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Abstract

This thesis is devoted to studying quantum mechanical systems with gravity duals. It is in-

teresting to study holographic correspondence for quantum mechanical systems since we have

much more theoretical control over them compared to quantum field theories. At the same time,

gravity duals to quantum mechanical systems are quite rich as they can include black holes and

wormholes.

Chapter 2 is based on work [1] with J. Maldacena and studies aspects of gauge symmetry

in Banks-Fishler-Shenker-Susskind(BFSS) model. In the original formulation it includes gauged

SU(N) symmetry. However, we argued that non-singlet states are separated by a finite gap from

the ground state. Therefore, gauging SU(N) symmetry is not important at low energies.

Chapter 3 is based on paper [2] with A. Almheiri and B. Swingle. It is dedicated to study-

ing thermalization dynamics of systems with gravity duals. We argued that average null en-

ergy condition(ANEC) in the bulk leads to a universal bound on the total amount of energy

exchange between two quantum systems. We study this bound perturbatively and in Sachdev-

Ye-Kitaev(SYK) model at arbitrary coupling. As a byproduct, we studied the non-equilibrium

dynamics of SYK, both analytically and numerically.

Chapter 4 is based on paper [3] with J. Maldacena. We study wormhole formation in SYK

model in real time. We start from a high temperature state, let it cool by coupling to a cold

bath and numerically solve for the large N dynamics. Our main result is that the system forms a

wormhole by going through a region with negative specific heat, taking time that is independent

of N .

Chapter 5 is based on paper [4] with I. Klebanov, F. Popov and G. Tarnopolsky. This paper

is dedicated to studying various spectral properties of large N melonic tensor models. They have

the same large N limit as SYK model, but unlike SYK they do not include disorder average. We

find the exact expression for the number of singlet states and derive various bounds on energies.
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Chapter 1

Introduction

1.1 An overview

By now holographic correspondence [5] is a well-established tool in many different areas of physics,

such as quantum gravity, high energy physics and condensed matter physics. Originally formu-

lated for N = 4 super Yang–Mills theory and IIB supergravity in AdS5 × S5, it has led to a

plethora of impressive results in this theory [6]. However, it was quickly realized that it also

implies other deep and sometimes unexpected results, such as the bound for a ratio of shear vis-

cosity to entropy density [7] at large N and the bound on Liapunov exponent in chaotic systems

[8]. However, the most exciting and challenging opportunity it provides is the study of quantum

gravity. Recently there was a huge progress in understanding the properties of entanglement

entropy in systems coupled to gravity which allowed to reproduce the Page curve for an evapo-

rating black hole [9, 10, 11]. Naturally, if we want to understand quantum gravity in the bulk

better, it would be instructive to find an example of holographic duality with a simple theory on

the boundary. The most simple quantum systems are, of course, quantum mechanical systems.

Banks–Fishler–Shenker–Susskind(BFSS) model is a dimensional reduction of SU(N) N = 4

super Yang–Mills from four down to one dimension. Despite being a quantum mechanical model

its bulk is ten-dimensional [12]. It provides one of the strongest evidences for the holographic
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correspondence, as the gravity predictions from black hole thermodynamics, including stringy α′

corrections, have been matched with numerical Monte–Carlo simulation of this model [13, 14, 15].

One of the most prominent advances in holographic correspondence is the discovery of

Sachdev–Ye–Kitaev model(SYK) [16, 17]. Unlike N = 4 super Yang–Mills its formulation is

exceptionally simple: it involves a random quartic interaction of N Majorana fermions. SYK

model is very interesting to both high-energy physics and condensed matter physics: on one hand

it provides UV completion to two-dimensional Jackiw–Teitelboim gravity, on the other hand it is

a soluble example of a non-Fermi liquid. Moreover, at both large N and finite N many properties

of this system can be easily analyzed numerically.

However, SYK model is not a genuine quantum mechanical system, as it involves quenched

disorder average. Its large N expansion is dominated by the so-called melonic diagrams. It was

realized [18, 19, 20] that there are quantum mechanical models involving rank 3 tensor fields

which are dominated by the same class of diagrams. However, they have unusually high sym-

metry groups(O(N)3 or O(N)5) and have subleading 1/N corrections which involve additional

contributions compared to SYK model. Despite the fact that they have approximate conformal

symmetry in the IR, it remains an open question if they correspond to any quantum gravity

models.

The present thesis is devoted to studying these three holographic systems: BFSS model,

SYK model and melonic tensor models. In the rest of the Introduction we will give a very brief

overview of the basic properties of these models.

1.2 The D0 brane matrix model

In this section we review the D0 brane matrix model and its gravity dual. Readers familiar with

this material can jump directly to the next section.

2



1.2.1 The matrix model

The D0 matrix model [21], or BFSS matrix model [22], has the action

S =
1

g2

∫
dtTr

(
1

2
(DtX

I)2 +
1

2
ψαDtψα +

1

4
[XI , XJ ]2 +

1

2
iψαγ

I
αβ[ψβ, X

I ]

)
(1.2.1)

where all indices are summed over. I, J = 1, · · · , 9, α, β = 1, · · · 16. where γI are nine dimensional

gamma matrices which are real, symmetric and traceless1. ψα are hermitian N × N matrices,

which can be expanded as ψα = ψrαT
r where the T r are a complete set of hermitian N × N

matrices, and we can think of the r index as a real index of the adjoint representation of U(N).

Then ψrα are Majorana fermions. We have 16×N2 Majorana fermions. This model is invariant

under 16 supersymmetries and also under an SO(9) R-symmetry.

The model has a U(N) gauge symmetry and the derivative is defined as DtB = ∂tB+ i[At, B]

where At is the gauge field.

We could choose the gauge where At = 0 and then we have to impose Gauss’s law:

G =
i

2g2

(
2[DtX

I , XI ] + [ψα, ψα]
)

= 0 (1.2.2)

It restricts all states to be singlets under the U(N) symmetry.

Classical zero energy configurations correspond to simultaneously diagonal matrices XI .

Quantum mechanically, the model has a zero energy bound state. At finite temperature it is

expected (from the gravity picture) to have a metastable bound state.

It is interesting to ask what the typical size of the matrices XI is in the ground state or in

a thermal state. This was estimated [23] by setting a lower bound for 1
N Tr[X2], using virial

theorem ideas. That lead to

√
〈 1

N
Tr[X2]〉 ∼ λ1/3 , λ ≡ g2N (1.2.3)

1 We can view them as coming from the ten dimensional Majorana Weyl representation γI = Γ0ΓI .

3



In a heuristic way, this can also be obtained by dimensional analysis and large N counting if

one assumes that λ is the only relevant scale (and not the temperature). This result will be

particularly useful when we analyze the gravity solution.

There is a variant of this model where we add mass terms that break SO(9)→ SO(3)×SO(6)

[24]. The additional terms in the action are

SBMN = S[from (1.2.1)] + Sµ , (1.2.4)

Sµ = − 1

g2

∫
dtTr

(
1

2

(µ
3

)2
3∑

a=1

(Xa)2 +
1

2

(µ
6

)2
9∑
i=4

(Xi)2 +
µ

8
ψγ123ψ+

+ i
µ

3

3∑
a,b,c=1

XaXbXcεabc

)
(1.2.5)

It also preserves 16 supercharges but with a different supersymmetry algebra, SU(2|4). We

can view view (1.2.4) as a collection of harmonic oscillators and Majorana fermions with some

particular interactions.

The mass terms remove the flat directions in the potential. Apart from the simplest vacuum

with XI = 0, the BMN model also has additional vacua [25, 26, 27], characterized by non-zero

Xa, a = 1, 2, 3 such that:

iεabcX
bXc =

µ

3
Xa (1.2.6)

This equation is solved by Xa = µ
3J

a, where Ja are SU(2) algebra generators in an N -dimensional

representation, not necessarily irreducible. Such solutions represent a collection of fuzzy spheres.

Although this vacuum breaks SU(N) symmetry, there are no physical Goldstone bosons because

of the gauge symmetry. We will return to SU(N) Goldstone bosons later in Section 2.2 when we

discuss the ungauged model.

1.2.2 The gravity dual

We will be mostly discussing the gravity dual at finite temperature. The geometry is a solution of

ten dimensional type IIA supergravity closely related to the near horizon geometry of a charged

4



black hole in ten dimensions [28]. It is given by [12]

ds2

α′
= −f0(r)r7/2

√
λd0

dt2 +

√
λd0

r3

 1

f0(r)r2
dr2 + dΩ2

8


eφ =

(2π)2

d0

1

N

(
λd0

r3

)7/4

Ãt =
N

(2π)2

r7

λ2d0

f0(r) = 1− r7
0

r7
, d0 ≡ 240π5, λ ≡ g2N, (1.2.7)

where r0 and the inverse temperature β = 1/T are related by2

1

T
= β =

4

7
π
√
λd0r

−5/2
0 (1.2.8)

This geometry has an effective radius of curvature given by the radius of S8

R2
eff

α′
=

√
λd0

r3
(1.2.9)

which is a function of the radial direction. For this reason we can trust (1.2.7) only in some

region of the geometry, namely r . λ1/3. Note that r has units of energy. At larger values of

r, when λ1/3 . r, the curvature is high and we cannot trust the gravity solution. The large r

region is where the boundary is and it corresponds to the UV of the boundary theory. In this

region the matrix model is weakly coupled and we can trust perturbation theory.

The geometry at the horizon of the black hole will be weakly curved as long as

1� λβ3 (1.2.10)

There is an additional N dependent constraint λβ3 � N10/7 on the validity of this IIA super-

gravity solution that arises when we also demand that the dilaton is not too large at the horizon.

2 We can think of the relation between β and r0 as a way to translate between time scales in the matrix model
(β) and radial position in the bulk (r0) [29].
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In this thesis, we will imagine that we are in the ‘t Hooft limit where N is taken to be very large

compared to other quantities, such as λ or β, or more precisely λβ3. So we do not have to worry

about this second constraint.

Using the Bekenstein–Hawking formula one can easily find the entropy and free energy3

S = N2413/5152/5(π/7)14/5

(
T

λ1/3

)9/5

≈ 11.5N2

(
T

λ1/3

)9/5

(1.2.11)

F = N2λ1/3 5

14
413/5152/5(π/7)14/5

(
T

λ1/3

)14/5

≈ 7.4N2λ1/3

(
T

λ1/3

)14/5

(1.2.12)

These predictions were checked in an increasingly sophisticated set of numerical computations

[13, 30, 14, 31, 32, 33] culminating in [15], where also the leading α′ corrections were computed4.

The gravity dual for the BMN case is a bit more complicated, it has some gapped states

described in [34] and a black hole thermal state which looks like a deformation of (1.2.7) [35].

The magnitude of the deformation involves µ/T and it is very small if µ/T is small.

1.3 A brief review of Sachdev–Ye–Kitaev model

In this section we will study the conventional SYK model [17, 36]. Let us briefly summarize the

relevant results about the conformal limit, Dyson–Schwinger and Kadanoff–Baym equations and

also introduce our notations.

SYK is a model of N Majorana fermions ψi with the all-to-all interactions and a quench

disorder governed by the Hamiltonian:

HS = iqS/2
∑

1≤i1<···<iqS≤N
Ji1...iqSψi1 . . . ψiqS (1.3.13)

3 The temperature dependence can be recovered from the properties of (1.2.7) under rescalings. Namely sending
t→ ηt and r → η−2/5r the metric gets rescaled by an overall factor and the action by S → η−9/5S, which is also
the scaling of the entropy. See Appendix A.3.

4It is an interesting challenge to match the first correction by computing the full tree level α′3 corrections to
the tree level IIA supergravity in the effective action.

6



Coefficients J are real and Gauss-random with variance:

〈J2
i1...iqS

〉 =
J2
S(qS − 1)!

N qS−1
(no sum) (1.3.14)

Below we will use the symbol {i} to denote sums like 1 ≤ i1 < · · · < iqS ≤ N

Since we are dealing with the quench disorder we have to introduce replicas in the path

integral. However, in the large N limit the interaction between the replicas is suppressed and in

the replica-diagonal phase (non-spin glass state) the Euclidean effective action reads:

S[ΣS , GS ]

N
= log Pf (∂τ − ΣS) +

1

2

∫
dτ1dτ2

(
−ΣS(τ1, τ2)GS(τ1, τ2) +

J2
S

q
GS(τ1, τ2)q

)
(1.3.15)

The auxiliary variables ΣS , GS have physical meaning: GS is the Euclidean time-ordered fermion

two-point function,

GS(τ1, τ2) =
1

N

N∑
i=1

〈Tψi(τ1)ψi(τ2)〉, (1.3.16)

and ΣS is the fermion self-energy. The large N Euclidean saddle-point equations are identical to

the Dyson–Schwinger equations:

ΣS(τ) = J2
SGS(τ)qS

(−iω − ΣS(ω))GS(ω) = 1. (1.3.17)

For later use, note that the energy is

ES = 〈HS〉 = −
J2
S

qS

∫ β

0
dτ GS(τ)qS . (1.3.18)

At low temperatures the system develops an approximate conformal symmetry and the

Green’s function can be found explicitly:

GS(τ) = b sgn(τ)

 π

βJS sin
(
π|τ |
β

)
2/q

(1.3.19)
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The coefficient b is just a numerical constant. It is determined by

bqSπ =

(
1

2
− 1

qS

)
tan

π

qS
, (1.3.20)

and for qS = 4, b = 1/(4π)1/4.

Having reviewed the Euclidean properties, let us turn to the Lorentzian (real time) physics.

It is be convenient to work with the Keldysh contour right away, so we will assume that the

reader is familiar with this technique.

One central object is the Wightman (or “greater”) Green’s function:

G>S (t1, t2) = GS(t−1 , t
+
2 ) = −i 1

N

∑
i

〈ψi(t−1 )ψi(t
+
2 )〉 (1.3.21)

Please note that we have −i in our definition. Because of the Majorana commutation relations,

the greater Green’s function reduces to −i/2 at coincident points:

G>S (t1, t1) = − i
2
. (1.3.22)

The “lesser” function G< for Majorana fermions is directly related to G>:

G<S (t1, t2) = GS(t+1 , t
−
2 ) = −G>S (t2, t1) (1.3.23)

Two final pieces are the retarded and advanced functions:

GRS (t1, t2) = θ(t1 − t2)
(
G>S (t1, t2)−G<S (t1, t2)

)
GAS (t1, t2) = θ(t2 − t1)

(
G<S (t1, t2)−G>S (t1, t2)

)
(1.3.24)

Now we can finally write down the Lorentzian form of the Dyson–Schwinger equations (4.2.8).

The analytic continuation of the time-ordered Euclidean Green’s function from imaginary time

to real time yields the Wightman function, and because the self-energy equation is naturally
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formulated in real time, one gets

Σ>
S (t1, t2) = −iqSJ2

S

(
G>S (t1, t2)

)qS . (1.3.25)

However, the continuation in frequency space (from the upper-half plane) yields the retarded

function, therefore the second equation in (4.2.8) transforms into:

GRS (ω)(ω − ΣR(ω)) = 1 (1.3.26)

We need a relation between GR and G> in order to close the system of equations. If the system

is in a thermal state, this relation is provided by the fluctuation-dissipation theorem (FDT):

G>S (ω) = 2i ImGRS (ω)
1

e−βω + 1
. (1.3.27)

This system of equations can be solved by an iterative procedure to obtain the real time corre-

lation functions [36, 37].

There is another away we can treat the second DS equation in (4.2.8). We can rewrite it in

the time-domain using the convolution:

∂τGS(τ) = δ(τ) +

∫ β

0
dτ ′ ΣS(τ − τ ′)GS(τ ′). (1.3.28)

Upon the analytic continuation this yields the so-called Kadanoff–Baym equations5:

i∂t1G
>
S (t1, t2) =

∫ +∞

−∞
dt′

(
ΣR(t1, t

′)G>S (t′, t2) + Σ>(t1, t
′)GA(t′, t2)

)
−i∂t2G>(t1, t2) =

∫ +∞

−∞
dt′

(
GR(t1, t

′)Σ>(t′, t2) +G>(t1, t
′)ΣA(t′, t2)

)
. (1.3.29)

5The integral on the right hand side is simply the convolution along the Keldysh contour of ΣS(t+1 , ·)∗GS(·, t−2 ).
The precise result for the integral is known as Langreth rule in condensed matter literature [38].
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Note that these equations are causal due to the retarded and advanced propagators in the in-

tegrand. A more straightforward way to obtain these equations is to write down the large N

effective action (1.3.15) on the Keldysh contour and find the classical equations of motion.6

These equations can be used in non-equilibrium situations. They also have a very generic

form that simply encodes the relation between the Green’s function and the self-energy. So, the

actual non-trivial piece of information is the relation (1.3.25). When we couple the system to a

bath the integral equations (1.3.29) will stay exactly the same, whereas the answer for the self-

energy (1.3.25) will change. Appendix B.1 describes our approach to solving the KB equations

(1.3.25).

To conclude this subsection, let us write down the expression for the energy:

ES(t) = 〈HS(t)〉 = −iqS+1J
2
S

qS

∫ t

−∞
dt′

(
GS(t, t′)qS −GS(t′, t)qS

)
(1.3.30)

Using the equations of motion (1.3.29), it follows that

ES(t) =
1

qS
∂tGS(t, t). (1.3.31)

This is not a general expression; it holds because the SYK Hamiltonian only contains terms with

qS identical fermions.

1.4 Klebanov–Tarnopolsky tensor model

Let us consider the quantum mechanical model of a real anticommuting 3-tensor ψabc with the

action [20]

S =

∫
dt
( i

2
ψabc∂tψ

abc +
1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1

)
. (1.4.32)

6Strictly speaking, for a thermal initial state the right hand side contains the integral over the imaginary axis
running from −iβ to 0. However we can imagine that all non-equilibrium processes happen at large positive
Lorentzian times so this piece is essentially zero if correlators decay with time. This is the reason why the
integration over t′ starts at −∞.
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The three indices, each of which runs from 1 to N , are treated as distinguishable, and the

Majorana fermions satisfy the anti-commutation relations

{ψabc, ψa′b′c′} = δaa
′
δbb
′
δcc
′
. (1.4.33)

This model is a somewhat simplified version of the O(N)6 symmetric Gurau-Witten model [19].

Both are in the class of 3-tensor models which possess a “melonic” large N limit where J = gN3/2

is held fixed [39, 18, 40, 41, 42, 43, 44, 45, 46, 47, 48]. The large N model is nearly conformal in

the IR [16, 17]; for example, the two-point function is

〈T (ψabc(t1)ψa
′b′c′(t2))〉 = −δaa′δbb′δcc′

( 1

4πg2N3

)1/4 sgn(t1 − t2)

|t1 − t2|1/2
. (1.4.34)

The model (1.4.32) has the O(N)1 ×O(N)2 ×O(N)3 symmetry under the replacement7

ψabc →Maa′
1 M bb′

2 M cc′
3 ψa

′b′c′ , (1.4.35)

M1 ∈ O(N)1, M2 ∈ O(N)2, M3 ∈ O(N)3 . (1.4.36)

As far as the group O(N)1 is concerned, we may think of b and c as flavor indices; therefore ψabc

produces N2 flavors of real fermions in the fundamental of O(N)1. An analogous picture applies

to O(N)2 and O(N)3. The three sets of SO(N) symmetry charges are

Qa1a2
1 =

i

2
[ψa1bc, ψa2bc] , Qb1b22 =

i

2
[ψab1c, ψab2c] , Qc1c23 =

i

2
[ψabc1 , ψabc2 ] . (1.4.37)

The gauging of SO(N)1×SO(N)2×SO(N)3 sets these charges to zero; this restricts the operators

to the invariant ones, where all the indices are contracted. In the ungauged model (1.4.32) a

more general class of operators is allowed, and they can be classified according to representations

of the SO(N)1 × SO(N)2 × SO(N)3.

7More generally, we could consider a model with O(N1) × O(N2) × O(N3) symmetry, where a runs from 1 to
N1, b from 1 to N2, and c from 1 to N3. This may be thought of as a model of a large number N2 of N1 × N3

matrices [49].
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Each O(N) group includes parity transformations (axis reflections) Pa0 : for a given a0, Pa0

sends ψa0bc → −ψa0bc for all b, c and leaves all ψa1bc, a1 6= a0 invariant. In a physical language,

these are “big” gauge transformations and operators should be invariant under them. Therefore

we can build operators using ψabc and the delta symbol δaa
′

only. In the case of SO(N) gauge

group one can use the fully antisymmetric tensor εa1...aN as well; it is invariant under SO(N), but

changes its sign under the parity transformations. Because of this, there are additional “long”

operators containing at least N fields, like

Olong = εa1...aN εb1...bN εc1...cN

N∏
j=1

ψajbjcj . (1.4.38)

The difference between gauging O(N) and SO(N) becomes negligible in the large N limit.

