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Then even nothingness was not, nor existence,

There was no air then, nor the heavens beyond it.

What covered it? Where was it? In whose keeping

Was there then cosmic water, in depths unfathomed?

Naasadiiya Suktha (Rigveda)
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Chapter 1

Introduction

1.1 A Brief History Of Elementary Particle Physics

The discovery of the electron by J.J Thompson in 1897, using a

simple particle accelerator - a cathode-ray tube - set the stage for

modern particle physics. Electrons are elementary particles within

the current experimental resolution. The proton and neutron were

discovered subsequently and initially regarded as elementary par-

ticles. But soon there was a proliferation in the inventory of the

so called elementary particles. The study of cosmic rays led to the

discovery of muons in 1937, pions and strange particles followed a

decade later. In the 1950’s, after world war II, the focus of par-

ticle physicists shifted from cosmic rays to man-made particle ac-

celerators - a transition from particle hunters to particle farmers.

The use of particle accelerators with bubble chambers revealed a

great number of new particles, including mesons of spin higher than

zero and baryons of spin higher than half with various values for
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charge and strangeness. All these new particles, generically called

hadrons, though unstable, exhibit behaviour broadly similar to pro-

tons and neutrons. So now physicists had to deal with dozens of

these hadrons, including the nucleons, which transformed to each

other in various befuddling ways. Instead of nuclear force, the in-

teraction between hadrons came to be known by a new name, the

strong interaction.

The rapidly multiplying number of hadrons clearly indicated that

they could not all be elementary. In the early 1960’s Murray Gell-

Mann and George Zweig independently put forth the quark model as

a step towards a classification scheme based on certain regularities in

the observed spectra of hadrons. According to the quark model all

known hadrons are constituted of much more fundamental particles,

which Gell-Mann called ”quarks” and which came in three flavors

- the up, down and strange (later charm, top and bottom quarks

were added to the model)- SU(3) being the relevant symmetry group

[1, 2, 3]. Baryons are composed of three quarks and mesons comprise

a quark anti-quark pair. The observed patterns in masses, lifetimes,

spins of the known baryons and mesons fell into place once they

were assumed to have a quark substructure. The quark model gained

strength by the discovery of the Ω− particle belonging to the baryon

decuplet, as predicted by the model. Quarks being fermions, in

order that the Pauli principle is not violated, it was proposed by

Greenberg, Han, Nambu [4, 5] that the quarks be endowed with

an additional quantum number, which was later named the quark

’color’ ( The introduction of color as a new degree of freedom was
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necessitated by the discovery of ∆++ particle with a substructure

involving identical u quarks ). Since a baryon is composed of three

quarks it is quite natural to let color degrees of freedom take on

three different values or we can say that each quark of a particular

flavor comes in any of the three colors, say red, green or blue. Again

the π0 → 2γ decay rate is found to support the assignment of three

colors to each flavor of quark. All observed hadrons are color neutral.

Despite its power to predict the existence of new particles the

quark model did not receive a warm response from theorists at the

time. The reason was that quarks were never detected in isola-

tion. Even Gell-Mann regarded quarks to be mere mathematical

constructs rather than a physical reality. The first experimental

evidence for quarks as the real dynamical constituents of hadrons

came from the deep inelastic electron-proton scattering experiments

performed at the Stanford Linear Accelerator Center (SLAC) in

1968. The scattering cross-sections gave evidence of elastic scatter-

ing from point like objects inside the proton [6, 7]. The experimental

results at SLAC could be explained only if quarks inside a proton

are nearly free, subject to no force, as was proposed by Feynman

(He used the name ’partons’ for the proton constituents instead of

quarks) [8, 9]. Now,there arose a paradox. The strong interaction

is powerful enough to permanently confine quarks within hadrons

(isolated quarks are never seen) but Feynman’s suggestion requires

the interaction to be weak enough at short distances so that quarks

behave as if they are free particles. A solution to the paradox was

provided subsequently by David Gross, Wilczek and Politzer.
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The theory of strong interactions was developed in the 1970’s as

a generalization of the existing gauge theory of electromagnetic in-

teraction - quantum electrodynamics (QED). In the electromagnetic

case the force carriers are massless vector bosons, the photons. Anal-

ogously in the case of strong interactions the corresponding massless

vector gauge bosons are called the gluons. Now the color symmetry

is an exact SU(3) symmetry and the gluons form an SU(3) color

octet. The fundamental difference between the theory of strong in-

teraction which came to be called quantum chromodynamics (QCD)

and QED is that in QCD the generators of the symmetry do not

commute with each other. The theory is therefore a non-Abelian

gauge field theory, the prototype of which is the Yang-Mills field.

Non-Abelian gauge field theories have some peculiar properties one

of which proved to provide the solution to the paradox posed by the

SLAC experiment.

1.2 Discovery Of Asymptotic Freedom And The

Principle Of Quark Confinement

One of the unique properties of non-abelian gauge theories and hence

QCD is that they are asymptotically free. Thus for QCD, as the en-

ergy momentum transfer increases the effective interaction between

quarks decreases and as these variables tend to infinity, the the-

ory approaches a free field theory. This property is called asymp-

totic freedom as discovered by David Gross, Wilczek and Politzer

[10, 11, 12, 13]. The asymptotic freedom is a result of the anti-
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screening of color charge. Since the gluon fields themselves have

color and hence have self coupling, a bare color charge centered at

origin gathers in space a thundercloud of gluons. Thus as one tries to

find the bare quark by moving up closer through the gluonic cloud

the color charge appears smaller and smaller. As a consequence,

with decrease in the typical length scale or with increase in the en-

ergy scale, the coupling strength decreases in QCD. This explains

the SLAC results where quarks behave as if they are free particles,

though they are indeed strongly interacting and ultimately confined.

Asymptotic freedom established QCD as the fundamental theory of

strong interactions.

Since the strong coupling constant (αs) becomes small at short

distances/ high momentum transfers, the interactions between quarks

and gluons can be treated using perturbation theory. In field theo-

ries, the Feynman diagrams with closed loops corresponding to the

quantum corrections, calculated in perturbation theory have ultravi-

olet divergences originating from the intermediate virtual states with

high momenta. Renormalization is the procedure through which all

the divergences arising from the Feynman diagrams at all orders are

absorbed into a redefinition of fields masses and coupling constants.

Gerard ’t Hooft proved the renormalizability of the whole family

of Yang-Mills theories and hence QCD [14, 15]. In the framework

of perturbative QCD (pQCD) the renormalized effective coupling

constant or the running (scale dependent) coupling constant is ex-

pressed as a function of µ which is the energy scale at which the

divergences are renormalized. When one takes µ close to the scale
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of the momentum transfer Q then αs(µ
2 = Q2) and gives the effec-

tive strength of coupling for the process. The coupling satisfies the

following renormalization group equation:

µ2dαs
dµ2

= β(αs) = −(β0α
2
s + β1α

3
s + .....) (1.1)

where β0 = 1
4π

(11− 2
3
nf ) is referred to as the one loop beta-function

coefficient, β1 is the two loop beta-function coefficient and so on and

nf is the number of quark flavors. With nf = 3 in the one loop

approximation an exact analytic solutin exists for eqn(1) and is given

by

αs(µ
2) =

1

β2
0 ln( µ

2

Λ2 )
(1.2)

Here Λ is a constant of integration which gives the scale at which

the perturbatively defined coupling constant diverges. Λ therefore

corresponds to the non-perturbative scale of QCD. It is called the

QCD scale parameter, to be determined from experiments. The

equation (1.2) clearly indicates that at large momentum transfers,

the coupling strength αs → 0. The quarks therefore behave as if

they are free particles(asymptotic freedom). On the other hand, at

low momentum transfers or equivalently, larger distances, Q ∼ Λ,

αs becomes quite large and the perturbation theory is no longer reli-

able. This behaviour may be linked to the confinement of quarks and

gluons within hadrons and is known by the name ‘infrared slavery’.

Since QCD in the non perturbative regime is intractable analyti-

cally, phenomenological models are employed in order to compute

the various properties of hadrons.
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At small distances where the coupling constant which deter-

mines the strength of quark-gluon interaction is small, it is expected

that the quark-quark interaction should bear some resemblance to

electron-electron interaction. According to phenomenological po-

tential models, at small distances the dominant contribution to the

qq interaction is the one gluon exchange interaction. The one gluon

exchange potential (OGP) is mostly of the Coulomb type and very

similar to one photon exchange potential between electrons, gluon

and photon being both massless. The main difference apart from

the difference in coupling strength is a numerical factor (generally

called the Casimir factor), arising from the non-abelian nature of

the colored gluons. Accordingly the strength of quark-antiquark

interaction in a color singlet state is given by −4αs
3

and that for

quark-quark interaction in a color singlet state by −2αs
3

( The anal-

ogous strengths in the electron-positron and electron-electron case

are −α and +α respectively, α being the fine structure constant).

The long distance confining potential does not follow directly

from field theory. A number of possible options for the potential

at large distances is available phenomenologically, subject to the

constraint that they are able to reproduce the hadronic masses. A

linear confining potential is quite plausible and the most commonly

used. The total interaction potential for quarks is most often written

as the sum of the Coulombic one gluon exchange potential and the

linear confining potential,

V (r) =
Cαs
r

+Kr (1.3)
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Here C is the color Casimir factor. The constant K is referred to

as the string tension. The lines of force of the color field pulled

together by the gluon-gluon interaction can be imagined to take the

form of a tube or string. If the string is pulled indefinitely then

the stored energy reaches a point such that it is energetically more

favourable to break into two short strings, say by creating a new

quark-antiquark pair. A potential of this form was pioneered by the

Cornell group and is called the Cornell potential [16, 17].

Another non-perturbative approach to QCD is Wilson’s lattice

gauge theory (LGT) [18]. In lattice QCD the 4-D space time is

discretized to a lattice with quarks occupying the lattice sites and

gluons, the lattice links. On a discrete space time the path inte-

gral that defines the theory becomes finite dimensional and can be

evaluated utilizing the Monte Carlo methods. Lattice QCD calcula-

tions in the quenched approximation have been made to simulate the

heavy quark-antiquark potential for a color singlet, and the results,

interestingly, show a linearly rising confining term in the potential.

The potential computed on the lattice was found to be very much

in agreement with a Coulomb + linear potential (the Cornell po-

tential) [19]. The lattice studies carried out so far hence leave little

doubt that the quarks are indeed confined, though a first principle

derivation of confinement is yet to be done.
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1.3 The Quark Gluon Plasma (QGP)

In 1965 almost a decade before the discovery of asymptotic freedom

Hagedorn had predicted a limiting temperature for ”strong interac-

tions” [20, 21]. Analysing the high energy hadronic collisions using

a bootstrap statistical model (BSM) he found that the hadronic

mass spectrum shows the following asymptotic behaviour- it grows

exponentially with increasing mass. He proposed that as the energy

of collision becomes large the temperature tends to a finite limit

which is the highest attainable temperature with a numerical value

of about 160 MeV 1. The existence of an energy independent high-

est temperature is a consequence of the exponentially growing mass

spectrum. As more and more energy is pumped into the system it

is consumed to excite resonances, create more and more particles

rather than increasing the kinetic energy of existing particles. Thus

in the limit the kinetic energy per particles tends to remain a con-

stant, the temperature reaches the highest possible value. But the

above conclusions were reached by assuming hadrons to be point

particles devoid of a finite size.

