
constraint that they are able to reproduce the hadronic masses. A
linear confining potential is quite plausible and the most commonly
used. The total interaction potential for quarks is most often written

as the sum of the Coulombic one gluon exchange potential and the

linear confining potential,

Vir) = + Kr (1.3)



Here C is the color Casimir factor. The constant K is referred to
as the string tension. The lines of force of the color field pulled
together by the gluon-gluon interaction can be imagined to take the
form of a tube or string. If the string is pulled indefinitely then
the stored energy reaches a point such that it is energetically more
favourable to break into two short strings, say by creating a new
quark-antiquark pair. A potential of this form was pioneered by the
Cornell group and is called the Cornell potential [16, 17].

Another non-perturbative approach to QCD is Wilson’s lattice
gauge theory (LGT) [18]. In lattice QCD the 4-D space time is
discretized to a lattice with quarks occupying the lattice sites and
gluons, the lattice links. On a discrete space time the path inte-
gral that defines the theory becomes finite dimensional and can be
evaluated utilizing the Monte Carlo methods. Lattice QCD calcula-
tions in the quenched approximation have been made to simulate the
heavy quark-antiquark potential for a color singlet, and the results,
interestingly, show a linearly rising confining term in the potential.
The potential computed on the lattice was found to be very much
in agreement with a Coulomb + linear potential (the Cornell po-
tential) [19]. The lattice studies carried out so far hence leave little
doubt that the quarks are indeed confined, though a first principle

derivation of confinement is yet to be done.
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1.3 The Quark Gluon Plasma (QGP)

In 1965 almost a decade before the discovery of asymptotic freedom
Hagedorn had predicted a limiting temperature for ”strong interac-
tions” [20, 21]. Analysing the high energy hadronic collisions using
a bootstrap statistical model (BSM) he found that the hadronic
mass spectrum shows the following asymptotic behaviour- it grows
exponentially with increasing mass. He proposed that as the energy
of collision becomes large the temperature tends to a finite limit
which is the highest attainable temperature with a numerical value
of about 160 MeV !. The existence of an energy independent high-
est temperature is a consequence of the exponentially growing mass
spectrum. As more and more energy is pumped into the system it
is consumed to excite resonances, create more and more particles
rather than increasing the kinetic energy of existing particles. Thus
in the limit the kinetic energy per particles tends to remain a con-
stant, the temperature reaches the highest possible value. But the
above conclusions were reached by assuming hadrons to be point
particles devoid of a finite size.

Quark models visualize hadrons as having a finite size with quarks
as their fundamental constituents. With the advent of asymptotic
freedom quarks were known to interact weakly in close proximity.
Relying on these ideas in 1975 Cabibbo and Parisi in their seminal
paper entitled ’Exponential hadronic spectrum and quark libera-

tion’ [12] proposed that the Hagedorn temperature was not a high

1Here and throughout the thesis natural units are employed, else otherwise stated explicitly.
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temperature limit, rather it is the critical temperature for phase
transition to underlying quark gluon matter. The picture is clear
within the MIT bag model - the model ideates hadrons to be bub-
bles of perturbative vacuum to which quarks are confined but in the
interior of which quarks can move about freely [22]. The perturba-
tive vacuum is an excited state, with an energy density B (called
the bag constant), above normal QCD vacuum. In conformity with
the Hagedorn spectra, the bag model gives an exponential mass
spectrum which follows from a particular feature of the model - the
mass of the bag is proportional to the time averaged volume. With
increasing energy density the bags cluster and overlap with each
other. The component quarks find in their vicinity more and more
quarks, thereby loosing their sense of belonging to a particular bag.
The model therefore provides an intuitive picture of a deconfine-
ment transition of hadronic matter to quark gluon matter wherein
the quarks interact weakly owing to asymptotic freedom.
Concurrent to Cabibbo and Parisi, Collins and Perry suggested
that super dense matter which should exist in the neutron star cores,
exploding black holes, early big bang universe essentially comprises
a quark soup [13]. For instance within a neutron star where the cen-
tral density could be as high as 10 times the normal nuclear density
the hadrons overlap with the fundamental quarks confusing their
individuality. Quarks being asymptotically free a weakly interact-
ing quark gluon matter is therefore expected at such high densities.
They proposed that due to many body effects long range interac-

tions are screened in such systems banishing problems arising due
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to the infrared behaviour of quark confining forces. In 1978 calcula-
tions by Edward Shuryak showed that unlike virtual gluon loops in
QCD vacuum which antiscreen the color charge, in real quark gluon
matter the gluons screen the color charge [26]. Since this behaviour
is inherent to conventional QED plasma Shuryak coined the name
Quark Gluon Plasma (QGP for short) for the new deconfined phase
of quarks and gluons.

There was a fervour of excitement over this new predicted phase.
Could it be produced in the laboratory under controlled conditions?
Heavy ion collisions with higher collision energies than ever before
would be required to accomplish the feat. Since the primordial mat-
ter a few microseconds after the big bang should possibly have been
a soup of quark and gluons, QGP if produced in the lab could give
valuable information about the creation and evolution of the uni-
verse. The search for the phase transition from hadronic matter to
quark-gluon plasma (QGP) utilizing high energy heavy ion collisions
began in the mid-1980s with experiments at CERN’s Super Proton
Synchrotron (SPS) in Europe, and Brookhaven’s Alternating Gra-
dient Synchrotron (AGS) in the US. In 2000, the search moved onto
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and later
to CERNS Large hadron collider (LHC). Heavy ion collision exper-
iments at AGS has lab energy ~ 2-11 GeV per nucleon pair while
SPS accelerates heavy ions at lab energy ~ 200 GeV per nucleon
pair. At AGS/SPS the collision experiments are fixed target experi-
ments. RHIC/LHC are heavy ion colliders where countercirculating

beams of heavy nuclei collide at huge center of mass energies. RHIC
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accelerates and collides ions at center of mass energies as high as 200
GeV per nucleon pair for gold nuclei. LHC the worlds largest and
highest energy - particle accelerator can accelerate and collide lead
beams at extremely high center of mass energy ~ 5.4 TeV per nu-
cleon pair.

When two heavy nuclei such as the gold nuclei are accelerated
to ultra relativistic energies and then caused to make a head on
collision, the nuclei become Lorentz contracted as 'pancakes’. Then
the nucleon-nucleon collisions within the nucleus-nucleus collisions
occur almost simultaneously and at spatial proximity thereby cre-
ating a region of very high energy density. But QGP even if created
in the initial stages of such collisions, cools rapidly, by expansion
and by the emission of various radiation and finally makes a phase
transition to a gas of hadrons. Hence the collider experiments rely
on signatures of QGP provided by theory. The most propitious
signatures that provide information about QGP formation are: (1)
An excess of ”direct photon” production - Direct photons produced
from the interaction of matter in the hot QGP phase lie in the re-
gion of photon transverse momentum pr in the range 2 — 3 GeV/c.
The photons provide information about the properties of QGP at
the time of their production. Since they are hardly absorbed by the
medium they are relatively 'clean’ probes of the QGP phase. (2)
Strangeness enhancement - A high abundance of strangeness in the
QGP drop is predicted resulting from strangeness pair production
mainly due to gluon fusion process gg — s5 [23]. Therefore during

hadronization processes there should be a high yield in the other-

18



wise rarely produced particles such as strange antibaryons.

(3) J/% meson suppression - If ¢¢ pair production occurs in a heavy
ion collision and if the collision results in the formation of QGP
then color screening in the plasma prevents the binding of charm
and anticharm quarks to form J/v. J/1 suppression therefore is a
positive signature of QGP formation.

Though the pioneering heavy ion collisions at AGS and SPS pro-
vided an opportunity to study excited nuclear matter at high en-
ergy densities with voluminous production of various particle species
no unambiguous evidence for the formation of QGP was provided.
Strangeness enhancement was observed and measured for various
systems in nucleus-nucleus collisions at the AGS [27] and the SPS
28, 29, 30, 31, 32] and a suppression of J/1 [33] was measured
for central collisions in nucleus-nucleus experiments at the SPS but
neither AGS/SPS could provide direct evidence for QGP formation.
In the RHIC heavy ion experiments, immediately after the beams
collide, the energy density far exceeds the theoretical requirements
for the creation of the QGP. Lattice calculations give values in the
range of about 170 to 180 MeV for the critical temperature which
corresponds to about 102 Kelvin. One of the most remarkable ob-
servations at RHIC was a phenomenon called jet quenching which
has been predicted theoretically as a possible QGP signature and
which could provide a powerful new probe of QGP produced in the
collisions. The collision energy at RHIC is high enough to produce
the direct high-energy scattering of individual partons in the collid-

ing nuclei. Such hard scattering events involving high momentum
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transfers give rise to collimated sprays of hadrons called jets. The
RHIC data shows a deficit of jets involving high pr particles in the
most central collisions [34]. The deficit of high energy jets can be
attributed to the slowing down of partons as they propagate through
QGP formed in the collision. The phenomena of quenching of high
pr jets gives compelling evidence that QGP is formed at the RHIC.
The experiments at LHC again showed jet quenching with the high
energy jets getting almost entirely dissipated, thus providing imper-
ative evidence for the formation of QGP [35, 36].

Initially it was expected that QGP if produced in the collisions
would behave like a free gas of deconfined quarks and gluons. On
the contrary experiments at RHIC gave evidence that the hot and
dense matter formed in collisions shows a deviation from ideal gas
behaviour. The flow is similar to an ideal liquid with nearly zero
viscosity. Surprisingly the experiments carried out at LHC strongly
indicate that the QGP formed remains a strongly coupled, near
perfect liquid even at significantly higher energies [37].

