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Thèse soutenue publiquement le 3 juillet 2013,
devant le jury composé de :
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Maı̂tre de Conférences, LPC Clermont, Rapporteur

Dr. Ulrich ELLWANGER

Professeur, LPT Orsay, Rapporteur
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le domaine de validité de l’équation 7.18 ou sur l’intrigant graphique 8.13a, voici les
deux pages que vous devez absolument lire (sous peine de courroux très grand, oui très
grand, attention j’aurais prévenu) (à la limite laissez tomber le reste... non mais quand
même ce graphique 8.13a...).
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dans ce laboratoire et son emplacement en font un excellent cadre pour la recherche
scientifique. Je remercie son directeur Fawzi pour sa disponibilité et ses réponses à
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Maud. Je remercie Béranger et Jérémie pour les discussions passionantes durant di-
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Introduction

English version

With the discovery of a particle whose characteristics match well those of the Standard
Model Higgs boson and with the precise results of cosmological experiments, the stan-
dard models of particle physics and cosmology are now clearly successful. Nevertheless
some observations are not completely understood in these theoretical fameworks. One
of the most well-known is the Dark Matter problem. The fact that the particle content
of the Standard Model of particle physics only explain a fraction of the matter content
of the standard cosmological model is an important issue to solve. There are also some
theoretical issues in the foundations of these models. The fine-tuning problem in the
Higgs sector of the Standard Model of particle physics that can be related to the fact
that no symmetry protects the mass of the Higgs boson in this model gives also motiva-
tions to look for New Physics. A lot of new models were built to respond to the issues
of these two standard models and one of the most well-known which is considered in
this thesis is Supersymmetry. Defining such a symmetry between two type of particles,
the fermions and the bosons, gives a response to the fine-tuning problem and introduce
new particles within which we can find a Dark Matter candidate. A nice feature of
Supersymmetry is that several methods can be used to test its predictions : they span a
large array of experiments and energies. Several of them will be considered to constrain
the supersymmetric models analysed in this thesis.

This thesis has the following structure :

• In part I we will present a review of the content, the successes and the issues of
the Standard Model of particle physics (chapter 1) and the cosmological standard
model (chapter 2). We will then introduce Supersymmetry, its simplest version
and the experimental constraints that will be considered in this thesis (chapter 3).

• In part II we will present studies of supersymmetric models considering the lightest
neutralino as a Dark Matter candidate. In chapter 4 we will analyse the Minimal
Supersymmetric Standard Model within which cosmic inflation candidates can be
found. In chapter 5 constraints from Indirect Detection of Dark Matter will be used
on this model. To close this part we will analyse in chapter 6 collider constraints
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on coloured supersymmetric particles within a singlet extension of the Minimal
Supersymmetric Standard Model.

• In part III the study of U(1) extensions of the Minimal Supersymmetric Standard
Model will be developed. In chapter 7 we will introduce such extensions and their
characteristics. Chapter 8 will be devoted to the study of a scalar Dark Matter
candidate in this model, the Right-Handed sneutrino. Finally more constraints
will be considered especially coming from low energy observables and we will take
into account recent results on the Higgs boson study (chapter 9).

Version française

Avec la découverte d’une particule dont les caractéristiques correspondent de mieux en
mieux à celles du boson de Higgs du Modèle Standard et avec les résultats d’une précision
inégalée des expériences en cosmologie, les modèles standards de la physique des partic-
ules et de la cosmologie ont désormais clairement un grand succès. Cependant certaines
observations ne sont pas clairement expliquées dans ces cadres théoriques. L’un des plus
célèbres est le problème de la Matière Noire. Le fait que les constituants du Modèle
Standard de la physique des particules expliquent seulement une fraction du contenu
en matière de modèle standard cosmologique est un point important à résoudre. Il y
a en outre des soucis théoriques dans la construction de ces modèles. Le problème de
réglage fin dans le secteur de Higgs du Modèle Standard de la physique des particules qui
peut être relié au fait qu’aucune symétrie ne protège la masse du boson de Higgs dans
ce modèle donne aussi des motivations dans la recherche de Nouvelles Physiques. Un
grand nombre de modèles ont été développés afin de répondre aux problèmes de ces deux
modèles standards et l’un des plus connus qui est étudié tout au long de cette thèse est
la Supersymétrie. Définir une telle symétrie entre deux sortes de particules, les fermions
et les bosons, donne une solution au problème de réglage fin et introduit de nouvelles
particules au sein desquelles nous pouvons trouver un candidat à la Matière Noire. Une
caractéristique intéressante de la Supersymétrie est que de nombreuses méthodes peu-
vent être employées afin de tester ses prédictions : ces outils couvrent une large gamme
d’expériences et d’énergies. Plusieurs d’entre eux seront utilisés pour contraindre les
modèles supersymétriques étudiés dans cette thèse.

Cette thèse possède la structure suivante :

• Dans la partie I nous présenterons le contenu, les succès et les problèmes du Modèle
Standard de la physique des particules (chapitre 1) et du modèle standard cos-
mologique (chapitre 2). Nous introduirons alors la Supersymétrie, sa version la
plus simple et les contraintes expérimentales qui seront considérées dans cette
thèse (chapitre 3).
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• Dans la partie II nous présenterons différentes études de modèles supersymétriques
en considérant le neutralino le plus léger comme candidat à la Matière Noire. Dans
le chapitre 4 nous analyserons le Modèle Standard Supersymétrique Minimal au
sein duquel des candidats à l’inflation cosmique peuvent être étudiés. Dans le
chapitre 5 des contraintes provenant de la Détection Indirecte de Matière Noire
seront utilisées dans ce modèle. Pour clore cette partie nous analyserons dans
le chapitre 6 des contraintes en collisionneur sur des particules supersymétriques
colorées dans le cadre d’une extension singulet du Modèle Standard Supersymétrique
Minimal.

• Dans la partie III l’étude d’extensions U(1) du Modèle Standard Supersymétrique
Minimal sera développée. Nous introduirons dans le chapitre 7 ce genre d’extensions
et leurs caractéristiques. Le chapitre 8 sera consacré à l’étude d’un candidat
scalaire à la Matière Noire dans ce modèle, le sneutrino droit. Pour finir da-
vantage de contraintes seront considérées, tout particulièrement ceux provenant
d’observables de basses énergies et nous prendrons en compte les récents résultats
dans l’étude du boson de Higgs (chapitre 9).
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1.1 Building of the model : gauge sector

From the discovery of the nuclear structure of the atoms by Rutherford in the early
20th century [1] to the final hunting of the Higgs boson in 2012 at the Large Hadron
Collider (LHC) with the ATLAS and the CMS collaborations [2, 3], progress in particle
physics were so strong that just a few theoretical models are still relevant to explain the
behaviour of elementary particles. In this context the Standard Model of particle physics
(SM) is the current most reliable description of the main fundamental interactions be-
tween the elementary particles1 : the electromagnetic, the weak and the strong nuclear
interactions. Symmetry considerations were essential to build this theory. Starting
from the interactions between the known matter particles, namely quarks and leptons,
the gauge theory developed by Yang and Mills [4] tells us that these particles interact
through the exchange of spin 1 particles, the vector gauge bosons. The full Lagrangian of
the theory, which contains the masses and interactions between the particles, is invariant
under a non-abelian gauge symmetry that reads SU(3)c⊗SU(2)L⊗U(1)Y ; it introduces
12 gauge bosons. The strong interaction is described by the Quantum ChromoDynam-
ics (QCD) theory whose gauge symmetry is the exact SU(3)c where the subscript c
denote the colour charge. This interaction is mediated by eight massless vector gauge
bosons, the gluons, whose first strong evidence of their existence was obtained by the
observation of the three-jets events at the PETRA accelerator [5]. The remaining part
SU(2)L⊗U(1)Y corresponds to the unification of the ElectroMagnetic (EM) interaction,
based on the Quantum ElectroDynamics (QED) theory, and the weak interaction into
the same framework introduced by Glashow, the Electro-Weak (EW) model [6]. This
gauge symmetry predicts, in addition to the massless EM propagator called photon, new
massive vector gauge bosons, theW± and Z bosons discovered by the UA1 collaboration
at the CERN SPS collider [7, 8].

The self-interaction of gauge bosons and the kinetic terms are encoded in the Yang-
Mills expression :

LYM = −1

4

3∑

i=1

F i
µνF

iµν , (1.1)

where

F i
µν = ∂µF

i
ν − ∂νF

i
µ + gicijkF

j
µF

k
ν . (1.2)

µ and ν are Lorentz indices, the metric being that of Special Relativity (SR), the
Minkowski one ηµν = diag(1,−1,−1,−1). The general covariant derivative for the
SU(3)c ⊗ SU(2)L ⊗ U(1)Y symmetry reads

Dµ = ∂µ + i

3∑

i=1

kigiF
i
µTi. (1.3)

We use the following definitions for each symmetry :

1Gravitation can be safely neglected at this scale and even at the largest energies obtained both at
colliders and in cosmic rays although there is no successful description of quantum gravity.
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• i = 1 stands for the U(1)Y symmetry whose coupling constant is g1 = gY . There
is one gauge field associated F 1

µ = Bµ and one generator T1 = Y/2 with the
hypercharge Y . The U(1)Y structure constant cijk is equal to zero. Thus there is
no self-interaction of the field Bµ : this corresponds to an abelian gauge group.
k1 = 1 which means that all matter particles of the SM couple through U(1)Y .

• i = 2 stands for the SU(2)L symmetry whose coupling constant is g2. There
are three gauge fields F 2

µ = {W a
µ , a = 1, 2, 3} and three associated generators,

T2 ∈ {Ia = σa/2, a = 1, 2, 3} with σa the Pauli matrices and Ia the isospin. The
SU(2)L structure constants cijk = ǫijk, with i, j, k ∈ {1, 2, 3}, are the antisymmet-
ric Levy-Civita symbols in three dimensions. Finally k2 = 0 and 1 respectively for
the covariant derivative acting on a singlet and a doublet of SU(2)L.

• i = 3 stands for the SU(3)c symmetry whose coupling constant is g3 = gs. There
are eight gauge fields F 3

µ = {Ga
µ, a = 1, ..., 8} and eight associated generators

T3 ∈ {λa/2, a = 1, ..., 8}. The SU(3)c structure constants cijk = fijk, with
i, j, k ∈ {1, ..., 8}, are antisymmetric. To finish we have k3 = 0, 1 and −1 re-
spectively for a singlet, a triplet and an antitriplet of SU(3)c.

In the framework of EW unification, the electrical charge Q of a particle, characterized
by its hypercharge Y and I3 which is the third component of the SU(2)L isospin, is given
by the Gell-Mann Nishijima formula

Q = I3 +
Y

2
. (1.4)

The main issue of this model is to explain how some of these gauge bosons become
massive and how to avoid the explicit breaking of the EW symmetry. One simple way to
give mass to the particles of the SM is to break the SU(2)L⊗U(1)Y symmetry introducing
a doublet of scalar fields that has non-zero vacua as we will show in section 1.3. When
we decide to choose one vaccum the symmetry is spontaneously broken to the QED
symmetry U(1)em and the particles of the SM get a mass in an elegant mathematical way.
This mechanism, developed in the 60’s [9, 10, 11, 12, 13, 14], is the Brout-Englert-Higgs
mechanism and it gives a physical state, the massive scalar Brout-Englert-Higgs2 boson
which seems to correspond to the boson discovered by the LHC experiments in 2012.
The Higgs mechanism was successfully incorporated into the EW theory by Weinberg
and Salam [15, 16] and the predictiveness of the theory was finally established by ’t
Hooft who demonstrated that the SM theory of the EW interaction is renormalizable
[17]. For a more complete overview of the SM theory see [18, 19, 20]. In the following
section we look at the matter sector of the SM.

2In the rest of this thesis we will simplify this naming by using the much more used designations
Higgs mechanism and Higgs boson.
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1.2 Matter sector

The matter sector of the SM consists of 24 spin 1/2 particles called fermions and their
corresponding antiparticles3. This sector is divided into two parts, depending on the
sensitivity of this particles to the strong interaction : the leptons and the quarks. These
fermions are described by the fundamental representation of the group of space-time
transformations, the Lorentz group, and the object we use to define these fields are the
four complex components Dirac spinor. This framework allows to put in one mathe-
matical object the fermion, the corresponding antifermion and their two helicities4. One
useful decomposition of the fermions is linked to the chiral symmetry. A Dirac spinor ψ
can be rewritten as a combination of its left and right chiralities ψL and ψR :

ψ = PLψL + PRψR, (1.5)

where the projectors are defined using the Dirac matrix γ5

PL =
1− γ5

2
, PR =

1 + γ5
2

. (1.6)

Using this decomposition we can define the fermion masses analysing the mixing of
chiralities as we will see in section 1.3. The weak interaction only acts on the left part
ψL of the Dirac spinor and on the right one of the conjugate spinor : it breaks parity
symmetry5 P and also both charge conjugation6 C and P symmetry. When we classify
the fermions with respect to the weak interaction, we then define doublets of chirality
left and singlet of chirality right as detailed in sections 1.2.1 and 1.2.2.

1.2.1 Leptons

Leptons are singlets of SU(3)c; they do not interact through strong interaction. There
are six leptons divided in three families or flavours in the SM. In this sector a family
corresponds to a doublet of a charged (with an opposite electric charge with respect to
that of the proton) and a neutral lepton with respect to the EM interaction. The most
known charged lepton is the electron e− which is the lightest (its mass7 me ∼ 511 keV)
and is stable, namely its lifetime is bigger than the age of the Universe. The others
charged leptons are the muon µ− dicovered in 1936 by Anderson and Neddermeyer [21]
and the tau τ− detected in 1975 by Perl and collaborators from the Stanford Linear

3Same mass and spin but the other quantum numbers are opposite such as the electric and colour
charges.

4Projection of the spin onto the direction of momentum of the particle considered.
5Transformation between left and right chirality. The breaking of P is the reason why the symmetry

group of the weak interaction is called SU(2)L.
6Transformation between a particle and its antiparticle.
7We use the useful convention ~ = c = 1 which allows us to write most of our high energy physics

observables in units of eVn with n ∈ Z. 1 eV is the energy gained (or lost) by an electron which is
moving on a lengh of 1 meter across an electric potential difference of 1 Volt; a typical ballpark is the
mass of a nucleon ∼ 1 GeV = 109 eV.
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Accelerator Center (SLAC) and the Lawrence Berkeley Laboratory (LBL) [22]. The
neutral states called neutrinos were found interacting only by weak interaction with the
other particles [23, 24, 25]. It results that the three neutrino flavours νe, νµ and ντ
are mostly Left-Handed (LH) and almost massless. We insist on the almost statement
since neutrino oscillations were observed in many different ways (flux of solar neutrino,
atmospheric neutrino, neutrinos produced in particle accelerators or nuclear reactors).
This shows that these particles have non-zero masses and gives hints on the existence
of a Right-Handed (RH) component (see part III for examples of such extensions in the
neutrino sector). Neutrino oscillation describes the possibility to detect a neutrino with
a flavour i ∈ {e, µ, τ} knowing that it was created with a flavour j 6= i using the unitary
transformation relating the flavor νi and mass να eigenstates

νi =
∑

α=1,2,3

Uiανα, i ∈ {e, µ, τ} (1.7)

through the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary matrix [26, 27, 28]

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





1 0 0
0 eiα21/2 0
0 0 eiα31/2


 ,

(1.8)
where cij = cos θij, sij = sin θij (θij being mixing angles), δ is the Dirac CP violation
phase and α21 and α31 are two Majorana CP violation phases. These two last parameters
are only relevant if neutrinos are Majorana fermions8 which would be the case if neutri-
noless double beta decay (two neutrons decaying into two protons and two electrons) is
observed. δ is currently unknown but the angles are now well determined [29] :

sin2 θ12 = 0.306+0.018
−0.015

sin2 θ23 = 0.42+0.08
−0.03

sin2 2θ13 = 0.096± 0.013.

(1.9)

The recent observation of non-zero θ13 angle by the Daya Bay reactor neutrino experi-
ment [30] turned to be a powerful constraint on neutrino models. If the masses of the
neutrinos are sufficiently large, one of the interesting way to determine them is through
the study of the Cosmic Microwave Background (CMB) (see chapter 2). Depending on
the cosmological scenario considered and on the combination of observations used, the
upper limit on the combined mass of the three neutrinos was determined by the Planck
collaboration to be down to 0.23 eV at the 2σ level [31].

The leptons and antileptons can now be represented in terms of doublets and singlets
of LH and RH fields :

L =

{(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
τ

)

L

}
, e = {eR, µR, τR} . (1.10)

8The fermion is identical to its antifermion.
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1.2.2 Quarks

The quarks are triplets of SU(3)c and interact through the three interactions of the
SM. As for leptons we have six quarks but each of them exists in three colours, the
quantum number linked to the SU(3)c symmetry. The SM contains three families of
quark doublets. In each doublet we have an up-type quark with a fractionary electric
charge of 2/3 in unit of the proton charge and a down-type9 quark with a charge -1/3.
The quarks are always10 detected in bound states because of the confinement property
of the strong interaction. The bound states they form are the hadrons. These composite
particles are colourless and have an integer electric charge. They are classified into two
categories : the baryons like the nucleons, composed of three quarks, and the mesons
composed of a quark and an antiquark.

The original quark model composed of the three lightest ones has been proposed
independently by Gell-Mann [32] and Zweig [33, 34] in 1964. The existence of these
quarks, the up, down and strange quarks (u, d and s) was proved in 1968 when evidence
of the proton substructures was obtained using deep inelastic scattering at SLAC [35, 36].
To evade the issue of the theoretically possible existence of Flavour-Changing Neutral
Current (FCNC) processes, still unobserved, Glashow, Iliopoulos and Maiani introduced
in 1970 a fourth quark, the charm quark [37]. The mechanism they developed that allows
a flavour mixing through charged current is called the Glashow-Iliopoulos-Maiani (GIM)
mechanism. The first hadron containing charm quarks, the J/ψ meson, was discovered
in 1974 by a SLAC team [38] and a team from Brookhaven National Laboratory (BNL)
[39]. This model was parameterized by only one parameter, the Cabibbo angle θc [40].
The discovery of CP violation due to weak interaction in the quark sector [41] led to the
need to define a quark sector made of three families that mix through charged current
since this framework naturally introduce a CP violation phase. This work was done
by Kobayashi and Maskawa in 1973 [42] and the footprint of the bottom quark, the
heaviest down-type quark, was obtained four years later by the E288 experiment at
Fermilab [43]. The top quark was much more difficult to detect because of its large mass
and its disability to hadronise. It was finally discovered also at Fermilab by the CDF
and DØ collaborations in 1995 [44, 45].

The quark flavours can mix to form mass eigenstates (denoted by a prime ’) through
charged current. The flavour mixing in the quark sector is parameterized by three angles
and one CP phase as in the Dirac neutrino sector; we use a 3 × 3 unitary matrix to
represent this mixing, the Cabibbo-Kobayashi-Maskawa matrix (CKM) :



d′

s′

b′


 = VCKM



d
s
b


 , VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (1.11)

Using global fits, the CKM elements are now precisely determined in the framework of

9These names stem from those of the first quark family.
10With the exception of the top quark which is not able to hadronise because its lifetime is too short;

however its decay product hadronises.
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the SM and their magnitudes are [29] :

VCKM =



0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046


 . (1.12)

The experimental observations based on charged current and CP violation like for exam-
ple in the B-mesons sector can be crucial to determine the viability of theories aiming
to go Beyond the Standard Model (BSM) as we will observe in parts II and III. As for
leptons, we classify the quarks and antiquarks in doublets and singlets of SU(2)L :

Q =

{(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

}
, u = {uR, cR, tR} , d = {dR, sR, bR} . (1.13)

1.3 The Higgs mechanism

Now let us look how to generate the mass of the particles we described in the SM. To do
this an SU(2)L doublet of complex scalars with an hypercharge Y = 1 is introduced :

H =

(
φ+

φ0

)
. (1.14)

The requirement of SU(2)L ⊗ U(1)Y invariance yields the following Lagrangian for the
field H :

LH = (DµH)†(DµH)− V (H). (1.15)

H is an SU(3)c singlet; it implies that it has no tree level interaction with the gluon
fields Ga

µ which in consequence are massless. The gauge invariant potential chosen for
the field H reads

V (H) = µ2H†H + λ(H†H)2. (1.16)

We then rewrite the Lagrangian LH :

LH =

∣∣∣∣∣

{
∂µ +

i

2

(
gY Y Bµ + g2

3∑

a=1

σaW a
µ

)}
H

∣∣∣∣∣

2

− µ2H†H − λ(H†H)2. (1.17)

To get a physical minimum for the potential implies that the parameter λ has to be
positive. Then the averaged expected value of the field H in the vacuum, also called
Vacuum Expectation Value (VEV), is obtained by calculating the minimum of the po-
tential V (H) :

∂V (H)

∂|H| = 0 = (2µ2 + 4λ|H|2)|H|, (1.18)

which leads to the VEV

〈0|H|0〉 = H0 =

√
−µ2

2λ
≡ ± v√

2
. (1.19)

We are thus left with two types of potential as depicted in figure 1.1 :
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• Either µ ≥ 0; we get a trivial minimum 〈0|H|0〉 = 0,

• or µ < 0; two minima are obtained : 〈0|H|0〉 = ± v√
2
.

The latter is the most interesting : by choosing one specific minimum + v√
2
, the SU(2)L⊗

U(1)Y symmetry is spontaneously broken. Using the relation 1.4 we can check that this
procedure does not break the EM symmetry : SU(2)L ⊗ U(1)Y breaks into the exact
U(1)em symmetry :

QH0 = 0. (1.20)

Figure 1.1: Higgs potential for two cases with the same |µ2| and λ but with µ2 > 0
for the one represented by the red curve and µ2 < 0 for the other depicted by the green
curve, mexican hat shaped.

Expanding the field H around the chosen vacuum we have

H0 =

(
φ+
0

φ0
0

)
=

(
G+

1√
2
(v + h0 + iG0)

)
. (1.21)

A gauge transformation, the unitary gauge, allows us to get rid of the non-physical
degrees of freedom G± and G0, the Goldstone bosons. The new expression

H0 =
1√
2

(
0

v + h0

)
(1.22)

is now used to determine how the interaction between H0 and the gauge fields gives their
mass. First note that the only physical state remaining in the Higgs sector gets a mass :

m2
h0 = −2µ2 = 2λv2. (1.23)
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From the expression of LH we analyse the term

∣∣∣∣∣
i

2

(
gY Y Bµ + g2

3∑

a=1

σaW a
µ

)
H0

∣∣∣∣∣

2

=
1

8

∣∣∣∣
(
g2W

3
µ + gY Y Bµ g2(W

1
µ − iW 2

µ)
g2(W

1
µ + iW 2

µ) −g2W 3
µ + gY Y Bµ

)(
0

v + h0

)∣∣∣∣
2

=
1

8
g22(v + h0)2

[
W 1
µW

1µ +W 2
µW

2µ
]

+
1

8
(v + h0)2(gYBµ − g2W

3
µ)(gYB

µ − g2W
3µ).

(1.24)

Let us look more precisely at the mass terms. Using

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ), (1.25)

we find the mass term corresponding to the W bosons :

M2
WW

+
µ W

−µ with MW =
1

2
g2v. (1.26)

The remaining mass term reads

1

8
v2
(
W 3
µ Bµ

)( g22 −g2gY
−g2gY g2Y

)(
W 3µ

Bµ

)
. (1.27)

The diagonalisation of this mass matrix gives two new physical states, the massless
photon Aµ and the Z boson described by the field Zµ. Their corresponding mass terms
are

1

2
(M2

ZZ
2
µ +M2

AA
2
µ) (1.28)

with

Aµ =
gYW

3
µ + g2Bµ√
g2Y + g22

, MA = 0,

Zµ =
g2W

3
µ − gYBµ√
g2Y + g22

, MZ =
1

2

√
g2Y + g22v.

(1.29)

gY and g2 can be reexpressed in terms of the U(1)em coupling constant e and a mixing
angle called the Weinberg angle θW to get a simpler relation between the physical states
(Aµ, Zµ) and the gauge eigenstates (W 3

µ , Bµ) :

gY =
e

cos θW
, g2 =

e

sin θW
⇒

{
Aµ = sin θWW

3
µ + cos θWBµ

Zµ = cos θWW
3
µ − sin θWBµ

. (1.30)

The mixing between the W 3
µ and Bµ fields explains the different masses for the Z and

W bosons :
MW

MZ

= cos θW . (1.31)
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Interactions involving the exchange of Z and W bosons are respectively put into neutral
and charged current interactions. The relative strength between these two types of
interaction is encoded in the ρ parameter defined as

ρ =
M2

W

M2
Z cos

2 θW
= 1. (1.32)

Note that this is the tree level definition of ρ; higher order corrections could lead to
small deviation of ρ from the unity which would be a way to probe New Physics (NP).
More generally the experimental study of the EW sector imply strong constraints on
BSM models especially those characterized by an extension of the gauge sector as we
will see in part III.

In the matter sector the mass terms are generated through the mixing of the fermion
chiralities represented by the Yukawa terms11. Recalling the singlets and doublets of
SU(2)L defined in section 1.2, the Yukawa Lagrangian reads :

LY =
3∑

i,j=1

yiuQ̄iH̄Vijuj + yidQ̄iHdi + yieL̄iHei + h.c12, H̄ = iσ2H∗ (1.33)

where i and j stand for the fermion families, Vij are the CKM matrix elements and
the y’s are the Yukawa couplings. The EW spontaneous breaking allows to derive the
expression of the mass of the fermions. Using the eq. 1.22 and neglecting the effect of
the CKM elements, the mass of a fermion f of the ith family reads

mfi =
yifv√
2
. (1.34)

1.4 Full standard picture

The last part of the SM Lagrangian is the one that contains the interactions between
the matter and gauge sectors :

LMG = Ψ̄!!DΨ, !!D = γµDµ, Ψ ∈ {Q, ū, d̄, L, ē}. (1.35)

11Neutrinos are not considered here; the mechanism to generate their masses is not yet well established
because we observe only one neutrino chirality.

12Hermitian coujugate of the expression. Note that most of the time the flavour and colour indices
will be omitted.
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The full SM Lagrangian then reads

LSM = LYM + LH + LY + LMG

=− 1

4

(
BµνB

µν +
3∑

i=1

W i
µνW

iµν +
8∑

i=1

Gi
µνG

iµν

)

+ (DµH)†(DµH)− µ2H†H − λ(H†H)2

+
3∑

i,j=1

yui Q̄iH̄Vijuj + ydi Q̄iHdi + yei L̄iHei + h.c

+
3∑

i=1

Q̄i!!DQi + ūi!!Dui + d̄i!!Ddi + L̄i!!DLi + ēi!!Dei.

(1.36)

It follows that the SM contains 19 parameters : 9 Yukawa couplings, 3 CKM angles and
a CP phase, 3 coupling constants, the µ and the λ parameters from the Higgs potential
and the QCD vacuum angle θQCD linked to the strong CP problem that we will tackle
in section 1.6. By considering massive neutrinos we must also add new terms : neutrino
masses and PMNS elements.

The SM interactions are depicted in figure 1.2 and table 1.1 summarizes the main
characteristics of the SM particles. In this table the mass of the Higgs boson is the
weighted mean of the mass measurement derived by the ATLAS collaboration with
integrated luminosities of about 4.8 fb−1 at a center-of-mass energy of proton-proton
collision at the LHC of

√
s = 7 TeV and 20.7 fb−1 at

√
s = 8 TeV (mh0 = 125.5 ±

0.2+0.5
− 0.6 GeV, [46]) and the measurement done by the CMS collaboration with integrated

luminosities up to 5.1 fb−1 at
√
s = 7 TeV and up to 19.6 fb−1 at

√
s = 8 TeV (mh0 =

125.7± 0.3± 0.3 GeV, [47]).

Figure 1.2: Tree-level interactions between the SM particles. Lines represent interac-
tions with gluons (plain black), γ (dashed), Z and W (dotted) and Higgs boson (green).
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Name Mass Q SU(3)c,SU(2)L,U(1)Y

Fermions

u 2.3+0.7
−0.5 MeV

Up-type quarks c 1.67± 0.07 GeV 2/3 (3, 2, 1
3
)LH; (3̄, 1, -

4
3
)RH

t 173.5± 0.6± 0.8 GeV

d 4.8+0.7
− 0.3 MeV

Down-type quarks s 95± 5 GeV -1/3 (3, 2, 1
3
)LH; (3̄, 1,

2
3
)RH

b 4.78± 0.06 GeV

e− 5.10998928 keV

Charged leptons µ− 105.6583715 MeV -1 (1, 2, -1)LH; (1, 1, 2)RH

τ− 1776.82± 0.16 MeV

νe

Neutrinos νµ
∑
mν < 0.23 eV [31] 0 (1, 2, -1)LH

ντ

Vector bosons

Gluons Ga - 0 (8, 1, 0)

W bosons W± 80.385 ± 0.015 GeV ± 1 W i ∈ (1,3, 0)

Z boson Z 91.1876 ± 0.0021 GeV 0 B ∈ (1,1, 0)

Photon γ < 1× 10−18 eV 0

Scalar boson

Higgs boson h0 125.63+0.33
− 0.35 GeV [46, 47] 0 (1, 2, 1)

Table 1.1: Summary of the characteristics of the SM particles. If there is no citation,
the mass comes from [29]. The uncertainties are neglected if there are too small. Note
that here the c and b masses are combinations of pole mass determinations and the mass
of the top quark comes from an average of top mass measurements, all this done in [29].

1.5 Successes of the SM

Since the discovery of a boson whose properties (spin [48, 47], parity [47], couplings to
other particles [49, 47]) match more or less those of the only scalar boson of the SM, the
Higgs boson, all the particles predicted by the SM are now experimentally studied and
the results reveal an excellent agreement between the predictions and the measurements.
The observation of the massive gauge bosons and the success of the EW precision tests
are especially an impressive achievement of the theory with SU(2)L ⊗ U(1)Y symmetry
breaking [50].

Rare decays of mesons are an interesting way to test the viability of the SM since they
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are characterized by a suppression of the SM contributions. For instance the branching
ratios B(B0

s → µ+µ−) and B(B̄0 → Xsγ) are known as important observables to
probe NP. However, their recent measurements show that they stand close to their SM
expectation.

1.6 SM issues

Despite the strong evidences of the viability of the SM, several problems remain unsolved.

1.6.1 Theoretical problems

One of the main argument that might indicate that the SM is not the fundamental
theory of particle physics is that it does not include gravitation. Moreover there is no
reliable theory of quantum gravity, namely the quantisation of the gravitational field is
an open topic. Such a theory would have to be reliable when quantum gravity becomes
non-negligible which is the case at the Planck scale defined by the Planck mass MP l

MP l =

√
~c

GN

= 1.220 93(7)× 1019 GeV, (1.37)

with the Newtonian gravitational constant GN = 6.673 8(8)× 10−11 m2 kg−1 s−2.
Another issue concerning the unification of the fundamental interactions is linked to

the unification at higher scale of the three SM interactions into one single interaction.
These theories are called Grand Unified Theories (GUT). The running of the three SM
coupling constants with the energy scale of the process studied has long been observed.
This motivates the idea of unifying the coupling constants of the SM at a given energy
scale. However, the theoretical computation of this running shows that these coupling
constants do not converge to a common value at an energy scale MGUT ∼ 1016 GeV.
Nevertheless, as we will see later, NP effects can restore the unification.

Another non-explained issue in the SM arises through the θQCD parameter. In the
SM, there is no reason why the strong interaction could not also break the CP symmetry.
It implies that the SM should include another CP violation term that looks like

L✟✟CP
SU(3)c

∝ θQCD

8∑

a=1

Ga
µνǫ

µνρσGa
ρσ (1.38)

where ǫµνρσ are the Levy-Civita symbols in four dimensions. Experimental constraints on
the value of θQCD coming from neutron electric dipole moment studies lead to an upper
bound of |θQCD| < 10−11 [51], thus raising a fine-tuning issue that BSM considerations
could solve.

Another more severe fine-tuning problem appearing in the SM is related to the hier-
archy problem. When we consider quantum corrections to the SM Higgs mass through
a fermionic one-loop contribution, it yields a divergent integral. To solve this issue we
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introduce a cut-off Λ corresponding to the limit of validity of the theory. We are then
left with a correction

δm2
h0 =

y2f
16π2

(
−2Λ2 + 6m2

f ln
Λ

mf

+ ...

)
. (1.39)

The problem here is the choice of the scale at which particle physics cannot be described
only by the SM. The higher scales we know are the GUT scale and the Planck scale which
implies that corrections to the Higgs boson mass are extremely large. It follows that the
compensation between the bare mass and these corrections has to be really precise to
get a Higgs boson mass around 125 GeV. This fine-tuning issue could be avoided in BSM
models where for instance Λ corresponds to a lower scale or new contributions cancel
the SM corrections.

As we saw in section 1.2.1 the neutrino sector is not well understood. The fact that
these fermions are massive even if we found only one kind of neutrino chirality tells us
either that the mass generation in the SM is not completely understood or that we must
add at least one new field to try to solve this issue. Furthermore the Dirac or Majorana
nature of the neutrinos is not established.

Finally the SM gives us no fundamental explanation for the origin of some other
features like the number of families, the hierarchy between the fermion masses as can
be seen in table 1.1, the separation between quarks and leptons or simply the number
of parameters.

1.6.2 Experimental discrepancies

Some aspects of the Higgs sector could lead to discrepancies with the SM expectations.
As an example the signal strength corresponding to the decay of the Higgs boson into
two photons could be such an interesting observable. Table 1.2 shows the observed signal
strength µγγ for different production modes and for fixedmh0 values. They were obtained
by the authors in [52] from the Moriond 2013 results released by the ATLAS and CMS
collaborations. As can be seen slight deviations from unity are currently observed (SM
expectation : µSM

γγ ≡ 1). If these discrepancies are confirmed it would allow to probe
NP.

The motion of a charged lepton in an external EM field gives one of the most precisely
measured experimentally and calculated theoretically quantities in particle physics, the
lepton anomalous magnetic moment. In QED the interaction of a photon field Aν(x),
x being the position in space-time, with a Dirac field, here the lepton ψℓ(x) is given by
the Lagrangian density of interaction

L
QED
int (x) = ejνem(x)Aν(x), jνem(x) = −ψ̄ℓ(x)γνψℓ(x), (1.40)

where jνem(x) is the EM current and γν are the Dirac matrices.

The intrinsic angular momentum or spin ~S of the lepton is responsible for the intrinsic
magnetic dipole moment ~µ which is, with the usual convention ~ = c = 1 :

~µ = gℓ
e

2mℓ

~S. (1.41)
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Channel Signal strength µγγ mh0 (GeV) Production mode

ggF VBF WH ZH ttH

ATLAS 4.8 fb−1 at 7 TeV + 20.7 fb−1 at 8 TeV [53, 46]

µggF+ttH
γγ 1.60± 0.41 125.5 100% – – – –

µVBF+VH
γγ 1.94± 0.82 125.5 – 60% 26% 14% –

CMS 5.1 fb−1 at 7 TeV + 19.6 fb−1 at 8 TeV [54]

µggF+ttH
γγ 0.49± 0.39 125 100% – – – –

µVBF+VH
γγ 1.65± 0.87 125 – 60% 26% 14% –

Table 1.2: Signal strength µγγ at a given mh0 for different Higgs boson production
modes at the LHC : gluon-gluon fusion (ggF), vector boson fusion (VBF), associated
production with an EW gauge boson V = W,Z (Higgs Strahlung, VH) and associated
production with a tt̄ pair (ttH). Adapted from [52].

The Dirac theory predicts a g–factor for the leptons of gℓ = 2 [55, 56]. The anomalous
contribution to the magnetic moment of the lepton, defined as

aℓ =
1

2
(gℓ − 2), (1.42)

is given by a form factor defined by the matrix element 〈ℓ−(p′)|jνem(0)|ℓ−(p)〉 where
|ℓ−(p)〉 is a lepton state of momentum p. The leading QED contribution to aℓ was
obtained at the end of the 1940’s [57] and reads

a
QED(1 loop)
ℓ =

α
em

2π
. (1.43)

with α
em

the fine-structure constant. Higher order contributions and the experimental
value are now determined with an impressive accuracy. Nevertheless the SM contri-
butions to the muon anomalous magnetic moment do not fit well the measured value.
The current discrepancy between the experimental measurement [58] and the theoretical
calculation of this observable shows a deviation of about 3σ :

δaµ = aexpµ − aSMµ = (249± 86)× 10−11. (1.44)

Finally, the BaBar collaboration reported last year [59] a combined 3.4σ deviation
of the measured ratios involving B and D mesons to their SM prediction,

R(D(∗)) =
B(B̄ → D(∗)τ−ν̄τ )

B(B̄ → D(∗)ℓ−ν̄ℓ)
. l = {e, µ} (1.45)

These decay modes may give important clues on BSM physics.
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1.6.3 Cosmological connexion

Perhaps the most important open issue in the SM is that it does not provide a Dark
Matter (DM) candidate. This specific kind of matter is required for the viability of
the cosmological standard model called Lambda Cold Dark Matter (ΛCDM). Since it is
thought that the Cold Dark Matter (CDM) is made of heavy, stable and neutral particles,
the SM could naively include such a candidate with the neutrinos. Nevertheless, as we
will analyse in chapter 2, the calculated total density of neutrinos in the Universe does
not match the DM density.

Tle ΛCDM model tells us that a period of the early Universe was characterized by an
important annihilation of baryons and antibaryons into photons. A slight baryon excess
implied that the SM matter component of the Universe is mainly composed of baryons.
The baryon asymmetry in the Universe is not explained in the SM : this observation
cannot be described only by SM CP violation processes.
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2.1 Theoretical framework

As the study of the smallest-scale structures, the study of the largest-scale structures of
the Universe has developed greatly in the 20th century. The construction of the standard
cosmological picture was done in the context of the Einstein’s General Relativity (GR),
the current most reliable theory of gravitation [60]. As in SR, the distance ds between
two points in the spacetime depends on the spacetime metric gµν and the spacetime
coordinates defined as xµ where µ is a Lorentz index :

ds2 = gµνdx
µdxν . (2.1)

In GR, gµν is defined as a deformation of the Minkowski metric ηµν parameterized by
hµν :

gµν(x
ρ) = ηµν + hµν(x

ρ). (2.2)

2.1.1 Cosmological principle and its consequences

By considering the idea that on a sufficiently large scale, the properties of the Universe
are the same for all observers, standard cosmology yields the cosmological principle :
the Universe is homogeneous and isotropic. Using these symmetry considerations the
spacetime distance of eq. 2.1 reads, using the spacetime signature (+,−,−,−), as

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (2.3)

where (r, θ, φ) are the spherical coordinates, the curvature parameter k is defined for
three different cases, namely for an open (k = −1), flat (k = 0) and closed (k = +1)
spacetime and a(t) is the scale factor of the Universe. This metric is called the Robertson-
Walker (RW) metric. The function a(t) depends only on the time coordinate t and is
then used to determine the evolution of the Universe. This function is calculated using
the Einstein equation of GR which links the geometry of the Universe represented by
the Einstein tensor Gµν and the energy-momentum tensor Tµν describing its matter and
energy content :

Gµν = Rµν −
1

2
Rgµν = 8πGNTµν , (2.4)

where Rµν and R are respectively the Ricci tensor and the Ricci scalar which depend on
the metric gµν . Assuming that the matter-energy content of the Universe behaves as a
perfect homogenous and isotropic fluid with a total energy density ρ and a pressure p,
the energy-momentum tensor is rewritten as

Tµν = (p+ ρ)uµuν − pgµν , (2.5)
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with u = (1, 0, 0, 0) the velocity vector of the fluid. The eqs. 2.3, 2.4 and 2.5 gives the
so-called Friedmann-Lemâıtre (FL) equations :

H2 =

(
ȧ

a

)2

=
8πGN

3
ρ− k

a2
, (2.6)

ä

a
= −4πGN

3
(ρ+ 3p), (2.7)

where the dots correspond to time derivatives andH is called the Hubble parameter. The
first equation gives the expansion rate of the Universe while the second one determines if
the expansion is accelerated or decelerated, both at a given time t. Using eqs. 2.6 and 2.7
a third fundamental relation is obtained (it can also be found through energy-momentum
conservation or simply through the first law of thermodynamics) :

ρ̇ = −3H(ρ+ p). (2.8)

Different types of fluid composed the Universe and they are characterized by their equa-
tion of state which connect p and ρ :

ω =
p

ρ
. (2.9)

Using the eq. 2.8, the evolution of the energy density with respect to the scale factor
can be approximated, for a constant value of ω with respect to time, as

ρ ∝ a−3(1+ω). (2.10)

Two well-known cases are then obtained :

• For a Universe composed of matter i.e. for non-relativistic particles, p = pm is
negligible; ω = 0. It follows that ρ = ρm ∝ a−3 ≡ V −1 where V describes the
total volume. In other words the matter dilutes linearly as the total volume of the
Universe expands.

• For relativistic particles with p = pr and ρ = ρr, which mainly corresponds to the
radiation, pr = ρrc

2
s =

1
3
ρr, with cs the speed of sound in this fluid. It implies that

ρ = ρr ∝ a−4 : radiation dilutes quicker than matter.

By looking at eq. 2.10 one peculiar case is found for w = −1 : the energy density is
constant with respect to the scale factor, it does not dilute. This case appears if a
positive integration constant Λ, called the cosmological constant, is considered in the
Einstein eq. 2.4 and is interpreted as a vacuum energy. Using eq. 2.7 it follows that the
scale factor is an exponential function of time; the expansion of a Universe dominated by
vacuum energy is accelerating. More generally the cosmological constant is a special case
of fluids implying an acceleration of the expansion of the Universe called Dark Energy
(DE). The parameter ω

DE
of the equation of state of DE is not necessarily constant.
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2.1.2 Cosmological parameters

The eq. 2.6 is used to determine the critical density ρc i.e. the total density in a flat
spacetime :

ρc =
3H2

8πGN

. (2.11)

Using this definition it is more common to define for each species the density parameters

Ωi =
ρi
ρc
, (2.12)

where i stands for radiation (r), matter (m) and DE. Note that for the specific cases of
the curvature and the cosmological constant the densities read

Ωk = − k

a2H2
, ΩΛ =

Λ

3H2
. (2.13)

By rewriting eq. 2.6, it follows that

Ωr + Ωm + Ω
DE

= Ωtot = 1− Ωk. (2.14)

The determination of the density parameters (see section 2.2) allows to safely neglect
the present values of the radiation and curvature densities. It follows from the eq. 2.7
that a current acceleration of the expansion of the Universe needs

ρ
DE,0

(1 + 3ω
DE,0

) + ρm,0 < 0, (2.15)

where the subscript 0 refers to the present value of the quantities considered. Using
the density parameters and the fact that Ωm,0 + Ω

DE,0
∼ 1 the condition for a current

acceleration of the expansion of the Universe reads

ω
DE,0

. − 1

3Ω
DE,0

, (2.16)

which is satisfied for the cosmological constant. Instead of using the time variable when
describing the evolution of the Universe, it is more convenient to handle an other variable
directly linked to the scale factor of the RW metric, the cosmological redshift z

1 + z =
a0
a
. (2.17)

It is then possible to link the cosmological parameters at different times by modifying
again eq. 2.6. The Hubble parameter Hz at a redshift z reads

H2
z = H2

0

[
Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + Ω

DE,0
f(z)

]
(2.18)

where

f(z) = exp

(
3

∫ z

0

1 + ω
DE
(z′)

1 + z′
dz′
)
. (2.19)

For more details on the construction of the physical cosmology we refer the reader for
instance to the textbooks [61, 62, 63] and the reviews [64, 65].
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2.2 Cosmological observations

2.2.1 Methods

Different types of observations are used to probe the evolution of the Universe. Since the
work of Hubble [66] we know that the Universe is expanding. The remaining question
about this expansion was whether it accelerates or not. The luminosity curve of type
Ia supernovæ (SNIa) is well known and calibrated with precision since their physics are
quite similar. SNIa are then used as standard candles to determine the characteristics
of the expansion of the Universe. With this method the acceleration of the expansion
of the Universe was determined by the Supernova Search Team [67] and the Supernova
Cosmology Project [68] collaborations in 1998.

The study of Large Scale Structures (LSS) is also an important tool to probe cosmo-
logical features. The standard cosmological model predicts Baryon Acoustic Oscillations
(BAO) in the matter power spectrum of LSS which thus could give informations about
the early Universe. The first BAO signal was detected in 2005 by the Sloan Digital Sky
Survey (SDSS) collaboration [69].

The best way to understand with accuracy the evolution of the Universe is through
the study of the CMB radiation. It also contains the most solid arguments in support of
the standard cosmological model. The CMB is the relic of the time when the Universe
had sufficiently cooled down (around 4 000 K) to allow the photons to decouple from the
most standard form of matter observed, the baryonic matter, and to fill the Universe
even nowadays. Predicted with a black-body spectrum by Gamow and collaborators
in the 1940s [70, 71] and with a low temperature around 5 K due to the expansion of
the Universe [72], this radiation was finally detected by Penzias and Wilson in 1965
with an almost perfect black-body spectrum as forecast [73, 74]. Several alternative
cosmological models were thus ruled out. Its temperature is now well measured at
2.72548 ± 0.00057 K [75].

2.2.2 Success of the ΛCDM model

Cosmological observations are now reaching a high-level of precision in the determination
of the cosmological parameters. It results that very small anisotropies are detectable in
the CMB : it is not a perfect homogeneous and isotropic radiation. The temperature
anisotropies are studied through an Ylm(θ, φ) spherical harmonics expansion

δT

T
(θ, φ) =

∞∑

ℓ=2

ℓ∑

m=−ℓ
aℓmYℓm(θ, φ). (2.20)

The power spectrum of the CMB is then defined as the sum of the multipole moment
Cℓ defined as

Cℓ =
1

2ℓ+ 1
|aℓm|2. (2.21)
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The best measurements of these anisotropies came with the 2013 data release of the
Planck space observatory [31] with the CMB map and the CMB power spectrum shown
in figure 2.1.
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Figure 2.1: Temperature fluctuations of the CMB (a) and its temperature angular
power spectrum compared to a simple ΛCDM model (b) obtained by the Planck collab-
oration. The vertical scale of (b) is defined as Dℓ[µK

2] = ℓ(ℓ + 1)Cℓ/2π. Figures taken
from [76].

To demonstrate how well the results were improved, figure 2.2 shows the evolution
in time of the measurement of the Hubble constant H0 using different techniques.

Figure 2.2: Comparison of some H0 measurements at 1σ obtained by different collab-
orations. Figure obtained from [31].

Without going into the details of the CMB analysis figure 2.1b shows that the most
reliable form of cosmological model is the ΛCDM model. The standard Big Bang sce-
nario is fully described by only six parameters. We will talk about the three most
relevant ones for the rest of this chapter, namely :
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• The scalar spectral index ns which enters in the definition of the primordial fluctu-
ations (whose standard explanation is obtained in the context of cosmic inflation,
see section 2.4) that give the CMB inhomogeneities;

and two parameters that characterized the matter content of the Universe :

• The physical baryon density Ω
b,0
h2;

• The physical Cold Dark Matter (CDM) density Ω
c,0h

2;

where h is the reduced Hubble constant defined using the relationH0 = 100h km s−1 Mpc−1

with 1 Mpc ∼ 3.1× 1022 m.
Table 2.1 summarizes the main results of the cosmological observations combining

several data and will be discussed throughout this chapter. Note first that the radiation
density is not included here since it is not significant today : Ω

r,0h
2 = 2.47× 10−5 [29].

The curvature of the Universe is, to a good approximation, zero and the Universe is
mainly filled by DE which drives the acceleration of its expansion. Moreover, the DE
equation of state looks like that of a cosmological constant. The main interesting result
for us here is the fact that the matter content of the Universe corresponds mainly to
a non-standard, yet unknown form of matter, the Dark Matter (DM) which interacts
mainly gravitationally with the photons of the CMB. We will speak more about this
component of the Universe in sections 2.3 and 2.6.