Quark models visualize hadrons as having a finite size with quarks

as their fundamental constituents. With the advent of asymptotic

freedom quarks were known to interact weakly in close proximity.

Relying on these ideas in 1975 Cabibbo and Parisi in their seminal

paper entitled ’Exponential hadronic spectrum and quark libera-

tion’ [12] proposed that the Hagedorn temperature was not a high

1Here and throughout the thesis natural units are employed, else otherwise stated explicitly.
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temperature limit, rather it is the critical temperature for phase

transition to underlying quark gluon matter. The picture is clear

within the MIT bag model - the model ideates hadrons to be bub-

bles of perturbative vacuum to which quarks are confined but in the

interior of which quarks can move about freely [22]. The perturba-

tive vacuum is an excited state, with an energy density B (called

the bag constant), above normal QCD vacuum. In conformity with

the Hagedorn spectra, the bag model gives an exponential mass

spectrum which follows from a particular feature of the model - the

mass of the bag is proportional to the time averaged volume. With

increasing energy density the bags cluster and overlap with each

other. The component quarks find in their vicinity more and more

quarks, thereby loosing their sense of belonging to a particular bag.

The model therefore provides an intuitive picture of a deconfine-

ment transition of hadronic matter to quark gluon matter wherein

the quarks interact weakly owing to asymptotic freedom.

Concurrent to Cabibbo and Parisi, Collins and Perry suggested

that super dense matter which should exist in the neutron star cores,

exploding black holes, early big bang universe essentially comprises

a quark soup [13]. For instance within a neutron star where the cen-

tral density could be as high as 10 times the normal nuclear density

the hadrons overlap with the fundamental quarks confusing their

individuality. Quarks being asymptotically free a weakly interact-

ing quark gluon matter is therefore expected at such high densities.

They proposed that due to many body effects long range interac-

tions are screened in such systems banishing problems arising due
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to the infrared behaviour of quark confining forces. In 1978 calcula-

tions by Edward Shuryak showed that unlike virtual gluon loops in

QCD vacuum which antiscreen the color charge, in real quark gluon

matter the gluons screen the color charge [26]. Since this behaviour

is inherent to conventional QED plasma Shuryak coined the name

Quark Gluon Plasma (QGP for short) for the new deconfined phase

of quarks and gluons.

There was a fervour of excitement over this new predicted phase.

Could it be produced in the laboratory under controlled conditions?

Heavy ion collisions with higher collision energies than ever before

would be required to accomplish the feat. Since the primordial mat-

ter a few microseconds after the big bang should possibly have been

a soup of quark and gluons, QGP if produced in the lab could give

valuable information about the creation and evolution of the uni-

verse. The search for the phase transition from hadronic matter to

quark-gluon plasma (QGP) utilizing high energy heavy ion collisions

began in the mid-1980s with experiments at CERN’s Super Proton

Synchrotron (SPS) in Europe, and Brookhaven’s Alternating Gra-

dient Synchrotron (AGS) in the US. In 2000, the search moved onto

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and later

to CERNS Large hadron collider (LHC). Heavy ion collision exper-

iments at AGS has lab energy ∼ 2-11 GeV per nucleon pair while

SPS accelerates heavy ions at lab energy ∼ 200 GeV per nucleon

pair. At AGS/SPS the collision experiments are fixed target experi-

ments. RHIC/LHC are heavy ion colliders where countercirculating

beams of heavy nuclei collide at huge center of mass energies. RHIC
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accelerates and collides ions at center of mass energies as high as 200

GeV per nucleon pair for gold nuclei. LHC the worlds largest and

highest energy - particle accelerator can accelerate and collide lead

beams at extremely high center of mass energy ∼ 5.4 TeV per nu-

cleon pair.

When two heavy nuclei such as the gold nuclei are accelerated

to ultra relativistic energies and then caused to make a head on

collision, the nuclei become Lorentz contracted as ’pancakes’. Then

the nucleon-nucleon collisions within the nucleus-nucleus collisions

occur almost simultaneously and at spatial proximity thereby cre-

ating a region of very high energy density. But QGP even if created

in the initial stages of such collisions, cools rapidly, by expansion

and by the emission of various radiation and finally makes a phase

transition to a gas of hadrons. Hence the collider experiments rely

on signatures of QGP provided by theory. The most propitious

signatures that provide information about QGP formation are: (1)

An excess of ”direct photon” production - Direct photons produced

from the interaction of matter in the hot QGP phase lie in the re-

gion of photon transverse momentum pT in the range 2− 3GeV/c.

The photons provide information about the properties of QGP at

the time of their production. Since they are hardly absorbed by the

medium they are relatively ’clean’ probes of the QGP phase. (2)

Strangeness enhancement - A high abundance of strangeness in the

QGP drop is predicted resulting from strangeness pair production

mainly due to gluon fusion process gg → ss [23]. Therefore during

hadronization processes there should be a high yield in the other-
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wise rarely produced particles such as strange antibaryons.

(3) J/ψ meson suppression - If cc pair production occurs in a heavy

ion collision and if the collision results in the formation of QGP

then color screening in the plasma prevents the binding of charm

and anticharm quarks to form J/ψ. J/ψ suppression therefore is a

positive signature of QGP formation.

Though the pioneering heavy ion collisions at AGS and SPS pro-

vided an opportunity to study excited nuclear matter at high en-

ergy densities with voluminous production of various particle species

no unambiguous evidence for the formation of QGP was provided.

Strangeness enhancement was observed and measured for various

systems in nucleus-nucleus collisions at the AGS [27] and the SPS

[28, 29, 30, 31, 32] and a suppression of J/ψ [33] was measured

for central collisions in nucleus-nucleus experiments at the SPS but

neither AGS/SPS could provide direct evidence for QGP formation.

In the RHIC heavy ion experiments, immediately after the beams

collide, the energy density far exceeds the theoretical requirements

for the creation of the QGP. Lattice calculations give values in the

range of about 170 to 180 MeV for the critical temperature which

corresponds to about 1012 Kelvin. One of the most remarkable ob-

servations at RHIC was a phenomenon called jet quenching which

has been predicted theoretically as a possible QGP signature and

which could provide a powerful new probe of QGP produced in the

collisions. The collision energy at RHIC is high enough to produce

the direct high-energy scattering of individual partons in the collid-

ing nuclei. Such hard scattering events involving high momentum
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transfers give rise to collimated sprays of hadrons called jets. The

RHIC data shows a deficit of jets involving high pT particles in the

most central collisions [34]. The deficit of high energy jets can be

attributed to the slowing down of partons as they propagate through

QGP formed in the collision. The phenomena of quenching of high

pT jets gives compelling evidence that QGP is formed at the RHIC.

The experiments at LHC again showed jet quenching with the high

energy jets getting almost entirely dissipated, thus providing imper-

ative evidence for the formation of QGP [35, 36].

Initially it was expected that QGP if produced in the collisions

would behave like a free gas of deconfined quarks and gluons. On

the contrary experiments at RHIC gave evidence that the hot and

dense matter formed in collisions shows a deviation from ideal gas

behaviour. The flow is similar to an ideal liquid with nearly zero

viscosity. Surprisingly the experiments carried out at LHC strongly

indicate that the QGP formed remains a strongly coupled, near

perfect liquid even at significantly higher energies [37].

At RHIC/LHC the center of mass energy per nucleon is so high

that the colliding nuclei tend to be transparent to each other. Though

fragmented by the collision they essentially recede in the same di-

rections they came in, leaving behind an excited central vacuum

region low in baryon density. Therefore these collider experiments

are focussed to study QGP formed at high temperatures but low

net baryon densities. What about the high baryon density - low

temperature regime? Cold matter at high net baryon density can

be effectuated by a slow squeeze of nuclear matter which is im-
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possible to enact in the lab. Therefore we turn to nature and her

giant laboratories - the compact stars - where cold superdense mat-

ter and hence the presence of QGP is expected 2. Compact stars

are the end products of thermonuclear evolution involving massive

stars. Once the nuclear fuel that ’runs’ the star is exhausted the

more massive stars succumb to a violent ending wherein the core

collapses indefinitely. Once the core material becomes incompress-

ible an outgoing shockwave results and there is a violent ejection

of the stars’ outer layers namely the supernova explosion (This is

actually a naive picture of a more complex process - a controversial

topic, subject to intense debate). The remaining compact remnant

could be a neutron star, depending on the mass of the progenitor,

supported against gravity by the neutron degeneracy pressure. But

as suggested by Collins and Perry such compact remnants which

admit superdense matter could be natures cache of the exotic QGP

phase. Many questions arise when we consider quark matter within

compact star interiors - Will there be a new class of stable compact

stars - the quark stars? Is there a critical density at which the pres-

ence of QGP is expected? Will the quarks be essentially massless or

instead be massive ’dressed’ quarks? QGP if present, will it be an

ideal gas of weakly interacting quarks or will it be in the strongly

coupled phase? All these are interesting and intriguing questions

and highly debated. The aim of the thesis is to fathom the presence

2Compressed baryonic matter (CBM) experiment at the Facility for antiproton and ion
research (FAIR) is a future project which will explore the high density regime at moderate
temperatures. This regime can be explored in heavy-ion collisions at intermediate beam
energies - the colliding nuclei tend to stay with each other - with the highest baryon density
reached for beam energy range between 10 and 40 GeV per nucleon. FAIR would provide
beams in the energy range 2-45 GeV per nucleon.
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of the exotic new phase of matter in compact stars and an attempt

to address some of the debated issues.

1.4 Compact Stars With QGP In The Interior -

Quark Stars / Hybrid Stars

Soon after the hadrons were conferred with a quark substructure,

Ivanenkov and Kurdgelaidze hypothesised the possibility of a quark

star [38]. They suggested that quark stars are the next in sequence

to neutron stars, prior to black holes. In their paper published in

1965, ‘Hypothesis concerning quark stars’, they made a rough cal-

culation of the densities at which the ‘disintegration’ process from

baryons to quarks would occur. At the time, which was almost a

decade before the discovery of asymptotic freedom and the advent

of QCD, they had visualised the transition as similar to nuclear dis-

integration. Later in 1970, Itoh studied the hydrostatic equilibrium

of such hypothetical stars treating quarks as a degenerate fermion

gas [39]. His calculations revealed stars with equilibrium mass of the

order ∼ 10−3M�, far less compared to typical neutron star masses.

Quark stars thus remained more or less a vague and fanciful idea

until the end of the 1960s’. The discovery of asymptotic freedom

of quarks led to a paradigm shift, making exotic stars comprising

quark matter very much a possibility.

The question of whether the deconfined QGP would be present in

compact star interiors was first considered by Baym and Chin[40].

In their paper ’Can a neutron star be a giant MIT bag’, they consid-
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ered the phase transition from neutron matter to deconfined quark

matter. This was done by comparing the energy per baryon for fixed

number densities in the two phases treating the quark matter phase

within the MIT bag model (quarks can move about freely within

the volume of dense matter but the region as a whole is color neu-

tral). They concluded that such a phase transition would require

huge densities of the order of 10 to 20 times the normal nuclear

density and hence considered such a transition unlikely at relevant

neutron star densities. But it was soon pointed out that such calcu-

lations are very sensitive to even small uncertainties in the chosen

hypothetical equations of state for hadronic/quark matter. Based

on other quark matter models - derived within QCD and consistent

with the then available nuclear/ high energy physics data - Fechner

and Joss showed that quarks stars are indeed possible [43]. Their

studies revealed that the macroscopic properties of quark stars need

not be considerably different from ordinary neutron stars.