Let us define three operations which permute pairs of the O(N) symmetry groups (and thus

interchange indices in the tensor field), while also reversing the direction of time,

sab : ψabc → ψbac, t→ −t; (1.4.39)

sbc : ψabc → ψacb, t→ −t; (1.4.40)

sac : ψabc → ψcba, t→ −t . (1.4.41)

Each of these transformations preserves the equations of motion for the ψabc field,

ψ̇abc = ig(ψ3)abc , (ψ3)abc ≡ ψab1c1ψa1bc1ψa1b1c . (1.4.42)

The Hamiltonian, including a quantum shift due to (1.4.33),

H = −1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 +

gN4

16
= −1

4
g[ψa1b1c1 , ψa1b2c2 ][ψa2b1c2 , ψa2b2c1 ] , (1.4.43)

changes sign under each of the transformations sab, sbc, sac. This means that these transfor-

mations are unitary: they preserve eiHt. In contrast, the usual time reversal transformation is

anti-unitary because it also requires complex conjugation i→ −i.
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The O(N)3 invariant operators form representations under the permutation group S3, which

acts on the three O(N) symmetry groups (it contains the elements sab, sbc and sac). For example,

H is in the degree 1 ”sign representation” of S3: it changes sign under any pair interchange, but

preserves its sign under a cyclic permutation.

It is also interesting to study the spectrum of eigenstates of the Hamiltonian for small values

of N ; first steps on this were made in [50, 51, 52]. When gauging the O(N)3 symmetry one

needs to worry about the Z2 anomaly, which affects the gauged O(N) quantum mechanics with

an odd number of flavors of real fermions in the fundamental representation [53, 54]. Since for

each of the three O(N) groups we find N2 flavors of fundamental fermions, the gauged model is

consistent for even N , but is anomalous for odd N .8 This means that, for odd N , the spectrum

does not contain states which are invariant under O(N)3 (for N = 3 this can be seen via an

explicit diagonalization of the Hamiltonian (1.4.43) [50]).

8We are grateful to E. Witten for pointing this out to us.
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Chapter 2

To gauge or not to gauge?

2.1 Introduction

Many examples of the holographic correspondence involve very strongly coupled large N gauge

theories which are dual to a bulk Einstein gravity theory [5, 55, 56]. In such theories, the gauge

symmetry leads to a reduction in the naive number of low dimension operators from N2 to

an order one number. The D0 brane matrix model [21], also known as BFSS model [22], is

an example of such gauge/gravity duality [12]. In a 0+1 dimensional theory, the only role of

the gauge symmetry is to impose an SU(N) singlet constraint. Therefore, we can consider an

alternative model where we set At = 0. The theory now has a global SU(N) symmetry. If

we impose a “Gauss Law” constraint restricting to SU(N) singlets, then we recover the gauged

model. In this work we study the properties of the model where we do not impose this singlet

constraint.

At first sight, one might think that not imposing this constraint leads to many more states,

of order N2 of them. The presence of these new states could modify the properties of the system

substantially. This is indeed correct in the weakly coupled regime. However, we will argue that

in the strongly coupled regime we have essentially the same gravity dual description as for the

gauged model.
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In this matrix model, the coupling constant, g2, has dimensions of (mass)3. Therefore it

is weakly coupled at high energies and strongly coupled at low energies. Correspondingly, the

gravity dual has a curvature that depends on the radial position. Near the boundary it is highly

curved, but away from the boundary we have a low curvature region where we can trust Einstein

gravity. See Figure 2.1. This low curvature region corresponds to the energy scales where the

matrix model is strongly coupled.

We will argue/conjecture that the gravity picture of the non-singlet states is the following.

The non-singlet states have an energy of order the order λ1/3 = (g2N)1/3 and are located in the

high curvature region, away from the region that is described by Einstein gravity, see Figure 2.1.

In the planar approximation, we also have states corresponding to additional excitations of these

non-singlet states which can be represented as folded strings with their ends stuck to the highly

curved region near the boundary. At finite temperature we can further have non-singlet states

that correspond to black holes with strings that come in from the boundary and end on the black

hole, see Figure 2.2 (b,c).

Figure 2.1: Sketch of the gravity solution at finite temperature. The shaded region near the
boundary is highly curved. Moving further inwards we find a region of lower curvature that can
be described by Einstein gravity. We will argue that the lowest energy non-singlet excitations
live purely in the shaded region and have an energy that roughly corresponds to that of a massive
string state located in the interface between the two.
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We have not derived this picture rigorously, we will simply present some plausibility arguments

and consistency checks. In [57], Berkowitz, Hanada, Rinaldi and Vranas present more evidence

supporting this picture by performing a direct numerical simulation of the ungauged model1.

In [58], a similar conclusion was reached for the “double scaling” limit of a single matrix

quantum mechanics for low enough temperatures See also [59, 60, 61, 62, 63] for further discussion

of non-singlets in that model.

We were motivated to ask the question in the title by the Gurau-Witten tensor models [18, 19].

There one has the choice of either imposing or not imposing a singlet constraint. It is sometimes

thought that the models with a singlet constraint would be more likely to have a gravity or

string dual. Our main message is that the existence of a local gravity dual is independent of

whether we do or do not impose this constraint. Einstein-like gravity is associated to very strong

interactions but not to the presence or absence of the boundary theory gauge symmetry (or gauge

redundancies).

When we consider the ungauged model we break supersymmetry, since in the original model

the algebra only closes up to gauge transformations. Nevertheless the modified algebra can be

used to argue that the energy is positive, even for non-singlet states. Of course, singlet states

are the same as those of the gauged model. For non-singlet states, the lowest energy state

appears to be when all branes are separated by a large amount (namely, the matrices get large

diagonal expectation values). In this regime, the non-zero SU(N) charges lead to a kind of

angular potential going like 1/X2 for diagonal matrices of typical magnitude X. This potential

leads to even larger expectation values for the matrices. Nevertheless, for finite temperatures,

we expect to have a metastable state where the expectation values of the matrices are relatively

small (or the branes are together), since this state has more entropy. This state can be viewed

as a black hole. Our previous remarks on the equality of the gravity configurations applied for

these metastable black hole configurations.

We are arguing that non-singlets are energetically disfavored at low energies. This seems to

contradict the picture proposed in [64, 65] for the deconfinement/black hole transition that is

1 We thank the authors of [57] for detailed explanations on their computations and for ongoing discussions.
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based on the idea that the Polyakov loop gets an expectation value. If the only states contributing

were singlets we would get no potential for the eigenvalues of the Polyakov loop. We will discuss

how the two pictures are consistent. We are lead to a picture where the values of the holonomy

indeed break the center symmetry but only by a very small amplitude “wave” in the eigenvalue

distribution.

This chapter is organized as follows. In Section 2.2 we describe how one can remove the

singlet constraint and obtain the deformation of the supersymmetry algebra. We also relate it

to the insertion of Wilson loops in the gauged model. Section 2.3 is devoted to non-singlets.

We first look at the lowest energy excitations of the thermal background. We then consider the

region where all branes are far away. We also use perturbation theory to find the shifts to the

spectrum in the weakly coupled region. We also discuss the thermodynamic properties of the

ungauged model. We discuss further aspects of the Polyakov loop and thermal phase transitions

in section 2.4. After making some further comments we present some conclusions.

2.2 The ungauged model

In this chapter we will consider the situation where we set At = 0 and we do not impose the

SU(N)-singlet constraint2. This amounts to treating the SU(N) symmetry as a global symmetry

rather than as a gauge symmetry. In higher dimensions, gauging a symmetry introduces extra

degrees of freedom. In quantum mechanics it does not. The theory with At = 0 is a perfectly

well defined theory, with global SU(N) symmetry, and we can consider it in its own right. This

theory has a singlet subsector where it identical to the usual one in Section 1.2, but it also has

non-singlet states whose interpretation in the gravity dual we want to elucidate.

It is sometimes said that gauging the SU(N) symmetry reduces the number of operators

drastically and that this is important for the gravity solution to work. We will see that the

gravity solution can be valid whether we gauge the SU(N) symmetry or not.

2 We could also say that we have a U(N) gauge symmetry. However, since there are no fields charged under
the overall U(1), it does not matter whether we gauge or do not gauge the overall U(1).
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2.2.1 The size of the matrix versus the size of the Einstein gravity region

It is interesting to translate (1.2.3) to the gravity side. On the gravity side we can consider D0

brane probes that sit at particular values of r. A string stretching from this brane probe to r = 0,

or the horizon, has an energy of the order of r. Now, if we consider the mass of an off-diagonal

mode of a matrix in the diagonal background m ∼ Xdiag we expect to get the same energy. It

means that the radial direction is related to matrix elements as r ∼ X. Using this procedure to

translate between radial positions and matrix eigenvalues, we now ask: What value of r would

the scale (1.2.3) correspond to? Interestingly, it corresponds to a scale r ∼ λ1/3, which is the

scale at which the supergravity solution breaks down!This important point was emphasized in

[23], and we are repeating it because we think it is not widely appreciated. In fact, some papers

in the literature seem to suggest that the typical size of the matrices in the thermal state would

be X ∼ r0. Note that r0 � λ1/3 in the region where we can trust gravity.

This means that the whole Einstein gravity region of Figure 2.1 corresponds to a highly

quantum region of the wave function for the matrix model. The matrices have large fluctuations.

However, these fluctuations are highly correlated. Indeed, via supersymmetric localization, [66,

67] computed 1
N 〈Tr[(X1 + iX9)2k]〉. They found a much smaller answer agreeing with naive bulk

expectations. Due to the i, in this expectation values there are interesting cancellations.

2.2.2 Lack of supersymmetry

Let us define the hamiltonian of the ungauged model to be simply the one obtained from eq.

(1.2.1) by setting At = 0. We can then wonder whether the resulting theory is supersymmetric.

We certainly continue to have the operators Qa that were generating the SUSY transformations

before:

Qε = − 1

g2
Tr

(
ẊIψγIε+ i

1

2
[XK , XL]ψγKLε

)
(2.2.1)

where γKL = 1
2

(
γKγL − γLγK

)
. We can now ask whether these operators commute with the

Hamiltonian. We find

[Qα, H] = −Tr (ψαG) (2.2.2)
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We see that the right hand side can be written in terms of the SU(N) symmetry generators,

G in (1.2.2). This means that, while (2.2.2) vanishes when it acts on singlet states, it will be

non-vanishing acting on non-singlet states. Therefore we expect that non-singlets will not come

in supersymmetry multiplets. We can also compute the anticommutators

{Qα, Qβ} = 2Hδαβ + 2 Tr
(
GXI

)
γIαβ (2.2.3)

We see that we get non-zero answers in the right hand side because the supersymmetry trans-

formations only close up to SU(N) transformations. In the gauged model these are gauge trans-

formations. But in the ungauged model we get a non-zero right hand side. Nonetheless, we can

still infer some information from this algebra.

Let us note first, that even for non-singlet states the energy is non-negative. Indeed, since

the supercharges are self-adjoint Q†α = Qα and gamma matrices are traceless, summing over the

spinor indices leads to

32H =
16∑
α=1

{Qα, Qα} =
16∑
α=1

{Q†α, Qα} ≥ 0 (2.2.4)

2.2.3 Supersymmetric version of the ungauged model

In principle, we could modify the definition of the supercharges so as to have a supersymmetric

theory. We do not think that is possible. Nevertheless, if we are willing to also redefine the

Hamiltonian, then it is possible to preserve some of the supersymmetry. This can be achieved

by adding a new term to the Hamiltonian:

Hsusy = H − Tr
(
X1G

)
(2.2.5)

This breaks the SO(9) symmetry to SO(8), and it preserves half of the supersymmetry, those

whose spinorial parameter obeys

(γ1 + 1)ε = 0 (2.2.6)
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Moreover, now we have the standard supersymmetry algebra:

{Q.ε,Q.ε′} = 2Hsusyε.ε
′ (2.2.7)

This might seem surprising at first sight, but there is a simple explanation for the existence of this

Hamiltonian. In this chapter we will concentrate on the model with the original Hamiltonian.

2.2.4 Relation to Wilson loop insertions

There is a physical situation that arises in the gauged model which is very closely connected to

the ungauged model. We can have the original gauged theory and add an external quark in some

representation R̄, by coupling it through a Wilson line operator in representation R̄. This is very

closely related to the ungauged theory restricted to the representation R 3. The only difference is

that in the thermal partition function, restricted to representation R, we would include a factor

of the dimension of the representation in the ungauged case but not in the gauged case with a

Wilson loop.

The simplest Wilson loop operators we can consider are Tr R̄ Pe
i
∫
Atdt. These break super-

symmetry. Another commonly considered operator preserves half of the supersymmetries and

has the form Tr R̄ Pe
i
∫
dt(At+X1), where we have picked one of the scalar fields [68, 69]. The extra

term corresponds to the extra term in the Hamiltonian (2.2.5). When we add the supersymmetric

Wilson loop in the adjoint representation, in the gravity dual we get a string coming in from

the boundary at X1 = ∞ and a string going to X1 = −∞. Equivalently, we can say we have a

string anti-string pair with the string pinned on the north pole of the S8 and the anti-string on

the south pole of S8. See Figure 2.2 (a).

In conclusion, we can translate many of the statements in this chapter to statements about

insertions of Wilson lines for the original, gauged, model.

3 We can only consider representations transform trivially under the ZN center of SU(N), which are the ones
we can get from products of adjoints.
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2.3 Gravity duals of non-singlets

Let us consider first the gravity dual of the adjoint states, states in the adjoint representation

of SU(N). They are described by the gravity dual of the non-supersymmetric Wilson loop

ei
∫
Atdt. As pointed out in [70] (see also [71]), the gravity dual of these Wilson loops differs

from the supersymmetric Wilson loops only through the fact that the strings are not pinned at

a particular point on the sphere, but they can move to any point on the sphere. See Figure

2.2(b,c). In other words, on the boundary of the bulk they obey Neumann, rather than Dirichlet,

boundary conditions in the sphere directions. If we have an adjoint, this means that the string

and the anti-string could lower their energy by coming closer together on the sphere. If they

coincide on the sphere, then we have a folded string whose energy can be lowered by moving the

tip further and further to the boundary, see Figure 2.2(c).

Figure 2.2: (a): The string configuration corresponding to a supersymmetric Wilson line in
the adjoint representation. (b): The string and anti-string configuration representing a non-
supersymmetric adjoint. We get it from (a) by moving the left string segment to the right side
of the figure . (c): We further lower the energy configuration of (b) by moving the tip away from
the horizon. The idea is that the end point of this motion is a configuration as in Figure 2.1.

According to the gravity solution, the energy of folded stretched string (at β =∞), with its

tip momentarily at rest, is given by

E =
2

2π

∫ r∞

rtip

dr =
1

π
(r∞ − rtip) (2.3.8)
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This computation, valid in the gravity regime, would suggest that we can lower the energy to

zero by moving rtip → r∞, where r∞ is some large r cutoff. However, at very large r we cannot

trust the gravity computation. In other words, the fact that as rtip → r∞ the energy goes to

zero cannot be trusted when both of these quantities are in the highly curved region. Therefore,

it could be that even the lowest energy configuration has a non-zero energy. What would be a

natural value for this energy? One natural possibility would be to think that r∞ ∝ λ1/3 which

is the value of r where the curvature becomes of the order of the string scale. Furthermore, we

can also assume that naive cancellation between rtip and r∞ does not happen and that we get

an energy that is the typical energy of a massive string state at the location given by r ∼ λ1/3.

From (1.2.7) we find that this is an energy of the order of λ1/3. We get the same answer if we

use dimensional analysis and assume that it will be of the order of the ‘t Hooft coupling. In both

cases we get

Emin = Cλ1/3 (2.3.9)

where C is an unknown numerical constant. In the next subsection we will present an argument

saying that C > 0. Note that C cannot be negative because we have argued near (2.2.4) that

the energy should be positive. The fact that C is positive is also suggested by the numerical

computation in [57].

We can speculate about the temperature corrections to the estimate (2.3.9). We expect these

to come from the fact that at finite temperature the metric at the transition region, at r ∼ λ1/3,

will be changed due to the r0 dependent terms in (1.2.7). We expect this to produce an extra

factor of (1 + a1
r7
0
r7 ), where r ∼ λ1/3. Using (1.2.8) we find then that

E = Cλ1/3

(
1 + ã1

(
T 3

λ

) 14
15

+ · · ·

)
(2.3.10)

where ã1 is an unknown numerical constant. The main point is that it is small for T � λ1/3.
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2.3.1 Exploring the large X region

In the above discussion we have assumed that the model starts in a state with X ∼ 0 and then

we add the adjoint as a perturbation. This is particularly reasonable if the branes are trapped

near the origin by thermal effects.

On the other hand, we can set the temperature to zero and consider a situation where

all branes are separated from each other. In this case, we can ask about the energy of the

adjoint state. First we should note that if we do not gauge the symmetry, then we have a

manifold of Goldstone modes coming from applying the SU(N) transformations to the original

configurations. This manifold has an SU(N) symmetry and we can consider a wave function

which is in the adjoint representation under this global SU(N) symmetry. We can think of this

as a configuration which has an SU(N) “angular momentum” along this manifold. The typical

radius of this manifold is given by the distance between the branes, call it X. Then we get an

energy which goes like

V ∼ +
λ

X2
(2.3.11)

We discuss and derive this in more detail in Appendix A.1.2. One can view this final formula as

analogous to the angular momentum potentials we get when a particle moves in three dimensions

in a spherically symmetric potential and with some angular momentum. It makes sense to first

freeze X and then calculate the potential (2.3.11) for the following reason. The effective mass of

the X variables is of order 1/g2 ∼ N
λ , which is large in the ‘t Hooft limit. Therefore, the motion in

the X directions produced by (2.3.11) will be relatively slow. This is like the Born-Oppenheimer

approximation. We can trust (2.3.11) when |X| is large enough that we can use perturbation

theory in the matrix model. This means that λ/X3 � 1. If we extend this to the boundary of its

regime of validity, namely to X3 ∼ λ, then we find that the energy becomes ∼ λ1/3, in agreement

with the estimate (2.3.9). Figure 2.3 shows the form of the potential when we separate the branes

and we are in an adjoint state. The reason we get a constant when |X| . λ1/3 is the picture we

suggested in Figure 2.1 where the adjoint is localized in the transition region. When the branes
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are located within the Einstein gravity region they have shed their adjoint charge, leaving it as

a string with endpoints in the high curvature region.

Note that this transition happens at a value of r that coincides with the size of the ground

state wave function (1.2.3). This also suggests that when the X have an expectation value of

this size there will be other degrees of freedom that can carry the adjoint quantum numbers.

Note that the presence of the potential in Figure (2.3) suggests that the adjoint state with

X ∼ 0 is unstable and the system is driven to X ∼ ∞. We think that this is the ultimate fate of

adjoint states. On the other hand, at finite temperature the gravity solution shows that thermal

effects will trap the branes at X ∼ 0, leading to a metastable minimum. As we will recall near

(2.3.23), this metastable state is very long lived in the ‘t Hooft limit, so that we only need to

worry about this decay mode at very low temperatures.

Figure 2.3: Energy of an adjoint state where we explore the flat directions of the potential in
(1.2.1), which correspond to mutually diagonal matrices XI . The solid line denotes the potential
computed in the region where we can trust perturbation theory in the matrix model side, which
is λ1/3 . |X|. The details depend on the particular form of the diagonal matrices X. In this
region, the energy comes from the angular momentum along the SU(N) directions in the moduli
space of vacua of the ungauged model. The horizontal doted line corresponds to the energy of a
massive string state in the transition region, as in Figure (2.1). We expect a smooth transition
region in between. We have not included here the effects of the thermal potential which produces
a large dip near X ∼ 0, or r ∼ r0, (for T � λ1/3) because it is common to the gauged and
ungauged models.
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2.3.2 Adjoint energies at weak coupling in the BMN matrix model

The BFSS matrix model is always strongly coupled at low energies. On the other hand, the BMN

matrix model has another scale, given by the mass µ. If we take λ� µ3, we can trust perturbative

computations even around the simplest, X = 0, vacuum. The expansion parameter is λ/µ3. In

the simplest vacuum we have a collection of bosonic and fermionic harmonic oscillators. The

lightest sector with matrix creation–annihilation operators a†i , ai, i = 1, . . . , 6 corresponds to

SO(6) operators Xi = i, i = 1, . . . , 6, see Appendix A.1.1 for details. Each oscillator a†i has

energy µ/6. In the gauged SU(N) model we cannot act with a single creation operator because

it would be in the adjoint of SU(N). The first singlet appears for a pair of operators Tr[a†ia
†
j ]|0〉,

where the trace is over the SU(N) indices r, s: Tr[a†ia
†
j ] = (a†i )

s
r (a†j)

r
s . On the other hand, in

the ungauged model we can have a state of the form a†i |0〉. This state has energy µ/6 at zero

coupling. One can compute the first perturbative correction and we find that it is given by (see

Appendix A.1.1)

Eadjoint =
µ

6
+

9

2

λ

µ2
+ · · · (2.3.12)

where the dots are higher order terms in the λ/µ3 expansion. The idea is that if we were to sum

all the corrections and continue the answer to strong coupling we would get that Eadj ∼ Cλ1/3

for λ/µ3 � 1.