Planck+WP+highL+BAO

Parameter Best fit 1σ uncertainty

Ω
b,0
h2 0.022161 0.02214 ± 0.00024

Ω
c,0h

2 0.11889 0.1187 ± 0.0017

ns 0.9611 0.9608 ± 0.0054

Ω
DE,0

0.6914 0.692 ± 0.010

H0 (km s−1 Mpc−1) 67.77 67.80 ± 0.77

Age of the Universe (Gyr) 13.7965 13.798 ± 0.037

Best fit 2σ uncertainty

Ω
k,0

0.0009 -0.0005+0.0065
− 0.0066

ω
DE,0

-1.109 -1.13+0.23
− 0.25

Table 2.1: Value for some cosmological parameters combining Planck data with WMAP
polarization data (WP), high-ℓ CMB (highL) and BAO data. Adapted from [31].

2.3 Dark Matter

The DM postulate was initiated by Oort in 1932 to account for the motion of the
stars in the Milky Way (MW). One year later Zwicky observed, through the study of
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the velocity distribution of galaxies in the Coma cluster, that luminous mass was not
sufficient to explain the total mass responsible of the dynamic of the cluster [77]. He
then also introduced DM, a specific type of matter that does not emit light, to explain
this observation. By analysing the Virgo cluster, Smith reached the same conclusion in
1936 but the lack of astrophysical knowledge at this time prevented to emphasize these
observations.

2.3.1 DM evidences

The first strong evidence came with the study of rotation curves of some spiral galaxies
by Rubin and collaborators [78, 79, 80]. These measurements made at the galactical
scale consist in calculating the rotational velocity v(r) at a distance r of the center of a
given galaxy using spherical symmetry assumption and Newtonian dynamics :

v(r) =

√
GNM(r)

r
, (2.22)

where M(r) is the mass inside the sphere of radius r. Outside the luminous mass of the
galaxy, M(r) is clearly expected to be constant, which leads to a velocity v(r) ∝ 1/

√
r.

However this does not correspond to the observations : the velocity distribution is
approximately flat far away from the center of the galaxy, as shown in figure 2.3. This
is well explained if a DM halo is considered around the galaxy.

Figure 2.3: Rotation curve of the galaxy NGC 6503, plotting its main contributions.
Figure taken from [81].

Gravitational lensing gives the most powerful argument in favour of DM at the scale
of galaxy clusters. Indeed their gravitational potential can bend the light of an object
behind them, which gives informations about the total matter distribution in the clusters
that can be compared to their gas/dust distribution. The study of the Bullet cluster 1E
0657-56 [82] shows the power of this method. This object is actually made of two smaller
clusters that are colliding. Tracing the gas distribution and the distribution derived from
lensing effects presents in figure 2.4 a clear separation between them. It shows exactly
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what we expect from the DM scenario : since DM interacts mainly through gravitation
it is less slowed down than luminous matter during the collision inside the cluster.

Figure 2.4: Matter distribution in X-rays (colours) and using the gravitational lensing
(contours) of the Bullet cluster. Figure obtained from [82].

Finally evidences of DM are also obtained at cosmological scales. All these arguments
show that DM interacts essentially through gravitation with its environment. N-body
simulations of LSS formations, the direct study of the LSS and the CMB as developed in
section 2.2 tells us that the quantity of baryons in the Universe is not sufficiently high to
explain our present Universe as presented in table 2.1 : the possibility of the presence of
MAssive Compact Halo Objects (MACHOs) made of baryonic matter in galaxy halos is
then not sufficient to realize DM. The question that follows is the problem of the nature
of its constituents. If we look at the relativistic or non-relativistic nature of the DM it
turns out that relativistic particles that are candidates to Hot Dark Matter (HDM) fail
to match N-body simulation predictions and LSS observations. However some scenarios
can fulfill DM constraints. The most reliable scenario that is considered in the standard
cosmological model and that will be considered throughout this thesis is CDM. More
precisely we will mainly focus on DM made of one specie of weakly interacting, massive,
neutral and stable1 particles, the WIMPs. The exact nature of DM is a major problem
of the ΛCDM model and we will develop this point later in section 2.6. Before that to
understand the behaviour and to compute the abundance of this type of matter we must
look at the interactions between CDM and SM particles in the early and hot Universe.

2.3.2 Equilibrium

First of all, to be able to describe the physical processes in the hot Universe that cor-
responded to a thermal bath with a temperature T , we must determine the thermal
distribution of each particle in this bath. The distribution function for a particle χ
in thermal equilibrium at a temperature Tχ = T , with an energy Eχ and a chemical

1At least on cosmological time scales, namely with a greater lifetime than the age of the Universe.
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potential µχ reads

fχ(~p, ~x, t) =
1

exp
(
Eχ−µχ
Tχ

)
± 1

. (2.23)

It is defined for the Fermi-Dirac (+) and the Bose-Einstein (-) statistics. Since we
start from the cosmological principle and the RW metric we have fχ(~p, ~x, t) ≡ fχ(|~p|, t).
Knowing that each particle χ has gχ internal degrees of freedom it is now possible to
define the evolution of the number density nχ, the energy density ρχ and the pressure
pχ of particles χ :

nχ(t) =
gχ

(2π)3

∫
fχ(|~p|, t)d~p,

ρχ(t) =
gχ

(2π)3

∫
Eχ(|~p|)fχ(|~p|, t)d~p,

pχ(t) =
gχ

(2π)3

∫ |~p|2
3Eχ(|~p|)

fχ(|~p|, t)d~p.

(2.24)

The evolution of these particles in the thermal bath is determined using the Boltzmann
equation

L[fχ] = C[fχ], (2.25)

where L is the Liouville operator, that reflects the effects of the metric chosen, and C
is the collision operator, describing the interactions of χ with the thermal bath. In the
case we are interested in i.e. a massive particle, it is worthwhile to look at the evolution
of the number density in the non-relativistic regime. Using the RW metric the Liouville
operator then reads

L[fχ] = Eχ
∂fχ
∂t

−H|~p|2 ∂fχ
∂Eχ

. (2.26)

Integrating over momentum gives

gχ
(2π)3

∫
L[fχ]

Eχ
d~p = ṅχ + 3Hnχ =

1

a3
d

dt
(nχa

3). (2.27)

Without collision we then find an expected dilution with the expansion with nχ ∝ a−3.
More assumptions are needed to compute the collision operator. First, dealing with

a simple i+ j → k + l process with χ = i, we have

gi
(2π)3

∫
C[fi]

Ei
d~p = −

∫
dπidπjdπkdπl(2π)

4δ(~pi + ~pj − ~pk − ~pl)δ(Ei + Ej − Ek − El)

∑

spins

[
|Mi+j→k+l|2 fifj(1± fk)(1± fl)− (i+ j ↔ k + l)

]

(2.28)

with dπ = d~p
(2π)32E

, |Mi+j→k+l| the matrix element of the interaction with the sum
describing the average over initial states spins and the addition of the final states spins
and (i+ j ↔ k+ l) corresponds to the addition of the same terms but with the exchange
between (i, j) and (k, l). Then the following assumptions are considered :
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• Statistical factors are neglected since the scattering takes place at an energy E ≫ T
: the Fermi-Dirac and the Bose-Einstein distributions are replaced by the Maxwell-
Bolzmann distribution;

• CP invariance is assumed, which means that |Mi+j→k+l| = |Mk+l→i+j| = |M|;

• Assuming that k and l are in kinetic and chemical equilibrium leads to fkfl = f eqk f
eq
l

where eq depicts the quantities at the equilibrium;

• Assuming that i and j stay in kinetic equilibrium even after chemical equilibrium
is lost;

• In equilibrium we have d
dt
(nia

3) = 0, which implies f eqi f
eq
j = f eqk f

eq
l .

Then, looking at the interaction of χ and its antiparticle χ̄ with particles form the
thermal bath X (X̄), and assuming nχ = nχ̄, the integrated Boltzmann equation is
rewritten as

ṅχ + 3Hnχ = 〈σχχ̄↔XX̄v〉(neq 2χ − n2
χ), (2.29)

where the thermally averaged cross section times velocity 〈σij↔klv〉 is given by

〈σij↔klv〉 =
1

neqi n
eq
j

∫
dπidπjdπkdπl(2π)

4δ(~pi + ~pj − ~pk − ~pl)δ(Ei + Ej − Ek − El)

|M|2 e−
Ei+Ej

T ,

(2.30)

and the Maxwell-Boltzmann approximation shows that the number density of χ de-
creases with the temperature of the thermal bath :

neqχ = gχ

(
mχT

2π

)3/2

e−mχ/T . (2.31)

To get rid of the Hubble parameter a new variable Y , the comobile density, is used :

Y =
nχ
s
, (2.32)

where s is the entropy density s = heff
2π2T 3

45
and heff parameterizes the number of rel-

ativistic degrees of freedom in the Universe. Then entropy conservation in comoving
volume gives ṅχ + 3Hnχ = sẎ which implies

Ẏ = −〈σχχ̄↔XX̄v〉s
(
Y eq 2 − Y 2

)
. (2.33)

Introducing the variable x = mχ

T
the equation is rewritten as

dY

dx
=

1

3H

ds

dx
〈σχχ̄↔XX̄v〉

(
Y eq 2 − Y 2

)
. (2.34)
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2.3.3 Freeze-out

When the temperature becomes negligible comparing to the mass the particle χ, its co-
mobile density decreases (X and X̄ cannot anymore annihilate into χ and χ̄ : 〈σχχ̄↔XX̄v〉 =
〈σannv〉) but at a given temperature its interaction rate with the thermal bath drops be-
low the expansion rate of the Universe : χ is decoupled from the thermal bath, it is
the freeze-out of χ. Its comobile density becomes approximately constant from the de-
coupling to today an after some assumptions like a constant averaged cross section the
current χ yield reads

Y0 ≈
√

45GN

πg∗

xF
mχ

1

〈σannv〉
, (2.35)

where g∗ is another parameterization of the number of degrees of freedom and the sub-
script F denotes quantities at the time of the χ freeze-out. The present density of the
relic χ is therefore

Ωχ,0h
2 =

ρχ,0h
2

ρc
=
mχnχ,0h

2

ρc
=
mχs0Y0h

2

ρc
. (2.36)

For a WIMP mass at the weak scale, namely for hundreds of GeV, 〈σannv〉 ≈
10−26cm3 s−1. Using an approximation of the relic density :

Ωχ,0h
2 =

3× 10−27cm3 s−1

〈σannv〉
, (2.37)

it is clear that a WIMP could get the expected DM relic density shown in the table 2.1
: this is called the WIMP miracle.

2.3.4 Precise calculation

The calculation of 〈σannv〉 could be approximated by an expansion in v, but this choice
is not accurate in several cases :

• Annihilation of χ through an s-channel resonance in which the propagator φ is
characterized by 2mχ ≈ mφ;

• Close to the threshold of the annihilation channel χχ̄→ φφ̄ with mχ ≈ mφ;

• Coannihilation with another particle χ′ which could improve the annihilation rate
through processes like χχ′ → XX ′ or χ′χ̄′ ↔ XX̄.

The detailed calculation of the relic density and the discussion of these cases can be
found in [83, 84].

In the case of coannihilation, an important point in some of the analyses that we
will develop in part II, let us consider N particles χi (i = 1, . . . , N) with masses mχ

i

ordered like mχ1
≤ mχ2

≤ · · · ≤ mχ
N−1

≤ mχ
N
, where the lightest particle is assumed
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stable, and with the internal degrees of freedom gi. The thermal averaged cross section
was defined by Edsjö and Gondolo [85] as

〈σannv〉 =
∫∞
0
dpeffp

2
effWeffK1

(√
s
T

)

m4
χ1
T
[∑

i
gi
g1

m2
χ
i

m2
χ1

K2

(
mχ

i

T

)]2 . (2.38)

where Ki are the modified Bessel functions of the second kind and of order i, peff = p11
and s = 4(p2eff +mχ1

). The quantity Weff is defined as

Weff =
∑

ij

pij
p11

gigj
g21

Wij, (2.39)

where Wij = 4EiEjσijvij and pij is the momentum of the particle χi (or χj) in the
center-of-mass frame of the pair (χi, χj). Note that

σij =
∑

X,X̄

σ(χiχj → XX̄) (2.40)

is the total annihilation rate for χiχj annihilations into the particles X (X̄) and the
relative particle velocity vij reads

vij =

√
(~pi · ~pj)2 −m2

χ
i
m2
χ
j

EiEj
. (2.41)

All these details and special cases are now taken into account in numerical codes like
DarkSUSY [86], SuperIso Relic [87, 88] and micrOMEGAs [89, 90, 91, 92, 93, 94]. The
last one was used throughout this thesis and all results were based on it.

2.4 Cosmic inflation

The ΛCDM model faces several issues regarding the understanding of the physics of the
very early Universe. Some of them can be solved introducing a phase of extremely rapid
expansion of the Universe, the inflation area.

2.4.1 Cosmological puzzles

The small inhomogeneities observed in the CMB grew with time to give the current
structures of the Universe. One would expect that they were even smaller before the
CMB formation. The problem that arises here is linked to the notion of causal connexion.
Two photons separated by a distance greater than their comoving horizon dH(t), defined
as

dH(t) = 2a(t)

∫ t

ti

dt′

a(t′)
, (2.42)
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where ti corresponds to the time of the initial singularity in the Big Bang model, cannot
exchange information. This quantity increases with time, which means that it was very
small at the time of CMB formation. While all regions of the CMB seem to be causally
linked, the size of the CMB horizon was determined to be only of the order of 1°. This
causality problem is called the horizon problem.

The evolution of the curvature density in time reads

|Ωk(t)| =
∣∣∣∣

k

a(t)2H(t)2

∣∣∣∣ ∝ ȧ(t)−2. (2.43)

Since radiation dominated and matter dominated Universe evolve respectively like t1/2

and t2/3, it follows that the flatness of the Universe reduce with time. However the
present curvature density was determined to be very small, as shown in table 2.1. Cal-
culating |Ωk(t)| in the very early Universe and especially at the Planck time tP l ≈
5.391× 10−44 s gives an upper bound on |Ωk(tP l)| of the order of 10−60. This fine-tuning
issue of the curvature density is called the flatness problem.

The last puzzle we present here is the monopole problem. One important issue of
GUT is that the breaking of the associated symmetry into the SM gauge symmetry
could predict the formation of topological defects in the early Universe, the monopoles.
These objects have non-standard features : a mass of the order of the GUT scale and
a magnetic charge. We still not have detected such objects in the Universe and it is
therefore expected that their number density is extremely low. The problem is that if
no monopole annihilation occurs, the calculations show that one monopole is expected
per nucleon which is clearly in disagreement with the observations.

2.4.2 Inflationary Universe

The standard solution of the issues raised in section 2.4.1 is the introduction of a simple
scalar field, the inflaton φ with its potential V (φ), whose energy density and pressure
are defined as

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ), (2.44)

that fills the very early Universe. The FL equations yield the useful expressions for the
Hubble parameter :

H2 =
8πGN

3

(
1

2
φ̇2 + V (φ)

)
,

Ḣ = −4πGN φ̇
2.

(2.45)

Motivated by the condition of a strong acceleration of the expansion of the Universe, we
must have

|Ḣ| ≪ H2, (2.46)

which leads to
φ̇2 ≪ V (φ). (2.47)
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The necessary requirement to have a viable inflationary model is thus that V (φ) has to
be large but almost flat to allow the slow-roll motion of the inflaton field, which implies

|φ̈| ≪ H|φ̇|. (2.48)

These expressions are called the slow roll conditions. There are often rewritten in terms
of the slow roll parameters

ǫφ =
1

16πGN

(
V ′(φ)

V (φ)

)2

, ηφ =
1

8πGN

V ′′(φ)

V (φ)
, (2.49)

where V ′(φ) = ∂V (φ)/∂φ and with the condition {ǫφ, ηφ} ≪ 1 during inflation. At the
end of the inflation area i.e. when {ǫφ, ηφ} → 1, the inflaton field decays into relativistic
particles and especially into photons : the temperature of the Universe increases until a
maximum called the reheating temperature TR.

The flatness problem is then easily solved : a positive acceleration gives an increasing
scale factor which leads, using eq. 2.43, to an increase of the flatness of the Universe. As
it was precised, the inflaton fills the entire Universe and then the exponential expansion
takes place : the regions of the Universe that were causally related can therefore no
longer be. Since the decay of the inflaton occurs identically in all regions of the Universe
the horizon problem is solved. Finally note that with this rapid expansion, topological
defects are diluted which erases the monopole problem. Note that the energy scale of
the inflaton is of the order of the GUT scale.

2.4.3 Cosmological perturbations and constraints

We know that the CMB is not completely homogeneous and isotropic. The small per-
turbations measured give a lot of informations about the evolution of the Universe till
today but it also brings us to the question of the origin of these small perturbations.
Inflation models predict that the current structures of the Universe stem from initial
quantum fluctuations created during the inflation area. By looking at simple scalar fluc-
tuations2, the spectrum of the perturbations is fully determined by only two parameters
: its amplitude δH and the scalar spectral index ns which defines the scale-dependence
of the power spectrum. Inflation models have the specificity to predict slight deviations
from the scale invariance case ns = 1. The spectral index obtained by the Planck collab-
oration and shown in table 2.1 shows a more than 5σ deviation from the scale invariance
which is a strong support to inflationary models as shown in figure 2.5. The expansion
factor of the Universe during the inflation is defined by the number of e-folds from the
time when the observationally relevant perturbations are generated (whose scale factor
is ai) to the end of inflation af and reads

N∗ = ln
af
ai

=

∫ tf

ti

Hdt. (2.50)

2Inflation scenarios also predict tensor fluctuations in the RW metric. Their amplitude is parameter-
ized by the tensor-to-scalar ratio whose Planck+WP+highL+BAO combination gives an upper bound
of 0.111 at 2σ.
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Figure 2.5: Constraints on inflationary models in the plane (tensor-to-scalar ratio,
scalar spectral index). Figure taken from [95].

Depending on the model of inflation chosen we have N∗ ∼ 40− 60.
For more informations on inflationary models see [96, 97].

2.5 Thermal history of the Universe in the ΛCDM

model

As explained in section 1.6, our description of the early Universe can at most go back
to the physics of the Planck epoch, namely when the gravitational interaction becomes
non-negligible comparing to the other interactions. Starting from this point the ΛCDM
model is characterized by the following steps :

• When the temperature of the Universe was around T ≃ 1016 GeV, an yet unknown
symmetry associated to a GUT breaks into the SM gauge symmetry. This period
also corresponds to the end of the accelerated expansion of the Universe with the
decay of the inflaton field into SM particles. Depending on the inflationary model
chosen, this happens before or after GUT breaking.

• At T ∼ 102 GeV, the EW symmetry breaking takes place : the SM gauge sym-
metry breaks into SU(3)c ⊗ U(1)Q. The baryon asymmetry in the Universe is
supposed to appear around this energy or even before. The mechanism that in-
troduce this asymmetry, the baryogenesis, has to fulfill the following conditions
given by Sakharov [98] : violation of the baryonic number, of C and of CP and
the interactions must occur out of thermal equilibrium to ensure that the opposite
reaction do not compensate those introducing the asymmetry.

• At T ∼ 101 − 103 GeV, the most interesting CDM candidate, the WIMP, is de-
coupled from the thermal bath filling the Universe, it is the DM freeze-out.
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• At T ∼ 0.3 GeV, QCD phase transition, namely the confinement of quarks and
gluons into hadrons, occurs : we move from a quark-gluon plasma to an hadron
plasma. This phase is important in the DM relic density computation since it
affects the calculation of the effective number of relativistic degrees of freedom
at the freeze-out temperature as shown in [99]. However since the DM freeze-out
temperature TF is of the order of mχ/20 these effects are mainly relevant for light
DM with mχ . 7 GeV which is mainly ignored in this thesis.

• At T ∼ 1 MeV, neutrinos decouple from the thermal bath : the neutrino freeze-out
occurs. When T falls below the mass of the electron, photons have not sufficient
energy to annihilate into e+e− pairs. Baryogenesis provides enough excess of elec-
trons to account for the current electron density observed.

• At T ∼ 100 keV, photons energy becomes too small to prevent formation of light
atoms : it is the standard Big Bang Nucleosynthesis (BBN), which gives stringent
constraints on the ΛCDM model, as the determination of the Helium abundance
in the Universe, which strengthens the CMB argument of a low current baryon
density [100].

• At T ∼ 1 eV, the Universe is now dominated by matter instead of radiation because
of the faster radiation dilution mentioned in section 2.1. Large scale structures
start to form.

• At T ∼ 0.4 eV, the photon decoupling from the matter, which gives the CMB,
happens.

• At T ∼ 10−3 eV, DE becomes the main component of the Universe.

• Finally the current Universe is at T ≃ 2.72548 K ∼ 2×10−4 eV with approximately
68.3% of DE, 26.8% of DM and 4.9% of standard matter, mainly baryonic.

2.6 ΛCDM drawbacks

The main theoretical issue of the cosmological standard model is related to the cos-
mological constant. Cosmological observations implies an energy density related to the
cosmological constant of the order of 10−29 g cm−3. Meanwhile, the total energy density
coming from vacuum fluctuations is approximately 120 orders of magnitute higher when
assuming a cut-off beyond which quantum field theory as to be modified, commonly the
Planck scale [101]. This fundamental theoretical problem is still open [102].

As said in section 1.6 CP violation processes in the SM are not sufficient to account
for the baryogenesis which then needs NP.

Some deeper motivations could be looked for in the case of the inflationary postulate,
like the origin and the construction of the inflaton field which could be given in extension
of the SM. See [97] for a review on inflationary scenarios.
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Neutrinos could be viable DM candidates since we saw in chapter 1 that they interact
weakly with the other SM particles. Nevertheless the neutrino relic density is given by

Ωνh
2 =

∑

i=e,µ,τ

mνi

93 eV
, (2.51)

which, using limits on neutrino masses like the ones obtained with the Planck satellite
[31], exclude neutrinos as the main component of DM. Moreover, since neutrinos are
relativistic particles, they only could form HDM which is disfavoured as explained in
section 2.3. Thus no SM particles fit the DM hypothesis.

One other issue facing the CDM idea is that it predicts more small scale structures,
like dwarf galaxies, than observed [103]. Alternatives could be considered like an in-
termediate situation between HDM and CDM : Warm Dark Matter (WDM) [104, 105].
Other conflicts between some ΛCDM predictions and astrophysical measurements are
noted [106].

ΛCDM is not the only model able to give right predictions. For instance the MOdified
Newtonian Dynamics (MOND) theory proposed by Milgrom in 1983 [107] is able to
predict the right rotation curves of the galaxies, but it has several drawbacks. The most
notable one is that, even within its relativistic extension called Tensor-Vector-Scalar
gravity (TeVeS), this model is not able to reproduce the correct CMB power spectrum
and in particular the third acoustic peak of the CMB [108].

2.7 Some solutions to the ΛCDM and SM issues

Several proposals offer the possibility to solve drawbacks of the two standard models
presented in chapters 1 and 2. The main BSM theory studied in the literature as well
as the main topic of this thesis, Supersymmetry (SUSY), which is able to address these
questions, will be developed in chapter 3.

To solve the hierarchy problem of the Higgs boson mass, some models propose that
the fundamental Planck scale could be much lower than expected, and especially at the
TeV scale. This is done introducing extra spatial dimensions whose volume enters in
the calculation of the Planck scale [109, 110]. This type of model implies new particles,
Kaluza-Klein (KK) excitations of SM particles, among which DM candidates can be
found. As an example, in the Universal Extra Dimensions (UED) model [111] the
introduction of a new parity, called KK parity, makes the lightest KK particle stable.
Thus, if it weakly interacts with SM particles, it is able to fit the DM constraints
[112, 113]. Moreover these models give motivation for the number of families [114].

The strong CP problem linked to the θQCD fine-tuning can be solved introducing
a global U(1) symmetry, the Peccei-Quinn (PQ) symmetry [115, 116]. This symmetry
preserves CP invariance raising the QCD parameter as a dynamic field. The U(1)PQ
symmetry breaking predicts the existence of a light pseudoscalar3 boson, the axion
[117, 118]. Astrophysical constraints give an upper bound on its mass of approximately

3A scalar that changes sign under P.
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16 meV [119, 29]. It is supposed that axions interact very weakly with SM particles,
which implies that they can be viable non-thermal CDM candidates even though they
must be very light.

Several solutions involve new neutrino fields and especially in GUT as we will see
in part III. Adding massive RH Majorana neutrinos gives a means to explain the LH
neutrino masses through the seesaw mechanism [120]. This could imply a leptonic asym-
metry which possibly gives baryogenesis [121]. As another example, sterile neutrinos at
the keV scale are also interesting WDM candidates [122, 104, 105]. A more complete
list of DM candidates can be found in [123].
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3.1 SUSY responses to SM problems

Before looking at its theoretical construction, we briefly summarize the three main points
that motivate the phenomenological study of SUSY.

The main theoretical problem that SUSY is able to solve is the hierarchy problem.
First of all it is important to note that every particle gets quantum corrections to its
mass. For instance the self-energy of particles like the photon or the electron could
give important corrections to their mass which are known to be very small, especially
for the massless photon. The crucial point here is that these masses are protected by
symmetries. QED symmetry is exact and if the amplitude of the QED process, here
the photon self-energy, is defined as M = ǫµ(k)Mµ(k) where ǫµ(k) is the polarization
vector of the photon and k the momentum then the U(1)em conservation gives the Ward
identity

kµMµ(k) = 0, (3.1)

so that all QED corrections to the photon mass vanish. In the case of the electron it is the
chiral symmetry that stabilizes the mass of this fermion. However since the electron is
not massless chiral symmetry is not exact. Fortunately the correction remains negligible
: it is logarithmic and proportional to the measured electron mass. In the case of the
Higgs boson of the SM there is no symmetry that protects its mass as shown in chapter 1.
SUSY, a symmetry that links fermions and bosons, can play such a role. New scalars
added by SUSY give new loop corrections to the Higgs boson mass. If λs parameterizes
the coupling of a scalar with a mass ms to the Higgs boson the new contribution to the
Higgs boson mass reads

δm2
h0 =

λs
16π2

(
Λ2 − 2m2

s ln
Λ

ms

+ ...

)
. (3.2)

Bringing together this correction and the SM one in eq. 1.39, assuming that each SM
fermion is associated with two supersymmetric complex scalars, and that y2f = λs it
follows that the quadratic divergences cancel each other. The remaining correction is
logarithmic and proportional to the mass difference between the SM fermions and the
new scalars. Providing that SUSY is exact (equal mass of fermion and scalar partners)
or at least that the mass degeneracy between these fermions and scalars particles is
below the TeV scale the EW scale is stabilized.

Another argument in favour of SUSY is the unification of coupling constants at the
GUT scale. The evolution of the coupling constants with the energy scale is given by
Renormalization Group Equations (RGEs). At one-loop they are defined as

dgi
dt

=
1

16π2
big

3
i , i ∈ {1, 2, 3}, (3.3)

where t = ln(Q/Q0), Q being the energy scale considered and Q0 the GUT scale. g1 =√
5/3gY and the other coupling constants are given in section 1.1. Depending on the

content of the model, e.g. number of generations, number of Higgs doublets or number
of scalars, the bi coefficients can be drastically modified. As we will see in section 3.2.2
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the Minimal Supersymmetric Standard Model (MSSM) studied in this thesis needs two
Higgs doublets. Moreover, as mentioned above, SUSY contains more particles than the
SM. As a result the coefficients bi differ :

SM : (b1, b2, b3) = (41/10,−19/6,−7),

MSSM : (b1, b2, b3) = (33/5, 1,−3).
(3.4)
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Figure 3.1: Two-loop renormalization group evolution of α−1
i in the SM (dashed lines)

and the MSSM (solid lines). Figure obtained from [124].

Defining αi = g2i /4π, figure 3.1 compares the evolution of coupling constants in the
SM and the MSSM and shows the possibility of unifying the three interactions in the
context of SUSY.

SUSY is also able to link particle physics and cosmology through the possibility
of getting supersymmetric DM candidates. We will note in section 3.4 that an exact
discrete Z2 symmetry of SUSY, called R-parity, gives a stable Lightest Supersymmetric
Particle (LSP) which could, if it weakly interacts with the other particles, be a WIMP.
For a review on supersymmetric DM candidates see [125]. Note that SUSY could also
gives inflaton candidates, as we will show in chapter 4.

There are also æsthetic motivations for SUSY as in the search of extensions of the
Poincaré algebra which is presented in next section. If SUSY is formulated as a local
symmetry a spin 2 particle corresponding to the graviton, the hypothetical particle
that mediates gravity, is introduced. Then the supersymmetric models of gravity called
supergravity have the elegant feature to link the SM fundamental interactions with
gravity [126].

3.2 Elements on the theoretical construction of ex-

act SUSY

The Poincaré group contains all the symmetries of SR : in addition to space-time tranfor-
mations that characterized the Lorentz group i.e. the rotations and the boosts encoded
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in the generator Mµν , it includes the translations represented by the generator Pµ. The
Poincaré algebra, which is a Lie algebra, is defined by the following commutation rela-
tions :

[Pµ, Pν ] = 0,

[Mµν , Pρ] = i(ηνρPµ − ηµρPν),

[Mµν ,Mρσ] = i(ηµσMνρ − ηµρMνσ + ηνρMµσ − ηνσMµρ).

(3.5)

In 1967, Coleman and Mandula [127] demonstrated a no-go theorem : there is no non-
trivial extension of the Poincaré algebra by an usual Lie algebra, namely defined only by
commutation relations. The search of possible extensions leads to the need to include a
more general algebra that also contains anticommutation relations. A graded Lie algebra
called super-Poincaré algebra was then shown by Haag, Lopuszanski and Sohnius to be
the most general extension of the Poincaré algebra [128].

3.2.1 Super-Poincaré algebra

This superalgebra is characterized by fermionic generators. An interesting implication is
the definition of a supersymmetric tranformation : these operators transfrom a fermion
into a boson and vice versa. Its most simple version that we consider in this thesis
contains only N = 1 pair of fermionic generators Q

Q ≡
(
Qα

Q̄α̇

)
, {α, α̇} ∈ {1, 2}, (3.6)

where Qα and Q̄α̇ correspond to two-component spinors, the Weyl spinors. This version
is the most phenomenologically interesting one since it is the only case which allows to
define properly chiral fermions. Actually the supermultiplets1 of the supersymmetric
versions with N > 1 can contain both left and right chiralities with the same gauge
tranformations, which is clearly not observed experimentally especially in the case of
the weak interaction. In addition to the commutation relations of the Poincaré algebra,
this superalgebra adds the following commutation and anticommutation relations :

{Qα, Q̄
β̇} = 2(σµ)αβ̇Pµ, (3.7)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (3.8)

[Pµ, Qα] = [Pµ, Q̄
α̇] = 0, (3.9)

[Mµν , Qα] = i(σµν)
β
αQβ, (3.10)

[Mµν , Q̄
α̇] = i(σ̄µν)

α̇
β̇
Q̄β̇, (3.11)

[Qα, R] = Qα, (3.12)

[Q̄α̇, R] = −Q̄α̇. (3.13)

1Irreductible representations of the superalgebra.
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The σ matrices are obtained using the relations :

(σµν)βα =
1

4

[
(σµ)αγ̇(σ̄

ν)γ̇β − (σν)αγ̇(σ̄
µ)γ̇β

]
,

(σ̄µν)α̇
β̇
=

1

4

[
(σ̄µ)αγ̇(σν)γ̇β − (σ̄ν)αγ̇(σµ)γ̇β

]
,

(σµ)α̇α = (I2, σ
i)α̇α,

(σ̄µ)α̇α = ǫα̇β̇ǫαβ(σµ)ββ̇ = (I2,−σi)α̇α,

(3.14)

where I2 is the 2× 2 identity matrix, the σi, i ∈ {1, 2, 3} are the Pauli matrices and the
antisymmetric tensors ǫ are

ǫαβ = ǫα̇β̇ =

(
0 1

−1 0

)
, ǫαβ = ǫα̇β̇ =

(
0 −1

1 0

)
. (3.15)

Here R is the generator of a global U(1) symmetry of SUSY called R-symmetry. Without
going into the details it could be considered as a kind of generalization of the chiral
symmetry. The Nelson-Seiberg theorem [129] shows that its presence is a necessary
condition for SUSY breaking. This R-symmetry could also be an explanation of the
R-parity. SUSY breaking and R-parity will be developed respectively in sections 3.3
and 3.4.

If we look at eq. 3.9 it results that fermionic generators commute with the mass
operator P 2 = PµP

µ. Therefore in each supermultiplet we find particles with the same
mass. As mentioned before they also have same gauge transformations which implies
same electric and colour charges. However eqs. 3.10 and 3.11 imply that the supermul-
tiplets are made of particles with different spin. Another interesting characteristic of
these supermultiplets is that they are constituted by an equal number of fermionic and
bosonic degrees of freedom. It is then tempting to put in a same multiplet bosons and
fermions of the SM which have the same electric charge, like a set with the photon and
a neutrino and another with the W boson and the electron [130]. Of course this needs
a SUSY breaking mechanism to explain the mass difference between particles of a same
multiplet. Nevertheless the problem of assigning coloured particles in supersymmetric
multiplets remains. This led Fayet to define in each supermultiplet a SM particle char-
acterized either by a bosonic or a fermionic statistic and its associated superpartner with
the other statistic [131, 132]. N = 1 SUSY is described by two types of supermultiplets
: chiral and gauge supermultiplets. A nice way to define them is going to the superspace
and the superfield formalisms. Here we decide not to present these concepts and we refer
the reader to the textbooks [133, 134, 135, 136] and the reviews [137, 138, 139]. The
supersymmetric Lagrangian will now be introduced. For details on the demonstration
of the relations that will be presented, see [124].
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3.2.2 Chiral supermultiplet

The fermions and the scalar of SM are defined using the simplest supermultiplet of the
N = 1 SUSY called chiral supermultiplet. It consists of one LH Weyl spinor2 ψ and one
complex scalar field φ. If the spinor refers to a SM fermion, φ is called a scalar fermion or
more succinctly a sfermion whereas the supersymmetric partner of the Higgs boson is an
higgsino. The simplest model constructed with this supermultiplet containing massless
and non-interacting particles is the Wess-Zumino model [140]. Its Lagrangian reads

LWZ = −∂µφ∗∂µφ+ iψ̄σ̄µ∂µψ + F ∗F, (3.16)

where F is a complex scalar auxiliary field without kinetic term necessary for LWZ to be
invariant under SUSY even if the equation of motion σ̄µ∂µψ = 0 is not satisfied, namely
for off-shell particles. The corresponding SUSY transformations are parameterized by
an infinitesimal and anticommuting Weyl fermion object ǫ. Here we confine ourselves
to global SUSY; it results that ǫ does not depend on spacetime coordinates i.e. ∂µǫ = 0.
The transformations for each fields are given by the following relations :

δφ = ǫψ, δφ∗ = ǭψ̄,

δψ = −iσµǭ∂µφ+ ǫF, δψ̄ = iǫσµ∂µφ
∗ + ǭF ∗,

δF = −iǭσ̄µ∂µψ, δF = i∂µψ̄σ̄
µǫ.

(3.17)

If several chiral supermultiplets defined by the set Ψi = (φi, ψi, Fi) are considered, in-
teractions between them must be analysed. The most general Lagrangian terms for the
interactions between these supermultiplets which is renormalisable and invariant under
SUSY transformation has the following form:

Lint = −1

2
W ijψiψj +W iFi + h.c. (3.18)

Here Wi and Wij are derivatives with respect to the scalar fields φi or φj of an important
function in SUSY, the superpotential W :

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk,

W i =
∂W
∂φi

, W ij =
∂2W
∂φi∂φj

.
(3.19)

M ij represents the symmetric mass matrix for the Weyl fermions while yijk is the Yukawa
coupling between a scalar φk and two Weyl fermions ψi and ψj. L

i is only allowed if
there is a gauge singlet φi in the SUSY model considered, which is not the case in the
MSSM. A crucial point to emphasize is that for the sake of Lint invariance under SUSY
transformations, W must be holomorphic and then does not depend on the complex
conjugates φ∗

i . It follows that the Yukawa term yui Q̄iH̄Vijuj that appears in the SM

2For simplicity we now omit Weyl indices.
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Lagrangian in eq. 1.33 cannot exist in SUSY. To address this issue two Higgs doublets
are introduced in the MSSM : one gives mass to up-type quarks and the other gives mass
to down-type quarks and charged leptons. When adding LWZ and Lint the auxiliary
fields are eliminated using their equations of motion that lead to

Fi = −W∗
i , F i = −W i. (3.20)

The chiral Lagrangian can now be written as

Lchiral =
∑

Ψi

−∂µφ∗i∂µψi + iψ̄iσ̄µ∂µψi −
1

2

(
W ijψiψj +W∗

ijψ̄
iψ̄j
)
−W iW∗

i . (3.21)

3.2.3 Gauge supermultiplet

Gauge fields of the SM are defined in gauge supermultiplets. They contain a massless
gauge boson field F a

µ , a Weyl spinor λa called gaugino and a real bosonic auxiliary field
Da which is introduced for the same argument as the field F in the chiral supermultiplet.
The superscript a depends on the gauge symmetry considered and we then refer to the
definitions given in section 1.1 for the objects used here. The gauge and SUSY invariant
Lagrangian for gauge supermultiplets reads

Lgauge =
∑

G
−1

4
F a
µνF

aµν + iλ̄aσ̄µ∇µλ
a +

1

2
DaDa, (3.22)

where we sum over the gauge symmetries i.e. G ∈ {SU(3)c, SU(2)L, U(1)Y } and the
covariant derivative acting on gauginos has the following form :

∇µλ
a = ∂µλ

a + gcabcF
b
µλ

c. (3.23)

The final step in the construction of the supersymmetric Lagrangian is the introduc-
tion of couplings between the two types of supermultiplet considered. For the sake of
renormalizability, only three interaction terms that look like (φ∗T aψ)λa, λ̄a(ψ̄T aφ) and
(φ∗T aφ)Da, where T a are the generators of the gauge symmetry considered, are possible.
Finally the complete Lagrangian is written as

L = Lchiral + Lgauge −
∑

G,Ψi

√
2g(φ∗iT aψi)λ

a + gλ̄a(ψ̄iT aφi)− g(φ∗iT aφi)D
a. (3.24)

Combining the expressions that include Da shows that this auxiliary field depends only
on scalar fields :

Da = −g(φ∗iT aφi). (3.25)

Since Fi is also a function of scalar fields, the scalar potential of SUSY is

V (φ, φ∗) =
∑

G,φi

F ∗iFi +
1

2
DaDa =

∑

G,φi

W iW∗
i +

1

2
g2(φ∗iT aφi)

2. (3.26)
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3.3 SUSY breaking

Exact SUSY predicts that SM particles have the same mass as their superpartners,
which is experimentally excluded; for example no selectron is observed around 511 keV.
Thus if SUSY is realized it must be broken to give heavier masses to the superpartners.
Spontaneous SUSY breaking can occur if at least one of the auxiliary fields Fi and D

a

acquires a VEV. There are two mechanisms : the Fayet-Iliopoulos mechanism which
deals with the D term [141] and the O’Raifeartaigh mechanism which concerns the F
term [142]. However these mechanisms do not give a sufficiently high supersymmetric
mass spectrum. Therefore the main scheme studied to explain these mass differences is
as follows : SUSY may be broken in a hidden sector which couples very weakly to the
visible sector i.e. usually the MSSM. Three scenarios of mediation of the breaking from
the hidden to the visible sector are mainly studied in the literature :

• The gravity-mediated scenario, where the mediation is depicted by gravitational
interactions between the two sectors [143, 144, 145, 146]. The VEV 〈F 〉 of the
SUSY breaking in the hidden sector is connected to the superpartners mass terms
by

m ∼ 〈F 〉/MP l. (3.27)

Therefore to get mass terms in the GeV-TeV range SUSY breaking must happen
at
√

〈F 〉 ∼ 1010 − 1011 GeV. We will analyse in chapter 4 a version of gravity-
mediated model, the Non-Universal Higgs Mass model (NUHM);

• The Gauge-Mediated Supersymmetry Breaking (GMSB) scenario, where the medi-
ation occurs through gauge interactions. An intermediate scale that looks like a
messenger scale interacts with the hidden and visible sectors and gives the mass
terms of the superpartners through loop diagrams involving messenger particles
[147, 148, 149, 150, 151, 152]. To obtain experimentally relevant mass terms and
assuming the messenger scale is of the order of the SUSY breaking scale then√

〈F 〉 ∼ 104 GeV. A major problem of this scenario in the context of this thesis
is that its minimal version does not lead to a possible WIMP DM;

• The Anomaly-Mediated Supersymmetry Breaking (AMSB) scenario [153, 154] also
based on gravity mediation has in its minimal version a non-negligible drawback
: sleptons get negative squared masses. An example of possible solution is a
combination of AMSB with GMSB [155, 156].

These scenarios refer to a top-down approach : we look at high-scale motivations like
GUT unification and through RGEs we determine the low energies supersymmetric pa-
rameters. Universality assumptions at GUT scale allow to shrink the supersymmetric
parameter space down to a few free parameters, typically less than ten. The other ap-
proach is called bottom-up approach : starting from the SM and the low energies super-
symmetric parameters we derive theoretical implications at GUT scale. This approach
is characterized by many more free parameters since we use explicit SUSY breaking
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terms at low energy. These terms will be detailed in the next section. Several public
codes are available to compute the supersymmetric spectra using RGEs : SuSpect [157],
ISAJET [158], SPheno [159] and SOFTSUSY [160]. The latter is used in chapters 4 and 5.

An interesting consequence of these scenarios is that the Electro-Weak Symmetry
Breaking (EWSB) is realized in a more natural way than in the SM. We saw in chap-
ter 1 that this symmetry breaking is realized in the SM introducing a negative mass
squared term, which has no real explanation. In SUSY the Higgs masses squared for the
two Higgs doublets are positive at the GUT scale but their evolution to low scales espe-
cially with (s)top contribution to the RGEs lead one of them to be negative which then
implies EWSB : it is the radiative EWSB. Nevertheless the issue of symmetry breaking
is postponed to the higher scale where an unknown SUSY breaking mechanism takes
place.

3.4 The Minimal Supersymmetric Standard Model

The MSSM is the supersymmetric extension that contains the minimum number of fields.
As mentioned above the chiral supermultiplet contains a LH Weyl spinor; it implies that
sfermions are associated either to LH or RH fermions. We then denote sfermions by
the subscripts L and R even though they do not carry chirality. As we saw two Higgs
doublets are present in this minimal version : Hu which gives mass to up-type quarks
and Hd which concerns down-type quarks and charged leptons. Using the notations
given in chapter 1 the content of the MSSM is represented in table 3.1. For an overview
of this model see [161].

3.4.1 Lagrangian at low energy

The parameterization of SUSY breaking at low energies is written in terms of explicit
breaking terms called soft terms. This name stems from some important requirements :

• No quadratic divergences must be reintroduced to remain the EW scale stable;

• Gauge invariance has to be preserved;

• The theory must stay renormalisable i.e. the new parameters in the Lagrangian
must have positive mass dimension;

• Baryon number B and lepton number L must be conserved.

It results that the Soft SUSY Breaking (SSB) Lagrangian reads

L
soft
MSSM =− 1

2

(
8∑

a=1

M3G̃
aG̃a +

3∑

i=1

M2W̃
iW̃i +M1B̃B̃ + h.c.

)

− (ũ∗RauQ̃Hu − d̃∗RadQ̃Hd − ẽ∗RaeL̃Hd + h.c.)

− Q̃†m2

Q̃
Q̃− L̃†m2

L̃
L̃− ũ∗Rm

2
ũR
ũR − d̃∗Rm

2

d̃R

d̃R − ẽ∗Rm
2
ẽR
ẽR

−m2
Hu
H†
uHu −m2

Hd
H†
dHd − (bHuHd + h.c.),

(3.28)
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Chiral supermultiplets

Name spin 0 spin 1/2 SU(3)c,SU(2)L,U(1)Y

squarks, quarks Q̃, Q (ũL d̃L) (uL dL) (3, 2, 1
3
)

(3 families) ū ũ∗R ūR (3̄, 1, −4
3
)

d̄ d̃∗R d̄R (3̄, 1, 2
3
)

sleptons, leptons L̃, L (ν̃L ẽL) (νL eL) (1, 2, −1)

(3 families) ē ẽ∗R ēR (1̄, 1, 2)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) (1, 2, 1)

Hd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1, 2, −1)

Gauge supermultiplets

Name spin 1/2 spin 1 SU(3)c,SU(2)L,U(1)Y

gluinos, gluons G̃a Ga (8, 1, 0)

winos, W ’s W̃± W̃ 3 W± W 3 (1, 3, 0)

bino, B B̃ B (1, 1, 0)

Table 3.1: MSSM supermultiplets and their gauge properties.

where M1,M2 and M3 are respectively bino, wino and gluino mass terms. The sfermion
fields appearing in L soft

MSSM and defined in table 3.1 are vectors in the family space. The
bold terms in the second and the third line of eq. 3.28 are respectively trilinear coupling
and soft sfermion mass term matrices. This introduce a lot of new parameters. However
several phenomenological constraints allow to reduce this free parameter space. Physics
of the K mesons as well as experimental limits on the measurements of electric dipole
moments force us to assume universality for the first and second generation of squark
soft terms and Minimal Flavour Violation (MFV). Generalizing these assumptions to
all sfermions and to the trilinear couplings we finally consider the previously defined
matrices as diagonal in the family space. This phenomenological MSSM (pMSSM) will
be studied in chapter 5. Last line of eq. 3.28 contains new terms that will enter in the
Higgs potential.

The MSSM superpotential is given by

WMSSM = ũ∗RyuQ̃Hu − d̃∗RydQ̃Hd − ẽ∗RyeL̃Hd + µHuHd, (3.29)

where µ is a supersymmetric mass term in the Higgs sector and the Yukawa matrices yf ,
which are in one-to-one correspondence with the trilinear couplings, are diagonal. As
postulated before the conservation of baryon and lepton number is maintained. Actually
there are terms which could be added in the MSSM superpotential that fulfill all the
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conditions for SUSY except B and L conservations. Nevertheless they lead to features
non-observed experimentally such as a fast proton decay, for instance with the decay in
positron and neutral pion p→ e+π0. It is here that R-parity is introduced [162] :

PR = (−1)3(B−L)+2S, (3.30)

where S is the spin of the particle considered. It results that PR = +1 for particles
from the SM and PR = −1 for their superpartners. The R-parity conservation prevents
baryon and lepton number violation but it has other important consequences :

• The LSP is stable. Moreover if it has no electric and colour charge, in other words
if it interacts weakly with the other particles it could be a viable WIMP DM;

• The LSP can only be produced in pairs at colliders;

• Each superpartners, except the LSP, can only decay into an odd number of other
supersymmetric particles. Thus we usually expect only one LSP at the end of the
decay chain.

As we have seen in the gauge sector of the SM presented in chapter 1, mixing effects can
differentiate gauge and mass eigenstates. It is also the case in SUSY.

3.4.2 Higgs sector

Since we have two doublets of complex fields, the Higgs sector contains eight scalar
degrees of freedom. The scalar potential of the two Higgs doublets H2 ≡ Hu = (H+

u , H
0
u)

and H1 ≡ Hd = (H0
d , H

−
d ) is a sum of F , D and SSB terms and reads

VMSSM =V F
MSSM + V D

MSSM + V soft
MSSM

=(|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd
)(|H0

d |2 + |H−
d |2)

+ [b(H+
u H

−
d −H0

uH
0
d) + h.c.]