At RHIC/LHC the center of mass energy per nucleon is so high
that the colliding nuclei tend to be transparent to each other. Though
fragmented by the collision they essentially recede in the same di-
rections they came in, leaving behind an excited central vacuum
region low in baryon density. Therefore these collider experiments
are focussed to study QGP formed at high temperatures but low
net baryon densities. What about the high baryon density - low
temperature regime? Cold matter at high net baryon density can

be effectuated by a slow squeeze of nuclear matter which is im-
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possible to enact in the lab. Therefore we turn to nature and her
giant laboratories - the compact stars - where cold superdense mat-
ter and hence the presence of QGP is expected 2. Compact stars
are the end products of thermonuclear evolution involving massive
stars. Once the nuclear fuel that 'runs’ the star is exhausted the
more massive stars succumb to a violent ending wherein the core
collapses indefinitely. Once the core material becomes incompress-
ible an outgoing shockwave results and there is a violent ejection
of the stars’ outer layers namely the supernova explosion (This is
actually a naive picture of a more complex process - a controversial
topic, subject to intense debate). The remaining compact remnant
could be a neutron star, depending on the mass of the progenitor,
supported against gravity by the neutron degeneracy pressure. But
as suggested by Collins and Perry such compact remnants which
admit superdense matter could be natures cache of the exotic QGP
phase. Many questions arise when we consider quark matter within
compact star interiors - Will there be a new class of stable compact
stars - the quark stars? Is there a critical density at which the pres-
ence of QGP is expected? Will the quarks be essentially massless or
instead be massive ’dressed’ quarks? QGP if present, will it be an
ideal gas of weakly interacting quarks or will it be in the strongly
coupled phase? All these are interesting and intriguing questions

and highly debated. The aim of the thesis is to fathom the presence

2Compressed baryonic matter (CBM) experiment at the Facility for antiproton and ion
research (FAIR) is a future project which will explore the high density regime at moderate
temperatures. This regime can be explored in heavy-ion collisions at intermediate beam
energies - the colliding nuclei tend to stay with each other - with the highest baryon density
reached for beam energy range between 10 and 40 GeV per nucleon. FAIR would provide
beams in the energy range 2-45 GeV per nucleon.
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of the exotic new phase of matter in compact stars and an attempt

to address some of the debated issues.

1.4 Compact Stars With QGP In The Interior -

Quark Stars / Hybrid Stars

Soon after the hadrons were conferred with a quark substructure,
Ivanenkov and Kurdgelaidze hypothesised the possibility of a quark
star [38]. They suggested that quark stars are the next in sequence
to neutron stars, prior to black holes. In their paper published in
1965, ‘Hypothesis concerning quark stars’, they made a rough cal-
culation of the densities at which the ‘disintegration’ process from
baryons to quarks would occur. At the time, which was almost a
decade before the discovery of asymptotic freedom and the advent
of QCD, they had visualised the transition as similar to nuclear dis-
integration. Later in 1970, Itoh studied the hydrostatic equilibrium
of such hypothetical stars treating quarks as a degenerate fermion
gas [39]. His calculations revealed stars with equilibrium mass of the
order ~ 1073 M®, far less compared to typical neutron star masses.
Quark stars thus remained more or less a vague and fanciful idea
until the end of the 1960s’. The discovery of asymptotic freedom
of quarks led to a paradigm shift, making exotic stars comprising
quark matter very much a possibility.

The question of whether the deconfined QGP would be present in
compact star interiors was first considered by Baym and Chin[40].

In their paper 'Can a neutron star be a giant MIT bag’, they consid-
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ered the phase transition from neutron matter to deconfined quark
matter. This was done by comparing the energy per baryon for fixed
number densities in the two phases treating the quark matter phase
within the MIT bag model (quarks can move about freely within
the volume of dense matter but the region as a whole is color neu-
tral). They concluded that such a phase transition would require
huge densities of the order of 10 to 20 times the normal nuclear
density and hence considered such a transition unlikely at relevant
neutron star densities. But it was soon pointed out that such calcu-
lations are very sensitive to even small uncertainties in the chosen
hypothetical equations of state for hadronic/quark matter. Based
on other quark matter models - derived within QCD and consistent
with the then available nuclear/ high energy physics data - Fechner
and Joss showed that quarks stars are indeed possible [43]. Their
studies revealed that the macroscopic properties of quark stars need
not be considerably different from ordinary neutron stars.

It can be surmised that quark matter could exist within a com-
pact star in two different forms depending on the distribution of
baryon densities. One is pure quark matter devoid of baryons, which
will probably occupy the core region. The other is a mixed phase
where quarks and hadrons are interspersed and in phase equilibrium
with each other. Compact stars with quark or mixed phase interiors
are named hybrid stars. There is one more possible mode of exis-
tence of quark stars - the so called strange stars. In 1984 Witten
in his seminal paper which considered the hadronization of early

universe, emphasised the idea of strange quark matter being the ab-
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solute ground state of hadronic matter [42]. The idea was originally
proposed by Bodmer [41] and noted by several others in their work.
Strange quark matter (SQM) is made up of an equal number of u,
d and s quarks. The addition of strangeness lowers the stability of
nuclear matter, the strange baryons being heavier than non strange
baryons. The presence of strangeness in bulk quark matter stabilizes
it by lowering its energy which should be attributed to the newly
added Fermi well. The Fermi momenta in quark matter is of or-
der of 300-350 MeV, which is greater than the strange quark mass.
Hence it is energetically favourable for u,d quarks to undergo a flavor
change to strange quarks via weak interactions. Simple calculations
reveal that strange quark matter has an energy per baryon ~ 0.9
times that of two flavor u,d quark matter. The energy per nucleon
of SQM therefore lies in the vicinity of ordinary nuclear matter. If
it is lower than that of nuclear matter then strange quark matter
would be the absolute ground state of hadronic matter, nuclear mat-
ter being a long lived metastable state. The decay of ordinary nuclei
to strange matter is inhibited by the need for very high order weak
interactions. If strange quark matter was indeed the ground state of
hadronic matter then it implies the existence of a new class of self
bound pure quark stars - the strange stars.

To distinguish between strange /hybrid stars and ordinary hadronic
stars is not easy since their macroscopic properties seem to overlap.
One possible feature of quark stars that can aid in their detection
is the expected anomalous cooling behaviour. Neutrino emission is

the primary process via which neutron stars cool during the first 10°
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years after their formation. The neutrino production via the Urca
processes (simple beta decay processes) is controlled by the high
density phase that exists at the core. Due to the extended degrees
of freedom, quark matter has comparably higher neutrino luminosi-
ties. Hence quark stars, at a given age, should have lower surface
temperatures as compared to hadronic stars. The measurement of
surface temperatures of neutron stars of known age can therefore
provide information about the high density phase that exists at the
core. Studies along these lines has led to the detection of a poten-
tial quark star candidate - a 65 ms pulsar J0205+6449 at the center
of a young supernova remnant, 3C58. 3C58 is evidently associated
with supernova SN 1181, which would make it younger than the
Crab Nebula. J0205+6449 is therefore one of the youngest neutron
stars in the galaxy. Chandra observations of the emission from the
particular neutron star gives a surface temperature well below that
predicted by standard cooling mechanisms [44]. This points to en-
hanced neutrino production rates in the stellar interior. Therefore
it is quite plausible that J0205+6449 contains some exotic phase,
such as quark matter within.

Mass-radius (M-R) relationship is a key factor that gives a mea-
sure of the compactness of a star. It can therefore provide infor-
mation about the nature of dense matter within. X-ray bursts that
emanate from neutron stars in binary systems exhibit a number of
spectroscopic phenomena that depend on the mass and radius of
the neutron star. X-ray bursts are thermonuclear explosions which

result from the accretion of matter on the surface of neutron stars
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in binaries. Once the distance to the source star is known, using the
calculated temperature (assuming black body emission) and mea-
sured flux, it is possible to set up constraints for the mass-radius
relationship. Based on the M-R relationship thus obtained for neu-
tron stars in the binaries 4U1608-248, EXO 1745-248 and 4U1820-
30, Ozel et al. [45] calculated the pressure of dense matter above
nuclear saturation density. The pressure was found to be lower
than that predicted by pure nucleonic equations of state. This sug-
gests that exotic matter could be present within the neutron star
interiors. To pin down the equation of state at high densities we
need more sensitive observational data. It is believed that future
prospects such as gravitational wave detection could help probe the
interiors of neutron stars. Non radial oscillations of compact stars
are sources of gravitational radiation. The frequencies and damping
times of the oscillation modes can be directly linked to the stellar
properties such as mass, radius, rotation rate etc. The detection of
the gravitational waves which damp out the oscillation, can there-
fore aid in obtaining valuable information about the source star.
Within the next decade gravitational-wave (GW) observations by
Advanced LIGO in the United States, Advanced Virgo and GEO
HF in Europe, are hoped to provide new insights in this field.
Verifying and discerning the dense QGP phase in compact stars
requires new efficient models and equations of state, which can pre-
dict new possible signatures for the exotic phase. In the next chapter
we give a brief account of the the historical evolution of the QCD

phase diagram, present the one now in vogue and discuss it with
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emphasis on low temperatures and high densities. The different
proposed phases at densities relevant to compact stars will be given

special importance.
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Chapter 2

The QCD Phase diagram

2.1 Chiral symmetry restoration - a key feature

of hot/dense QCD

Besides the deconfining transition there is another key feature con-
comitant with quark gluon plasma (QGP) formation. It is the chiral
symmetry restoration associated with the light quark flavors. The
word ’chirality’ means handedness. An object is said to be ’chiral’
if it is non-identical to its mirror image. The chirality of a particle
is a subtle and abstract notion which is equivalent to the particles’
helicity , if the particle is massless. Chirality is a Lorentz invari-
ant i.e. a massive particle has a specific chirality. Particles can
be left chiral or right chiral, defined using the eigen values of the

chirality operator. For a Dirac Fermion the chirality projection op-

1475
2

erators are given by where 7, are the standard Dirac matrices

and 75 = 1Y71727374. The chirality projection operators project

out the left handed and right handed states of the Fermion field,
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Vv = 1_7751# and Yp = H%w. The total Fermion field is simply,
¥ = 1, + ¢Yg. If the right handed and left handed Fermions (for
eg. the quarks) can make separate transformations independent of
each other then the corresponding theory is said to possess chiral
symmetry.