It can be surmised that quark matter could exist within a com-

pact star in two different forms depending on the distribution of

baryon densities. One is pure quark matter devoid of baryons, which

will probably occupy the core region. The other is a mixed phase

where quarks and hadrons are interspersed and in phase equilibrium

with each other. Compact stars with quark or mixed phase interiors

are named hybrid stars. There is one more possible mode of exis-

tence of quark stars - the so called strange stars. In 1984 Witten

in his seminal paper which considered the hadronization of early

universe, emphasised the idea of strange quark matter being the ab-
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solute ground state of hadronic matter [42]. The idea was originally

proposed by Bodmer [41] and noted by several others in their work.

Strange quark matter (SQM) is made up of an equal number of u,

d and s quarks. The addition of strangeness lowers the stability of

nuclear matter, the strange baryons being heavier than non strange

baryons. The presence of strangeness in bulk quark matter stabilizes

it by lowering its energy which should be attributed to the newly

added Fermi well. The Fermi momenta in quark matter is of or-

der of 300-350 MeV, which is greater than the strange quark mass.

Hence it is energetically favourable for u,d quarks to undergo a flavor

change to strange quarks via weak interactions. Simple calculations

reveal that strange quark matter has an energy per baryon ∼ 0.9

times that of two flavor u,d quark matter. The energy per nucleon

of SQM therefore lies in the vicinity of ordinary nuclear matter. If

it is lower than that of nuclear matter then strange quark matter

would be the absolute ground state of hadronic matter, nuclear mat-

ter being a long lived metastable state. The decay of ordinary nuclei

to strange matter is inhibited by the need for very high order weak

interactions. If strange quark matter was indeed the ground state of

hadronic matter then it implies the existence of a new class of self

bound pure quark stars - the strange stars.

To distinguish between strange/hybrid stars and ordinary hadronic

stars is not easy since their macroscopic properties seem to overlap.

One possible feature of quark stars that can aid in their detection

is the expected anomalous cooling behaviour. Neutrino emission is

the primary process via which neutron stars cool during the first 106
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years after their formation. The neutrino production via the Urca

processes (simple beta decay processes) is controlled by the high

density phase that exists at the core. Due to the extended degrees

of freedom, quark matter has comparably higher neutrino luminosi-

ties. Hence quark stars, at a given age, should have lower surface

temperatures as compared to hadronic stars. The measurement of

surface temperatures of neutron stars of known age can therefore

provide information about the high density phase that exists at the

core. Studies along these lines has led to the detection of a poten-

tial quark star candidate - a 65 ms pulsar J0205+6449 at the center

of a young supernova remnant, 3C58. 3C58 is evidently associated

with supernova SN 1181, which would make it younger than the

Crab Nebula. J0205+6449 is therefore one of the youngest neutron

stars in the galaxy. Chandra observations of the emission from the

particular neutron star gives a surface temperature well below that

predicted by standard cooling mechanisms [44]. This points to en-

hanced neutrino production rates in the stellar interior. Therefore

it is quite plausible that J0205+6449 contains some exotic phase,

such as quark matter within.

Mass-radius (M-R) relationship is a key factor that gives a mea-

sure of the compactness of a star. It can therefore provide infor-

mation about the nature of dense matter within. X-ray bursts that

emanate from neutron stars in binary systems exhibit a number of

spectroscopic phenomena that depend on the mass and radius of

the neutron star. X-ray bursts are thermonuclear explosions which

result from the accretion of matter on the surface of neutron stars
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in binaries. Once the distance to the source star is known, using the

calculated temperature (assuming black body emission) and mea-

sured flux, it is possible to set up constraints for the mass-radius

relationship. Based on the M-R relationship thus obtained for neu-

tron stars in the binaries 4U1608-248, EXO 1745-248 and 4U1820-

30, Ozel et al. [45] calculated the pressure of dense matter above

nuclear saturation density. The pressure was found to be lower

than that predicted by pure nucleonic equations of state. This sug-

gests that exotic matter could be present within the neutron star

interiors. To pin down the equation of state at high densities we

need more sensitive observational data. It is believed that future

prospects such as gravitational wave detection could help probe the

interiors of neutron stars. Non radial oscillations of compact stars

are sources of gravitational radiation. The frequencies and damping

times of the oscillation modes can be directly linked to the stellar

properties such as mass, radius, rotation rate etc. The detection of

the gravitational waves which damp out the oscillation, can there-

fore aid in obtaining valuable information about the source star.

Within the next decade gravitational-wave (GW) observations by

Advanced LIGO in the United States, Advanced Virgo and GEO

HF in Europe, are hoped to provide new insights in this field.

Verifying and discerning the dense QGP phase in compact stars

requires new efficient models and equations of state, which can pre-

dict new possible signatures for the exotic phase. In the next chapter

we give a brief account of the the historical evolution of the QCD

phase diagram, present the one now in vogue and discuss it with
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emphasis on low temperatures and high densities. The different

proposed phases at densities relevant to compact stars will be given

special importance.
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Chapter 2

The QCD Phase diagram

2.1 Chiral symmetry restoration - a key feature

of hot/dense QCD

Besides the deconfining transition there is another key feature con-

comitant with quark gluon plasma (QGP) formation. It is the chiral

symmetry restoration associated with the light quark flavors. The

word ’chirality’ means handedness. An object is said to be ’chiral’

if it is non-identical to its mirror image. The chirality of a particle

is a subtle and abstract notion which is equivalent to the particles’

helicity , if the particle is massless. Chirality is a Lorentz invari-

ant i.e. a massive particle has a specific chirality. Particles can

be left chiral or right chiral, defined using the eigen values of the

chirality operator. For a Dirac Fermion the chirality projection op-

erators are given by 1±γ5
2

where γµ are the standard Dirac matrices

and γ5 ≡ iγ0γ1γ2γ3γ4. The chirality projection operators project

out the left handed and right handed states of the Fermion field,
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ψL = 1−γ5
2
ψ and ψR = 1+γ5

2
ψ. The total Fermion field is simply,

ψ = ψL + ψR. If the right handed and left handed Fermions (for

eg. the quarks) can make separate transformations independent of

each other then the corresponding theory is said to possess chiral

symmetry.

The QCD Lagrangian is given by,

LQCD = ψf (i /D −mf )ψf −
1

4
F a
µνF

µν
a (2.1)

where ψf denotes the quark field and mf denotes the quark mass,

where f stands for a particular quark flavor. Here we define /D ≡

γµDµ, where Dµ is a covariant derivative acting on the color triplet

quark field. We have Dµ ≡ ∂µ + igAaµλa/2. Aaµ stands for the

gluon fields, g is the dimensionless coupling constant in QCD and

λa (a = 1, ...., 8) are the SU(3) Gell-Mann matrices. Finally F a
µν =

∂µA
a
ν − ∂νAaµ − gfabcAbµAcν is the gluon field strength tensor, fabc are

the SU(3) structure constants. Note that µ, ν are the space-time

indices while a, b, c denote the color indices (for more details see Ref

[1]).

Now if we rewrite the quark part of the QCD Lagrangian in terms

of the left and right quark fields ψL, ψR as,

Lq = ψLf i /DψLf +ψRf i /DψRf − (ψLfmfψRf +ψRfmfψLf )−
1

4
F a
µνF

µν
a

(2.2)

It can be seen that the mass term mixes the right and left handed

fields. The remaining terms are dependent either on left handed

fields or right handed fields alone but not both. Thus in the massless
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limit the QCD interaction does not couple the right handed and

left handed quarks, which can therefore transform independent of

each other. Thus the QCD Lagrangian exhibits chiral symmetry

in the massless limit. Now the up and down quark flavors have

very small masses (approx. 5 and 10 MeV respectively) and may

be considered massless in the relevant scale of QCD. Therefore we

expect a symmetry in the observed spectra of hadrons - they should

come in parity doublets. But this is not observed in nature. We do

not observe parity pairs of nucleons. This indicates that though the

QCD Lagrangian respects chiral symmetry, the QCD ground state

or the QCD vacuum breaks it. Owing to the non trivial structure

of the QCD vacuum the chiral symmetry is spontaneously broken,

the idea pioneered by Nambu [2] and Nambu, Jona-Lasinio [3, 4] .

Now, the ground state of a system with a spontaneously broken

symmetry should be infinitely degenerate. If we perform continuous

symmetry operations on the non-symmetric ground state, we can

generate an infinite number of such states. Each will have the same

energy since the Hamiltonian is invariant to all such symmetry op-

erations. Since in QCD we are dealing with continuous symmetries,

the QCD vacuum should be infinitely degenerate. Due to spon-

taneous breaking of symmetry, only one of these possible states is

realised and all the excited states are built on this particular state.

In quantum field theory tunnelling between the various degenerate

ground states is least probable since now we are dealing with an in-

finite number of degrees of freedom. To get a physical picture of the

mechanism of spontaneous symmetry breaking it would be useful to
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consider the example of a ferromagnet. If a ferromagnet is cooled

beneath a critical temperature, the atomic spins are spontaneously

aligned, with the magnetization pointing in a particular direction.

Due to the exchange interaction, the state with spins aligned has

the lowest possible energy ie. it is the ground state. The ground

state is infinitely degenerate. On rotating the magnet, the magne-

tization will now point in a different direction. If the magnet is of

finite extent, thus, we may be able to realise the different ground

states by rotating the magnet. But if the magnet is of infinite ex-

tent, then rotating all the spins simultaneously to generate a new

ground state, is practically impossible. Hence for someone residing

within the infinite magnet, the direction of spin alignment is a done

deal.

Another interesting example of spontaneous symmetry breaking

is that of a superconductor. The BCS (Bardeen- Cooper - Schrief-

fer) theory was eminently successful in describing the phenomenon

of superconductivity [5, 6]. The theory proposes a superconducting

gap which separates the ground state from the higher excited states.

The superconducting ground state comprises of correlated electron

pairs. The pair formation occurs due to an attractive interaction

between the electrons, mediated by phonons. To break up a pair,

energy is needed, which characterises the gap. Now, the BCS ground

state has a broken symmetry. Compared to the simple example of

the ferromagnet, the symmetry broken here is much more abstract.