+
1

8
(g22 + g2Y )(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 +

1

2
g22|H+

u H
0∗
d +H0

uH
−∗
d |2,
(3.31)

where the terms proportional to the coupling constants come from D terms, those pro-
portional to |µ|2 stem from F terms and the others from SSB terms. The EWSB leads
to one VEV for each neutral component of the Higgs doublets

〈H0
u〉 =

v sin β√
2
, 〈H0

d〉 =
v cos β√

2
, (3.32)

with v the SM VEV and

v sin β ≡ vu ≡ v2, v cos β ≡ vd ≡ v1. (3.33)
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The ratio of the VEVs then reads

tan β =
vu
vd
. (3.34)

With the EWSB, three of the degrees of freedom (G0, G±) become the longitudinal
modes of the W and Z bosons. We are then left with five physical Higgs scalars : two
of them are neutral and CP-even (h0 and H0), one is neutral and CP-odd (A0) and
there are two charged Higgs bosons H±. The relations between the gauge and mass
eigenstates are parameterized by two mixing angles α and β and read

√
2

(
H0
u

H0
d

)
=

(
vu
vd

)
+


 cosα sinα

− sinα cosα



(
h0

H0

)
+ i


 sin β cos β

− cos β sin β



(
G0

A0

)
, (3.35)

(
H+
u

H−∗
d

)
=


 sin β cos β

− cos β sin β



(
G+

H+

)
. (3.36)

The minimization condition of the potential derived from ∂VMSSM

∂H0
u

= ∂VMSSM

∂H0
d

= 0 gives the

tree-level masses in the Higgs sector :

m2
A0 =

2b

sin 2β
= 2|µ|2 +m2

Hu
+m2

Hd
,

m2
h0,H0 =

1

2

(
m2
A0 +M2

Z ∓
√
(m2

A0 −M2
Z)

2 + 4M2
Zm

2
A0 sin

2(2β)

)
,

m2
H± = m2

A0 +M2
W ,

(3.37)

where by convention h0 is lighter than H0. Note that the tree-level value of the mixing
angle α is determined by :

sin 2α

sin 2β
= −m

2
H0 +m2

h0

m2
H0 −m2

h0
,

tan 2α

tan 2β
=
m2
A0 +M2

Z

m2
A0 −M2

Z

. (3.38)

Since these relations give a stringent upper bound on the lightest Higgs mass which is
widely excluded by experimental searches (mh0 < MZ | cos 2β|), radiative corrections are
crucial for the validity of the model. These corrections, mainly coming from top (s)quark
loops, are taken into account in codes like SOFTSUSY that we will use in part II.

3.4.3 Sfermion sector

Mixing also occurs between the supersymmetric partners of the LH and RH components
of a fermion f . The mass matrix for a sfermion Y of the ith family whose soft mass
terms are m2

Xi
for the LH part and m2

xi
for the RH one is usually defined as3

M2
Yi

=


m

2
Xi

+m2
f +M2

Zc2β
(
I3f −Qfs

2
W

)
mf

(
Af − µ(tβ)

−2I3f

)

mf

(
Af − µ(tβ)

−2I3f

)
m2
xi
+m2

f +M2
Zc2β

(
I3f −Qfs

2
W

)


 (3.39)

3Note that from now on we will sometimes use the simplications cosβ = cβ , sinβ = sβ , tanβ =
tβ , cos θW = cW , sin θW = sW , tan θW = tW and the notations given in eq. 3.33.
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where I3f is the third component of the SU(2)L isospin of f , Qf its electric charge and
mf its mass. This mass matrix is then only relevant when we consider superpartners
of heavy SM fermions. It results that the soft mass terms and the trilinear couplings
Af are here determined only for i = 3 with Y3 ∈ {t̃L,R, b̃L,R, τ̃L,R}, X3 ∈ {Q̃3, L̃3} and
x3 ∈ {ũ3, d̃3, ẽ3}. After diagonalisation, the physical states t̃1, t̃2, b̃1, b̃2, τ̃1, τ̃2 are ordered
in mass, i.e. mf̃1

< mf̃2
with f̃ ∈ {t̃, b̃, τ̃}. For the other sfermions their mass simply

reads
m2
Yi
= m2

Xi
+M2

Zc2β(I
3
f −Qfs

2
W ), (3.40)

with i ∈ {1, 2}, Y1 ∈ {ũL, ũR, d̃L, d̃R, ẽL, ẽR}, Y2 ∈ {c̃L, c̃R, s̃L, s̃R, µ̃L, µ̃R} and X2 =

X1 ∈ {Q̃1, L̃1, ũ1, d̃1, ẽ1}. For the sneutrinos i ∈ {1, 2, 3} : Y = (ν̃eL, ν̃µL, ν̃τL) and

X = (L̃1, L̃2, L̃3).

3.4.4 Gaugino and higgsino sector

The sector of the supersymmetric partners of gauge bosons and Higgs fields is divided
into three parts : first the supersymmetric partners of the gluons, second the charged
gauginos and higgsinos and finally the most interesting SUSY particles in the context of
this thesis, the neutral gauginos and higgsinos that form the neutralino sector.

3.4.4.1 Gluinos and charginos

The eight supersymmetric partners of the gluons, the gluinos g̃, are Majorana fermions
with a mass term simply equal to |M3|.

The two charged winos (W̃±) as well as the two charged higgsinos (H̃+
u et H̃−

d ) mix
to form two charged Dirac fermions called charginos χ±

i (i ∈ {1, 2}), where mχ±

1
< mχ±

2
.

The mass matrix in the gauge-eigenstate basis (W̃+, H̃+
u , W̃

−, H̃−
d ) is

Mχ± =


 0 XT

X 0


 , (3.41)

with

X =


 M2

√
2MW sin β

√
2MW cos β µ


 . (3.42)

The relation between mass and gauge eigenstates is given by two unitary 2×2 matrices
Zv and Zu with (

χ+
1

χ+
2

)
= Zv

(
W̃+

H̃+
u

)
,

(
χ−
1

χ−
2

)
= Zu

(
W̃−

H̃−
d

)
. (3.43)

3.4.4.2 Neutralinos

Finally the mixing of the four neutral gauge eigenstates (B̃, W̃ 3, H̃0
u, H̃

0
d) gives rise to

four Majorana mass eigenstates called neutralinos χ0
i (i ∈ {1, 2, 3, 4}) with mχ0

1
< mχ0

2
<
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mχ0
3
< mχ0

4
. It is a crucial sector of this thesis since these particles are neutral, massive

and they weakly interact with the rest of the MSSM sector. The lightest one is the
most commonly WIMP DM candidate studied in the literature and this candidate will
be considered in the work presented in part II. In the basis ψ0 = (B̃, W̃ 3, H̃0

d , H̃
0
u) the

neutralino Lagrangian involving mass terms has the following form :

Lχ0 = −1

2
(ψ0)TMχ0ψ0 + h.c., (3.44)

with the neutralino mass matrix given by

Mχ0 =




M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0



. (3.45)

This matrix is diagonalised by a 4×4 unitary matrix Zn which links mass and gauge
eigenstates :

χ0
i = Znijψ

0
j , i,j ∈ {1, 2, 3, 4}. (3.46)

Thence several scenarios are considered for the LSP neutralino when we want to
match its computed relic density using the micrOMEGAs code with the measured DM relic
density. For large values of the µ term and assuming universality of the gaugino mass
terms at the GUT scale the lightest neutralino χ0

1 is mostly bino, i.e. the bino fraction
Z2
n11 ∼ 1. This state interacts too weakly with the SM particles; its total annihilation

cross section calculated in the early Universe is too small and this candidate mostly
overclose the Universe. For some scenarios this problem is avoided. For instance when
mχ0

1
≈ mA0/2 the DM annihilation into bb̄ or τ+τ− is enhanced through an s-channel

pseudo-scalar Higgs boson exchange : this corresponds to the funnel regions.
For small µ comparing to the gaugino masses, the LSP is mostly higgsino, i.e. Z2

n13+
Z2
n14 ∼ 1. Non-negligible mass degeneracy with χ0

2 and the lightest chargino leads to
an enhancement of the DM annihilation into gauge bosons through t-channel χ0

2/χ
±
1

exchange. This could imply the opposite problem in comparison to bino LSP : the
predicted χ0

1 relic density is too low to satisfy the cosmological constraints. Taking
larger µ/mχ0

1
values solve this issue as we will show in chapter 4.

Loosing the universality assumption as in chapter 5 gives the opportunity to study
wino LSP (Z2

n12 ∼ 1). This candidate can be strongly constrained by DM observables
since it is charged under SU(2)L : its annihilation rate into SM particles both in the
early Universe and presently can be too large.

3.5 Constraints on SUSY

One of the nice features of SUSY is that it offers possible signatures in different types
of experiments. Thus the model can be explored and constrained by very different
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types of observations. These observational data are separated into two main categories
: astroparticle and cosmological constraints on supersymmetric DM candidates and
constraints on SUSY coming from collider experiments.

3.5.1 Cosmological and astroparticle constraints

The current amount of DM in the Universe gives the most stringent constraint on super-
symmetric WIMP DM candidates. Assuming a thermal production and the freeze-out
mechanism, section 2.3 gives the method to compute the supersymmetric WIMP DM
relic density which is compared to the precise measurement of the DM relic density.
The recent result, given in table 2.1, obtained combining Planck data with WMAP
polarization data, high-ℓ CMB and BAO data reads

ΩWIMPh
2 = 0.1187± 0.0017. (3.47)

In the case of SUSY this calculation becomes tricky and can involve a large number
of processes when coannihilations give the dominant contribution to the WIMP relic
density. Numerical computations appear to be essential hence the use of codes like
the micrOMEGAs code. This point will be particularly elaborated in chapters 4 and 5
where coannihilation processes involving a slightly heavier supersymmetric particle, the
chargino, have consequences on DM observables. Note that the particle which is the
second lightest superpartner is called the Next-to-LSP (NLSP). In this thesis DM relic
density lower bound is sometimes relaxed4. Either we assume that the WIMP considered
does not account for the total DM density, in this case it will also impact the calculation
of DM detection observables developed below. Another possibility for models with low
DM relic density is to regenerate the correct DM density through more sophisticated
mechanisms, for example the freeze-in mechanism [163, 164, 165].

To probe the DM candidate the most powerful method is simply to detect it. Two
main strategies are then used.

3.5.1.1 DM Direct Detection

It is usually assumed that the WIMP halo inside which the MW stands has a local
density5 ca. 0.3-0.4 GeV cm−3 and local circular and galactic escape velocities of a few
hundreds km s−1. This implies that many of these WIMPs should pass through the
Earth and then weakly interact with our planet. The idea that follows is simply to
detect WIMP scattering on nuclei through the measurement of the recoil energy of this
normal matter. This DM Direct Detection (DD) proposal was initiated in 1984 by
Goodman and Witten [169] and from there a lot of underground6 detectors were built
to find this DM footprint.

4Which is not the case for the upper bound since the DM candidate chosen should not overclose the
Universe.

5A recent estimate assuming either an Einasto [166] or a Navarro-Frenk-White [167] DM density
profile leads to a local density of 0.39± 0.03 GeV cm−3 [168, 29].

6Which is mandatory because of background issues and the low number of events expected.
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The simple elastic scattering on a nucleus leads to recoil energies of the order of dozens
of keV, which is detectable by current experiments. The cross section of the process is
expressed in terms of Spin-Dependent (SD) and Spin-Independent (SI) scattering. The
SD interaction comes from the coupling of the WIMP to the spin content of a nucleon
and the total SD cross section on a nucleus depends only on its unpaired nucleons.
Meanwhile the SI scattering results from a scalar coupling between the WIMP and a
nucleon; the SI cross section on a nucleus increases with the total number of nucleons
A inside this nucleus. As a result SD scattering is competitive with SI scattering only
for light nuclei. The best constraints are then expected in the case of SI WIMP-nucleon
scattering. Moreover SD scattering is clearly irrelevant for scalar WIMPs which will be
considered in chapter 8.

Figure 3.2 shows the current best exclusion limits for SI scattering that come from
the XENON100 experiment [170]. For instance it is able to probe cross sections down
to 2× 10−45 cm2 = 2× 10−9 pb for a WIMP mass of 55 GeV and thus constrains quite
significantly the predictions from SUSY. This figure also shows that some collaborations
like DAMA [171], CoGeNT [172], CRESST [173] or recently CDMS [174] have detected
anomalous features that could be interpreted as signals of DM. However these results are
in tension with the stringent bounds put by the XENON100 and the XENON10 [175]
collaborations. In the different studies considered in this thesis we have decided to only
take into account the negative search from XENON100.

Figure 3.2: Results on the SI WIMP-nucleon cross section versus the WIMP mass
from various experiments compared to some supersymmetric predictions (grey regions).
Figure taken from [170].

These limits on the WIMP-nucleon cross section are obtained assuming that the
interactions WIMP-proton and WIMP-neutron are the same. Since it is not necessary
the case, the normalized cross-section on a point-like nucleus N with a mass mN with
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Z protons and A− Z neutrons is considered. It reads

σSI
χN =

4µ2
χN

π

(Zfp + (A− Z)fn)
2

A2
(3.48)

with µχN = mχmN

mχ+mN
. To determine the nucleon amplitudes fp and fn, respectively for

the protons and the neutrons, the WIMP-parton7 scattering must be computed. The
calculation of the DD cross section is done using the micrOMEGAs code. For a scalar
interaction resulting for instance from Higgs boson exchange the WIMP-nucleon process
depends on the quark content of the nucleon. This is determined by ratios of light
quark masses mu/md and ms/md and by two parameters extracted from lattice QCD
calculations : the light-quark sigma term σπN = (mu + md)〈N |ūu + d̄d|N〉 and the
strange quark content of the nucleon σs = ms〈N |s̄s|N〉. These quantities have a non-
negligible uncertainty which then impacts the calculation of the cross section. The main
values used in this thesis are summarized in table 3.2. Note that a compilation of recent
lattice results leads to different mean values for σπN and σs and especially to lower
uncertainties, namely σπN = 34± 2 MeV and σs = 42± 5 MeV [94].

Parameter Value

mu/md 0.553 ± 0.043 [176]

ms/md 18.9 ± 0.8 [176]

σπN 44 ± 5 MeV [177]

σs 21 ± 7 MeV [177]

Table 3.2: Parameters determining the quark content of the nucleon in the calculation
of WIMP-nucleon processes.

3.5.1.2 DM Indirect Detection

As explained in section 2.3.3, WIMP annihilation into SM particles is expected to be
a rare event today. However in some regions of the space the rate of DM annihilation
could be sufficiently large to give anomalous features in cosmic rays searches such as
gamma-rays, neutrinos, positrons and anti-protons. This is the principle of the Indirect
Detection (ID) of DM that was proposed a few decades ago [178, 179, 180, 181, 182, 183,
184, 185, 186]. Furthermore N-body simulations show that the DM distribution in the
Universe seems to be inhomogeneous, thus leading to enhancement of DM annihilation.

This interesting method to probe DM has however a significant drawback : it re-
quires a detailed knowledge of the astrophysical sources. To claim the discovery of
an anomalous feature the choice has to be made between two methods : remove the

7Quarks and gluons.
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known or modelled background in order to show a signal that could come from DM or
see a clear feature difficult to mimic by considering only astrophysical sources. Pos-
sible anomalies discovered that could give hints on DM include the positron excess
observed by the Pamela[187, 188], Fermi-LAT [189] and recently AMS [190] collab-
orations or the two possible γ-ray lines at 111 and 129 GeV seen in Fermi-LAT data
[191, 192, 193, 194, 195, 196, 197]. Nevertheless the origin of these anomalies is not
yet clearly established. There are also a lot of astrophysical data that fit well with the
modelling of astrophysical background sources in the usual WIMP mass range, which is
able to constrain DM models. Chapter 5 will be devoted to p̄ and γ-ray constraints on
a neutralino DM which mainly annihilates into W bosons.

Note that another detection method to look for DM, which is currently in develop-
ment, could be promising. Summarizing quickly this method, called directional detec-
tion, it is based on the motion of the Solar System in the MW which imply that the
motion of the Earth relatively to the galactic halo could gives hints on DM [198].

3.5.2 Collider constraints

High energy colliders as the LHC could also give hints on supersymmetric DM, although
it is not in their scope to give informations on whether this particle is stable at a
cosmological scale or not. Nevertheless important constraints can be applied to SUSY
since no superpartners have been discovered yet.

3.5.2.1 Bounds on supersymmetric particles

The LEP collider puts stringent lower bounds on the mass of several charged sparti-
cles. For example it constrains the χ±

1 mass to be above ∼ 103 GeV, except for small
mass degeneracies with the LSP. Direct accelerator lower bounds on sparticles from the
LEP collider for the chargino, the sneutrino and the RH charged slepton masses are
implemented in the micrOMEGAs code. Since the start of the LHC the limits on coloured
sparticles are much improved and some searches are able to exclude supersymmetric
particles with a mass beyond 1 TeV. Nevertheless these bounds have to be taken with
care since there are derived under several assumptions. The first one, justified within
the context of this thesis is the conservation of R-parity. As we saw in section 3.4 this
implies that a cascade decay of a SUSY particle leading to SM particles and the LSP,
which appears as missing energy in the detectors8, is one of the main method used to
probe SUSY (see figure 3.3).

Actually experimentalists have obtained bounds on SUSY using many more as-
sumptions. This implies that some bounds are not so stringent for the analysis de-
veloped in this thesis, especially when scenarios going beyond the MSSM are stud-
ied. Many limits were derived in specific MSSM scenarios GUT motivated, in most
cases within the simplest gravity-mediated SUSY breaking scenario, the minimal SU-
perGRAvity/Constrained MSSM (mSUGRA/CMSSM). As an example figure 3.4 sum-

8As with neutrinos.
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q̃

q

χ0
2

ℓ+

ℓ̃R ℓ−

χ0
1

Figure 3.3: Example of a cascade decay as a result of the R-parity conservation in the
MSSM : a squark q̃ decays into the second lightest neutralino χ0

2 and a quark which will
decay or hadronise. Then χ0

2 decays to a charged lepton plus a RH slepton which finally
decays into another lepton and the LSP, here the lightest neutralino χ0

1.

marizes ATLAS bounds on supersymmetric particle masses shown during the Rencontres
de Moriond conference in 2013 where, depending on the analysis done, stronger assump-
tions are considered like an equal mass for gluinos and first and second generation of
squarks. Other analyses have been done within simplified models with specific decay
chains studied [199]. For most of the studies presented in this thesis these limits are
avoided assuming that squarks and sleptons are at the TeV scale, except for third gen-
eration squarks which are more weakly constrained. Nonetheless it is possible to check
the validity of these experimental limits on non-minimal supersymmetric models. Chap-
ter 6 will be devoted to this type of study within a typical non-minimal model, the
Next-to-MSSM (NMSSM).

Note that the knowledge of SM particle masses have also consequences on the studies.
For example the top quark mass influences the SUSY spectra in GUT scale models as
well as provides large corrections to the SM-like Higgs boson mass.

3.5.2.2 Low energy observables

SUSY can also be detected in the measurement of rare processes or in the precise deter-
mination of some EW quantities. B-physics observables are used throughout this thesis.
We will be mainly interested in the observables B(B± → τ±ντ ), B(B0

s → µ+µ−), ∆Ms,
∆Md and B(B̄0 → Xsγ). All these branching ratios and mass differences get super-
symmetric contributions that can be large. As an example, the B(B0

s → µ+µ−) in the
MSSM which for large tan β values grows like tan6 β. This allows to exclude some re-
gions of the supersymmetric parameter space since no major discrepancies are obtained
between the experimental measurements and the SM expected values. Other low energy
observables such as the anomalous magnetic moment of the muon δaµ were considered.
In part II we use the micrOMEGAs functions that calculate these observables. Part III is
dedicated to a supersymmetric model with an extended gauge symmetry, the UMSSM.
Since B-physics observables and δaµ were adapted to this model for this thesis they will
be detailed there.
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This chapter is mainly based on the article [201] with some figures added/updated
and the scanning method carefully described.

4.1 Introduction

The primordial inflation dilutes all matter except the quantum fluctuations which we
see in the CMB radiation. The last phases of inflation are commonly embedded within
a BSM sector where the inflaton can directly excite quarks and leptons. This is why we
consider in this chapter a supersymmetric model, the NUHM2 : within its scalar poten-
tial containing F and D terms two D-flat directions, ũd̃d̃ and L̃L̃ẽ, are viable inflaton
candidates. By looking at constraints on the neutralino DM candidate, collider con-
staints such as B-physics observables as well as cosmological constraints on the inflaton
candidates, indications on the inflaton mass can be obtained.

4.2 Gravity-mediation of SUSY breaking

As explained in section 3.3, one of the method to mediate SUSY breaking is through grav-
ity. The most popular gravity-mediated SUSY breaking model is the mSUGRA/CMSSM.
The minimal qualifier in the mSUGRA name stems from the fact that universal scalar
masses at GUT scale is assumed. Only five free parameters are needed to study its
phenomenological consequences at low scale :

• m0, the common scalar mass at GUT scale;

• m1/2, the common gaugino mass at GUT scale;

• A0, the common trilinear coupling at GUT scale;

• tan β, the ratio of the two Higgs doublets VEV;

• sign(µ), the sign of the superpotential Higgs mass term.

However this universality in the scalar sector has some disadvantages when considering
moderate values for the common parameters1. The LSP neutralino is for instance mainly
bino in this model. This implies that finding regions of the parameter space where
the neutralino relic density matches or is below the measured DM density is difficult.
For instance DM constraints are usually fulfilled in narrow regions, the funnel regions.
In addition it has been shown that these universality assumptions make it difficult,
especially for low tan β values, to get the SM Higgs boson mass around 125 GeV [204,
205, 206].

These universality conditions can be relaxed by removing the degeneracy between
Higgs boson and sfermion masses at GUT scale, thus solving the previous issues. This

1High values for common parameters can respect physical constraints as shown in [202, 203], although
these scenarios may not be accessible at the LHC scale.
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type of models, the NUHM models [207, 208], are divided into two categories : NUHM1
and NUHM2. In the NUHM1, inspired by GUT models where the two Higgs dou-
blets appear in the same multiplet, degeneracy is maintained in the Higgs sector :
m2

0 6= m2
Hu

= m2
Hd
. Thereby a new free parameter, defined at GUT scale, is added

: sign(m2
Hu,d

)
√
|m2

Hu,d
|.

4.2.1 The NUHM2 model

In the NUHM2, the model we will study here, Higgs scalar masses at GUT scale are
not equal; it is assumed that the Higgs doublets appear in different multiplets at GUT
scale. Hence two free parameters are added to those of mSUGRA/CMSSM, m2

Hu
and

m2
Hd
. Following the EWSB conditions the following relations are obtained (see [207]) :

m2
Hd
(1 + tan2 β) =m2

A0 tan2 β − µ2(tan2 β + 1−∆(Hu)
µ )− (cHd

+ cHu
+ 2cµ) tan

2 β

−∆A tan
2 β − 1

2
M2

Z(1− tan2 β)−∆(Hd)
µ and (4.1)

m2
Hu

(1 + tan2 β) =m2
A0 − µ2(tan2 β + 1 +∆(Hu)

µ )− (cHd
+ cHu

+ 2cµ)

−∆A +
1

2
M2

Z(1− tan2 β) + ∆(Hd)
µ , (4.2)

where the ∆ and c terms are respectively loop and radiative corrections. These relations
link the Higgs GUT scale parameters to the µ term and the pseudoscalar mass mA0

which are taken as new free parameters. Therefore the set of free parameters of NUHM2
is :

m0, m1/2, A0, tan β, µ and mA0 .

To find the regions of NUHM2 which are compatible with colliders and DM constraints
two methods, both relying on the micrOMEGAs code and the SOFTSUSY spectrum calcu-
lator, are used. In a first step benchmark points which satisfy all these requirements will
be identified. Then, the model will be studied by performing a Markov Chain Monte
Carlo (MCMC) analysis of the NUHM2 parameter space.

4.2.2 Benchmark points with neutralino DM in the NUHM2

For the method consisting on identifying benchmark points the following requirements
are imposed :

• The LSP must be the neutralino;

• The relic density of the neutralino must be compatible with the measured DM
abundance from the WMAP 7-year + BAO +H0 mean value [209] :

0.1088 < ΩDMh
2 < 0.1158; (4.3)
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• The LEP2 bound on the mass of the lightest chargino must be satisfied i.e. mχ±

1
>

103.5 GeV [210];

• The mass of the lightest Higgs boson must be around mh0 = 125 GeV.

Scans are done in the ranges 0 ≤ m0 ≤ 3000 GeV and 0 ≤ m1/2 ≤ 5000 GeV and
choosing specific values of µ, tan β and mA0 . The mass of the top quark is set at
mt = 173.2 GeV [211] and the limits on the following branching ratios B(B0

s → µ+µ−) <
4.5× 10−9 [212] and B(B̄0 → Xsγ) = (3.55± 0.26)× 10−4 [213] are used.

None of the scenarios found can explain the measured value of the anomalous mag-
netic moment of the muon δaµ; the additional contributions in this model are indeed
too small [204]. We assume in the rest of the study that as long as the contribution of
a given scenario is not greater than the measured value, the configuration is valid.

The same observation and assumption are made when we consider the branching
ratio B(B± → τ±ντ ), using the average B(B± → τ±ντ ) = (1.67± 0.39)× 10−4 [213].

(a) (b)

Figure 4.1: (m0,m1/2) plane for the NUHM2 model : Panel (a) is for A0 = −2m0,
mA0 = 1 TeV. Panel (b) is for A0 = 0 TeV and mA0 = 4 TeV. Both panels share
tan β = 10 and µ = 1 TeV. WMAP allowed regions are drawn in red while black lines
show the interesting Higgs boson mass regions. Green regions are characterized by stau
LSP. LEP2 bounds on the chargino mass is not satisfied in blue regions and non physical
configurations are found in grey regions.
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We show two examples of scan in figure 4.1. Regions where the LSP is not a neutralino
but a stau are coloured in green and regions excluded by LEP2 limits on the chargino
mass are represented in blue. Grey regions correspond to non physical configurations (in
particular the stop is tachyonic in most of these regions). In panel (a) of this figure the
regions of the parameter space where the neutralino relic density is in agreement with
the WMAP observations is represented by a red strip while panel (b) present a wider
WMAP allowed region.

Since we are looking for points which satisfy both the Higgs boson mass and DM
constraints, benchmark scenarios are defined as the points which lie at the intersection
between the red area representing the interesting DM relic density and the black line
corresponding to a Higgs boson mass of mh0 = 125 GeV.

In panel (a) of figure 4.1 configurations intersecting WMAP allowed and mh0 ≈ 125
GeV lines are found for m0 > 1.5 TeV and m1/2 > 1 TeV. In this part of the plot allowed
by relic density constraint, the LSP is mostly bino since µ is fixed at 1 TeV. To explain
the observed abundance, given that binos interact too weakly with SM particles and then
usually overclose the Universe, the neutralino mass must be such that annihilation via a
CP-odd Higgs s-channel exchange is enhanced. This leads to the relation mχ0

1
≈ mA0/2

and thus implies that the neutralino mass is about mχ0
1
≈ 500 GeV for mA0 = 1 TeV.

The allowed region is actually referred to as the funnel region. The mass of a bino LSP is
roughly equal to M1, which is related at the EW scale to m1/2 via M1 ≈ 0.42m1/2. Thus
mχ0

1
≈ M1 ≈ 500 GeV corresponds to m1/2 ≈ 1.1 TeV. Between the two red strips, the

relic density falls below the observed DM abundance because the annihilation process
becomes resonant and reduces too much the relic density. Four benchmark points are
identified formh0 = 125 GeV. They are given bym0 = 1897, 2668, 1847, 2897 GeV with
m1/2 ≈ 1.1 TeV and correspond respectively to the benchmark points ‘a’, ‘b’, ‘c’ and ‘d’.
These points match well the B-physics constraints; furthermore they are close to the SM
expectations : B(B0

s → µ+µ−)a,b,c,d ≈ 3.1×10−9 and B(B̄0 → Xsγ)a,b,c,d ≈ 3.25×10−4.
Note that the choice of the Higgs boson mass for defining our benchmark points is
crucial. Indeed this plot shows that increasing mh0 by just 500 MeV takes away half the
resonance region to the interesting configurations. It gives only two benchmark points
with m0 > 2 TeV and m1/2 ≈ 1.1 TeV.

In panel (b) of figure 4.1 the situation is completely different. Since mA0 = 4 TeV,
no funnel region is expected until large m1/2 values, typically around 4 TeV. Moreover
since µ = 1 TeV it is expected in this scenario to have a mainly higgsino-like lightest
neutralino of a mass slightly higher than 1 TeV for sufficiently large m1/2. It implies that
there is a large degeneracy between the two lightest neutralinos and the lightest chargino.
Thus if the neutralino is the LSP the t-channel chargino/neutralino exchange process and
the neutralino-neutralino and neutralino-chargino coannihilation mechanisms contribute
significantly to the LSP relic density. The consequence is that, within the explored range
of m0, any scalar masses at the GUT scale is compatible with mh = 125.0 ± 0.5 GeV
and the observed DM abundance, which leads to many more benchmark points than in
the previous scenario. As a result it is clear that a broader scan of the parameter space
is expected to give mainly higgsino LSP for the interesting configurations.
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4.2.3 A broader scan of the parameter space

In the previous subsection we have identified a set of parameters for which the Higgs mass
coincided withmh0 ≈ 125 GeV, and simultaneously lead to a DM relic density compatible
with WMAP observations. We now want to check whether predictions associated with
these benchmark points are generic or not.

4.2.3.1 A Markov Chain Monte Carlo inspired algorithm

The multidimensional parameter space of the model {m0,m1/2, A0, tan β, µ,mA0} is ex-
plored by performing a random walk corresponding to a Markov Chain Monte Carlo
(MCMC) analysis. This exploration based on the micrOMEGAs code follows the proce-
dure of a Metropolis-Hastings algorithm [214] and is described by the following steps
:

1. Let us start with a point M(m0,m1/2, A0, tan β, µ,mA0) in a given location of a
chain whose free parameters are selected inside a defined range [xmin, xmax] (ran-
domly if it is the first point of the chain, otherwise see next steps) where xmin

(xmax) is the lower (upper) bound of the range for a given free parameter x. We
assume flat priors for all free parameters considered;

2. The SUSY spectrum is then computed using SOFTSUSY. If it corresponds to a non
physical configuration (tachyonic sfermion, Landau pole below the GUT scale,...),
the point (and the corresponding chain) is rejected and we go back to step 1. If
this point is not the first one of the chain considered it was slightly shifted from
the previous point. Then it might go beyond one of the intervals for the free
parameters defined at step 1. If it is the case we assign a warning signal to this
point and we move to step 4;

3. After this we check if the point M is characterized by a neutralino LSP and is al-
lowed by LEP limits on sparticle masses. If it does not fulfill one of these conditions
we assign a warning signal to this point;

4. Before discussing about the likelihood calculations and if a warning signal has
been imposed on the point either in step 2 or step 3, we check that at most ten
consecutive warning signals have been obtained in this chain. If it is the case we
move directly to step 7 with the assignment N = M where N will be the point
considered. Another signal that will be introduced at the step 6, the stuck signal,
is defined for the points that do not correspond to the highest total likelihood
function of the chain. This signal allows to not stay closed in a region of the
parameter space which was sufficiently analysed. We then check whether no more
than one hundred consecutive stuck signals were obtained in this chain. If it is
the case we continue this step. Then we compute the total likelihood function
LMtot which is equal to the product of the likelihood functions associated with each
observable that we will define in section 4.2.3.2. We continue to step 5 if it satisfies
the quite conservative criterion LMtot > 10−100. Otherwise if the point fails to fulfill
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one of the three tests presented above we reject the chain and we go back to step
1.

5. We now look at the main part of the algorithm. If M is the first point of the chain
we automatically keep the point that we note N = M and we move to step 7.
Otherwise we compare M to the previous point kept in this chain that we will
call m. To do this we define a new parameter p which is taken randomly in the
range [1, 1− lnLmtot] and we compare LMtot to Lmtot/p. If LMtot > Lmtot/p, M and all its
characteristics like the SUSY spectrum or its associated values for each observable
considered are kept and N = M . If not we keep the previous point, which means
that N = m, and we move to step 7;

6. The last important step for the accepted pointM is to verify if it gives the highest
total likelihood function of the chain. If it is not the case we assign a stuck signal
to this point (which is automatically assigned at the point m when LMtot ≤ Lmtot/p);

7. We now generate, starting from N , a new point M ′. Its corresponding free param-
eters x′ are shifted from those of N as x′ = x + δx where δx is randomly selected

inside the range
[
−1% (xmax−xmin)

2
, 1% (xmax−xmin)

2

]
. Finally we close the loop proce-

dure returning to step 2 and doing the same tests for the point M ′.

This algorithm is also described in figure 4.2. We could think to use a more stringent
criterion than LMtot > 10−100. Nevertheless we observed that the code converge quite
quickly to interesting configurations, i.e. LMtot > 10−1, thanks to the range chosen for the
parameter p, [1, 1 − lnLmtot]. Actually we also tested p ∈ [1, 10] but the result was less
interesting : regions which are fine-tuned were left unexplored. The reason why the first
method is more efficient in the exploration of fine-tuned regions is that for high Lmtot it
is almost mandatory to have LMtot & Lmtot. Thus it is possible to fully explore fine-tuned
regions, avoiding the previous problem.

Note that this algorithm does not completely exclude regions where the LSP is not
the neutralino and where some sparticle masses are below LEP bounds using the warning
signals. The reason is that we do not want to get rid of the possibility that the corre-
sponding point is near a region where LSP-NLSP coannihilation mechanism contribute
to the relic density of DM or that the chargino mass is for instance close to LEP limits.

Since we were not interested in characterising how statistically relevant the points
that we found are but wanted instead to determine the full range of configurations that
are possible, we do not consider the number of occurrence of a given scenario. The
drawback of such a method is that we cannot determine how likely a region of the
parameter space is with respect to other regions. The advantage as explained above is
that very small (fine-tuned) configurations are kept in the analysis. We imposed between
106 and 107 loops which led to more than 105 interesting configurations for each scan.
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Figure 4.2: Representation of the overall MCMC procedure used in this work. Green
paths represent the ideal paths while orange paths represent warning or stuck signal
paths. Red paths represent the rejection of a chain.

4.2.3.2 Characteristics of the scan

Now let us look at the physics part of this algorithm, the computation of the likelihood
functions associated with each observable. We want to identify regions of the parameter
space which lead to a SM Higgs boson mass within the range that was not excluded
by the LHC experiments in early 2012, i.e. [115.5, 127] GeV [215, 216], and a neutralino
relic density within the WMAP measurements, namely Ωχ0

1
h2 ∈ [0.1088, 0.1158]. Note

that we also considered a scan where the neutralino is only one of the components of
DM, asking Ωχ0

1
h2 ∈ [0.01123, 0.1123]. We will make a quick comment on this point at

the end of section 4.2.3.3. Following the lines described in [217], we use three kind of
likelihood functions :
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• For the Higgs boson mass and the DM relic density, we define the correspond-
ing likelihood as a function L1 which decays exponentially at the edges of the
[xmin, xmax] range, according to

L1(x, xmin, xmax, σ) = e−
(x−xmin)

2

2σ2 if x < xmin,

= e−
(x−xmax)2

2σ2 if x > xmax,

= 1 for x ∈ [xmin, xmax],

(4.4)

with a tolerance σ and x is the observable which corresponds in that case to either
the Higgs boson mass or the LSP relic density;

• For all the other observables, we will use two types of likelihood :

– For an observable with a preferred value µ and an error σ, we use a Gaussian
distribution L2 :

L2(x, µ, σ) = e−
(x−µ)2

2σ2 . (4.5)

Note that the σ of the B(B̄0 → Xsγ) observable is calculated adding quadrat-
ically theoretical and experimental errors;

– For an observable with a lower or upper bound (set experimentally), we will
take the function L3 with a positive or negative variance σ :

L3(x, µ, σ) =
1

1 + e−
x−µ
σ

. (4.6)

Here we do not implement limits on sparticle masses from the LHC since squark masses
that we consider are mostly above present limits. The known constraints that we im-
pose are summarized in table 4.1 and the range that we consider for the different free
parameters of the NUHM2 model is given in table 4.2. Note that we also took into
account some EW observables although they were found to not constrain scenarios ob-
tained since they mainly apply for light LSP (below ca. 50 GeV). They are the invisible
decay width of the Z boson and the cross section σe+e−→χ0

1χ
0
2,3

× B(χ0
2,3 → Zχ0

1). Note

also that the ∆ρ parameter, which determines the deviation of the ρ parameter from
unity (recall eq. 1.32), did not constrain the parameter space considered.

4.2.3.3 Results

Panel (a) of figure 4.3 shows that most of the scenarios found by the MCMC involve
TeV scale values of m0 and m1/2, but no real feature emerges from the plot. Panel (b)
illustrates one of the main advantages of the NUHM2 model over the mSUGRA/CMSSM
model : low values of tan β down to ca. 2 can give configurations with mh0 & 115 GeV.
Note however that mh0 ≃ 125 GeV cannot be reached for such low tan β values. Finally
panel (c) shows that the µ term must be around the TeV scale to have viable scenarios.
We will see later the main reason of this observation.
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Constraint Value/Range Tolerance σ Likelihood

mh0 (GeV) [215, 216] [115.5, 127] 1 L1

Ωχ0
1
h2 [209] [0.1088, 0.1158] 0.0035 L1

Relaxing constraint on Ωχ0
1
h2 [0.01123, 0.1123] 0.0035 L1

B(B̄0 → Xsγ) × 104 3.55 exp : 0.24, 0.09 L2

[213, 218] th : 0.23

δaµ × 1010 [219] 28.7 -8 L3

B(B0
s → µ+µ−) × 109 [212] 4.5 -0.045 L3

∆ρ 0.002 -0.0001 L3

RB±→τ±ντ (
NUHM2

SM
) [220] 2.219 -0.5 L3

Z → χ0
1χ

0
1 (MeV) 1.7 -0.3 L3

σe+e−→χ0
1χ

0
2,3

1 -0.01 L3

×B(χ0
2,3 → Zχ0

1) (pb) [221]

Table 4.1: Constraints imposed in the MCMC, from [210] unless noted otherwise.

Parameter Range

m0 [0, 4] TeV

m1/2 [0, 4] TeV

A0 [-6, 6] TeV

tan β [2, 60]

µ [0, 3] TeV

mA0 [0, 4] TeV

Table 4.2: Range chosen for the free parameters in the NUHM2 model.

As illustrated in figure 4.4, there is a very strong correlation between the mass of
the LSP and that of the NLSP, suggesting that the neutralino relic density either relies
on the coannihilation mechanism or a t-channel exchange of the NLSP (or both). The
NLSP is found to be mostly a chargino and sometimes a neutralino or a stau. The
A0-pole resonance corresponding to the benchmark points ‘a’,‘b’,‘c’,‘d’ requires however
a certain amount of fine-tuning (precisely because it requires mχ0

1
≃ mA0/2) and is not

the most represented configuration found by the MCMC.
The predominance of scenarios in which charginos are mass degenerated with neu-
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(a) (b)

(c)

Figure 4.3: Plot of the allowed parameter space in the (m0,m1/2) (a), (A0, tan β)
(b) and (µ,mA0) (c) planes. We use the total likelihood of the points as colour code.
The darkest points have the highest likelihood. However they may not be statistically
significant.

tralinos2 can be understood by inspecting figure 4.5. For the configurations with A0 =
−2m0, the Higgs boson mass mh0 tends to exceed the upper experimental bound unless
one decreases the value of tan β.

For such configurations, sfermion masses are generally too large for the sfermion-
neutralino coannihilation channels to reduce the relic density significantly and both the
neutralino and chargino have a significant higgsino fraction as represented in panel (a) of
figure 4.6. As a result, the possible channels to reduce the neutralino relic density either
involve CP-odd Higgs portal annihilations or neutralino-chargino mass degeneracies.

The exchange of a pseudoscalar Higgs is actually significant when mχ0
1
∼ mA0/2 (as

found for the benchmark points ‘a’,‘b’,‘c’,‘d’) but neutralino-chargino coannihilation or

2Note that we did not compute the amount of EW fine-tuning in our NUHM2 scenarios. It was shown,
for instance in [222] that some NUHM2 benchmark points wherein A0 = 0 TeV give non-negligible EW
fine-tuning.
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Figure 4.4: Mass of the LSP vs. the mass of the NLSP, depending on the nature of the
NLSP. Only points with large total likelihood were considered.

Figure 4.5: SM Higgs boson mass in the (A0, tan β) plane. Light Higgs boson can be
found whatever the value of the trilinear coupling A0, provided that tan β is small.

chargino t-channel exchange are dominant when the higgsino fraction is very large. In
fact, among the configurations with a non-negligible higgsino fraction, the larger the
bino fraction, the more favoured the A0-pole since small neutralino couplings to the
Higgs can be compensated by having mχ0

1
closer to mA0/2. The distribution of points

depending on their bino fraction is represented in the panel (b) of figure 4.6. Clearly
scenarios with bino-like neutralinos are under represented, illustrating how fine-tuned
they are. This was expected after looking at the benchmark scenarios in section 4.2.2.

Note that the panel (a) of figure 4.6 illustrates also the point that heavy neutralinos
with a mass mχ0

1
≥ 0.6 TeV tend to have a large higgsino fraction, thus suggesting

even more dominant coannihilations with charginos (or annihilations through chargino
exchange) when the neutralino becomes fairly heavy. Interestingly though, for most of
these scenarios, the value of the µ parameter varies between 500 GeV and 1.5 TeV but
the values which correspond to the highest likelihood are about mχ0

1
≃ µ ≃ 1 TeV, which

is indeed consistent with a dominant higgsino fraction.

We can now investigate the distribution of points which satisfy constraints on the
Higgs boson mass and the DM relic density, figure 4.7. Points with high likelihood
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(a) (b)

Figure 4.6: Neutralino composition. Panel (a) shows the higgsino content vs. the neu-
tralino mass while panel (b) shows the bino fraction. The colour coding corresponds to
the likelihood of these points.

are smoothly distributed within the observed relic density and Higgs boson mass range.
However there is a higher concentration of points corresponding to Higgs boson masses
above 122 GeV, indicating that a Higgs boson mass of the NUHM2 model which is
around the expected SM Higgs boson mass is in principle a better match to the particle
physics constraints in such scenarios.

Figure 4.7: Neutralino relic density vs. the mass of the lightest Higgs boson. Same
colour code as in figure 4.6.

Relaxing the constraint on the DM relic density and allowing neutralinos to constitute
only a fraction of the total DM density does not change the above features. The main
effect in fact is to allow lower values of µ, since a lighter higgsino LSP is characterized
by a higher annihilation cross section and then by a lower relic density. As expected the
degeneracy between the LSP and the NLSP, mainly chargino, is still present and larger
values of the Higgs boson mass still give a higher likelihood. Figure 4.8 summarizes the
characteristics of this scan with relaxing constraint on Ωχ0

1
h2.
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(a) (b)

(c) (d)

Figure 4.8: Characteristics of the scan with low relic densities allowed. Panels (a, b)
show the (µ,mA0) plane with either the total likelihood of the points or the corresponding
LSP relic density as colour code. Panel (c) shows the higgsino fraction and panel (d)
present the neutralino relic density vs. the mass of the lightest Higgs boson where the
colour coding corresponds to the likelihood of the points.

We now look at the study of inflaton candidates in the framework of this supersym-
metric model.

4.3 Supersymmetric inflaton

The primordial inflation must explain the seed perturbations for the CMB radiation,
and after the end of inflation the coherent oscillations of the inflaton must excite SM
quarks and leptons at temperatures sufficiently high to realize baryons and DM in the
current Universe [223, 224]. In this respect, it is vital that the last phase of primordial
inflation must end in a vacuum of BSM physics which can solely excite the relevant
degrees of freedom required for the success of BBN, see [225] for a review.
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Inflation needs a potential which remains sufficiently flat along which the slow-roll
inflation can take place in order to generate the observed temperature anisotropy in the
CMB. Low scale SUSY not only provides a DM candidate and a testable framework for
BSM physics, but also guarantees the flatness of such flat directions at a perturbative
and a non-perturbative level (for a review see [226]).

The flat directions of the MSSM provide nearly 300 gauge-invariant F -and D-flat
directions [227, 228], which are all charged under the SM gauge group. Out of these

flat directions, there are particularly 2 D-flat directions, ũd̃d̃ and L̃L̃ẽ, which carry SM
charges and can be ideal inflaton candidates [229, 230, 231]. Here ũ and d̃ correspond to

the right handed squarks, L̃ corresponds to the left handed sleptons, and ẽ corresponds
to the right handed charged sleptons. Both the inflaton candidates provide an inflection
point in their respective potentials where inflation can be driven for sufficiently large
e-foldings of inflation to explain the current Universe and explain the seed perturbations
for the temperature anisotropy in the CMB.

The inflaton in this case only decays into the MSSM degrees of freedom which ther-
malize the Universe with a temperature TR ∼ 108 GeV [232]. This temperature is
sufficient to excite the degrees of freedom which are needed for the LSP to get a relic
density that matches observations. It is then natural to ask whether there exists any
parameter space, where both successful inflation and thermal DM abundance can be
explained simultaneously [233, 234].

Since in our case the inflaton candidates are gauge invariant, by using the RGEs at
one loop level one can evaluate the mass of the inflaton mφ from the scale of inflation
to the scale of LHC. This eventually will enable us to relate the inflaton mass with the
DM parameter space and the lightest CP-even Higgs boson mass.

4.3.1 Inflaton candidates : flat directions of squarks and slep-
tons

In references [229, 230, 233, 234] it was shown that the two D-flat directions ũd̃d̃ and

L̃L̃ẽ can be the ideal inflaton candidates, because both flat directions are lifted (they are
approximately flat) by higher order superpotential terms of the following form3 which
would provide non-vanishing A-term in the potential even at large VEVs 4:

W ⊃ λ

6

Φ6

m3
P l

, (4.7)

3Note that to simplify a number of following equations we use the reduced Planck mass mPl =
MPl/

√
8π.

4Note that the R-parity is still conserved, both the superpotential terms udd and LLe do not appear
at the renormalizable level, they are instead lifted by non-renormalizable operators. Further note that
both the operators vanish in the vacuum which is shown at φ = 0 in figure 4.9.
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Figure 4.9: A schematic drawing of inflationary potential for either ũd̃d̃ or L̃L̃ẽ as shown
in eq. 4.9. Inflation happens near the inflection point point as shown by φinflation = φ0.
Inflation ends at the point of enhanced gauge symmetry, where the entire (MS)SM gauge
symmetry is recovered. The physical mass and couplings at high scale φ0 and φLHC are
related via RGEs described by eqs. 4.18 and 4.19.

where λ ∼ O(1) 5. The scalar component of the Φ superfield, denoted by φ, is given by6

φ =
ũ+ d̃+ d̃√

3
, φ =

L̃+ L̃+ ẽ√
3

, (4.8)

for the ũd̃d̃ and L̃L̃ẽ flat directions respectively. After minimizing the potential along
the angular direction θ (Φ = φeiθ), we can determine the real part of φ by rotating it to
the corresponding angles θmin. The scalar potential is then found to be [229, 230]

V (φ) =
1

2
m2
φ φ

2 − A
λφ6

6m3
P l

+ λ2
φ10

m6
P l

, (4.9)

where mφ and A are the soft breaking mass and the A-term respectively (A is a positive
quantity since its phase is absorbed by a redefinition of θ during the process). The

masses for L̃L̃ẽ and ũd̃d̃ are given by:

m2
φ
L̃L̃ẽ

=
m2
L̃
+m2

L̃
+m2

ẽ

3
,

m2
φ
ũd̃d̃

=
m2
ũ +m2

d̃
+m2

d̃

3
.

(4.10)

5 The exact value of λ is irrelevant for the CMB analysis, as it does not modify the CMB predictions.
However it is possible to extract its value by integrating out the heavy degrees of freedom. If the origin
of these operators arise from either SU(5) or SO(10), then the typical value is of order λ ∼ O(10−2)
for SO(10) and λ ∼ O(1) for SU(5), as shown in [233].

6The representations for the flat directions are given by: ũαi = 1√
3
φ , d̃βj = 1√

3
φ , d̃γk = 1√

3
φ. Here

1 ≤ α, β, γ ≤ 3 are colour indices, and 1 ≤ i, j, k ≤ 3 denote the quark families. The flatness constraints
require that α 6= β 6= γ and j 6= k.
In the case of sleptons we have L̃i =

1√
3

(
0

φ

)
, L̃j = 1√

3

(
φ
0

)
, ẽk = 1√

3
φ , where 1 ≤ i, j, k ≤ 3 denote

the lepton families. The flatness constraints require that i 6= j 6= k. Note that the cosmological
perturbations do not care which combination arises, as gravity couples universally.
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These masses are now VEV dependent, i.e. m2(φ). The inflationary perturbations will
be able to constrain the inflaton mass only at the scale of inflation, i.e. φ0, while LHC will
be able to constrain the masses at the LHC scale. However both the physical quantities
are related to each other via RGEs as we will discuss below. For

A2

40m2
φ

≡ 1− 4α2, (4.11)

where α2 ≪ 1 7, there exists a point of inflection (φ0) in V (φ), where

φ4
0 =

mφm
3
P l

λ
√
10

+O(α2),

V ′′(φ0) = 0,

V (φ0) =
4

15
m2
φφ

2
0 +O(α2),

V ′(φ0) = 4α2m2
φφ0 +O(α4),

V ′′′(φ0) = 32
m2
φ

φ0

+O(α2).