It is interesting that one can obtain a relatively simple answer for this one loop shift for the

energy of more general adjoint states. This can be done using the general expression for the one

loop Hamiltonian in [27] and observing that it contains an additional piece for non-singlets in

representation R

∆Ĥ1-loop = ∆Ĥgauged, 1-loop +
9g2

2µ2
C2(R) (2.3.13)

The explicit expressions for ∆Ĥ1-loop and ∆Ĥgauged, 1-loop are given in eq. (A.1.14).

In general one should be careful with translating (2.3.13) to the energy shifts, since

∆Ĥgauged, 1-loop may act differently on non-singlets. This point deserves some clarifications.

Since the trace is cyclic, operators a†i , forming a single-trace singlet operator Tr[a†ia
†
j . . . ] are

placed on “a circle”. From this point of view, non-singlets have “boundaries”. So, generically,
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singlets and non-singlets have quite different Hilbert spaces and ∆Ĥgauged, 1-loop may have

completely different eigenvalues.

For example, in the gauged model on level two we have BPS states Tr[a†ia
†
j ], i 6= j. However,

in the adjoint sector of the ungauged model operators a†ia
†
j and a†ja

†
i are different if i 6= j. One can

check explicitly using eq. (A.1.14) that the state corresponding a†ia
†
j + a†ja

†
i still does not receive

corrections from ∆Ĥgauged, 1-loop, whereas antisymmetric combination a†ia
†
j − a†ja

†
i receives an

additional shift of 4g2
(

3
µ

)2
. Nonetheless, both symmetric and anti-symmetric combinations get

contribution from 9g2

2µ2C2(adj) = 9g2N
2µ2 . The reason the symmetric combination is still protected

against ∆Ĥgauged, 1-loop is that symmetrization restores the cyclic symmetry. It is natural to

conjecture that cyclic-symmetric non-singlets receive the same contribution from ∆Ĥgauged, 1-loop

as singlets.

So far we have discussed the vacuum with X = 0. One can also consider a fuzzy sphere

vacuum (1.2.6) with Xa = µ
3J

a, a = 1, 2, 3. In this case, one also expects SU(N) Goldstone

bosons. As in the discussion in section 2.3.1, we could calculate the energy of states with non-

trivial SU(N) quantum numbers by considering states with SU(N) angular momentum along

the manifold spanned by the Goldstone bosons. We discuss this in more detail in Appendix A.1.3

where we found a simple lower bound on the energy of the adjoint of the form

g2N

R2
=

λ

R2
. Eadjoint , for µ3 � λ (2.3.14)

where R2 = 1
3N

µ2

9 Tr
(
J2

1 + J2
2 + J2

3

)
is the average radius of the fuzzy spheres. This is consisent

with the expectations based on (2.3.11).

2.3.3 Spectrum above the minimum

We now return to strong coupling. Around the thermal background we have argued that the

minimum energy for the adjoint state is given in (2.3.9). We would now like to discuss excitations

above these states. In the planar limit these excitations will be single strings of operators with

a fundamental index at one end and an antifundamental at the other end, combined so that we
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an adjoint index in total. We expect that these states would be strings whose ends are located

in the high curvature region.

Of course, when we quantize the string we expect a large number of modes. So we expect a

number of energy eigenstates above the minimum given by (2.3.9). The first few are expected

to be separated from the minimum by gaps which are of the same order of magnitude as the

lowest energy itself (2.3.9). In general, it seems complicated to determine this spectrum because

it depends both on what is happening in the high curvature region as well as in the low curvature

region. As the string gets more excited it can dip further into the region described by Einstein

gravity. An example of an excitation would be a stretched folded string that goes from the high

curvature region to some radial position rmin. If rmin is within the weakly coupled region, then

its motion could be as indicated in Figure A.1, namely the tip of the string goes into the weakly

coupled region, it is slowed down by the string that pulls it from the boundary and it bounces

back to the high curvature region4. After it goes back into the high curvature region it could

come back out with other worldsheet excitations, depending on the physics in the high curvature

region. The full spectrum cannot be obtained unless we can solve both parts of the motion,

namely the one in the low curvature region as well as the one in the high curvature region. In

Appendix A.2 we discuss a toy problem where we assume that the string tip is reflected from the

high curvature region without any further excitation, thought this is probably not what happens

in reality.

When the excitation energy is large enough that the string can reach all the way to the

horizon, something new happens. The string falls into the horizon and we end up with a string

and an anti-string pair, each ending on the horizon. The minimum energy when this happens is

given by the energy of a folded string that stretches all the way from the high curvature region

to the horizon,

Edec =
1

π

∫ rhigh∼λ1/3

r0

dr = C̃λ1/3 − r0

π
= λ1/3

[
C̃ − 1

π

(
T4π
√
d0

7λ1/3

) 2
5

]
(2.3.15)

4 We compute the phase shift for this motion in Appendix A.2. A similar computation for the single matrix
model in the double scaling limit was done in [62, 63] and matched to the matrix model.
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where we expect that C̃ is an order one quantity bigger than C in (2.3.9).

We will call this the “deconfinement” energy, because above this energy the adjoint is ef-

fectively behaving as two independent excitations, a quark and an anti-quark, corresponding to

the string and antistring segments ending on the horizon. Furthermore, when a string ends on

the horizon, there is an additional factor N in the effective number of states. This arises as

follows. When a string wraps the Euclidean black hole it has a disk topology, which produces

and additional factor of 1/gs ∝ N . This is in addition to the factor of N that we get from all the

possible values of the fundamental index at the boundary. This new factor is present for both

the gauged and ungauged models and it is related to the physics at the horizon.

When the string is not reaching the black hole horizon we can effectively think of the large

N Hilbert space as factorizing into the black hole part which lives in the singlet Hilbert space

and non-singlet excitations that live close to the boundary.

Hnon−singlets ∼ Hsinglets ⊗Hboundary string Fock space (2.3.16)

Furthermore there is a Fock space of boundary excitations, generated by the adjoint excitations

which appear as strings with ends in the large curvature region, as in Figure 2.1. Each generator

has the degeneracy of an adjoint, or a factor of N2. 5

The strings that end on the horizon can be qualitatively viewed as extra tensor factors, one

for the quarks and one for the anti-quarks (or strings or anti-strings), see Figure 2.2(b). Each

of these generates a Fock space. The string ending on the horizon is expected to have minimum

energy C̃λ1/3/2. The same is true for the anti-string. This is because the folded string whose tip

is at the horizon has energy C̃λ1/3 by definition. And this is becoming the string/anti-string pair.

The degeneracy of each generator also is proportional to N2 but with a temperature dependent

factor that can be computed by considering a string wrapping the black hole, which has an extra

free energy given by (2.3.15) plus a logarithm of N , related to the factor of 1/gs in the partition

function mentioned above. This extra degeneracy is not exact, it simply reflects an increase in

5 We are idenfiying N2 − 1 ∼ N2 since we are only discussing the leading N effects.
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the entropy of the combined black hole and string system, but we do not expect to be able to

separate it cleanly into a black hole part and a string part. We get the following schematic

decomposition of the Hilbert space

Hnon−singlets ∼ Hsinglets⊗Hboundary string Fock⊗Hhorizon string Fock⊗Hhorizon antistring Fock (2.3.17)

2.3.4 The free energy

In this subsection we consider the free energy of the ungauged theory. Because gauging is

removing of order N2 degrees of freedom, and given that the free energy is of order N2, one

might worry that the free energy of the gauged model would be very different than that of the

ungauged one.

In fact, large N counting tells us that

−βFungauged − βFgauged = N2f(λ1/3β) (2.3.18)

For simplicity we could start considering the BMN model at weak coupling. In this case, in

the ungauged theory we basically have 9N2 bosonic harmonic oscillators, while in the gauged

theory we have 8N2 bosonic oscillators since the gauge constraint is essentially removing one

matrix (the one we can diagonalize). The fermions give a subleading contribution in this high

temperature limit. Therefore, in this case we get

f ∼ − log(µβ) , λβ3 � 1 ,
λ

µ3
� 1 (2.3.19)

On the other hand, at strong coupling, λβ3 � 1 � βµ, where we can trust the black hole

solution, we have a different picture. The idea is that non-singlets are extra adjoint particles

living near the boundary of the gravity solution. Because of the factorization (2.3.17) they

contribute with extra factors of the form

(1 +N2dAdje
−βλ1/3C) (2.3.20)
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in the partition function. This is the contribution of just the lowest energy adjoint state and dAdj

is its degeneracy. We expect it to be of order one. The factor of N2 comes from the dimension

of the adjoint representation. Therefore we expect that the leading energy difference is

βFgauged − βFungauged = N2dAdje
−βλ1/3C , λβ3 � 1 (2.3.21)

This shows that Fgauged and Fungauged are exponentially close in the strongly coupled limit, while

they are different at weak coupling (2.3.19).

Let us emphasize that at strong coupling we have a reduction in the naively expected number

of states in both theories. For that reason one might have thought that the gauging or not

gauging would have a large impact. However, we see that this is is not what is happening, both

theories have a common low energy description.

Using the factorized from of the Hilbert space, we can write a more precise form for the free

energy difference

f ∼
∑
n

−(−1)F log
[
1− (−1)F e−βEn

]
(2.3.22)

where n runs over all the adjoint states which can be bosons or fermions. This follows from

standard large N counting.

We can further improve the discussion by including strings ending at the horizon. These

contributions are most clear in Euclidean space. They still give contributions to f that are

exponentially suppressed ∝ e−βλ1/3C̃ . These are smaller than (2.3.21) because C < C̃.

We have mentioned in the introduction that both ungauged and gauged models are unstable

at very low temperatures. Here we will review more precise estimates for the decay rates (see eg.

[72]). Let us start from the gauged model. Emitting a single D0 brane to infinity will lower the

Bekenstein–Hawking entropy (1.2.11). Therefore such process is suppressed by:

P ∼ exp

(
− ∂S
∂N

)
= exp

(
−2

S

N

)
(2.3.23)
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where S is given in (1.2.11). The instability is unsuppressed when

Tc ∼
λ1/3

N5/9
(2.3.24)

Formally, at this temperature the dilaton becomes large at the horizon and one has to lift the

gravity solution (1.2.7) to 11d M-theory black string [12]. Generically, black strings suffer from the

Gregory–Laflamme instability [73], which, in this case, also occurs at the temperature (2.3.24).

The contribution from the lowest adjoint (2.3.21) will enhance (2.3.23) by ∼ e−βλ1/3C . How-

ever at Tc this factor is extremely small e−N
5/9

. Therefore the instability in the ungauged model

occurs at the same temperature. Indeed, as we have mentioned before, this instability is the

instability of the black hole itself, so excitations near the boundary should not affect it.

2.4 Deconfinement and the eigenvalues Polyakov loop holonomy

The main point of this work is that in theories with gravity duals all non-singlets have high

energies and are not dynamically important at low energies. On the other hand, the arguments in

[64, 65] seem to suggest that non-singlets are important for modifying the eigenvalue distribution

of the Polyakov loop. Furthermore, the fact that this distribution is not uniform is viewed as a

signal of a black hole formation in the bulk.

This seems to be in contradiction with what we are saying, since we are emphasizing that

the non-singlets are dynamically unimportant at low energies and strong coupling. We will here

show why there is no contradiction.

To start, let us suppose that we are studying the gauged model. Then the partition func-

tion includes the integral over the gauge field holonomy, which we can take to diagonal U =

diag
(
eiθ1 , . . . , eiθN

)
. In the large N limit it is convenient to introduce the normalized density

function ρ(θ) ∫ π

−π
dθ ρ(θ) = 1 (2.4.25)
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and the corresponding moments ρn =
∫ π
−π dθ einθρ(θ). The moments ρn measure the non-

homogeneity of the density function.

Since we only have adjoint fields in the matrix model, the energy can depend only on the

relative distance between the eigenvalues θi−θj . There is a constant repulsion of order one among

eigenvalues θi due to the group measure. Integrating out the matter fields leads to an attraction

of eigenvalues. At very low temperatures the repulsions dominates and the density function is

uniform (in the BMN model). As the temperature increases, the attraction becomes stronger

and stronger until the density function jumps to a non-uniform distribution. In other words,

eigenvalues from a cluster [65]. However, since the energy depends on the relative distance only,

the absolute position of the cluster is not fixed, and one has to integrate over this zero mode.

This is the reason why the Polyakov loop in the fundamental representation is still zero after the

transition.

This resembles the gravity computation of the Polyakov loop in the fundamental [64]: one

can have a single string stretched between the horizon and infinity. Such a string has a finite

action and one could expect that the Polyakov loop will not be zero. However, in the black hole

background one has a normalizable mode of the 2-form Bµν , which couples to the string as

exp (ib) , b ≡
∫
B (2.4.26)

And after the integration over b one gets zero.

If we have just a single adjoint particle of mass Cλ1/3 and degeneracy dAdj , then the partition

function reads as (see [65] for the derivation):

Z =

∫
dρ1 exp

(
−N2|ρ1|2

[
1− dAdje−βCλ

1/3
])

(2.4.27)

where in the exponent we have ignored the small terms proportional to e−2βCλ1/3
, e−3βCλ1/3

and

so on. The first term in brackets, the one, comes from the SU(N) measure, whereas the second

term comes from the matter contribution, where |ρ1|2 is the contribution of the trace of the

holonomy in the adjoint representation.
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Assuming that dAdj and C are of order 1 and βλ1/3 � 1, the integral is dominated by ρ1 = 0.

Then, the density is uniform and we expect no black hole!This would be the right conclusion

if the only states we had were the ones corresponding to strings with both ends at the high

curvature region. For example, these are the only non-singlets around the gapped vacua of the

BMN model in the strong coupling region.

However, apart from those strings, we can also have strings ending on the black hole. These

strings effectively behave as quarks and antiquarks, with an overall constraint that there is an

equal number of quarks and anti-quarks. We can view the integral over b in (2.4.26) as enforcing

this constraint. Therefore we can now write a partition function of the form

Z =

∫
d2ρ1db exp

(
−N2

[
|ρ1|2 − d′e−βλ

1/3C̃/2(eibρ1 + e−ibρ̄1)
])

(2.4.28)

where d′ is a temperature dependent quantity that is less important than the exponential factor

we are explicitly writing. We will discuss the origin of d′ below. We now see that, before

integrating over b, the integral does have a non-trivial saddle point for ρ1

ρs1 = e−ibd′e−βλ
1/3C̃/2 (2.4.29)

Higher ρn, n ≥ 2 are suppressed by factors of (e−βλ
1/3C̃/2)n. It means that the density ρ(θ) has

a bump determined by the cosine function, see Figure 2.4. Of course, in this discussion we used

the gravity solution to say what answer to expect on the matrix model side. We have not derived

this directly from the matrix model side!We are simply spelling out what answer we expect.

Figure 2.4: The eigenvalue density of the Polyakov loop at strong coupling. It is only slightly
non-uniform.
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We have a non-zero VEV of the Polyakov loop in the adjoint representation:

〈Wadj〉 = 〈Tradj Pe
i
∫
A〉 = N2|ρs1|2 ∝ N2e−βλ

1/3C̃ (2.4.30)

In other words, the large energy required to stretch a string from the boundary to the horizon

implies that the expectation value of this Wilson loop is very small. Of course, the Polyakov loop

in the fundamental is still zero since we have an integral over b.

Let us say a few words about the pre-exponent factor d′. The combination d′e−βλ
1/3C̃/2 in

eq. (2.4.28) comes from a single string stretched between the boundary at r = r̃∞ and the horizon

at r = r0. Therefore,

d′ exp
(
−βλ1/3C̃/2

)
= D exp

(
−β r̃∞ − r0

2π

)
(2.4.31)

The prefactor D arises from the one loop integral around the classical string configuration, which

is a string that wraps the radial and Euclidean time directions. Due to the scaling properties

of the solution (1.2.7), it can only give a power law term in the temperature. The exponential

term β r̃∞−r02π arises from the classical string action. As before, we expect that r̃∞ is a cutoff

dependent quantity that is independent of the temperature, which we write as r̃∞/π = C̃λ1/3.

This constant is expected to be larger that C in (2.3.9) since a string/anti-string pair ending

on the horizon can decay into the massive string modes that live at the high curvature regions,

which have the energy (2.3.9). On the other hand the r0 term gives a temperature dependent

term in the exponent

βr0

2π
=
β3/5

2π

(
4π
√
λd0

7

)2/5

(2.4.32)

where we have used eq. (1.2.8) to find r0 in terms of β.

The adjoint particles that live near the high curvature region (see Figure 2.1) contribute as

e−βλ
1/3C to the expectation value in (2.4.30), which is suppressed by 1/N2 compared to (2.4.30),

but the exponential suppression is smaller, since C < C̃. So the full expectation value in the
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adjoint is

〈Wadj〉 ∝ N2e−βλ
1/3C̃ + e−βλ

1/3C + · · · (2.4.33)

where the dots refer to other contributions described by strings that are not ending at the horizon.

The order N0 contribution can be viewed as arising from doing the Gaussian integral in (2.4.27).

In matrix model vacua with no black holes (such as the X = 0 vacuum of the BMN matrix

model) we only get the second term in (2.4.33).

2.5 Further comments

2.5.1 Is there a bulk SU(N) gauge field associated to the SU(N) global sym-

metry of the ungauged model?

The ungauged model has a global SU(N) symmetry. According to the usual expectations, this

should correspond to an SU(N) gauge symmetry in the bulk. On the other hand, we have

argued that the bulk theory, at least in the Einstein gravity region, is essentially the same as

that of the gauged model. In our case, the states charged under SU(N) are localized near the

boundary of the geometry. The fact that a global symmetry might not extend over the full bulk

is not at all surprising and it happens in other situations. For example if we add Nf massive

fundamental fields, all with the same mass, to an SU(N) gauge theory, then we have an SU(Nf )

flavor symmetry. In the gravity dual, this is realized as a brane that reaches up to a finite distance

rmin in the bulk [74]. The larger the mass, the larger rmin. For low energies, we explore the bulk

only in the region where r < rmin and we do not encounter states charged under the global flavor

symmetry.

Here something similar is happening, the bulk SU(N) gauge symmetry, if present, is located

only in the highly curved region, so it is not visible in the gravity region. And all bulk states

that carry SU(N) charge, have some excitations located in that highly curved region. We can

say that the SU(N) gauge symmetry we expected is “confined” in the bulk gravity region, but

it is present in the highly curved region.
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2.5.2 Are there gauge fields on brane probes?

Let us consider the ungauged model. Let us say that we have a probe D0 brane located in the

region of the geometry described by Einstein gravity. Does this brane probe have a gauge field on

its worldvolume? Naively, one would say no, since we are dealing with the ungauged model. On

the other hand, we have argued that the bulk gravity region should be essentially the same for the

gauged and ungauged models, so that we would expect a gauge field on the probe worldvolume.

We think that the right answer is the second, namely that there is a gauge field on the brane

probes if the probes are in the Einstein gravity region, the region where r < λ1/3. This seems

to be the only reasonable answer since these are the only kinds of D0 branes that we have in

the ten dimensional string theory. This gauge field imposes a constraint saying that the number

of strings ending on the D0 brane should be equal to the number coming out. From the matrix

model point of view, the degrees of freedom on the brane probe are effective low energy degrees

of freedom that describe a complicated bound state where the matrices have large fluctuations.

Recall the discussion in section 2.2.1. For this reason they reflect more the dynamics of these

degrees of freedom than the properties of the precise UV definition of the model.

On the other hand, if we consider a D0 brane probe in the highly curved region, which is

described in perturbation theory, then we do not expect to have a gauge field on the brane probe,

since we do not have it in the ungauged model.

It would be interesting to understand what kind of transmutation the brane probe undergoes

so that this happens as it crosses from the weakly curved bulk region to the strongly curved one.

2.5.3 The ungauged model and M-theory

In [22] the BFSS model was introduced as a tool to extract the S-matrix for 11 dimensional

M-theory. In contrast to the discussion in most of this chapter, the BFSS proposal is to consider

a very low energy limit of this matrix model. In this very low energy limit we go very deep inside

the bulk, where the 11th dimension becomes large compared to other quantities and the physics

is expected to reproduce the 11d one. It seems that the difference between the gauged and the
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ungauged model is really lost when we go to such low energies, E ∝ 1/N , so that we could have

as well started from the ungauged model also.

2.5.4 Physical realizations

It seems that the remarks in this work suggest that if we wanted to build a quantum computer

that simulates this problem we could start with a set of harmonic oscillators and Majorana

fermions and then fine tune the interactions so that we get the ungauged model. This seems

simpler than producing the gauged model where the SU(N) gauge redundancy should emerge

from some other further model. In other words, it seems simpler to try to arrange for a model

having an approximate SU(N) global symmetry than having to produce one with the SU(N)

gauge symmetry. Because the energy of the non-singlets is higher than that of singlets we would

expect that small perturbations that break the SU(N) global symmetry should not be important

in the IR. Still, it is important not to generate terms that lead to relevant perturbations of the

model. But the number of those to fine tune seems smaller than those of all possible couplings.