It is the freedom in choosing the phase of the ground state wave

function, which is broken in this case. The electric charge remains
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no longer conserved. In order to save the conservation of electric

charge, Nambu proposed the existence of symmetry restoring exci-

tations - the Nambu - Goldstone (NG) waves [7, 8, 9]. In the case of

a simple ferromagnet we can see that the symmetry restoring exci-

tations are the familiar spin waves. In the case of a BCS supercon-

ductor the symmetry restoring NG modes are collective excitations

of pairs of Bogolubov - Valatin (BV) quasi particles. Bogolubov

had put forth an elegant mathematical formalism for the BCS the-

ory ( Valatin had independently developed a similar approach [11]),

where, the elementary excitations above the ground state are the

BV quasi particles[10]. They comprise a coherent mixture of elec-

trons and holes and hence are not eigen states of charge. They are

described by the BV equation. Nambu realised the analogy between

the BV equation, which describes the quasi particle excitations in

superconductors, and the Dirac equation for massive fermions. He

elevated spontaneous symmetry breaking in infinite media and the

restoring mechanism, to the status of a general principle. He then

went on to extend this idea of spontaneous symmetry breaking to

particle physics, inspired by the striking analogy between the BV

quasiparticles and the massive Dirac fermions. His model devel-

oped together with G. Jona-Lasinio, the Nambu-Jona-Lasinio (NJ)

model, puts forth the following correspondences - Free electron ↔

bare Fermion, the energy gap ↔ the Dirac mass, electric charge ↔

chirality [3, 4]. Though the dirac particle in question was the nu-

cleon in the NJ model, it is easy to apply the correspondence to the

realm of quarks. The ground state or the QCD vacuum can be con-
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sidered as a condensate of quark- antiquark cooper pairs of chirality

zero (ie. a pair consisting of a right handed quark and a left handed

anti-quark or the other way around). Such a pair condensate implies

a broken chiral symmetry, since, for such a pair, independent right

handed or left handed chiral transformations are impossible. Now,

breaking such a quark - anti quark cooper pair would result in a

massive quark and an anti quark. Any change in the distribution

of the pairs would give rise to the Nambu - Goldstone modes which

try to restore the broken symmetry. The theory requires the NG

modes to have spin zero and negative parity, thus suggesting the

pion which possesses the requisite quantum numbers. Though the

NG modes are massless excitations the pions have mass. This is

because quarks possess a small but finite ’current’ mass (acquired

by the Higgs mechanism), which explicitly breaks the symmetry of

the Lagrangian, thereby rendering the NG modes massive.

It is expected that at high temperatures/ high densities, with

the formation of deconfined QGP, the broken chiral symmetry is

restored and the quarks regain their current mass. There is contin-

uing lack of clarity regarding the order of the deconfining and chiral

symmetry restoring transitions. In the following section, we give

a time line of the QCD phase diagram. We shall discuss the pre-

vailing opinions regarding the ordering of deconfinement and chiral

symmetry restoration.
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2.2 The time line of QCD phase diagram

The possible phase transition from hadronic matter to quark gluon

plasma was originally suggested by Cabibbo and Parisi, Collins and

Perry [12, 13]. The earliest phase diagram of QCD matter as it ap-

peared in the work by Cabibbo and Parisi is shown in Fig(2.1). The

Figure 2.1: The naive phase digram of QCD matter, with I indicating the
confined hadronic phase and II, the deconfined QGP phase, which appeared in
the seminal work by Cabibbo and Parisi.

diagram suggests a phase transition to quark gluon plasma both

at high temperatures and low baryon densities, low temperatures

and high baryonic densities. The suggestion was made based on the

quark model of hadrons, with hadrons as color singlet - confined

- states of the more fundamental quarks, together with the phe-

nomenon of asymptotic freedom. Asymptotic freedom is the QCD

property owing to which quarks interact weakly at close proximity,

giving rise to the deconfinement transition.

A more complex phase diagram for QCD matter was conceived

by G.Baym [14] a few years later and is given in Fig(2.2).
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Figure 2.2: A more complex phase diagram for QCD matter conceived by
G.Baym in 1982

The diagram indicates that at low temperatures and baryon den-

sities, strongly interacting matter is in the confined hadronic phase

with pionic excitations. A transition from bulk hadronic matter to a

pion condensed phase is envisaged to occur at almost twice the nu-

clear saturation density. Again there is the evident transition to the

deconfined phase of massless quarks and gluons at very high temper-

atures or baryon densities. The core feature of the phase diagram

is an intermediate region of massive quarks, just after the decon-

finement curve, preceding the region of deconfined massless quarks

and gluons. In this region chiral symmetry remains spontaneously

broken rendering the quarks massive.

With data flowing in from the heavy-ion collider experiments

and lattice QCD simulations, the phase diagram has evolved over

time. A recent QCD phase diagram by Fukushima and Hatsuda [15]

(see Figure(2.3)) summarises our current understanding of the var-
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ious phases of hadronic matter, obtained via the heavy ion collider

experiments/ lattice QCD. The diagram also features some of the

newly conjectured phases.

Figure 2.3: A recent QCD phase diagram by Fukushima and Hatsuda

In the phase diagram at zero baryon density there appears no

boundary line separating the hadronic and QGP phase. This indi-

cates that there is no rapid phase transition to QGP phase in this

region. Rather there occurs a non singular cross over. The infor-

mation comes from extensive studies carried out using numerical

calculations on the lattice at finite temperature. At zero baryon

density the transition properties are found to depend on the quark

flavors and masses. Calculations carried out on the lattice using

physical masses for quarks indicates a non singular cross over rather

than a rapid phase transition [16].
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Lattice data has also given information regarding the ordering

of the deconfinement and chiral symmetry restoration transitions.

A phase transition is generally indicated by a discontinuous change

in some physical quantity, which serves as the order parameter for

the transition. The quantity which serves as the order parameter

for the spontaneous breaking of chiral symmetry is the chiral con-

densate. For the deconfinement transition the order parameter is

the Polyakov loop. Polyakov loop is a gauge invariant quantity in

finite temperature QCD which corresponds to the free energy of an

isolated static quark. It can be simply thought of as the world line

of an isolated static quark. It is called a loop since it is closed ow-

ing to the periodicity in Euclidean time. The expectation value of

the Polyakov loop (< P >)is related to free energy of an isolated

(static) quark (Fq )as [17]

< P >= e−Fq/T (2.3)

In the confined phase the free energy of an isolated quark would

be infinite. Therefore the expectation value of the Polyakov loop,

< P >, would be zero in the confined phase. On the other hand

in the deconfined phase the free energy of an isolated quark would

have a finite value. Thus < P > would be non zero in the deconfined

phase.

Thus we have the following conditions which determine the de-

confinement and chiral symmetry restoration transitions. For the

chiral symmetry broken phase, chiral condensate, < qq̄ > 6= 0. For
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the chirally symmetric phase, chiral condensate, < qq̄ >= 0. For

the quark confining phase, expectation value of the Polyakov loop,

< P >= 0. For the quark deconfined phase, expectation value of

the Polyakov loop, < P > 6= 0.

The chiral condensate vanishes exactly only when the chiral sym-

metry is exact. This is so if the quark masses are precisely zero. Also

in the case of deconfining transition, the expectation value of the

Polyakov loop vanishes only if the quark masses are infinite (static

quarks). Thus for quarks with physical masses none of the above

order parameters can serve as tell-tale signature of an exact criti-

cal point for the phase transition. Still it is reasonable to define a

pseudo critical point in temperature, Tp, using the peak positions of

the susceptibilities of order parameters. Since there are two order

parameters, one concerning the deconfinement and the other, chi-

ral symmetry restoration, two such pseudo critical points may be

expected. However lattice calculations indicate that the peaks of

chiral and Polyakov loop susceptibilities match [18, 19]. Therefore

for physical quark masses there is a simultaneous cross over to a

deconfined, chiral symmetric phase. The pseudo critical tempera-

ture lies within the range 150-200 MeV. A simple analytic descrip-

tion of the cross over region remains elusive since the system is still

strongly correlated. A plasma of weakly coupled quarks and gluons

is expected only at much higher temperatures. Nowadays the term

strongly coupled quark gluon plasma (sQGP) is used to label the

QCD state near the cross over temperature.

At finite chemical potential, lattice QCD runs into difficulty due
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to the famous ’sign problem’. The problem arises because, at finite

µq, the action that defines the theory becomes complex. The Boltz-

mann factor which serves as the statistical weight thereby becomes

complex which spoils a probabilistic interpretation. Thus presently,

lattice QCD can give reliable results only if the condition µq
T
� 1

is met. In the region where lattice QCD fails, effective models are

employed to study the phase diagram. The method of study re-

lies on models which are able to provide a reasonable description

of hadronic properties in the vacuum. Such models are extended

to the finite T/µ regime. Investigations using effective models in

the region of finite chemical potential, reveals a QCD critical point

[20, 21, 22, 23], for realistic u,d,s quark masses, as depicted in Fig-

ure(2.3). At the QCD critical point the chiral transition is no more

a cross over but a first order transition. The QCD critical point, if it

exists, should appear on the hadronic to QGP transition boundary

at baryo chemical potential ∼ 100 − 500MeV . The region corre-

sponds to that reached in heavy ion collisions at center of mass

energies ∼ 5 − 50GeV/u. There is an avid search for the critical

point at the detectors, PHENIX and STAR, at RHIC.

The phase diagram by Fukushima and Hatsuda displays an in-

termediate phase, the so called ‘quarkyonic’ matter, between quark

gluon plasma and the confined hadronic phase. Such an interme-

diate phase has been proposed to exist in the large Nc limit (Nc

denoting the number of color charges) [24]. Taking the large Nc

limit gives a theory which is more tractable and mathematically

simpler. Recent computer simulations indicate that the thermody-
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namic predictions of the theory (in the large Nc limit), closely match

the predictions in the real world of the three color charges [25]. In

the large Nc limit confinement persists to arbitrary densities ( The

critical temperature, Tc for deconfinement, is found to be indepen-

dent of the baryo chemical potential ). The theory in this limit

therefore predicts a novel phase, the quarkyonic matter, which is a

confined phase at arbitrarily high densities. Quarkyonic matter lies

in a density regime with baryo chemical potential, µB > M , M being

the mass of the nucleon, at temperatures less than the critical tem-

perature for deconfinement (T < Tc). In such a regime the densities

are high enough such that the hadrons (essentially baryons) overlap

substantially. The situation therefore demands the use of the notion

of a quark Fermi sea instead of a baryon Fermi sea. But there is

something more to the picture. Though deep within the Fermi sea

the behaviour of quarks is more or less ideal due to Pauli blocking,

at the surface they show non-perturbative behaviour, in the limit of

large Nc . The bulk properties of quarkyonic matter such as pres-

sure, entropy are determined by the weakly coupled quarks within

the Fermi sea. Near the Fermi surface the quarks interact strongly,

whereby physical excitations on top of the Fermi surface are dom-

inated by color singlet mesons and baryons. Whether quarkyonic

matter has any existence in the real world of Nc = 3 remains an

open question. Again the chiral transition in quarkyonic matter is

highly speculative. Further in depth studies augmented by computa-

tional techniques and experiments are expected to give a conclusive

answer.
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Next we consider the phase diagram in the region of asymp-

totically high densities/ low temperatures. At these high densi-

ties quarks are weakly coupled owing to asymptotic freedom. Each

quark finds in its vicinity a number of other quarks, thereby los-

ing its sense of belonging to a particular baryon. Due to many body

effects the long range confining forces are screened, leading to decon-

finement. The deconfined and essentially free quarks form a Fermi

sea of filled states at low enough temperatures. But even a small

attractive interaction between quarks near the Fermi surface can

dramatically alter the ground state. Any arbitrarily small interac-

tion between fermions lead to Cooper pair formation, near the Fermi

surface [5], leading to a superconducting phase. The ground state

of the superconducting phase which is a condensate of Cooper pairs

is lower in energy compared to the simple Fermi sea, and is hence

a favoured state [6]. In the case of electrons which are fermions the

fundamental interaction is repulsive. Pairing is hence mediated by

the background lattice via phonons. In the case of quarks in the

high density regime, the quark-quark interactions can be approxi-

mated by single gluon exchange interaction. Single gluon exchange

is apparently attractive in the antisymmetric anti-triplet channel.