(4.12)

From now on we only keep the leading order terms in all expressions. Note that
inflation occurs within an interval8

|φ− φ0| ∼
φ3
0

60m2
P l

, (4.13)

in the vicinity of the point of inflection, within which the slow roll parameters ǫφ and
ηφ given in eq. 2.49 are smaller than 1. The Hubble expansion rate during inflation is
given by

Hinf ≃
2√
45

mφφ0

mP l

. (4.14)

In order to obtain the flat potential, it is crucial that the A(φ0)-term ought to be close
to mφ(φ0) in the above potential eq. 4.9. This can be obtained within two particular
scenarios : Gravity Mediation [146] and Split SUSY, where the scale of SUSY is high
and sfermions are very heavy [238].

Keeping low scale and high scale SUSY breaking scenarios in mind here we will
consider a large range of (mφ, φ0) to match the cosmological observations.
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(a) (b)

Figure 4.10: (φ0,mφ) plane in which inflation is in agreement with the cosmological
observations of the temperature anisotropy of the CMB fluctuations. The blue regions
show the inflaton energy scale and inflaton mass which are compatible with the central
value of the amplitude of the seed perturbations and the allowed range of spectral tilt.
For panel (a) we have δH = 1.91× 10−5 and 0.934 ≤ ns ≤ 0.988 at 2σ [209]. The panel
(b), taken from [239], use post-Planck results : δH = 1.87×10−5 and ns = 0.9603±0.0073
at 1σ. Note that we restricted ourselves to inflaton VEVs φ0 below the GUT scale.

4.3.2 Gaussian fluctuations and tensor to scalar ratio

The above potential eq. 4.9 has been studied extensively in [230, 240, 241]. The ampli-
tude of density perturbations δH and the scalar spectral index ns are given respectively
by :

δH =
8√
5π

mφmP l

φ2
0

1

∆2
sin2

[
NCOBE

√
∆2
]
, (4.15)

and
ns = 1− 4

√
∆2 cot

[
NCOBE

√
∆2
]
, (4.16)

where

∆2 ≡ 900α2N−2
COBE

(
mP l

φ0

)4

. (4.17)

7The value of α during inflation could be small, i.e. α ∼ 10−10, but it runs dynamically from the
GUT scale where A2 = 40m2

φ to the required value at scale of inflation via RGEs. For a detailed
discussion see [234].

8For a low scale inflation, setting the initial condition is always challenging. However in the case of
a MSSM or string theory landscape where there are many false vacua at high and high scales, then it is
conceivable that earlier phases of inflation could have occurred in those false vacua. This large vacuum
energy could lift the flat direction condensate either via quantum fluctuations [235], however see also
the challenges posed by the quantum fluctuations [236], or via classical initial condition which happens
at the level of background without any problem, see [237].
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In the above, NCOBE is the number of e-foldings between the time when the obser-
vationally relevant perturbations are generated till the end of inflation and follows :
NCOBE ≃ 66.9 + (1/4)ln(V (φ0)/m

4
P l) ∼ 50. Since the perturbations are due to a single

field, one does not expect large non-gaussianity from this model (fNL ≤ 1, see [242]).
Panel (a) of figure 4.10 shows the exploration of a wide range of the inflaton mass,

mφ, where inflation can explain the observed temperature anisotropy in the CMB with
the right amplitude, δH = 1.91 × 10−5, and the tilt in the power spectrum, 0.934 ≤
ns ≤ 0.988 [209]. This figure represents the inflation energy scale versus the mass of the
inflaton. The configurations which fit the observed values of δH and ns are shown in
blue. The main effect of last release of the results from the Planck collaboration [95] is
a narrowing of this blue region because of the much more precise measurement of ns as
can be shown in panel (b) of figure 4.10, taken from [239]9. Although we have restricted
ourselves to VEV values below the GUT scale, the model does provide negligible running
in the tilt which is well within the observed limit.

Here we have allowed for a wide range of mφ and φ0 values because ultimately we
want to show that inflation can happen within low-scale SUSY scenarios from high-scale
SUSY breaking soft masses as in the split-SUSY scenario [238].

Here we mostly consider scenarios where the scale of inflation is low enough that one
would not expect any observed tensor perturbations in any future CMB experiments.
To obtain large observable tensor to scalar ratio r one would have to embed these
inflaton candidates within N = 1 supergravity. This would modify the potential with
a large vacuum energy density besides providing supergravity corrections to mass and
A-term [243, 244]. One could then obtain r ∼ 0.05 for both inflaton flat directions: ũd̃d̃

and L̃L̃ẽ as shown in [244] which then could be probed by the Planck experiment [95].

4.3.3 Renormalization Group Equations

Since the inflaton carries SM charges and they are fully embedded within the MSSM,
it is possible to probe various regions of the parameter space for inflation. The CMB
fluctuations probe the inflaton potential at the inflationary scale. At low energies the
inflaton properties can be probed by the LHC from the masses of the squarks and
sleptons.

The inflaton mass and the non-renormalizable A term in the inflationary potential
are both scale dependent quantities, and they can be tracked down to lower energies by
using the RGEs. In [230, 233, 234], it was shown that the RGEs at one loop level for

the relevant flat direction are, for ũd̃d̃ :

µ̂
dm2

φ

dµ̂
= − 1

6π2
(4M2

3 g
2
3 +

2

5
M2

1 g
2
1),

µ̂
dA

dµ̂
= − 1

4π2
(
16

3
M3g

2
3 +

8

5
M1g

2
1).

(4.18)

9Note that the scales on this plot are not the same than in the previous one. Nevertheless this
representation looks always the same at any scale if we use fixed cosmological constraints.
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where µ̂ = µ̂0 = φ0 is the VEV at which inflation occurs. We have for L̃L̃ẽ :

µ̂
dm2

φ

dµ̂
= − 1

6π2
(
3

2
M2

2 g
2
2 +

9

10
M2

1 g
2
1),

µ̂
dA

dµ̂
= − 1

4π2
(
3

2
M2g

2
2 +

9

5
M1g

2
1).

(4.19)

M1, M2 and M3 are equal to m1/2 at the unification scale. To solve these equations, one
needs to take into account the running of the gaugino masses and coupling constants
as given in [146]. So every point in the (m0,m1/2) plane can now be mapped onto the
(φ0,mφ) plane.

4.3.4 Indirect detection of the inflaton at LHC

(a) (b)

Figure 4.11: (φ0,mφ) plane for L̃L̃ẽ (a) and ũd̃d̃ (b) flat direction inflatons respectively,
where tan β = 10, A0 = −2m0 and µ = mA0 = 1 TeV. The green region is the region
where mh0 can go up to 125.5 GeV while the blue region corresponds to mh0 ≤ 125 GeV.
In the same way the yellow region is characterized by mh0 ≤ 124.5 GeV. Black, red and
violet lines correspond respectively to mh0 = 124.5, 125, 125.5 GeV and simultaneously
a DM abundance in the range 0.1088 < Ωχ0

1
h2 < 0.1158.

In the previous section we have verified the validity of our benchmark points and
could measure how fine-tuned they are with respect to other configurations. In particu-
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lar, we have seen that scenarios with large scalar masses m0 require small values of tan β
in order not to exceed the upper limit on the Higgs boson mass and lead to scenarios in
which the neutralino has generally a non-negligible higgsino fraction.

We can now determine the inflation energy scale and mass of the inflaton for these
benchmark points. We will follow a similar approach as in [234] in order to estimate the
inflaton mass which is compatible with the temperature anisotropy of the CMB data.

4.3.4.1 Inflaton mass for benchmark points

In figure 4.11 the regions of figure 4.1a are mapped onto the (φ0,mφ) plane. Panel (a)

is for the L̃L̃ẽ case and panel (b) is for the ũd̃d̃ case. The red lines show regions where
both the right DM abundance and a Higgs boson mass of 125 GeV are obtained, which
corresponds to the four benchmark points ‘a’, ‘b’, ‘c’ and ‘d’. The grey shaded region
shows where the NUHM2 inflation can explain the CMB observations fromWMAP. From
these figures we see that in the case of a mh0 = 125 GeV Higgs boson mass, inflation
should happen around φ0 ≈ (4.8− 6.8)× 1014 GeV for the ‘a’ and ‘c’ benchmark points,
yielding mφ

L̃L̃ẽ
≈ 1.9 TeV and mφ

ũd̃d̃
≈ 2.2 TeV. Another two possibilities correspond

to the benchmark points ‘b’ and ‘d’. For ‘b’ point we have inflation happening in a
range of φ0 ≈ (5.7 − 8) × 1014 GeV with mφ

L̃L̃ẽ
≈ 2.7 TeV and mφ

ũd̃d̃
≈ 2.9 TeV and

similarly for ‘d’ we have range of φ0 ≈ (6 − 8.1) × 1014 GeV with mφ
L̃L̃ẽ

≈ 2.9 TeV
and mφ

ũd̃d̃
≈ 3.1 TeV. From the cosmological point of view, the heavier Higgs boson is,

the more of the parameter space for inflation which become compatible with the CMB
observations we have. In general for the ũd̃d̃ inflaton, we have a larger running than in
the L̃L̃ẽ case, essentially because of the running of g3. However, it is hard to appreciate
this running visibly by comparing panel (a) and (b) of figure 4.11, because of the large
range of mφ we have plotted.

4.3.4.2 LHC predictions and Inflaton mass

Our previous scans of the NUHM2 parameter space have selected neutralinos with a high
higgsino fraction when the neutralino mass falls within the 0.6 and 1.2 TeV range. It is
now interesting to check the prediction for the stop mass depending on the inflaton mass
at TeV scale, see figure 4.12. We find that in both inflation scenarios, the inflaton mass
is above 500 GeV and is associated with a very massive stop. For the ũd̃d̃ combination,
the lightest stop mass is constrained to be within mφ > mt̃1 > mφ/3. Scenarios with the
lightest stops (namely mt̃1 . 2 TeV) may offer a chance to probe the NUHM2 parameter
space and thus a mean to determine the inflaton mass.

Such predictions can also depend on other parameters, such as the stau mass, see
figure 4.13. The prediction differs depending on whether the inflaton correspond to
the ũd̃d̃ or L̃L̃ẽ inflation mechanism. For the L̃L̃ẽ case shown in the panel (a) of
figure 4.13, one finds that scenarios with light inflaton ( i.e. with a mass lower than
2 TeV) correspond to staus lighter than 2 TeV and stops lighter than 2-3 TeV. More
generally there is a relation between the inflaton and the stau masses, whatever the value
of the stop mass. This correlation between the stau and the L̃L̃ẽ inflaton mass can be
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(a) (b)

Figure 4.12: The lightest stop mass mt̃1 versus the inflaton masses for L̃L̃ẽ (a) and

ũd̃d̃ (b), see eq. 4.10. Same colour code as in figure 4.6.

understood because the inflaton is of leptonic origin. Similarly, for the ũd̃d̃ case plotted
in the panel (b) of figure 4.13, the inflaton mass is related to the stop mass but there is
no constraint on the stau. Although such a feature can be easily understood given the
nature of the inflaton, using LHC observables and searches for sparticles could provide
a way to distinguish between the ũd̃d̃ and L̃L̃ẽ scenarios. In addition, we find that staus
in both scenarios can be lighter than 1 TeV, thus offering another possible window for
probing this model at LHC. Discovering a relatively light stau at LHC together with
a specific stop mass would constrain the parameters of the model and thus provide a
determination of the inflaton mass.

(a) (b)

Figure 4.13: The correlation between stau mass mτ̃1 and stop mass mt̃1 . The colour

coding corresponds to the inflaton masses for L̃L̃ẽ (a) and ũd̃d̃ (b).

Specific observables such as B(B0
s → µ+µ−) and B(B̄0 → Xsγ) are also interesting

to consider. In particular, in figure 4.14, one can see that most of the scenarios which fall
within the observed range of the b→ sγ decay rate lead to a relatively large Bs → µ+µ−
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branching ratio, basically within 3×10−9 and 4.5×10−9. Some scenarios are nevertheless
excluded ( i.e. with a contribution larger than 4.5 × 10−9) and the latest LHCb results
[245] exclude now the predictions B(B0

s → µ+µ−) < 2× 10−9. This provides additional
scope for detecting such scenarios at LHC since most scenarios are within the sensitivity
of the LHCb experiment.

Figure 4.14: The branching ratios of Bs → µ+µ− and b → sγ are shown with the
colour coding corresponding to the likelihood. The shaded region shows points within
b→ sγ experimental and theoretical error bars.

Finally, for completeness, we display the expected SI elastic scattering cross section
associated with these scenarios in a Xenon-based experiment. We superimpose on this
plot the limits obtained by the XENON100 experiment in 2011 [246] as well as the
improvements obtained in 2012 [170] which are extremely robust regarding the relative
scintillation efficiency Leff at this mass scale10 [249]. We also represent the predicted
limit for the XENON1T experiment.

As one can see, most of the scenarios presented in this chapter regarding NUHM2 are
well below the limit set by the 2011 data of the XENON100 experiment. Nevertheless
the 2012 data already probe the allowed parameter space quite significantly, especially
for LSP masses below 800 GeV. The projected sensitivity for XENON1T indicates that
it may be possible to probe the whole NUHM2 parameters in the future if not already
ruled out by the LHC.

4.4 Conclusions

In this study we have identified the regions of the NUHM2 parameter space which are
compatible with the observed DM abundance (assuming that the neutralino is the DM
candidate), the Higgs boson mass constraints from LHC, and the constraints set on the
inflationary potential to match the CMB constraints.

We have considered two inflaton candidates (ũd̃d̃ and L̃L̃ẽ) for which the high scale of
inflation φ0 is intimately tied up to the low scale physics at the LHC scale via the RGEs,

10Even though it may be affected by astrophysical uncertainties, see [247, 248] and uncertainties on
quark coefficients of the nucleon that were taken as the default values in micrOMEGAs.
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Figure 4.15: The expected and observed limits from Xenon-based experiments and the
allowed NUHM2 parameter space in the plan neutralino SI cross section vs. neutralino
mass.

and which are compatible with the amplitude of the perturbations, δH = 1.91 × 10−5

and the 2σ tilt in the power spectrum 0.934 ≤ ns ≤ 0.988.
We used two methods. One consists in finding benchmark points and the other one

in performing a more complete scan of the parameter space by using a MCMC code. Our
main conclusion is that for most configurations the neutralino DM is mainly higgsino-like
and nearly degenerate with an NLSP chargino. The ũd̃d̃ inflaton appears to be fairly
light but still heavier than 1 TeV while the L̃L̃ẽ inflaton can be as light as 500 GeV. In
both cases however it is possible to find configurations in which both the staus and the
stops are potentially within the reach of the LHC, thus indicating that sparticle searches
at LHC could actually provide a mean to constrain the inflaton mass for some subset
of the NUHM2 parameter space. These NUHM2 scenarios will have to be confronted to
new measurements of the branching ratios B(B0

s → µ+µ−) and B(B̄0 → Xsγ). Finally
LHC constraints or potential hints could be enhanced by the results of the forthcoming
DM Direct Detection experiments such as the XENON1T experiment.

As can be seen from figure 4.11, hints of a TeV scale inflaton together with the
precise measurement of the Higgs boson mass would actually narrow down the scale of
inflation. Combined with the Planck satellite precise measurements, one should actually
be able to pinpoint both the scale of inflation φ0 and the corresponding mass mφ at the
scale of inflation, thus providing a window on extremely high energy physics which also
complements the current observations from the CMB radiation.
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This chapter is mostly based on the article [250] with slight modifications on the
MCMC study and additional details.

5.1 Introduction

As described in section 3.5.1.2, despite some drawbacks the ID of DM can be used as
a powerful tool to probe DM scenarios. This is what we will analyse in this chapter.
For instance, the Fermi-LAT collaboration has been able to set stringent limits on the
DM pair annihilation cross section into SM particles using the diffuse γ-ray emission in
dwarf Spheroidal (dSph) galaxies [251] and also in the Milky Way [252, 253]. It has ruled
out DM candidates with a total annihilation cross section of 〈σv〉 = 3× 10−26 cm3/s if
mDM . 30 GeV. This constituted a remarkable milestone as such a value corresponds to
the one suggested by the thermal freeze-out scenario, which is generally considered as a
strong argument in favour of WIMPs.

These limits nevertheless weaken at higher DM masses, therefore allowing for heavier
DM candidates with a larger pair annihilation cross section. For example, for mDM =
100 GeV the limit relaxes to 〈σv〉 . 10−25 cm3/s while for mDM = 500 GeV, it reads
〈σv〉 . 3× 10−25 cm3/s, which is one order of magnitude higher than the thermal cross
section.

Discovering such a configuration with large values of the pair annihilation cross sec-
tion would invalidate the thermal freeze-out model and either point towards the existence
of non-thermal processes in the early Universe or potentially call for mechanisms such
as freeze-in and regeneration. Explaining the observed DM relic density may remain
nevertheless challenging. For example, in [165], it was shown that candidates with a to-
tal annihilation cross section exceeding 〈σv〉 = 10−24 cm3/s (corresponding to a thermal
relic density smaller than 3%) would be ruled out by the Fermi-LAT experiment if they
were regenerated at 100%.

The measurement of the galactic p̄ flux presented by the Pamela collaboration [254,
255] is an interesting tool to probe DM. While extensive work was done to explain the
electron/positron excesses in terms of DM annihilations (or decays), the implications of
the absence of anomalies in the p̄ spectrum has remained relatively unexploited. Indeed
only a relatively small number of works [256, 257, 258, 259, 260, 261, 262] have dealt
with it and shown that large DM annihilation cross sections can be constrained by the
Pamela data.

In this chapter we will see a more systematic analysis of these general anti-proton
constraints on the DM annihilation cross section, including paying attention to the
uncertainties associated with DM and astrophysical predictions, which will demonstrate
that these measurements can actually constrain the properties of specific DM scenarios.
To illustrate this, we will work within a simplified version of the pMSSM [263] in which
all sfermion masses are set to 2 TeV, except for the stop and sbottom masses. The soft
masses for the stop are allowed to be much lighter to obtain a Higgs boson mass around
125 GeV. In this scenario the only particles with masses below the TeV threshold are
therefore the neutralino, chargino, the supersymmetric Higgs bosons and the lightest
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stop and sbottom. Such a configuration with a large mass splitting between gauginos
and sfermions may actually seem unusual from a supersymmetric point of view (albeit
close to split SUSY [264]) but it is supported by the unfruitful searches for squarks and
gluinos at LHC.

We will investigate scenarios where the neutralino pair annihilation cross section into
W+W− gauge bosons is enhanced (due in particular to the chargino exchange diagram).
Such a large annihilation cross section gives both a significant anti-proton and diffuse
gamma ray flux, together with a gamma ray line, and is therefore potentially constrained
by the Pamela and Fermi-LAT data. In the pMSSM, where non-universality for the
gaugino masses can be assumed, such an enhancement is realized when the LSP neu-
tralino is mass degenerated with the chargino, i.e. when the neutralino has a significant
wino component. Assuming total regeneration of the neutralino DM, the combination of
both Fermi-LAT and Pamela data is therefore expected to constrain the wino fraction
of the LSP. Note that constraints on the neutralino composition are also expected to
be obtained in presence of a lower sfermion mass spectrum. However the effect of the
chargino-neutralino mass degeneracy on γ−ray and p̄ production would be much harder
to characterize. Hence our choice in favour of a heavy sfermion mass spectrum.

5.2 Anti-proton and γ-ray bounds on σDM DM → W+W−

In this section we discuss how anti-proton and gamma ray data impose generic con-
straints on the DM pair annihilation cross section into W+W− as a function of the DM
mass.

5.2.1 Generic bounds on σDM DM → W+W− from p̄

W± production in space leads to abundant anti-proton production as the W±’s decay
products hadronise. The flux of anti-protons thus produced by DM annihilations into a
pair ofW± gauge bosons in the MW and collected at Earth is therefore determined by the
DM pair annihilation cross section into W+W−, the DM mass and the DM halo profile.
It also depends on the anti-proton propagation parameters which are being considered.
Here it is assumed that the DM halo profile is described by an Einasto profile (other
choices make a small difference) and the standard three sets of propagation parameters
(‘MIN’, ‘MED’, ‘MAX’), summarized in table 5.1, are considered. The anti-protons
fluxes used are given in [265].

In order to constrain the annihilation cross section, the Pamela data [255] above
an anti-proton energy of 10 GeV (to avoid the uncertainty related to solar modulation)
will be considered. Both the predicted energy spectrum and the flux depend on the
DM mass that is being assumed. For each value mDM, the sum of the astrophysical
background flux and predicted anti-protons flux originating from DM will be compared
with the Pamela data. Given the uncertainties on the astrophysical background, we
will see two different procedures to derive meaningful limits :
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Antiproton parameters

Model δ K0 [kpc2/Myr] Vconv [km/s] L [kpc]

MIN 0.85 0.0016 13.5 1

MED 0.70 0.0112 12 4

MAX 0.46 0.0765 5 15

Table 5.1: Propagation parameters for anti-protons in the galactic halo (from [266,
267]). δ and K0 are the index and the normalization of the diffusion coefficient, Vconv is
the velocity of the convective wind and L is the thickness of the diffusive cylinder.

• One can be regarded as aggressive since it assumes a fixed background. For ob-
taining the corresponding limits (referred to as fixed background in the following).
The standard flux of astrophysical (secondary) anti-protons from [268] is consid-
ered and the DM anti-protons flux is added. The result is then compared with the
Pamela data and a 95% C.L. limit is derived by imposing that the global χ2 of
the background + DM flux does not exceed by more than 4 units the χ2 of the
background only hypothesis.

• The other one is more conservative given that it considers an adjusted background
within the uncertainties. For obtaining conservative limits (hereafter referred to as
marginalized background), the standard form of the background spectrum predicted
is again considered except that now the normalisation of the background spectrum
A and the spectral index p are allowed to vary within 40% and ±0.1 respectively
(for each value of the DM mass and pair annihilation cross section into W+W−).
The standard description of the background spectrum is multiplied by a factor
A (T/T0)

p, where T is the anti-proton kinetic energy, T0 = 30 GeV is a pivot
energy with 0.6 < A < 1.4 and −0.1 < p < +0.1. This point allow to include
the uncertainty predicted in [268]. Then the DM contribution is added and the
pair of parameters A and p which minimizes the global χ2 with the Pamela data
for a point in the plane (〈σannv〉,mDM) is determined. The 95% C.L. limit is then
imposed by requiring that the marginalized global χ2 does not exceed 4 units with
respect to the null hypothesis (which has been marginalized consistently).

The latter procedure allows to increase the gap between the expected p̄ background
and the actual Pamela data which in consequence leaves more space for a possible DM
injection of anti-protons and leads to weaker limits on the DM pair annihilation cross
section.

The derived constraints are displayed in figure 5.1 for the ‘MIN’, ‘MED’ and ‘MAX’
set of parameters. As expected, the conservative limits are slightly less constraining
than the aggressive ones. The choice of propagation parameters has also a big impact
on the type of constraints that can be set : in terms of cross sections, the difference
between the ‘MIN’ and ‘MAX’ limits exceeds a factor 10.
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Figure 5.1: Anti-proton constraints on DM annihilation into W+W−, respectively for
the ‘MIN’ (a), ‘MED’ (b) and ‘MAX’ (c) propagation parameters. The constraints ob-
tained by the Fermi-LAT collaboration from satellite dwarf galaxies are superimposed.
Five benchmark points are also displayed.

To understand more precisely how these constraints work, 5 benchmark points are de-
fined (hereafter referred to as ‘A’,‘B’,‘C’,‘D’,‘E’), corresponding to different DM masses,
cross sections, propagation parameters and constraint procedures. The corresponding
fluxes are plotted in figure 5.2. As can be seen, benchmark points ‘A’ to ‘D’ correspond
to borderline scenarios where the total p̄ flux (i.e. the sum of the expected flux from DM
and astrophysical background) is not significantly exceeding the data. Point ‘E’, on the
other hand, displays how badly the data is violated inside the excluded region.

The first apparent feature from figure 5.2 is that one can actually exclude a small
excess in anti-protons produced by relatively light DM particles because the Pamela

data set have very small error bars at energies below 100 GeV, hence the strength of the
constraints. It is then instructive to compare case ‘A’ and ‘B’ : these two scenarios refer
to the same DM mass and constraint procedure; they also predict a very similar flux,
as can be seen in panel (a) and (b) of figure 5.2, but have a different annihilation cross
section. The latter is much larger for ‘A’ than for ‘B’. This is because the propagation
scheme was assumed to be ‘MIN’ for the former and ‘MED’ for the latter. With the
‘MIN’ propagation set, the yield of anti-protons is about one order of magnitude smaller
than with ‘MED’ (since the galactic diffusion zone is much smaller in the former case)
and therefore the constraint on the annihilation cross section is about one order of
magnitude looser than for the ‘MED’ case. On the other hand the constraint obtained
for ‘MAX’ (which is not shown here) is stronger than for ‘MED’.

The comparison between points ‘B’ and ‘C’ shows the impact of the constraint pro-
cedures. Although both ‘B’ and ‘C’ have the same DM mass and propagation scheme,
we find that the value of the annihilation cross section that is allowed for ‘C’ is larger
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Figure 5.2: Examples of the fluxes of anti-protons (astrophysical background and
DM-produced) compared with the data from the Pamela experiment for the sample
points ‘A’ to ‘E’ as defined in figure 5.1. In each panel the assumed parameters (DM
mass, annihilation cross section and propagation scheme) are reported.

than for ‘B’. The reason is that ‘C’ corresponds to the scenario in which the limit is
obtained by using the marginalized background procedure so there is more room for DM
while ‘B’ corresponds to a fixed background scenario so the associated constraints are
stronger.

Finally, the comparison between ‘C’ and ‘D’ enables one to understand why the
marginalized background constraints are rather independent of the DM mass, despite
the fact that the error bars in the Pamela data become larger at larger energies. For a
large DMmass (case ‘D’) the p̄ flux is shifted towards larger energies and rather negligible
at ∼ 10 GeV with respect to the astrophysical background; there is thus little room to
reduce the background (which alone has to fit the data at low energy) and consequently
there is little room left for a DM contribution at large energies. As a result, the bound
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remains stringent.
We will then use in the study of the pMSSM the derived limit from the marginal-

ized background procedure obtained using the ‘MED’ set of anti-protons propagation
parameters.

5.2.2 Generic bounds on σDM DM → W+W− from gamma-rays

In DM scenarios, the W± production is associated with gamma-ray emission through (i)
the decay and hadronisation of the decay products of the W± bosons, (ii) the radiation
of a photon from the internal and/or final states associated with DM DM → W+W−

(iii) DM annihilations into γγ and γZ (which can be seen as a higher order process based
on DM DM → W+W−). The first case leads to a continuum spectrum of γ-rays; the
second leads to sharp features in the γ-ray continuum spectrum and the third to γ-ray
lines. The resulting fluxes from these processes have to be compared with the gamma-
ray flux measurements from the MW or from other nearby galaxies. Therefore we now
look at the current γ-ray constraints derived in the literature (mainly from Fermi-LAT
analyses), paying particular attention to that derived from the W+W− channel since
this is the main focus of our analysis.

5.2.2.1 Continuum

The Fermi-LAT collaboration has recently published two different analyses of the con-
tinuum diffuse gamma-ray emission from the Milky Way halo [252, 253]. Since no clear
DM signal has been found, these have been used to set upper limits on the DM pair
annihilation cross-section into various channels as bb̄, gg,W+W−, e+e−, µ+µ− and τ+τ−.
However the most stringent limits on the DM annihilation cross section have actually
been obtained from another Fermi-LAT analysis based on the diffuse γ-ray emission
from dSph galaxies. These DM dominated objects indeed represent a good target for
DM searches. In the present analysis we will use the results from [251]. Figure 5.1 shows
the comparison between the dSph galaxies limits and the Pamela anti-proton bounds
that were derived in section 5.2.1. Depending on the propagation scheme that has been
chosen for the anti-protons, the dSph galaxies γ-ray bounds is somewhat more stringent
or looser than the constraints from the anti-proton data. For example, for the ‘MED’
case and marginalized background, p̄ limits become more constraining than γ-ray bounds
when mDM & 290 GeV. However they are stronger than the γ-ray limits whatever the
value of mDM (assuming mDM > 100 GeV) for the fixed background procedure. Since
nevertheless the p̄ and γ-ray limits are basically of the same order of magnitude, we will
include both constraints in our study.

5.2.2.2 Internal bremsstrahlung and final state radiation

Gamma rays produced directly as radiation from an internal line or a final state are
in general suppressed by the fine structure constant α

em
. However, for a t-channel

diagram, the associated cross section can be enhanced when the intermediate particle
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is almost mass degenerated with the DM. Typically the enhancement factor is about
m2

DM/(M
2
I −m2

DM) whereMI is the mass of the intermediate particle ( i.e. a chargino for
neutralino pair annihilation into a W± pair). These processes are model dependent and
cannot be constrained generically but they will be included in our γ-ray estimates when
we investigate the neutralino pair annihilations intoW+W− in the pMSSM. Section 5.4.2
will be dedicated to the study of their impact on the pMSSM scenarios considered.

5.2.2.3 Line(s)

Annihilations directly into γγ or γZ occur at one-loop level (since DM particles do
not couple directly to photons) and are therefore generically suppressed. However they
lead to a distinctive signature, namely a mono-energetic gamma-ray line at an energy
E = mDM or E = mDM (1 −M2

Z/(4m
2
DM)) which can be looked for. Since the purpose

of this study is to set constraints on the DM properties we will disregard the possible
evidences for two gamma-ray lines at 129 and 111 GeV. We only consider the constraints
which were reported by the Fermi-LAT collaboration on line searches in the MW [253].
Since the status of these searches is not definite, we made the choice to not include
these constraints to perform the scans over the pMSSM parameter space. However we
do check that the scenarios which survive the p̄ and γ-ray constraints are not killed by
these line searches.

5.3 Chargino-neutralino mass degeneracy

Now that we have obtained the maximal value of the DM pair annihilation cross section
into W+W− that is observationally allowed as a function of the DM mass, we can focus
on the pMSSM and investigate the impact of this generic limit on the neutralino DM
parameter space.

5.3.1 Neutralino pair annihilations into W+W−

In a scenario where all the sfermions are very heavy, the dominant neutralino annihila-
tion channels are expected to be mostly into gauge bosons, more specifically intoW+W−

pairs. All loop-inducedW± production diagrams which involve sfermions are expected to
be suppressed. Hence the processes which are expected to lead to a significant W+W−

production in the pMSSM only involve charginos and Z boson. The corresponding
diagrams are displayed in figure 5.3. Since they correspond to s− and t−channel di-
agrams, we typically expect resonant or enhanced annihilations when mχ0

1
∼ MZ/2 or

mχ0
1
∼ mχ±

1
( i.e. when the neutralino and chargino are mass degenerated). These ulti-

mately enhance the neutralino pair annihilations into γγ [269, 270] and γZ [270, 271]
through in particular the box diagram displayed in figure 5.3c.

The questions that we want to address in the next subsections are : i) which part
of the SUSY parameter space is excluded by the p̄ limits and do these limits exclude
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Figure 5.3: Dominant neutralino pair annihilation diagrams into W+W−, γ γ and γ Z
for this analysis, with i, j ∈ {1, 2}.

more allowed configurations than the γ-rays bounds ? ii) which values of the neutralino-
chargino mass degeneracy are actually constrained by astrophysical data ?

5.3.2 Exploring the supersymmetric parameter space

To answer this, we explore the pMSSM parameter space using the same approach based
on MCMC as in chapter 4.

Our free parameters and their corresponding range are summarized in table 5.2.
These include the soft mass terms associated with the squarks of the third generation
( i.e. here mQ̃3

and mũ3) and the trilinear coupling At. To obtain sfermion masses at
the TeV scale, we set all the soft masses to 2 TeV. In addition, we set the other trilinear
couplings to 0 TeV and the CP-odd Higgs boson mass to 2 TeV. In this framework,
the bino mass M1 does not exceed 500 GeV; our choice for the other parameters indeed
ensures that the neutralinos and charginos are light and the mass splitting between the
neutralinos and charginos remains relatively small.

On top of these free parameters, we had to include some nuisance parameters over
which we will marginalize [272]. These are related in particular to the quark content of
the nucleons (since they have a non-negligible impact on the computation of the DM-
nucleon scattering cross section as explained in section 3.5.1.1 with the corresponding
values in table 3.2) and the top quark mass [211] (since it has an impact on the Higgs
sector). All of them are allowed to vary in the range [Nexp -3σerr, Nexp +3σerr], with Nexp

(σerr) the corresponding value (error) as shown in table 5.2. The same scanning method
is used for both nuisance and free parameters; the multidimensional parameter space of
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Free parameter Range Nuisance parameter Range

M1 [10, 500] GeV mu/md [0.424,0.682]

M2 [100, 1000] GeV ms/md [16.5,21.3]

µ [-2000, 2000] GeV σπN [29,59] MeV

tan β [2, 75] σs [0,42] MeV

mQ̃3
,mũ3 [100, 3000] GeV mt [170.5,175.9] GeV

At [-8000, 8000] GeV

Table 5.2: Range chosen for the pMSSM free parameters and nuisance parameters.

the model is then

{M1,M2, µ, tan β,mQ̃3
,mũ3 , At,mu/md,ms/md, σπN , σs,mt}.

A slight difference with respect to the free parameters is that we will define a likelihood
function for the nuisance parameters since we want to vary their values strictly around
their bounds at 1σ.

We also require that the lightest Higgs boson mass only varies within the range
allowed by the ATLAS and CMS experiments in july 2012 [3, 2] plus a small theoretical
error of 1 GeV, namely mh0 = 125.9 ± 2.0 GeV. Nevertheless note that the theoretical
uncertainty on the calculation of the lighter scalar Higgs boson in the MSSM can reach
5 GeV as shown in [273]. By precaution, we checked that the scenarios which seemed
allowed were compatible with the HiggsBounds-3.8.0 code [274, 275] (even though the
most recent LHC results on the Higgs boson [3, 2] are not included in this version). Note
that we did not add any requirement about the Higgs boson signal strength to perform
the scans.

The neutralino relic density Ωχ0
1
h2 is allowed to vary in [1% WMAP7, WMAP7] with

ΩWMAP7h
2 = 0.1123±0.0035, using WMAP 7-year + BAO +H0 and the RECFAST 1.4.2

code [209]. We do not consider smaller values of the relic density as these correspond
to DM scenarios with very large values of the annihilation cross section and ultimately
overproduce gamma-rays in the galaxy ( i.e. are excluded) if their relic density is entirely
regenerated, see [165].

We did not implement LHC limits on sfermion masses because our requirement of
a sfermion spectrum at the TeV scale should ensure that they are satisfied. However
updates on direct searches for relatively light stop and sbottom would be useful to
implement to further constrain the parameter space.

For each scenario (corresponding to a point in the pMSSM parameter space), we
then calculate the total likelihood function as in chapter 4. The likelihood functions
associated with each observable and nuisance parameter are defined as follows :
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• To mh0 , Ωχ0
1
h2 and all nuisance parameters, we associate the likelihood function

L1 defined in eq. 4.4. The tolerance σ concerning the nuisance parameters is equal
to σerr/10 to prevent too large deviation especially for the strange quark content
of the nucleon σs which has a large uncertainty.

• As in chapter 4, we use the Gaussian likelihood function L2 defined in eq. 4.5
for the B(B̄0 → Xsγ) observable. This observable is important as it receives a
potentially large contribution from chargino/stop loops when either one of these
particles is light. This contribution can be compensated by the charged Higgs/top
diagram but the latter is however suppressed when the charged Higgs mass is at
the TeV scale.

• We also include the likelihood function L3 defined in eq. 4.6 for the 2012 XENON100
limits [170] to ensure that the scans do not select too large values of the DM-nucleon
scattering cross section. In fact we also associate L3 to regions of the parameter
space where σvχ0

1χ
0
1→W+W− is greater than 10−27 cm3/s to render the scan more

efficient. As in chapter 4 we note that some experimental measurements are very
discrepant with the SM expectations as the example of δaµ. These observables
receive additional contributions from particles in the pMSSM but they are too
small to explain the observations. Therefore we associate L3 to them so that the
likelihood is equal to unity if the predictions are much below the measured value.

The set of constraints that we use is summarized in table 5.3.

5.4 Results

We now look at the results of the scans regarding the ID constraints.

5.4.1 Bounds on the NLSP-LSP mass splitting

The first result of the scan is shown in figure 5.4. The neutralino pair annihilation cross
section into W+W− as a function of the mass degeneracy between the neutralino LSP
and the chargino NLSP and in terms of the neutralino composition is displayed.

This figure indicates the neutralino composition which maximises the W± produc-
tion. As can be seen scenarios where σvχ0

1χ
0
1→W+W− is the largest and the neutralino-

chargino mass splitting is the smallest correspond to neutralinos with a very large wino
fraction. Large values of both σvχ0

1χ
0
1→W+W− and the χ0

1 −χ±
1 mass splitting correspond

to wino-dominated neutralinos but with a non negligible higgsino component. For these
two types of wino-dominated configurations the neutralino and chargino mass degeneracy
is small enough to make the t−channel (chargino) exchange diagram very large. As the
wino fraction decreases, the mass splitting becomes larger and the t−channel chargino
exchange diagram contribution decreases. However it remains large till the higgsino
fraction which ensures large values of the χ0

1 − χ±
1 − W∓ coupling remain significant

( i.e. dominate over the bino fraction).
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Constraint Value/Range Tolerance Likelihood

mh0 (GeV) [3, 2] [123.9, 127.9] 0.1 L1

Ωχ0
1
h2 [209] [0.001123, 0.1123] 0.0035 L1

B(B̄0 → Xsγ) × 104 3.55 exp : 0.24, 0.09 L2

[213, 218] th : 0.23

σSI
χ0
1Xe

(pb) (σN , mDM) plane -σN(mDM)/100 L3

from [170]

σvχ0
1χ

0
1→W+W− 1 0.01 L3

(10−27 cm3/s)

δaµ × 1010 [219] 28.70 -0.287 L3

B(B0
s → µ+µ−) × 109 [212] 4.5 -0.045 L3

∆ρ 0.002 -0.0001 L3

RB±→τ±ντ (
pMSSM

SM
) [220] 2.219 -2.219×10−2 L3

Z → χ0
1χ

0
1 (MeV) 1.7 -0.3 L3

σe+e−→χ0
1χ

0
2,3

1 -0.01 L3

×B(χ0
2,3 → Zχ0

1) (pb) [221]

Table 5.3: Constraints imposed in the MCMC, from [210] unless noted otherwise.

In figure 5.5 we show the pair annihilation cross section into γZ (panel (a)) and γγ
(panel (b)) as a function of the neutralino-chargino mass degeneracy ∆m = mχ±

1
−mχ0

1
.

Panel (a) shows which values of the neutralino pair annihilation cross section into γZ are
excluded by astrophysical data as a function of the neutralino-chargino mass splitting.
A similar plot is shown for γγ but the colour code now illustrates the relation between
the different values of this cross section and the neutralino thermal relic density. As
one can see the shape of the scenario distribution for γγ and γZ is essentially the same
in the (σv,∆m) plane. However the γZ cross section is approximately 10 times larger
than that for γγ for every scenario. Hence combining these two figures actually gives an
information about the relic density of the scenarios which are excluded by astrophysical
data.

In the γZ plot the points excluded by the Fermi-LAT dSph continuum γ-ray data
are displayed in yellow. Those correspond, by construction, to scenarios where there
is a very large W± production (and thus a large contribution to the continuum γ-ray
spectrum). The regions which are excluded by the Pamela data are shown in red. The
black points correspond to scenarios excluded by both the Pamela and the Fermi-LAT
data while those in green represent the points allowed by these two types of constraints.
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Figure 5.4: Plot of the neutralino pair annihilation cross section into W+W− as a
function of the chargino-neutralino mass splitting. The colour coding indicates the LSP
composition : in blue it is a wino, in green an higgsino, in red a bino and in black we
have a mixed LSP.

(a) (b)

Figure 5.5: Plots of the neutralino pair annihilation cross section into γγ (panel (a))
and into γZ (panel (b)) as a function of the chargino-neutralino mass splitting. In
panel (a) the colour coding shows the point in the pMSSM parameter space which are
not excluded by ID constraints in green and those which are excluded by Fermi-LAT
(yellow), Pamela (red) or both (black). The freeze-out relic density is displayed in
panel (b).

As one can see from the distribution of black points the largest values of the annihila-
tion cross sections into γZ (and therefore W+W−) are excluded by both measurements.
Since these scenarios correspond to a small (or relatively small) chargino-neutralino mass
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splitting and thus large values of the t−channel chargino exchange diagram, we can con-
clude that both Pamela and Fermi-LAT data are relevant to constrain wino-dominated
neutralinos. A small number of these configurations is however constrained by only one
of the Pamela or Fermi-LAT dataset but this does not affect the maximal value of the
χ0
1 − χ±

1 mass splitting that can be excluded by using astrophysical considerations.

By inspecting where the neutralino pair annihilations into γZ, γγ andW+W− are sig-
nificant in these plots, one also finds that higgsino-dominated scenarios are constrained
by both Pamela and Fermi-LAT data because diagram 5.3a still generates a large W±

production. In fact, for such an LSP, the annihilation cross section into ZZ also becomes
non-negligible compared to that into W+W−. Since the expected γ-ray and p̄ spectra
fromW± and Z production are very similar, we accounted for them both when we made
the comparison with the Pamela and Fermi-LAT data. Finally the green points which
pass all the constraints have a non-negligible bino component. This reduces the chargino
exchange diagram contribution and thus enables to decrease theW± (and therefore anti-
proton and γ-ray) production. For these bino-like configurations one expects the stop
and sbottom exchange to be relevant, leading to quarks in the final state and possibly
(in particular for bb̄) an overproduction of gamma-rays. Note however that such process
would become non-negligible especially near pseudo-scalar Higgs boson resonances for
heavy neutralinos. Since we put mA0 at 2 TeV these scenarios are not expected in this
scan.

We then see that it is not easy in the pMSSM to always get a large branching ratio
of the neutralino annihilation cross section into W±. This characteristic is depicted
in figure 5.6 where we show the neutralino pair annihilation cross section into γγ as a
function of the total annihilation cross section. For panel (a) the colour code corresponds
to the fraction of annihilation cross section into W+W− and panel (b) represents the
neutralino composition. As explained above higgsino LSP gives a non-negligible LSP
annihilation into Z bosons which then decreases the W+W− branching ratio. Note
that some scenarios are characterized by really small annihilation cross section into W±

down to 10%. These cases correspond to an LSP which is mostly bino and with a
non-negligible higgsino component. Panel (c) shows that the lower is the fraction of
annihilation cross section into W+W−, the higher is the mass splitting ∆m. Actually
there are characterized by an increasing fraction of annihilation cross section into tt̄
which becomes dominant for the largest ∆m. However this region in the parameter
space corresponds to low cross sections.

We give in figure 5.7 the forecasted SI elastic scattering cross section as a function of
the neutralino mass for a Xenon-based experiment. Again in green are the points which
are astrophysically allowed, in black the points which are excluded by both Pamela

and Fermi-LAT data and in red or yellow the points which are either excluded by
the Pamela or Fermi-LAT experiments respectively. Clearly one can see that the
combination of both the Pamela and Fermi-LAT astrophysical constraints surpass
the latest exclusion limit set by the XENON100 experiment. In fact in general the
astrophysical constraints discussed in this chapter even have a stronger exclusion power
than the forecasted XENON1T limit, illustrating how important adding astrophysical
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(a) (b)

(c)

Figure 5.6: The neutralino pair annihilation cross section into γγ as a function of the
total annihilation cross section. The colour code of panel (a) present the fraction of
annihilation cross section into W+W− whereas panel (b) has the same colour code as in
figure 5.4. Panel (c) shows the mass splitting ∆m as colour code.

knowledge is in this specific scenario.

Even though many configurations are excluded by the Pamela and Fermi-LAT
data, we do find scenarios which are neither excluded by the XENON100 2012 limit
nor by the astrophysical constraints discussed in this chapter. Hence the XENON100
experiment could still discover evidence for relatively light pMSSM neutralinos (mχ0

1
<

500 GeV) if these particles indeed exist. We note nevertheless that in [276], a constraint
as strong as the XENON100 2012 limit was obtained by using the XENON100 2011 data
and a Bayesian analysis where the full information available in the (S1, S2) scintillation
plane was exploited. It is therefore likely that the XENON100 experiment can improve
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Figure 5.7: SI DM-nucleon cross section as a function of the DM mass together with
the XENON 2012 limit. Same colour code as in figure 5.5a.

its present exclusion limit with the 2012 data and rule out some of the configurations
shown here in green. Note that the scan gives mainly LSP mass above 100 GeV because
of the requirement imposed σvχ0

1χ
0
1→W+W− > 10−27 cm3/s. Moreover the three-body

processes involving an off-shell W boson in the DM annihilation are not taken into
account in the micrOMEGAs version used in this work1. Then the diagram 5.3b does not
contribute here to the neutralino pair annihilation.

Finally, in figure 5.8, we show the annihilation cross section intoW+W− as a function
of the neutralino mass and superimpose the Pamela (for the ‘MED’ set of propagation
parameters and marginalized background, i.e. the conservative limits) and Fermi-LAT
limits (red and yellow lines respectively). The colour code indicates the different values
of the neutralino-chargino mass splitting. As can be seen from this plot, the Pamela

and Fermi-LAT constraints are actually complementary. The Fermi-LAT limit ex-
cludes more configurations below 300 GeV than the Pamela bound but it assumes that
the observations are independent of the DM energy distribution in dSph galaxies, which
can be debated [277, 278]. In contrast, the anti-proton limit excludes a bit more con-
figurations than the gamma-rays above 300 GeV. This is reassuring since it is set by
observations within the galaxy but the drawback is that it relies on a specific choice of
propagation parameters and knowledge of astrophysical sources. In any case, the fact
that both limits exclude similar configurations enables us to validate the exclusion region
that we found.

Hence the main information that one can read from this plot, combined with that
displayed in figures 5.4 and 5.5, is that :

• one can rule out neutralino-chargino mass splitting up to ∼ 13 GeV if mχ0
1
. 150

GeV and the neutralino is at 80% a mixture of wino and higgsino;

1Note that the latest micrOMEGAs version [94] allows to include three- and four-body final states
involving one or two off-shell W or Z gauge bosons in the DM observable calculations.
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Figure 5.8: Annihilation cross section into W+W− as a function of the neutralino DM
mass. The chargino NLSP-neutralino LSP mass splitting is shown as colour code.

• one can exclude all scenarios in which the 80% wino LSP-chargino mass difference
is smaller than 0.25 GeV for mχ0

1
< 500 GeV, thanks to both Pamela and Fermi-

LAT data.

5.4.2 Final state radiation in the pMSSM

We also analysed the impact of final state radiations on γ-ray constraints. Indeed, in
principle, the regime of quasi-degeneracy is the one where it can be most important [279]
and, since we decided to only use the constraints from [251], it is important to check
that it is a good choice. We explicitly computed using the micrOMEGAs code the γ-ray
spectrum including photon radiation for a number of cases from the MCMC scans2 and
we show two examples in figure 5.9. The blue plain (dark blue dashed) lines show the
γ-ray spectrum with (without) photon radiation while as an example we plot the p̄
spectrum in red. For small DM masses as shown in panel (a) the modification to the
γ-ray spectrum is generally too small to have an effect : the two blue curves are merged.
On the other hand, for large DM masses as shown in panel (b), the inclusion of final state
radiation starts being noticeable. However, it creates a peak at an energy fraction ca. 1
which falls beyond the range of energies on which Fermi dwarf bounds are based.

2Note obviously that we always considered photon radiation for the DM annihilation cross section
calculations in the scans.
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Figure 5.9: Photon and anti-proton distributions as a function of the energy fraction
x = E/mχ0

1
. The blue plain (dark blue dashed) lines show the γ-ray spectrum with

(without) photon radiation while the red lines show the p̄ spectrum. Panel (a) presents
a pMSSM case with a light DM candidate (mχ0

1
≈ 158 GeV) which is excluded by ID

: σvχ0
1χ

0
1→W+W− ≫ σvFermi for this mχ0

1
. Panel (b) shows the spectrum obtained with a

large DM mass (mχ0
1
≈ 400 GeV) which is just above the ID limits considered here.