2.6 Conclusions

We have seen that the Einstein gravity region can be present in both the gauged and ungauged

versions of the model. The extra degrees of freedom of the ungauged model reside in the highly

curved region of the geometry. We can say that both the gauged and ungauged models flow to

the same theory in the infrared. Or that the ungauged model flows to the gauged model in the

IR. Of course, it is not surprising that they have something in common, since the singlet sector

is common to both theories. What we wanted to highlight here was that the non-singlets do not

modify the gravity solution in the region where the gravity approximation is valid.

A very similar story was found in the single matrix quantum mechanics in [58]. There the two

models coincided as long as the temperature was low enough. In that case, at temperatures higher

than a critical temperature the ungauged model would undergo a phase transition, somewhat

reminiscent of the deconfinement transitions. See also [61] for a relation between that phase
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and black holes. In our case, the black hole phase is present both for the gauged and ungauged

models.

We should emphasize that many of our statements can be rephrased in terms of expectations

values of Wilson loops in the gauged model. We mainly talked about the non-supersymmetric

Wilson loop. For example, a Wilson loop in the adjoint representation computed by a string like

the one displayed in Figure 2.1 (and extended along the time direction). This same loop has

higher energy excitations where the string looks like the ones in Figure 2.2(b,c).

We have noted that the fact that the string has high tension implies that the eigenvalue distri-

bution of the thermal holonomy, or Polyakov loop operator, has only a very small inhomogeneity

when we have black hole present, see Figure 2.4. One might have expected that the black hole

formation would result in a stronger eigenvalue localization for the Polyakov loop. This is the

Polyakov loop of the full model, the UV theory, which is the only one we know how to define

precisely in this theory.

In the Gurau-Witten tensor models, in a sense, the opposite from what we said here happens.

In such models, in the leading large N approximation the basic field behaves as a conformal field

with low scaling dimension. Therefore we do not have an energy gap to the non-singlets as we

had in the D0 brane matrix model. In those cases the ungauged model seems a better starting

point to describe the physics.
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Chapter 3

SYK thermalization and universal

constraints on energy flow

3.1 Introduction

Motivated by numerous recent experiments probing the out-of-equilibrium dynamics of reason-

ably well isolated quantum many-body systems, e.g. [75, 76, 77], and by long-standing theoretical

questions concerning the nature of information processing in complex quantum systems, there

has been a recent surge of interest in the physics of thermalization. In general, the phenomenon

of thermalization is complex, involving many physical processes, including local relaxation of

disturbances, diffusion of charge and energy, global spreading or scrambling of quantum infor-

mation [78, 79, 80], and much more. This makes the subject complicated and rich.

Given this complexity, one natural starting point is to search for fundamental bounds on

quantum dynamics. For example, in the context of strongly interacting many-body systems,

physicists have speculated about a ‘Planckian’ limit to scattering that might shed light on various

material properties, e.g. [81, 7, 82, 83, 84, 85, 86, 87].1 In the context of quantum chaos, a similar

kind of Planckian bound has been derived for the growth as chaos as diagnosed by so-called out-

1‘Planckian’ because the scattering time estimate uses only Planck’s constant and the thermal scale: ~
kBT
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of-time-order correlators [8]. One may wonder if such Planckian bounds can also be found for

other aspects of thermalization.

In addition to general bounds, simple solvable models provide another powerful approach to

understand quantum thermalization. Whereas bounds control the shape of the space of possibil-

ities, solvable models give us archetypal behaviors or fixed points to which general models can be

compared. In this context, considerable recent attention has been paid to the Sachdev-Ye-Kitaev

(SYK) model [16, 88, 89, 17, 90, 36, 91, 92] and its variants [93, 94, 95, 96, 97, 98, 99, 100, 101]

as tractable models of chaotic, thermalizing systems.

In this work, we study the equilibration of a system suddenly coupled to a large bath. The

key object in our analysis is the energy curve: the time-dependence of the system energy after

the system-bath coupling is suddenly turned on at zero time. At a schematic level, our results

are as follows. First, we show that the energy curve has generic early time feature in which

the system energy first increases with time even when the bath is cooler than the system. This

initial increase is shown to obey a universal Planckian bound which constrains the shape of the

early time energy bump. Second, we setup and analyze in detail a simple model of system-

bath thermalization in which both system and bath are SYK models and the bath size is much

greater than the system size. We are able to numerically compute the energy curve in this setup,

including the early time energy rise and subsequent crossover to energy loss, the intermediate

time draining of energy from the system, and the late time approach to equilibrium. In the low

temperature limit, we also derive various analytical results, for example, the case of energy loss

into a zero-temperature bath (Sec. 3.3.7).

Our results are related to the physics of black hole evaporation in AdS [102, 103, 104].

One precise connection can be made via the SYK model, which at low temperatures exhibits a

dynamical sector that is identical to a form a quantum gravity in a two-dimensional nearly AdS

spacetime. In this context, we show that our universal bound on the early time bump in the

energy curve is equivalent to an instance of the averaged null energy condition. The latter is an

important constraint on energy flow that is often assumed in general relativity. Moreover, our
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coupled SYK system-bath setup reproduces and generalizes simple phenomenological models of

black hole evaporation in which absorbing boundary conditions were used to extract the radiation.

The rest of the chapter is structured as follows. In the remainder of the Introduction we

summarize our results in more detail. In Section 3.2 we setup and prove a rigorous bound on

early time energy dynamics and demonstrate its relation to the averaged null energy condition

in quantum gravity. In Section 3.3 we setup the coupled SYK cluster model. We analyse its

equilibrium properties and use a Schwinger-Keldysh approach to analyse the system out-of-

equilibrium. We report both numerical studies as well as comprehensive analytical results in

various limits. In particular, Section 3.3.7 is dedicated to studying total evaporation into a zero-

temperature bath. The description of the exact numerical setup and detailed calculations can

be found in Appendices. Section 3.4 contains a brief discussion of our results and possible future

directions.

3.1.1 Summary of results

This section describes the setting for our results and summarizes again the main points in more

technical language. We consider the interaction of a system S with a bath B which is much

larger than the system. This allows one to ignore the backreaction of the system on the bath.

The system and bath have Hamiltonians HS and HB, respectively, and at time zero they are

coupled via gHSB. The goal is to understand how the system energy changes as a function of

time due to this coupling.

Just before the coupling is turned on, the system and bath are in independent thermal

states at inverse temperatures β
(0)
S and β

(0)
B , respectively. The time evolution of the system-bath

composite is

ρSB(t) = e−iHt

(
e−β

(0)
S HS

ZS
⊗ e−β

(0)
B HB

ZB

)
eiHt (3.1.1)

where

H = HS +HB + gHSB (3.1.2)
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Figure 3.1: Typical behavior of system energy as a function of time for a large bath at lower
temperature. We distinguish four dynamical regimes, labeled (1), (2), (3), and (4), which are
discussed in detail in the text. Roughly they correspond to the early time energy rise, the
subsequent turnover to energy loss, a sustained period of energy loss, and the final approach to
global equilibrium.

and

HSB = OSOB (3.1.3)

is a product of two Hermitian operators. We also present some numerical calculations (Sec-

tion 3.3.9) where the system and bath are initialized into pure states.

The primary observable of interest is the energy curve of the system,

ES(t) = tr[HSρSB(t)]. (3.1.4)

A typical energy curve is sketched in Figure 3.1. Assuming the bath is cooler than the system,

there are four key pieces of the energy curve: (1) the very early time energy increase, (2) the

subsequent turnover to energy loss, (3) a sustained period of quasi-steady-state energy loss, and

(4) a final approach to true system-bath equilibrium.

The first main result is a general bound on the energy curve whenever the system-bath

interaction is a single product of operators. For simplicity, consider a limit where the system-bath

coupling g is small, so that the system temperature is approximately constant on the time-scale
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of the inherent system dynamics. Define the integrated energy flux by

Fκ =

∫ ∞
0

dte−κtĖS . (3.1.5)

We show that this quantity is guaranteed to be positive for sufficiently large κ:

κ ≥ 2/βS =⇒ Fκ ≥ 0. (3.1.6)

This result is proven for any system and any bath to leading order in perturbation theory in g.

In the context of SYK, we show that it holds more generally (Section 3.3.8). The constant κ sets

the time-scale; reintroducing Planck’s constant ~ and Boltzmann’s constant kB, the boundary

value of κ is

2

βS
=

2~
TSkB

= 2.6× 10−14 s at TS = 293 K (3.1.7)

The other main results are obtained in a particular model in which both system and bath are

SYK clusters. We consider two SYK models, a system composed of N fermions with qS-body

interactions and a bath composed of M fermions with qB-body interactions. The system and

bath are coupled via a random term involving fS system fermions and fB bath fermions. We

take M � N so that the bath is unaffected by the coupling to the system. See Section 1.3 for

more details and Ref. [105] for another study of two coupled SYK clusters.

We derive the full large N , large M Schwinger-Keldysh equations of motion for this system

and numerically solve them following the technique in Refs. [37, 106]. This allows us to compute

the entire energy curve for this system-bath model as a function of the initial system temperature,

the initial bath temperature, and all the other parameters of the model.

Moreover, in the the low temperature limit we are able to solve the Kadanoff-Baym equation

analytically to determine properties of the initial energy bump, the rate of energy loss, and the

approach to final equilibrium.

Finally, using the gravitational description of the low energy dynamics of SYK, we argue that

our general bound on energy flux is equivalent to one instance of a bulk energy bound called
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the average null energy condition. Specifically, we show that the positivity of the energy flux for

κ ≥ 2π/βS implies the ANEC in the bulk integrated over the black hole horizon. Curiously, the

condition κ ≥ 2π/βS is actually weaker than the most general condition proven in perturbation

theory, which is Fκ ≥ 0 for all κ ≥ 2/βS .

3.2 Bounds on energy dynamics

In this section we discuss the general positivity bound on the integrated energy flux introduced

above. This bound holds perturbatively in the system-bath coupling whenever the system-bath

interaction is a simple product form, HSB = OSOB. In subsequent subsections, we discuss

the general situation with multiple operator couplings and the relation to energy conditions in

holography.

3.2.1 Perturbative bound

Recall that the integrated energy flux is defined by

Fκ =

∫ ∞
0

dte−κtĖS . (3.2.8)

In Appendix B.5 we prove that

Fκ ≥ 0 for κ ≥ 2

βS
(3.2.9)

in the weak coupling limit, g → 0, for any system and bath Hamiltonians.

The proof proceeds by explicitly computing the integrated flux Fκ in terms of spectral func-

tions associated with the system operator OS and the bath operator OB. The positivity of the

spectral functions can then be used to constrain the integrated flux. Making no other assump-

tions about the system and bath spectral functions, one can show that Fκ ≥ 0 for all κ ≥ 2/βS .

With further assumptions on the system or bath, it might be possible to strengthen this result.
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The details are in Appendix B.5, but a few key formulas are reproduced here. To begin, we

define the spectral function for an operator O via the response function,

XR(t) = −iθ(t)〈[O(t), O(0)]〉β. (3.2.10)

The Fourier transform is denoted XR(ω), and the spectral function A(ν) is then

XR(ω) =

∫
dν

2π

A(ν)

ω + i0+ − ν
. (3.2.11)

We may further decompose the spectral function A(ν) into two positive definite pieces,

A(ν) = A+(ν)−A−(ν), (3.2.12)

defined by

A±(ν) = 2π
∑
n,m

pn|〈n|O|m〉|2δ(ν ∓ [Em − En]) (3.2.13)

where pn = e−βEn/Z is the thermal probability.

The integrated flux in terms of the spectral functions AS+ and AB+ is

Fκ = 2g2

∫
dω

2π

dω′

2π

ωAS+(ω)AB+(ω′)

(ω + ω′)2 + κ2
. (3.2.14)

The short-time limit, corresponding the initial rise of energy [part (1) of Figure 3.1], can be

accessed by taking κ→∞ to give

Fκ→∞ → 2
g2

κ2

∫
dω

2π

dω′

2π
ωAS+(ω)AB+(ω′). (3.2.15)

Using ∫
dωωA+(ω) =

1

2

∫
dωωA(ω) =

∫
ω≥0

dωωA(ω) ≥ 0, (3.2.16)

it follows that

Fκ→∞ ≥ 0 (3.2.17)
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in agreement with results in [104].

The long-time limit, corresponding to the steady loss of energy [part (3) of Figure 3.1], can

be accessed by taking κ→ 0 to give

Fκ→0 → −
g2

κ

∫
ω≥0

dω

2π
ω

sinh (βB−βS)ω
2 AS(ω)AB(ω)

2 sinh βSω
2 sinh βBω

2

. (3.2.18)

This expression shows that energy always flows from hot to cold on these timescales. Note that

we are not accessing the final approach to equilibrium since the coupling g is being treated

perturbatively and we are not yet studying the time-dependence of the system temperature.

3.2.2 Multi-operator couplings

It is natural to ask if the bound if the bound can be extended to include more general system-bath

couplings. Consider a coupling of the form

HSB =
∑
α

OαSO
α
B. (3.2.19)

In this case, a more general expression for the integrated flux can be derived which involves mixed

correlators of Oα with Oβ. We have not recorded this expression here because, as we show by

example shortly, the integrated flux in this case does not obey a general positivity condition.2

If the correlations between Oα and Oβ are diagonal, then the positivity result continues to

hold. This is because the diagonal terms reduce to the single product of operators case considered

above. Although this is a special case, it is not an uncommon situation; for example, in the SYK

model, different fermions are approximately decorrelated to leading order in N .

However, for a generic multi-operator coupling the energy may go down initially. For example,

consider a single-qubit system s interacting with a bath qubit b. The unperturbed Hamiltonian

reads as:

HS +HB = ω0s
†s+ Ωb†b (3.2.20)

2We thank Daniel Ranard for discussions on multi-operator couplings.
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where s and b are lowering operators in a two-level system. We switch on the following quadratic

interaction at time t = 0:

HSB = V (s†b+ b†s) (3.2.21)

It is easy to solve this quadratic theory exactly. If the initial density matrices are diagonal,

ρS(B)(t = 0) = diag(1− nS(B), nS(B)), (3.2.22)

then the expression for the system’s energy at early times is given by:

ES(t) = ω0〈s†s〉(t) = ω0nS + ω0V
2t2(nB − nS) + . . . . (3.2.23)

From this expression it is obvious that the system energy may go down initially.

3.2.3 Relation to energy conditions in holography

The motivation for the bound discussed above originates from considering evaporating black

holes in AdS [104]. Take the two sided eternal AdS black hole or the wormhole connecting two

asymptotically AdS regions. In the context of AdS/CFT, this geometry can be understood as the

holographic dual of a pair of decoupled but entangled CFTs prepared in the thermofield double

state. We will label these two boundary CFTs as L (left) and R (right), see figure 3.2.

The decoupling of the two CFTs should be manifested in the bulk dual as the absence of causal

signaling between the two boundaries through the AdS wormhole spacetime. This translates to

the wormhole being non-traversable. Traversability is precluded by the so-called average null

energy condition [107, 108, 109, 110] on the matter stress energy tensor Tab along the horizon of

the black hole

ANEC :

∫
Tabk

akbdλ ≥ 0 (3.2.24)

where ka is the null tangent vector along the horizon of the black hole and λ is an affine parameter

along the null ray. The eternal black hole with matter in the Hartle-Hawking vacuum has
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Figure 3.2: Geometry of the AdS wormhole dual to two entangled CFTs living on the boundaries.
The ANEC along the horizon (shaded blue) guarantees that a signal sent from the left boundary
(green arrow) does not traverse the wormhole and crashes into the singularity.

vanishing stress tensor along its horizons making it only marginally non-traversable. In fact,

there is a simple protocol that makes the wormhole traversable by coupling the two boundaries

[111].

We will now consider a setting in which this ANEC places a bound on the energy flux of the

boundary system. We will consider the eternal black hole in a 1+1 dimensional setting and allow

it to evaporate by imposing absorbing boundary conditions at the boundary. This is a model

for starting with two entangled holographic quantum systems dual to the eternal black hole and

where one of systems, say the right system, is coupled to an external bath allowing energy to

flow between the two.

Consider the Jackiw-Teitelboim (JT) model [112, 113, 114] coupled to matter given by the

action

I = IJT [φ, g] + Imatter (3.2.25)

IJT [φ, g] =
1

16πGN

∫
d2x φ (R+ 2) +

φb
8πGN

∫
∂
K (3.2.26)

where φ is the dilaton and g is the two dimensional metric.3 This model has been studied recently

in [115, 116, 103]. Along with this action this theory comes with a pair of boundary conditions

3Note we are disregarding a topological term φ0

∫
d2xR in the action which is not important for questions we

are interested in regarding dynamics.
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on the metric and dilaton

guu ∼
1

ε2
, φ = φb ∼

φr
ε

(3.2.27)

where u is the time along the boundary and ε is the radial coordinate distance away from the

boundary. u is sometimes called the physical boundary time. Integrating over the dilaton along

an imaginary contour fixes the metric to be that of AdS2, in which it is convenient to work in

Poincare coordinates

ds2 =
−dt2 + dz2

z2
=
−4dx+dx−

(x+ − x−)2
, x± = t± z. (3.2.28)

The gravitational constraints of this theory imply that the only dynamical gravitational degree of

freedom lives on the boundary of the spacetime, and is given by the reparameterization between

the Poincare time t and physical boundary time u, t(u).

The ADM energy of the spacetime, or the energy as measured on the boundary, is given by

E =
φr
GN
{t(u), u} (3.2.29)

The equation of motion of this theory comes from balancing the fluxes of energy of the gravita-

tional sector and the matter.

Ė = ṫ2(u) [Tx−x− − Tx+x+ ]
∣∣
boundary

(3.2.30)

where on the right hand of the equation we have the expectation value of the stress tensors

evaluated on the boundary of the spacetime.

The eternal black hole is a vacuum solution of this model with

Tx+x+ = Tx−x− = 0 (3.2.31)
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This fixes the reparameterization, up to an SL2(R) transformation, to be

t(u) =
β

π
tanh

[
π

β
u

]
(3.2.32)

Now lets imagine coupling the right boundary to a large external system in the vacuum to

allow the black hole to evaporate. This will only modify the left moving stress Tx−x− . The

equation of motion will therefore be

Ė = ṫ2(u)Tx−x−
∣∣
boundary

(3.2.33)

We want to use this expression to find the stress tensor on the horizon. In general, the relation

between the stress tensor near the boundary and the one at the horizon is very complicated in

the presence of massive matter or graybody factors. We specialize to the case with matter where

these complications are absent, for example by considering conformal matter in the bulk on the

background metric g, with no coupling to the dilaton. Due to holomorphic factorization, we can

write

Tx−x−(x−) = Tx−x−(x−)
∣∣
boundary

= ṫ−2(u)Ė(u) (3.2.34)

where we used that x− = t at the boundary. The first equality follows because there is no

dependence on x+ and the stress energy flows on null lines.

We need to plug this into the average null energy along the future horizon on the right

exterior. It is important here that we are working to leading order in the gravitational coupling

κg ≡ βGN/φr, so that the reparameterization t(u) is still given by the unperturbed form (3.2.32).

Therefore, the horizon along which we want to evaluate the ANEC is still at x+ = β/π. Using

the affine parameterization along the horizon given by

x−(λ) =
β

π
− 1

λ
, x+ =

β

π
(3.2.35)

k− =
dx−

dλ
, k+ = 0 (3.2.36)
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we have

∫
Tabk

akbdλ =

∫
Tx−x−

(
dx−

dλ

)2

dλ (3.2.37)

=

∫ ∞
0

Ė e
− 2πu

β du (3.2.38)

Therefore in this case, the ANEC can be recast as a bound on the integrated energy flux,

ANEC =⇒
∫ ∞

0
Ė e

− 2πu
β du ≥ 0. (3.2.39)

We see that the ANEC translates to a weighted integral of the energy flux at the boundary. This

weighting factor is what allows the initial positive energy excitation to overwhelm the subsequent

negative energy flux from the black hole losing energy to the external bath. It is interesting that

this condition is implied by the general perturbative bound Eq. (3.1.5).

3.3 Thermalization in SYK

3.3.1 Coupling to a bath

Suppose that one system fermion ψ couples to an external bath operator OB,

Sint = iV

∫
C
duψOB. (3.3.40)

If the interaction is weak enough, we can use the 1-loop approximation to the interaction term:

Sint →
V 2

2

∫
C
du1du2 XB(u1, u2), GS(u1, u2) (3.3.41)

where the function XB is simply the two-point function of the bath operator XB(t1, t2) =

〈OB(t1)OB(t2)〉B. Moreover, if the bath is large, we can neglect the back reaction on the bath

and take XB to be fixed. This logic can be made precise if we couple a large-N SYK to another
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large-M SYK with M � N . Consider a general interaction of the form4

V
j1,...,jfB
i1,...,ifS

ψi1 . . . ψifSχi1 . . . χifB , (3.3.42)

where χj , j = 1, . . . ,M are the M Majorana fermions of the bath and V
j1,...,jfB
i1,...,ifS

is a random

Gaussian variable with variance

〈
(
V
j1,...,jfB
i1,...,ifS

)2
〉 =

V 2(fS − 1)!fB!