The QCD Lagrangian is given by,
(s 1 a puv
Loop = (il —mp)dy — 1 FLF; (2.1)

where ¢ denotes the quark field and my denotes the quark mass,
where f stands for a particular quark flavor. Here we define [P =
y*D,,, where D, is a covariant derivative acting on the color triplet
quark field. We have D, = 0, +igAj\./2. A, stands for the
gluon fields, ¢ is the dimensionless coupling constant in QCD and
Ao (@ =1,....,8) are the SU(3) Gell-Mann matrices. Finally Fy, =
O, A, —0,A7 — g fgCAZAg is the gluon field strength tensor, f,,. are
the SU(3) structure constants. Note that u,v are the space-time
indices while a, b, ¢ denote the color indices (for more details see Ref
[1])-

Now if we rewrite the quark part of the QCD Lagrangian in terms
of the left and right quark fields v, ¥R as,

Ly = pilrs +bppilPrs — (Vppmpdrs +Vpympdry) — iFﬁyFﬁ Y
(2.2)

It can be seen that the mass term mixes the right and left handed

fields. The remaining terms are dependent either on left handed

fields or right handed fields alone but not both. Thus in the massless
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limit the QCD interaction does not couple the right handed and
left handed quarks, which can therefore transform independent of
each other. Thus the QCD Lagrangian exhibits chiral symmetry
in the massless limit. Now the up and down quark flavors have
very small masses (approx. 5 and 10 MeV respectively) and may
be considered massless in the relevant scale of QCD. Therefore we
expect a symmetry in the observed spectra of hadrons - they should
come in parity doublets. But this is not observed in nature. We do
not observe parity pairs of nucleons. This indicates that though the
QCD Lagrangian respects chiral symmetry, the QCD ground state
or the QCD vacuum breaks it. Owing to the non trivial structure
of the QCD vacuum the chiral symmetry is spontaneously broken,
the idea pioneered by Nambu [2] and Nambu, Jona-Lasinio [3, 4] .
Now, the ground state of a system with a spontaneously broken
symmetry should be infinitely degenerate. If we perform continuous
symmetry operations on the non-symmetric ground state, we can
generate an infinite number of such states. Each will have the same
energy since the Hamiltonian is invariant to all such symmetry op-
erations. Since in QCD we are dealing with continuous symmetries,
the QCD vacuum should be infinitely degenerate. Due to spon-
taneous breaking of symmetry, only one of these possible states is
realised and all the excited states are built on this particular state.
In quantum field theory tunnelling between the various degenerate
ground states is least probable since now we are dealing with an in-
finite number of degrees of freedom. To get a physical picture of the

mechanism of spontaneous symmetry breaking it would be useful to
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consider the example of a ferromagnet. If a ferromagnet is cooled
beneath a critical temperature, the atomic spins are spontaneously
aligned, with the magnetization pointing in a particular direction.
Due to the exchange interaction, the state with spins aligned has
the lowest possible energy ie. it is the ground state. The ground
state is infinitely degenerate. On rotating the magnet, the magne-
tization will now point in a different direction. If the magnet is of
finite extent, thus, we may be able to realise the different ground
states by rotating the magnet. But if the magnet is of infinite ex-
tent, then rotating all the spins simultaneously to generate a new
ground state, is practically impossible. Hence for someone residing
within the infinite magnet, the direction of spin alignment is a done
deal.

Another interesting example of spontaneous symmetry breaking
is that of a superconductor. The BCS (Bardeen- Cooper - Schrief-
fer) theory was eminently successful in describing the phenomenon
of superconductivity [5, 6]. The theory proposes a superconducting
gap which separates the ground state from the higher excited states.
The superconducting ground state comprises of correlated electron
pairs. The pair formation occurs due to an attractive interaction
between the electrons, mediated by phonons. To break up a pair,
energy is needed, which characterises the gap. Now, the BCS ground
state has a broken symmetry. Compared to the simple example of
the ferromagnet, the symmetry broken here is much more abstract.
It is the freedom in choosing the phase of the ground state wave

function, which is broken in this case. The electric charge remains
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no longer conserved. In order to save the conservation of electric
charge, Nambu proposed the existence of symmetry restoring exci-
tations - the Nambu - Goldstone (NG) waves [7, 8, 9]. In the case of
a simple ferromagnet we can see that the symmetry restoring exci-
tations are the familiar spin waves. In the case of a BCS supercon-
ductor the symmetry restoring NG modes are collective excitations
of pairs of Bogolubov - Valatin (BV) quasi particles. Bogolubov
had put forth an elegant mathematical formalism for the BCS the-
ory ( Valatin had independently developed a similar approach [11]),
where, the elementary excitations above the ground state are the
BV quasi particles[10]. They comprise a coherent mixture of elec-
trons and holes and hence are not eigen states of charge. They are
described by the BV equation. Nambu realised the analogy between
the BV equation, which describes the quasi particle excitations in
superconductors, and the Dirac equation for massive fermions. He
elevated spontaneous symmetry breaking in infinite media and the
restoring mechanism, to the status of a general principle. He then
went on to extend this idea of spontaneous symmetry breaking to
particle physics, inspired by the striking analogy between the BV
quasiparticles and the massive Dirac fermions. His model devel-
oped together with G. Jona-Lasinio, the Nambu-Jona-Lasinio (NJ)
model, puts forth the following correspondences - Free electron <+
bare Fermion, the energy gap <+ the Dirac mass, electric charge <+
chirality [3, 4]. Though the dirac particle in question was the nu-
cleon in the NJ model, it is easy to apply the correspondence to the

realm of quarks. The ground state or the QCD vacuum can be con-
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sidered as a condensate of quark- antiquark cooper pairs of chirality
zero (ie. a pair consisting of a right handed quark and a left handed
anti-quark or the other way around). Such a pair condensate implies
a broken chiral symmetry, since, for such a pair, independent right
handed or left handed chiral transformations are impossible. Now,
breaking such a quark - anti quark cooper pair would result in a
massive quark and an anti quark. Any change in the distribution
of the pairs would give rise to the Nambu - Goldstone modes which
try to restore the broken symmetry. The theory requires the NG
modes to have spin zero and negative parity, thus suggesting the
pion which possesses the requisite quantum numbers. Though the
NG modes are massless excitations the pions have mass. This is
because quarks possess a small but finite 'current’ mass (acquired
by the Higgs mechanism), which explicitly breaks the symmetry of
the Lagrangian, thereby rendering the NG modes massive.

It is expected that at high temperatures/ high densities, with
the formation of deconfined QGP, the broken chiral symmetry is
restored and the quarks regain their current mass. There is contin-
uing lack of clarity regarding the order of the deconfining and chiral
symmetry restoring transitions. In the following section, we give
a time line of the QCD phase diagram. We shall discuss the pre-
vailing opinions regarding the ordering of deconfinement and chiral

symmetry restoration.
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2.2 The time line of QCD phase diagram

The possible phase transition from hadronic matter to quark gluon
plasma was originally suggested by Cabibbo and Parisi, Collins and
Perry [12, 13]. The earliest phase diagram of QCD matter as it ap-
peared in the work by Cabibbo and Parisi is shown in Fig(2.1). The

pﬂ

-V

Figure 2.1: The naive phase digram of QCD matter, with I indicating the
confined hadronic phase and I, the deconfined QGP phase, which appeared in
the seminal work by Cabibbo and Parisi.
diagram suggests a phase transition to quark gluon plasma both
at high temperatures and low baryon densities, low temperatures
and high baryonic densities. The suggestion was made based on the
quark model of hadrons, with hadrons as color singlet - confined
- states of the more fundamental quarks, together with the phe-
nomenon of asymptotic freedom. Asymptotic freedom is the QCD
property owing to which quarks interact weakly at close proximity,
giving rise to the deconfinement transition.

A more complex phase diagram for QCD matter was conceived

by G.Baym [14] a few years later and is given in Fig(2.2).
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Figure 2.2: A more complex phase diagram for QCD matter conceived by
G.Baym in 1982

The diagram indicates that at low temperatures and baryon den-
sities, strongly interacting matter is in the confined hadronic phase
with pionic excitations. A transition from bulk hadronic matter to a
pion condensed phase is envisaged to occur at almost twice the nu-
clear saturation density. Again there is the evident transition to the
deconfined phase of massless quarks and gluons at very high temper-
atures or baryon densities. The core feature of the phase diagram
is an intermediate region of massive quarks, just after the decon-
finement curve, preceding the region of deconfined massless quarks
and gluons. In this region chiral symmetry remains spontaneously
broken rendering the quarks massive.

With data flowing in from the heavy-ion collider experiments
and lattice QCD simulations, the phase diagram has evolved over
time. A recent QCD phase diagram by Fukushima and Hatsuda [15]

(see Figure(2.3)) summarises our current understanding of the var-
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ious phases of hadronic matter, obtained via the heavy ion collider
experiments/ lattice QCD. The diagram also features some of the

newly conjectured phases.

Temperature T
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Matter

1

£

]
1
Liguid-Gas

'
1

X Crystalline CSC

Nuclear Superfluid  Meson supercurrent  Baryon Chemical Potential s
Gluonic phase, etc

Figure 2.3: A recent QCD phase diagram by Fukushima and Hatsuda

In the phase diagram at zero baryon density there appears no
boundary line separating the hadronic and QQGP phase. This indi-
cates that there is no rapid phase transition to QGP phase in this
region. Rather there occurs a non singular cross over. The infor-
mation comes from extensive studies carried out using numerical
calculations on the lattice at finite temperature. At zero baryon
density the transition properties are found to depend on the quark
flavors and masses. Calculations carried out on the lattice using
physical masses for quarks indicates a non singular cross over rather

than a rapid phase transition [16].
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Lattice data has also given information regarding the ordering
of the deconfinement and chiral symmetry restoration transitions.
A phase transition is generally indicated by a discontinuous change
in some physical quantity, which serves as the order parameter for
the transition. The quantity which serves as the order parameter
for the spontaneous breaking of chiral symmetry is the chiral con-
densate. For the deconfinement transition the order parameter is
the Polyakov loop. Polyakov loop is a gauge invariant quantity in
finite temperature QCD which corresponds to the free energy of an
isolated static quark. It can be simply thought of as the world line
of an isolated static quark. It is called a loop since it is closed ow-
ing to the periodicity in Euclidean time. The expectation value of
the Polyakov loop (< P >)is related to free energy of an isolated

(static) quark (F} )as [17]
<P>=¢l/T (2.3)

In the confined phase the free energy of an isolated quark would
be infinite. Therefore the expectation value of the Polyakov loop,
< P >, would be zero in the confined phase. On the other hand
in the deconfined phase the free energy of an isolated quark would
have a finite value. Thus < P > would be non zero in the deconfined
phase.