5.4.3 130 GeV line

As a side comment regarding the so-called 130 GeV line : we do find scenarios where
σvχ0

1χ
0
1→γγ ≃ 10−27 cm3/s, which is the value of the cross section that is required

to explain the feature in the spectrum. These configurations predict a neutralino-
chargino mass splitting greater than ∼ 0.2 GeV. However none of the points corre-
sponding to neutralinos with a mass of about 130 GeV are allowed by the Pamela

and the Fermi-LAT data as displayed in figure 5.10. Hence, our results suggest that
one cannot explain the 130 GeV line in our simplified version of the pMSSM, which
is in agreement with [280, 281]. Indeed, due to the anti-proton limit, scenarios with
σvχ0

1χ
0
1→γγ ≃ 10−27 cm3/s rather correspond to neutralinos with a mass of about 450

GeV. In fact, for the same reason, all allowed points with σvχ0
1χ

0
1→γγ > 2× 10−28 cm3/s

correspond to configurations where mχ0
1
> 250 GeV. Finally note that in the pMSSM

the existence of 130 GeV neutralinos should give rise to a second γ-ray line at ∼ 111
GeV (on top of that at 130 GeV), corresponding to the neutralino pair annihilation into
γZ. Given our prediction for γZ and γγ, the flux associated with this 111 GeV line
should be about ten times larger than that corresponding to the 130 GeV line, which is
in conflict with the observations.
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Figure 5.10: The neutralino pair annihilation cross section into γγ as a function of the
LSP mass. The colour coding shows the points in the pMSSM parameter space which
are not excluded by ID constraints in green and those which are excluded by Fermi-LAT
(yellow), Pamela (red) or both (black).

5.4.4 The case of no DM regeneration

Figure 5.11: Plot of the rescaled neutralino pair annihilation cross section intoW+W−

as a function of the chargino-neutralino mass splitting in the scan where no DM regen-
eration is assumed. Same colour code as in figure 5.4.

In this study we have assumed that the relic density was regenerated at 100 %
for candidates with a total annihilation cross section much larger than the thermal
one ( i.e. with a suppressed freeze-out relic density). This way we could ensure a fair
comparison between theoretical expectations and the limits set by the Fermi-LAT and
XENON100 experiments. Looking at figure 5.5b one sees that invoking regeneration
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is needed to obtain a DM relic density in agreement with the WMAP values for all
scenarios with a chargino-neutralino mass splitting smaller than3 ∼ 20 GeV. Assuming
that all these candidates have the correct relic density, we could indeed exclude scenarios
with a neutralino-chargino mass splitting up to ∼ 10 GeV and values of σvχ0

1χ
0
1→γZ down

to 10−28 cm3/s (see figure 5.5a), corresponding to σvχ0
1χ

0
1→W+W− > 10−25 cm3/s and

Ωh2 ≪ 0.06. However, relaxing the regeneration assumption would completely relax
the exclusion regions and therefore the bound on the mass splitting. It is what is
presented in figure 5.11. This plot comes from a scan where the neutralino LSP is
allowed to constitute only a fraction of the total DM density. The rescaling parameter is
defined as ξ = Ωχ0

1
/ΩWMAP,1σ, where we take the lower 1σ bound from WMAP7, namely

ΩWMAP,1σh
2 = 0.1088. As shown the rescaled neutralino pair annihilation cross section

into W+W− is far below the Fermi-LAT and Pamela limits, between 10−27 cm3/s and
10−26 cm3/s : all points are safe from current ID constraints. However in this scenario
the DM problem is not solved.

5.5 Conclusions

In this chapter we examined the constraints on the DMDM → W+W− annihilation cross
section by using the Pamela anti-proton data and we analysed the choice of propaga-
tion parameters and uncertainties on the astrophysical background. These results are
independent of the so-called Pamela positron excess and are obtained for two different
(fixed vs marginalized) choices of the background spectrum.

We then compared these bounds with the most stringent gamma-ray limits which
have been derived using the Fermi-LAT measurements of the gamma-ray continuum
spectrum from dSph galaxies, for the same DM annihilation channel and DM mass
range. We found that the anti-proton constraints appear to be very competitive with
the gamma-ray bounds. More precisely, choosing the ‘MED’ propagation scheme, the p̄
constraints are slightly weaker than the γ-ray ones when mDM . 300 GeV and slightly
stronger formDM & 300 GeV. On the other hand, the anti-proton constraints are stronger
if we assume the ’MAX’ set of propagation parameters and less powerful if we assume
the ‘MIN’ set. We also recall that the gamma ray limits themselves may be subject to
some uncertainties related to the modelling of the DM profile in dSph galaxies.

Finally we applied as fiducial limits the Fermi dwarf bounds and the p̄ constraints
relative to ‘MED’ and the marginalized astrophysical background to the neutralino LSP
in a simplified version of the pMSSM, where we set all the sfermion masses (apart from
that of the third generation) to the TeV scale. We found that the fiducial Pamela anti-
proton and Fermi-LAT gamma-ray limits rule out small but non negligible neutralino-
chargino mass splittings. In particular for mχ0

1
. 150 GeV, one can rule out mass

splittings up to 13 GeV. Our results also suggest that pure wino or wino-like neutralinos

3For larger values of the mass splitting, no regeneration assumption is required but the annihila-
tion cross sections into γγ and γZ are strongly suppressed. In particular σvχ0

1
χ0

1
→γγ is much below

10−29 cm3/s.
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are excluded if they are lighter than 450 GeV. Overall, this limit surpasses the bounds
that can be set by using the XENON100 data and even in fact the projected XENON1T
limit.

Note that the main difference of this MCMC study comparing to that of the paper
[250] is that no significant χ0

1χ
0
1 → bb̄ annihilation cross section is found. The reason is

that we decided here to put the CP-odd Higgs boson mass at 2 TeV which then exclude
the possibility to have an enhancement of the bb̄ final state due to the s-channel pseudo-
scalar Higgs boson exchange. This has also the consequence to avoid some scenarios
with a bino-wino LSP and a mass splitting around 20 GeV which could be probe by ID,
hence the lower bound of 13 GeV found here.

Hence from this work, we conclude that present ID data already enable one to exclude
regions of the parameter space where the neutralino-chargino mass splitting is small but
non-negligible. Since these regions are difficult to probe directly at the LHC, these
findings show that Fermi-LAT and Pamela data constitute modern tools to explore
the supersymmetric parameter space and even beat LHC (and also in fact DD) searches
on their own territory even though, on the negative side, they assume a regeneration of
the relic density for neutralinos with a very large annihilation cross section.
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6.1 Going beyond the minimal supersymmetric sce-

nario

As shown in the previous chapters the MSSM can solve several problems encountered
in particle physics and cosmology. Nevertheless this minimal version of SUSY has some
drawbacks.

6.1.1 The µ-problem

As explained in chapter 3, two Higgs SU(2)L-doublets have to be defined in a super-
symmetric extension of the SM. As we saw in eq. 3.29 the superpotential of the MSSM
contains a mass term for Hu and Hd, the µ term. Since this parameter is SUSY pre-
serving, natural values are µ = 0 or very large, e.g. µ ∼ MP l. With the EWSB, the
minimization condition of the MSSM potential allows to determine M2

Z and tan β from
the MSSM Lagrangian parameters |µ|2, b,m2

Hu
and m2

Hd
with the relations :

sin 2β =
2b

m2
Hu

+m2
Hd

+ 2|µ|2 ,

M2
Z =

|m2
Hd

−m2
Hu

|√
1− sin2 2β

−m2
Hu

−m2
Hd

− 2|µ|2.
(6.1)

It follows that if we do not want to consider a fine-tuned cancellation to obtain the
expected Z boson mass, the supersymmetric mass term squared ought to be at most
within (10 - 100)×M2

Z . This is the case for the SUSY breaking parameters b,m2
Hu

and
m2
Hd
, but as said above it was not expected for the µ term. Moreover µ = 0 is not

compatible with the limits on the chargino mass and the mass matrix in eq. 3.41 which
imply that µ & 100 GeV. The fact that the MSSM does not account for a µ term around
the EW scale is called the µ-problem [282].

6.1.2 MSSM limitations

Besides this theoretical problem, some experimental results can be difficult to explain
within the MSSM.

As we saw at the end of section 3.4.2 and in chapter 4, the simplest scenarios of
the MSSM have difficulties to generate the expected mass for the SM-like Higgs boson
because its tree-level value is too low. However it is still possible in the MSSM to get
mh0 ∼ 125 GeV, but it requires appreciable fine-tuning [283].

Non-standard signal strength in some Higgs decay channels are difficult to explain in
the MSSM. As an example, the ATLAS colaboration reported in early 2012 an excess at
2.8σ in the h0 → γγ decay channel, consistent with a Higgs boson mass mh0 = 126 GeV
[284]. This signal was larger than expected from a SM Higgs boson (with a signal
strength1 σ/σSM = 2± 0.8). An excess in the γγ channel was also reported by the CMS

1However as noted in table 1.2 this excess is now less pronounced.
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experiment [285] but at a slightly lower mass mh0 = 124 GeV. Assuming that the Higgs
boson is produced by gluon fusion, we can define the signal strength by the ratio

RggXX =
σ(gg → h0)BSMB(h0 → XX)BSM

σ(gg → h0)SMB(h0 → XX)SM
, (6.2)

where here we are interested on X = γ. It is generally expected that, after applying
other constraints on the MSSM, Rggγγ is at most as large as unity [286, 287, 288] except
in a corner of the parameter space where heavily mixed staus can lead to an increase in
the h0 → γγ partial decay width [289].

As shown in chapters 4 and 5 the lightest neutralino can be a viable DM candidate
in the MSSM. However if the signals in DD experiments presented in section 3.5.1.1,
indicative of a light DM i.e. below ca. 15 GeV, are confirmed it will be difficult to explain
them within the MSSM and we would need to go beyond the minimal model. Indeed
such a neutralino is strongly constrained because it leads to too much DM.

6.1.3 The Next-to-MSSM

To solve the µ-problem, a simple method consists in generating an effective µ term in
a similar way that the generation of quark and lepton masses. A Yukawa coupling λ of
Hu and Hd to a new scalar field S is added, and the VEV of S,

〈S〉 = vs√
2
, (6.3)

which is induced by new soft SUSY breaking terms, is of the order of the EW scale.
Given that the µ term of the MSSM carries no SM gauge symmetry quantum numbers,
the new scalar field has to be a singlet of SU(3)c⊗SU(2)L⊗U(1)Y . Since we are in SUSY,
we define this new field in a new chiral supermultiplet S; then the complex scalar field
S is complemented by a fermionic partner, the singlino S̃. The MSSM superpotential is
thus modified as

WMSSM → WMSSM|µ=0 + λSHuHd, (6.4)

and the effective µ term reads

µeff = λ
vs√
2
. (6.5)

However the introduction of the singlet supermultiplet has the drawback to add an
additional U(1) (PQ) global symmetry which gives, as we saw in section 2.7, an axion. It
results that experimental limits on axion searches allow rather small values of λ, namely
|λ| < 10−7. In order to get an effective µ term around the EW scale we then need to
fine-tune 〈S〉. To solve this we introduce an additional parameter κ which breaks the
PQ symmetry through a cubic self-coupling term 1

3
κS3 : it is in this framework that the

NMSSM is defined (see e.g. [290, 291] for reviews). In the literature, the NMSSM model
which is mostly considered is the one which has the minimal number of new parameters
to solve the µ-problem. Its superpotential is defined as

WNMSSM = WMSSM|µ=0 + λSHuHd +
1

3
κS3. (6.6)
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The SSB Lagrangian of the NMSSM is

L
soft
NMSSM = L

soft
MSSM|b=0 −m2

S|S|2 − (λAλSHuHd +
1

3
κAκS

3 + h.c.), (6.7)

with two trilinear couplings added, Aλ and Aκ, and the singlet mass term mS.
The addition of a complex scalar field leads to a different Higgs sector with respect

to the MSSM. The NMSSM contains seven physical Higgs scalars : two charged Higgs
bosons H± as in the MSSM but three CP-even Higgs bosons hi, i ∈ {1, 2, 3} and two CP-
odd Higgs bosons ai, i ∈ {1, 2}. Moreover the SM Higgs boson mass gets a pure NMSSM
positive contribution which then improves the possibility to get a SM-like Higgs boson
around 125 GeV. If h1 is this one its tree-level mass squared upper bound reads

m2
h1

.M2
Z cos

2 2β +
λ2

2
v2 sin2 2β. (6.8)

The new contribution is largest for large λ and small tan β. Note also that important
doublet-singlet mixing can occurs in the Higgs sector. This leads to specific NMSSM
features as we will see in sections 6.4 and 6.5.

Another point to highlight in the NMSSM is that a new field enters in the neutralino
sector, the singlino S̃. Therefore the neutralino mass matrix defined in section 3.4.4.2 is
modified here. In the basis ψ0 = (B̃, W̃ 3, H̃0

d , H̃
0
u, S̃) the neutralino mass matrix is given

by

Mχ0 =




M1 0 −MZcβsW MZsβsW 0

0 M2 MZcβcW −MZsβcW 0

−MZcβsW MZcβcW 0 −µeff −λ vu√
2

MZsβsW −MZsβcW −µeff 0 −λ vd√
2

0 0 −λ vu√
2

−λ vd√
2

2κµeff
λ




. (6.9)

Its diagonalisation by a 5×5 unitary matrix Zn gives the neutralino mass eigenstates :

χ0
i = Znijψ

0
j , i,j ∈ {1, 2, 3, 4, 5}. (6.10)

Because of its singlet nature the singlino can be very light, hence providing a potential
light DM candidate. Nevertheless, scenarios with such a DM candidate are strongly
constrained by Indirect Detection and Direct Detection of DM [217, 292, 293]. Keeping
the scenarios that fulfill DM constraints, we could check whether pure NMSSM signa-
tures with such a DM candidate can be probed at the LHC. This is what we will see in
section 6.3.

The work that will be presented in the next sections constitutes a part of the article
[294]. Section 6.3 contains additional material.

6.2 Previous scans on the NMSSM parameter space

In order to make sure that the scenarios that we consider are all relevant, the analysis that
we will show is based on [217, 292] in which the NMSSM parameter space was explored
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in light of particle physics and astroparticle physics constraints. In these studies, based
on MCMC analyses, the LSP neutralino was required to be relatively light ( i.e. with a
mass below 15 GeV) motivated by hints of a signal in DD experiments [172, 173, 295]. It
was also required that the LSP relic density does not exceed the WMAP5 observed value
ΩWMAP5h

2 = 0.1131 ± 0.0034 [296], but it can be much lower than this, hence calling
for another type of particles to solve the DM problem. Limits from B-physics, δaµ, as
well as LEP and Tevatron limits on the Higgs boson and SUSY particles were also taken
into account. LHC limits on the Higgs sector computed with NMSSMTools [297] were
also included. Additional constraints such as DD limits from XENON100 [246], γ-rays
from dSph galaxies probed by Fermi-LAT [298] and the radio emission in the MW and
in galaxy clusters [299, 300] were superimposed on the parameter space selected by the
MCMC.

(a) (b)

Figure 6.1: LSP mass vs. the mass of the lightest CP-even (CP-odd) Higgs boson, in
panel (a) (panel (b)) for the light LSP scenario.

Since neutralinos lighter than 15 GeV can either be binos or singlinos, the easiest
way to ensure significant annihilations is through resonant exchange of a light scalar
or pseudoscalar Higgs boson. Hence scenarios with light singlet-like a1 or h1, namely
mh1,a1 < 30 GeV, are preferred as shown in figure 6.1. However, when the neutralino
mass is large enough, annihilation mechanisms through Z-exchange or light sleptons can
also be efficient and a very light Higgs boson singlet is no longer important.

6.3 Squarks and gluinos searches at the LHC

To make sure that SUSY searches at the LHC does not exclude these interesting config-
urations, we decided to look at the LHC limits on sparticles. We took into account the
exclusion limit coming from the ATLAS 1.04 fb−1 search for squarks and gluinos via jets
and missing transverse momentum [301]. For each relevant SUSY point, namely in the
range which is excluded by this search in simplified SUSY models with first and second
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generation squarks lighter than ∼ 0.6 TeV when the gluinos are much more heavy and
gluinos lighter than ∼ 0.5 TeV for heavy squarks, signal events were generated2 using
the Monte Carlo event generator Herwig++ 2.5.1 [303, 304]. Experimental cuts of each
search channel were then applied using RIVET 1.5.2 [305]. Then, the ATLAS jets and
missing ET searches at 1.04 fb−1 which are included [306] in the RIVET package are
used to set constraints on the NMSSM scenarios considered. Of course current limits
are much more stronger with coloured sparticles possibly excluded up to 1.5 TeV [307]
and could probe a larger part of our interesting points.

6.3.1 Relevant NMSSM region in light of ATLAS jets + ✚
✚✚ET

searches

Analysing the mass of the squarks and gluinos of the interesting NMSSM configurations,
we found one region of the parameter space where the ATLAS limits on coloured spar-
ticles could be relevant : it is characterized by squarks in the range [0.3− 1.1] TeV and
gluino masses around 5.3− 5.5 TeV.

Using the tools described above we can extract for each NMSSM point the final
production cross section in the different signal regions of the jets + ET searches in [301],
namely the ≥ two-jets, ≥ three-jets, ≥ four-jets with meff

3 > 0.5 TeV, ≥ four-jets with
meff > 1 TeV and the high mass (stringent requirements on the transverse momentum
and meff) channels. We then compare the results to the excluded values at 2σ in each
signal region given in [301].

6.3.2 Light squark masses

This region with light squarks is displayed in the panel (a) of figure 6.2. Panel (b) of
figure 6.2 illustrates the most sensitive signal regions. The exclusion limits at 2σ are
respectively 22 fb for the cross section in the ≥ two-jets channel and 25 fb for the cross
section in the three-jets channel. We are able to exclude three points in this region.
What is striking when we look at figure 6.2a is that these excluded points, plotted in
red, are not those corresponding to the lightest squarks. To understand the reason of
this unusual feature we must look at the characteristics of the LSP in these scenarios.
We recall that the limit of mq̃ ∼ 0.6 TeV is obtained in MSSM scenarios with large
branching ratios of gluinos and squarks into jets and the neutralino LSP, mostly bino.

2Note that the matrix elements used by all event generators for the hard production of two SUSY
particles are accurate only to leading order in perturbative QCD. It is therefore desirable to supplement
the resulting signal cross-section with an NLO K-factor for the production process, obtained in a separate
calculation. In the MSSM, Prospino [302] is commonly used; unfortunately for the NMSSM there is
no automated calculation of NLO cross-sections publicly available. Exclusion calculated without the
K-factor (O(1-3) in the MSSM) is therefore slightly conservative.

3As defined in [301], meff is the sum of the missing transverse energy and the magnitudes of the
transverse momenta of the two, three or four highest transverse momentum jets used to define the signal
region.



6.3 - Squarks and gluinos searches at the LHC 117

(a) (b)

Figure 6.2: Representation of the points in the plane (msquark,mgluino) (panel (a)) and
in the plane (≥ three-jets, ≥ two-jets) (panel (b)). In panel (a) the three excluded points
are plotted in red. The colour coding in panel (b) corresponds to the bino component
of the LSP neutralino in each scenarios : red points have a bino-like LSP whereas blue
points have a singlino-like LSP. The exclusion zone (σ2j > 22 fb, σ3j > 25 fb) is shaded.

Two of the excluded points can be easily understood. They correspond to the points
only excluded by the ≥ two-jets channel limit as shown in figure 6.2b. Actually, their
main characteristic is that the LSP is bino-like. Thus the usual q̃ → qχ0

1 decay takes
place and the familiar jets + missing ET exclusion is observed for mq̃ ∼ 0.6 TeV.

Figure 6.3: The squark mass vs. the most sensitive signal region for scenarios with
bino-like LSP. The grey zone corresponds to the excluded region and the two excluded
points are plotted in red.

This is confirmed by figure 6.3 which only plots the bino-like cases of figure 6.2b :
these two points are characterized by the lowest squark masses, then with the highest
acceptance in the ≥ two-jets channel.
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Figure 6.4: Points in the plane (msquark,mgluino) where the colour coding is the same
as in figure 6.2b.

We may ask why points with squarks down to 0.3 TeV are allowed in figure 6.2a.
The colour code in figure 6.4 gives the key to answer to that. In red we have points
with a bino-like LSP and in blue a singlino-like LSP. We clearly see that all points with
squarks below 0.6 TeV contain singlino-like LSP. When the LSP is purely singlino, the
squarks and gluinos cannot decay to this LSP directly but must do via an intermediate
particle, frequently the second-lightest neutralino as illustrated in figure 6.5a. As noted
in [308] this reduces the acceptance into jets + missing ET search channels, as the extra
step reduces the missing ET and may result in leptons4. Then these limits are not so
efficient for singlino-like LSP as shown in figure 6.5b.

It is also interesting to note that the relative acceptance into different search channels
can help to distinguish a bino-like LSP from a singlino-like LSP : the latter produces
a higher average number of jets in the cascade as illustrated in figure 6.2b. The graph
also shows the low level of exclusion of singlino-like LSP points for the reasons discussed
above. The bulk of bino-like LSP points is not excluded simply because squarks are too
heavy and out of reach.

However figure 6.5b presents also an interesting exception since one point with
singlino-like LSP and squark masses above 0.5 TeV is excluded by this ATLAS limits.
This point is described in figure 6.6. In this case we see that the lightest pseudoscalar
Higgs boson is really light : ma1 ≃ 3 GeV. Thus the bino-like χ0

2 decays into the singlino-
like LSP plus a1. This explain why this point is excluded : since this pseudoscalar Higgs
boson has a mass below the bb̄ and τ+τ− pair thresholds it decays fully invisibly, then
giving large missing ET .

4SUSY searches with leptons would have in fact greater sensitivity but they do not compensate for
the loss of sensitivity in the 0-lepton search [308].
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(a) (b)

Figure 6.5: The case of singlino-like LSP : panel (a) shows the branching ratios and
masses of supersymmetric particles and Higgs bosons in the case of a non-excluded point
with singlino-like LSP, where we restrict ourselves to sparticles and Higgs bosons below
0.5 TeV. The darker the dotted arrow the higher the corresponding branching ratio.
Panel (b) represents the squark mass vs. the best sensitive signal region for scenarios with
singlino-like LSP. The grey zone correspond to the excluded region and one excluded
point is plotted in red.

Figure 6.6: Branching ratios and masses of supersymmetric particles and Higgs bosons
in the case of the excluded point with singlino-like LSP. Here we restrict ourselves to
sparticles and Higgs bosons below 0.7 TeV.

6.4 Higgs boson signal strength with light LSP

For a model to be compatible with the data, it is required that the SM-like Higgs boson
be in the observed mass range (say [122-128] GeV) and the signal strength be consistent
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(a) (b)

Figure 6.7: Plots in the plane (mh2 ,mh1) (panel (a)) and (ma1 ,mh1) (panel (b)). Red
points are ruled out either by HiggsBounds-3.6.1beta constraints or the ATLAS 1fb−1

jets and missing ET SUSY search. Green points have no Higgs boson with a mass in
122− 128 GeV, blue points have a Higgs boson (h1 and/or h2) within this mass range,
and black points have such a Higgs boson with Rggγγ > 0.4.

with the data. As a criteria for Rggγγ, we choose a 2σ error bar around the central value
determined by ATLAS [284], thus 0.4 < Rggγγ < 3.6. This is also compatible with the
CMS results and the SM expectations (where RSM

ggγγ ≡ 1).

As illustrated in figure 6.1 and highlighted by figure 6.7a, h1 is typically much below
the EW scale, thus with a large singlet component, when h2 is SM-like. When h2 is
much heavier than 125 GeV, h1 is SM-like (reaching at most up to ∼ 122 GeV) and the
pseudoscalar a1 is basically a light singlet, see figure 6.7b. It is nevertheless possible for
both scalars to be heavily mixed and have a mass around 100-130 GeV (in this case a1
has to be light). In figure 6.7 blue and black points show the scenarios with at least one
of the scalars within the range preferred by ATLAS and CMS. As can be seen, this is
generally h2 since mh1 barely exceeds 122 GeV. Note that this do not take into account
theoretical uncertainties that can reach a few GeV’s.

The predictions for Rggγγ as a function of the h2 mass are displayed in figure 6.8a. We
only display the region where this channel is relevant, that is when mh2 < 150 GeV. We
clearly note that all the configurations that were selected by the MCMC have Rggγγ < 1.
An explanation is that, although h2 couplings are usually SM-like, large suppressions
in Rggγγ are possible because the width of the Higgs is enhanced by many new non-
standard decay channels [309]. In particular, h2 can decay into two neutralinos, two
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(a) (b)

Figure 6.8: Rggγγ as a function of the mass of h2 (panel (a)) and as a function of new
BSM decays. Same colour code as in figure 6.7.

light scalar Higgs bosons (h1) or two light pseudoscalar Higgs bosons (a1) which reduces
significantly the branching ratio into two photons.

In figure 6.8a, all the points which do not satisfy either the HiggsBounds-3.6.1beta
limits or the SUSY searches in jets plus missing ET are coloured in red. As mentioned
above very few of these points are excluded by SUSY searches. The points which fall
within the Higgs boson observed mass range are highlighted in blue. Scenarios where
the strength of the signal in γγ is also compatible with the 2σ range reported by ATLAS
(Rggγγ > 0.4) are represented by black squares.

The effect of these non-standard decays on the signal strength is shown in fig-
ure 6.8b. Clearly, too large branching ratios into non-standard modes such as χ0

iχ
0
j (i, j =

1, 2), h1h1 and a1a1 would render the two-photon mode invisible or suppressed with re-
spect to the SM prediction [309]. In fact, in order for the signal strength Rggγγ to be
compatible with Rggγγ > 0.4, the branching ratio B(h2 → invisible) must be lower than
∼ 60%.

The existence of decay modes such as h2 → h1h1 or a1a1, with the singlet Higgs boson
further decaying into SM particles remains nevertheless interesting because such modes
give a distinctive signature which could be searched for at LHC and would constitute
evidence for NP if they are found. Extraction of this signal from background via jet sub-
structure techniques has been studied for h→ 2a→ 4τ in [310], h→ 2a→ τ+τ−µ+µ− in
[311], and h→ 2a→ 4g (less relevant for SUSY due to tan β suppression) in [312, 313].
These decays with an intermediate scalar (h1) instead of an intermediate pseudoscalar
(a1) give the same signal.
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6.5 The case of heavy LSP

As a side comment note that the analyses were repeated for another MCMC scan in
which there is no mχ0

1
< 15 GeV requirement. Event though this study encompass

all LSP masses, a separate analysis with a prior on the neutralino mass was needed
to ensure a complete coverage of the parameter space of the mχ0

1
< 15 GeV scenarios.

Then as opposed to the previous case with a light neutralino the Higgs boson in the mass
region preferred by the LHC is a SM-like h1. Indeed, without very light neutralinos, a
very light singlet sector is not needed for resonant annihilations. Thus the associated
values for Rggγγ are naturally of order unity (see figure 6.9a). Nevertheless cases where
Rggγγ < 0.4 are possible, when invisible decay modes (such as h1 → χ0

1χ
0
1 or h1 → a1a1)

are kinematically accessible.
h2 masses extend over a wide range (all the way to several TeV’s) and include some

points in the mass region preferred by the LHC. The values of Rggγγ for h2 are displayed
in figure 6.9b for the range of masses where the two-photon search mode is relevant. In
this region the signal strength reaches values as high as Rggγγ = 2. This enhancement
with respect to the SM expectations is found when h2 has some singlet component and
a suppressed partial width to bb̄ (h1, conversely, has an enhanced bb̄ partial width and a
reduced signal strength Rggγγ).

Note however that for most of these points with an enhanced Rggγγ the neutralino
would form only a fraction of the observed DM. If a lower limit on the relic density is used
these points characterized by a non-negligible higgsino component are then excluded.
Note however that Rggγγ > 1 and a strict lower bound on the DM relic density is still
possible by looking thoroughly at regions with tan β ∼ 2 and λ ∼ 1 [314].

(a) (b)

Figure 6.9: Rggγγ as a function of the mass of h1 (panel (a)) and of h2 (panel (b)) in
the arbitrary neutralino LSP model. Same colour code as in figure 6.7 except red points
are denoting only exclusion by HiggsBounds-3.6.1beta .
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6.6 Conclusions

In this chapter we have investigated the Higgs signal strength and direct SUSY search
in the context of the NMSSM. Many scenarios where found with either h1 or h2 had a
mass in the range [122-128] GeV and a signal strength compatible with the SM. We also
found scenarios where the signal strength in the two-photon mode was as large as the
excess reported by ATLAS and CMS.

When insisting on a light neutralino, we found that the most promising configurations
favour a SM-like h2 rather than a h1 SM-like Higgs boson and therefore predict the
existence of a light Higgs boson dominantly singlet. The possibility of observing a
second light Higgs boson provides a distinct signature of the NMSSM Higgs sector.

Furthermore we note that the traditional jets + missing ET signature of squarks and
gluinos search in the MSSM can be modified in the NMSSM when the LSP is a singlino.
These sparticles decay into quarks and the second-lightest neutralino χ0

2 bino-like which
then decays into the singlino-like χ0

2 and moslty leptons. As a result the missing ET
is reduced and the usual limits on squark and gluino masses are weakened for these
scenarios.

Note nevertheless that the limits have greatly improved since the study we made.
For instance assuming equal squark and gluino masses the ATLAS 5.8 fb−1 search for
squarks and gluinos via jets and missing transverse momentum at

√
s = 8 TeV center-

of-mass energy of proton-proton collision [307] can exclude such coloured sparticles up
to 1.5 TeV (see figure 3.4) in the MSSM. As a prospect it could then be interesting to
check if our favourite NMSSM points with singlino-like LSP still survive LHC constraints
on squark and gluino masses which could give a possibility to derive, starting from
mSUGRA/CMSSM limits, indirect bounds on these NMSSM scenarios.
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7.1 Another solution to the µ-problem

In chapter 6 we analysed some phenomenological consequences of an extension of the
MSSM, the NMSSM. This model has in particular the nice feature to solve the µ-problem
of the MSSM. However this approach has drawbacks that can be debated. Actually
the superpotential of the NMSSM defined in eq. 6.6 is invariant under a discrete Z3

symmetry. As shown in [315] the spontaneous breaking of a discrete symmetry at a
phase transition of the early Universe can generate topological defects, more precisely
two-dimensional objects called domain walls. Then as denoted in [316] the Z3 symmetry
breaking at the EW phase transition leads to cosmological domain walls. These objects
can dominate the energy density of the early Universe : they therefore can be viewed
as a source of DE [317, 318]. Nevertheless the equation of state of domain walls is
predicted to be ω = −2/3 which is excluded by CMB observations, especially recent
Planck results with ω

DE
= −1.13+0.23

− 0.25 at the 2σ level, see table 2.1. Several solutions
have been proposed for the NMSSM [319, 320].

Another possibility to solve the µ-problem avoiding the domain walls problem is,
when adding the chiral supermultiplet S, to promote the U(1)PQ global symmetry to a
new U(1) Abelian gauge symmetry. Then the extra S3 term of eq. 6.6 and the usual µ
term of the MSSM superpotential in eq. 3.29 are forbidden by this new gauge symmetry.
It follows that the VEV of the scalar singlet field S will break the new Abelian symmetry
and its massless pseudoscalar component becomes the longitudinal mode of a new gauge
boson which then gets a mass, the Z ′ vector boson [321]. It is this type of extensions of
the MSSM that will be considered throughout the last part of this thesis.

7.2 An E6 inspired model

Models with extended gauge symmetries are well motivated within the context of BSM
models. They occur in GUT scale models [322, 323], extra-dimension motivations [324],
superstring models [325, 326, 327, 328, 329], strong dynamics models [330], little Higgs
models [331, 332, 333] or through the Stueckelberg [334] mechanism [335, 336, 337].

Looking at supersymmetric models, several Abelian extensions are considered in the
literature. An example is the U(1)B−L scenario [338, 339], and specific supersymmetric
U(1)B−L inflationary scenarios were studied in [340]. Note also that in supersymmetric
models with extended U(1) symmetry a λSHuHd interaction allows for the strong first
order phase transition that is needed for EW baryogenesis [341]. One of the most
analysed U(1) extension originates from a string-inspired E6 grand unified gauge group
[342, 343, 344, 345, 346]. Since the rank of the E6 group is 6 the breaking of the E6

symmetry gives models based on rank-5 or rank-6 gauge groups. As a consequence
these models in general lead to a low-energy gauge symmetry with one or two additional
U(1) symmetries plus the SM gauge symmetry. E6 contains SO(10) ⊗ U(1)ψ while
SO(10) can be decomposed into SU(5) ⊗ U(1)χ. Using the Hosotani mechanism [347]
and the fact that SU(5) contains the SM gauge symmetry E6 can be broken directly
into SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)ψ ⊗ U(1)χ which is of rank 6. We assume that at
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low energy the gauge symmetry is1

SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)′,

where U(1)′ is a linear combination of U(1)ψ and U(1)χ. This combination is parame-
terized by an angle θE6 with θE6 ∈ [−π/2, π/2] and we have

U(1)′ = cos θE6U(1)χ + sin θE6U(1)ψ. (7.1)

The U(1)′ charge for each field of the model is then defined as

Q′ = cos θE6Q′
χ + sin θE6Q′

ψ, (7.2)

where the charges Q′
χ and Q′

ψ are given in [343, 348] for all fields of the E6 model.
The matter sector of the E6 model contains, in addition to the supermultiplets con-

taining the SM fermions, three families of RH neutrinos, three families of Higgs doublets
(Hu, Hd), three singlets, three families of extra colour SU(3)c (anti)triplets and finally
an additional Higgs-like SU(2)L doublet and anti-doublet. The complete matter sector
is needed for anomaly cancellations but for simplicity we will assume that these exotic
fields, with the exception of the RH neutrinos (one of the supersymmetric partners will
be considered as a possible DM candidate in chapter 8), one family of Higgs doublets
and one Higgs singlet, are above a few TeV’s. We will assume that they play no role in
the phenomonology of the rest of the matter sector and neglect them in the following
(noted as O(TeVs) in the forthcoming equations). It is what we will call the UMSSM
model.

7.3 Description of the UMSSM

Table 7.1 summarizes the supermultiplet and particle content of the UMSSM whereas
table 7.2 gives the Q′

χ and the Q′
ψ charges for each matter field in the model as

well as a combination often used in the literature corresponding to U(1)η with θE6 =

− arctan
√
5/3. In addition to the MSSM supermultiplets, the UMSSM model has a

new vector supermutiplet, containing a new boson B′ and the corresponding Majorana
gaugino B̃′, and two types of chiral supermultiplets : the one with the singlet S and
the singlino S̃ as defined in the NMSSM and another which gives three RH neutrino∑

i=e,µ,τ νiR and their supersymmetric partners the RH sneutrinos
∑

i=e,µ,τ ν̃iR. Note
that, as depicted with the black curve in figure 7.1, the RH (s)neutrinos decouple com-
pletely of the rest of the UMSSM sector, i.e. Q′

ν = 0 when θE6 = arctan
√
15. This

choice of U(1)′ charge is referred in the literature to as the U(1)N choice and is used in
several phenomenological studies of E6 inspired models [344, 349, 350, 351, 352]. This
case will not be considered in next chapter which considers the RH sneutrino as thermal
DM candidate. The superpotential is the same as in the MSSM with µ = 0 but has an
additional term involving the singlet :

WUMSSM = WMSSM|µ=0 + λSHuHd + ν̃∗RyνL̃Hu +O(TeVs), (7.3)

1For more details see [344].
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Chiral supermultiplets

Name spin 0 spin 1/2 SU(3)c,SU(2)L,U(1)Y,U(1)′

squarks, quarks Q̃, Q (ũL d̃L) (uL dL) (3, 2, 1
3
, Q′

Q)

(3 families) ū ũ∗R ūR (3̄, 1, −4
3
, Q′

u)

d̄ d̃∗R d̄R (3̄, 1, 2
3
, Q′

d)

sleptons, leptons L̃, L (ν̃L ẽL) (νL eL) (1, 2, −1, Q′
L)

(3 families) ν̄ ν̃∗R ν̄R (1̄, 1, 0, Q′
ν)

ē ẽ∗R ēR (1̄, 1, 2, Q′
e)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) (1, 2, 1, Q′
Hu

)

Hd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1, 2, −1, Q′

Hd
)

S S S̃ (1, 1, 0, Q′
S)

Gauge supermultiplets

Name spin 1/2 spin 1 SU(3)c,SU(2)L,U(1)Y,U(1)′

gluinos, gluons G̃a Ga (8, 1, 0, 0)

winos, W ’s W̃± W̃ 3 W± W 3 (1, 3, 0, 0)

bino, B B̃ B (1, 1, 0, 0)

bino’, B′ B̃′ B′ (1, 1, 0, 0)

Table 7.1: UMSSM supermultiplets and their gauge properties. The U(1)′ charges are
given in table 7.2.

Q′
Q Q′

u Q′
d Q′

L Q′
ν Q′

e Q′
Hu

Q′
Hd

Q′
S

√
40Q′

χ −1 −1 3 3 −5 −1 2 −2 0
√
24Q′

ψ 1 1 1 1 1 1 −2 −2 4

2
√
15Q′

η −2 −2 1 1 −5 −2 4 1 −5

Table 7.2: U(1)′ charges for the matter content considered in the UMSSM.

where yν is the Yukawa matrix associated to ν̄ which is diagonal in the family space and
the VEV of S, 〈S〉 = vs√

2
breaks the U(1)′ symmetry and induces a µ term

µ = λ
vs√
2
. (7.4)
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For θE6 = 0, where Q′
S = 0, this symmetry cannot be broken by the singlet field. Note

also that the invariance of the superpotential under U(1)′ imposes a condition on the
Higgs sector, namely Q′

Hu
+Q′

Hd
+Q′

S = 0. The SSB Lagrangian of the UMSSM is

L
soft
UMSSM =L

soft
MSSM|b=0 −

(
1

2
M ′

1B̃
′B̃′ + ν̃∗RaνL̃Hu + h.c.

)
− ν̃∗Rm

2
ν̃R
ν̃R

−m2
S|S|2 − (λAλSHuHd + h.c.) +O(TeVs),

(7.5)

with the trilinear coupling Aλ, the B̃′ mass term M ′
1, the singlet mass term mS and

the trilinear coupling and soft sneutrino mass term matrices aν and m2
ν̃R

which are also
diagonal in the family space. We now describe how each sector of the model is modified
with respect to the MSSM.

Figure 7.1: U(1)′ charges of some fields of the UMSSM as a function of θE6 .

7.3.1 Gauge bosons

As we saw in table 7.1 the UMSSM contains a new Abelian gauge boson B′. Since the
two Higgs doublets and the Higgs singlet are charged under U(1)′ this new boson gets
a mass through the breaking of the SU(2)L ⊗ U(1)Y and U(1)′ symmetries. We start
from the interaction between the Higgs sector and the gauge sector :

L
Higgs
UMSSM = (DµHu)

†(DµHu) + (DµHd)
†(DµHd) + (DµS)

∗(DµS)− VUMSSM, (7.6)

where VUMSSM will be detailed in section 7.3.2 and the general covariant derivative for
the SM gauge symmetry is defined in eq. 1.3. For the U(1)′ symmetry we have

Dµ = ∂µ + ig′1Q′
XB

′
µ, (7.7)

when this covariant derivative acts on a matter field X and we choose the normalization
of the coupling constants such that g′1 =

√
5/3gY where gY and g′1 are the coupling
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constants of U(1)Y and U(1)′ respectively. Now if we look at the gauge boson mass terms
after EWSB the corresponding expression in the context of the SM that is included in
eq. 1.24 is rewritten in the context of the UMSSM for each VEV as

∑

i=u,d

∣∣∣∣∣
i

2

(
g2

3∑

a=1

σaW a
µ + κigYBµ + 2g′1Q′

Hi
B′
µ

)
1√
2

(
viδ

i
d

viδiu

)∣∣∣∣∣

2

+

∣∣∣∣ig
′
1Q′

SB
′
µ

vs√
2

∣∣∣∣
2

, (7.8)

where κu = 1 and κd = −1. As in the SM we recover theW boson mass termMW = 1
2
g2v

with v2 = v2u + v2d. Nevertheless instead of a 2×2 matrix with leads to the definition of
the photon and the Z boson as in the case of the SM and the (N)MSSM the remaining
terms read

∑

i=u,d

1

8
v2i

(
W 3
µ Bµ B′

µ

)



g22 −g2gY −2κig2g
′
1Q′

Hi

−g2gY g2Y 2κigY g
′
1Q′

Hi

−2κig2g
′
1Q′

Hi
2κigY g

′
1Q′

Hi
4g′ 21 Q′2

Hi







W 3µ

Bµ

B′µ




+
1

2
g′ 21 Q′2

S v
2
sB

′
µB

′µ. (7.9)

In the upper left part of the 3×3 matrix we recognize the usual SM part which leads to
the definition of the photon and the Z boson given in eqs. 1.28 and 1.29. The remaining
terms are new :

1

2
g′1

√
g22 + g2Y

(
Q′
Hd
v2d −Q′

Hu
v2u
)
ZµB

′µ +
1

2
g′ 21
(
Q′2
Hu
v2u +Q′2

Hd
v2d +Q′2

S v
2
s

)
B′
µB

′µ. (7.10)

The second term gives the mass term to the new Abelian gauge boson B′ = Z ′ :

M2
Z′ = g′ 21

(
Q′2
Hu
v2u +Q′2

Hd
v2d +Q′2

S v
2
s

)
, (7.11)

and the mixing between the two massive Abelian gauge bosons is parameterized by the
term ∆2

Z :

∆2
Z =

1

2
g′1

√
g22 + g2Y

(
Q′
Hd
v2d −Q′

Hu
v2u
)
. (7.12)

Note that the two neutral massive gauge bosons Z and Z ′ can also mix both through
kinetic mixing [353, 354, 349]. Here we simplify the situation by neglecting the kinetic
mixing. The mass matrix of the Z and Z ′ boson reads

M2
ZZ′ =


 M2

Z ∆2
Z

∆2
Z M2

Z′


 , (7.13)
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with MZ given in eq. 1.29. The diagonalisation of the mass matrix leads to two mass
eigenstates Z1 and Z2 :

Z1 = cosαZZ + sinαZZ
′,

Z2 = − sinαZZ + cosαZZ
′,

(7.14)

where the mixing angle αZ is defined as

sin 2αZ =
2∆2

Z

M2
Z1

−M2
Z2

, (7.15)

and the masses of the physical fields are

M2
Z1,Z2

=
1

2

(
M2

Z +M2
Z′ ∓

√
(M2

Z +M2
Z′)

2
+ 4∆4

Z

)
. (7.16)

The mixing angle is constrained from precise measurements of Z properties to be of the
order or smaller than 10−3 radians [355, 356], the new gauge boson Z2 will therefore have
approximately the same properties as the Z ′. The input parameters are the physical
masses, MZ1 = 91.1876 GeV (see table 1.1), MZ2 and the mixing angle αZ . Then the
mass of the Z and Z ′ states are computed using

M2
Z =M2

Z1
cos2 αZ +M2

Z2
sin2 αZ ,

M2
Z′ =M2

Z1
sin2 αZ +M2

Z2
cos2 αZ .

(7.17)

From these together with the coupling constants, we extract both the value of tan β =
vu/vd and the value of vs. For the latter we use eqs 7.11 and 7.17. Using eqs. 7.12 and
7.15 the ratio of the VEVs of the two Higgs doublets is obtained with

cos2 β =
1

Q′
Hd

+Q′
Hu

(
sin 2αZ(M

2
Z1

−M2
Z2
)

v2g′1
√
g2Y + g22

+Q′
Hu

)
. (7.18)

For each U(1)′ model, the value of tan β can be strongly constrained as a consequence
of the requirement cos2 β > 0. For example for the U(1)ψ case with sinαZ > 0 and
MZ2 > MZ1 , the value of tan β has to be below 1. This is because for this θE6 choice we
have

∆2
Z = g′1

√
g2Y + g22

24
(tan2 β − 1)v2d < 0. (7.19)

One might think that small values of tan β are problematic for the Higgs boson mass,
however as we will see below additional corrections to the light Higgs boson mass can
bring it at an experimentally preferred value.

7.3.2 Higgs sector

The Higgs sector of the UMSSM consists of three CP-even Higgs bosons hi, i ∈ {1, 2, 3},
two charged Higgs bosons H± and one CP-odd Higgs boson A0. As explained in the
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beginning of this chapter the reason for having only one CP-odd field is that the pseu-
doscalar part of S is absorbed by the new gauge boson Z ′. The tree-level mass terms
are obtained after minimization of the potential VUMSSM that reads

VUMSSM = VMSSM|µ,b=0 + V F
UMSSM + V D

UMSSM + V soft
UMSSM (7.20)

where

V F
UMSSM = |λHu ·Hd|2 + |λS|2

(
|Hd|2 + |Hu|2

)
,

V D
UMSSM =

g′ 21
2

(
Q′
Hd
|Hd|2 +Q′

Hu
|Hu|2 +Q′

S|S|2
)2
,

V soft
UMSSM = m2

s|S|2 + (λAλSHu ·Hd + h.c.) .

(7.21)

where Hu ·Hd is defined as Hu ·Hd = ǫijH
i
uH

j
d, with the sum over i, j ∈ {1, 2} and VMSSM

is defined in eq. 3.31. We expand the Higgs fields as

H0
d =

1√
2
(vd + φd + iϕd) , (7.22)

H0
u =

1√
2
(vu + φu + iϕu) , (7.23)

S =
1√
2
(vs + σ + iξ) , (7.24)

while the charged Higgs sector is the same as that of the MSSM :

H−
d = − cos βGW− + sin βH−, H+

u = sin βGW+ + cos βH+, (7.25)

with GX the Goldstone boson associated to X.

Following [357], the minimization conditions of VUMSSM are

(mHd
)2 =− 1

2

[
g2Y + g22

4
+Q′2

Hd
g′ 21

]
v2d +

1

2

[
g2Y + g22

4
− λ2 −Q′

Hd
Q′
Hu
g′ 21

]
v2u

− 1

2

[
λ2 +Q′

Hd
Q′
Sg

′ 2
1

]
v2s +

λAλvsvu

vd
√
2
,

(mHu
)2 =

1

2

[
g2Y + g22

4
− λ2 −Q′

Hd
Q′
Hu
g′ 21

]
v2d −

1

2

[
g2Y + g22

4
+Q′2

Hu
g′ 21

]
v2u

− 1

2

[
λ2 +Q′

Hu
Q′
Sg

′ 2
1

]
v2s +

λAλvsvd

vu
√
2
,

(mS)
2 =− 1

2

[
λ2 +Q′

Hd
Q′
Sg

′ 2
1

]
v2d −

1

2

[
λ2 +Q′

Hu
Q′
Sg

′ 2
1

]
v2u −

1

2
Q′2
S g

′ 2
1 v

2
s +

λAλvuvd

vs
√
2

,

(7.26)

and we can write the tree-level mass-squared matrices for the CP-even (M0
+) and the

CP-odd (M0
−) Higgs bosons in the basis {H0

d , H
0
u, S} using the relations

(
M0

+

)
ij
=
∂2VUMSSM

∂φi∂φj

∣∣∣∣
0

,
(
M0

−
)
ij
=
∂2VUMSSM

∂ϕi∂ϕj

∣∣∣∣
0

, (7.27)
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where (φ1, φ2, φ3) ≡ (φd, φu, σ) and (ϕ1, ϕ2, ϕ3) ≡ (ϕd, ϕu, ξ). For the neutral CP-even
Higgs bosons the relations are

(
M0

+

)
11

=

[
(gY

2 + g22)
2

4
+Q′2

Hd
g′ 21

]
v2d +

λAλvsvu√
2vd

,

(
M0

+

)
12

= −
[
(gY

2 + g22)
2

4
− λ2 −Q′

Hd
Q′
Hu
g′ 21

]
vuvd −

λAλvs√
2
,

(
M0

+

)
13

=
[
λ2 +Q′

Hd
Q′
Sg

′ 2
1

]
vsvd −

λAλvu√
2
,

(
M0

+

)
22

=

[
(gY

2 + g22)
2

4
+Q′2

Hu
g′ 21

]
v2u +

λAλvsvd√
2vu

,

(
M0

+

)
23

=
[
λ2 +Q′

Hu
Q′
Sg

′ 2
1

]
vsvu −

λAλvd√
2
,

(
M0

+

)
33

= Q′2
S g

′ 2
1 v

2
s +

λAλvuvd

vs
√
2

.