Hence quark - quark Cooper pairs are formed near the Fermi sur-

face which then grow into a condensate. Since the quark pairs have

color the condensate breaks the local SU(3) color symmetry and the

gluons acquire a mass. The name color - superconductivity is used

to describe the phenomenon [26, 27, 28, 29]. Color superconducting

quark matter can form different possible phases depending on the
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pairing pattern of the quarks. At the highest densities, with quark

matter composed of three massless flavors, the suggested pairing

phase is the color - flavor locked (CFL) phase [30]. In the color -

flavor locked phase the color and flavor symmetries become corre-

lated. The resulting condensate is invariant only under simultaneous

transformations in color and flavor space. This locking together of

color and flavor breaks the chiral symmetry. The locking of left

handed and right handed flavors to color would in turn lock them

into each other. Thus the chiral symmetry which requires that the

left handed and right handed quarks transform independent of each

other, remains broken ( Here therefore the phenomenon of chiral

symmetry breaking occurs not due to the presence of the conven-

tional chiral condensate. The condensate is expected to vanish at

such asymptotic densities ). Now, it should be noted that the calcu-

lation of the superconducting gap using perturbation theory is valid

only in the limit of very high densities. Actually the calculations

are performed in the regime where the chemical potential could be

as high as 108 MeV. At moderate densities the pairing patterns are

unknown though there are various possible suggestions which still

remain inconclusive.

In the region of extremely low temperatures and moderately high

densities, various competing exotic phases are suggested, but the

picture is still vague (see the question mark denoting the region in

the phase diagram Fig(2.3)). Compact star interiors are expected to

fall into this region of the phase diagram. In this thesis we explore

this region of the phase diagram in an attempt to develop an equa-
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tion of state for cold dense matter expected to exist within compact

stars. Our line of approach is as follows - within compact stars, if the

deconfined quark phase exists, then the stellar matter would con-

stitute quark matter in bulk. A look into the plasma properties of

the bulk QGP phase would indeed be rewarding. It should be noted

that even at the hottest temperatures achieved at the LHC, the QGP

formed is not an ideal gas but is in a strongly coupled phase. Hence

under realistic densities (of the order of a few times the normal nu-

clear density), that exists within a compact star, it is plausible that

the quark matter is a strongly coupled plasma. Following this line

of thought we try and estimate the coupling strength of QGP exist-

ing at the relevant densities. For the purpose, we define a plasma

parameter, analogous to that for a degenerate non-relativistic QED

plasma. The analogy with degenerate non-relativistic QED plasma

is justified and discussed in the following chapter, where the analogy

is made full use of in developing an equation of state for QGP at the

relevant compact star densities. Similar work, utilizing the analogy

with QED plasma, has been carried out at finite temperatures and

a remarkably good fit to lattice results has been obtained earlier

[31, 32]. It should be emphasized that in this thesis work we have

ignored cooper instability and the attendant color superconducting

phase, since the nature of pairing at densities relevant to compact

stars is still a debated issue.
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Chapter 3

The equation of state for QGP

within a quark star and the

Mass-Radius relationship

3.1 Introduction

Quantum Chromodynamics (QCD), the theory of strong interac-

tions, endows hadrons with two essential features - color confine-

ment and spontaneous chiral symmetry breaking. At sufficiently

high temperatures and/or densities, QCD predicts that both these

features come to an end and hadronic matter undergoes a transi-

tion to a plasma of deconfined massless quarks and gluons (chiral

symmetry is restored). Whether the chiral symmetry restoration

and deconfinement transition coincide or if the latter precedes the

former still remains an open question. An intermediate phase of de-

confined but massive quarks is therefore a possibility and has been
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suggested and discussed previously by several authors [1, 2, 3, 4, 5].

Lattice calculations show that at or near µ = 0, as the critical tem-

perature Tc is reached, color deconfinement and chiral symmetry

restoration occur simultaneously [6]. Now the remaining possibil-

ity is the existence of the intermediate plasma of massive quarks in

the low temperature, high density limit. The intermediate phase in

this limit has been discussed by Satz et al. [7], wherein the quarks

are massive, dressed by a gluonic cloud. As the temperature ap-

proaches Tc, the gluonic cloud evaporates ( equivalent to vanishing

of the chiral condensate at Tc ), leaving point like quarks and glu-

ons. Using percolation arguments they have calculated the baryon

density threshold for chiral symmetry restoration to be about 3.9

times that for color deconfinement. Compact star interiors are nat-

ural candidates where the intermediate phase could be present since

the limiting conditions of high density and low temperature are met

there. In this thesis we model this possible phase of QGP and de-

velop an equation of state in the relevant density regime. The pro-

cedure is surprisingly simple. At the range of density in question the

quark-quark interaction is color coulombic. There is a well estab-

lished mathematical machinery, already in place, for analysing QED

plasma under similar electric charge interactions. By exploiting this

analogy and incorporating the requisite modifications (arising due

to new internal degrees of freedom), the equation of state for QCD

matter is developed. We start by estimating the coupling strength

of QGP at densities relevant to compact stars, drawing analogy from

conventional one component plasma (OCP). Once we have the equa-
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tion of state, it is checked whether it is able to give bound quark

stars with mass radius relationship typical to compact stars.

3.2 Coupling strength and equation of state of

QGP

Plasma is a statistical system of mobile charged particles interact-

ing via the electromagnetic forces . In a conventional model the

electrical neutrality of the system is maintained by imbedding the

charged particles in a uniform background of neutralizing charges.

The plasma parameter Γ is defined as the ratio of average coulomb

energy to average kinetic energy and gives the strength of coupling

due to coulomb interaction. For Γ ∼ 1 it is a strongly coupled

plasma (SCP).

For a system of charged particles obeying classical statistics the

kinetic energy maybe estimated approximately as T , where T is

the absolute temperature. For a degenerate electron system with

number density n one instead uses the Fermi energy

EF =
~2

2m
(3π2n)

2
3 (3.1)

The plasma parameter is then estimated as

Γ =
e2/a

EF
= 0.543rs (3.2)

where

a = (3/4πn)1/3 (3.3)
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is the usually referred to as the ion-sphere radius or the Wigner-Seitz

radius and

rs = (
3

4πn
)
1
3
me2

~2
(3.4)

is the Wigner- Seitz radius of the electrons in units of the bohr

radius. For valence electrons in metals rs = 2 − 6 , so that the

plasma parameter Γ is greater than unity and hence is a typical

example of strongly coupled plasma.

The analogy is carried on to QGP : QGP expected to be found in

compact stars can be regarded as a deconfined quasi-color-neutral-

system of quarks and gluons with color coulombic mutual interac-

tions. In the compact star interior it is appropriate to take the

approximation T = 0. Hence it is plausible that quark matter in

compact star interior is similar to a degenerate electron system ex-

cept for a few modifications due to color degrees of freedom. In

analogy with QED plasma we define the plasma parameter for QGP

as

Γ =
Cg2

s/4πa

EF
(3.5)1

Here gs denotes the strong charge related to the strong coupling

constant by αs = g2
s/4π. C is the color Casimir factor associated

with gluon emission from a quark which is 4/3 .

Therfore in the QGP case

Γ =
4αs/3a

EF
= 0.543rs (3.6)

1In the QCD case Lorentz-Heaviside units are used.
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where

a = (3gc/4πnf )
1/3 (3.7)

and

rs = (
3gc

4πnf
)
1
3

4Mqαs
3

(3.8)

gc incorporates the color degrees of freedom, nf stands for the

number density corresponding to the particular flavor and Mq de-

notes the quark constituent mass.

Thus for quark matter composed of u and d quarks, with typical

values Mq ' mp/3, αs ≈ 0.5, for densities ranging from 3ρ0 − 10ρ0

(Normal nuclear density ρ0 = 0.16fm−3), we obtain rs = 0.67 − 1

and Γ ≈ 0.36 − 0.55 . Hence we have intermediate to strongly

coupled QGP (SCQGP) in compact stars. Also corresponding to

the scaling factor - Bohr radius - in the electron case (eqn(3.4)), we

now have (4Mqαs
3

)−1 ∼ 1fm, the hadron radius.

Asymptotic formulae for the ground state energy of an assembly

of electrons, imbedded in a continuum of positive charge, are known

in the high and low density regimes. At high densities the limiting

unperturbed state is that of a perfect Fermi gas. As the density

decreases exchange terms and electron correlations of various orders

become important. The resultant expansion for the ground state (in

Rydbergs) in the high density (small rs) regime , due to Gellmann

and Brueckner [8] gives :

EG ∼ 2.21r−2
s − 0.916r−1

s + 0.0622 ln rs − 0.096

+ rs(0.0049 ln rs + C) + .... (3.9)
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where C ' −0.02 .

In the low density (large rs) regime the asymptotic expansion for

ground state energy of the electron lattice with suitable correction

terms due to Carr, Coldwell-Horsefall and Maradudin [9] gives :

EG = −1.79186r−1
s + 2.638r−3/2

s − 0.73r−2
s + .... (3.10)

Isihara and Montroll interpolated these two asymptotic expansions

through the method of Pade approximants [10]. We use the resulting

formula in the QGP case with appropriate modifications primarily

with rs given by eqn(3.8) (For a systematic discussion of the tech-

nique of two point pade approximation see appendix 1 of reference

[10]). The general formula for the ground state energy per quark (in

MeV) :

(
9

8Mqα2
s

)
d2EG
dr2

=
13.26 + 1.7085r

1/2
s − 1.8144rs − 0.3813r

3/2
s − 0.1011r2s + 0.0121r

5/2
s + 0.0099r3s

1 + 0.1288r
1/2
s + 0.0013rs − 0.0110r

3/2
s − 0.0028r2s

(3.11)

Therefore for quark matter composed of u and d quarks the total

energy density is given by,

εG =
2∑

f=1

nfEGf +B (3.12)

and the corresponding pressure,

P =
2∑

f=1

(−nfrsf
3

)
∂EGf
∂rsf

−B (3.13)

Where B denotes the confinement parameter in the form of MIT

bag constant.

For typical densities at the core in the SCQGP model, the quark

chemical potential µq ' 400MeV . This lies below the strange quark
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constituent mass which is in the range ms ' 0.5 − 0.6 GeV [11] .

This justifies the exclusion of strange quarks in the model.
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Figure 3.1: Equations of state for quark matter - solid line: SCQGP EOS
evaluated for B1/4 = 200 MeV, dashed line: MIT BagModel EOS for non-
interacting quarks with mu = md = 0,ms = 150MeV and B1/4 = 145 MeV.

In Figure 3.1, the SCQGP EOS for quark matter evaluated for

B1/4 = 200 MeV (solid line) is shown together with the EOS for

non-interacting quarks within the MIT BagModel (dashed line). We

have taken mu = md = 0,ms = 150MeV and B1/4 = 145 MeV. The

interactions between the quarks in the SCQGP case has rendered

the EOS stiffer as compared to the non-interacting case. Next we

check whether the new equation of state can give bound stars with

observed mass-radius relations.
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3.3 The mass - radius relationship

For a spherically symmetric system the space-time metric has the

form

ds2 = e2νdt2 − e2λdr2 − r2(dθ2 + sin2 θdφ2), (3.14)

where r and t are the radial and time coordinates respectively, θ

and φ are the respective angles and ν, λ the metric functions.

The energy-momentum tensor for a perfect fluid is given by

T µν = (ε+ P )uµuν + pgµν (3.15)

Here uµ is the local fluid four-velocity, uµ = dxµ

ds
and p , ε are the

pressure and energy density in the rest frame of the fluid.