Thus we have the following conditions which determine the de-
confinement and chiral symmetry restoration transitions. For the

chiral symmetry broken phase, chiral condensate, < qq ># 0. For
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the chirally symmetric phase, chiral condensate, < qq¢ >= 0. For
the quark confining phase, expectation value of the Polyakov loop,
< P >= 0. For the quark deconfined phase, expectation value of
the Polyakov loop, < P > # 0.

The chiral condensate vanishes exactly only when the chiral sym-
metry is exact. This is so if the quark masses are precisely zero. Also
in the case of deconfining transition, the expectation value of the
Polyakov loop vanishes only if the quark masses are infinite (static
quarks). Thus for quarks with physical masses none of the above
order parameters can serve as tell-tale signature of an exact criti-
cal point for the phase transition. Still it is reasonable to define a
pseudo critical point in temperature, 7}, using the peak positions of
the susceptibilities of order parameters. Since there are two order
parameters, one concerning the deconfinement and the other, chi-
ral symmetry restoration, two such pseudo critical points may be
expected. However lattice calculations indicate that the peaks of
chiral and Polyakov loop susceptibilities match [18, 19]. Therefore
for physical quark masses there is a simultaneous cross over to a
deconfined, chiral symmetric phase. The pseudo critical tempera-
ture lies within the range 150-200 MeV. A simple analytic descrip-
tion of the cross over region remains elusive since the system is still
strongly correlated. A plasma of weakly coupled quarks and gluons
is expected only at much higher temperatures. Nowadays the term
strongly coupled quark gluon plasma (sQGP) is used to label the
QCD state near the cross over temperature.

At finite chemical potential, lattice QCD runs into difficulty due
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to the famous ’sign problem’. The problem arises because, at finite
itq, the action that defines the theory becomes complex. The Boltz-
mann factor which serves as the statistical weight thereby becomes
complex which spoils a probabilistic interpretation. Thus presently,
lattice QCD can give reliable results only if the condition £ <« 1
is met. In the region where lattice QCD fails, effective models are
employed to study the phase diagram. The method of study re-
lies on models which are able to provide a reasonable description
of hadronic properties in the vacuum. Such models are extended
to the finite T'/p regime. Investigations using effective models in
the region of finite chemical potential, reveals a QCD critical point
20, 21, 22, 23], for realistic u,d,s quark masses, as depicted in Fig-
ure(2.3). At the QCD critical point the chiral transition is no more
a cross over but a first order transition. The QCD critical point, if it
exists, should appear on the hadronic to QGP transition boundary
at baryo chemical potential ~ 100 — 500MeV. The region corre-
sponds to that reached in heavy ion collisions at center of mass
energies ~ 5 — 50GeV /u. There is an avid search for the critical
point at the detectors, PHENIX and STAR, at RHIC.

The phase diagram by Fukushima and Hatsuda displays an in-
termediate phase, the so called ‘quarkyonic’ matter, between quark
gluon plasma and the confined hadronic phase. Such an interme-
diate phase has been proposed to exist in the large N, limit (V.
denoting the number of color charges) [24]. Taking the large N,
limit gives a theory which is more tractable and mathematically

simpler. Recent computer simulations indicate that the thermody-
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namic predictions of the theory (in the large N, limit), closely match
the predictions in the real world of the three color charges [25]. In
the large N, limit confinement persists to arbitrary densities ( The
critical temperature, T, for deconfinement, is found to be indepen-
dent of the baryo chemical potential ). The theory in this limit
therefore predicts a novel phase, the quarkyonic matter, which is a
confined phase at arbitrarily high densities. Quarkyonic matter lies
in a density regime with baryo chemical potential, ug > M, M being
the mass of the nucleon, at temperatures less than the critical tem-
perature for deconfinement (7" < T,). In such a regime the densities
are high enough such that the hadrons (essentially baryons) overlap
substantially. The situation therefore demands the use of the notion
of a quark Fermi sea instead of a baryon Fermi sea. But there is
something more to the picture. Though deep within the Fermi sea
the behaviour of quarks is more or less ideal due to Pauli blocking,
at the surface they show non-perturbative behaviour, in the limit of
large N. . The bulk properties of quarkyonic matter such as pres-
sure, entropy are determined by the weakly coupled quarks within
the Fermi sea. Near the Fermi surface the quarks interact strongly,
whereby physical excitations on top of the Fermi surface are dom-
inated by color singlet mesons and baryons. Whether quarkyonic
matter has any existence in the real world of N. = 3 remains an
open question. Again the chiral transition in quarkyonic matter is
highly speculative. Further in depth studies augmented by computa-
tional techniques and experiments are expected to give a conclusive

answer.
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Next we consider the phase diagram in the region of asymp-
totically high densities/ low temperatures. At these high densi-
ties quarks are weakly coupled owing to asymptotic freedom. Each
quark finds in its vicinity a number of other quarks, thereby los-
ing its sense of belonging to a particular baryon. Due to many body
effects the long range confining forces are screened, leading to decon-
finement. The deconfined and essentially free quarks form a Fermi
sea of filled states at low enough temperatures. But even a small
attractive interaction between quarks near the Fermi surface can
dramatically alter the ground state. Any arbitrarily small interac-
tion between fermions lead to Cooper pair formation, near the Fermi
surface [5], leading to a superconducting phase. The ground state
of the superconducting phase which is a condensate of Cooper pairs
is lower in energy compared to the simple Fermi sea, and is hence
a favoured state [6]. In the case of electrons which are fermions the
fundamental interaction is repulsive. Pairing is hence mediated by
the background lattice via phonons. In the case of quarks in the
high density regime, the quark-quark interactions can be approxi-
mated by single gluon exchange interaction. Single gluon exchange
is apparently attractive in the antisymmetric anti-triplet channel.
Hence quark - quark Cooper pairs are formed near the Fermi sur-
face which then grow into a condensate. Since the quark pairs have
color the condensate breaks the local SU(3) color symmetry and the
gluons acquire a mass. The name color - superconductivity is used
to describe the phenomenon [26, 27, 28, 29]. Color superconducting

quark matter can form different possible phases depending on the
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pairing pattern of the quarks. At the highest densities, with quark
matter composed of three massless flavors, the suggested pairing
phase is the color - flavor locked (CFL) phase [30]. In the color -
flavor locked phase the color and flavor symmetries become corre-
lated. The resulting condensate is invariant only under simultaneous
transformations in color and flavor space. This locking together of
color and flavor breaks the chiral symmetry. The locking of left
handed and right handed flavors to color would in turn lock them
into each other. Thus the chiral symmetry which requires that the
left handed and right handed quarks transform independent of each
other, remains broken ( Here therefore the phenomenon of chiral
symmetry breaking occurs not due to the presence of the conven-
tional chiral condensate. The condensate is expected to vanish at
such asymptotic densities ). Now, it should be noted that the calcu-
lation of the superconducting gap using perturbation theory is valid
only in the limit of very high densities. Actually the calculations
are performed in the regime where the chemical potential could be
as high as 108 MeV. At moderate densities the pairing patterns are
unknown though there are various possible suggestions which still
remain inconclusive.

In the region of extremely low temperatures and moderately high
densities, various competing exotic phases are suggested, but the
picture is still vague (see the question mark denoting the region in
the phase diagram Fig(2.3)). Compact star interiors are expected to
fall into this region of the phase diagram. In this thesis we explore

this region of the phase diagram in an attempt to develop an equa-

46



tion of state for cold dense matter expected to exist within compact
stars. Our line of approach is as follows - within compact stars, if the
deconfined quark phase exists, then the stellar matter would con-
stitute quark matter in bulk. A look into the plasma properties of
the bulk QGP phase would indeed be rewarding. It should be noted
that even at the hottest temperatures achieved at the LHC, the QGP
formed is not an ideal gas but is in a strongly coupled phase. Hence
under realistic densities (of the order of a few times the normal nu-
clear density), that exists within a compact star, it is plausible that
the quark matter is a strongly coupled plasma. Following this line
of thought we try and estimate the coupling strength of QGP exist-
ing at the relevant densities. For the purpose, we define a plasma
parameter, analogous to that for a degenerate non-relativistic QED
plasma. The analogy with degenerate non-relativistic QED plasma
is justified and discussed in the following chapter, where the analogy
is made full use of in developing an equation of state for QGP at the
relevant compact star densities. Similar work, utilizing the analogy
with QED plasma, has been carried out at finite temperatures and
a remarkably good fit to lattice results has been obtained earlier
[31, 32]. It should be emphasized that in this thesis work we have
ignored cooper instability and the attendant color superconducting
phase, since the nature of pairing at densities relevant to compact

stars is still a debated issue.
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Chapter 3

The equation of state for QGP
within a quark star and the

Mass-Radius relationship

3.1 Introduction

Quantum Chromodynamics (QCD), the theory of strong interac-
tions, endows hadrons with two essential features - color confine-
ment and spontaneous chiral symmetry breaking. At sufficiently
high temperatures and/or densities, QCD predicts that both these
features come to an end and hadronic matter undergoes a transi-
tion to a plasma of deconfined massless quarks and gluons (chiral
symmetry is restored). Whether the chiral symmetry restoration
and deconfinement transition coincide or if the latter precedes the
former still remains an open question. An intermediate phase of de-

confined but massive quarks is therefore a possibility and has been
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suggested and discussed previously by several authors [1, 2, 3, 4, 5].
Lattice calculations show that at or near u = 0, as the critical tem-
perature 7, is reached, color deconfinement and chiral symmetry
restoration occur simultaneously [6]. Now the remaining possibil-
ity is the existence of the intermediate plasma of massive quarks in
the low temperature, high density limit. The intermediate phase in
this limit has been discussed by Satz et al. [7], wherein the quarks
are massive, dressed by a gluonic cloud. As the temperature ap-
proaches T,, the gluonic cloud evaporates ( equivalent to vanishing
of the chiral condensate at T, ), leaving point like quarks and glu-
ons. Using percolation arguments they have calculated the baryon
density threshold for chiral symmetry restoration to be about 3.9
times that for color deconfinement. Compact star interiors are nat-
ural candidates where the intermediate phase could be present since
the limiting conditions of high density and low temperature are met
there. In this thesis we model this possible phase of QGP and de-
velop an equation of state in the relevant density regime. The pro-
cedure is surprisingly simple. At the range of density in question the
quark-quark interaction is color coulombic. There is a well estab-
lished mathematical machinery, already in place, for analysing QED
plasma under similar electric charge interactions. By exploiting this
analogy and incorporating the requisite modifications (arising due
to new internal degrees of freedom), the equation of state for QCD
matter is developed. We start by estimating the coupling strength
of QGP at densities relevant to compact stars, drawing analogy from

conventional one component plasma (OCP). Once we have the equa-
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tion of state, it is checked whether it is able to give bound quark

stars with mass radius relationship typical to compact stars.