(7.28)

For the CP-odd sector we have

(
M0

−
)
=
λAλ√

2




vsvu
vd

vs vu

vs
vsvd
vu

vd

vu vd
vuvd
vs


 , (7.29)

which leads to

(mA0)2 = µAλ

(
vd
vu

+
vu
vd

+
vuvd
v2s

)
. (7.30)

The charged Higgs mass at tree-level reads

(mH±)2 =M2
W +

λAλ
√
2

sin 2β
vs −

λ2

2
v2. (7.31)

Then it is important to consider radiative corrections in the Higgs sector. To do that
two method will be used. In chapter 8 we will just add radiative corrections in the
unitary gauge through a Coleman-Weinberg potential [358]. In chapter 9 an effective
Lagrangian approach following the method used in the NMSSM [359] will be considered.
The CP-even squared mass matrix is diagonalised by a 3×3 unitary matrix Zh which
gives the mass eigenstates (ordered in mass) by (h1, h2, h3)

T = Zh
T (φd, φu, σ)

T . As we
saw there is only one pseudoscalar Higgs boson. The relation between the Goldstone
of the Z and Z ′ bosons, A0 and the basis of the Higgs fields is given by a 3×3 unitary
matrix ZA : (GZ , GZ′ , A0)T = ZA

T (ϕd, ϕu, ξ)
T .

Because of the constraints on the new boson that we will presented in section 7.4,
we typically find a Higgs spectrum which consists on a SM-like CP-even Higgs boson, a
heavy mostly doublet scalar which is almost degenerate with the pseudoscalar and the
charged Higgs, and finally a predominantly singlet scalar. Note that the mass of the
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pure singlet mS ≈ g′1Q′2
S vs and is therefore close to that of MZ2 when vs ≫ vu, vd. The

hierarchy in the mass of the heavy doublet and the singlet depends on the parameters
of the model. For large values of Aλ and λ (and therefore µ) the mass of the heavy
Higgs doublet increases and can exceed that of the singlet. Furthermore the Higgs
mixing increases, however the singlet component of the light state is usually not large.
Although the lightest scalar Higgs boson is usually SM-like, it can be significantly heavier
than in the MSSM. Indeed the upper bound on the Higgs boson mass receives two types
of additional contributions as compared to the MSSM, one proportional to Aλ that is
also found in the NMSSM and which enters in the SSB part of the potential in eq 7.21,
and the other from the introdution of the new symmetry which implies new D-terms.
The upper bound on the lightest Higgs boson mass is thus raised to O(170) GeV [357].

7.3.3 Sfermions

The important new feature in the sfermion sector is that the U(1)′ symmetry induces
some new D-term contributions to the sfermion masses which are added in the diagonal
part of the sfermion matrix defined in eq. 3.39. These contributions read

∆f =
1

2
g′ 21 Q′

f

(
Q′
Hd
v2d +Q′

Hu
v2u +Q′

Sv
2
s

)
, (7.32)

where f ∈ {Q, u, d, L, e, ν}.
The new D-term contribution can completely dominate the sfermion mass, especially

for large values of vs. Those are found in particular when θE6 ≈ 0. The D-term
contribution can induce negative corrections to the mass, so that light sfermions can be
found even when the soft masses are set to 2 TeV. For θE6 > 0, ∆ν < ∆Q,u,e < ∆L,d

so that a universal soft mass term for the sfermions at the weak scale naturally leads
to a RH sneutrino as the lightest sfermion, which is useful if we want to consider it as
the LSP. Furthermore the NLSP will be the RH slepton or the stop if a large mixing
decreases the mass of the lightest t̃. On the other hand for θE6 < 0, ∆ν > ∆Q,u,e > ∆L,d

so the sneutrino cannot be the LSP with universal soft sfermion masses at the weak
scale. However in general one expects non-universality in sfermion masses at the weak
scale even if universality is imposed when the model is embedded in a GUT scale model.
In particular the RH sleptons, whose RGEs are driven only by U(1) couplings have the
smallest soft terms at the weak scale. Therefore as long as ∆ν is not much larger than
for other sfermions, it is still natural that the RH sneutrino be the lightest sfermion.
Then in chapter 8 we analyse this sort of LSP as a thermal DM candidate.
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7.3.4 Neutralinos

In the UMSSM the neutralino mass matrix in the basis (B̃, W̃ 3, H̃d, H̃u, S̃, B̃′) reads

Mχ0 =




M1 0 −MZcβsW MZsβsW 0 0

0 M2 MZcβcW −MZsβcW 0 0

−MZcβsW MZcβcW 0 −µ −λ vu√
2

Q′
Hd
g′1vd

MZsβsW −MZsβcW −µ 0 −λ vd√
2

Q′
Hu
g′1vu

0 0 −λ vu√
2

−λ vd√
2

0 Q′
Sg

′
1vs

0 0 Q′
Hd
g′1vd Q′

Hu
g′1vu Q′

Sg
′
1vs M ′

1




.

(7.33)
Diagonalisation by a 6×6 unitary matrix Zn leads to the neutralino mass eigenstates :

χ0
i = Znijψ

0
j , i,j ∈ {1, 2, 3, 4, 5, 6}. (7.34)

Several studies were done to analyse the neutralino sector in the UMSSM [360, 361]. As

in the NMSSM S̃ LSP was studied [362, 363, 364], and more generally the neutralino
LSP as a viable DM candidated in the UMSSM was obtained [365, 366]. The chargino
sector is identical to that of the (N)MSSM.

7.4 Constraints on the UMSSM

As in the case of the other supersymmetric models, the UMSSM is constrained using
several observables : DM observables, Higgs boson mass bounds, constraints on sparticle
masses as well as low energy observables. The first ones, focused here to the relic density
and the Direct Detection of DM, will be used in the next two chapters while sparticle
constraints will be divided into two categories : LEP constraints on sparticles will be
always taken into account, whereas most LHC constraints will be avoided assuming that
coloured sparticle masses are above current LHC limits on simplified models. For low
energy observables, chapter 8 will only consider the ∆Ms and ∆Md observables. In
chapter 9, the effects of a more larger set of low energy observables in the context of
the UMSSM, namely several B-physics observable, the anomalous magnetic moment of
the muon and ∆ρ will be discussed. However the UMSSM scenario has also a specific
feature that leads to important constraints. This feature, a new gauge symmetry, is
reflected in a new gauge boson whose experimental and observational implications are
now dicussed.

7.4.1 Collider constraints on the Z ′

The main constraint that will be used in the next two chapters comes from the direct
collider searches for a Z ′ resonance. The new Abelian gauge boson can be produced
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directly in pp and pp̄ collisions and is searched primarily using leptonic decay modes
since they provide very clean signals without much background. The results from the
LHC experiments are now pushing the mass of this particle well above the TeVs.
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Figure 7.2: Limits on the Z ′ boson. Panel (a) presents the upper limit obtained by
CMS on the ratio Rσ of cross section times branching ratio into lepton pairs for a new
gauge boson as compared to the same quantity for the Z boson. Two cases are considered
for the Z ′ : the sequential SM and the U(1)ψ model. Panel (b) shows the upper limit
obtained by ATLAS on the cross section times branching ratio into lepton pairs for a
new gauge boson : the sequential SM as well as the U(1)ψ and the U(1)χ models. Plots
obtained respectively from [367] and [368].

Figure 7.2 shows the current best limits obtained by the CMS and the ATLAS collab-
orations on specific U(1)′ models. CMS limits were derived using 20.6 fb−1 (19.6 fb−1)
of data in the µ+µ−(e+e−) channels and ATLAS bounds were obtained using 20 fb−1 of
data in the ℓ+ℓ− = µ+µ−, e+e− channels, both at

√
s = 8 TeV. If we focus on the U(1)ψ

model, CMS is able to exclude2 a Z ′ below 2.6 TeV at 2σ and ATLAS gives a 2σ lower
bound of 2.38 TeV. This puts really stringent constraints on our model. Nevertheless
these bounds were derived assuming the Z ′ decays only into SM particles. In our case,
the Z2 can also decay into supersymmetric particles, into RH neutrinos and into Higgs
bosons, thus reducing the branching ratio into leptons. The limits on the Z2 mass are
therefore weakened [369, 370, 371]. To take this effect into account we determined the
modified leptonic branching ratio for each point in our studies and have re-derived the
corresponding limits. It is also possible to significantly weaken these limits by consider-
ing through kinetic mixing a leptophobic Z ′ [372, 373, 374].

2Here we denote Z ′ as the experimentally sought gauge boson; in our UMSSM model it corresponds
to the Z2 mass eigenstate.
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7.4.2 Other constraints on Z ′ physics

There are other methods to constrain the Z ′ mass and the mixing with the Z boson. For
instance from the modification of low energy neutral currents, experiments examining
atomic parity violation due to Z ′ interaction between the nucleus and the electrons could
be competitive with collider limits for some U(1)′ models [375, 376].

EW precision measurements provide extremely relevant constraints in the context of
the UMSSM. We saw in section 7.3.1 that the αZ mixing angle between Z and Z ′ has
to be very small. The mixing between these two bosons gives also contributions to the
∆ρ parameter which can be non-negligible [372].

BBN can provide the most stringent limits on the Z ′ mass when the RH neutrinos
are charged under U(1)′, as considered here. Actually such RH Dirac neutrinos can
be produced by Z ′ interactions prior to BBN leading to a faster expansion rate of the
Universe and to too much 4He. For example in [377] the lower bound on the Z ′ mass, in
some scenarios and assuming a given effective number of neutrinos, can go up to 4 TeV.
With the latest results of the Planck experiment these limits could be updated.

For more informations on Z ′ physics see [378].
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This chapter is largely based on the article [379] with a few added details. Since this
work was done two years ago a lot of new experimental data become available (Higgs
boson discovery, Z ′ searches, DM observables). A brief discussion on the impact of the
new results will be given after the presentation of the original study. This would actually
need a new study, including more constraints.

8.1 Introduction

The MSSM contains two neutral weakly interacting particles that could be DM candi-
dates, the neutralino and the LH sneutrino. While the neutralino has been extensively
studied and remains one of the favourite DM candidates [380, 381, 382, 383, 384], the
LH sneutrino faces severe problems. The sneutrino coupling to the Z boson induces
a cross section for elastic scattering off nuclei that can exceed the experimental limit
by several orders of magnitude [385]. In particular the bounds from CDMS [386] or
XENON100 [387] cannot be satisfied even for a LH sneutrino mass above 1 TeV. Fur-
thermore the sneutrino annihilation rate is usually too rapid to provide enough DM [385].

The observation of neutrino oscillations indicative of massive neutrinos gives a nat-
ural motivation for adding a RH neutrino to the SM fields as we saw in section 1.2.1.
Extending the MSSM with RH neutrinos and their supersymmetric partners provides
then an alternate DM candidate, the RH sneutrino (RHSN). The smallness of the neu-
trino masses is usually explained by introducing Majorana mass terms and making use
of the see-saw mechanism. The natural scale for the RH neutrinos is generally around
1012 GeV so that RH neutrinos are too heavy to play a direct role in physics below
the TeV scale and so are their supersymmetric partners. Note however that the in-
verse see-saw mechanism proposes scenarios with RH Majorana neutrinos at the TeV
scale [388, 389]. We will not consider these scenarios. It is also possible to generate
neutrino masses through Dirac mass terms at the expense of introducing some large hi-
erarchy among the fermions. In this case the supersymmetric partners of the neutrinos
are expected to be, as for other sfermions, at the SUSY breaking scale, i.e. around or
below 1 TeV. In this framework the RH sneutrino can be the LSP. This is the scenario
we will consider here.

To make a RHSN LSP a viable DM candidate requires special conditions. The RH
sneutrino being sterile under SM gauge interactions cannot be brought into thermal
equilibrium1. Nevertheless several proposals for sneutrino DM have emerged including
mixed sneutrinos [394, 395, 396, 397, 398, 399, 272], RHSN in models with Dirac mass
terms that result from the decay of thermal equilibrium MSSM particles [390, 391],
DM from a RH sneutrino condensate [400], sneutrinos in inverse see-saw models [401,
402, 403, 404] or RHSN in extensions of the MSSM [405, 406, 407, 408, 409, 410, 411,
412]. The RHSN Dark Matter was also considered in hybrid inflationnary models [413].
Extending the gauge group provides another alternative as the RHSN can reach thermal

1Note however that non thermal mechanisms can make a mostly sterile sneutrino a good DM can-
didate [390, 391, 392, 393].
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equilibrium because it couples to new vector and/or scalar fields [414, 354, 404]. For
example an additional U(1)′ gauge symmetry provides new couplings of the sneutrino
with the Z ′ as well as to new scalar fields. In this framework annihilation of pairs of
RH sneutrino can be efficient enough to obtain Ωh2 ≈ 0.1. The annihilation is specially
enhanced when the particle exchanged in the s-channel is near resonance. Furthermore
the elastic scattering cross section of the RHSN is naturally suppressed by several orders
of magnitude as compared to the MSSM sneutrino as on the one hand the couplings to
the EW scale particles (the Z and the light Higgs boson) are strongly suppressed and on
the other hand the Z ′ exchange is suppressed because its mass is above the TeV scale2.
This is the framework that we will study here, within the UMSSM model described in
chapter 7.

In the UMSSM, the DM candidate can either be the neutralino or the sneutrino.
The neutralino was investigated in [349, 365, 348]. We rather concentrate on the RHSN
LSP which is a possible thermal DM candidate when it is charged under U(1)′; in this
case the RH neutrinos are Dirac neutrinos [344].

In [414] sneutrinos annihilation through Z ′ exchange and B̃′ t-channnel exchange
into neutrinos were considered while the interactions through the Higgs sector were
included in [415, 410]. We extend those analyses by including all possible annihilation
and coannihilation channels and by performing a complete exploration of the parameter
space allowing for different choices of the U ′(1) symmetry within the context of an E6

inspired model. Furthermore we take into account early 2011 LHC results on the Z ′, on
supersymmetric particles and on the Higgs sector. Insisting on having a sneutrino LSP,
to complement previous studies that had concentrated on the neutralino case, will lead
to some constraint on the parameter space. In particular the parameters µ and M1,M2

have to be larger than the sneutrino mass in order to avoid an higgsino or a gaugino
LSP. We will generically consider only cases with coloured sparticles above the TeV scale
to easily avoid LHC limits on squarks.

Within the UMSSM with a RHSN Dark Matter candidate, we found a variety of
annihilation channels for the sneutrino, with a predominance of annihilations near a
resonance. The main annihilation processes can be classified as

• Annihilation near a light Higgs boson resonance

• Annihilation near a heavy Higgs boson resonance

• Annihilation near a Z2 resonance

• Annihilation into W/Z pairs through Higgs boson exchange

• Coannihilation with the NLSP, here the NLSP can be neutralino, chargino, charged
slepton or any other sfermion.

Note that annihilation into neutrinos can occur either through Z2 exchange or through
B̃′, S̃ exchange when the latter are near the mass of the LSP. The neutrino channels are

2Note that their signatures in cosmic rays [415, 410] or neutrino telescopes [416] were also explored.
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however never the dominant ones. Finally annihilation of sneutrinos into pairs of new
gauge bosons could also contribute, we will not consider this channel here as it is rel-
evant only for sneutrino heavier than the Z ′, that is above the TeV scale. For such a
heavy sneutrino to be the LSP means that all soft parameters are also above the TeV
scale. These configurations for supersymmetric particles have a restricted parameter
space. For example, very large values of µ often lead to a light Higgs boson mass below
114 GeV. Furthermore when the sneutrino is heavier than the Z ′, the neutralino can
become the LSP. We therefore choose rather to concentrate on the subTeV scale sneutri-
nos. For each scenario we also include an analysis of the DD rate as the SI cross section
of sneutrinos on nucleons turns out to pose severe constraints on a whole class of U(1)′

models.

We will first describe the main particle physics constraints used in this work. Then
the contributions to the relic abundance and the DD rate will be presented. Finally
we will see the results for two sample U(1)′ models which have significant differences
between their sneutrino DM candidate, the U(1)ψ and U(1)η models whose U(1)′ charges
are given in table 7.2, as well as results from a global analysis of the parameter space,
and we will conclude.

8.2 Constraints imposed

The main constraints on the model arise from the gauge boson and Higgs sector. Since
coloured supersymmetric particles do not play a direct role in sneutrino annihilation,
we will generally assume that they are above the TeV scale thus evading the LHC
constraints [417, 301].

We used the ATLAS exclusion limits published in [418] obtained with an integrated
luminosity of L = 1.01(1.21) fb−1 in the e+e−(µ+µ−) channels. These limits are extracted
using different U(1)′ models. In the two models we will consider for the phenomenological
analysis the bounds3 are similar, withMZ2 > 1.49 TeV for U(1)ψ andMZ2 > 1.54 TeV for
U(1)η. As explained in section 7.4.1 these bounds were derived assuming the Z2 decays
only into SM particles and we then re-derived the limits since we have new decays of
the Z2 in the UMSSM.

Because of EW precision measurements we will typically set for the study of some
benchmark points the mixing angle αZ to |αZ | ≤ 0.001.

The Higgs sector was constrained in the early 2011 as follows. The SM-like Higgs
boson was constrained by LEP to be above 114 GeV [419] and by LHC searches to be
below 144 GeV [420]. These limits can be relaxed when the Higgs couplings to gauge
bosons are reduced due to the mixing with the singlet. In the parameter space explored,
the singlet component is small and the limit is not modified significantly. The upper
limit can also be relaxed if the Higgs boson has a large branching fraction into invisible
particles. The relic density constraint imposes that light sneutrinos have a mass very
near mh1/2. Despite a phase space suppression factor, the contribution of the invisible

3Note the impressive improved limits now obtained at the LHC as shown in figure 7.2.
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mode to the light Higgs boson decay can in some cases reach 90% for light sneutrinos,
thus relaxing the constraint on the lightest Higgs boson. When imposing a limit on
the light Higgs boson mass, we have folded in the effect of the invisible decay modes
therefore allowing in a few cases a light Higgs boson heavier than 144 GeV. Note that
we introduced radiative corrections to the Higgs boson masses to get relevant SM-like
Higgs boson masses.

Observables in the B sector provide powerful constraints on the supersymmetric pa-
rameter space assuming MFV. The measured values in 2011 of the mass differences
of B mesons, ∆Ms and ∆Md, are respectively 17.63 ± 0.11 ps−1 [421] and 0.507 ±
0.004 ps−1 [422], somewhat below SM predictions given in [423] :

∆MSM
s = 20.5± 3.1 ps−1,

∆MSM
d = 0.59± 0.19 ps−1. (8.1)

Additional supersymmetric contributions of the same sign as the SM ones are there-
fore strongly constrained, even though there are large uncertainties in the SM predic-
tion mainly due to the CKM matrix elements and hadronic parameters. Supersym-
metric contributions include box diagrams with for instance charged Higgs/quark or
squark/chargino loops [424] as well as double penguin diagrams with a neutral Higgs
boson exchange. The latter give a significant contribution for large values of tan β
and were not included in our analysis. The former are important at small values of
tan β which are often found in the UMSSM. In particular the charged Higgs/quark
box diagram contribution adds to the SM contribution inducing too large values for
∆Ms. One of the dominant contributions, for small values of tan β, is proportional to
x ln x(cot4 β), where x = m2

t/m
2
H± . This observable thus constrains severely scenarios

with tan β < 1. The computation of the mass difference is adapted from the routine
provided in NMSSMTools [423]. We have also used the same estimate for the theoretical
uncertainties. Note that we will more carefully look at this mass differences calculation
in chapter 9.

Other observables such as B(B̄0 → Xsγ), B(B0
s → µ+µ−) or B(B± → τ±ντ ) are

known to receive large supersymmetric contributions when tan β is large, the heavy Higgs
doublet is light and/or the squarks are light. The scenario we will study have heavy
squarks, Higgs doublets above several hundred GeV’s and features small to moderate
values of tan β, we therefore have not included these constraints. However it could be
interesting to check if this choice is safe. As for ∆Ms and ∆Md, we will consider these
observables in chapter 9.

8.3 Relic abundance of sneutrinos

The RH sneutrino couples very weakly to the MSSM particles, its annihilation is there-
fore primarily through the particles of the extended sector, the new vector boson Z2

(figure 8.1c) and new scalars (panel (a) and (b) of figure 8.1). The coupling of the
RHSN to Z2 is directly proportional to its U(1)′ charge, Q′

ν :

gZ2ν̃Rν̃
∗
R
= g′1Q′

ν cosαZ , (8.2)
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Figure 8.1: Main annihilation processes for RH sneutrinos, with i ∈ {1, 2} for panel
(b).

with cosαZ ≈ 1. Annihilation of sneutrinos becomes efficient when mν̃R ≈ MZ2/2 since
the s-channel processes can benefit from resonance enhancement.

Sneutrino annihilation also become efficient when mν̃R ≈ mhi/2 where hi can be any
neutral CP even Higgs field. The coupling of the sneutrino to neutral scalars reads

ghiν̃Rν̃∗R = −g′ 21 Q′
ν

[
vdQ′

Hd
Zhi1 + vuQ′

Hu
Zhi2 + vsQ′

SZhi3
]
. (8.3)

Since vs ≫ v, the largest coupling will be to the predominantly singlet Higgs, for which
Zhi3 ≈ 1. Typically the singlet Higgs boson is the one that has a mass close to Z2,
resonant Higgs annihilation will therefore occur for roughly the same sneutrino mass
as the resonant annihilation through Z2. The light Higgs boson is dominantly doublet,
nevertheless its coupling to sneutrinos receives contributions from all three terms in
eq. 8.3 since vs ≫ v. This coupling is generally sufficient to have a large cross section
enhancement near mν̃R ≈ mh1/2. In some cases efficient annihilation can occur away
from the resonance, for example annihilation into W/Z pairs through light Higgs boson
exchange or, for heavier RHSN’s, into light Higgs boson pairs or tt̄ pairs through singlet
exchange. Note that the sneutrino coupling to the lightest Higgs boson depends on λ
(µ), an important parameter to determine the mixing of Higgs bosons. For some choice
of parameters, the couplings of the mostly doublet h1 to the RHSN can be strongly
suppressed, not allowing a large enough enhancement on the annihilation cross section.
Specific examples will be presented in section 8.5.

Sneutrinos can also annihilate in neutrino pairs through t-channel exchange of B̃′ in
addition to the usual Z2 contributions. This process contributes mostly for light B̃′ and
is never the dominant channel. Finally it is also possible to reduce the abundance of
sneutrinos through coannihilation processes, this occur when the masses of the NLSP and
the LSP are within a few GeV’s. Coannihilation can occur with neutralinos, charginos or
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other sfermions. Typically, because there is only weak couplings of the RH sneutrino to
the rest of the MSSM particles, coannihilation processes involve self-annihilation of the
NLSP’s and/or NLSP/Next-to-NLSP annihilation. The neutralino NLSP will decay via
χ0
1 → ν̃RνR with a typical lifetime of 10−19 − 10−17s except when it is almost degenerate

with the sneutrino LSP which can lead to an increase of lifetime. The NLSP decay will
always occur much before BBN and will not spoil its predictions.

8.4 Direct Detection

ν̃R ν̃∗
R

q q̄

Z1, Z2

ν̃R ν̃∗
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q q̄

h1

(a) (b)

Figure 8.2: Main scattering processes of the RH sneutrino.

The cross section for scattering of sneutrinos on nucleons will be purely Spin Inde-
pendent as the sneutrino is a scalar particle. This process receives contributions from
only two types of diagrams : exchange of gauge or Higgs bosons. The gauge boson
contribution (figure 8.2a) depends on the vectorial coupling of the fermions f to Z1,2,

with Qf
V = If3 − 2Qf sin2 θW for Z and Q′f

V = Q′
f − Q′

f̄
for Z ′ where f ∈ {Q,L} and

f̄ ∈ {u, d, ν, e}. The total gauge boson contribution to the SI cross section on point-like
nuclei reads

σ
SI,Z1,2

ν̃RN
=
µ2
ν̃RN

π
(g′1Q′

ν)
2
[(
y(1− 4 sin2 θW ) + y′

)
Z + (−y + 2y′)(A− Z)

]2
, (8.4)

where here A and Z are respectively the number of nucleons and protons inside the
nucleus and

y =
gY sinαZ cosαZ

4 sin θW

(
1

M2
Z2

− 1

M2
Z1

)
,

y′ = −g
′
1

2
Q′d
V

(
sin2 αZ
M2

Z1

+
cos2 αZ
M2

Z2

)
,

with Q′d
V = −4/

√
40 cos θE6 . The calculation is given in appendix A. The contribution

in 1/M2
Z2

in y and the one proportional to sin2 αZ in y′ are always suppressed. From
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table 7.2 one sees that all fermions have purely axial-vector couplings to Zψ and that
u-quarks also have purely axial vector couplings to Zχ. Therefore the Z ′ contribution
is solely dependent on its coupling to d-quarks, hence the term in Q′d

V in y′. This
contribution is expected to be twice as large for neutrons than for protons, see eq. 8.4.
In the model U(1)ψ, y

′ = 0 and the cross section will depend on the Z1 exchange
contribution. In this case the amplitude for protons is suppressed by a factor 1−4 sin2 θW
as compared to that for neutrons. Furthermore the Z1 contribution proceeds through
the Z ′ component so that the cross section is proportional to sin2 αZ . When cos θE6 6= 0
the term in y′ usually dominates by about one order of magnitude for a TeV scale Z2

and the mixing angle αZ = 10−3. In these scenarios only a weak dependence on αZ
is expected, the largest cross sections are expected for θE6 ≃ 0 corresponding to the
maximal value of Q′d

V as can be seen in figure 7.1 with Q′
Q in red and Q′

d in green.
The Higgs contribution leads to a cross section

σSI, hi
ν̃RN

=
µ2
ν̃RN

4π

∑

i

g2hiν̃Rν̃∗R
m4
hi
m2
ν̃R

(
(A− Z)

∑

q

ghiqq̄f
n
q mn + Z

∑

q

ghiqq̄f
p
qmp

)2

, (8.5)

where ghiqq̄ = −eZhi1/(2MW sW cβ) is the Higgs coupling to quarks after the quark mass
has been factored out and ghiν̃Rν̃∗R is defined in eq. 8.3.

Because of the dependence on the Higgs boson mass and the fact that the Higgs
coupling to quarks goes only through the doublet component, the lightest Higgs doublet
generally gives the dominant contribution (figure 8.2b). Note that the Higgs contribution
is inversely proportional to the square of the sneutrino mass and is therefore expected to
dominate at low masses since the Z1,2 contribution depends only weakly on the sneutrino
mass through the effective mass, µν̃RN . Furthermore the Higgs contribution is roughly
the same for neutrons and protons. The quark coefficients of the nucleon were taken
to be the default values in micrOMEGAs 2.4 (with f pu,d,s = 0.033, 0.023, 0.26 and fnu,d,s =
0.042, 0018, 0.26) [92]. There can be large uncertainties in these coefficients and recent
lattice results lead to lower values for the f ’s, in particular with the parameters given in
section 3.5.1.1. However the quark coefficients will have a significant impact only when
the Higgs contribution is dominant, that is for sneutrinos below ≈ 100 GeV.

The total SI cross section on point-like nucleus is obtained after averaging over the
sneutrino and anti-sneutrino. Note that the interference between the Z1,2 and Higgs
boson exchange diagrams have opposite signs for ν̃RN and ν̃∗RN . Here we assume equal
numbers of sneutrino and anti-sneutrinos so that the total cross section is the sum of the
Z1,2 and Higgs boson contributions. To take into account the fact that the proton and
neutron contributions are not necessarily equal, we compute the normalized cross-section
on a point-like nucleus,

σSI
ν̃RN

=
4µ2

ν̃RN

π

(Zfp + (A− Z)fn)
2

A2
, (8.6)

where the average over ν̃R and ν̃∗R is assumed implicitly. This cross-section can be directly
compared with the limits on σSI

χp that is extracted from each experiment.
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We first implemented the model in LanHEP [425, 426] in both unitary and Feynman
gauges and checked gauge invariance for a large number of processes at tree-level. We
then introduced radiative corrections to the Higgs boson masses in the unitary gauge.
The dominant radiative corrections from top quarks and stops are listed in appendix B.
This code then produces the model file for CalcHEP [427, 428] and micrOMEGAs which
thus allows to study the DM properties in the UMSSM, namely the DD cross section as
well as the relic abundance of RHSN. To check the gauge invariance involved two other
sectors of the UMSSM : the gauge fixing sector and the ghost sector. They are detailed
in appendix C.

8.5 Results

The free parameters of the model are mν̃R , µ,M1,M2,M
′
1, Aλ,MZ2 , θE6 , αZ , as well as all

masses and trilinear couplings of sleptons and squarks. To reduce the number of free
parameters we fix those that do not belong to the sneutrino or neutralino/Higgs sectors.
We thus fix the soft masses of sleptons and squarks to 2 TeV and we take Af = 0 and
At = 1 TeV. We furthermore assume M1 =M2/2 =M3/6 as dictated by universality at
the GUT scale. Therefore the free parameter space considered is

{mν̃R , µ,M1,M
′
1, Aλ,MZ2 , αZ , θE6}.

We first consider specific choices of θE6 before letting it be a free parameter.

8.5.1 The case of the U(1)ψ model

As we have discussed above, we expect the relic abundance of the sneutrino DM to
be generally too high. The only processes to bring the abundance within the range
preferred by the WMAP experiment, i.e. Ωh2 = 0.1123±0.0035 [209], will be to enhance
the annihilation through a resonance effect or make use of coannihilation. We will first
describe the typical behaviour of Ωh2 as a function of the ν̃R mass for fixed values of the
free parameters. Once θE6 is fixed the parameters that have a strong influence on DM are
MZ2 the mass of the new gauge boson, Aλ that influence the Higgs spectrum, as well as
µ and M1 that determine the region where the sneutrino is LSP through their influence
on the neutralino mass. The parameter µ also influences the Higgs mixing matrix and
therefore the coupling of the Higgs bosons to sneutrinos. To limit the number of free
parameters we will first fix M1 = M ′

1 = 1 TeV and rather modify the property of the
neutralino NLSP by varying µ. Furthermore allowing to have µ < M1 will cover the
case of the higgsino NLSP which has much higher annihilation cross section than the
bino and is therefore more likely to play an important role in coannihilation channels.

8.5.1.1 A case study with MZ2 = 1.6 TeV

We first consider the case where the new gauge boson is just above the LHC exclusion
limit, that isMZ2 = 1.6 TeV and we fix µ = 1 TeV, αZ = −0.001 and Aλ = 1.5 TeV. For
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this choice of parameters, the mass spectrum is such that h2 is dominantly singlet and
has roughly the same mass as the Z2 while the other heavy Higgs bosons (h3, A

0, H±)
are nearly degenerate with a mass around 1.97 TeV. The light Higgs boson has a mass
of 136.6 GeV and is safely above the LEP limit despite the small value of tan β = 2.05.
The lightest neutralino has a mass of 957 GeV and is a mixture of bino and higgsino.
The sneutrino is therefore the DM candidate when its mass ranges from a few GeV’s
up to the mass of the lightest neutralino. The value of Ωh2 lies below the WMAP
upper bound in two regions, the first when 60GeV ≤ mν̃R ≤ 69GeV the second when
734GeV ≤ mν̃R ≤ 805GeV. In both regions the annihilation cross section is enhanced
significantly by a resonance effect. In the first region the h1 exchange is enhanced and
the preferred annihilation channel is into bb̄ pairs while in the second region the h2
and Z2 exchanges are enhanced with a dominant contribution from h2. The preferred
annihilation channels are intoW+W−, tt̄, h1h1, Z1Z1 pairs, the dominant decay modes of
h2. Note that the decays into gauge bosons proceed through the small doublet component
of h2. For larger masses of the sneutrino, coannihilation with the lightest neutralino can
take place. Coannihilation processes involving pairs of neutralinos annihilating through
the heavy pseudoscalar Higgs boson can decrease Ωh2 such that the WMAP upper bound
is satisfied. This occurs when the NLSP-LSP mass difference drops below 60 GeV.

(a) (b)

Figure 8.3: Ωh2 as a function of the LSP mass for MZ2 = 1.6 TeV. Panel (a) has
µ = 1 TeV, (Aλ (TeV), αZ) = (1.5,−10−3), (0.1,−10−3), (2., 10−4) whereas panel (b)
corresponds to µ = 1.5 TeV, (Aλ (TeV), αZ) = (1.4,−10−3), (1.4,−10−4) and µ =
0.7 TeV, (Aλ (TeV), αZ) = (0.6,−10−3). Full (dash) lines correspond to the region
where the LSP is the RHSN (neutralino).

This general behavior is somewhat influenced by our choice of Aλ, µ and αZ since
these parameters influence the masses and mixings of the Higgs doublets and the cou-
plings of sneutrinos to Higgs bosons. For example for Aλ = 100 GeV, the mass of the
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heavy doublet (which is now h2) decreases to 592 GeV. The h2/A
0 exchange contributes

to sneutrino annihilation into top pairs thus leading to a decrease of the value of Ωh2 as
one approaches the Higgs resonance, the drop is not significant enough to bring the relic
density below the WMAP upper bound, see figure 8.3a. As another example consider
the case Aλ = 2 TeV and αZ = 10−4. Here the h1ν̃Rν̃

∗
R coupling is suppressed, Ωh2

becomes very large and despite a resonance effect when mν̃R ≈ mh1/2 the WMAP upper
bound can never be satisfied for a sneutrino lighter than 100 GeV, see the green line in
figure 8.3a.

The parameter µ induces corrections to the light Higgs mass as well as shifts in the
Higgs mixing matrix. In particular increasing µ (and therefore λ) to 1.5 TeV increases
the singlet mixing in the light Higgs boson and thus the h1ν̃Rν̃

∗
R coupling. This makes

annihilation processes through Higgs exchange more efficient, and gives rise to a new
region where Ωh2 is below the WMAP upper bound when the sneutrino mass is just
above the W pair threshold, see figure 8.3b with Aλ = 1.4 TeV. Note that in this
case the lightest neutralino has a large bino component and coannihilation is not very
efficient. Lowering µ to 700 GeV changes the nature of the lightest neutralino which
becomes dominantly higgsino with its mass determined by µ. Thus the range of masses
where the sneutrino is the LSP becomes narrower. In fact the singlet Higgs boson/Z2

pole annihilation region cannot be reached when the sneutrino is the LSP, the region
compatible with WMAP is rather one where higgsino coannihilation dominates. For the
green line in figure 8.3b, one can see a significant drop in Ωh2 near the h2 resonance,
this is however not sufficient to have efficient annihilation of the RHSN.

(a) (b)

Figure 8.4: σSIν̃RXe as a function of the LSP mass for the same parameters as figure 8.3.
The XENON100 exclusion curve is also displayed.

The Direct Detection Spin Independent cross section receives contributions from
both the light Higgs boson and Z1 exchange. In general for the U(1)ψ scenario, the
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cross-section is below the limits from XENON100 [387]. As we have argued above, this
is because the Z1 contribution is directly proportional to sin2 αZ . This contribution
nevertheless dominates for a mixing angle |αZ | = 10−3 except for small masses. It
gives σSIν̃RXe = 1.4 × 10−10 pb for mν̃R ≥ 200 GeV and is mostly independent of other
input parameters, see figure 8.4a,b. Furthermore the Z1 contribution is much larger for
neutrons than for protons. We take that into account by computing the cross section
for scattering on point-like nucleons (here we use Xenon) normalized to one nucleon.
For masses in the range 50 − 100 GeV, the SI cross section is enhanced due to the
light Higgs exchange contribution which increases at low sneutrino masses, although for
this scenario the values are always below the experimental limit. The predictions are
in the range σSIν̃RXe = 2 × 10−10 − 3 × 10−10 pb for αZ = −10−3. The SI cross section
drops rapidly with the mixing angle, for example for αZ = |10−4|, σSIν̃RXe ≃ 10−12 pb for
mν̃R ≥ 200 GeV, see figure 8.4a. For small values of the mixing angle, the Z1 contribution
is suppressed and the Higgs boson contribution can become dominant even for masses
of a few hundred GeV’s, this however corresponds to a low overall cross section, see for
example figure 8.4b. The SI cross section can be further suppressed in the limit αZ = 0
and for parameters for which the h1 coupling to sneutrino is suppressed.

8.5.1.2 Exploration of U(1)ψ parameter space

After having described the general behavior of Ωh2 and of the DD rates for some choice
of parameters, we now search for the region in the parameter space that are compatible
with 0.1018 < Ωh2 < 0.1228 corresponding to the WMAP 3σ range [209] as well as with
the DD limit of XENON100 [387]. We have further imposed the limits on the Higgs
sector from LEP and the LHC and have taken into account the impact of the invisible
decay mode of the Higgs boson. We have also used limits on sparticles from LEP as
implemented in micrOMEGAs. Note that since we are only considering the case of heavy
sfermions, these limits as well as the LHC limits on sparticle masses do not come into
play [301, 417]. Finally we have also imposed the constraints from ∆Md,s. We have
performed random scans with 5 × 106 points. The ranges for the parameters are listed
in table 8.1. As before we here fix all sfermion masses to 2 TeV and neglect all trilinear
couplings with the exception of At = 1 TeV. Note that we impose µ > 0 and therefore
consider only positive values for Aλ, see eq. 7.30.

The results of the scan as displayed in figure 8.5 show that the allowed values for mν̃R

cover a wide range from 55 GeV to the largest value probed. The allowed points in the
plane mν̃R −MZ2 are clustered in three regions around mν̃R ≈ 60 GeV, around mν̃R ≈
MZ2 −δ (+δ′) with δ ≈ 70 GeV (δ′ ≈ 10 GeV, see figure 8.5a), and mν̃R ≈ 90−100 GeV.
The first two are characterized by the main annihilation mechanism near a resonance.
The latter corresponds to annihilation through a Higgs boson exchange. As discussed
above, this requires a large value for µ, see figure 8.5b. The remaining allowed scenarios
correspond to mν̃R ≈ mχ0

1
. In most cases the NLSP is an higgsino and mν̃R ≈ µ, see

figure 8.5b, then important contributions from coannihilation processes involving neutral
and charged higgsinos annihilating into fermion pairs are to be added to the sneutrino
annihilation processes dominated by the channels intoW+W−, ZZ through Higgs boson
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Parameter Range

mν̃R [0, 1.5] TeV

MZ2 [1.3, 3] TeV

µ [0.1, 2] TeV

Aλ [0, 2] TeV

αZ [-0.003, 0.003] rad

M1, M
′
1 [0.1, 2] TeV

Table 8.1: Range of the free parameters in the U(1)′ models .

exchange. Because µ is constrained by the LEP limit on charginos, the RHSN mass is
in this case heavier than ∼ 90 GeV. A few cases where the NLSP has an important bino
component are also found, those correspond to the points above the line µ ≈ mν̃R in
figure 8.5b. Note that figure 8.5a illustrates the possibility to relax the bounds on MZ2

in the UMSSM. Indeed several scenarios in the range [1.40, 1.49] TeV are allowed when
we re-derived the limits. The reason is that for the U(1)ψ model the Z2 decays into
supersymmetric particles can reach up to 20% especially in cases where the sneutrino is
light (hence neutralinos can be light as well) while decays into Higgs and gauge bosons
are typically below 10%.

(a) (b)

Figure 8.5: The allowed scenarios in the MZ2 vs. mν̃R plane (panel (a)) and in the
µ vs. mν̃R plane (panel (b)). Points excluded by the ∆Md,s constraint are displayed in
red.
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In this model, the cross section for LSP scattering on nuclei is dominated by either
Higgs or Z1 exchange and is mostly independent of MZ2 . The Direct Detection cross
section can reach at most σSIν̃RXe = 2 × 10−9 pb when mν̃R ≈ 50 − 60 GeV and the
light Higgs exchange dominates while the maximal value is only σSIν̃RXe ≈ 5 × 10−10 pb
for sneutrinos above 200 GeV when Z1 exchange is dominant. These predictions are
much below the exclusion limits of XENON100 [387]. Values below σSIν̃RXe = 10−13 pb
can also be obtained, these occur when the Z1 contribution is suppressed by the small
mixing angle and the light Higgs coupling to the LSP is suppressed as well. Cases where
coannihilation processes dominate can also lead to small cross sections.

Constraints from ∆Md,s rule out some parts of the parameter space, in particular
the case where αZ > 0 since it leads to values of tan β < 1. The allowed points in
the tan β − αZ plane are displayed in figure 8.6b. As mentioned in section 8.2, when
tan β is small the charged Higgs box diagram adds to the SM contribution and leads to
value for ∆Ms that is too large. This constraint does not influence directly the range of
predictions for the DD cross section presented in figure 8.6a, nor does it affect the range
of allowed masses for the RHSN.

(a) (b)

Figure 8.6: (a) σSIν̃RXe as a function of the LSP mass for the allowed scenarios in the
U(1)ψ model. (b) Allowed scenarios in the tan β − αZ plane. Points excluded by ∆Ms

are displayed in red.

8.5.2 The case of the U(1)η model

The properties of the RHSN Dark Matter are dependent on the choice of the U(1)′

charges. To illustrate some of the differences we present results for θE6 = − arctan
√
5/3

(U(1)η) before discussing arbitrary values in the next section. We chose this model for its
phenomenological properties. For this value of θE6 , the coupling of the sneutrino to Z2
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is enhanced as compared to the previous example with Q′
ν = −

√
5/2

√
3. Furthermore

the coupling of the RHSN to h1 is typically enhanced as compared to the model U(1)ψ.
Finally the vectorial couplings of Z ′ to neutrinos and d-quarks are non-zero. Therefore
both terms in eq. 8.4 can contribute to the SI cross section, this implies a DD cross
section that is much larger than found previously. Nevertheless the vectorial couplings
of Z1 are far enough from their maximal value that it is possible to find scenarios that
satisfy Direct Detection limits as will be demonstrated below.

8.5.2.1 A case study with MZ2 = 1.6 TeV

(a) (b)

Figure 8.7: Ωh2 as a function of the LSP mass for (a) MZ2 = 1.6 TeV, µ = 1.5 TeV,
Aλ = 0.5 TeV, αZ = 10−3 and MZ2 = 1.6, 2.5 TeV, µ = 1.8 TeV, Aλ = 1.8 TeV,
αZ = 10−4. The dotted lines correspond to the neutralino LSP. (b) σSIν̃RXe as a function
of the LSP mass for the same choice of parameters.

To illustrate the behaviour of the relic density and the DD rate we choose MZ2 =
1.6 TeV, αZ = 0.001, µ = 1.5 TeV and Aλ = 0.5 TeV. For this choice of parameters
mh1 = 116.9 GeV despite a small value of tan β = 1.2. The other doublet-like Higgs
boson is around 1.3 TeV while h3 is nearly degenerate with Z2. As for the model U(1)ψ,
the relic density satisfies the WMAP upper bound in the regions where annihilation
into light Higgs boson or singlet Higgs/Z2 is enhanced by a resonance effect as well
as in a region where annihilation via h1 exchange is efficient without the benefit of
a resonance enhancement. The latter region extends over a wide range of values for
the LSP mass because of the large couplings of the sneutrinos to h1. The preferred
annihilation channels are typically intoW+W−, ZZ tt̄ or h1h1 pairs as well as into bb̄ for
light sneutrinos. Note also that exchange of h2 can contribute significantly to sneutrino
annihilation, see the small dip at mν̃R = 650 GeV in figure 8.7a. In this scenario the
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Direct Detection cross section is large (σSIν̃RXe ≈ 4.5 × 10−8 pb for mν̃R ≥ 100GeV) and
exceeds the XENON100 bound for a sneutrino LSP below 550 GeV, see figure 8.7b. This
is because both the Z1 and Z2 contribute significantly to the cross section. Extending
the region of validity of sneutrino DM over a larger mass range after considering DD
limits thus requires decreasing the mixing angle αZ and/or increasing the mass of the Z2.
For example taking αZ = 10−4, µ = Aλ = 1.8 TeV has the effect of decreasing the relic
density - so that it is below the WMAP upper bound for sneutrino masses in the range
90-900 GeV - while also decreasing the SI cross section. Yet the LSP is still constrained
to be mν̃R ≥ 370 GeV. In fact the Direct Detection rate decreases by less than a factor of
two, this is because the contribution of the Z2 exchange, the term proportional to Q′d

V in
eq. 8.4, is not suppressed by sinαZ . This means that to have sneutrino DM with a mass
of a few hundred GeV’s also requires increasing the mass of the Z2. For example taking
MZ2 = 2.5 TeV decreases the Direct Detection rate below the XENON100 exclusion
for all masses of the LSP. However for this choice of parameters, only light sneutrinos
also satisfy the relic density constraint since the heavy sneutrino LSP cannot annihilate
through the singlet/Z2 resonance.

Finally we comment on the coannihilation region. We have fixed M1 = 1 TeV, so
that the lightest neutralino has a mass ≈ 1 TeV and is dominantly bino. For values of
µ ≤ 1 TeV, the lightest neutralino has a large higgsino component and coannihilation is
efficient. For the benchmarks with µ = 1.5 TeV the coannihilation processes involving
binos are not efficient enough to reduce Ωh2 to a value compatible with WMAP.

8.5.2.2 Exploration of U(1)η parameter space

We also explore the parameter space of the U(1)η model, varying the parameters in the
range shown in table 8.1. As before, we impose in addition to limits on Ωh2 and on the
SI cross section, the lower limit on the Higgs boson and Z2 mass, and the limit on ∆Md,s.
The results are displayed in figure 8.8 in the MZ2 −mν̃R plane, as well as in the µ−mν̃R

plane. As we have discussed above, because Higgs boson annihilation is efficient enough,
the sneutrinos are not confined to the hi, Z2 resonance region. Sneutrinos from 100 GeV
to MZ2/2 can satisfy the relic density constraint, either through pair annihilation or
through coannihilation (the region where mν̃R ≈ µ). In the former case large values
of µ are preferred to have large enough couplings of the sneutrino LSP to h1. The
DD cross section is large with a maximum value near σSIν̃RXe ≈ 10−7 pb for the whole
range of LSP masses (see figure 8.9). Because the experimental limits on the DD rate
are more stringent for masses around 80 GeV, light sneutrinos are severely constrained
especially when the Z2 mass is lighter than 2 TeV. The lower bound on the cross section
for MZ2 ≤ 3 TeV is σSIν̃RXe = 2 × 10−9 pb. The typically large Direct Detection rate
is the main signature of this scenario. Several points are also constrained by ∆Ms, in
particular when αZ < 0 which implies tan β < 1. This does not affect the range of values
of sneutrino masses compatible with all constraints. As in the U(1)ψ case the limits on
the Z2 mass (MZ2 > 1.54 TeV) are weakened. In the U(1)η model, the decays into SM
particles is even more suppressed, it never exceeds 65%. This is mainly due to a large
branching fraction into RH neutrinos (around 30%) as well as into sparticles.
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(a) (b)

Figure 8.8: The allowed U(1)η scenarios in the (a)MZ2 vs. mν̃R plane and (b) µ vs. mν̃R

plane. Points excluded by the ∆Md,s constraints are plotted in red, those excluded by
XENON100 are represented in green and those excluded by both constraints are shown
in orange.

(a) (b)

Figure 8.9: (a) σSIν̃RXe as a function of the LSP mass for the allowed scenarios in
the U(1)η model. (b) Allowed scenarios in the tan β - αZ plane, same colour code as
figure 8.8.
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8.5.3 A global scan of the parameter space

Having illustrated the properties of the sneutrino DM in specific models we will next
explore the complete parameter space of the model by keeping all parameters for the
neutralino and gauge boson sector free while imposing the constraints from WMAP,
Direct Detection as well as on Higgs boson masses.