When the star is in a state of hydrostatic equilibrium, the Einstein

field equations, given the space-time metric (3.14) and the energy

momentum tensor (3.15), yield the equations of structure known as

the Tolman-Oppenheimer-Volkoff equations [12, 13]

dp

dr
= − [p(r) + ε(r)][m(r) + 4πr3P (r)]

r[r − 2m(r)]
(3.16)

m(r) = 4π

∫ r

0

ε(r′)r′2 dr′ (3.17)

Here m is the included mass within the coordinate r. Now, with

Eqs.(3.12) and (3.13) we solve the TOV equations and obtain the

mass-radius relations for quark stars.

The SCQGP equation of state suggests stable stars (Fig: 3.2 &

3.3 - solid lines ) with mass-radius typical to compact stars. In Fig-

ure 3.2 the M-R relations obtained for the SCQGP case are com-
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Figure 3.2: Mass- radius relationship for quark stars - solid lines: SCQGP EOS
labelled I, II & III corresponding to values of confinement parameter B1/4 =
200, 210 and 220 MeV, respectively; dashed line: non-interacting quarks with
mu = md = 0,ms = 150MeV within the MIT BagModel, B1/4 = 145 MeV.

pared with that for non-interacting quarks within the MIT Bag-

model. With B1/4=145 MeV the non-interacting case yields max-

imum mass star with mass 1.83M�. In the SCQGP case strong

coupling between quarks and the possible massive quark phase,

stiffened the equation of state to yield stable sequences with maxi-

mum mass & 2M� for B1/4 . 215MeV . Recently the mass of the

binary millisecond pulsar J1614-2230 has been calculated to high

accuracy using Shapiro delay, to be 1.97 ± 0.04 M� [14]. The

discovery constrains softer equations of state with corresponding

maximum mass star < 2M�. The SCQGP EOS is however in con-

formity with the recent discovery for appropriate choice of bag pa-

rameter values.
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Figure 3.3: Mass sequences - solid lines: SCQGP EOS with I, II, III - corre-
sponding to values of confinement parameter B1/4 = 200, 210 and 220 MeV,
respectively; dotted line: Non-interacting quarks with mu = md = 0,ms =
150MeV within the MIT BagModel, B1/4 = 145 MeV.

We summarize our results in the table below :

Table 3.1: The limiting mass (Mmax) of quark stars in the SCQGP model for
different B values. The corresponding radius (R), central energy density (εc)
and quark number density (nc) are given

B1/4 Mmax R εc nc
MeV M� Km GeV/fm3 fm−3

200 2.241 9.72 1.411 5.15
210 2.015 8.78 1.682 5.65
220 1.822 7.96 2.043 6.30

We make the following conclusions : quark matter at relevant

densities inside a compact star is intermediately to strongly coupled

(SCQGP). The equation of state of a degenerate electron system

obtained via Pade approximation yields a similar EOS for QGP,

mutatis mutandis. On solving the TOV equations with the resultant

equation of state, we obtain stable stars with mass-radius typical to

compact stars . For B1/4 . 215MeV , the stiff equation of state gives

stable sequences with maximum mass & 2M�. The result conforms

to recent observations.
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Chapter 4

Radial oscillations and stability of

quark stars with strongly coupled

QGP in their interior

4.1 Introduction

The pioneering work of Chandrasekhar[1, 2] in the framework of

general relativity revealed the existence of a dynamical instability,

wherein gaseous masses become unstable with respect to radial pul-

sations well before the Schwarzschild limit is reached. His conclusion

defines the sufficiency condition for the stability of a compact star -

that it should be able to withstand small radial perturbations (The

necessary condition being ∂M(εc)
∂εc

> 0, M being the equilibrium stel-

lar mass and εc the central energy density). In the previous chapter

we have developed the SCQGP equation of state describing mat-

ter within cold, pure quark stars composed of massive and strongly

63



coupled quarks. From the mass sequences, obtained employing the

equation of state, the necessary condition for stability is found to

be satisfied (see Fig(3.3)). To check the sufficiency condition, the

normal mode analysis of radial oscillations has to be carried out.

The radial pulsations that preserve the spherical symmetry of a star

do not result in the emission of gravitational radiation. Hence the

normal mode analysis of such oscillations is less complicated and

straightforward. The eigenequation of Chandrasekhar which gov-

erns the normal modes has the Sturm-Liouville form. The eigen-

modes hence constitute a complete set and any arbitrary periodic

radial motion can be expressed as their superposition.

Studies on radial pulsations of quark stars – hypothetical stars

with quark matter in the interior – have been carried out earlier

by a number of authors for different proposed equations of state for

dense quark matter (For e.g. [3], [4], [5], [6], [7]). Here we start

by analysing the radial oscillations of quark stars described by the

SCQGP equation of state. We calculate the oscillation periods of the

fundamental and first overtone for different values of the confining

bag parameter (B). The eigen functions of the lowest three normal

radial modes are then analysed, for the particular example of B1/4 =

210MeV . We then go on and study the damping of pulsations due to

non-equilibrium processes. The corresponding neutrino emissivities

are derived and the temporal evolution of pulsation energies are

analysed. For illustration, calculations are performed for SCQGP

stars with bag value, B1/4 = 210MeV and the results are plotted

for stellar masses 1.518, 1.845, 2M�.
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4.2 Normal radial modes of quark stars in the

SCQGP model

When a compact star is in a state of hydrostatic equilibrium, the

Einstein field equations, given the space-time metric (3.14) and the

energy momentum tensor (3.15), yield the equations of structure

known as the Tolman-Oppenheimer-Volkoff equations [8, 9]

dm

dr
= 4πr2ε , (4.1)

dp

dr
= −(p+ ε)(m+ 4πr3p)

r(r − 2m)
, (4.2)

dν

dr
= − 1

p+ ε

dp

dr
, (4.3)

Here m is the included mass within the coordinate r. The metric

function λ is given by

e2λ = (1− 2m

r
)−1 (4.4)

λ has the same form both inside and outside the star although it

is the included mass m and not the total mass that appears in

the interior solution. In order to match the exterior Schwarzschild

solution the metric function ν should obey the boundary condition

ν(r = R) = 1
2

ln(1− 2M
r

), where M is the mass of the star and R its

radius.

The equations governing radial oscillations were originally ob-

tained by Chandrasekhar[1, 2] on perturbing the equilibrium con-
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figurations governed by equations (4.1)-(4.3) in a manner such that

the spherical symmetry is not violated and only the terms linear in

order are retained. In our discussion we denote the normal mode

motions of the star by δr(r, t) = ξn(r)eiωnt. Here ξn(r) are the nor-

mal mode amplitudes (or ‘eigenfunctions’) of the nth normal mode,

n=0 being the fundamental or nodeless mode. The quantities ωn

are the radial eigenfrequencies of the perturbed star.

Employing a new variable un = r2e−νξn, the Chandrashekhar

eigenequation governing the radial modes appears in the the Sturm-

Liouville form

d

dr
(P
dun
dr

) + (Q+ ω2
nW )un = 0 (4.5)

The functions P(r), Q(r) and W(r) expressed in terms of equilibrium

configurations of the star are given by

P = e(λ+3ν)r−2γp ,

Q = − 4e(λ+3ν)r−3dp

dr
− 8πe3(λ+ν)r−2p(ε+ p)

+ e(λ+3ν)r−2(ε+ p)−1

(
dp

dr

)2

, (4.6)

W = e(3λ+ν)r−2(ε+ p) ,

Here γ =
(ε+ p)

p

dp

dε
denotes the adiabatic index. Solutions to the

eigenequation are physically acceptable only if they satisfy certain

boundary conditions. At the center of the star the requirement that

δr and
dδr

dr
are finite there leads to the condition

un
r3

should be finite or zero as r → 0 (4.7)
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At the surface of the star the Lagrangian change in pressure, ∆p

should vanish which leads to the condition

∆p = −γpe
ν

r2

dun
dr

= 0 at r = R. (4.8)

The eigenequation can now be solved using standard procedure

to obtain the frequency spectrum ω2
n (n = 0, 1, 2.....) of the normal

modes. The squared normal mode frequencies being eigenvalues of

the Sturm-Liouville equation are real and form an infinite discrete

sequence, ω2
0 < ω2

1 < ω2
2 < ....... For a star to be stable

against radial perturbations ω2 should be positive since then ω itself

is real. If any of the eigenvalues, ω2, is negative then ω would be

purely imaginary leading to a solution that grows exponentially as

e|ω|t. Thus a negative value of ω2 indicates instability. Since the

frequencies increase sequentially with n, ω2
0 > 0 is the sufficient

condition for stability.

The eigenmode analysis performed employing the equation of

state for SCQGP with different values for the confinement param-

eter B, yields the spectrum of eigenfrequencies, ω2
n. The squared

frequencies ω2
0 go to zero as the maximum mass star is reached, as

expected. We have plotted the results obtained by the normal mode

analysis in Fig.(4.1) and Fig.(4.2).

Solid lines indicate the period (τn = 2π/ωn) calculated for the

SCQGP equation of state for differentB values (B1/4 = 190 , 200 , 210MeV ).

Dotted lines indicate the period calculated for strange stars com-

posed of non-interacting quarks withmu = md = 0 ,ms = 150MeV
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Figure 4.1: (a),(b)-Oscillation periods (τ), calculated for the SCQGP EOS, as
a function of central energy density (εc) for the fundamental and first excited
modes respectively. The curves are labelled I,II & III corresponding to values
of confining bag parameter B1/4 = 190 , 200 & 210MeV in order.

within the MIT Bag Model for B1/4 = 145MeV , which we have

plotted for comparison. Figures (4.1a), (4.1b) show the variation in

period with central energy density (εc) for the fundamental and first

excited modes respectively. The resulting pattern of curves indi-

cates that for a particular value of εc, of the various mass sequences

obtained for different values of the bag constant, if we pick the more

massive star - it has a higher value of pulsation period . It is found

that pulsation periods tend to zero as the central density approaches

its minimum possible value, a property characteristic to quark stars

as opposed to hadronic stars [4]. The Fig(4.2a) shows the period as

a function of the stellar mass M (in units of solar mass) for the fun-

damental radial mode (n=0). It is found that for lower mass stars

the pulsation periods of the fundamental mode are typically of the

order of one tenth of a millisecond and have negligible dependence

on the bag parameter. For medium and higher mass stars a variation
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Figure 4.2: (a),(b)-Oscillation periods as a function of mass M for the funda-
mental and first excited modes respectively. Solid lines represent the period
calculated for the SCQGP EOS and are labelled I,II & III corresponding to val-
ues of confinement parameter B1/4 = 190 , 200 &210MeV respectively. Dotted
lines indicate the period obtained for strange stars composed of non-interacting
quarks with mu = md = 0 ,ms = 150MeV within the MIT BagModel for
B1/4 = 145MeV .

of pulsation periods with change in the confining bag parameter(B)

is seen - the periods show a decrease with decrease in bag constant.

The behaviour may be explained by noting that the stiffness of the

equation of state tends to increase with decrease in the confining bag

constant. Thus for quark stars of the same mass decreasing B value

indicates a stronger coupling between the quark constituents which

increases the normal mode frequencies/ lowers the pulsation periods.