3.2 Coupling strength and equation of state of
QGP

Plasma is a statistical system of mobile charged particles interact-
ing via the electromagnetic forces . In a conventional model the
electrical neutrality of the system is maintained by imbedding the
charged particles in a uniform background of neutralizing charges.
The plasma parameter I' is defined as the ratio of average coulomb
energy to average kinetic energy and gives the strength of coupling
due to coulomb interaction. For I' ~ 1 it is a strongly coupled
plasma (SCP).

For a system of charged particles obeying classical statistics the
kinetic energy maybe estimated approximately as T', where T' is
the absolute temperature. For a degenerate electron system with

number density n one instead uses the Fermi energy
Er = —(3n%n)3 (3.1)

The plasma parameter is then estimated as

e?/a
r= = 0.543r 3.2
2= 0543 (32)
where
a = (3/4mn)"3 (3.3)
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is the usually referred to as the ion-sphere radius or the Wigner-Seitz

radius and
3 me?

)

rs = ( (3.4)

4mn

is the Wigner- Seitz radius of the electrons in units of the bohr
radius. For valence electrons in metals r, = 2 — 6 , so that the
plasma parameter I' is greater than unity and hence is a typical
example of strongly coupled plasma.

The analogy is carried on to QGP : QGP expected to be found in
compact stars can be regarded as a deconfined quasi-color-neutral-
system of quarks and gluons with color coulombic mutual interac-
tions. In the compact star interior it is appropriate to take the
approximation 7" = 0. Hence it is plausible that quark matter in
compact star interior is similar to a degenerate electron system ex-
cept for a few modifications due to color degrees of freedom. In
analogy with QED plasma we define the plasma parameter for QGP

as
_ Cg?/4ma

r
Ep

(3.5)!

Here g, denotes the strong charge related to the strong coupling
constant by a, = g2/4w. C is the color Casimir factor associated
with gluon emission from a quark which is 4/3 .

Therfore in the QGP case

_ 4a,/3a
=%

In the QCD case Lorentz-Heaviside units are used.

r = 0.543r, (3.6)
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where

a = (3g./4mn;)"/? (3.7)
and
390 14Mqas
s = 3.8
: 4mng T3 (3:8)

g. incorporates the color degrees of freedom, n; stands for the
number density corresponding to the particular flavor and M, de-
notes the quark constituent mass.

Thus for quark matter composed of u and d quarks, with typical
values M, ~ m,/3, o, ~ 0.5, for densities ranging from 3py — 10p
(Normal nuclear density py = 0.16fm~3), we obtain r, = 0.67 — 1
and I' = 0.36 — 0.55 . Hence we have intermediate to strongly
coupled QGP (SCQGP) in compact stars. Also corresponding to

the scaling factor - Bohr radius - in the electron case (eqn(3.4)), we

4Mgos

£2)~! ~ 1fm, the hadron radius.

now have (

Asymptotic formulae for the ground state energy of an assembly
of electrons, imbedded in a continuum of positive charge, are known
in the high and low density regimes. At high densities the limiting
unperturbed state is that of a perfect Fermi gas. As the density
decreases exchange terms and electron correlations of various orders
become important. The resultant expansion for the ground state (in

Rydbergs) in the high density (small r;) regime , due to Gellmann

and Brueckner [8] gives :

Eg ~2.21r;% — 0.916r; ' 4+ 0.0622In 7, — 0.096

+7r5(0.0049In7, + C) + ... (3.9)
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where C' ~ —0.02 .
In the low density (large r,) regime the asymptotic expansion for
ground state energy of the electron lattice with suitable correction

terms due to Carr, Coldwell-Horsefall and Maradudin [9] gives :

Eq = —1.79186r ' +2.638r;%2 — 0.73r;2 + ... (3.10)

[sihara and Montroll interpolated these two asymptotic expansions
through the method of Pade approximants [10]. We use the resulting
formula in the QGP case with appropriate modifications primarily
with 7 given by eqn(3.8) (For a systematic discussion of the tech-
nique of two point pade approximation see appendix 1 of reference
[10]). The general formula for the ground state energy per quark (in
MeV) :

9 d*Ec _ 13.26 + 1.7085ry/ — 1.8144r, — 0.3813r3/% — 0.101172 + 0.012172/° 4 0.009972

) =
8Mya2’ dr? 1+ 0.12887L% +0.0013r; — 0.011072/% — 0.002872
(3.11)

(

Therefore for quark matter composed of u and d quarks the total

energy density is given by,

2
€qG — Z ’n,ngf + B (312)
f=1

and the corresponding pressure,

(_w)% B (3.13)

P =
3 aTsf

2
F=1
Where B denotes the confinement parameter in the form of MIT
bag constant.

For typical densities at the core in the SCQGP model, the quark

chemical potential j, ~ 400MeV. This lies below the strange quark
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constituent mass which is in the range m, ~ 0.5 — 0.6 GeV [11] .

This justifies the exclusion of strange quarks in the model.

1000 |

800
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SCQGP ——
MIT BagModel

P (MeV/fm®3)
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200

O 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

€ (MeV/fmS)

Figure 3.1: Equations of state for quark matter - solid line: SCQGP EOS
evaluated for B/* = 200 MeV, dashed line: MIT BagModel EOS for non-
interacting quarks with m, = mg = 0, mg = 150MeV and B'/* = 145 MeV.
In Figure 3.1, the SCQGP EOS for quark matter evaluated for
BY* = 200 MeV (solid line) is shown together with the EOS for
non-interacting quarks within the MIT BagModel (dashed line). We
have taken m, = mq = 0, m, = 150MeV and BY* = 145 MeV. The
interactions between the quarks in the SCQGP case has rendered
the EOS stiffer as compared to the non-interacting case. Next we

check whether the new equation of state can give bound stars with

observed mass-radius relations.
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3.3 The mass - radius relationship

For a spherically symmetric system the space-time metric has the

form

ds? = e dt? — e dr? — r?(d6? + sin® 0d¢?), (3.14)

where r and ¢ are the radial and time coordinates respectively, 6
and ¢ are the respective angles and v, A the metric functions.

The energy-momentum tensor for a perfect fluid is given by

T" = (e + P)u*u” + pg"” (3.15)

Here u* is the local fluid four-velocity, u* = ‘ﬁ”—: and p , € are the
pressure and energy density in the rest frame of the fluid.

When the star is in a state of hydrostatic equilibrium, the Einstein
field equations, given the space-time metric (3.14) and the energy
momentum tensor (3.15), yield the equations of structure known as

the Tolman-Oppenheimer-Volkoff equations [12, 13]

dp _ [p(r) + e(m)]m(r) + 4mr’ P(r)]
dr r[r —2m(r)] (3.16)

m(r) = 4#/ e(r')r’? dr’ (3.17)
0
Here m is the included mass within the coordinate r. Now, with
Eqgs.(3.12) and (3.13) we solve the TOV equations and obtain the
mass-radius relations for quark stars.
The SCQGP equation of state suggests stable stars (Fig: 3.2 &

3.3 - solid lines ) with mass-radius typical to compact stars. In Fig-

ure 3.2 the M-R relations obtained for the SCQGP case are com-
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Figure 3.2: Mass- radius relationship for quark stars - solid lines: SCQGP EOS
labelled I, II & III corresponding to values of confinement parameter BY/4 =

200, 210 and 220 MeV, respectively; dashed line: non-interacting quarks with
My = mgq = 0, ms = 150M eV within the MIT BagModel, BY* = 145 MeV.

pared with that for non-interacting quarks within the MIT Bag-
model. With BY*=145 MeV the non-interacting case yields max-
imum mass star with mass 1.83M. In the SCQGP case strong
coupling between quarks and the possible massive quark phase,
stiffened the equation of state to yield stable sequences with maxi-
mum mass > 2M for BY/* < 215MeV. Recently the mass of the
binary millisecond pulsar J1614-2230 has been calculated to high
accuracy using Shapiro delay, to be 1.97 + 0.04 M, [14]. The
discovery constrains softer equations of state with corresponding
maximum mass star < 2M. The SCQGP EOS is however in con-
formity with the recent discovery for appropriate choice of bag pa-

rameter values.
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Figure 3.3: Mass sequences - solid lines: SCQGP EOS with I, II, III - corre-
sponding to values of confinement parameter B/ = 200, 210 and 220 MeV,
respectively; dotted line: Non-interacting quarks with m, = mg = 0,mgs =
150MeV within the MIT BagModel, B/* = 145 MeV.