The values of θE6 where the sneutrino is a good DM candidate are restricted. First
for θE6 ≈ 0 the value of vs becomes very large especially whenMZ2 is large. This induces
large negative corrections to sfermion masses and lead in particular to a charged LSP.
For example, for soft terms at 2 TeV the values −0.2 < θE6 < 0.05 are excluded when
MZ2 = 1 TeV. Second the DD cross section is often too large when |θE6 | < 0.5. This is
due mainly to the contribution of the Z2 exchange to the Direct Detection cross section
that is proportional to cos θE6 . To illustrate this we display the variation of the DD
cross section as a function of θE6 for different values of MZ2 in figure 8.10. We choose
mν̃R = MZ2/2 so as to guarantee that the WMAP upper bound is satisfied and fix
µ = MZ2/2 + 0.5 TeV in each case to ensure that the sneutrino is the LSP. We have
also fixed for the other sfermions mf̃ = 2 TeV. The DD bounds are easily satisfied near
θE6 = ±π/2 because of the suppressed contribution of the Z1,2 vectorial coupling, see
figure 8.10. The mixing angle αZ has only a moderate impact on the Direct Detection
rate, while increasing the mass of the Z2 reduces the SI cross section, except when
θE6 = θψ as we have seen in section 8.5.1. Note that for αZ < 0 there is a dip in the
cross section near θE6 = ±π/2, this is because of a cancellation between the y and y′

contributions in eq. 8.4 in the cross section on neutrons. As a side comment note that
for θE6 ≃ 0.42π the RH sneutrino is decoupled, which corresponds to the U(1)N model
that was mentioned in section 7.3.

Figure 8.10: σSIν̃RXe as a function of θE6 for (MZ2 (TeV), αZ) = (1.7, 10−3), (1.7,−10−4),
(3, 10−4), µ =MZ2/2 + 0.5 TeV, Aλ = 1 TeV and mν̃R =MZ2/2.

For the random scans we choose the same range as in table 8.1 with in addition
−π/2 ≤ θE6 ≤ π/2. As before, we have applied the constraints on MZ2 from the LHC
and on αZ . We have imposed the constraint from XENON100 [387] and from ∆Ms a
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posteriori to better illustrate the impact of these constraints. The successful scenarios
are displayed in figure 8.11a in the MZ2 − θE6 plane. The white region at small values
of θE6 have a charged fermion LSP. Many scenarios with −π/4 < θE6 < 0 have too
large a Direct Detection rate as was the case for the model U(1)η. The value of the DD
cross section span several orders of magnitude from less than 10−13 pb to 2 × 10−7 pb
(see figure 8.11b). In particular for sneutrino masses around 100 GeV there are many
models which exceed the Direct Detection limit. These are scenarios with θE6 < 0 where
the sneutrino coupling to light Higgs boson allows efficient annihilation even away from
resonance as discussed in the case of U(1)η. The enhanced couplings to the Higgs boson
as well as the coupling to the Z1,2 lead to a large DD rate. Models with θE6 > 0 have
only light sneutrinos in that mass range when coannihilation plays a role and therefore
tends to have much lower Direct Detection rate. In fact even for heavier masses models
with θE6 > 0 predict smaller Direct Detection rates as discussed above.

(a) (b)

Figure 8.11: (a) Allowed scenarios in the MZ2 vs. θE6 plane, the models above the
XENON100 bound are in green. (b) σSIν̃RXe as a function of mν̃R . In blue θE6 < 0 and in
red θE6 > 0.

The processes that can contribute to Ωh2 were discussed both in the context of U(1)ψ
and U(1)η models. In the general case we find similar results. We find a predominance
of annihilation near a h1 or singlet Higgs/Z2 resonance as well as annihilation into gauge
boson pairs through h1 exchange. The latter being confined to sneutrino masses just
above theW pair threshold when θE6 > 0. These regions have a high density of points in
the plane MZ2 −mν̃R in figure 8.12a. For θE6 > 0 the only other allowed scenarios have
mν̃R ≈ µ as displayed in figure 8.12b. These are dominated by higgsino coannihilation.
For θE6 < 0, sneutrinos of masses above 100 GeV can also annihilate efficiently through
h1 exchange provided their coupling to h1 is large enough - this requires large values of
µ. In both figures we have imposed the ∆Md,s constraint although we do not display
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explicitly its impact. As discussed in the previous section this constraint plays a role for
small values of tan β for any values of the LSP mass. Figure 8.13a displays the allowed
scenarios in the tan β - αZ plane. The dependence on the θE6 angle can be understood by
looking at figure 7.1 and eq. 7.18. Actually we recall that the invariance of the UMSSM
superpotential under U(1)′ leads to Q′

Hd
+ Q′

Hu
= −Q′

S. Then since figure 7.1 shows
that Q′

S(−θE6) = −Q′
S(θE6) it results that for the same set of parameters a θE6 of the

opposite sigh needs to change the sign of αZ too. Note finally that as seen in the cases
of U(1)ψ and U(1)η the branching ratio of Z2 into SM particles tends to be decreased
for negative values of θE6 mainly due to the enhancement of Z2 → νRν

∗
R processes (see

figure 8.13b,c).

(a) (b)

Figure 8.12: The allowed scenarios in the (a) MZ2 vs. mν̃R plane and (b) µ vs. mν̃R

plane after applying all constraints. Same colour code as in figure 8.11.

8.6 Conclusions

The RH sneutrino is a viable thermal DM candidates in U(1) extensions of the MSSM.
The allowed parameter space depends strongly on the value of the new Z2 vector boson
mass. Sneutrino annihilation is typically dominated by resonance annihilation, with in
particular the dominant contribution from the Higgs sector rather than from the new
gauge boson Z2. For the light Higgs boson this requires fine tuning of the masses while
for the heavy singlet Higgs boson the mass difference has to be within 15% (of mhi/2).
As in other supersymmetric models, coannihilation processes can also be important.
For simplicity we have only discussed the case of one sneutrino Dark Matter candidate,
in the case of complete degeneracy of three sneutrinos the relic density increases by a
factor 3. Indeed the annihilation cross section is the same for all sneutrino flavours
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(a)

(b) (c)

Figure 8.13: (a) Allowed scenarios in the tan β - αZ plane, (b) branching ratio of the
Z2 into SM particles and (c) branching ratio of the Z2 into RH neutrinos as a function
of MZ2 . Same colour code as in figure 8.11.

since there is never a significant contribution from annihilation into neutrino pairs, thus
the increase in the number of channels is compensated by the increase in the degrees
of freedom leading to a smaller effective annihilation cross section. This will imply a
narrower range of masses for the LSP near mhi/2.

The Direct Detection limit is very stringent for a whole class of models unless the
mass of the Z2 is above 2 TeV. The scenarios with θE6 < 0 will be best tested with SI
detectors with improved sensitivities. In particular with a factor of 2 better sensitivity
the whole region with intermediate masses for the sneutrinos - when annihilation intoW
pairs is dominant - could be probed. The scenarios with θE6 > 0 are more challenging
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to probe via DD. Another signature of the RHSN model is that of a new gauge boson at
the LHC. In fact the results from searches for Z2 gauge bosons at the LHC have had a
significant impact on the parameter space of the model and pushed one of the favoured
region for the sneutrino LSP to be near 800 GeV. A Z2 up to several TeV’s will be
probed when the energy of the LHC is increased to 14 TeV. A negative result from such
a search will imply a much reduced rate for Direct Detection searches as well. Indirect
searches could also provide a good probe of the RHSN model, these will be investigated
separately.

New data on Z ′ searches and DM observables put even more stringent constraints
on this study. In particular the 2012 limits obtained by the XENON100 collaboration
probe almost all the parameter space explored in the scan of the U(1)η parameter space.
Nevertheless as said above with the increased lower bound on the Z2 boson the DD
cross-section would be reduced in this region of the parameter space. Now with the
Higgs boson discovery more constraints can be used on the Higgs sector of the UMSSM.
This will be analysed in next chapter.

In this analysis we have assumed that Dirac neutrinos were very light (sub-eV range).
As said in section 7.4.2 such RH Dirac neutrinos could lead to a faster expansion rate of
the Universe and predict too much 4He. The resulting constraints on the mass of the new
gauge bosons in the E6 model were analysed in [377] and compatibility with BBN resulted
into lower limits on the Z ′ mass in the multi-TeV range assuming the effective number
of neutrinos was increased by 0.3. Nevertheless recent LHC bounds remain competitive
when we consider a number of additional neutrinos ∆Nν ≥ 0.5 which is within the 2σ
error bars of the last combination of Planck data with WMAP polarization data, high-ℓ
CMB and BAO data which gives an effective number of neutrino-like relativistic degrees
of freedom of Neff = 3.30+0.54

− 0.51 [31].
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Motivated by the Higgs boson discovery which gives stringent constraints on BSM
physics, we reconsider the analysis of Dark Matter properties in the UMSSM taking
into account Higgs boson observables as well as new low energy observables and Direct
Detection of Dark Matter. To this end we improve the computation of the Higgs boson
mass and develop tools to compute low energy observables. We consider a much larger set
of observables than in the previous chapter including those that are known to be relevant
in SUSY. The computation of the theoretical predictions for B-physics observables in
this model is based on several routines contained in the NMSSMTools code [423]. We have
modified and adapted this code to compute observables within the UMSSM.

9.1 The Higgs sector in the UMSSM

We first describe how the calculation of the corrected Higgs boson masses are modified
as compared to chapter 8 and we will see how the Higgs bosons signal strengths are com-
puted in this model. Recall that as mentioned in chapter 7 because of new contributions
from U(1) D-terms, in addition to those from the superpotential as in the NMSSM, a
Higgs boson mass of 125 GeV is easily obtained in this model.

9.1.1 Radiative corrections through an effective potential

For the study described in chapter 8 we implemented the UMSSM model in LanHEP at
tree-level in unitary and Feynman gauges and checked gauge invariance. Radiative
corrections to the Higgs boson masses were just added in the unitary gauge through a
Coleman-Weinberg potential [358] and only the dominant (due to their large Yukawa
couplings) one-loop contributions from the top quark and the stops loops were considered
following [357]. At the time there was no need for a greater precision. However, after
the discovery of a new boson and a precise measurement of its mass, it is important
to make a precise theoretical prediction of at least the SM-like Higgs boson. We thus
introduced the radiative corrections through the effective Lagrangian approach following
the method used in the MSSM [429] and in the NMSSM [359]. This ensures a gauge
invariant treatment1.

The following effective potential is used :

V eff
UMSSM = λ1|Hd|4/2 + λ2|Hu|4/2 + λ3|Hd|2|Hu|2

+ λ4|Hu ·Hd|2 + λ5((Hu ·Hd)
2 + (Hu ·Hd)

†2)/2

+ (λ6|Hd|2 + λ7|Hu|2)((Hu ·Hd) + (Hu ·Hd)
†)

+ λs(SHu ·Hd + S∗(Hu ·Hd)
†).

(9.1)

Among the λ’s, λs is the only dimensionful parameter. The λ’s contain some of the
corrections that are considered in a recent update of the NMSSM model files in the

1Here a restricted number of operators was considered. See [430] for an analysis of a general effective
scalar potential involving two doublets and a singlet Higgs field.
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micrOMEGAs - NMSSMTools interface [94], namely 1- and 2-loop (s)top and (s)bottom
corrections, removing all the pure NMSSM terms not present in the UMSSM. In the
present work we decide, as in the work done in [357], to not consider pure UMSSM
corrections as one-loop gauge contributions since the U(1)′ gauge coupling is small com-
pared to the Yukawa coupling of the top quark.

In this framework, we have to modify the minimization conditions given in eq. 7.26
in order to minimize the corrected Higgs potential :

(
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We are now able to rewrite the Higgs mass matrices. The corrected CP-even mass-
squared matrix elements (Mc

+)ij are

(
Mc

+

)
11

=
(
M0

+

)
11
+ λ1v

2
d +

(
λs

vs√
2
− 3λ6

v2d
2

+ λ7
v2u
2

)
vu
vd
,

(
Mc

+

)
12

=
(
M0

+

)
12
+ (λ3 + λ4 + λ5)vuvd −

3

2
(λ6v

2
d + λ7v

2
u)− λs

vs√
2
,

(
Mc

+

)
13

=
(
M0

+

)
13
− λs

vu√
2
,

(
Mc

+

)
22

=
(
M0

+

)
22
+ λ2v

2
u +

(
λs

vs√
2
+ λ6

v2d
2

− 3λ7
v2u
2

)
vd
vu
,

(
Mc

+

)
23

=
(
M0

+

)
23
− λs

vd√
2
,

(
Mc

+

)
33

=
(
M0

+

)
33
+ λs

vuvd√
2vs

.

(9.3)

The CP-odd elements read

(
Mc

−
)
11

=
(
M0

−
)
11
+

(
λ6
v2d
2

+ λ7
v2u
2

− λ5vuvd + λs
vs√
2

)
vu
vd
,

(
Mc

−
)
12

=
(
M0

−
)
12
+ λ6

v2d
2

+ λ7
v2u
2

− λ5vuvd + λs
vs√
2
,

(
Mc

−
)
13

=
(
M0

−
)
13
+ λs

vu√
2
,

(
Mc

−
)
22

=
(
M0

−
)
22
+

(
λ6
v2d
2

+ λ7
v2u
2

− λ5vuvd + λs
vs√
2

)
vd
vu
,

(
Mc

−
)
23

=
(
M0

−
)
23
+ λs

vd√
2
,

(
Mc

−
)
33

=
(
M0

−
)
33
+ λs

vuvd√
2vs

.

(9.4)
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which allow us to write the corrected pseudoscalar mass-squared

(mc
A0)

2 =(mA0)2 +
v2

vsvuvd

{√
2λs

(
v2s +

(vuvd
v

)2)
− 2λ5vsvuvd + λ6vsv

2
d + λ7vsv

2
u

+

√√√√√√√

[√
2λs

(
v2s +

(vuvd
v

)2)
− 2λ5vsvuvd + λ6vsv

2
d + λ7vsv

2
u

]2

− 4
√
2λs

(vuvd
v

)2
(−2λ5vsvuvd + λ6vsv

2
d + λ7vsv

2
u)




.

(9.5)

Finally, the charged Higgs mass is corrected as

(mc
H±)

2 = (mH±)2 +

(
λs

vs√
2
+ λ6

v2d
2

+ λ7
v2u
2

)(
vu
vd

+
vd
vu

)
− (λ4 + λ5)

v2

2
. (9.6)

9.1.2 Higgs bosons signal strengths in the UMSSM

To compute the signal strength as defined in eq. 6.2 for the case of Higgs bosons decaying
into photons when they are produced by gluon-gluon fusion, we adapted to the UMSSM
the NMHDECAY code contained in NMSSMTools [431, 297]. Let us look at the determination
of the Higgs bosons reduced couplings, relative to a SM Higgs boson with the same mass,

which are obtained with tree-level interactions. The reduced Higgs couplings Chi,A
0

f to
a fermion f relative to the SM Higgs coupling read :

Chi
qd,ℓ±

=
Zhi1
cos β

, Chi
qu =

Zhi2
sin β

,

CA0

qd,ℓ±
=
ZA31
cos β

, CA0

qu =
ZA32
sin β

,

(9.7)

where qd (qu) are down- (up-) type quarks and ℓ± corresponds to charged leptons. The
reduced couplings of CP-even Higgs bosons to W bosons2 read as in the NMSSM

Chi
W± = cos βZhi1 + sin βZhi2. (9.8)

However, unlike the (N)MSSM, the reduced couplings of CP-even Higgs bosons to Z1

bosons are not exactly the same than for W ’s here since there is a Z ′ component in Z1.
The expression is

Chi
Z1

= cos2 αZ(cos βZhi1 + sin βZhi2)

+ 4 cosαZ sinαZ sin θW
g′1
gY

(cos βZhi1 − sin βZhi2)

+ 4 sin2 αZ
sin2 θW
v

g′ 21
g2Y

(
Q′2
Hd
vdZhi1 +Q′2

Hu
vuZhi2 +Q′2

S vsZhi3
)
.

(9.9)

2Since the scalar-massive vector coupling is CP-even, there is no such tree-level coupling with a
CP-odd Higgs boson.
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Since gluons and photons are massless particles, they do not couple directly to the
different Higgs bosons. To get the reduced couplings of Higgs bosons to gg, γγ and

γZ1, respectively Chi,A
0

g , Chi,A
0

γ and Chi,A
0

γZ1
, we must consider charged particle loops3.

To do that we again adapted the NMHDECAY code to the UMSSM. We then consider the
loop contributions listed in figure 9.1. We also automatically consider QCD radiative
corrections for the quark contributions that are included in the NMHDECAY code.

γ/Z1

W±

γ

hi

(a)

γ/Z1

f, χ±

j

γ

hi, A
0

γ/Z1

f̃ , H±

γ

hi

(b) (c)

g

q

g

hi, A
0

g

q̃

g

hi

(d) (e)

Figure 9.1: Triangle one-loop contributions to the γγ and γZ1 reduced couplings (a, b,
c) and to the gg reduced couplings (d, e), with i ∈ {1, 2, 3} and j ∈ {1, 2}. f(f̃) stands
for (s)fermions and q(q̃) stands for (s)quarks.

As can be seen there are contributions which imply the coupling of Higgs bosons to
sfermions. Considering up-type squarks, we have the following couplings :

λhiũL =− 3g22 − g2Y
12

(vdZhi1 − vuZhi2)

− g′ 21 Q′
Q(Q′

Hd
vdZhi1 +Q′

Hu
vuZhi2 +Q′

SvsZhi3), (9.10)

λhiũR =− g2Y
3

(vdZhi1 − vuZhi2)

− g′ 21 Q′
u(Q′

Hd
vdZhi1 +Q′

Hu
vuZhi2 +Q′

SvsZhi3). (9.11)

where we recall that the Q’s are given in table 7.2. In the same way we have for down-

3For a review on the loop contributions to the Higgs boson decays into photons and gluons see [432]
for the SM and [433] for the MSSM.
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type squarks :

λhi
d̃L

=
3g22 + g2Y

12
(vdZhi1 − vuZhi2)

− g′ 21 Q′
Q(Q′

Hd
vdZhi1 +Q′

Hu
vuZhi2 +Q′

SvsZhi3), (9.12)

λhi
d̃R

=
g2Y
6

(vdZhi1 − vuZhi2)

− g′ 21 Q′
d(Q′

Hd
vdZhi1 +Q′

Hu
vuZhi2 +Q′

SvsZhi3). (9.13)

For the charged sleptons, the expressions read :

λhiẽL =
g22 − g2Y

4
(vdZhi1 − vuZhi2)

− g′ 21 Q′
Q(Q′

Hd
vdZhi1 +Q′

Hu
vuZhi2 +Q′

SvsZhi3), (9.14)

λhiẽR =
g2Y
2

(vdZhi1 − vuZhi2)

− g′ 21 Q′
e(Q′

Hd
vdZhi1 +Q′

Hu
vuZhi2 +Q′

SvsZhi3). (9.15)

Therefore we obtain for the third generations :

λhi
t̃j
=
[
λhiũL − h2tvuZhi2

]
Z2
t̃j1 +

[
λhiũR − h2tvuZhi2

]
Z2
t̃j2

+ ht

[√
2(µZhi1 − AtZhi2) + λvdZhi3

]
Zt̃j1Zt̃j2, (9.16)

λhi
b̃j
=
[
λhi
d̃L

− h2bvdZhi1

]
Z2
b̃j1

+
[
λhi
d̃R

− h2bvdZhi1

]
Z2
b̃j2

+ hb

[√
2(µZhi2 − AbZhi1) + λvuZhi3

]
Zb̃j1Zb̃j2, (9.17)

λhiτ̃j =
[
λhiẽL − h2τvdZhi1

]
Z2
τ̃ j1 +

[
λhiẽR − h2τvdZhi1

]
Z2
τ̃ j2

+ hτ

[√
2(µZhi2 − AτZhi1) + λvuZhi3

]
Zτ̃ j1Zτ̃ j2, (9.18)

where hf (Af ) with f ∈ {t, b, τ} are the Yukawa (trilinear) couplings and the Zf̃ jk
with f̃ ∈ {t̃, b̃, τ̃} and j, k ∈ {1, 2} are the elements of the diagonalisation matri-
ces in the sfermion sector which stem from the mixing between the chirality eigen-
states F̃ = (f̃L, f̃R) with the mass eigenstates defined as f̃j = Zf̃ jkF̃k. As in the
NMSSMTools code we compute the running Yukawa couplings, λ as well as the Higgs
VEVs at the SUSY scale.

For the contributions in figure 9.1b, we need the couplings of the neutral Higgs bosons
to the charginos. In the UMSSM they read :

λhi
χ±

k

= − 1√
2
[g2(Zuk2Zvk1Zhi1 + Zuk1Zvk2Zhi2) + λZuk2Zvk2Zhi3] , (9.19)

λA
0

χ±

k

= − 1√
2
[g2(Zuk2Zvk1ZA31 + Zuk1Zvk2ZA32)− λZuk2Zvk2ZA33] , (9.20)
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where we recall that the rotation matrices in the chargino sector Zu and Zv are defined
as in the MSSM by χ−

k = Zuklψ
−
l and χ+

k = Zvklψ
+
l , with k, l ∈ {1, 2} and the gauge

eigenstates ψ− = (W̃−, H̃−
d ) and ψ

+ = (W̃+, H̃+
u ).

Now that we saw the main contributions that enters in the calculation of the reduced
couplings of Higgs bosons to gg, γγ and γZ1, we can compute an example of Higgs bosons
signal strength. Here we look at the case of an Higgs boson decaying into photons when
it is produced by gluon-gluon fusion. The signal strength reads

µggF
H→γγ = CH

g

2B(H → γγ)UMSSM

B(H → γγ)SM
, (9.21)

where H ∈ {h1, h2, h3, A0}. To compute the H total width and then each decays we also
use the NMHDECAY routine with the couplings defined above. For some Higgs decays, like
in other Higgs bosons, we use the Feynman rules derived with LanHEP which are given
to our modified NMHDECAY routine.

9.2 Flavour constraints on the UMSSM

Indirect constraints coming from the flavour sector, especially those involving B-mesons,
have been shown to play an important role in defining the allowed parameter space of
BSM and especially supersymmetric models, e.g. [434, 435, 436, 423]. Recent progress
both on the experimental side (better determination of CKM matrix elements, improve-
ment in the search for rare decays) and on the theoretical side (precise determination
of several hadronic parameters using lattice QCD simulations, better estimation of SM
contributions) force us to add more constraints coming from B-physics as compared to
our previous study discussed in chapter 8. Many of these constraints are generalized
straightforwardly from the NMSSM case adapting the NMSSMTools routines that calcu-
late these observables to our model [423]. By looking at MFV (namely flavour violation
occurs only through the CKM matrix), we will show in the following how the Higgs
sector and the supersymmetric particles of the UMSSM can impact the observables
B(B± → τ±ντ ), B(B0

s → µ+µ−), ∆Ms, ∆Md, B(B̄0 → Xsγ) and B(B̄0 → Xsµ
+µ−).

9.2.1 B(B± → τ±ντ)

The branching ratio B(B± → τ±ντ ) has the specificity to get a BSM contribution di-
rectly at tree level (figure 9.2). This contribution is the same as in the MSSM, coming
from a charged Higgs, so no peculiar pure UMSSM contribution appears here. A de-
structive interference is obtained between the W± and H± contributions and implies a
modification in the expression for the branching ratio :

B(B± → τ±ντ ) =
G2
FMB±m2

τ±

8π

(
1− m2

τ±

M2
B±

)2

f 2
B |Vub|2 τB± rH , (9.22)
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with the parameterization of the deviation from the SM calculation given by rH whose
expression, useful for large tan β values, was obtained in [437] :

rH =

[
1−

(
MB±

mH±

)2
tan2 β

1 + ε̃0 tan β

]2
, (9.23)

where the ε̃0 parameter is computed using sparticle loops as defined in the MSSM [438]
and the contribution coming from the neutralino sector is a straightforward generaliza-
tion to the UMSSM of the expressions in the NMSSM [423].

The values of the different SM parameters are given in table 9.1. In our preliminary
scan these parameters will be fixed. However some of them could be considered as
nuisance parameters as we did in the study described in chapter 5 because of their large
uncertainty, especially in the case of the puzzle in the inclusive/exclusive measurements
of the CKM matrix element |Vub| (see e.g. [439]).

Parameter Value

GF 1.1663787 10−5 GeV−2

αs(MZ1) 0.1184 ± 0.0007

MB± 5279.25 MeV

fB 189 ± 4 MeV [440]

|Vub| (4.15 ± 0.49)×10−3

τB± (1.641 ± 0.008)×10−12 s

Table 9.1: SM parameters entering in the B(B± → τ±ντ ) calculation and their uncer-
tainty if non-negligible. From [29] unless noted otherwise.

b̄

u

τ
+

ντ

W
+

H
+

Figure 9.2: W boson (plain) and charged Higgs (dashed) contribution to B(B+ →
τ+ντ ).

Past discrepancy between the SM and experimental values of this branching ratio is
now less obvious with the new result from the Belle Collaboration [441]; a recent world
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average provided by the UTfit collaboration [442] reads

B(B± → τ±ντ )exp = (0.99± 0.25)× 10−4. (9.24)

Meanwhile the CKMfitter global fit result provided at the ICHEP 2012 conference [443]
gives for the SM contribution

B(B± → τ±ντ )SM = (0.796+0.088
− 0.087)× 10−4. (9.25)

Since we consider BSM effects on low energy observables, we will not use throughout this
work the global SM fits of CKM matrix elements [444, 445]. Then some discrepancies
are expected between our SM-only prediction of a low energy observable and the usual
SM precise predictions. Here the discrepancy is mainly driven by |Vub|; we get

B(B± → τ±ντ )SM-only = (1.09± 0.26)× 10−4. (9.26)

We will then carefully analyse the effects of supersymmetric contributions by looking at
tan β and mH± .

9.2.2 B(B0
s → µ+µ−)

The branching ratio B(B0
s → µ+µ−) is known as one of the best observables to probe

BSM effects on low energy physics, especially at the LHC. The LHCb collaboration
released at the end of 2012 the first evidence for the decay B0

s → µ+µ− [245]. They get

B(B0
s → µ+µ−)exp = (3.2+1.5

− 1.2)× 10−9. (9.27)

Comparing to recent SM predictions

B(B0
s → µ+µ−)SM,1 =(3.23± 0.27)× 10−9 [446],

B(B0
s → µ+µ−)SM,2 =(3.53± 0.38)× 10−9 [447],

B(B0
s → µ+µ−)SM,3 =(3.25± 0.17)× 10−9 [448],

(9.28)

whose discrepancies come from the decay constant fB0
s
and the mean life τB0

s
choices, it

leaves little room for BSM contributions in SUSY.

The calculation of this branching ratio, following the same assumptions as in [423]
reads

B(B0
s → µ+µ−) =

G2
Fα

2
em
M5

B0
s
f 2
B0

s
τB0

s

64π3 sin4 θW
|V ∗
tsVtb|2

√
1− 4

m2
µ±

m2
B0

s




1− 4
m2

µ±

M2
B0
s(

1 + ms

mb

)2 |cS|
2 +

∣∣∣∣∣
cP

1 + ms

mb

+
2mµ±

M2
B0

s

cA

∣∣∣∣∣

2


 .

(9.29)
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In the SM, the main contributions arise from box and penguin diagrams as shown in
figure 9.3a,b and are defined in the cA term while cS and cP include the neutral Higgs
boson contributions. We assume the standard coupling of the Z1 to W bosons and
muons and we disregard the Z2 contribution, which makes sense given the upper bound
we get on αZ (αZ . 10−3) and stringent lower bound on MZ2 . Contributions from the
new U(1) symmetry are then safely neglected here.
The SM calculation is dependent on the uncertainty on the top quark mass since it

includes the ratio xt =
(
mMS

t

MW

)2
, where mMS

t is the MS top quark mass.

b̄ µ+

s µ−

W+

t νµ

b̄ µ+

s µ−

W+

t

W−

Z1

(a) (b)

W−

b̄R

sL

µ+

µ−

hi, A
0

(c)

Figure 9.3: Main SM (a, b) and UMSSM (c) contributions to B(B0
s → µ+µ−) where

i ∈ {1, 2, 3}. The dot denote a flavour changing coupling.

Neutral Higgs boson contributions easily imply large deviation from the SM pre-
diction through an effective flavour violating neutral Higgs vertex and a neutral Higgs
propagator as shown in figure 9.3c. It happens if tan β is large (≫1) and the heavy
doublet-like Higgs is not so heavy (a few hundreds of GeV). These terms can be approx-
imate in the UMSSM, given that we never get very light (some GeV’s) neutral Higgs
bosons, by

cS ≃−
√
2g2π

2mµ±

G2
FM

3
W

3∑

i=1

(Zhi2 − Zhi1 tan β)Zhi1ε
bs
Y

m2
hi
v sin 2β(1 + ε̃0 tan β)(1 + ε̃3 tan β)

,

cP ≃+

√
2g2π

2mµ±

G2
FM

3
W

(ZA32 − ZA31 tan β)ZA31ε
bs
Y

m2
A0v sin 2β(1 + ε̃0 tan β)(1 + ε̃3 tan β)

,

(9.30)

where the ε’s are defined in [438].

We consider throughout this work the MS value of the weak-mixing angle and the
SM particle masses given in table 1.1. We will also keep in our study the most precise



9.2 - Flavour constraints on the UMSSM 173

Parameter Value

α
em

1/137.035999074

sin2 θW (MS) 0.23116

MB0
s

5366.77 MeV

fB0
s

225 ± 4 MeV [449]

|Vcb| (40.9 ± 1.1)×10−3

|Vts| (42.9 ± 2.6)×10−3

τB0
s

(1.497 ± 0.015)×10−12 s

Table 9.2: A list of some of the parameters appearing in the determination of B(B0
s →

µ+µ−) and their uncertainty if non-negligible. From [29] unless noted otherwise. See
table 9.1 for other relevant parameters.

determination of the B0
s leptonic decay constant. We summarize some of the parameters

entering in the B(B0
s → µ+µ−) calculation in table 9.2. By assuming the unitarity of

the CKM matrix we are able to determine |Vtb| :
∑

i∈{u,c,t}
|Vib|2 = 1. (9.31)

Using the experimental values of |Vub| and |Vcb| given in table 9.1 and 9.2 we get

|Vtb| = 0.99915± 0.00027. (9.32)

Note that this number is much more precise that those extracted from measurements of
single top quark production cross section [29].
Taking into account the main uncertainties coming from fB0

s
and from the experimental

determination of |Vts| and mpole
t leads to a SM prediction with a larger error than in

eq. 9.28 :
B(B0

s → µ+µ−)SM-only = (3.14± 0.40)× 10−9. (9.33)

In our study we will also consider a theoretical uncertainty of 10%.

9.2.3 ∆Ms and ∆Md

Still in the B-mesons sector, we now look at the oscillations between the mesons B0
q and

B̄0
q where q ∈ {s, d}4. The frequency of these oscillations is given by the mass difference

relation

∆Mq =
G2
FM

2
W

6π2
MB0

q
ηBf

2
B0

q
B̂B0

q

∣∣V ∗
tqVtb

∣∣2 |F q
tt| , (9.34)

4Note that in the standard notation we have B0
d ≡ B0 (B̄0

d ≡ B̄0).
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where |F q
tt| can be decomposed into four main parts, F q

tt = ∆SM + ∆H± + ∆q
χ± + ∆q

DP

with :

• The SM contribution with quark/W± box diagrams (see e.g figure 9.4a). Below
we show the main contribution from top quarks :

∆SM ≃ 1

4
+

9

4(1− xt)
− 3

2(1− xt)2
− 3x2t ln(xt)

2(1− xt)3
, (9.35)

where xt =
(
mMS

t

MW

)2
;

• The charged Higgs contribution, as in figure 9.4b, is a powerful tool to exclude some
regions of the UMSSM parameter space as it can easily exceed the experimental
measurements, especially for ∆Ms and for very low tan β values (. 1) as we saw
in chapter 8 :

∆H± = f1(mH±) cot2 β + f2(mH±) cot4 β. (9.36)

Note that f1 and f2 decrease if the charged Higgs mass increases [424];

• Another SUSY contribution with squark/chargino box diagrams (see figure 9.4c)
was computed in [424]. The main ∆q

χ± dependence on CKM matrix element is on
the ratios |V ∗

csVcb| / |V ∗
tsVtb| and |V ∗

ubVud| / |V ∗
tdVtb| respectively for ∆Ms and ∆Md;

• The last term concerns the Double Penguin diagrams contribution ∆q
DP as in fig-

ure 9.4d. In the UMSSM, the Wilson coefficients are modified in the same way
as in eq. 9.30. This contribution is only interesting for large tan β values. Full
expression is given in [424];

A theoretical uncertainty of 10% is also added here. Some of the parameters entering in
the ∆Mq calculation are listed in table 9.3.

The experimental measurements of the ∆Mq’s given in [450] are

(∆Ms)exp = 17.719± 0.043 ps−1,

(∆Md)exp = 0.507± 0.004 ps−1.
(9.37)

Assuming the unitarity of the CKM matrix (|Vcs| = 0.973) our (∆Mq)SM-only results read

(∆Ms)SM-only = 19.1± 2.5 ps−1,

(∆Md)SM-only = 0.497± 0.083 ps−1.
(9.38)

Our choice of values for the CKM elements (respectively |Vtd| and |Vts|) make a better
(worse) agreement between (∆Md)SM-only and (∆Md)exp ((∆Ms)SM-only and (∆Ms)exp)
than for the fit from the CKMFitter group [443] :

(∆Ms)SM = 17.3+2.4
− 1.7 ps

−1,

(∆Md)SM = 0.558+0.045
− 0.064 ps

−1.
(9.39)
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(a)

b̄ s̄(d̄)

s(d) b

W+

t
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t

b̄ s̄(d̄)

s(d) b

H+

t
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t

(b)

b̄ s̄(d̄)

s(d) b

s̄(d̄)

u, c, t

s(d)

(d)

b̄ s̄(d̄)

s(d) b

χ+

k

ũi
L

χ−

ℓ

ũ
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L

(c)

u, c, thi, A
0

W+

W−

hi, A
0

Figure 9.4: Main SM (a) and UMSSM (b, c, d) diagrams contributing to ∆Ms and
∆Md. i, j ∈ {1, 2, 3} and k, ℓ ∈ {1, 2} for the diagrams c and d. ũi,jL stands for LH up
squarks.

Parameter Value

ηB 0.551 [438]

MB0
d

5279.58 MeV [29]

|Vud| 0.97425 [29]

|Vtd| (8.4 ± 0.6)×10−3 [29]

fB0
s

√
B̂B0

s
258.7 ± 6.3 MeV [449, 443]

fB0
d

√
B̂B0

d
214.8 ± 9.4 MeV [440, 443]

Table 9.3: Important input parameters in the ∆Ms and ∆Md calculation and their
uncertainty if non-negligible. See table 9.1 or table 9.2 for other relevant parameters.

9.2.4 B(B̄0 → Xsγ)

Again following [423], we go now to the B(B̄0 → Xsγ) calculation including BSM effects.
The expression reads :
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B(B̄0 → Xsγ)Eγ>E0 =

B(B̄0 → Xcℓ
−ν̄ℓ)

∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
2
6α

em

πC

[∣∣∣Kc + r(mMS
t )Kt+BSM + ǫew

∣∣∣
2

+B(E0) +N(E0)

]
,

(9.40)

where E0 = 1.6 GeV is a lower cutoff on the photon energy Eγ, ǫew denotes the EW
radiative corrections, B(E0) corresponds to bremsstrahlung contributions and N(E0) are
nonperturbative corrections. Kc includes the charm quark contribution whereas Kt+BSM

includes the top quark and BSM ones, see figure 9.5. r(mMS
t ) is the ratiomMS

b (mMS
t )/m1S

b .
Again as some previous constraints, B(B̄0 → Xsγ) can be a powerful way to exclude
corners of the parameter space as large tan β values through Higgs bosons contributions.

γ

b

c, t

s

W−

γ

b

t

s

H−

γ

bR

bL

sL
hi, A

0

γ

b

ũi
L

s
χ−

j

bR

(a) (b)

(c) (d)

Figure 9.5: Some contributions to the Kc and Kt+BSM terms for the B(B̄0 → Xsγ)
calculation. i ∈ {1, 2, 3} and j ∈ {1, 2} for the diagram c and the specific UMSSM
contribution in the diagram d. The dot and the cross in the lower right diagram denote
respectively a flavour changing coupling and an helicity flip.

To calculate theKt terms and some bremsstrahlung contributions, we must determine
the ratio of CKM matrix elements ǫs = V ∗

usVub/(V
∗
tsVtb). To do this we expand the CKM

matrix elements using the standard parameterization in term of the three Cabibbo angles
and the phase δ :

Vus = sin θ12 cos θ13,

Vub = sin θ13 e
−iδ,

Vts = − cos θ12 sin θ23 − sin θ12 sin θ13 cos θ23 e
iδ,

Vtb = cos θ13 cos θ23,

(9.41)
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where

sin θ13 = |Vub| ,

cos θ12 =
|Vud|
cos θ13

,

sin θ23 =
|Vcb|
cos θ13

,

δ = 2arctan

(
1−

√
1− (a2 − 1) tan2 γ

(a− 1) tan γ

)
, cos γ ≥ 0,

a =
cos θ12 sin θ13 sin θ23

sin θ12 cos θ23
.

(9.42)

Then, using the experimental measurement of the angle γ and some CKM elements
we find

ǫs = −0.0092+0.0038
− 0.0042 + i 0.0214+0.0030

− 0.0031, (9.43)

where large uncertainties come from the experimental measurement of the angle γ and
from |Vub|.

Parameter Value

B(B̄0 → Xcℓ
−ν̄ℓ) 0.1051 ± 0.0013 [450]

C 0.546+0.023
− 0.033 [451]

γ (68+10
− 11)

o

m1S
b 4 650 ± 30 MeV

α−1
em,MZ1

127.944 ± 0.014

Table 9.4: Some values for the calculation of B(B̄0 → Xsγ) and the associated un-
certainties if they are non-negligible, from [29] unless noted otherwise. See table 9.1,
table 9.2 or table 9.3 for other relevant parameters. α

em,MZ1
corresponds to the running

of α
em

at MZ1 .

The relation eq. 9.40 used to calculate B(B̄0 → Xsγ) is not valid at NNLO where
the contributions from charm quark and top/BSM cannot be separated. To reproduce
the SM NNLO result obtained in [218, 452]

B(B̄0 → Xsγ)NNLO = (3.15± 0.23)× 10−4, (9.44)

we must choose a convenient value of the ratio mc/mb that enters in the calculation of
Kc. We thus try to obtain this result using the input parameters listed in the Appendix
A of [452] and we find

mc

mb

= 0.327, (9.45)
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which is larger than in [423].

Our B(B̄0 → Xsγ)SM-only, using the uncertainties on |V ∗
tsVtb|, C, ǫs and B(B̄0 →

Xcℓ
−ν̄ℓ), is

B(B̄0 → Xsγ)SM-only = (3.69+0.24
− 0.25)× 10−4. (9.46)

The world average on the experimental measurements of the branching reads [450]

B(B̄0 → Xsγ)exp = (3.55± 0.24± 0.09)× 10−4. (9.47)

Note that we will consider a theoretical uncertainty of 10% which includes the NNLO
error presented in eq. 9.44.

9.2.5 B(B̄0 → Xsµ
+µ−)

The master formula for the B(B̄0 → Xsℓ
+ℓ−) branching ratio in the SM reads [453]

dB(B̄0 → Xsℓ
+ℓ−)

dŝ
= B(B̄0 → Xcℓ

−ν̄ℓ)

∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
2
4

C

Φℓℓ(ŝ)

Φu

, (9.48)

where ŝ = m2
ℓℓ/mb,pole, mℓℓ being the dilepton invariant mass.

Φℓℓ(ŝ) and Φu are defined by

dΓ(B̄0 → Xsℓ
+ℓ−)

dŝ
=
G2
Fm

5
b,pole

48π3
|V ∗
tsVtb|2 Φℓℓ(ŝ),

Γ(B̄0 → Xuℓ
−ν̄ℓ) =

G2
Fm

5
b,pole

192π3
|Vub|2 Φu.

(9.49)

The most precise experimental measurements of the integrated branching ratio B(B̄0 →
Xsℓ

+ℓ−) have been obtained some years ago by BaBar [454] and Belle [455] collabora-
tions both in the low-dilepton invariant mass region m2

ℓℓ ∈ [1, 6] GeV2 and the high m2
ℓℓ

region [14.4, 25] GeV2. An average given in [456] reads

B(B̄0 → Xsℓ
+ℓ−)lowexp = (1.60± 0.50)× 10−6,

B(B̄0 → Xsℓ
+ℓ−)highexp = (0.44± 0.12)× 10−6.

(9.50)

Through flavour changing neutral Higgs couplings, neutral Higgs boson contributions
to B(B̄0 → Xsµ

+µ−) are expected in the UMSSM as well as usual supersymmetric
contribution shown in section 9.2.4. Then following the NMSSMTools implementation of
the B(B̄0 → Xsµ

+µ−) we modified the Wilson coefficients, especially those linked to
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neutral Higgs bosons, to compute this observable within the UMSSM :

B(B̄0 → Xsµ
+µ−)low = B(B̄0 → Xsµ

+µ−)lowSM +
4

C
B(B̄0 → Xcℓ

−ν̄ℓ)

(
α

em

4π

∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
)2

×
{[

8 ln 6− 15

(m1S
b )2

+
215

3(m1S
b )6

]
(C2

7all − C2
7t) +

3

2
(Ch + CA)

}
,

B(B̄0 → Xsµ
+µ−)high = B(B̄0 → Xsµ

+µ−)highSM +
4

C
B(B̄0 → Xcℓ

−ν̄ℓ)

(
α

em

4π

∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
)2

×
{[

8 ln

(
(m1S

b )2

14.4

)
− 4

(
1− 14.4

(m1S
b )2

)

+
4

3

(
1−

(
14.4

(m1S
b )2

)3
)]

(C2
7all − C2

7t) +
3

2
(Ch + CA)

}
,

(9.51)

where C7t, C7all, Ch, CA correspond to contributions from top quark, BSM and Higgs
particles. Here we directly use

B(B̄0 → Xsℓ
+ℓ−)lowSM = 1.59× 10−6,

B(B̄0 → Xsℓ
+ℓ−)highSM = 0.24× 10−6.

(9.52)

9.3 The anomalous magnetic moment of the muon

in the UMSSM

We saw in section 1.6 that the muon anomalous magnetic moment could reveal BSM
physics. In this section we will describe carefully the new contributions in the context
of the UMSSM.

9.3.1 Standard prediction

First let us look at the SM contributions. Three standard types of contribution are
expected here : QED, hadronic and EW.

Multi-loop QED corrections are now well calculated (see e.g. [457]) and the complete
tenth-order QED contribution was obtained last year [458] which leads to

aQED(1→10 loop)
µ = (116 584 718 951± 80)× 10−14. (9.53)

Hadronic contributions, which give the main theoretical uncertainty on the calculation
of aµ, are devided into three parts :

• The leading hadronic input corresponds to vacuum polarization (v.p.) type correc-
tions as in figure 9.6c. Its evaluation and accuracy mostly depends on experimental
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Figure 9.6: Examples of SM contributions to aµ : the one-loop (a) and a third order
(b) QED contributions, hadronic part with the LO (c), an NLO (d) and light-by-light
scattering (e) and finally the main leading (f, g) and a two-loop (h) EW corrections
(where f stands for fermions).

information coming from e+e− colliders. Several groups are working on this calcu-
lation [459, 460] and we will use the highest contribution obtained [461], to reduce
the gap between the SM and the experimental values of aµ :

aLOhad. v.p.
µ = (6949.1± 37.2± 21.0)× 10−11. (9.54)
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• Higher order hadronic vacuum-polarization contributions as in figure 9.6d were
also calculated in [461] :

aHOhad. v.p.
µ = (−98.4± 0.6± 0.4)× 10−11. (9.55)

• Contributions from hadronic light-by-light scattering (see e.g. figure 9.6e) increase
a lot the theoretical uncertainty on the aµ calculation. We will consider the quan-
tity obtained in [462] :

all had. v.p.µ = (116± 40)× 10−11. (9.56)

EW contributions to aµ have been calculated up to two-loop order with e.g. triangle
fermionic-loops as in figure 9.6h. We keep the result of [463] :

aEWµ = (154± 2)× 10−11. (9.57)

Here we can safely neglect the contribution coming from the SM Higgs boson because
mh0 ≫ mµ± ; with mh0 ∼ 125 GeV we have aEW, h0

µ < 5× 10−14 [457], which is far below
current experimental sensitivity. As it was the case for the B(B0

s → µ+µ−) calculation
in section 9.2.2, we consider as a good approximation to keep SM couplings for the Z1

boson.
Adding all these contributions, the result of the aµ calculation in the SM reads, [458]

aSMµ = aQED(1→10 loop)
µ + aLOhad. v.p.

µ + aHOhad. v.p.
µ + all had. v.p.µ + aEWµ

= (116 591 840± 59)× 10−11.
(9.58)

On the experimental side the most precise determination of aµ was obtained by the
Brookhaven (g − 2) experiment E821. The current average given in [58] is :

aexpµ = (116 592 089± 63)× 10−11. (9.59)

This leads us to a discrepancy between the experimental and the SM value of

δaµ = aexpµ − aSMµ = (249± 86)× 10−11. (9.60)

9.3.2 New contributions

Now let us look at possible BSM contributions. Typically a new particle with massMnew

is expected to contribute to aµ like

anewµ ∝
m2
µ±

M2
new

. (9.61)

Before looking at supersymmetric particles, the contribution to aµ of the new gauge
boson Z2 in the UMSSM should in principle be taken into account. This term has the
opposite sign of aSMµ [464] so will increase the discrepancy with the measured value :

aZ2
µ ≃ −M

2
Z1

M2
Z2

×O(10−11). (9.62)
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Nevertheless given the collider constraints on the mass of this new gauge boson (≥ 2
TeV) it can be safely neglected, [465].

Several supersymmetric particles contribute to aµ [466]. First we have one-loop
contributions with chargino/sneutrino (figure 9.7a) and neutralino/smuon loops (fig-
ure 9.7b) approximated by

a
χ±,0,µ̃,ν̃µL
µ ∝

m2
µ±

M2
SUSY

tan β sign(µ), (9.63)

where MSUSY is a typical mass scale of the supersymmetric particles. Here we just
generalize the equations given in the NMSSM [467] considering six neutralinos in the
UMSSM.

We also add one-loop contributions from CP-even, CP-odd and charged Higgs bosons
as in figure 9.7c. To obtain the relations for the neutral Higgs bosons in the UMSSM

we must consider the reduced Higgs couplings Chi,A
0

f defined in eq. 9.7. Then, following
[467], we adapt the one-loop contributions from Higgs bosons to the UMSSM and we
get

a1 loop hi
µ =

GFm
2
µ±

4
√
2π2

3∑

i=1

(Chi
µ±)

2

∫ 1

0

x2(2− x) dx

x2 +
(
mhi

m
µ±

)2
(1− x)

,

a1 loop A0

µ = −
GFm

2
µ±

4
√
2π2

(CA0

µ±)
2

∫ 1

0

x3 dx

x2 +
(
m

A0

m
µ±

)2
(1− x)

,

a1 loop H±

µ =
GFm

2
µ±

4
√
2π2

tan2 β

∫ 1

0

x(x− 1) dx

x− 1 +
(
m

H±

m
µ±

)2 .

(9.64)

At two-loop we first add the leading contribution enhanced by large QED logarithms
[468]. The bosonic EW two-loop contribution a2 loop Bos

µ is defined in [469] where the

leading logarithmic contribution proportional to c2 loop Bos
L is shown to be an excellent

approximation of the full bosonic term. We then confine ourselves to the c2 loop Bos
L term

as in [467]; the final expression reads

a2 loop Bos
µ =

5GF m
2
µ± αem,MZ1

24
√
2 π3

ln
m2
µ±

M2
W

c2 loop Bos
L , (9.65)

where c2 loop Bos
L includes two-loop EW SM contributions :

c2 loop Bos
L =

1

30

[
98 + 9chL + 23

(
1− 4 cos2 θW

)2]
. (9.66)

We then took care as in [467] to compute this SM contribution only once. In the UMSSM,
the expression of chL is defined as

chL = cos 2βM2
Z1

3∑

i=1

Zhi1 (Zhi1 − tan βZhi2)

m2
hi

. (9.67)
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Figure 9.7: Examples of one-loop supersymmetric contributions to aµ :
chargino/sneutrino (a), neutralino/smuon (b) and a diagram involving Higgs bosons
(c). Here i, j ∈ {1, 2}, k ∈ {1, ..., 6} and ℓ ∈ {1, 2, 3}. We consider the smuon mass
eigenstates µ̃i,j as the result of the (weak) mixing between µ̃L and µ̃R.