The behaviour is more pronounced in the case of intermediate to

higher mass stars. Comparing with strange stars composed of non-

interacting quarks with mu = md = 0 ,ms = 150MeV treated

within the MIT Bag model with bag constant B1/4 = 145MeV we

see that the oscillation periods show considerable difference through-

out the entire range of stellar masses with the difference increasing
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with decrease in bag parameter value (increasing stiffness) for the

SCQGP equation of state. For SCQGP stars the oscillation periods

are 2 to 3 times lower than that for strange stars with non-interacting

quarks for the chosen bag constants (In earlier work by [10], [11] a

similar difference was seen in the case of hadronic stars with and

without interaction). In Fig(4.2b) we have plotted the pulsation pe-

riods for the first excited mode (n=1) as a function of stellar mass

M again for SCQGP stars as well as for strange stars within the

non-interacting bag model. For the first excited mode the pulsation

periods have typical values in the range, approx. 1/2 – 1/3 that of

the fundamental mode. The distribution of curves follow the pat-

tern akin to that of the fundamental mode discussed above, with the

compared difference with the non-interacting model now relatively

less.

4.3 Normal mode eigenfunctions of the radial modes

and the energy stored in the pulsations

A careful study of the behaviour of the normal mode amplitudes

with radial distance r provides insight into how matter described

by a particular equation of state responds to radial perturbations.

The normal mode amplitudes of radial oscillations are given by the

eigenfunctions, ξn(r), of the Sturm-Liouville equation (eqn.(4.5)).

We now examine the variation of the normal mode amplitudes with

radius r, by plotting and analysing the eigenfunctions, ξn(r) for

strongly coupled quark matter. The eigenfunctions are normalized
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Figure 4.3: The ‘ relative eigenfunctions’ ξ/r, for the SCQGP equation of
state, plotted against the ‘ relative radius’ r/R, for central energy densities
εc = 0.6 , 0.84 , 1.3 and 1.55 GeV/fm3 and bag parameter B1/4 = 210MeV .
Fig(4.3a) represents the fundamental mode (n=0). Fig(4.3b) and Fig(4.3c) rep-
resent the first (n = 1) and second (n = 2) excited modes respectively.

using the condition

lim
r→0

ξn
r

= ∆ (4.9)

∆ is a small normalization parameter. For illustration we choose the

bag parameter as B1/4 = 210MeV . Since it allows for a better

comparison the ‘ relative eigenfunctions’ ξn/r are plotted against

‘ relative radius’ r/R, R being the radius of the star. The typical
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eigenfunctions for the fundamental (n = 0), first excited (n = 1)

and second excited (n = 2) modes, with normalization parame-

ter ∆ = 1, are shown in Fig(4.3), each for central energy densities

εc = 0.6 , 0.84 , 1.3 and 1.55 GeV/fm3. The corresponding stars

have masses 0.56, 1.65, 1.98, 2.01M� respectively. For the funda-

mental mode the relative amplitude deviates from the homologous

behaviour (ξ/r = 1) starting from the core and continues to de-

crease with an increasing slope towards the outer layers of the star.

The shapes of the normal mode amplitudes tend to be determined

by the degree of homogeneity of the stellar model. The fundamental

mode is approximately homologous only if the logarithm of energy

density (log10ε) and the adiabatic index (γ) are roughly constant

throughout the configuration barring the outermost layers [11]. In

the current model both log10ε and γ are found to vary throughout

the star. The variation in γ is more striking. In Fig(4.4) a plot of

the adiabatic index as a function of energy density is shown.

0.50 0.75 1.00 1.25 1.50 1.75

2

4

6

8

 

 

 (GeV/fm3)

Figure 4.4: The variation in the adiabatic index γ with energy density ε for the
SCQGP equation of state with bag parameter B1/4 = 210MeV

The adiabatic index is found to increase first slowly and then
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steeply with decreasing energy density. The behaviour of the adia-

batic index can be attributed to the stiffness of quark matter due

to strong coupling between quarks as well as the effect of the bag.

With increasing adiabatic index the compressibility of matter de-

creases thereby accounting for the steady decrease in ξ/r. The fun-

damental mode is hence found to be much sensitive to changing

adiabatic index. Though not so evident, on careful examination it

is seen that there is a slight increase in the relative amplitude of

the fundamental mode with increasing central density as we move

towards the maximum mass star. The relative eigenfunctions of the

first and second excited modes show sinusoidal behaviour but with

increasingly smaller values in the outer layers of the star.

Once the spatial distribution of normal mode amplitudes ξn(r)

are given, the pulsation energy stored in the radial oscillations can

be computed. Just like an arbitrary pulsation can be expressed as a

superposition of the normal modes, so the pulsation energy can be

written in terms of the normal mode components [11]

Epuls =
∑
n

A2
nE

(n)
puls (4.10)

with E
(n)
puls = 2πω2

n

∫ R

0

W (r2e
−ν
ξn)2 dr (4.11)

The function W(r) is given by eqn(4.6). The dimensionless ampli-

tudes An can be determined from pulsation damping mechanisms

which operate to dissipate the energy stored in the pulsations. We

consider the damping of radial pulsations and the resultant tempo-

ral evolution of pulsation energy in the next section. We restrict
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our calculations to small amplitude pulsations (∆ � 1) and for

illustration choose the bag parameter value B1/4 = 210MeV .

4.4 Damping of pulsations by non-equilibrium

processes

For a non-vibrating quark star with matter described by the zero

temperature SCQGP equation of state, the condition for β equilib-

rium is given by the relation1, δµ = µd− µu− µe = 0. Here µi are

the chemical potentials of the particle species u, d and e−. Radial

pulsations drive the stellar matter out of chemical equilibrium in

which case δµ(r, t) 6= 0. The processes tending to restore the matter

back to equilibrium lead to the damping of pulsations. The most

efficient of the non-equilibrium processes is the direct-Urca process.

The direct-Urca processes are simple β-decay processes which in the

case of ordinary neutron star matter are the reactions n→ p+e−+νe

and p+ e− → n+ νe. In ordinary neutron stars the direct-Urca pro-

cess is forbidden since the laws of conservation of momentum and

energy cannot be satisfied for the expected composition of neutron

star matter. On the other hand the analogous processes can occur

for quark matter - the energy and momentum conservation laws are

satisfied once we take into consideration the the finite quark masses

and/or the interaction between quarks [12]. In the SCQGP phase we

have assumed the quarks to be massive and interacting. Hence we

1Here we consider quark matter to be composed of u,d quarks and electrons such that
conditions of β-equilibrium and charge neutrality are satisfied. In the original SCQGP EOS,
the contribution due to electrons was ignored since the corresponding modification to the EOS
is negligible at quark matter densities.
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expect direct-Urca process to be the primary and dominant source

of pulsation damping in such quark stars.

In what follows we analyse the quark direct-Urca process in the

domain of SCQGP model and calculate the associated neutrino lu-

minosities. Initially we consider the general case of a vibrating quark

star at finite temperature T. In this connection we closely follow

Iwamoto[12, 13] while making appropriate modifications pertinent

to the context. Iwamoto has derived the neutrino luminosities for

equilibrium quark matter at finite T which we adapt to the non-

equilibrium case.

For quark matter devoid of strange quarks the direct-Urca process

is given by the reactions

d→ u + e− + νe (4.12)

and u + e− → d + νe (4.13)

The rate at which energy is lost due to neutrino emission process

(4.12) in a unit volume, the neutrino emissivity, is given by

ενe(T, δµ) = 6V −1

(
4∏
i=1

V

∫
d3pi

(2π)3

)
E2

× Wfi n(~p1) [1− n(~p3)] [1− n(~p4)] (4.14)

Wfi is the transition rate for β -decay given by

Wfi = V (2π)4 δ4(p1 − p2 − p3 − p4) |M |2 /
4∏
i=1

2EiV (4.15)

where the four-vectors, pi = (Ei , ~pi), numbered from i = 1 to 4, de-
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note the particles d, νe, u, e
− in order. The factor 6 stands for the

three color and two spin degrees of freedom of the initial d quark, V

represents the normalization volume and n(pi) = (1 + exp[(Ei − µi)/kT ])
−1

is the Fermi-distribution function. The term (1-n(p)) ensures that

the exclusion principle is obeyed. | M |2 is the squared invariant

amplitude averaged over initial d quark spin (σ1) and summed over

the final spins of u quark (σ3) and electron (σ4),

|M |2 =
1

2

∑
σ1,σ3,σ4

|Mfi |2 = 64G2 cos2 θc (p1.p2)(p3.p4) (4.16)

where the weak-coupling constant, G ' 1.435 × 10−49 erg cm3 and θc is

the Cabibbo angle (cos2 θc ' 0.948). In the SCQGP model u and

d quarks are massive and non-relativistic while electrons are ultra-

relativistic. We therefore have

(p1.p2)(p3.p4) 'E1E2E3E4

(
1− | ~p3 |

E3

cos θ34

)
×
(

1− | ~p1 |
E1

cos θ12

)
(4.17)

with cos θij = ~pi.~pj/|~pi|.|~pj|. In degenerate Fermi systems only

those particles with momenta that lie close to the respective Fermi

surfaces can participate in a reaction. Hence we can replace the

magnitude of quark and electron momenta by the respective Fermi

momenta. Accordingly cos θ34 can be expressed as a function of

Fermi-momenta (pF (i)) of the involved fermions. We neglect the

neutrino momentum in our calculations. The integrals in the ex-
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pression for emissivity can now be decoupled and one can write

ενe(T, δµ) =
24G2 cos2 θc

(2π)8

(
1− pF (u)

m∗u
cos θ34

)
AB (4.18)

m∗i denotes the quark effective mass, i = d, u. Here

A =

(
4∏
i=1

∫
dΩi

)
δ3(~p1 − ~p3 − ~p4)

(
1− | ~p1 |

E1

cos θ12

)
(4.19)

is an angular integral and

B = pF (d) pF (u) p2
F (e)m∗dm

∗
u

∫ ∞
0

dE1

∫ ∞
0

E2
2dE2

×
∫ ∞

0

dE3

∫ ∞
0

dE4 E2 S δ(E1 − E2 − E3 − E4) (4.20)

is the energy integral with S = n(~p1)(1−n(~p3))(1−n(~p4)). The an-

gular integral can be done analytically to give A = 32π3/pF (d) pF (u) pF (e).

The energy integral can be evaluated using standard procedure and

can be written, in terms of dimensionless variables y = E2/kT and

δµ = δµ/kT as

B = pF (d) pF (u) p2
F (e)m∗dm

∗
u

(kT )6

2
F (δµ) (4.21)

The dimensionless function F is defined as

F (x) =

∫ ∞
0

y3dy

(
π2 + (y − x)2

1 + exp(y − x)

)
(4.22)

Next we consider the limiting case in which δµ � 1. Then the

function F can be represented by the asymptotic formula F ≈

(1/60)(δµ)6 [14]. If we finally write down the neutrino emissivity
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in this particular limiting case δµ � 1, we obtain the temperature

independent form

ενe(δµ) =
G2 cos2 θc
40π5~10c4

pF (e)m∗dm
∗
u

×
(

1− pF (u)

m∗uc
cos θ34

)
(δµ)6 (4.23)

This final equation for neutrino emissivity is what we need in our

specific case of a zero temperature pulsating SCQGP quark star.

Following the same method we can calculate the νe emission rate

from the inverse process (4.13) which yields the same expression

as the above in the limiting case −δµ � 1 . In this latter limiting

condition the inverse process of νe emission (4.13) dominates over the

νe emission process (4.12)(which is then negligible in comparison).