We summarize our results in the table below :

Table 3.1: The limiting mass (M,nq.) of quark stars in the SCQGP model for
different B values. The corresponding radius (R), central energy density (e.)
and quark number density (n.) are given

B1/4 Mmaa; R €c N
MeV Mg Km GeV/fm3 fm™3

200 2.241  9.72 1411 5.15
210 2.015 8.78 1.682 5.65
220 1.822 796 2.043 6.30

We make the following conclusions : quark matter at relevant
densities inside a compact star is intermediately to strongly coupled
(SCQGP). The equation of state of a degenerate electron system
obtained via Pade approximation yields a similar EOS for QGP,
mutatis mutandis. On solving the TOV equations with the resultant
equation of state, we obtain stable stars with mass-radius typical to
compact stars . For BY/* < 215MeV, the stiff equation of state gives
stable sequences with maximum mass = 2M. The result conforms

to recent observations.
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Chapter 4

Radial oscillations and stability of
quark stars with strongly coupled

QGP in their interior

4.1 Introduction

The pioneering work of Chandrasekhar[l, 2] in the framework of
general relativity revealed the existence of a dynamical instability,
wherein gaseous masses become unstable with respect to radial pul-
sations well before the Schwarzschild limit is reached. His conclusion
defines the sufficiency condition for the stability of a compact star -
that it should be able to withstand small radial perturbations (The
M (ec)
Bl

necessary condition being OM(ce) -, 0, M being the equilibrium stel-

€c

lar mass and €. the central energy density). In the previous chapter
we have developed the SCQGP equation of state describing mat-

ter within cold, pure quark stars composed of massive and strongly
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coupled quarks. From the mass sequences, obtained employing the
equation of state, the necessary condition for stability is found to
be satisfied (see Fig(3.3)). To check the sufficiency condition, the
normal mode analysis of radial oscillations has to be carried out.
The radial pulsations that preserve the spherical symmetry of a star
do not result in the emission of gravitational radiation. Hence the
normal mode analysis of such oscillations is less complicated and
straightforward. The eigenequation of Chandrasekhar which gov-
erns the normal modes has the Sturm-Liouville form. The eigen-
modes hence constitute a complete set and any arbitrary periodic
radial motion can be expressed as their superposition.

Studies on radial pulsations of quark stars — hypothetical stars
with quark matter in the interior — have been carried out earlier
by a number of authors for different proposed equations of state for
dense quark matter (For e.g. [3], [4], [5], [6], [7]). Here we start
by analysing the radial oscillations of quark stars described by the
SCQGP equation of state. We calculate the oscillation periods of the
fundamental and first overtone for different values of the confining
bag parameter (B). The eigen functions of the lowest three normal
radial modes are then analysed, for the particular example of BY/* =
210MeV. We then go on and study the damping of pulsations due to
non-equilibrium processes. The corresponding neutrino emissivities
are derived and the temporal evolution of pulsation energies are
analysed. For illustration, calculations are performed for SCQGP
stars with bag value, BY/* = 210MeV and the results are plotted
for stellar masses 1.518, 1.845, 2M,.
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4.2 Normal radial modes of quark stars in the

SCQGP model

When a compact star is in a state of hydrostatic equilibrium, the
Einstein field equations, given the space-time metric (3.14) and the
energy momentum tensor (3.15), yield the equations of structure

known as the Tolman-Oppenheimer-Volkoff equations [8, 9]

dm

W = 47'('7’26 y (41)
4 3

dr r(r —2m)

dv 1 dp

D - 4.

dr p+edr’ (43)

Here m is the included mass within the coordinate r. The metric

function A is given by

62)\ — (1 . Q_m)—l

- (4.4)

A has the same form both inside and outside the star although it
is the included mass m and not the total mass that appears in
the interior solution. In order to match the exterior Schwarzschild
solution the metric function v should obey the boundary condition
v(r = R) = 1In(1 — 21), where M is the mass of the star and R its
radius.

The equations governing radial oscillations were originally ob-

tained by Chandrasekhar[l, 2] on perturbing the equilibrium con-
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figurations governed by equations (4.1)-(4.3) in a manner such that
the spherical symmetry is not violated and only the terms linear in
order are retained. In our discussion we denote the normal mode
motions of the star by dr(r,t) = &,(r)e™nt. Here &,(r) are the nor-
mal mode amplitudes (or ‘eigenfunctions’) of the nth normal mode,
n=0 being the fundamental or nodeless mode. The quantities w,,
are the radial eigenfrequencies of the perturbed star.

Employing a new variable u, = r?e7“¢,, the Chandrashekhar
eigenequation governing the radial modes appears in the the Sturm-

Liouville form

d du,
J(Pd—t) F(Q+wW)u, =0 (4.5)

The functions P(r), Q(r) and W(r) expressed in terms of equilibrium

configurations of the star are given by

P = 6()\+3l/)r—2,yp 7

d
0= _46(>\+3u)7,—3d_p _ 87T63(>\+V)T_2p<6+p)
r
(A+3v),.—2 _ (dp ’
ez eyt () (4.6)

W = e =2(e 4 p) |

(e +p) @ denotes the adiabatic index. Solutions to the

P €
eigenequation are physically acceptable only if they satisfy certain

Here v =

boundary conditions. At the center of the star the requirement that

r
or and e are finite there leads to the condition
r

u—; should be finite or zero as r — 0 (4.7)
,
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At the surface of the star the Lagrangian change in pressure, Ap

should vanish which leads to the condition

ype¥ du,
Ap:—TQWzo at r = R. (4.8)

The eigenequation can now be solved using standard procedure
to obtain the frequency spectrum w? (n = 0,1,2.....) of the normal
modes. The squared normal mode frequencies being eigenvalues of
the Sturm-Liouville equation are real and form an infinite discrete
sequence, wi < wl < wi < ... For a star to be stable
against radial perturbations w? should be positive since then w itself
is real. If any of the eigenvalues, w?, is negative then w would be
purely imaginary leading to a solution that grows exponentially as
e, Thus a negative value of w? indicates instability. Since the
frequencies increase sequentially with n, w? > 0 is the sufficient
condition for stability.

The eigenmode analysis performed employing the equation of
state for SCQGP with different values for the confinement param-
eter B, yields the spectrum of eigenfrequencies, w?. The squared
frequencies w2 go to zero as the maximum mass star is reached, as
expected. We have plotted the results obtained by the normal mode
analysis in Fig.(4.1) and Fig.(4.2).

Solid lines indicate the period (7, = 27/w,) calculated for the
SCQGP equation of state for different B values (BY/* = 190,200, 210MeV).
Dotted lines indicate the period calculated for strange stars com-

posed of non-interacting quarks with m, = my = 0,m, = 150MeV
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Figure 4.1: (a),(b)-Oscillation periods (7), calculated for the SCQGP EOS, as
a function of central energy density (e.) for the fundamental and first excited
modes respectively. The curves are labelled I,IT & III corresponding to values
of confining bag parameter B/* = 190,200 & 210M eV in order.

within the MIT Bag Model for BY/* = 145MeV, which we have
plotted for comparison. Figures (4.1a), (4.1b) show the variation in
period with central energy density (e..) for the fundamental and first
excited modes respectively. The resulting pattern of curves indi-
cates that for a particular value of €., of the various mass sequences
obtained for different values of the bag constant, if we pick the more
massive star - it has a higher value of pulsation period . It is found
that pulsation periods tend to zero as the central density approaches
its minimum possible value, a property characteristic to quark stars
as opposed to hadronic stars [4]. The Fig(4.2a) shows the period as
a function of the stellar mass M (in units of solar mass) for the fun-
damental radial mode (n=0). It is found that for lower mass stars
the pulsation periods of the fundamental mode are typically of the
order of one tenth of a millisecond and have negligible dependence

on the bag parameter. For medium and higher mass stars a variation
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Figure 4.2: (a),(b)-Oscillation periods as a function of mass M for the funda-
mental and first excited modes respectively. Solid lines represent the period
calculated for the SCQGP EOS and are labelled I,IT & III corresponding to val-
ues of confinement parameter BY/4 = 190,200 &210M eV respectively. Dotted
lines indicate the period obtained for strange stars composed of non-interacting
quarks with m, = mg = 0,ms = 150MeV within the MIT BagModel for
BY* = 145MeV.

of pulsation periods with change in the confining bag parameter(B)
is seen - the periods show a decrease with decrease in bag constant.
The behaviour may be explained by noting that the stiffness of the
equation of state tends to increase with decrease in the confining bag
constant. Thus for quark stars of the same mass decreasing B value
indicates a stronger coupling between the quark constituents which
increases the normal mode frequencies/ lowers the pulsation periods.
The behaviour is more pronounced in the case of intermediate to
higher mass stars. Comparing with strange stars composed of non-
interacting quarks with m, = mgy = 0,mys = 150MeV treated
within the MIT Bag model with bag constant B4 = 145MeV we
see that the oscillation periods show considerable difference through-

out the entire range of stellar masses with the difference increasing
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with decrease in bag parameter value (increasing stiffness) for the
SCQGP equation of state. For SCQGP stars the oscillation periods
are 2 to 3 times lower than that for strange stars with non-interacting
quarks for the chosen bag constants (In earlier work by [10], [11] a
similar difference was seen in the case of hadronic stars with and
without interaction). In Fig(4.2b) we have plotted the pulsation pe-
riods for the first excited mode (n=1) as a function of stellar mass
M again for SCQGP stars as well as for strange stars within the
non-interacting bag model. For the first excited mode the pulsation
periods have typical values in the range, approx. 1/2 — 1/3 that of
the fundamental mode. The distribution of curves follow the pat-
tern akin to that of the fundamental mode discussed above, with the
compared difference with the non-interacting model now relatively

less.