We also checked the rule chL = 1 [469].
Starting from [467, 470], the contributions from two-loop Higgs boson diagrams in-

volving a closed SM fermion loop (confined to the lepton τ and the quarks t and b) in
the UMSSM reads

a2 loop hi
µ = −

GFm
2
µ±αem

2
√
2π3

3∑

i=1

∑

f=t,b,τ

N f
c C

hi
µ±Q2

fC
hi
f fh

(
m2
f

m2
hi

)

a2 loop A0

µ =
GFm

2
µ±αem

2
√
2π3

∑

f=t,b,τ

N f
c C

A0

µ±Q2
fC

A0

f fA

(
m2
f

m2
A0

) (9.68)

where N f
c represents the number of color degrees of freedom in f , Qf its electric charge

and the loop integral functions are given in [471, 467] :

fh(z) =
1

2
z

∫ 1

0

1− 2x(1− x)

x(1− x)− z
ln
x(1− x)

z
dx

fA(z) =
1

2
z

∫ 1

0

1

x(1− x)− z
ln
x(1− x)

z
dx.

(9.69)

Contributions coming from photonic Barr-Zee type diagrams involving closed sfermion
and chargino loops were considered in the context of the MSSM [472] and the NMSSM
[467]. The sfermionic contribution reads

a2 loop f̃
µ =

GFm
2
µ±MWαem,MZ1

2
√
2π3g2

2∑

j=1

∑

f̃=t̃j ,b̃j ,τ̃j

[
3∑

i=1

N f
c C

hi
µ±Q

2
fλ

hi
f̃

m2
f̃

ff̃

(
m2
f̃

m2
hi

)]
, (9.70)

where the λhi
f̃

which are here the couplings of the CP-even Higgs bosons to stops,

sbottoms and staus are given in eqs. 9.16, 9.17 and 9.18 and the loop integral function
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is

ff̃ (z) =
1

2
z

∫ 1

0

x(1− x)

x(1− x)− z
ln
x(1− x)

z
dx. (9.71)

Finally we add the chargino contribution at two loops

a2 loop χ±

µ =
GFm

2
µ±MWαem,MZ1

4
√
2π3g2

2∑

k=1




3∑

i=1

Chi
µ±λ

hi
χ±

k

mχ±

k

fh

(
m2
χ±

k

m2
hi

)
−
CA0

µ±λ
A0

χ±

k

mχ±

k

fA

(
m2
χ±

k

m2
A0

)
 ,

(9.72)
where the fh,A are given in eq. 9.69 and the couplings of the neutral Higgs bosons to the
charginos are given in eqs. 9.19 and 9.20.

As in [467], we follow [471] for the calculation of the theoretical errors : 2% (one-loop
contributions) + 30% (two-loop contributions) + 2.8 × 10−10 (additional corrections, no
difference expected with respect to the same study in the MSSM).

9.4 Scanning the U(1)η parameters

We are now able to examine how the Higgs sector and the low energy observables con-
strain the UMSSM parameter space. For simplicity we restrict ourselves to the U(1)η
model. We consider scenarios where either one generation of RH sneutrino or the light-
est neutralino is a DM candidate but we relax the lower bound on the ν̃R or χ0

1 relic
density, thus keeping all scenarios with Ωχh

2 ∈ [10%Ω−3σ
Pl h2,Ω+3σ

Pl h2] with χ ∈ {ν̃R, χ0
1}

and ΩPlh
2 is given in table 2.1, namely Ω±1σ

Pl h2 = 0.1187± 0.0017. Moreover we assume
M1 = M2/2 = M3/6 as in the previous chapter. We use the most recent ATLAS con-
straint on the Z ′

η gauge boson [368], i.e.MZ2 > 2.43 TeV and we decide for simplicity to
consider only Z2 bosons above this limit. We also consider only points in the UMSSM
parameter space that give a CP-even Higgs boson around the value derived in table 1.1,
namely 125.63 GeV, allowing a large theoretical uncertainty of ±5 GeV. Points which
do not satisfy the LEP bounds on the mass of charged sparticles as the chargino are
automatically rejected.

As in chapter 8 we fix the soft masses of sleptons and squarks to 2 TeV and then avoid
LHC constraints on these particles. Nonetheless we keep the third generation of soft
squark masses as free parameter, using a lower limit of 400 GeV to avoid most constraints
from recent LHC searches as shown in figure 3.4. First we comment on constraints
coming from the ∆ρ parameter. This observable, which measures the deviation of the ρ
parameter of the SM from unity, is computed using a micrOMEGAs routine which contains
third generation of MSSM sfermions and two-loop QCD contributions. This constraint
is sensitive to the mass difference between sfermions. This could be an interesting
constraint for several U(1)′ scenario since the newD-terms implied by the new symmetry
and shown in eq. 7.32 can give large mass splitting between the LH and RH sfermions.
Because Z1 is no longer purely the Z boson in the UMSSM, the ρ parameter also receives
a specific UMSSM tree-level correction. In the limit where M2

Z′ ≫ M2
Z ,∆

2
Z in the
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Abelian gauge boson mass matrix given in eq. 7.13, which is safe for our TeV scale Z ′,
the correction which will be added to ∆ρ reads [372]

∆ρZ =
∆4
ZM

2
Z2

M4
Z′M2

Z1

. (9.73)

Measurements of EW observables give the upper bound of ∆ρ < 2× 10−3.
The free parameters considered here are

{mν̃R , µ,M1,M
′
1, Aλ, At, Ab,MZ2 , αZ ,mQ̃3

,mũ3 ,md̃3
}

and the range associated to these parameters is given in table 9.5.

Parameter Range

mν̃R [0.05, 2] TeV

MZ2 [2.6, 4] TeV

αZ [-0.003, 0.003] rad

Aλ [0, 4] TeV

At, Ab [-4, 4] TeV

mQ̃3
,mũ3 ,md̃3

[0.4, 2] TeV

µ,M1,M
′
1 [0.1, 2] TeV

Table 9.5: Range of the free parameters in the U(1)η model.

9.5 Numerical results

Figure 9.8 illustrates the effect of low energy observables on the scenarios considered.
Among these, only the mass differences of B-mesons are relevant in this scan. In red we
plot the points excluded by ∆Ms and black points are excluded by both ∆Ms and ∆Md

observables. Note that none of these scenarios are able to explain the anomalous mag-
netic moment of the muon δaµ as observed in chapter 4 for the case of the MSSM.
We also checked that the points are allowed by the latest version of HiggsBounds,
HiggsBounds-4.0.0 [473]. Note that we represent in blue the points excluded by
HiggsBounds5. As discussed in chapter 8, low tan β values are the most constrained
regions as shown in figure 9.8a. We also see that only scenarios with |αZ | < 10−3 are
obtained. Figure 9.8b presents the reason of this observation : higher is the Z2 mass
lower is the mixing angle |αZ |.

5Recall that we allow the lightest Higgs boson mass to be within [120.63, 130.63] GeV.
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(a) (b)

Figure 9.8: UMSSM scenarios in the plane (tan β, αZ). In panel (a) the allowed sce-
narios are represented in green, scenarios excluded by ∆Ms (and ∆Md) in red (black)
and the points excluded by HiggsBounds-4.0.0 in blue. Panel (b) shows the mass of
the new gauge boson as indicated by the colour code.

Figure 9.9a shows that the signal strength µggF
h1→γγ is not expected to be drastically

modified as compared to the SM, only a few points are more than 10% below 1. Panel
(b) of figure 9.9 shows the predictions for the ∆ρ parameter as a function of the Z ′ mass
and the mixing angle αZ : increasing the mass of the new gauge boson above 3 TeV and
then decreasing αZ allows to stay below the limit obtained with EW observables.

Figure 9.10 presents the characteristics of the DM sector in this scan. Panel (a)
and (b) shows that most of the allowed points correspond to an higgsino LSP when
we relax the relic density lower bound although we still find some bino LSP as well as
sneutrino LSP. Furthermore since the range for the lightest Higgs boson mass is more
restricted than in chapter 8, the annihilation of a RH sneutrino near a light Higgs boson
resonance requires even more fine-tuning. These scenarios are then difficult to obtain.
As we saw in chapter 4 in the MSSM, many of the higgsino LSP scenarios can be probed
by Xenon-based experiments.
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(a) (b)

Figure 9.9: (a) Signal strength µggF
h1→γγ as a function of mh1 , with the same colour

code as in figure 9.8a. (b) ∆ρ vs.MZ2 with the absolute value of the mixing angle αZ
indicated by the colour code.

9.6 Discussion

These results indicate that even the more stringent Direct Detection and collider results
of 2012 still allow scenarios with a viable Dark Matter candidate. We also found that
the parameter space of the U(1)η model would be probe to a large extent by both future
DD Dark Matter searches (Xenon) and by Z ′ searches in the next run at the LHC. The
impact of current experimental results on the properties of Dark Matter candidates in
the generic UMSSM will be performed in the very near future.
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(a) (b)

(c)

Figure 9.10: DM observables as functions of the DM mass. Panel (a) shows the relic
density either for an ν̃R (blue) or an χ0

1 (green) LSP. Panel (b) represents the relic density

either for an B̃ (violet) or an H̃ (yellow) LSP. Panel (c) compares the rescaled DD rate
for an ν̃R (blue) or an χ0

1 (green) LSP compared to results or forecasts from Xenon-based
experiments.
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English version

In this thesis we have seen how the theoretical and experimental developments in particle
physics and cosmology, especially during the 20th century, have led to two main theories
that describe our Universe in a very efficient way and with a lot of success. Nevertheless
some issues, especially those concerning the Higgs sector and the Dark Matter problem,
still need to be addressed. This thesis investigate these problems within the context of
Supersymmetry.

We depicted how the Minimal Supersymmetric Standard Model can give meaningful
solutions with the neutralino as a very interesting Dark Matter candidate. This model
has also the nice feature to provide candidates to the cosmic inflation. Then a large
range of collider, astroparticle and cosmological measurements can be used to point to
the viable region of the parameter space of this supersymmetric model. To probe effi-
ciently these viable regions we developed a code using the Markov Chain Monte Carlo
approach and we found that, within the NUHM2 scenario which features non degener-
ate scalar masses at the Grand Unified Theories scale, most of our interesting points in
the parameter space are characterized by a Lightest Supersymmetric Particle neutralino
which is mostly higgsino and a Standard Model-like Higgs boson whose mass is in the
preferred range set by the experiments. We also saw that the Direct Detection of Dark
Matter is starting to probe this type of scenarios and that the expected sensitivity of
forthcoming Direct Detection experiments could almost entirely span the favourite Dark
Matter scenarios.

We also analysed how the Indirect Detection of Dark Matter can despite several
drawbacks constrain the Dark Matter sector. Assuming that the neutralino Dark Matter
candidate mostly annihilate into W bosons and that there is a regeneration mechanism
to raise the relic density of Dark Matter to the mesured value, we showed how lower
bounds on the mass degeneracy between the neutralino and the NLSP chargino can be
defined in a simplified version of the phenomenological Minimal Supersymmetric Stan-
dard Model, especially for a wino Lightest Supersymmetric Particle.

Despite the nice features of the Minimal Supersymmetric Standard Model, there are
reasons to analyse some of its extensions. The NMSSM is the minimal extension which
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provides a very light Dark Matter candidate, the singlino, a Higgs with the appropriate
mass and the possibility to fit possible non-standard signal strength in some Higgs decay
channels determined at colliders. We saw by analysing some specific scenarios with light
Dark Matter in this model that usual limits on coloured sparticles obtained at the LHC
have to be taken with care in the context of such non-minimal scenarios.

We finally look at a gauge symmetry extension of the Minimal Supersymmetric Stan-
dard Model, the UMSSM. This model contains a new gauge boson which is now strongly
constrained by current collider experiments. An interesting point of the UMSSM is that
it provides a scalar Dark Matter candidate, the Right-Handed sneutrino. We found a
variety of annihilation channels for this particle which allow to fit the Dark Matter con-
straints. Depending on the U(1) scenario considered, the phenomenological predictions
can be completely different. We finally made a first analysis of the Higgs sector of this
model while considering a large number of low energy observables that can be affected
by UMSSM contributions. In the near future we will pursue the analysis of this model
to evaluate the impact of the recent collider results on Dark Matter properties. Our aim
is also to include the UMSSM model in the public version of the micrOMEGAs code.

Version française

Cette thèse nous a permis de voir comment les développements théoriques et expérimentaux
en physique des particules et en cosmologie, principalement pendant le 20e siècle, nous
ont conduit à se concentrer principalement sur deux théories qui décrivent efficacement
et avec succès notre Univers. Cependant certaines questions, notamment celles qui con-
cernent le secteur de Higgs et le problème de la Matière Noire, doivent encore être
abordées. Cette thèse traite de ces problèmes dans le contexte de la Supersymétrie.

Nous avons montré à quel point le Modèle Standard Supersymétrique Minimal peut
donner d’intéressantes solutions avec un très attrayant candidat à la Matière Noire qui
est le neutralino. Ce modèle a également l’avantageuse caractéristique de fournir des
candidats à l’inflation cosmique. Il s’ensuit qu’un large éventail de mesures en collision-
neur, d’astroparticule et en cosmologie peut être utilisé pour pointer vers les régions vi-
ables de l’espace des paramètres de ce modèle supersymétrique. Pour sonder de manière
efficace ces intéressantes régions un code utilisant l’approche Monte-Carlo à Châınes
de Markov a été développé et cela nous a permis de trouver que, dans le contexte du
scénario NUHM2 dont la caractéristique principale est de lever la dégénérescence entre les
scalaires à l’échelle de Grande Unification, la majeure partie de nos intéressantes configu-
rations dans l’espace des paramètres est caractérisé par une particule supersymétrique la
plus légère principalement higgsino et un boson de Higgs comparable à celui du Modèle
Standard dont la masse est dans l’intervalle fixé par les expériences. Nous avons en
outre remarqué que la Détection Directe de Matière Noire commence à sonder ce genre
de scénarios et la sensibilité attendue des expériences à venir de Détection Directe peut
presque entièrement couvrir l’ensemble des scénarios pertinents de Matière Noire.
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Nous avons aussi analysé comment la Détection Indirecte de Matière Noire peut
malgré plusieurs inconvénients contraindre le secteur de Matière Noire. En supposant
que le candidat neutralino à la Matière Noire s’annihile principalement en bosons W et
qu’un mécanisme de régénération permet d’élever la densité relique de Matière Noire à la
valeur mesurée, nous avons montré comment des bornes inférieures sur la dégénérescence
de masse entre le neutralino et la NLSP chargino peuvent être définies dans une ver-
sion simplifiée du Modèle Standard Supersymétrique Minimal phénoménologique, par-
ticulièrement pour une particule supersymétrique la plus légère wino.

Nonobstant les intéressantes caractéristiques du Modèle Standard Supersymétrique
Minimal, certaines raisons nous poussent à analyser quelques-unes de ses extensions. Le
NMSSM est l’extension minimale qui fournit un candidat à la Matière Noire légère, le
singlino, un boson de Higgs avec la masse appropriée et la possibilité d’être compatible
avec de possibles signaux non standards dans certaines châınes de désintégration du bo-
son de Higgs obtenues en collisionneur. Nous avons vu en étudiant quelques scénarios
avec une Matière Noire légère dans ce modèle que les limites sur les sparticules colorées
obtenues au LHC doivent être prises avec précaution dans le contexte de ces scénarios
non minimaux.

Nous avons finalement considéré une extension de la symétrie de jauge du Modèle
Standard Supersymétrique Minimal, le UMSSM. Ce modèle contient un nouveau boson
de jauge qui est fortement contraint par les expériences actuelles en collisionneur. Un
point intéressant de l’UMSSM est qu’il fournit un candidat scalaire à la Matière Noire, le
sneutrino droit. Nous avons trouvé divers canaux d’annihilation pour cette particule qui
permettent à des scénarios UMSSM de satisfaire les contraintes de Matière Noire. Selon
le scénario U(1) choisi, les prédictions phénoménologiques peuvent être complètement
différentes. Pour finir nous avons analysé le secteur de Higgs de ce modèle tout en
incluant un grand nombre d’observables de basses énergies qui peuvent être impactées
par les contributions UMSSM. Dans un futur proche nous poursuivrons l’analyse de
ce modèle afin d’évaluer les conséquences des résultats récents en collisionneur sur les
propriétés de la Matière Noire. Notre objectif est aussi d’inclure le modèle UMSSM dans
la version publique du code micrOMEGAs.
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A Cross section sneutrinos - nucleons : gauge bosons

contribution

Here the aim is to compute the cross section for the process below :

ν̃R(p2) ν̃∗R(p1)

q(k1) q̄(k2)

Z1, Z2

Since we consider DD and then low energy processes, we restrict ourselves to the
vectorial part :

(fq̄qZ1)µ = −(
1

2sW
cosαZgYQ

q
V +

1

2
sinαZg

′
1Q

′q
V )γµ = ξZ1

q γµ, (A.1)

(fq̄qZ2)µ = (
1

2sW
sinαZgYQ

q
V − 1

2
cosαZg

′
1Q

′q
V )γµ = ξZ2

q γµ, (A.2)

(fZ1ν̃∗Rν̃R
)µ = g′1Q′

ν sinαZ(p1 + p2)µ, (A.3)

(fZ2ν̃∗Rν̃R
)µ = g′1Q′

ν cosαZ(p1 + p2)µ. (A.4)

Then the matrix element for the interaction between the LSP and a nucleus N with
Z protons and A− Z neutrons is :

It follows that
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Mν̃RN
Z1,Z2

= − ig′1Q′
ν(p1 + p2)µν̃

∗
Rν̃R

¯N(k2)γ
µN(k1){

Z

[
sinαZ
M2

Z1

(2ξZ1
u + ξZ1

d ) +
cosαZ
M2

Z2

(2ξZ2
u + ξZ2

d )

]
+

(A− Z)

[
sinαZ
M2

Z1

(2ξZ1
d + ξZ1

u ) +
cosαZ
M2

Z2

(2ξZ2
d + ξZ2

u )

]}
. (A.5)

Given that the expressions

Qq
V = Iq3 − 2Qqs2W , (A.6)

Q
′q
V = Q′

Q −Q′
Q̄, (A.7)

leads to

Qu
V =

1

6
(3− 8s2W ), Qd

V =
1

6
(−3 + 4s2W ), (A.8)

Q
′u
V = 0, (A.9)

we have for the Z term :
sinαZ
M2

Z1

(2ξZ1
u + ξZ1

d ) +
cosαZ
M2

Z2

(2ξZ2
u + ξZ2

d )

=
gY sinαZ cosαZ

4sW
(1− 4s2W )

(
1

M2
Z2

− 1

M2
Z1

)
− g′1

2
Q

′d
V

(
sin2 αZ
M2

Z1

+
cos2 αZ
M2

Z2

)
, (A.10)

while the A− Z term reads :

sinαZ
M2

Z1

(2ξZ1
d + ξZ1

u ) +
cosαZ
M2

Z2

(2ξZ2
d + ξZ2

u )

= − gY sinαZ cosαZ
4sW

(
1

M2
Z2

− 1

M2
Z1

)
− g′1Q

′d
V

(
sin2 αZ
M2

Z1

+
cos2 αZ
M2

Z2

)
. (A.11)

Then in the non-relativistic approximation we have

|M̄Z1,Z2 |2 =
1

2

∑

spins

|MZ1,Z2 |2 = 16C(g′1Q′
ν)

2m2
ν̃R
m2
N . (A.12)

with

C = [(y(1− 4 sin2 θW ) + y′)Z + (−y + 2y′)(A− Z)]2, (A.13)

y =
gY sinαZ cosαZ

4 sin θW

(
1

M2
Z2

− 1

M2
Z1

)
, (A.14)

y′ = − g′1
2
Q

′d
V

(
sin2 αZ
M2

Z1

+
cos2 αZ
M2

Z2

)
. (A.15)

Finally the contribution of the gauge bosons to the cross section ν̃R - nucleus reads

σZ1,Z2

ν̃RN
=
µ2
ν̃RN

π
(g′1Q′

ν)
2[(y(1− 4 sin2 θW ) + y′)Z + (−y + 2y′)(A− Z)]2, (A.16)

with µν̃RN =
mν̃R

mN

mν̃R
+mN

.
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B Radiative corrections in the Higgs sector à la

Coleman-Weinberg

The dominant radiative corrections due to top and stops that are considered in chapter 8
come from [357]. The CP-even and CP-odd mass matrices are given in terms of the
tree-level elements

(
M0

±
)
ij

given in eqs. 7.28 and 7.29 where i, j ∈ {1, 2, 3} plus the

corrections
(
M1

±
)
ij
that are obtained through the Coleman-Weinberg correction to the

scalar potential with 1-loop (s)top [358]. They read :
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+

)
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+
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(
λy2tAt

2
√
2
F
)
vu

]
,

(
M1

+

)
22

= k

(
(m̃2

2)
2

(m2
t̃1
−m2

t̃2
)2
G +

2y2t m̃
2
2

m2
t̃1
+m2

t̃2

(2− G) + y4t ln
m2
t̃1
m2
t̃2

m4
t

)
v2u

+ k

(
λy2tAt

2
√
2
F
)
vsvd
vu

,

(
M1

+

)
23

= k

[(
m̃2

2m̃
2
s

(m2
t̃1
−m2

t̃2
)2
G +

y2t m̃
2
s

m2
t̃1
+m2

t̃2

(2− G)
)
vuvs −

(
λy2tAt

2
√
2
F
)
vd

]
,

(
M1

+

)
33

= k

[(
(m̃2

s)
2

(m2
t̃1
−m2

t̃2
)2
G
)
v2s +

(
λy2tAt

2
√
2
F
)
vuvd
vs

]
, (B.1)

where k = 3/(4π)2, yt is the top Yukawa coupling and

G = 2

[
1−

m2
t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log

(
mt̃1

mt̃2

)]
,

F = log

(
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t̃1
m2
t̃2

Λ4

)
− G(m2

t̃1
,m2

t̃2
) (B.2)
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and

m̃2
1 = y2tµ

(
µ− Atvu

vd

)
,

m̃2
2 = y2tAt

(
At −

µvd
vu

)
,

m̃2
s =

(
vdyt
vs

)2

µ(µ− Attβ), (B.3)

(B.4)

Λ is defined as Λ =
√
mt̃1

mt̃2
. For the CP-odd sector we have

(M1
−)ij =

λvuvdvs√
2vivj

ky2tAt
2

F , i, j ∈ {1, 2, 3}, (B.5)

where v1 = vd, v2 = vu, v3 = vs.
For the charged Higgs mass we consider eq. 7.31 plus the following corrections :

∆2
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λAtvsky
2
tF√
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3g2
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32π2M2
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. (B.6)
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C Gauge invariance : Goldstones and ghosts

As it was said in section 8.4 the implementation of the UMSSM model in a gauge
invariant way needs a stringent definition of unphysical fields that are mandatory for
the consistency of the gauge theory considered. These fields are the Goldstone bosons
and the ghosts.

C.1 Gauge fixing : Goldstone of Z and Z ′

To be able to only consider the physical degrees of freedom of the model, we must
add a Lagrangian term that will allow to get rid of the Goldstone fields. Actually
LanHEP automatically defines the Godstones associated to the physical gauge bosons.
Nevertheless we need to define the Goldstones associated to Z and Z ′ to be able to
compute correctly the unitary matrix ZA shown in section 7.3.2. To do that we must
introduce a mixing angle βZ that parameterizes the transition between (GZ1 , GZ2) and
(GZ , GZ′). The expression of this link reads

(
GZ

GZ′

)
= −


cos βZ − sin βZ

sin βZ cos βZ



(
GZ1

GZ2

)
, (C.1)

with

tan βZ =
cosαZ

√
g2Y + g22(vdZA21 − vuZA22) + sinαZg

′
1

∑3
i=1 Q′

iviZA2i

cosαZ
√
g2Y + g22(vdZA11 − vuZA12) + sinαZg′1

∑3
i=1 Q′

iviZA1i
, (C.2)

and with (v1,Q′
1) ≡ (vd,Q′

Hd
), (v2,Q′

2) ≡ (vu,Q′
Hu

) and (v3,Q′
3) ≡ (vs,Q′

S). Then in
the Feynman gauge the gauge fixing Lagrangian of the model can be expressed as

L
GF
UMSSM = −1

2

(
|F γ|2 + |FG|2 + 2FW+

FW−

+ |FZ1 |2 + |FZ2 |2
)
, (C.3)

where we define

F γ = ∂µA
µ,

FG = ∂µG
µ,

FW±

= ∂µW
± ± iMWGW± ,

FZ1 = ∂µZ
µ
1 +MZ1GZ1 ,

FZ2 = ∂µZ
µ
2 +MZ2GZ2 .

(C.4)

C.2 Fadeev-Popov ghosts

The Fadeev-Popov ghosts c [474], anticommuting scalar fields which are needed to main-
tain the consistency of the gauge theory, have the following general Lagrangian term :

L
FP = −c̄α(D(c)[Φα]), (C.5)
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where Φ is a gauge boson and D(c) is a gauge transformation. To do that we start
from the Becchi-Rouet-Stora-Tyutin (BRST) tranformations [475, 476, 477, 478] given
in [479] and the relations given in [480]. For the contribution of the gauge bosons that
we want to highlight for our model we have

D(c)[W α
µ ] = g2ǫ

αβγW β
µ c

γ + ∂µc
α

D(c)[Bµ] = ∂µcB

D(c)[B′
µ] = ∂µcB′ .

(C.6)

C.2.1 Ghosts in the MSSM

In the MSSM, we have the following terms :

− c̄W+D(c)[∂µW+
µ +MWGW+ ],

− c̄W−D(c)[∂µW−
µ +MWGW− ],

− c̄ZD(c)[∂µZµ +MZGZ ],

− c̄γD(c)[∂µAµ],

(C.7)

with

cW± =
1√
2
(cW 1 ∓ cW 2),

cγ = sW cW 3 + cW cB,

cZ = cW cW 3 − sW cB.

(C.8)

We can now write

D(c)[∂µW 1
µ ] = g2W

2
µcW 3 − g2W

3
µcW 2 + ∂µcW 1 ,

D(c)[∂µW 2
µ ] = g2W

3
µcW 1 − g2W

1
µcW 3 + ∂µcW 2

(C.9)

which gives

−c̄W±D(c)[∂µW±
µ ] = − 1√

2
c̄W±∂µ(D(c)[W 1

µ ]∓D(c)[W 2
µ ])

= −∂µ∂µc̄W±cW± − ig2c̄W±∂µ(W±
µ cW 3 − cW±W 3

µ).

(C.10)

Using the same method we have

−c̄ZD(c)[∂µZµ] = −∂µ∂µc̄ZcZ + ig2cW c̄Z∂
µ(W+

µ cW− − cW+W−
µ ),

−c̄γD(c)[∂µAµ] = −∂µ∂µc̄γcγ + ig2sW c̄γ∂
µ(W+

µ cW− − cW+W−
µ ).

(C.11)

For the gauge transformations acting on Goldstones, we have to use the definition of the
Higgs fields6 :

Hd =


 (vd + φd − iϕd)/

√
2

−φ−
d


 , Y = −1 Hu =


 φ+

u

(vu + φu + iϕu)/
√
2


 , Y = 1.

(C.12)

6The following definitions apply only for this appendix on ghosts in the (U)MSSM.
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With Y the hypercharge. It follows that

D(c)Hd,u = i
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2
cWασαHd,u + i

g′

2
Y cBHd,u
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g2
2
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This leads to
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D(c)Hu = i
g2
2


 cW+(vu + φu + iϕu) + φ+

d (2sW cγ + cW cZ(1− t2W ))

− cZ
cW

√
2
(vu + φu + iϕu) + φ+

u cW−

√
2


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Defining the transformations

D(c)H0
d + iD(c)ϕd√

2
=
(
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)
D(c)Hd, (C.16)
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)
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, (C.19)

−iD(c)φ+
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0 1

)
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, (C.20)

iD(c)φ+
u =

(
1 0

)
D(c)Hu, (C.21)
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we have

D(c)H0
d,u = −ig2

2
(cW+φ−

d,u − cW−φ+
d,u +

cZ
cW

iϕd,u), (C.22)

D(c)ϕd,u = −g2
2
(cW+φ−

d,u + cW−φ+
d,u −

cZ
cW

(vd,u + φd,u)), (C.23)

D(c)φ±
d,u =

g2
2

(
cW±(vd,u + φd,u ± iϕd,u) + φ±

d,u(2sW cγ + cW cZ(1− t2W ))
)
. (C.24)

With

GW± = cβφ
±
d + sβφ

±
u , (C.25)

GZ = cβϕd + sβϕu, (C.26)

the last Fadeev-Popov terms read

−c̄W±D(c)[MWGW± ] =−MW c̄W±D(c)[cβφ
±
d + sβφ

±
u ]

=−MW cβ
g2
2
c̄W±

(
cW±(vd + φd ± iϕd) + φ±

d (2sW cγ + cW cZ(1− t2W ))
)

−MW sβ
g2
2
c̄W±

(
cW±(vu + φu ± iϕu) + φ±

u (2sW cγ + cW cZ(1− t2W ))
)

=−MW
g2
2
c̄W±(2sW cγ + cW cZ(1− t2W ))GW±

−MW
g2
2
c̄W±cW±(cβφd + sβφu ± iGZ) + quadratic terms

=∓ iMW
g2
2
c̄W±cW±GZ −MW

g2
2
c̄W±cW±

(
cβ sβ

)

φd
φu




− eMW c̄W±cγGW± −MW
g2
2cW

(c2W − s2W )c̄W±cZGW±

+ quadratic terms, (C.27)

−c̄ZD(c)[MZGZ ] =−MZ c̄ZD(c)[cβϕd + sβϕu]

=MZcβ
g2
2
c̄Z(cW+φ−

d + cW−φ+
d − cZ

cW
(vd + φd))

+MZsβ
g2
2
c̄Z(cW+φ−

u + cW−φ+
u − cZ

cW
(vu + φu))

=MZ
g2
2
c̄Z(cW+GW− + cW−GW+) +MZ

g2
2cW

c̄ZcZ

(
cβ sβ

)

φd
φu




+ quadratic terms. (C.28)
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It follows that the Fadeev-Popov Lagrangian in the MSSM is :

L
FP
MSSM = g3f

αβγ c̄αcβ∂µGγ
µ

− ig2c̄W±∂µ(W±
µ cW 3 − cW±W 3

µ) + ig2cW c̄Z∂
µ(W+

µ cW− − cW+W−
µ )

+ ig2sW c̄γ∂
µ(W+

µ cW− − cW+W−
µ )∓ iMW

g2
2
c̄W±cW±GZ − eMW c̄W±cγGW±

−MW
g2
2
c̄W±cW±

(
cβ sβ

)

φd
φu


−MW

g2
2cW

(c2W − s2W )c̄W±cZGW±

+MZ
g2
2cW

c̄ZcZ

(
cβ sβ

)

φd
φu


+MZ

g2
2
c̄Z(cW+GW− + cW−GW+)

+ quadratic terms.

(C.29)

C.2.2 Ghosts in the UMSSM

Here we also have to consider S = (vs + σ + iξ)/
√
2, with Y = 0. Comparing to the

MSSM we modify or add the following terms :

− c̄W±D(c)[MWGW± ],

− c̄Z1D(c)[∂µZ1µ +MZ1GZ1 ],

− c̄Z2D(c)[∂µZ2µ +MZ2GZ2 ].

The transformations read now :

D(c)Hd,u = i
g2
2


√2


 0 cW+

cW− 0


+ sW cγ


1 + Y 0

0 Y − 1


+ cW cZ


1− Y t2W 0

0 −(1 + Y t2W )




+2
g′1
g2
Q′
Hd,Hu

cZ′


1 0

0 1




Hd,u

D(c)Hd = i
g2
2




(
cZ
cW

+
2g′1
g2
Q′
Hd
cZ′

)
(vd + φd − iϕd)/

√
2− φ−

d cW+

√
2

cW−(vd + φd − iϕd) + φ−
d

(
2sW cγ + cW cZ(1− t2W )− 2g′1

g2
Q′
Hd
cZ′

)



D(c)Hu = i
g2
2


 cW+(vu + φu + iϕu) + φ+

d

(
2sW cγ + cW cZ(1− t2W ) +

2g′1
g2
Q′
Hu
cZ′

)
(
− cZ
cW

+
2g′1
g2
Q′
Hu
cZ′

)
(vu + φu + iϕu)/

√
2 + φ+

u cW−

√
2




D(c)S = ig′1Q′
ScZ′(vs + σ + iξ)/

√
2.
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Which gives

D(c)H0
d,u = −ig2

2
(cW+φ−

d,u − cW−φ+
d,u +

cZ
cW

iϕd,u)± g′1Q′
Hd,Hu

cZ′ϕd,u (C.30)

D(c)ϕd,u = −g2
2
(cW+φ−

d,u + cW−φ+
d,u −

cZ
cW

(vd,u + φd,u))± g′1Q′
Hd,Hu

cZ′(vd,u + φd,u)

(C.31)

D(c)φ±
d,u =

g2
2

(
cW±(vd,u + φd,u ± iϕd,u) + φ±

d,u(2sW cγ + cW cZ(1− t2W ))
)

∓ g′1Q′
Hd,Hu

cZ′φ±
d,u (C.32)

D(c)S0 = −g′1Q′
ScZ′ξ (C.33)

D(c)ξ = −g′1Q′
ScZ′(vs + σ). (C.34)

GW± has the same expression as in the MSSM. However in the UMSSM we have

GZ =− ZA11ϕd + ZA12ϕu + ZA13ξ (C.35)

GZ′ =− ZA21ϕd + ZA22ϕu + ZA23ξ. (C.36)

It implies :

−c̄W±D(c)[MWGW± ] =−MW
g2
2
c̄W±cW±

(
cβ sβ

)

φd ± iϕd

φu ± iϕu


− eMW c̄W±cγGW±

−MW
g2
2cW

(c2W − s2W )c̄W±cZGW±

+MWg
′
1c̄W±cZ′

(
(c2βQ′

Hd
− s2βQ′

Hu
)GW± + cβsβQ′

SH
±)

+ quadratic terms, (C.37)

−c̄Z1D(c)[MZ1GZ1 ] =MZ1 c̄Z1D(c)[cos βZGZ + sin βZGZ′ ]

=− cos βZMZ1

g2
2
c̄Z1

(
−ZA11cW±(cβGW± − sβH

±) + ZA12cW±(sβGW± + cβH
±)
)

− sin βZMZ1

g2
2
c̄Z1

(
−ZA21cW±(cβGW± − sβH

±) + ZA22cW±(sβGW± + cβH
±)
)

+ cos βZMZ1

g2
2cW

c̄Z1cZ(−ZA11φd + ZA12φu)

+ sin βZMZ1

g2
2cW

c̄Z1cZ(−ZA21φd + ZA22φu)

− cos βZMZ1g
′
1c̄Z1cZ′(ZA11Q′

Hd
φd + ZA12Q′

Hu
φu + ZA13Q′

Sσ)

− sin βZMZ1g
′
1c̄Z1cZ′(ZA21Q′

Hd
φd + ZA22Q′

Hu
φu + ZA23Q′

Sσ)

+ quadratic terms, (C.38)
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−c̄Z2D(c)[MZ2GZ2 ] =MZ2 c̄Z2D(c)[− sin βZGZ + cos βZGZ′ ]

= sin βZMZ2

g2
2
c̄Z2

(
−ZA11cW±(cβGW± − sβH

±) + ZA12cW±(sβGW± + cβH
±)
)

− cos βZMZ2

g2
2
c̄Z2

(
−ZA21cW±(cβGW± − sβH

±) + ZA22cW±(sβGW± + cβH
±)
)

− sin βZMZ2

g2
2cW

c̄Z2cZ(−ZA11φd + ZA12φu)

+ cos βZMZ2

g2
2cW

c̄Z2cZ(−ZA21φd + ZA22φu)

+ sin βZMZ2g
′
1c̄Z2cZ′(ZA11Q′

Hd
φd + ZA12Q′

Hu
φu + ZA13Q′

Sσ)

− cos βZMZ2g
′
1c̄Z2cZ′(ZA21Q′

Hd
φd + ZA22Q′

Hu
φu + ZA23Q′

Sσ)

+ quadratic terms. (C.39)

Finally, the complete Fadeev-Popov Lagrangian in the UMSSM reads

L
FP
UMSSM = g3f

αβγ c̄αcβ∂µGγ
µ − ig2c̄W±∂µ(W±

µ cW 3 − cW±W 3
µ) + ig2cW c̄Z∂

µ(W+
µ cW− − cW+W−

µ )

+ ig2sW c̄γ∂
µ(W+

µ cW− − cW+W−
µ )−MW

g2
2
c̄W±cW±

(
cβ sβ

)

φd ± iϕd

φu ± iϕu




− eMW c̄W±cγGW± −MW
g2
2cW

(c2W − s2W )c̄W±cZGW±

+MWg
′
1c̄W±cZ′

(
(c2βQ′

Hd
− s2βQ′

Hu
)GW± + cβsβQ′

SH
±)

− cos βZMZ1

g2
2
c̄Z1

(
−ZA11cW±(cβGW± − sβH

±) + ZA12cW±(sβGW± + cβH
±)
)

− sin βZMZ1

g2
2
c̄Z1

(
−ZA21cW±(cβGW± − sβH

±) + ZA22cW±(sβGW± + cβH
±)
)

+ cos βZMZ1

g2
2cW

c̄Z1cZ(−ZA11φd + ZA12φu)

+ sin βZMZ1

g2
2cW

c̄Z1cZ(−ZA21φd + ZA22φu)

− cos βZMZ1g
′
1c̄Z1cZ′(ZA11Q′

Hd
φd + ZA12Q′

Hu
φu + ZA13Q′

Sσ)

− sin βZMZ1g
′
1c̄Z1cZ′(ZA21Q′

Hd
φd + ZA22Q′

Hu
φu + ZA23Q′

Sσ)

+ sin βZMZ2

g2
2
c̄Z2

(
−ZA11cW±(cβGW± − sβH

±) + ZA12cW±(sβGW± + cβH
±)
)

− cos βZMZ2

g2
2
c̄Z2

(
−ZA21cW±(cβGW± − sβH

±) + ZA22cW±(sβGW± + cβH
±)
)

− sin βZMZ2

g2
2cW

c̄Z2cZ(−ZA11φd + ZA12φu)

+ cos βZMZ2

g2
2cW

c̄Z2cZ(−ZA21φd + ZA22φu)

+ sin βZMZ2g
′
1c̄Z2cZ′(ZA11Q′

Hd
φd + ZA12Q′

Hu
φu + ZA13Q′

Sσ)

− cos βZMZ2g
′
1c̄Z2cZ′(ZA21Q′

Hd
φd + ZA22Q′

Hu
φu + ZA23Q′

Sσ)

+ quadratic terms. (C.40)
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[201] Céline Bœhm, Jonathan Da Silva, Anupam Mazumdar and Ernestas Pukartas.
Probing the Supersymmetric Inflaton and Dark Matter link via the CMB, LHC and
XENON1T experiments. Phys. Rev., D87:023529, 2013. [doi] [arXiv:1205.2815].

[202] Sujeet Akula, Baris Altunkaynak, Daniel Feldman, Pran Nath and Gregory Peim.
Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results, and
Dark Matter. Phys. Rev., D85:075001, 2012. [doi] [arXiv:1112.3645].

[203] Jonathan L. Feng and David Sanford. A Natural 125 GeV Higgs Boson in the
MSSM from Focus Point Supersymmetry with A-Terms. Phys. Rev., D86:055015,
2012. [doi] [arXiv:1205.2372].

[204] Howard Baer, Vernon Barger and Azar Mustafayev. Implications of a 125 GeV
Higgs scalar for LHC SUSY and neutralino dark matter searches. Phys. Rev.,
D85:075010, 2012. [doi] [arXiv:1112.3017].

[205] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon. Implications
of a 125 GeV Higgs for supersymmetric models. Phys. Lett., B708:162–169, 2012a.
[doi] [arXiv:1112.3028].

[206] John Ellis and Keith A. Olive. Revisiting the Higgs Mass and Dark Matter in the
CMSSM. Eur. Phys. J., C72:2005, 2012. [doi] [arXiv:1202.3262].

[207] John R. Ellis, Toby Falk, Keith A. Olive and Yudi Santoso. Exploration of the
MSSM with nonuniversal Higgs masses. Nucl. Phys., B652:259–347, 2003. [doi]
[arXiv:hep-ph/0210205].

[208] Howard Baer, Azar Mustafayev, Stefano Profumo, Alexander Belyaev and Xerxes
Tata. Direct, indirect and collider detection of neutralino dark matter in SUSY
models with non-universal Higgs masses. JHEP, 0507:065, 2005. [doi] [arXiv:hep-
ph/0504001].

[209] E. Komatsu et al., WMAP Collaboration. Seven-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys.
J. Suppl., 192:18, 2011. [doi] [arXiv:1001.4538].

[210] K. Nakamura et al., Particle Data Group. Review of particle physics. J. Phys.,
G37:075021, 2010. [doi]

[211] Tevatron Electroweak Working Group, CDF Collaboration, DØ Collab-
oration. Combination of CDF and DØ results on the mass of the top quark using
up to 5.8 fb−1 of data. 2011. [arXiv:1107.5255].



222 BIBLIOGRAPHY

[212] R. Aaij et al., LHCb Collaboration. Strong constraints on the rare decays
Bs → µ+µ− and B0 → µ+µ−. Phys. Rev. Lett., 108:231801, 2012a. [doi]
[arXiv:1203.4493].

[213] D. Asner et al., Heavy Flavor Averaging Group. Averages of b-hadron, c-
hadron, and τ -lepton Properties. 2010. [arXiv:1010.1589].

[214] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller.
Equation of state calculations by fast computing machines. J. Chem. Phys., 21:
1087–1092, 1953. [doi]

[215] Georges Aad et al., ATLAS Collaboration. Combined search for the Stan-
dard Model Higgs boson using up to 4.9 fb−1 of pp collision data at

√
s = 7 TeV

with the ATLAS detector at the LHC. Phys. Lett., B710:49–66, 2012b. [doi]
[arXiv:1202.1408].

[216] Serguei Chatrchyan et al., CMS Collaboration. Combined results of searches
for the standard model Higgs boson in pp collisions at

√
s = 7 TeV. Phys. Lett.,

B710:26–48, 2012b. [doi] [arXiv:1202.1488].
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[272] Beranger Dumont, Geneviève Bélanger, Sylvain Fichet, Sabine Kraml and Thomas
Schwetz. Mixed sneutrino dark matter in light of the 2011 XENON and LHC
results. JCAP, 1209:013, 2012. [doi] [arXiv:1206.1521].

[273] B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich. Precise deter-
mination of the neutral Higgs boson masses in the MSSM. JHEP, 0409:044, 2004.
[doi] [arXiv:hep-ph/0406166].

[274] Philip Bechtle, Oliver Brein, Sven Heinemeyer, Georg Weiglein and Karina E.
Williams. HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion



BIBLIOGRAPHY 227

Bounds from LEP and the Tevatron. Comput. Phys. Commun., 181:138–167,
2010. [doi] [arXiv:0811.4169]. http://higgsbounds.hepforge.org

[275] Philip Bechtle, Oliver Brein, Sven Heinemeyer, Georg Weiglein and Karina E.
Williams. HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Pre-
dictions with Exclusion Bounds from LEP and the Tevatron. Comput. Phys. Com-
mun., 182:2605–2631, 2011. [doi] [arXiv:1102.1898].

[276] Jonathan H. Davis, Torsten Ensslin and Céline Bœhm. Surpassing the 2012
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[325] Mirjam Cvetič and Paul Langacker. Implications of Abelian extended gauge struc-
tures from string models. Phys. Rev., D54:3570–3579, 1996a. [doi] [arXiv:hep-
ph/9511378].
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Supersymmetric Dark Matter candidates in light of
constraints from collider and astroparticle

observables

Abstract : The Standard Model of particle physics has been strengthened by the recent discovery
of the long-awaited Higgs boson. The standard cosmological model has met the challenge of the high
precision observations in comology and astroparticle physics. However these two standard models face
both several theoretical issues, such as the naturalness problem in the Higgs sector of the Standard
Model, as well as observational issues, in particular the fact that an unknown kind of matter called
Dark Matter accounts for the majority of the matter content in our Universe. Attempts to solve such
problems have led to the development of New Physics models during the last decades. Supersymmetry
is one such model which addresses the fine-tuning problem in the Higgs sector and provides viable Dark
Matter candidates. Current high energy and high precision experiments give many new opportunities
to probe the supersymmetric models. It is in this context that this thesis is written. Considering
the Minimal Supersymmetric Standard Model (MSSM), the simplest supersymmetric extension of the
Standard Model of particle physics, and its conventional Dark Matter candidate, the neutralino, it is
shown that collider constraints could provide informations on the very early Universe at the inflation
area. It is also demonstrated that the Indirect Detection of Dark Matter, despite several drawbacks,
can be a powerful technique to probe supersymmetric Dark Matter models. Beyond the MSSM it
is shown that unique characteristics of the Dark Matter candidate in the NMSSM could be probed at
colliders. The study of a supersymmetric model with an extended gauge symmetry, the UMSSM, is also
developed. The features of another Dark Matter candidate of this model, the Right-Handed sneutrino,
are analysed. More general constraints such as those coming from low energy observables are finally
considered in this model.

Keywords : Dark matter - Supersymmetry - Collider and astroparticles constraints - Neutralino -
Right-Handed sneutrino - UMSSM

Les candidats supersymétriques à la matière noire à
la lumière des contraintes provenant des observables

en collisionneur et d’astroparticule

Résumé : Le Modèle Standard de la physique des particules a été renforcé par la récente découverte du
très attendu boson de Higgs. Le modèle standard cosmologique a lui relevé le défi de la haute précision
des observations cosmologiques et des expériences d’astroparticules. Toutefois, ces deux modèles stan-
dards sont encore confrontés à plusieurs problèmes théoriques, comme le problème de naturalité dans
le secteur de Higgs du Modèle Standard, ainsi que des problèmes observationnels à l’image des nom-
breuses preuves de l’existence d’un genre inconnu de matière, appelé Matière Noire, qui représenterait
la majeure partie du contenu en matière de l’Univers. Les tentatives visant à résoudre ces problèmes ont
conduit au développement de nouveaux modèles physiques au cours des dernières décennies. La Super-
symétrie est un de ces modèles qui traite du problème du réglage fin dans le secteur de Higgs et fournit
de bons candidats à la Matière Noire. Les expériences actuelles de physique des hautes énergies et de
haute précision offrent de nombreuses possibilités pour contraindre les modèles supersymétriques. C’est
dans ce contexte que cette thèse s’inscrit. En considérant le Modèle Standard Supersymétrique Minimal
(MSSM), l’extension supersymétrique la plus simple du Modèle Standard, et son candidat à la Matière
Noire, le neutralino, il est montré que les contraintes obtenues en collisionneur pourraient fournir des
informations sur une période de l’Univers jeune, l’ère inflationnaire. Il est également démontré que
la Détection Indirecte de Matière Noire, en dépit de plusieurs inconvénients, peut se révéler être une
technique efficace pour explorer les modèles de Matière Noire supersymétrique. Au-delà du MSSM il est
montré que des caractéristiques uniques du candidat à la Matière Noire dans le NMSSM peuvent être
explorées aux collisionneurs. L’étude d’un modèle supersymétrique avec une symétrie de jauge étendue,
le UMSSM, est également développée. Les caractéristiques d’un autre candidat de la matière noire de
ce modèle, le sneutrino droit, sont analysées. Des contraintes plus générales telles que celles provenant
d’observables de basse énergie sont finalement prise en compte.

Mots-clés : Matière Noire - Supersymétrie - Contraintes en collisionneur et d’astroparticule - Neu-
tralino - Sneutrino droit - UMSSM
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