In the former limit the converse is true. It has to be pointed out that

during our calculation of neutrino emissivities we naively replace

the quark effective masses by their constituent masses. To obtain

an expression for the Fermi momenta (pF (q)) of strongly coupled

degenerate quarks we have utilised the formula for Fermi momentum

derived in the case of an electron fluid with Coulomb interactions

by Isihara & Kojima [15]. Appropriate modifications are done to

include the quark color degrees of freedom primarily by replacing rs

for degenerate electron system by rs for degenerate, massive quarks

given by eqn(3.8). In natural units we can write

pF (q) =
8

3
Mqαs

(
0.95957

rs
A(rs)

)
MeV (4.24)

with A(rs) = 1− 0.16586 rs + r2
s (0.0084411 lnrs − 0.027620)
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To proceed with our analysis of pulsation damping we next write

down the relationship between the chemical potential difference δµ(r, t)

and an arbitrary pulsation ξ(r, t). The relation has been derived in

the context of neutron β-decay [16], but can be readily applied to

quarks which possess a baryon number. The relation is as follows

δµ(r, t) = −
∂δµ(nb, xe)

∂nb
nb
eν

r2

∂

∂r

(
r2e−νξ(r, t)

)
(4.25)

Here the partial derivative with respect to nb is taken at constant

xe = ne/nb. The variables nb, ne are the equilibrium baryon num-

ber density, electron number density respectively. Using the above

equation we can express the neutrino emissivities in terms of ξ(r, t).

If we denote the total neutrino emissivity by ε = εν + εν , then the

total redshifted neutrino luminosity L of the star is given by

L =

∫ R

0

ε e2ν dV (4.26)

where ε is the total neutrino luminosity averaged over a pulsation

period and dV is the proper volume, dV = 4 π r2 eλ dr.

We now go forth and calculate the pulsation damping in the

fundamental mode of a zero temperature SCQGP quark star. In

the presence of pulsation damping the normal mode motions can

be represented by, ξ0(r, t) = A0(t) ξ0(r) cosωt. The dimension-

less amplitude A0(t) is a slowly decreasing function of time with

A0(t = 0) = 1. The pulsation energy in the fundamental mode

with damping is Epuls = E
(0)
pulsA

2
0(t). Now assuming the direct-

Urca reactions to be the only major damping mechanism present,
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the rate of energy loss from pulsations is equal to the total neutrino

luminosity:

−dEpuls
dt

= L (4.27)

On solving the above equation with the initial condition A0(0) = 1,

we obtain the variation in pulsation energy with time. We have

calculated the neutrino luminosities and pulsation energies in the

fundamental mode for SCQGP quark stars for the bag parameter

B1/4 = 210MeV and normalization parameter ∆ = 0.01. The

chosen central densities are ρc = 1.392 × 1015, 1.783 × 1015, 2.54 ×

1015 gm cm−3 which yield stars of masses 1.518, 1.845, 2M� re-

spectively. The corresponding neutrino luminosities are plotted in

Fig(4.5a) as a function of time, t. The variation in pulsation energies

with time is shown in Fig(4.5b). The figure demonstrates that the

capacity of higher mass quark stars, to store the pulsation energy is

much less than that of lower mass stars. Lower mass stars can store

a relatively increased pulsation energy for longer intervals of time

as compared to higher mass stars. This behaviour can be explained

by noting that the pulsation energy is dependent on the square of

the normal mode frequency. From earlier calculations (see figures

Fig(4.1) and Fig(4.2)) it is evident that the normal mode frequen-

cies of quark stars decrease with increase in stellar mass M. Now the

rate of energy loss due to pulsation damping tapers off with time.

Therefore it comes out that lower mass stars can retain higher pul-

sation energies for longer durations when compared to higher mass

stars. The neutrino luminosities plotted in Fig(4.5a)
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Figure 4.5: Fig.(4.5a) shows the neutrino luminosities (L), in the fundamental
mode for SCQGP stars with bag parameter B1/4 = 210MeV , as a function of
time. The chosen central densities are ρc = 1.392 × 1015, 1.783 × 1015, 2.54 ×
1015 gm cm−3 with stellar masses 1.518, 1.845, 2M� respectively. The nor-
malization parameter ∆ = 0.01. Fig.(4.5b) shows the temporal evolution of
pulsation energy in the fundamental mode for SCQGP stars with chosen bag
parameter, central densities and corresponding stellar masses as in Fig.(4.5a).
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show a more dramatic behaviour. The neutrino luminosity initially

follows the pattern L2M� > L1.845M� > L1.518M� . In a matter of

hours this pattern is found to be reversed. The baryon number den-

sity (nb(r)) of higher mass quark stars have values larger compared

to their lower mass counterparts. Hence the moment the damping

is ‘switched on’, the number of triggered β-reactions and the cor-

responding number of emitted neutrinos are far greater than that

for lower mass stars - the initial pattern for luminosity results. Now

the oscillation frequencies of lower mass quark stars are larger com-

pared to higher mass quark stars. Therefore with passage of time

the β-reaction rates of lower mass stars catch up with the higher

mass stars which oscillate with a lower frequency. Hence a reversal

of pattern results.
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Chapter 5

Conclusion

We have conducted a study of dense matter at extremely low tem-

peratures and moderate baryon densities . In this niche of the T −µ

phase diagram, the nature of dense matter is not yet conclusive.

Based on arguments given in section 3.1, it is quite plausible that

matter in this region is in the deconfined quark phase, wherein chi-

ral symmetry has not yet been restored. It turns out that the rel-

evant densities are those realised by nature in compact star interi-

ors. Hence we expect that compact stars contain quark matter in

bulk, with the constituting quarks in the massive phase. Surmising

that the study of bulk plasma properties of this intermediate mas-

sive phase of quark matter would be rewarding, we set up on the

trail, drawing upon the analogy with the well known QED plasma.

Defining the plasma parameter for a system of degenerate massive

quarks at near zero temperature, in the same line as QED plasma (

since in our density range of concern the quark - quark interactions

are expected to be color Coulombic), the coupling strength of QGP
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was calculated. It turns out that in the density range 3ρ0 − 10ρ0

(Normal nuclear density ρ0 = 0.16fm−3), QGP is intermediately

to strongly coupled (SCQGP). Next, to obtain an equation of state

for the relevant QGP phase, we carried on further with the QED

plasma analogy. Utilizing the equation of state of a degenerate elec-

tron system obtained via Pade approximation a similar EOS for

QGP was developed, mutatis mutandis. Appropriate changes were

made considering the relevant color and flavor degrees of freedom.

Once the equation of state was in place the next task was to check

whether it was able to yield stable bound stars with mass-radius

typical to compact stars. The equations of structure, the Tolman-

Oppenheimer-Volkoff (TOV) equations were solved with the resul-

tant equation of state. For B1/4 . 215MeV (B being the confining

bag parameter), the stiff equation of state gives stable sequences

with maximum mass & 2M�. The result is relevant since it is in

conformity with recent observation. Recently the mass of the binary

millisecond pulsar J1614-2230 has been calculated to high accuracy

using Shapiro delay, to be 1.97 ± 0.04 M� [1]. The result constrains

soft equations of state, which yield mass sequences with maximum

mass star < 2M�. The SCQGP equation of state yield mass se-

quences with maximum mass star & 2M� for apposite choice of bag

parameter values.

In order to check whether quark stars described by the SCQGP

equation of state satisfy the sufficient condition for stability, a study

of the radial pulsations of the corresponding quark stars was carried

out. The sufficient condition for stability is that the stars be stable
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with respect to radial perturbations. The normal mode analysis of

the radial modes confirmed the stability of quark stars described by

the new equation of state. The normal mode pulsation periods for

the fundamental and first excited modes were obtained and plot-

ted for varying bag parameter values (B). The calculated pulsation

periods for the fundamental mode are typically of the order of one

tenth of a millisecond. For lower mass quark stars the pulsation pe-

riods are found to have negligible dependence on the confining bag

parameter value. For medium and higher mass stars a variation in

oscillation periods is seen with change in the bag parameter. The

periods are found to decrease with decrease in bag constant (in-

creasing stiffness of the EOS). Furthermore we have compared the

oscillation periods of SCQGP stars with strange stars composed of

non-interacting quarks treated within the MIT bag model. The os-

cillation periods for SCQGP stars show considerable difference (2 to

3 times lower) when compared to strange stars with non-interacting

quarks throughout the entire range of stellar masses with the differ-

ence increasing with decrease in bag parameter value for the SCQGP

equation of state. Thus the detection of radial oscillations (if and

when possible) can provide information constraining the equation of

state for dense matter.

In our study we have plotted and analysed the eigenfunctions for

SCQGP stars for the fundamental, first and second excited modes

in the particular case of bag parameter value, B1/4 = 210MeV . A

strong correlation is found between the variation in adiabatic index

and behaviour of the eigenfunctions for the fundamental mode. The
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adiabatic index is found to shoot up near the surface layer of the

star which must be attributed to the presence of the confining bag.

Hence the particular behaviour of the plotted eigenfunctions must

be restricted to quark stars.

Finally we considered the damping of the radial pulsations by

non-equilibrium processes. We have derived the expression for neu-

trino emissivity due to the major and dominant non-equilibrium

process – the direct-Urca process – for small amplitude radial pulsa-

tions. The direct-Urca process is open in the interior of an SCQGP

star composed of massive and interacting quarks. The derivation

was done under the assumption that stellar matter is transparent

to neutrinos and thereby neglecting their effect on the kinematics

of the process. In the case of zero temperature SCQGP stars the

formula for emissivity has a temperature independent form. The

red shifted neutrino luminosities in the fundamental mode were cal-

culated for some specific cases. We chose the bag parameter value

B1/4 = 210MeV and picked stars with masses 1.518, 1.845 and

2M�. The temporal evolution of pulsation energy in the aforesaid

cases were obtained and plotted. The damping time scale is found

to be of the order of years. The plots indicate that lower mass stars

can store a relatively increased pulsation energy for longer intervals

of time as compared to higher mass stars. Though exact calcula-

tions have not been made it may be surmised that a fraction of the

energy extracted by the Urca process is converted to electron kinetic

energy, heating up the star. Consequently this should lead to electro

magnetic emissions from the surface of the quark star.
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Future Work

In this thesis we have considered quark stars constituted entirely of

pure quark matter. A more realistic version would have pure quark

matter possibly confined to the core region. The outer layers would

comprise a mixed phase with quarks and hadrons interspersed, in

physical equilibrium with each other, followed by a hadronic crust.

In future work, the study of such a more realistic ‘hybrid star’, using

a modified equation of state, incorporating the new possible phases

can be undertaken.

Again, in this thesis we have considered static, non- rotating

quark stars. It would be worthwhile to consider the slow and fast

rotation of quark stars, which affects the structure of the star as well

as the space-time in its vicinity. The limits on rotation posed by

mass loss at the equator can provide valuable information about the

internal structure of the star. A study of gravitational instabilities

arising due to rotation is also worth pursuing.

Analysis of the non-radial oscillation modes of quark stars is

significant, due to the associated emission of gravitational waves.

Gravitational waves travel through space-time basically unaffected,

carrying ‘pure’ information regarding the physical structure of the

quark star. The study of the non-radial oscillation modes can hence

provide rich and valuable information concerning matter at extreme

densities.
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