NfS−1MfB
(no sum). (3.3.43)

Note that this expression allows for a quite general coupling between fS system fermions and fB

bath fermions. Based on it, we can derive an effective action similar to (1.3.15). The Euclidean

action has the form:

S =
N∑
i=1

ψi∂τψi − iqS/2
∑
{i}

J
{i}
S ψi1 . . . ψiqS

+

M∑
j=1

χj∂τχj − iqB/2
∑
{j}

J
{j}
B χj1 . . . χjqB

− iγ
∑
{i},{j}

V
{j}
{i} ψi1 . . . ψifSχi1 . . . χifS , (3.3.44)

where

γ = fSfB + fS(fS − 1)/2 + fB(fB − 1)/2. (3.3.45)

The powers of i are needed to make the action real.

4A similar interaction was independently studied in [105, 117]
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It is convenient to introduce the Green’s functions by adding Lagrange multipliers ΣS ,ΣB

(which we integrate over the imaginary axis):

∆S =
1

2
ΣS

(∑
i

ψi(τ1)ψi(τ2)−NGS(τ1, τ2)

)

+
1

2
ΣB

∑
j

χi(τ1)χi(τ2)−MGB(τ1, τ2)

 (3.3.46)

If we assume no replica symmetry breaking, we can treat JS , JB, V as conventional integration

variables in the path integral. After integrating them out, we can replace fermionic bilinears with

GS/B. Then the action becomes quadratic in ψ and χ and they can be integrated out as well.

The result is the following effective action:

S = N log Pf (∂τ − ΣS) +M log Pf (∂τ − ΣB)

+
1

2

∫
dτ1dτ2

(
−NΣSGS −MΣBGB +

N

qS
GqSS +

M

qB
GqBB

)
+
V 2N

2fS

∫
dτ1dτ2 G

fS
S G

fB
B . (3.3.47)

Hence, the equations of motion for the bath variables GB,ΣB will be corrected by a term of

order N/M which is suppressed for M � N . However, there is a non-vanishing correction the

the system’s self-energy:

ΣS = J2
SG

qS−1
S + ∆ΣS

∆ΣS = V 2GfS−1
S GfBB . (3.3.48)

The same computation can be performed in Lorentzian time with the following result for

∆Σ>
S :

∆Σ>
S (t1, t2) = −ifS+fB

(
G>S (t1, t2)

)fS−1 (
G>B(t1, t2)

)fB . (3.3.49)

Computations in SYK simplify a lot when we take the large q limit. Now we have additional

parameters fS/B which we can take to infinity along with qS/B. For example, consider large qB.
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Then the Euclidean Green’s function has the following expansion:

GB(τ) =
1

2
sgn(τ)

(
1 +

gB
qB

)
(3.3.50)

By taking qB → +∞, fB → +∞ we get the following term in the interaction:

GfBB = const exp

(
fB
q
gB

)
, (3.3.51)

where fB/q can be any rational number. Recall that at zero temperature and large qB one has

[36]:

egB =
1

(JB|τ |+ 1)2
. (3.3.52)

This provides an example when we know the bath Green’s function explicitly for all times.

3.3.2 Equilibrium

Let us first study the equilibrium Dyson–Schwinger equation in presence of a bath. It happens

that they can be solved in the IR regime. With the above setup, the Euclidean self-energy reads:

ΣS = J2
SG

qS−1
S + V 2GfS−1

S GfBB . (3.3.53)

In equilibrium, the system and bath will have the same temperature. Thus, we make an ansatz

for GS which is an SYK Green function with certain effective parameters q̃S , J̃S .

Suppose first that we try to retain the same qS , so q̃S = qS . Remember that the SYK Green

functions decay for large Lorentzian times as GS ∼ 1/ sinh(πt/β)2/qS . Thus, there are three

possible situations:

• The system term (GqS−1
S ) dominates in the IR. Then the interaction with the bath is

irrelevant and in the IR we recover the decoupled system physics.
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• The bath term (GfS−1
S GfBB ) dominates. This means GS with q̃S = qS , J̃S = JS is not a

solution. The interaction is relevant and the system now has an effective q̃S < qS . The

solution can be found by assuming that for a given q̃S the second term is dominant.

• Both terms are of the same order, so the interaction is marginal. This means that q̃S = qS ,

but J can be renormalized.

Let us study the particular example of a marginal deformation of qS = 4, where the bath is

also a qB = 4 SYK. Take fS + fB = 4. In Euclidean time the full DS equation reads:

Σ = J2
SG

3
S + V 2GfS−1

S G4−fS
b , (3.3.54)

and in the low energy limit,

Σ ∗GS = δ(t1 − t2). (3.3.55)

Recall also that GB satisfies the following equation in the IR:

J2
BG

3
B ∗GB = δ(t1 − t2) (3.3.56)

The ansatz is then GS =
√
JB√
J̃S
GB. Remembering that in the IR the only dependence on the

coupling is GB ∼ 1/
√
JB, this ansatz can be understood as a renormalization of the quartic SYK

coupling.

From this ansatz it follows that J̃ is determined by,

J2
S

J̃S
2 + V 2J

fS/2−2
B

J̃S
fS/2

= 1. (3.3.57)

This corresponds to an increase in the effective coupling J̃S relative to JS . We have also confirmed

this equation in our numerical results.
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3.3.3 Energy flux

We now derive an equation for the rate of change of the system energy within the non-equilibrium

formalism. Suppose we have a generic quantum system with a Hamiltonian HS , which we couple

to a bath with Hamiltonian HB and the interaction term is VOBOS , which we turn on at time

t = 0. The total Hamiltonian is

H = HS +HB + V θ(t)OSOB (3.3.58)

The time derivative of the system’s energy is not zero for t > 0:

E′S =
d

dt
HS = −i[H,HS ] = V ∂tOSOB, (3.3.59)

where the ∂tOS indicates the time derivative of this operator with respect to unperturbed equa-

tions of motion for the system. If the bath is large, we completely ignore the back-reaction on

the bath. Moreover, if V is small, we can find the right hand side in perturbation theory in V :

E′S = −i(−1)F
∫
C
dt′∂t〈V 2OS(t)OS(t′)〉S〈OB(t)OB(t′)〉B, (3.3.60)

where the integral over t′ goes along the Keldysh contour from 0 to t and the correlators are

taken in the unperturbed systems. F is the fermion number of the operator OS . For the SYK

model with a random interaction (3.3.42) this equation leads to

E′S = iV 2

∫ t

−t
duG>B(u− iε)fB∂uG>S (u− iε)fS . (3.3.61)

In this specific case, this equation can also be derived directly from the Kadanoff–Baym equations

(Appendix B.2) or from Schwarzian (Section 3.3.6).
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3.3.4 Very early time

At very early times, t� 1/JS , 1/JB, we can assume that GB and ∂uGS are just constants. Then

we can use the relation (1.3.22) for GB and Eq. (1.3.31) to connect the derivative with system’s

energy. Collecting the factors of i, we obtain:

E′S = −tV 2ES(0)
1

2fS+fB−2
. (3.3.62)

Since for SYK E < 0 in thermal equilibrium, we see that the energy initially increases. This is an

illustration of the general statement we discussed in Section 3.2. In the case of SYK, the initial

energy growth rate is proportional to the initial energy. This result is very general for SYK and

an arbitrary bath of Majorana fermions. This is valid for SYK at any coupling JSβ.

3.3.5 Early time

At early times, the state of the system has not changed much, so we can use the initial GS in

Eq. (3.3.61). Put another way, Eq. (3.3.61) is already the leading term in V 2, so V -corrections

to GS are smaller. We can trust this approximation as long as change in β is of order V . Below

we will argue that we can use the conformal approximation for GS , so we must restrict ourselves

to times t & 1/JS .

Also, from now on we assume that the system is qS = 4 SYK and there is only one system

fermion in the interaction, fS = 1. By going to the conformal limit, we will arrange the situation

so that an analytical calculation of various parts of the energy curve is possible. This is also the

limit of interest for the black hole evaporation problem. Since the bath temperature is set to

zero, we now denote βS by just β.

For finite q SYK we know the Green’s function analytically only in the conformal regime,

when u� 1/JB. If we try to use the conformal answer for GB we will encounter a divergence at

u = 0 for fB ≥ 2, since at short times GB ∼ 1/
√
u. The physically interesting cases of marginal

and irrelevant deformations correspond to fB ≥ 3 so we need to find another approximation to

GB. One way around this is to couple the system to large-q SYK. For simplicity we will study
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the case of zero temperature bath. As we have shown in Section 3.3.1, we can adjust the number

of bath fermions in the interaction such that

GfBB =

(
i

2

1

(iJBu+ 1)1/2

)p
(3.3.63)

for any rational number p. Then p = 3 corresponds to a marginal deformation, whereas p > 3

produces an irrelevant interaction.

With this setup, the relevant integrals converge. However, the question of whether we can

use the conformal approximation for GS is still open. One obvious constraint is that the system

is at strong coupling, so we require

JSβ � 1 (3.3.64)

From the integral in Eq. (3.3.61) it follows that the bath probes the system Green’s function at

times of order 1/JB. In order to use the conformal approximation for GS , this time should be

large compared to 1/JS . So we should restrict ourselves to

JS � JB. (3.3.65)

In the conformal approximation,

GS = b

(
i

π

βJS sinh(πu/β)

)1/2

, (3.3.66)

so ∂uGS contains a 1/u3/2 term at small u which generates divergences in integrals. However,

we can integrate by parts to give,

E′S = −iV 2

(
GfBB (t)GS(t)−GB(−t)fBGS(−t)−

∫ t

−t
du ∂uGB(u)fBGS(u− iε)

)
. (3.3.67)

Using the fact that for Majorana fermions the Green’s function obeys

GS,B(−t) = −G∗S,B(t), (3.3.68)
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we can rewrite the flux as

E′S = 2V 2 Im

(
GfBB (t)GS(t)−

∫ t

0
du ∂uGB(u)fBGS(u− iε)

)
. (3.3.69)

A comparison between this result and the exact numerical integration for the marginal case

p = 3 is presented in Figure 3.3. Notice that the two curves do not quite match at very early

times. Because of the form of the conformal propagator, the flux behaves as 1/
√
t, which is

not physical. Had we taken the exact system two-point function we would have reproduced

the numerical answer perfectly even at very early times. Slight deviations occur later because

the system’s temperature is finally changing. These discrepancies decreases with decreasing the

system-bath coupling.

10 20 30 40 50 60
time

5. ´ 10 - 7

1. ´ 10 - 6

1.5 ´ 10 - 6

Energy flux

Figure 3.3: Early time energy flux as function of time. The solid curve is the analytic result
(3.3.67), and the dots show the direct numerical integration. The parameters used are V 2 =
2.5×10−5, JS = 0.5, JB = 0.005, βinit = 50, dt = 0.1. The conformal approximation is responsible
for the disagreement at early time while the slight change in temperature is responsible for the
disagreement at late time.

We have studied the analytic expression for the marginal case p = 3 in two limits, JBβ � 1

and JBβ � 1, in Appendix B.3. The parameter βJB tells us how “fast” the bath degrees of

freedom are compared to the thermal scale of the system. For a “slow bath” with JBβ � 1, the

peak occurs at times logarithmically bigger than β:

tpeak ∼ β log

(
1

JBβ

)
, JBβ � 1. (3.3.70)
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In the opposite limit of a “fast bath” with JBβ � 1, we find that the peak time is much less

than β:

tpeak ∼
β

(βJB)1/3
, JBβ � 1. (3.3.71)

3.3.6 Intermediate time

At finite temperature the Green’s functions in Eq. (3.3.61) decay exponentially with time. As-

suming that the bath is at a lower temperature than the system, the integral saturates at times

t & β. After this the energy flow comes to a steady state, meaning that it is not sensitive to

when exactly the interaction was switched on.

We can patch this regime with the previous discussion if the coupling is small enough. Namely

the change in temperature over thermal time scale is much less than temperature:

β∂uβ � β → ∂uβ � 1. (3.3.72)

But this requirement is equivalent to saying that at each point in time the system is in quasi-

equilibrium and has a definite temperature.

We expect that in this regime the system’s dynamics can be described by the Schwarzian. In

this approximation, the system’s Lagrangian is equal to the Schwarzian derivative:

Skin = −αS
JS

∫
C
du Sch(t, u) =

αS
√

2

2JS

∫
C
du

(
t′′′

t′
− 3

2

(
t′′

t′

)2
)
. (3.3.73)

Since for q = 4, JS = JS/
√

2 and the coefficient in front of the Schwarzian is αS = 0.007. The

system’s energy is given by,

E = E0 +
αS
√

2

JS
Sch(t[u], u) = E0 +

2π2
√

2αS
JSβ2

, (3.3.74)

where E0 is the ground state energy.
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The interaction with the bath comes from reparametrizations of GS in the action term

(3.3.41):

Spot = i
V 2

2

∫
C
du1du2XB(u1, u2)GS(u1, u2) = (3.3.75)

= i
√
ib

V 2

2J
1/2
S

∫
C
du1du2

(
t′[u1]t′[u2]

(t[u1]− t[u2])2

)1/4

XB(u1 − u2).

With this normalization of V 2, one has the following extra term in the Dyson–Schwinger equation

(compare with Eq. (3.3.49)):

∆Σ>
S = −V 2X>

B . (3.3.76)

Note that the above action is written on the Keldysh contour, so we have two functions

t+[u], t−[u]. The semiclassical equations of motion are obtained by varying with respect to

tq = t+ − t− and putting t+ = t− [118]. This way the equations of motion are causal.

During the approach to equilibrium we expect that the solution has the form

t[u] = tanh

(
πu

β[u]

)
, (3.3.77)

where β[u] is a slowly varying function of u. As discussed, the difference between the times u1, u2

in GS(u1, u2) should be less than the characteristic scale at which β changes: β/β′ � |u1 − u2|.

We go through the derivation of the equations of motion in Appendix B.4. The result is:

4π2
√

2αS
JSβ3

β′ =
i
√
ibV 2π3/2

2(JSβ)1/2

∫ +∞

−∞
du XB(β(u− iε)) coshπ (u− iε)

sinh3/2 π (u− iε)
. (3.3.78)

This result coincides with the general answer (3.3.61) when the system Green’s function is ap-

proximated by the conformal expression and the energy of the system is given by Schwarzian

result (3.3.74).

There is one subtlety here.5 In the Schwarzian approximation the energy above the vacuum

is proportional to −Sch(t[u], u). For a thermal state this is equal to 2π2/β2. Correspondingly

5We are grateful to Juan Maldacena for a discussion on this point.
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we expect that the energy flux is proportional to −4π2β′/β3. This is how (3.3.78) was obtained

(see Eq. (B.4.18) in Appendix B.4). However, if we formally evaluate the Schwarzian on the

configuration (3.3.77) we will get an extra term,

−Sch(t[u], u) =
2π2

β2
− 4π2uβ′

β3
. (3.3.79)

And after differentiating with respect to time u, we get an expression −8π2β′/β3, which is twice

as big as it should be.

The resolution of this problem is that the expression (3.3.77) is not an actual solution if β[u]

is not constant. The argument of tanh should include an additional term proportional to β′ in

order to cancel the extra derivative term in Eq. (3.3.79). The true solution is easily found,

t[u] = tanh

(
πu

β[u]
+
πu2β[u]′

2β[u]2

)
. (3.3.80)

Now we specialize again to the case of a qB = 4 bath and study both marginal and irrelevant

interactions. We also assume that the bath is at strong coupling. And by this we mean that it

is strongly coupled by itself,

JBβbath � 1, (3.3.81)

and it is strongly coupled on the thermal time scale of the system,

JBβ � 1. (3.3.82)

Otherwise, the ε-prescriptions in integrals should be replaced by the actual UV cut-off

∼ 1/(βJS/B).

In the subsequent sections we are going to compare Schwarzian results with numerical com-

putations. Our timestep will be dt = 0.1 and JS = 0.5, so all the numerical answers should

come with ∼ Jdt = 0.05 = 5% uncertainty. Later when we check the bound we will estimate the

uncertainties more carefully.
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Marginal deformation: bath at zero temperature

For a marginal deformation with fB = 3 and when the bath is at zero temperature, the function

XB is given by

XB = G3
B = i3/2

(
b√
JBt

)3

, (3.3.83)

and the integral over x evaluates to,

∫ +∞

−∞
dx

1

(x− iε)3/2

coshπ (x− iε)
sinh3/2 π (x− iε)

= i
π3/2

4
. (3.3.84)

The time-dependence of the temperature is therefore

β′ = β
πV 2b4

√
JS

32
√

2αSJ
3/2
B

, marginal. (3.3.85)

For JS = JB we have verified this numerically as shown in Figure 3.4. The above equation yields

β′ = 0.0028β for V 2 = 0.002, J = 0.5, whereas the best fit from numerics is β′ = 0.0029β.
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Figure 3.4: β as a function of time for a marginal coupling. Blue circles are data points, and
the green curve is an exponential fit. The fit almost coincides with data points. Fits for other
powers are shown for comparison.
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Marginal deformation: bath at finite temperature

In this case, we take the conformal SYK answer for the bath Green’s function:

XB = G3
B = i3/2

 b
√
π√

βBJB sinh
(
πu
βB

)


3

. (3.3.86)

If βB ∼ β, then we can expand the integral in powers of βB − β:

∫ +∞

−∞
dx

π3/2β3/2

β
3/2
B sinh3/2

(
π(x− iε) β

βB

) coshπ (x− iε)
sinh3/2 π (x− iε)

= (3.3.87)

= −3

2
π5/2

(
β

βB
− 1

)∫ +∞

−∞
dx

(x− iε) cosh2 π (x− iε)
sinh4(π(x− iε))

=

= −iπ
3/2

2

β − βB
βB

.

The approach to the bath temperature is exponential. Explicitly, we have

β′ = (βB − β)
πb4

32
√

2αS

V 2
√
JS

J
3/2
B

, marginal. (3.3.88)

Again, this matches perfectly with the numerics as shown in Figure 3.5.

Irrelevant deformation: bath at zero temperature

For an irrelevant deformation with fB = 5 we have

XB = −G5
B (3.3.89)

and the integral is ∫ +∞

−∞
dx

1

(x− iε)5/2

coshπ (x− iε)
sinh3/2 π (x− iε)

= −1.98. (3.3.90)
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             J_S=0.5, J_B=0.7, beta_B=40, V^2=0.004, f_B=3: marginal
data, dt=0.1
c-A*exp(-L*t), L=0.007551 +- 0.000001
c+0.398/(p*(L*t+1))^2, L=2.335464 +- 0.034490, p=-0.020016

Figure 3.5: Energy as a function of time for βinit = 35 and βB = 40. Only the late time behavior
is shown. The green line is an exponential fit. For comparison we also included fits with E ∼ 1/t2.
The analytical answer for the rate is 0.0075 from Eq. (3.3.88).

Hence, the temperature obeys

β′ = 1.98
V 2b6

√
JS

J
5/2
B αS8

√
2π
, irrelevant, fB = 5. (3.3.91)

Again we have very good agreement with the numerics, see Figure 3.6.
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Figure 3.6: Energy and β for the irrelevant coupling qB = 4, fB = 5, JS = JB = 0.5. The dense
blue points are numerical data. The analytical answer for the slope is 0.063 from Eq. (3.3.91).
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Irrelevant deformation: bath at finite temperature

On physical grounds, we expect that if the system and the bath have close temperatures then

the flux will be proportional to the temperature difference. Indeed, if βB ∼ β we again get

exponential approach:

∫ +∞

−∞
dx

π5/2β5/2

β
5/2
B sinh5/2

(
π(x− iε) β

βB

) coshπ (x− iε)
sinh3/2 π (x− iε)

= (3.3.92)

= −5

2
π7/2

(
β

βB
− 1

)∫ +∞

−∞
dx

(x− iε) cosh2 π (x− iε)(
sinh2(π(x− iε))

)10/4
=

= 8.57
β − βB
βB

.

Hence, the temperature obeys

β′ = 8.57(βB − β)
V 2b6

√
JS

8
√

2πJ
5/2
B βB

, irrelevant, fB = 5. (3.3.93)

For JS = 0.5, JB = 0.7 the agreement is again very good as shown in Figure 3.7.
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Figure 3.7: Energy as a function of time for βinit = 35 and βB = 40. Only the late time behavior is
shown. The green line is an exponential fit. For comparison we also included a fit with E ∼ 1/t2.
The analytical answer for the rate is 0.0034 from Eq. (3.3.93).
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3.3.7 Late time: approach to equilibrium and black hole evaporation

We have seen that the late time approach to true equilibrium is in many cases exponential.

This agrees with our physical expectations since the heat flux should be proportional to the

temperature difference.

Obviously, this process of energy flow cannot last forever. At the very least, the temperature

has thermodynamic fluctuations,

〈(∆T )2〉 =
T 2

Cv
, (3.3.94)

where Cv is the heat capacity, which is of order N for SYK if the temperatures is not too low.