4.3 Normal mode eigenfunctions of the radial modes

and the energy stored in the pulsations

A careful study of the behaviour of the normal mode amplitudes
with radial distance r provides insight into how matter described
by a particular equation of state responds to radial perturbations.
The normal mode amplitudes of radial oscillations are given by the
eigenfunctions, &,(r), of the Sturm-Liouville equation (eqn.(4.5)).
We now examine the variation of the normal mode amplitudes with
radius r, by plotting and analysing the eigenfunctions, &,(r) for

strongly coupled quark matter. The eigenfunctions are normalized
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Figure 4.3: The ‘ relative eigenfunctions’ £/r, for the SCQGP equation of
state, plotted against the ‘ relative radius’ r/R, for central energy densities
€. = 0.6 ,0.84 ,1.3 and 1.55 GeV/fm?® and bag parameter B'/4 = 210 MeV.
Fig(4.3a) represents the fundamental mode (n=0). Fig(4.3b) and Fig(4.3c) rep-
resent the first (n = 1) and second (n = 2) excited modes respectively.

using the condition

lim & = A (4.9)

r=0 T
A is a small normalization parameter. For illustration we choose the
bag parameter as BY/* = 210 MeV. Since it allows for a better
comparison the ‘ relative eigenfunctions’ &, /r are plotted against

‘ relative radius’ r/R, R being the radius of the star. The typical
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eigenfunctions for the fundamental (n = 0), first excited (n = 1)
and second excited (n = 2) modes, with normalization parame-
ter A = 1, are shown in Fig(4.3), each for central energy densities
€. = 0.6 ,0.84 ;1.3 and 1.55 GeV/fm?. The corresponding stars
have masses 0.56, 1.65, 1.98, 2.01 M respectively. For the funda-
mental mode the relative amplitude deviates from the homologous
behaviour ({/r = 1) starting from the core and continues to de-
crease with an increasing slope towards the outer layers of the star.
The shapes of the normal mode amplitudes tend to be determined
by the degree of homogeneity of the stellar model. The fundamental
mode is approximately homologous only if the logarithm of energy
density (log;g€) and the adiabatic index () are roughly constant
throughout the configuration barring the outermost layers [11]. In
the current model both log,; e and v are found to vary throughout
the star. The variation in +y is more striking. In Fig(4.4) a plot of

the adiabatic index as a function of energy density is shown.

. . . . . .
0.50 0.75 1.00 1.25 150 1.75
¢ (GeVHm®)

Figure 4.4: The variation in the adiabatic index v with energy density € for the
SCQGP equation of state with bag parameter B/* = 210MeV

The adiabatic index is found to increase first slowly and then
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steeply with decreasing energy density. The behaviour of the adia-
batic index can be attributed to the stiffness of quark matter due
to strong coupling between quarks as well as the effect of the bag.
With increasing adiabatic index the compressibility of matter de-
creases thereby accounting for the steady decrease in £/r. The fun-
damental mode is hence found to be much sensitive to changing
adiabatic index. Though not so evident, on careful examination it
is seen that there is a slight increase in the relative amplitude of
the fundamental mode with increasing central density as we move
towards the maximum mass star. The relative eigenfunctions of the
first and second excited modes show sinusoidal behaviour but with
increasingly smaller values in the outer layers of the star.

Once the spatial distribution of normal mode amplitudes &, (r)
are given, the pulsation energy stored in the radial oscillations can
be computed. Just like an arbitrary pulsation can be expressed as a
superposition of the normal modes, so the pulsation energy can be

written in terms of the normal mode components [11]

Epus = Y AZE0). (4.10)
R —v
with EY) = 2mw? /0 W (r*e "&,) dr (4.11)

The function W(r) is given by eqn(4.6). The dimensionless ampli-
tudes A, can be determined from pulsation damping mechanisms
which operate to dissipate the energy stored in the pulsations. We
consider the damping of radial pulsations and the resultant tempo-

ral evolution of pulsation energy in the next section. We restrict
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our calculations to small amplitude pulsations (o < 1) and for

illustration choose the bag parameter value B4 = 210 MeV .

4.4 Damping of pulsations by non-equilibrium
processes

For a non-vibrating quark star with matter described by the zero
temperature SCQGP equation of state, the condition for 8 equilib-
rium is given by the relation!, u = pg — g, — pe = 0. Here p; are
the chemical potentials of the particle species u, d and e~. Radial
pulsations drive the stellar matter out of chemical equilibrium in
which case du(r,t) # 0. The processes tending to restore the matter
back to equilibrium lead to the damping of pulsations. The most
efficient of the non-equilibrium processes is the direct-Urca process.
The direct-Urca processes are simple §-decay processes which in the
case of ordinary neutron star matter are the reactions n — p+e~+v,
and p+e~ — n+v,.. In ordinary neutron stars the direct-Urca pro-
cess is forbidden since the laws of conservation of momentum and
energy cannot be satisfied for the expected composition of neutron
star matter. On the other hand the analogous processes can occur
for quark matter - the energy and momentum conservation laws are
satisfied once we take into consideration the the finite quark masses
and /or the interaction between quarks [12]. In the SCQGP phase we

have assumed the quarks to be massive and interacting. Hence we

1Here we consider quark matter to be composed of u,d quarks and electrons such that
conditions of B-equilibrium and charge neutrality are satisfied. In the original SCQGP EOS,
the contribution due to electrons was ignored since the corresponding modification to the EOS
is negligible at quark matter densities.
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expect direct-Urca process to be the primary and dominant source
of pulsation damping in such quark stars.

In what follows we analyse the quark direct-Urca process in the
domain of SCQGP model and calculate the associated neutrino lu-
minosities. Initially we consider the general case of a vibrating quark
star at finite temperature T. In this connection we closely follow
Iwamoto[12, 13] while making appropriate modifications pertinent
to the context. Iwamoto has derived the neutrino luminosities for
equilibrium quark matter at finite T which we adapt to the non-
equilibrium case.

For quark matter devoid of strange quarks the direct-Urca process

is given by the reactions

d—u+e + 7, (4.12)

and v+ e —=d+ v (4.13)

The rate at which energy is lost due to neutrino emission process

(4.12) in a unit volume, the neutrino emissivity, is given by

er. (T, 6p) = 6V~ (Hv/dp’)Ez

x Wyin(pi) [1 —n(p3)] [1 — n(pi)] (4.14)

Wi is the transition rate for § -decay given by

4
Wy = V (2m)* 0% (pr —p2 —ps —pa) | M |? /HQEZV (4.15)

i=1

where the four-vectors, p; = (E;, p;), numbered from ¢ = 1 to 4, de-
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note the particles d, 7., u, e~ in order. The factor 6 stands for the
three color and two spin degrees of freedom of the initial d quark, V'
represents the normalization volume and n(p;) = (1 + exp[(E; — ) /kT]) ™"
is the Fermi-distribution function. The term (1-n(p)) ensures that
the exclusion principle is obeyed. | M |? is the squared invariant
amplitude averaged over initial d quark spin (o7) and summed over

the final spins of u quark (o3) and electron (oy),

1

(M PP= 5 ) [ M= 646G cos® 0 (prpa) (psps)  (4.16)

01,03,04

where the weak-coupling constant, G ~ 1.435 x 107 erg cm® and 6, is
the Cabibbo angle (cos?#6, ~ 0.948). In the SCQGP model u and
d quarks are massive and non-relativistic while electrons are ultra-

relativistic. We therefore have

(p1.p2)(p3.ps) ~ E1EyE3E, (1 — |§3 | cos 934>
3

| pi |
X | 1———=—-cosf 4.17
< B cos 612 (4.17)
with cos6;; = p;.p;/|pil.|pjl. In degenerate Fermi systems only

those particles with momenta that lie close to the respective Fermi
surfaces can participate in a reaction. Hence we can replace the
magnitude of quark and electron momenta by the respective Fermi
momenta. Accordingly cosfs, can be expressed as a function of
Fermi-momenta (pp(i)) of the involved fermions. We neglect the

neutrino momentum in our calculations. The integrals in the ex-
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pression for emissivity can now be decoupled and one can write

2 2
e (T.5p) = 24G? cos? 0. (1 _ pr(u)

(27{_)8 COS 934) AB (418)

*
mu

m; denotes the quark effective mass, i = d, u. Here

4 —
A= (H/d9z> 8°(pi — p3 — pa) (1 — |§1 | c05912> (4.19)
i=1

1

is an angular integral and

B = pp(d) pr(u) pi(e) mim’, / 1E, / E3dE,
0 0

X / dEg/ dE4 E2 55(E1 — E2 — E3 — E4) (420)
0 0

is the energy integral with S = n(pi)(1—n(p3))(1—n(p1)). The an-
gular integral can be done analytically to give A = 3273 /pr(d) pr(u) pr(e).
The energy integral can be evaluated using standard procedure and

can be written, in terms of dimensionless variables y = F,/kT and

op = Oou/kT as

(KT)°
2

B = pp(d) pr(u) pr(e) mym;, F (o) (4.21)

The dimensionless function F is defined as

F(z) = /OOO y’dy ( mty—a) ) (4.22)

1 +exp(y — z)

Next we consider the limiting case in which duz > 1. Then the
function F can be represented by the asymptotic formula F =

(1/60)(6m)® [14]. If we finally write down the neutrino emissivity
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in this particular limiting case dfz > 1, we obtain the temperature

independent form

G? cos® 0, . .
7. (1) = J5 gm0 PF(€) M,
X <1 - # cos 934) (6u)° (4.23)
mkc

This final equation for neutrino emissivity is what we need in our
specific case of a zero temperature pulsating SCQGP quark star.
Following the same method we can calculate the v, emission rate
from the inverse process (4.13) which yields the same expression
as the above in the limiting case —dpz > 1 . In this latter limiting
condition the inverse process of v, emission (4.13) dominates over the
U, emission process (4.12)(which is then negligible in comparison).
In the former limit the converse is true. It has to be pointed out that
during our calculation of neutrino emissivities we naively replace
the quark effective masses by their constituent masses. To obtain
an expression for the Fermi momenta (pg(q)) of strongly coupled
degenerate quarks we have utilised the formula for Fermi momentum
derived in the case of an electron fluid with Coulomb interactions
by Isihara & Kojima [15]. Appropriate modifications are done to
include the quark color degrees of freedom primarily by replacing r;
for degenerate electron system by r, for degenerate, massive quarks

given by eqn(3.8). In natural units we can write

8 0.95957
pe(q) = SMya, (

3 A(rs)) MeV (4.24)

/rS
with A(ry) = 1 — 0.16586 r, 4 72 (0.0084411 Inr, — 0.027620)
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To proceed with our analysis of pulsation damping we next write
down the relationship between the chemical potential difference oy (r, t)
and an arbitrary pulsation &(r,t). The relation has been derived in
the context of neutron [-decay [16], but can be readily applied to

quarks which possess a baryon number. The relation is as follows

5 v
—m ng 6—22 (7"26”’5(7“, t)) (4.25)

onlr.t) = ony, r2 Or

Here the partial derivative with respect to n; is taken at constant
Ze = ne/ny. The variables ny, n. are the equilibrium baryon num-
ber density, electron number density respectively. Using the above
equation we can express the neutrino emissivities in terms of £(r,t).
If we denote the total neutrino emissivity by ¢ = ¢, + €7, then the

total redshifted neutrino luminosity L of the star is given by
R
L = / ze dV (4.26)
0

where € is the total neutrino luminosity averaged over a pulsation
period and dV is the proper volume, dV = 47w r?etdr.