These fluctuations imply that once the difference TS − Tbath becomes of order ∆T ∼ 1/
√
N , we

have effectively reached true equilibrium. In the situations studied so far, this will take a time

of order logN .

However, one important point is the way V 2 scales with N . For an evaporating black hole in

which the energy transfer is accomplished by a small number of light fields, the energy loss rate

should be of order N0 instead of order N1. This can be modeled by taking V 2 to scale with N

as N−1 instead of as N0, e.g.

V 2 ∼ V 2
0

N
, V 2

0 ∼ N0. (3.3.95)

Our analysis is still valid in this case, because we can use the classical Schwarzian description

until β ∼ N and it is not important that the perturbation has 1/N suppression. Hence, the

evaporation time becomes N logN .

However, this estimate is somewhat imprecise. As we just said, we can trust our classical

computation in the previous subsection as long as β � N/JS . Once β becomes of order N we

have to quantize the Schwarzian. This is quite complicated given the non-local term (3.3.75) in

the action. Hence, it appears challenging to derive an analogue of Eq. (3.3.78) directly from the

Schwarzian.

As an aside, notice that the problem does simplify when V 2 ∼ 1/N because when β reaches

N/JS , the integration range in Eq. (3.3.61) is already N logN (instead of logN when V 2 is order

N0), so we do not need to worry about the boundary term.
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Fortunately, we do not need to carry out the full quantization procedure.6 Recall that we

derived Eq. (3.3.61) for any Majorana system interacting with a Majorana bath. It happens

that Eq. (3.3.78) follows from it if we use the classical Schwarzian expression for the energy and

the conformal approximation for the Green’s functions. We will employ the same strategy in the

quantum case. The exact expression for Schwarzian free energy is

F = −2π2αS
JSβ2

+
3

2Nβ
log β, (3.3.96)

and the energy is

E = F + β
dF

dβ
=

2π2αS
J 2
Sβ

2
+

3

2Nβ
. (3.3.97)

In particular, when β ∼ N the last term dominates.

The behavior of SYK Green’s function strongly depends on the relation between t, β and C

where C = NαS/JS is the coefficient in front of the Schwarzian term. As long as t, β � C we

have the classical result:

GS ∼
1√

Jβ sinh
(
πt
β

) . (3.3.98)

Here and below we will suppress the numerical coefficients, but keep the factors of β and N

explicit. A generic answer for GS was obtained in [119, 91]:

GS ∼
1√
JSC

e
− 2πC

β

(
β

C

)3/2 ∫ +∞

−∞
dµ(k1)dµ(k2) γ(k1, k2)2×

× exp

(
− 1

2c

(
−itk2

1 − (β − it)k2
2 − εk2

1 − εk2
2

))
, (3.3.99)

γ(k1, k2)2 =
1

Γ(1/2)
Γ(1/4 + i(k1 + k2))Γ(1/4− i(k1 + k2))×

×Γ(1/4 + i(k1 − k2))Γ(1/4− i(k1 − k2)) (3.3.100)

dµ(k) = sinh(2πk)kdk. (3.3.101)

6We are grateful to Alex Kamenev, Juan Maldacena and Luca Iliesiu for discussions about the following com-
putation.
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Suppose that β � C is large in the above expression. Then we can use the saddle-point approx-

imation for k2 with the following result:

GS ∼
β3/2

√
JSC(t+ iβ)3/2

∫ ∞
−∞

dµ(k1) e−
1
2c(−itk

2
1−εk2

1)Γ(1/4 + ik1)2Γ(1/4− ik1)2. (3.3.102)

If t � C, then the integral is dominated by large k1, so expanding the Gamma functions for

large k1 yields

GS ∼
1√

JS(t− iε)
, t� C � β, (3.3.103)

which is the expected result for zero-temperature case. However, if t� C we can use the saddle

point approximation again, this time for k2 [119, 91]:

GS ∼
Nβ3/2

J
3/2
S (t+ iβ)3/2(t− iε)3/2

, t� C, β � N/JS . (3.3.104)

One cross-check it that the expressions (3.3.103) and (3.3.104) coincide when t ∼ N/JS .

The last step before the actual calculation of the evaporation rate is the expression for GB.

As we mentioned before, the number of bath fermions M must be much bigger than N . Here we

assume M is big enough to keep the bath classical even at large times t, so the Green’s function

is

G3
B ∼

1

J
3/2
B (t− iε)3/2

. (3.3.105)

All these pieces can now be assembled to compute the energy flux. Integrating by parts in

Eq. (3.3.61), we need to compute:

−
∫ +∞

−∞
dt ∂tG

3
BGS ∼

V 2
0

NJ
3/2
B

∫ +∞

−∞
dt

1

(t− iε)5/2
GS(t). (3.3.106)

First of all, if we put β =∞, the system’s Green’s function (3.3.104) does not have singularities

in the lower half-plane, so we can close the contour and get zero. This is expected: if both the

system and the bath have zero temperature, then flux is zero.
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To compute the integral at finite beta we consider the full integral representation (3.3.99).

Notice that we can move the integral over t in Eq. (3.3.106) into the lower half-plane such that

t acquires constant imaginary part of order β. In this case we can use the asymptotic formula in

(3.3.104) for GS . Hence, the flux is of order

∼ V 2
0

(JSJB)3/2

1

β3
. (3.3.107)

Equating this to the loss of energy (3.3.97), we find only
√
t behavior for β instead of expo-

nential growth:

β′ ∼ V 2
0 N

(JSJB)3/2

1

β
, β � N/JS , (3.3.108)

β(t) ∼

√
V 2

0 Nt

(JSJB)3/2
. (3.3.109)

As a check, note that for β � N/JS we had

β′ ∼ V 2
0

N

√
JSβ

J
3/2
B

, β � N/JS (3.3.110)

from Eq. (3.3.85). Equations (3.3.108) and (3.3.85) agree for β ∼ N/JS .

Thus, in the quantum regime there is a cross-over from exponential behavior, β ∼ et, to

power-law behavior, β ∼ t1/2.

3.3.8 Checking the bound numerically

Having described all the parts of the curve analytically, let us discuss its precise form and

check the proposed bound numerically. Our numerical setup is described in Appendix B.1.

The main limitation comes from the fact that we cannot go to very low temperatures, because

the Green’s functions spread a lot. So we will limit ourselves to finite bath temperature. Also,

we will study two kinds of interactions: marginal fS = 1, fB = 3; fS = 2, fB = 2 and irrelevant

fS = 1, fB = 5; fS = 5, fB = 1.
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V 2 F2/β0
F2/β(t)

0.0 ±10−7 ±10−7

0.005 (2.05± 0.01)× 10−4 (2.06± 0.01)× 10−4

0.012 (4.68± 0.01)× 10−4 (4.73± 0.01)× 10−4

0.02 (7.47± 0.02)× 10−4 (7.70± 0.01)× 10−4

Table 3.1: Results for F2/β for the marginal deformation (fS , fB) = (3, 1) with JS = JB =
0.5, βinit = 20, βbath = 100. The errors were estimated by comparing the results of dt = 0.1 and
dt = 0.05.

V 2 F2/β0
F2/β(t)

0.01 (5.13± 0.03)× 10−5 (5.17± 0.03)× 10−5

0.05 (2.48± 0.02)× 10−4 (2.51± 0.02)× 10−4

0.1 (4.79± 0.04)× 10−4 (4.89± 0.03)× 10−4

Table 3.2: Results for F2/β for the irrelevant deformation (fS , fB) = (5, 1) with JS = JB =
0.5, βinit = 20, βbath = 100. The errors were estimated by comparing the results of dt = 0.1 and
dt = 0.05.

At weak system-bath coupling, we do not expect a violation of the bound since we have a

perturbative proof. However, at very strong coupling the final energy of the system is higher than

the initial energy, because the interaction increases the ground state energy. Hence, something

interesting might happen as we scan from weak coupling to strong coupling.

Our numerical results suggest that the integral in the bound is always bigger than zero. This

is true even if we take β(t) instead of the initial β. Our result are presented on Figures 3.8, 3.9

and Tables 3.1, 3.2. The main source of error is the fact that the energy not conserved even for

V = 0 because of the discretization scheme, so we include the V = 0 case for reference.

3.3.9 Comparison to exact finite N calculations

Finally, we verify that the qualitative features of the energy curve persist at small N via direct

numerical integration of the Schrodinger equation. Because it enables us to access larger sys-

tem sizes, we work with pure states instead of mixed states and integrate the full system-bath

Schrodinger equation using a Krylov approach.

As above, the system is a qS-SYK model with N fermions while the bath is qB-SYK model

with M fermions. The fermions are represented in terms of spins using a standard Jordan-Wigner
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Figure 3.8: Energy and beta as functions of time for the marginal deformation (fS , fB) = (3, 1)
with JS = JB = 0.5, βinit = 20, βbath = 100. The thickness of the beta curve indicates the
uncertainty in beta.

construction. To prepare the inital state, we begin with a product state in the spin basis and

evolve in imaginary time to produce:

|ψini〉 ∝ e−βSHS/2−βBHB/2|product〉. (3.3.111)

The coupling is then suddenly turned on at time t = 0 and the full system-bath composite is

evolved forward in time. The energy of the system as well as the system-bath entanglement are

measured as a function of time.

In Figure 3.10 we show an example of the energy curve for N = 12, M = 20, qS = 4, qB = 4,

fS = 1, fB = 3, and g = .2. The initial temperatures were βS0 = 1 and βB0 = 20 in units where

JS = JB = 1. One clearly sees the initial energy bump, the subsequent cross-over to energy loss,

the slow draining of energy into the bath, and a final approach to true equilibrium. Note that

the final equilibrium system energy is modulated by finite size fluctuations in the time domain.
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Figure 3.9: Energy and beta as functions of time for the irrelevant deformation (fS , fB) = (5, 1)
with JS = JB = 0.5, βinit = 20, βbath = 100. The thickness of the beta curve indicates the
uncertainty in beta.

The data shown constitute a single disorder sample with no disorder averaging. Also, the bound

is satisfied for this example.

3.4 Discussion

Inspired by the problem of black hole evaporation, we studied in the detail the physics of ther-

malization for a system suddenly coupled to a bath. Our first key result is a positivity bound

on the integrated energy flux. We proved it in general in perturbation theory and showed that

it implied an instance of the ANEC. Our second key result is a detailed study of the thermal-

ization dynamics for two coupled SYK clusters. In particular, at low energy we gave a thorough

analytical discussion of the energy curve.

There are many directions for future work. One is to understand how far beyond perturbation

theory our bound extends. In the SYK example, we found it to be quite robust. We suspect that

quantum information ideas will be useful in this context, partly because the bulk interpretation
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Figure 3.10: Energy curve for a finite size system-bath setup with N = 12 and M = 20. Other
parameters are discussed in the main text.

of the bound in terms of the ANEC is associated with prohibiting unphysical communication

between two entangled parties. There is also more to understand about the SYK case, for

example, it may be possible to analytically solve the dynamical equations at large q.

More generally, it would be interesting to generalize our analysis to pure states, and to

understand in detail the behavior of the entanglement entropy of various parts of the system.

Finally, it is tempting to try to relate our rigorous Planckian bound on the energy curve to other

more speculative Planckian bounds, for example, in transport physics. One idea for relating

them is to the use the fact that dissipative transport generates heat, so perhaps this fact can be

combined with some version of the setup we considered here?
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Chapter 4

SYK wormhole formation in real

time

4.1 Introduction and Summary

4.1.1 Motivation

The Sachdev–Ye–Kitaev (SYK) model [16, 17, 36, 120] is a strongly interacting but yet solvable

model in the large N limit. At low energies, it displays an approximate conformal symmetry.

In this region, the model has many features in common with nearly AdS2 gravity, or Jackiw-

Teitelboim (JT) gravity [112, 113, 121], coupled to matter fields. This is a simple two dimensional

theory of gravity which describes some aspects of nearly extremal black holes in various dimen-

sions.

An interesting variant is to consider a pair of identical SYK models coupled through a simple

bilinear interaction [122], see also [123, 97, 124]. The ground state of this model has a gap, but

its excitation spectrum also displays an approximate conformal symmetry. Furthermore, this

ground state is close to the thermofield double state of two decoupled models. For reasons we

explain below, we call the ground state of this coupled model “the SYK wormhole”.

A conceptually similar state also arises when one considers two nearly extremal black holes

that are relatively close, so that they are coupled. In this case, a traversable wormhole can connect
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the near extremal throats [125]. This can be effectively modeled by a nearly AdS2 gravity theory

where we have direct interactions between the values of the bulk fields near the two boundaries

[111, 122]. In other words, thinking of the Penrose diagram of AdS2 as a strip, we put boundary

conditions for the bulk fields that connect the two boundaries. The two boundaries are causally

connected through the bulk, so that this spacetime describes a wormhole. This wormhole is

the lowest energy configuration of the system and it also displays the approximate SL(2, R)

isometries of nearly AdS2.

Given that this is a remarkable state, we are interested in knowing whether it is easy to get

to it. In other words, if we start out from a general excited state of the coupled model, can

we easily get to the ground state by cooling the system down? Or will the system get stuck in

some other state? At first sight the answer seems straightforward, if it is the ground state, the

system will surely find it if it can shed its excess energy to the bath. On the other hand, from the

gravity perspective, the process involves a topology change. Such topology change might happen

via a tunneling solution, but it would be exponentially suppressed in N (or the entropy of each

separate black hole).

4.1.2 Wormhole formation in SYK

With this motivation in mind, we study this problem for the two coupled SYK models. We

start with a relatively high temperature state of the coupled model which looks like two thermal

density matrices, one for each SYK factor. Then we couple the system to a bath and study the

evolution in real time by solving the large N Schwinger-Dyson equations. We find that the system

indeed finds the “SYK wormhole” ground state in a time that is independent of N . In particular,

there is no exponential suppression. Notice that the ability to efficiently find this ground state

also makes it possible to prepare the thermofield double (TFD) state of the decoupled model, by

simply switching off the interaction between the two sides [122], after we have found the ground

state.

The approach we used is the following. The large N Dyson–Schwinger equations form a closed

system for the two-point function [16, 17, 36, 120]. In the out-of-equilibrium situation that we are

76



considering, these equations are commonly referred to as the Kadanoff–Baym (KB) equations.

We couple the system of two interacting SYK models to a large bath and find the real time

dynamics using KB equations. The problem of coupling SYK to a bath was recently studied in

[2] and we borrow some results from there. Also, the KB equations for a single SYK was recently

studied numerically in [37, 106]. Here we study this problem solving the dynamical equations at

q = 4. The problem has many time scales and due to numerical limitations we could not separate

them all by large amounts. However, our numerical results seem to confirm the picture where

the system follows the microcanonical equilibrium curve. We now briefly review this equilibrium

thermodynamics.

4.1.3 Equilibrium thermodynamics

In the canonical ensemble the system has two phases: the low temperature one corresponding

to the ground state, the SYK wormhole, and its excitations; and a higher temperature phase

which is closer to two separate thermal SYK systems. The two phases are separated by a first

order phase transition. In the large q limit, the black hole phase and the wormhole phase are

smoothly connected by a canonically unstable phase with negative specific heat [122]. However,

in the microcanonical ensemble, we expect that the system smoothly interpolates between these

two phases. In other words, in the microcanonical ensemble we expect no phase transition as we

lower the energy.

Figure 4.1 shows energy vs inverse temperature β for q = 4. We use energy instead of free

energy or entropy because we will be dealing mostly with Lorentzian non-equilibrium correlators

numerically and it is easier to find the temperature and the energy from them. There are three

different regions. At high temperatures T > T2BH we have the phase we name the “two black

holes phase”. At low temperatures T < TWH we have the phase we call “cold wormhole” phase,

which can be viewed a as a wormhole with few thermal excitations. The two phases overlap,

since T2BH < TWH. In the intermediate temperatures regime T2BH < T < TWH we also expect a

canonically unstable, but microcanonically stable, phase that we call “the hot wormhole phase”.

As we mentioned above, this phase can be found analytically in the large q limit. It has positive
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Figure 4.1: Dots: energy vs beta obtained by numerically solving DS equations
for two coupled SYK models with J = 0.5, µ = 0.0053. Blue dots correspond to
the “two black holes phase”, whereas green dots correspond to the “cold wormhole
phase”. Red dashed line: curve for the “hot wormhole” phase expected from a low
energy analytic analysis. The question mark “?” reminds us that we were not able
to find it as a solution of the euclidean DS equations.

entropy but negative specific heat. However, at finite q we do not known much about this phase,

since we have been unable to find it by solving the Euclidean Schwinger Dyson equations. We

interpret this failure as resulting from its canonical instability. This is why we put a question

mark in Figure 4.1. We will find evidence for this phase through the real time evolution, since

we will find that the temperature goes up as the energy monotonically goes down. There is

also analytic evidence from a low energy analysis, as we will review later. The names “hot” or

“cold” wormhole refer to how these would feel to an observer who is inside the wormhole, at

its center, in a gravity picture for these configurations. As is clear from Figure 4.1, there are

outside temperatures where we can have both a “cold” and “hot” wormhole. When we talk about

temperatures in this chapter, we are always referring to the physical temperature as seen from

the outside.
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Figure 4.1 also displays the critical temperature, Tc, when two stable phases switch dominance

in the canonical ensemble. For T2BH < T < Tc two black hole phase is thermodynamically

metastable but is not a global minimum for the free energy. Similarly for Tc < T < TWH and

the cold wormhole phase. For our problem the microcanonical ensemble is more relevant. Notice

that the different “phases” are continuously connected in the microcanonical ensemble, so they

are not really sharply separated phases.

For small values of µ, the coupling between the two SYK models, we can make different

analytic approximations for the different parts of the curve. For the two black hole region we

can start with two separate thermal SYK models and use perturbation theory in µ. In this

regime, the left-right correlator GLR is small and of order µ. The gravity picture is that we

have two separate hyperbolic disks with a boundary perturbation that connects the bulk fields

on the two disks. We find that T2BH is in the region where this perturbation theory breaks

down. For low temperatures the left-right correlator is of order one. We can access this regime

by assuming that the system is close to the thermofield double state. The relevant part of the

dynamics is captured by the Schwarzian mode. This aspect of the dynamics is the same for the

SYK model and the nearly-AdS2 gravity theory [116, 115, 103]. This describes both the cold

wormhole and hot wormhole phases. In particular, we can see the existence of the hot wormhole

phase in this approximation [122]. In particular, the temperature TWH can be found within this

approximation. We review this description in Section 4.2.3.

4.1.4 Gravity picture

One of our motivations was to understand whether a similar wormhole formation process occurs

in more general theories of nearly-AdS2 gravity with matter.

With this goal in mind we will present a gravity picture for the transition we have in the SYK

model. We do not know the precise gravity dual of the SYK model. But we consider a nearly-

AdS2 gravity theory that has some of the same features. For questions that mainly involve the

Schwarzian mode, the SYK and nearly-AdS2 answers match precisely [116, 115, 103]. However,

wormhole formation goes slightly beyond this approximation, and we need to incorporate one
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important feature that is related to the origin of the ground state entropy, or “zero temperature”

entropy, S0, of the SYK model. If we start from a phase consisting of two thermal states, then

the entropy will have a large contribution of size 2S0 (plus thermal corrections). As the wormhole

forms, the system should be able to shed this large entropy into the bath. In gravity this involves

topology change, which would naively be exponentially suppressed. On the other hand, as we

discussed above, this happens without any such suppression in SYK.

We can reproduce this from a gravity picture as follows. First we view the two coupled

systems as a nearly-AdS2 gravity theory with N bulk fermion fields with Neumann boundary

conditions. The two black hole phase consists of two hyperbolic disks with an interaction between

the boundary values of the bulk fields. As we lower the temperature, this interaction effectively

becomes strong and the theory flows to a new IR fixed point. The new fixed point is simply a

theory with different boundary conditions, namely Dirichlet boundary conditions. This change

in boundary conditions is similar to the one discussed in [126]. The two disks decouple again

but the boundary conditions are effectively changed from Neumann to Dirichlet. Now we use

the observation in [127], that eS0 is equal to the ratio of the Neumann vs Dirichlet disk partition

functions for N fermions. This means that the effective theory in the IR, with Dirichlet boundary

condition has now Seff0 = 0. This means that topology change “costs us nothing”, and we can

easily transition into the wormhole phase. In fact, by a similar argument we can say that the

end of the hot wormhole phase also corresponds to the region where the interactions between the

two sides of the global AdS2 strip produce a flow that change the boundary conditions of the

fermions from Neumann to Dirichlet.

In summary, we provide a qualitative gravity mechanism for the formation of the SYK worm-

hole. The purpose of this explanation was to contrast SYK with what we expect in a generic

gravity theory. A generic gravity theory can have a number of fields much smaller than S0. In

this case, the change in boundary conditions would not significantly change S0 and it would still

be difficult to change the topology. For this reason we could not answer the question of whether

there is an “easy way” of forming the wormhole for more general gravity theories, such as the

case of four dimensional magnetically charged wormholes in the Standard Model [125].

80



The chaper is organized as follows. In Section 4.2 we review the two coupled SYK model

[122]. We describe the perturbative approach at high temperatures, for the “two black hole

phase”. We also review the Schwarzian description of the low energy dynamics that describes

the hot and cold wormhole phases. Section 4.3 contains our real time analysis of the formation

of the wormhole. We set up the coupling to the bath, we write the Kadanoff-Baym equations

(the real time Schwinger Dyson equations), and we present the result of a numerical analysis for

some particular values of the parameters. In section 4.4, we discuss differences and similarities

between SYK and nearly-AdS2 (or JT) gravity and also provide the qualitative picture of the

transition. Various computational details are discussed in the appendices.

4.2 The two coupled SYK model and its thermodynamics

4.2.1 Definition and properties of the ground state

Here we review properties of the two coupled SYK models introduced in [122]. The Hamiltonian

of the model consists of two SYK terms coupled by an interaction

H = HL
SYK +HR

SYK +Hint (4.2.1)

where

HL
SYK +HR

SYK =
∑

1≤i<j<k<l≤N
Jijkl

(
ψLi ψ

L
j ψ

L
k ψ

L
l + ψRi ψ

R
j ψ

R
k ψ

R
l

)
(4.2.2)

where the couplings are the same for both factors. They are Gaussian random variables with

variance

〈J2
ijkl〉 =

3!J2

N3
, no sum (4.2.3)

There is also a generalization where we consider a q fermion interaction term, instead of four.

The interaction term has the form

Hint = iµ

N∑
j=1

ψLj ψ
R
j (4.2.4)
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In the large N limit, µ and J stay fixed. We will mostly consider the case µ/J � 1 and also

consider temperatures T/J � 1. This will be true even for what we call “high” temperatures.

As an aside, let us mention that we can couple the two systems by an operator of dimension

∆

H∆
int = iFµ(O∆)L(O∆)R (4.2.5)

where F is the fermion number of O∆. We will mostly consider the case of (4.2.4) which corre-

sponds to ∆ = 1/4 at low energies. However, we will give certain estimates for generic ∆.

Like a single SYK, this model, (4.2.1), is solvable in the large N limit. We have four types of

correlators: GLL, GRR, GLR, GRL, each defined in Euclidean space as

Gab(τ) = 〈Tψa(τ)ψb(0)〉 , with a, b = L, R (4.2.6)

Since we are dealing with Majorana fermions we have

GLL(0+) = GRR(0+) =
1

2
(4.2.7)

We have a closed system of Dyson–Schwinger equations for the two point functions [122]

∂τGab(τ) =
∑
c

Σac ∗Gcb(τ) + δabδ(τ) (4.2.8)

Σab(τ) = J2Gab(τ)3 − iµabδ(τ) , no sum (4.2.9)

where the convolution ∗ is taken along the Euclidean circle, a, b = L,R, and µab is given by

µab =

 0 µ

−µ 0

 (4.2.10)

The system has a Z4 symmetry ψL → −ψR, ψR → ψL. Throughout our numerical computation

we do not assume that this symmetry in unbroken. We find that it is unbroken, since the
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(Euclidean) correlators we obtained obey the following relations:

GLL = GRR pure real , GLR = −GRL pure imaginary (4.2.11)

A convenient expression for the energy is

E

N
=
J2

4

∫ β

0
dτ
(
−G4

LL −G4
RR − 2G4

LR

)
+ iµGLR(0) (4.2.12)

The interaction term (4.2.4) is a relevant perturbation, since for a single SYK model the

fermion ψ has dimension ∆ = 1/4. Therefore at relatively high temperatures we expect that

we have two weakly coupled SYK models, whereas at low temperatures the system flows into a

gapped phase with a gap that scales as [122]

Egap ∝ µ2/3J1/3 , for
µ

J
� 1, and q = 4, ∆ =

1

4
(4.2.13)

Moreover the ground state is close to the TFD of the two models with effective (inverse) tem-

perature β̃:

|TFD〉 =
∑
n

e−β̃En/2|Ēn〉L × |En〉R , β̃J ∝
(
J

µ

) 1
2(1−∆)

, ∆ =
1

q
(4.2.14)

The energy of the ground state, relative to the energy of the two decoupled SYK models, scales

as

EG − 2E0,SYK ∝ −N
µ4/3

J1/3
(4.2.15)

And for general ∆, EG − 2E0,SYK ∝ −µ
1

1−∆

Since there is a gap and the ground state is unique, the entropy is small in the “cold wormhole

phase”. Whereas in the two black hole phase, we have a big entropy 2S0, where S0 ≈ N × 0.23

is the “zero temperature” entropy of a single SYK model. The transition temperature Tc is

estimated by

Tc ∼ −
EG

2S0
∝ µ

4
3

J
1
3

, for q = 4 (4.2.16)
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For arbitrary temperatures the Dyson-Schwinger equations can be solved numerically by

starting from GLR = GRL = 0, GLL = GRR = 1
2 and then using an iteration procedure similar

to one described in [36]. After obtaining the solution for some value of temperature, we can use

it as a seed for the iteration procedure at higher/lower temperature. Figure 4.1 shows energy as

a function of beta for particular values of parameters J = 0.5, µ = 0.0053.

4.2.2 Perturbation theory at high temperature

Here we use the term “high” temperatures for temperatures for the two black hole branch of the

diagram T � T2BH, but still T/J � 1.

For µ = 0 we have two copies of the conventional SYK correlators [16, 17]

G(τ)LL = G(τ)RR = b sgn(τ)
1√
Jβ

(
π2

sin2 πτ
β

)1/4

, GLR = 0 (4.2.17)

with b4 = 1/(4π).

Now we turn on a small value of µ (4.2.4). If we are at sufficiently high temperature then

the coupled system is still in the phase with two separate black holes [122]. Nonetheless, the

correlation between left- and right- SYK is not zero. We can try to use the conformal perturbation

theory to study the system.

To linear order in µ, only GLR Green functions receive a correction:

∆GLR(τ1 − τ2) = iµ

∫ β

0
dτ GLL(τ1 − τ)GRR(τ − τ2) (4.2.18)

This integral is computed analytically in Appendix B.6. We can compare this leading order

approximation against exact numerical solution of the Dyson–Schwinger equation for J = 0.5, µ =

0.05 and different βs, see Figure 4.2.
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Figure 4.2: Euclidean Green function GLR. The blue points correspond to the exact solution, and the
red ones to the conformal answer (B.6.87). Left: β = 20. Right: β = 53. For this values of parameters
the transition to the wormhole phase happens around β2BH ∼ 61. The approximation is better for higher
temperatures.

Also in Appendix B.6 we computed the µ2 correction to the energy. So that at low tempera-

tures we have the following expression for the energy:

E = 2ESYK + ∆E (4.2.19)

ESYK = E0,SYK +
2π2αS

√
2

Jβ2
(4.2.20)

E0,SYK = −J × 0.04063(1), αS = 0.0071± 0.0004 (4.2.21)

∆E =
1

2
√

4π

µ2

J

(
2 log

π

βJ
− 2− c1

)
, c1 = 1.66(1)

where ESYK is the low-temperature result for a single SYK [36] and ∆E is the leading µ2 correc-

tion derived in Appendix B.6. The comparison between (4.2.19) and the numerics is presented

on Figure 4.6(b).

This approximation works better for high temperatures and then deteriorates close to T2BH,

where the phase is supposed to connect with the hot wormhole phase.

Let us find out until what temperature we can trust the perturbation series in µ, (4.2.4).

The first point is that only even terms are non-zero. The term of order µ2n contains a 2n-point

function on the left and 2n-point function on the right, each of these now computed in a single

SYK model. We are only interested in connected correlators for computing the corrections to
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the free energy. Higher point functions in SYK have two contributions: a purely conformal piece

which is independent of β, up to an overall factor of
(
1/
√
Jβ
)4n

as in (4.2.17), plus contributions

from the Schwarzian which are enhanced by an extra factor of βJ . We claim that the Schwarzian

contributions are in fact zero, see Appendix B.7. The reason behind this cancellation is the

following. When we work at large N we are solving the classical equations. The reparametrization

mode has a solution that is time translation invariant. The two sides are coupled by convolutions

of Green’s functions but this translation symmetry remains unbroken. This means that there is

no source for higher Fourier components of the reparametrization mode, so that the standard

thermal solution continues to be a solution.

The integrals over time give β2n. In total, we have µ2nβ2n

(Jβ)n . So the expansion parameter is

µβ√
Jβ

, for q = 4 , or
µβ

(Jβ)2∆
, for general q (4.2.22)

So we can trust the above perturbative answer until temperature

Tpert ∝ J
(µ
J

) 1
1−2∆

(4.2.23)

For ∆ = 1/4 this scales as µ2, whereas Tc ∝ µ4/3 is much larger.

We conjecture that the transition temperature T2BH, when the two black holes phase cease

to exist, in fact coincides with Tpert, when the perturbation theory in µ breaks down

T2BH ∼ Tpert ∝ J
(µ
J

) 1
1−2∆

(4.2.24)

We check this prediction for ∆ = 1/4 against the numerical phase diagram obtained in [122]. See

Figures 4.3, 4.5.

One last comment on the leading result (4.2.18). In Appendix B.7, we studied the gravita-

tional dressing of this term, searched for instabilities that would spontaneously break the U(1)

time translation symmetry, but did not find any.
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Figure 4.3: A reprint of the phase diagram obtained numerically in [122] for J = 0.5.
The right solid black curve indicates TWH, purple line Tc and left solid black line T2BH.
The dashed horizontal line is at µ = 0.05 , the value of µ we will use in our real time
numerical simulation. In this case β2BH ∼ 61, βc ∼ 54, βWH ∼ 49.
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Figure 4.4: The fit for TWH using the numerical
data from [122] in Figure 4.3, using only data points
with µ < 0.03. The fit is consistent with the analyt-
ical prediction µ ∼ T 3/2.
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Figure 4.5: The fit for T2BH using the numerical
data from [122] in Figure 4.3, using only data points
with µ < 0.03. The fit is consistent with the analyt-
ical prediction µ ∼

√
T .

4.2.3 Low temperature thermodynamics using the Schwarzian

In this section we review the results of [122] on the Schwarzian description of the wormhole. We

will see that the Schwarzian indeed admits a wormhole solution at low temperatures. Moreover,

by including the matter contribution to the partition function one is able to see two phases
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which join at (inverse) temperature βWH. One phase has positive heat capacity and almost zero

entropy. This is a cold and mostly empty wormhole. The second phase has higher energy longer

throat and negative heat capacity. This is wormhole with extra matter excitations inside. We

will see shortly that at small enough µ this approximation predicts βWH with good accuracy.

As we have mentioned before, the ground state of the system is close to the TFD state. Since

we have global AdS2 we have the following GLR correlator in Euclidean signature:

GLR =
ib√

2J cosh
(
tL−tR

2

) (4.2.25)

where tL, tR are times on left/right.

The action in the Schwarzian approximation now includes two kinetic terms1 and an interac-

tion

S = Skin + Sint (4.2.26)

Skin = −N
√

2αS
J

∫
du

(
{tanh

(
tL(u)

2

)
, u}+ {tanh

(
tR(u)

2

)
, u}
)

(4.2.27)

Sint = −Niµ
∫
duGLR(u) =

Nµb√
2J

∫
du

(t′L(u)t′R(u))1/4√
cosh

(
tL(u)−tR(u)

2

) (4.2.28)

with αS in (4.2.21). The wormhole solution is simply tL = tR = t′u, where t′ is a constant. The

effective temperature, β̃ of the TFD state is given by

β̃ = t′β (4.2.29)

Inserting into the action we get the free energy

F/N =
αS
√

2

J
t′2 − µb√

2J
t′1/2 (4.2.30)

1For q = 4, J =
√

2J hence the extra
√

2.
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We should also include the contribution from matter fields in the wormhole throat. If the tem-

perature is low enough we excite only the lightest excitation in the bulk, which is the elementary

fermion with mass 1/4. Its contribution to the free energy is:

∆F/N = − 1

β
log
(

1 + e−β̃/4
)
≈ − 1

β
e−t

′β/4 (4.2.31)

Extremizing the free energy with respect to t′, which is the same as extremizing the full effective

action, we have the following equation to determine t′ and correspondingly β̃:

0 =
∂Ftot

∂t′
=

2αS
√

2

J
t′ − µb

2
√

2J
t′−1/2 +

1

4
e−t

′β/4 (4.2.32)

This equation has a solution with very small t′ which we can not trust, because we were

assuming that the temperatures are low. For large enough β two additional solutions emerge.

One of them correspond to what we call the cold wormhole and the other to the hot wormhole.

The latter has negative heat capacity and can be viewed as a wormhole with more excitations

in the throat. Figure 4.6 shows the two branches for two different values of µ/J and their

comparison to the numerical solution to the DS equations.

We can calculate TWH from this equation. We simply need to find when these two solutions

merge. To keep the discussion general, we consider general ∆, which corresponds to the case

when the two sides are coupled through the product of two operators of dimension ∆. The

equation for t′ now reads as:

2αS
√

2

J
t′ − µb∆

2(2J)2∆
t′2∆−1 + ∆e−t

′β∆ = 0 (4.2.33)

The cold wormhole branch can be approximately found [122] by neglecting the thermal excitations

exponent in the above equation, so that t′ is equal

t′ ∝ µ

J2∆−1
(4.2.34)
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Whereas the unstable branch with excitations can be approximated by neglecting the Schwarzian

kinetic term ∼ αSt′:

µ

J2∆
t′2∆−1 ∝ e−t′β∆ (4.2.35)

Plugging the t′ from the first solution (4.2.34) into the above equation we find the TWH:

TWH ∝
µ

1
2−2∆

log J/µ
∼ µ2/3

log J/µ
, for ∆ = 1/4 (4.2.36)

Of course, both (4.2.34) and (4.2.35) are good for T � TWH. Here we presented just estimates,

but it is straightforward to solve (4.2.33) numerically, see Figure 4.6.

We can also compute the energy using2

E = F + TS = F + β
∂F

∂β
+ β

∂F

∂t′
dt′

dβ
= 2E0,SYK +

αS
√

2

J
t′2 − µb√

2J
t′1/2 +

t′

4
e−t

′β/4 (4.2.37)

where E0,SYK is the ground state energy of a single SYK, see (4.2.21).

In Figure 4.6 we have compared the results computed using eq. (4.2.37) with the numerical

solution of the DS equation. For the value µ = 0.05, which is the one we will use for the real time

numerical computation, the agreement is not very good, but the qualitative form of the curve is

similar, see Figure 4.6(a). This means that that µ is not low enough for an accurate Schwarzian

description. Indeed if we lower µ we get very good agreement. See Figure 4.6(b) for µ = 0.0053.

To summarize, for small µ, we have a hierarchy of temperatures

TWH ∝
µ

1
2−2∆

log J/µ
∼ µ2/3

log J/µ
, for ∆ = 1/4

Tc ∝ µ
1

1−∆ ∼ µ4/3 (4.2.38)

T2BH ∝ µ
1

1−2∆ ∼ µ2

where the rightmost term corresponds to ∆ = 1/4.

2When computing the derivatives one has to keep in mind that t′ is a function of β. And use (4.2.32).
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Figure 4.6: Thermodynamics of the model for two different values of µ/J . In both
J = 0.5 and in (a) µ = 0.05 and in (b) µ = 0.0053. The dots correspond to numerical
solutions of the DS equation. The blue ones for the two black hole phase and the green
ones for the cold wormhole phase. The black line is the ground state energy of two
decoupled SYK, 2E0,SY K (on the left plot it lies above the visible area). Blue curve:
the perturbative result (4.2.19) for the energy. Green curve: wormhole branch of eq.
(4.2.32). Red curve: unstable branch of eq. (4.2.32). The uncertainties, represented
as shaded regions, come from the uncertainties in E0,SYK and αS . We see that in (b)
the agreement is very good. However, in (a) the agreement is not so good, but the
qualitative form of the curve is similar, if we joint the two end points of the dotted
lines.

4.3 Real time results

4.3.1 Coupling to a bath

In order to study the real-time formation of the wormhole, we need to cool down the system.

Before considering real-time dynamics, first we need to understand how to couple our system to

a thermal bath. Ideally we want the bath to be a large system in order to avoid back-reaction.

Generally, we can couple a system’s operator OS to a bath operator OB:

∆S = iFV

∫
dτ OSOB (4.3.39)

where F is the fermionic number of OS .
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If V is small and the bath is large we can study this interaction in the Lindblandian approxi-

mation by considering the 1-loop result and assuming that there is no back reaction on the bath,

such that we can substitute the product OB(t1)OB(t2) by VEV 〈OB(t1)OB(t2)〉B:

∆S = −V 2

∫
dτ1dτ2 OS(τ1)OS(τ2)〈OB(τ1)OB(τ2)〉B (4.3.40)

For our problem we have a varying temperature that sets an energy scale for the model.

Specially for our numerical analysis, it is convenient to choose an interaction that is scale invariant

(at least approximately), so that the effects of coupling to the bath are independent of the

temperature. Otherwise the bath might be effectively decoupling in some temperature range and

the system would take long to cool down.

A natural model for the bath is another SYK, possibly with larger number of fermions. We

can consider the bath to be another single-SYK model with q = qB with large number of fermions

M , much larger than the number of fermions in our system N . Recently this problem was studied

in [2], we refer to this paper for details. If we denote the bath fermions by χα, then the coupling

can involve an arbitrary number s of system fermions and p bath fermions.

Again, to warm-up, let us first consider the case when the system consists of a single-SYK

model. The coupling between the bath and the system has the form:

Lbath-system = V
α1...αp
i1...is

ψi1 . . . ψisχα1 . . . χαp (4.3.41)

where V is a random Gaussian-distibuted coupling. By choosing its variance appropriatly, the

back reaction can be made of order N/M � 1. The Euclidean Dyson–Schwinger equations for

the system stay the same except for a correction to the self-energy: the self-energy acquires an

additional term,

∆Σ = ΣB = ηGpBG
s−1 (4.3.42)

where GB is bath two-point function and η is proportional to the variance of V .
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We can get a marginal interaction with s = 1, p = 3, when the bath consists of q = 4 SYK

models (with, say JB = JS). This is the bath we will use. More precisely, we introduce two

separate baths, one for each SYK factor

Lbath-system = V α1α2α3
i ψL,iχα1χα2χα3 + Ṽ α1α2α3

i ψR,iχ̃α1χ̃α2χ̃α3 (4.3.43)

where V and Ṽ are independent Gaussian-distributed variables. This interaction leaves ΣLR

unperturbed, but the other two self-energies have additional terms now:

∆ΣLL = ∆ΣRR = ΣB = ηG3
B (4.3.44)

The above equations are written in Euclidean signature. We now turn to Lorentzian equations.

4.3.2 Kadanoff–Baym equations

We now write down the Lorentzian time version of the DS equations. For details see Appendix

B.8.

Here we will discuss the non-equilibrum situation following [36] and [37]. It is convenient

to work right away on the Keldysh time contour, see [118] for a comprehensive introduction.

We will need Lorentzian time correlators which are not time ordered. This can be achieved by

introducing a Keldysh time contour which runs from −∞ to +∞ and then back from +∞ to

+∞. First, one introduces a Wightman function

G>ab(t
−
1 , t

+
2 ) = −i〈ψa(t−1 )ψb(t

+
2 )〉, (4.3.45)

where t1, t2 lie on different sides of the contour. This simply means that ψb(t2) is always located

to the right of ψa(t1) in the correlator, regardless of time-ordering. This is why the Keldysh

contour consists of two parts. Note the overall i in front of the correlator. Since we are dealing
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with simple Majorana fermions the “lesser” function G<ab is given by:

G<ab(t1, t2) = −G>ba(t2, t1) (4.3.46)

Also we will need retarded and advanced Green functions:

GRab(t1, t2) = θ(t1 − t2)
(
G>ab(t1, t2)−G<ab(t1, t2)

)
(4.3.47)

GAab(t1, t2) = θ(t2 − t1)
(
G<ab(t1, t2)−G>ab(t1, t2)

)
Dyson–Schwinger equations written on the Keldysh contour are known as Kadanoff–Baym equa-

tions, and are useful for non-equilibrium situations. Let us write them down explicitly for a single

SYK:

i∂t1G
>(t1, t2) = Σ ∗G =

∫ +∞

−∞
dt
(
ΣR(t1, t)G

>(t, t2) + Σ>(t1, t)G
A(t, t2)

)
−i∂t2G>(t1, t2) = G ∗ Σ =

∫ +∞

−∞
dt
(
GR(t1, t)Σ

>(t, t2) +G>(t1, t)Σ
A(t, t2)

)
(4.3.48)

where the self-energy Σ> is given by

Σ>(t1, t2) = −J2
(
G>(t1, t2)

)3
(4.3.49)

These equations for the complete system of two interacting SYKs and a bath are derived using

the path integral in Appendix B.9.