We now go forth and calculate the pulsation damping in the
fundamental mode of a zero temperature SCQGP quark star. In
the presence of pulsation damping the normal mode motions can
be represented by, &y(r,t) = Ao(t)&(r) coswt. The dimension-
less amplitude Ag(t) is a slowly decreasing function of time with
Ap(t = 0) = 1. The pulsation energy in the fundamental mode
with damping is Epus = EY A%(t). Now assuming the direct-

puls

Urca reactions to be the only major damping mechanism present,
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the rate of energy loss from pulsations is equal to the total neutrino
luminosity:
dEpuls

— s g 4.2
o (4.27)

On solving the above equation with the initial condition Ay(0) = 1,
we obtain the variation in pulsation energy with time. We have
calculated the neutrino luminosities and pulsation energies in the
fundamental mode for SCQGP quark stars for the bag parameter
B'* = 210 MeV and normalization parameter A = 0.01. The
chosen central densities are p, = 1.392 x 10'°, 1.783 x 10'°, 2.54 x
10" gm ecm ™ which yield stars of masses 1.518, 1.845, 2M re-
spectively. The corresponding neutrino luminosities are plotted in
Fig(4.5a) as a function of time, ¢. The variation in pulsation energies
with time is shown in Fig(4.5b). The figure demonstrates that the
capacity of higher mass quark stars, to store the pulsation energy is
much less than that of lower mass stars. Lower mass stars can store
a relatively increased pulsation energy for longer intervals of time
as compared to higher mass stars. This behaviour can be explained
by noting that the pulsation energy is dependent on the square of
the normal mode frequency. From earlier calculations (see figures
Fig(4.1) and Fig(4.2)) it is evident that the normal mode frequen-
cies of quark stars decrease with increase in stellar mass M. Now the
rate of energy loss due to pulsation damping tapers off with time.
Therefore it comes out that lower mass stars can retain higher pul-
sation energies for longer durations when compared to higher mass

stars. The neutrino luminosities plotted in Fig(4.5a)
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Figure 4.5: Fig.(4.5a) shows the neutrino luminosities (L), in the fundamental
mode for SCQGP stars with bag parameter BY/* = 210MeV, as a function of
time. The chosen central densities are p, = 1.392 x 10®, 1.783 x 10!, 2.54 x
10*° gmem ™3 with stellar masses 1.518, 1.845, 2M respectively. The nor-
malization parameter A = 0.01. Fig.(4.5b) shows the temporal evolution of
pulsation energy in the fundamental mode for SCQGP stars with chosen bag
parameter, central densities and corresponding stellar masses as in Fig.(4.5a).



show a more dramatic behaviour. The neutrino luminosity initially
follows the pattern Loy, > Lisassm, > Lisism,- In a matter of
hours this pattern is found to be reversed. The baryon number den-
sity (np(r)) of higher mass quark stars have values larger compared
to their lower mass counterparts. Hence the moment the damping
is ‘switched on’, the number of triggered [-reactions and the cor-
responding number of emitted neutrinos are far greater than that
for lower mass stars - the initial pattern for luminosity results. Now
the oscillation frequencies of lower mass quark stars are larger com-
pared to higher mass quark stars. Therefore with passage of time
the [-reaction rates of lower mass stars catch up with the higher
mass stars which oscillate with a lower frequency. Hence a reversal

of pattern results.
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Chapter 5

Conclusion

We have conducted a study of dense matter at extremely low tem-
peratures and moderate baryon densities . In this niche of the T'—
phase diagram, the nature of dense matter is not yet conclusive.
Based on arguments given in section 3.1, it is quite plausible that
matter in this region is in the deconfined quark phase, wherein chi-
ral symmetry has not yet been restored. It turns out that the rel-
evant densities are those realised by nature in compact star interi-
ors. Hence we expect that compact stars contain quark matter in
bulk, with the constituting quarks in the massive phase. Surmising
that the study of bulk plasma properties of this intermediate mas-
sive phase of quark matter would be rewarding, we set up on the
trail, drawing upon the analogy with the well known QED plasma.
Defining the plasma parameter for a system of degenerate massive
quarks at near zero temperature, in the same line as QED plasma (
since in our density range of concern the quark - quark interactions

are expected to be color Coulombic), the coupling strength of QGP
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was calculated. It turns out that in the density range 3py — 10pg
(Normal nuclear density py = 0.16fm™3), QGP is intermediately
to strongly coupled (SCQGP). Next, to obtain an equation of state
for the relevant QGP phase, we carried on further with the QED
plasma analogy. Utilizing the equation of state of a degenerate elec-
tron system obtained via Pade approximation a similar EOS for
QGP was developed, mutatis mutandis. Appropriate changes were
made considering the relevant color and flavor degrees of freedom.
Once the equation of state was in place the next task was to check
whether it was able to yield stable bound stars with mass-radius
typical to compact stars. The equations of structure, the Tolman-
Oppenheimer-Volkoff (TOV) equations were solved with the resul-
tant equation of state. For BY/* < 215MeV (B being the confining
bag parameter), the stiff equation of state gives stable sequences
with maximum mass 2 2M,. The result is relevant since it is in
conformity with recent observation. Recently the mass of the binary
millisecond pulsar J1614-2230 has been calculated to high accuracy
using Shapiro delay, to be 1.97 + 0.04 M, [1]. The result constrains
soft equations of state, which yield mass sequences with maximum
mass star < 2My. The SCQGP equation of state yield mass se-
quences with maximum mass star 2 2M, for apposite choice of bag
parameter values.

In order to check whether quark stars described by the SCQGP
equation of state satisfy the sufficient condition for stability, a study
of the radial pulsations of the corresponding quark stars was carried

out. The sufficient condition for stability is that the stars be stable
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with respect to radial perturbations. The normal mode analysis of
the radial modes confirmed the stability of quark stars described by
the new equation of state. The normal mode pulsation periods for
the fundamental and first excited modes were obtained and plot-
ted for varying bag parameter values (B). The calculated pulsation
periods for the fundamental mode are typically of the order of one
tenth of a millisecond. For lower mass quark stars the pulsation pe-
riods are found to have negligible dependence on the confining bag
parameter value. For medium and higher mass stars a variation in
oscillation periods is seen with change in the bag parameter. The
periods are found to decrease with decrease in bag constant (in-
creasing stiffness of the EOS). Furthermore we have compared the
oscillation periods of SCQGP stars with strange stars composed of
non-interacting quarks treated within the MIT bag model. The os-
cillation periods for SCQGP stars show considerable difference (2 to
3 times lower) when compared to strange stars with non-interacting
quarks throughout the entire range of stellar masses with the differ-
ence increasing with decrease in bag parameter value for the SCQGP
equation of state. Thus the detection of radial oscillations (if and
when possible) can provide information constraining the equation of
state for dense matter.

In our study we have plotted and analysed the eigenfunctions for
SCQGP stars for the fundamental, first and second excited modes
in the particular case of bag parameter value, B'/* = 210MeV. A
strong correlation is found between the variation in adiabatic index

and behaviour of the eigenfunctions for the fundamental mode. The
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adiabatic index is found to shoot up near the surface layer of the
star which must be attributed to the presence of the confining bag.
Hence the particular behaviour of the plotted eigenfunctions must
be restricted to quark stars.

Finally we considered the damping of the radial pulsations by
non-equilibrium processes. We have derived the expression for neu-
trino emissivity due to the major and dominant non-equilibrium
process — the direct-Urca process — for small amplitude radial pulsa-
tions. The direct-Urca process is open in the interior of an SCQGP
star composed of massive and interacting quarks. The derivation
was done under the assumption that stellar matter is transparent
to neutrinos and thereby neglecting their effect on the kinematics
of the process. In the case of zero temperature SCQGP stars the
formula for emissivity has a temperature independent form. The
red shifted neutrino luminosities in the fundamental mode were cal-
culated for some specific cases. We chose the bag parameter value
B'Y* = 210MeV and picked stars with masses 1.518, 1.845 and
2Mg. The temporal evolution of pulsation energy in the aforesaid
cases were obtained and plotted. The damping time scale is found
to be of the order of years. The plots indicate that lower mass stars
can store a relatively increased pulsation energy for longer intervals
of time as compared to higher mass stars. Though exact calcula-
tions have not been made it may be surmised that a fraction of the
energy extracted by the Urca process is converted to electron kinetic
energy, heating up the star. Consequently this should lead to electro

magnetic emissions from the surface of the quark star.
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Future Work

In this thesis we have considered quark stars constituted entirely of
pure quark matter. A more realistic version would have pure quark
matter possibly confined to the core region. The outer layers would
comprise a mixed phase with quarks and hadrons interspersed, in
physical equilibrium with each other, followed by a hadronic crust.
In future work, the study of such a more realistic ‘hybrid star’, using
a modified equation of state, incorporating the new possible phases
can be undertaken.

Again, in this thesis we have considered static, non- rotating
quark stars. It would be worthwhile to consider the slow and fast
rotation of quark stars, which affects the structure of the star as well
as the space-time in its vicinity. The limits on rotation posed by
mass loss at the equator can provide valuable information about the
internal structure of the star. A study of gravitational instabilities
arising due to rotation is also worth pursuing.

Analysis of the non-radial oscillation modes of quark stars is
significant, due to the associated emission of gravitational waves.
Gravitational waves travel through space-time basically unaffected,
carrying ‘pure’ information regarding the physical structure of the
quark star. The study of the non-radial oscillation modes can hence
provide rich and valuable information concerning matter at extreme

densities.
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