Remember that the “greater” Green functionG>(t−1 , t
+
2 ) has time arguments lying on different

sides of the Keldysh contour, this is why we do not have a delta-function on the right hand side of

(4.3.48). The integral in the right hand side of (4.3.48), which involves different Green functions,

is just a simple convolution Σ ∗G along the Keldysh contour [38]. We can show it by writing the

anti-time ordered Σ = Σ> − ΣR and the time ordered G = GA + G>. One can easily see that

equations (4.3.48) are casual.
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Let us mention one subtlety. Strictly speaking, if one starts from a thermal state, then the

precise Keldysh contour involves imaginary time stip at the end of the lower branch, at t = 0.

This time strip has length β and prepares the thermal state. One can bypass this as follows.

First we set the coupling to the bath to zero. Then we find the real time correlators at thermal

equilibrium by solving the real time equations imposing the appropriate relations between the

Green’s functions, see e.g. (B.8.109). We then evolve the system for some time t� β and then

we turn on the coupling to the bath. For more details see Appendix B.10.

For two coupled SYK models one has to be very careful with the µ term. To understand its

form on the Keldysh contour we can go back to G,Σ effective action derived in Appendix B.9

i
S

N
=

1

2
Tr log (ω − Σab(ω))−

∑
ab

∫
C
dt1dt2

(
J2

8
Gab(t1, t2)4 +

1

2
Σab(t1, t2)Gab(t1, t2)

)
+

+
iµ

2

∫
C
dt (GLR(t, t)−GRL(t, t))− η

2

∫
C
dt1dt2 (GLL(t1, t2) +GRR(t1, t2))G3

B(t1, t2)

(4.3.50)

We see that the µ contribution to Σ(t1, t2) is

∆Σab(t1, t2) = iµabδC(t1 − t2) (4.3.51)

In this expression t1, t2 can be on either side of the Keldysh contour, this is why Σ does not have

an additional index, like >,R,A. Notice that the delta-function δC is defined on the Keldysh

contour as well. It yields non-zero answer if and only if t1 = t2 and t1, t2 are on the same side of

the contour. Let us compute the contribitution of this term to the convolution Σ ∗G along the

Keldysh contour:

∆(Σ ∗G)(t−1 , t
+
2 )ab = iµac

∫
C
dt δC(t

−
1 − t)Gcb(t− t

+
2 ) = iµacG

>
cb(t
−
1 , t

+
2 ) (4.3.52)
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The final form of the Kadanoff–Baym equations, including the bath, is:

i∂t1G
>
ab(t1, t2) = iµacG

>
cb(t1, t2) +

∫ +∞

−∞
dt
(
ΣR
ac(t1, t)G

>
cb(t, t2) + Σ>

ac(t1, t)G
A
cb(t, t2)

)
−i∂t2G>ab(t1, t2) = −iµacG>cb(t1, t2) +

∫ +∞

−∞
dt
(
GRac(t1, t)Σ

>
cb(t, t2) +G>ac(t1, t)Σ

A
cb(t, t2)

)
(4.3.53)

where µab is defined in eq. (4.2.10) and the self-energy is

Σ>
ab(t1, t2) = −J2

(
G>ab(t1, t2)

)3 − ηδab (G>B(t1, t2)
)3

(4.3.54)

4.3.3 Forming the wormhole

Our numerical setup for solving KB equation (4.3.53),(4.3.54) is presented in Appendix B.10.

We prepare initial Lorentz Green’s functions using Lorentz-time Dyson–Schwinger equations

described in Appendix B.8. Our initial Green’s functions correspond to two interacting SYK

models with non-zero µ at thermal equilibrium. In order to save computational time, the initial

temperature is chosen close to (and slightly higher than) the transition temperature T2BH.

We extract the temperature using the Fluctuation-Dissipation Theorem(FDT) for the two-

point functions. Precisely, our numerical setup gives us the G> and G< Green’s functions. At

thermal equilibrium a certain combination of these Green’s functions (eq. (B.10.128)) must be

equal to tanh(βω/2) in the frequency domain. So we take the numerically obtained G> and G<,

make a discrete Fourier transform and fit eq. (B.10.128) with the tanh. We refer to Appendix

B.10 for details about the precise choice of the Green’s functions and the frequency domain for

fit.

Our benchmark parameters are J = JB = 0.5 (the system and the bath have the same

coupling strength), µ = 0.05. In this case, from Figure 4.3 we expect β2BH ∼ 61, βc ∼ 54, βWH ∼

49.
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We considered a few values for the system-bath coupling, η = 0.04, 0.02, 0.01. Figure 4.7

shows the results for βbath = 80, η = 0.04, βinitial = 40 for different time steps. The energy is

computed using eq. (B.10.127).
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Figure 4.7: Numerical results for J = 0.5 and µ = 0.05, βB = 80 and timesteps
dt = 0.2, 0.1. (a) The energy as a function of time. The initial rise is due to the
fact that we are coupling the bath to the system, and this changes the energy [2].
We then see the energy decreasing monotonicallly. (b) The inverse temperature as
a function of time. We also see an initial sharp increase due to the coupling of the
bath, then we see a decrease. Then a slight increase of the temperature that signals
the phase with negative specific heat. Finally the temperature decreases again.

We can perform another check, this time taking η much smaller, namely η = 0.01. The result

is shown on Figure 4.8. A few comments are in order. As is explained in detail in [2] the marginal

system-bath interaction we will renormalize J , making it bigger. This is why expect that the

actual transition will happen at higher β. This is indeed what we see. Moreover, the interaction

with the bath will shift the ground state energy. To compensate for this we have shifted the

energy vs beta curve in Figure 4.8 to match the final energy.

The red curve in Figure 4.8 has wild oscillations in temperature near the equilibrium for small

η, see also Figures 4.7(b). The reason is the following. Because of the numerical error there is an

additional flux of energy which pushes the system out of equilibrium. From the phase diagram
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Figure 4.8: The comparison between E(β) in equilibrium(blue points) and the real-
time evolution of the system as it cools down (solid red line). The bath parameters
are η = 0.01, βbath = 80. The initial linear ramp of the red curve occurs because
we switch on the coupling with the bath linearly in time. The dashed red line is the
same as the solid line but shifted to match the final energy on the phase diagram.
The green dot shows the equilibrium value of the system+bath energy.

(blue points) we see that the derivative dβ/dE is very large. If η is not big enough, the relaxation

time is not small enough to smooth out these fluctuations.

The crucial question is whether we indeed have reached the wormhole phase or not. In

principle, we might have ended up in some other phase. To verify that we have reached the

wormhole we can make a precise check of the system’s energy.

In the real-simulation the final value of the energy is(in units where J = 0.5):

EKB = −0.05282(2) (4.3.55)

where the uncertainty comes from changing the size of the diagonal strip and changing the

timestep. Also we can ask ourselves how carefully is the initial state prepared. For an exact

two-point function we know that Gaa(0) = −0.5i. However, the iterations of the real-time DS
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equations have Gaa(0) = −0.5002i. The error coming from this is esentially the same as in the

above number.

How do we compare this result with the equilibrium phase diagram? In fact, we can solve

Euclidean Dyson–Schwinger equation for the coupled system+bath and compare the equilibrium

energy. We start from the Euclidean correlators in the wormhole phase, add coupling to the bath

and solve the DS equations again. The value of the energy we obtained this way is(again in units

where J = 0.5):

EDS = −0.05276(3) (4.3.56)

It is represented as green dot in Figure 4.8. The uncertainty is estimated by changing the

number of discretization points and imposing different cutoffs for the iteration procedure. We

see an agreement with (4.3.55) within one standard deviation. This suggests that we indeed

reached the wormhole.

To understand what happens near the transition we can look at the maximum value of GLR,

see Figure 4.9 (lower part). We can notice that, during the transition through the unstable phase,

the imaginary value of the correlator (which is proportional to the anticommutator) rapidly grows,

indicating the growth in the information transmission rate.

Another thing we can see is that coupling to a bath generically thwarts the information

transmission between the sides; for larger bath coupling η the ratio ImGLR/ReGLR is smaller.

Figure 4.8 shows that the system is more or less following the thermodynamic curve. We see

that the temperature and energy are smooth everywhere and the transition goes through a phase

with negative heat capacity, where the energy decreases and the temperature increases.

To check whether the system remains thermal at all times we performed an additional check.

Using the fluctuation dissipation theorem (FDT) we can find the temperature two ways: from

LL correlator and the LR correlator, using (B.10.128). The result is shown on Figure 4.9 (upper

part). We see that LL correlator is very close to thermal and the curve shows a clear period

of temperature increase. In contrast, the temperature extracted from the LR correlator has big

errorbars. This means that the LR correlator has larger deviations from precise thermality, and
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Figure 4.9: (Upper part) β as a function of time for η = 0.02 and 0.04. The error
bars are taken from the covariance matrix, so the meaningful quantity is the relative
size between them. (Lower part) the maximum of value of GLR for the same values
of η.

larger violations to the relation (B.10.128). We think that this happens for the following reason.

We couple each SYK system to its own bath, so we have two uncorrelated baths. This introduces

incoherence to the system, which can be seen on Figure 4.9: GLR is decreases when we increase

η. Moreover we are in the regime of small µ, which means that the two sides interact weakly,

so the equilibration time for GLR is much bigger than for GLL. Therefore we expect that the

error bars for LR temperature are big because our system-bath coupling is too big. And, if we

managed to cool the system down more slowly, then the LR correlators would remain thermal.
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Unfortunately, with our limited computer resources we could not go below η = 0.01. So we do

not have a clear evidence for this interpretation.

4.3.4 Time to form the wormhole

In this subsection we provide analytic estimates for the time it takes to form the wormhole. We

will first estimate the time it takes to reach T2BH and then the time it takes to reach from there

to TWH. At this point we basically have a cold wormhole, so we will consider it to be already

formed. We could also consider it formed once we reach T2BH and we start moving on the hot

wormhole region.

In order to estimate these times we need an expression for the rate of energy emission into

the bath. For a general coupling between a system and a large bath the energy loss rate can be

written as (see [2] for more discussion)

dE

dt
= 2iη

∫ +∞

−∞
dt̃ ∂t̃GLL

(
t+ t̃

2
,
t− t̃

2

)
GB(t̃)3 (4.3.57)

where factor of 2 comes from having both sides of coupled to a bath. In the above integral, we

can replace the system two point function by the thermal one at the instantaneous temperature,

assuming that the temperature varies slowly. Moreover, for SYK at low temperatures we can

simply use conformal approximations for two-point functions.

If the bath temperature is much lower, than the system’s temperature we can approximate

bath Green’s function by the zero temperature one

GB = b
1√

JBi (t− iε)
(4.3.58)

Reaching T2BH

In the two black hole holes phase we assume that GLL is approximated by a single SYK thermal

two-point function

GLL(t) = b

√
π√

Jβi sinh π(t−iε)
β

(4.3.59)
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Plugging these into (4.3.57) we see that the answer is determined by dimensional analysis up to

an irrelevant numerical coefficient3:

dE

dt
= − const

η

J
3/2
B

√
Jβ2

(4.3.60)

Differentiating the energy expression (4.2.20) with respect to the time, and solving a simple

differential equation for β(t), we find that it grows exponentially

β(t) ∼ βinit exp

(
const

η
√
Jt

J
3/2
B

)
(4.3.61)

So that the time ∆t2BH needed to go through the two black hole phase and reach T2BH ∼ µ2/J

depends only logarithmically on µ:

∆t2BH ∼
J

3/2
B√
Jη

log
J

µ2βinit
(4.3.62)

Reaching TWH

Now let us calculate time ∆tWH which is needed to go through the hot wormhole phase and reach

TWH. To this end we will employ some results from the end of Section 4.2.3 about Schwarzian.

This Schwarzian approximation breaks for very hot wormholes with temperature of order T2BH,

but holds for lower temperatures.

Suppressing the numerical coefficients, GLL in this regime is given by:

GLL(t) ∝
√

t′√
J sin (t′(t− iε))

(4.3.63)

where t′(t) is determined by the solution of eq. (4.2.32). The hot wormhole(unstable branch) is

characterized by having t′ � 1, so eq. (4.2.32) can be simplified by neglecting Schwarzian kinetic

3We refer to [2] for the numerical coefficient.
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term (the first term in eq. (4.2.32))

exp
(
−t′β/4

)
∼ µ

t′1/2
(4.3.64)

This approximation breaks down near T ∼ TWH, so we further assume that we use this approxi-

mation for temperatures which are slightly below or of order TWH.

From this equation, up to a logarithmic term in µ, t′ and β are related by t′ ∼ 1/β. Using

(4.3.64), the energy (4.2.37) can be written as

E − 2E0,SYK ∝ −
µ√
Jβ

(4.3.65)

We see that the heat capacity is negative

Chot wormhole =
dE

dT
= −β2dE

dβ
∝ µ
√
β√
J

(4.3.66)

We can compare the absolute value of this expression with the heat capacity of a regular SYK

CSYK ∼ 1
Jβ

|Chot wormhole|
CSYK

∝ µ
√
Jβ3/2 ∝

(
TWH

T

)3/2

(4.3.67)

This ratio is much bigger than 1 for β � 1/(J1/3µ2/3) ∼ βWH. So apart from the region close to

TWH the hot wormhole has a large negative heat capacity, compared to a single SYK model at

the same temperature.

The energy flux can be computed using the expression (4.3.63) for GLL. The result is again

determined by scale symmetry and it is again proportional to t′2 ∼ 1/β2 as in (4.3.60). However,

because of the big negative heat capacity, the time it takes to go through this region is much

longer than (4.3.62). Solving for β(t) we get

β
3/2
0 − β3/2

1 =
η

µJ
3/2
B

(t1 − t0) (4.3.68)

103



In our case we start from β0 ∼ β2BH and end with β1 ∼ βWH. Since β2BH � βWH the overall

time length is mostly determined by the region near T2BH:

∆tWH ∼
J3/2J

3/2
B

ηµ2
(4.3.69)

This timescale is much larger than ∆tWH, (4.3.62), which scaled only logarithmically in µ.

Moreover, it is mostly determined by the region near T2BH, which is where the approximation is

breaking down. So (4.3.69) should only be viewed as an order of magnitude estimate.

Our numerical results for β(t) on Figures 4.7 and 4.9 seem to qualitatively support these

conclusions. Notice that, as expected, the times are inversely proportional to the coupling to the

bath η.

4.4 Two coupled black holes in gravity

The low energy description of the SYK model has some features in common with certain two

dimensional theories of gravity. In this section, we study a similar problem in a gravitational

theory in order to compare to the answers we found above.

We consider a Jackiw-Teitelboim theory of gravity coupled to matter, see [116, 115, 103] for

details. This gravity theory describes a two dimensional black hole with an AdS2 geometry.

The AdS2 space has a boundary. We consider a system containing two such black hole exteriors

and we introduce a coupling for the two dimensional matter fields propagating in the bulk. We

assume that have N such matter fields. Let us say that χ is a matter field with a certain mass m

in the bulk and quantized with Neumann boundary conditions so that its dimension is ∆, with

∆ < 1/2. We couple their boundary values through a term, for each field,

S = iµ̃

∫
duχL(u)χR(u) , µ̃ =

µ

J2∆
(4.4.70)
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were we imagine that J−1 is related to a cutoff in the radial AdS2 direction4 and u is the physical

boundary time.

4.4.1 High temperature phase

We now consider the high temperature phase where in Euclidean space we have two separate

disks that are connected through the interaction (4.4.70). Concentrating on the matter system,

this interaction is easy to analyze because the full matter theory is just quadratic. In principle,

we also need to consider the effects of gravity, and we will discuss them later. This interaction,

(4.4.70), leads to the Feynman diagrams in Figure 4.10(a), which can be easily summed, as we

explain below. Since the interaction is relevant, it becomes important at low temperatures. For

sufficiently low temperatures, the net effect is to change the boundary conditions for the bulk

fermions χ from Neumann to Dirichlet. Namely, at low temperatures we get two decoupled disks

with Dirichlet boundary conditions for bulk fermions. We now discuss this more explicitly.

When µ̃ = 0 we have two separate disks and the matter partition function is just given by Z2
N ,

namely the square of the partition function of a fermion with Neumann boundary conditions.

Starting from this state we can now sum the diagrams in Figure (4.10)(a). For each fermion

field, we get

Zµ = Z2
N exp

{
1

2
Tr[log(1 + iµ̃G)(1− iµ̃G)]

}
= Z2

N

[
det(1 + µ̃2G2

∆)
] 1

2 (4.4.71)

where we think of G(u1, u2) ∝ [sin u1−u2
2 ]−2∆ as a matrix with indices u1, u2. We have set β = 2π

for simplicity and we will restore it later.

For large µ̃ we find that the partition function gets an additional factor of the determinant

of G∆. It turns out that this produces the Dirichlet partition function [127, 128]

Zµ̃�1 = Z2
N detG∆e

−ε(µ̃)β ∝ Z2
D , ε(µ̃) ∝ −(µ̃)

1
1−2∆ (4.4.72)

4With the AdS metric ds2 = (dx2 + dz2)/z2, this is the cutoff at z = ε, and we are defining J = 1/ε.
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In the last equality we neglected the energy contribution, since we will be focusing on the ground

state entropy contributions.
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Figure 4.10: (a) Field theory diagrams when we add an interaction term iµ̃χLχR at
the boundary of two disks. Here we picture one disk and the second as the outside.
So χLχL propagators are the ones inside the disk and χRχR are outside the disk. (b)
Diagrams in the two coupled SYK model that reproduce the field theory diagrams in
(a). (c) An example of a diagram in the two coupled SYK model that is not present
in field theory.

The conclusion is that if we start out with two disks with Neumann boundary conditions, after

we turn on the relevant perturbation (4.4.70), for very low temperatures we get two decoupled

disks again but with Dirichlet boundary conditions. This implies that for very low temperatures,

the bulk fermion would be dual to an operator of dimension 1−∆.

Restoring the factors of β, this transition happens at β2BH given by

1 ∼ µ̃β1−2∆
2BH , or T2BH ∝

( µ

J2∆

) 1
1−2∆

(4.4.73)

For q = 4 this reproduces (4.2.24). This is not surprising because we were summing the same

type of diagrams. However, in the gravity case these are all the diagrams, so we can study the

whole flow. The new IR fixed point simply corresponds to flipping the boundary conditions to

Dirichlet. So nothing too dramatic happens in the gravity solution when we go to temperatures

lower than the temperature T2BH in (4.4.73), except that the change in the boundary conditions

will change the value of the ground state entropy.
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In this discussion, we have ignored the dynamics of gravity. In principle, we could wonder

whether we should consider non-trivial solutions of the Schwarzian theory. If we assume that

the solution is invariant under translations for each disk, then, up to gauge symmetries of the

Schwarzian theory, the only solution is the usual one. In Appendix B.7, we examine whether

non-constant Schwarzian modes could lower the action. We find that they do not, at least in

the approximation we considered. In our analysis we assumed that gravity is classical, which is

correct if φr/β � 1. Here φr is the JT gravity analog of the coefficient of the Schwarzian, the

analog of NαS/J . We have also assumed that we have a relatively low number of bulk quantum

fields so that the effects of integrating them out does not significantly change the value of S0, the

ground state entropy. This is the regime where the gravity theory is simplest. As we will discuss

below, the SYK model is different in this respect.

4.4.2 Low temperature phase

At very low temperatures the coupling (4.4.70) leads to the formation of a wormhole [122]. This

is identical to the small µ coupled SYK model analysis of section 4.2.3, since the effects of gravity

can also be described in terms of the Schwarzian mode.

When we decrease the temperature along the negative specific heat region (the hot wormhole

phase), the wormhole is getting longer and longer. Or, more precisely, there is a larger redshift

factor between the boundary and the center of the wormhole. Then, the interaction, which is a

relevant deformation, becomes stronger. When we considered the problem for the disks, we found

that for strong interactions we get an effective change in boundary conditions from Neumann to

Dirichlet. Here we expect the same phenomenon when t′ is becomes

t′ ∝ T2BH ∝
( µ

J2∆

) 1
1−2∆

(4.4.74)

where t′ is the variable in (4.2.32), which is proportional to the value of the redshift factor at

the center of the wormhole. In other words, t′ becomes of the order of the temperature T2BH in

(4.4.73). We refer to Appendix B.11 for details. At this value of t′ the wormhole is so long that
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the approximations used in deriving (4.2.33) are no longer valid. Interestingly, due to (4.2.35),

this happens also at a temperature of the order of T2BH, which is the temperature where the two

disk solutions starts being corrected. This might appear as a coincidence, but it is not. In the

hot wormhole phase we find that the temperature sets the value of t′ and thus the amount of

RG flow that the relevant left-right interaction undergoes. Therefore, this interaction becomes

relevant at the same place.

This statement can be further verified by checking whether the hot wormhole thermodynamic

curve (red curve in figure 4.6) will join with the two black hole phase (blue curve in figure 4.6)

at T = T2BH. In the hot wormhole phase the energy is given by (4.3.65) and in the two black

hole phase by (4.2.19). Indeed, the two curves join at T ∼ T2BH.

In a gravity theory with a relatively low number of fields, we expect that after T2BH the

wormhole phase might not exist any longer.

One conclusion is that, in a general JT gravity theory plus matter, we do not seem to be able

to easily join the high temperature phase and the hot wormhole phase. This is mysterious in

the gravity theory because it involves a topology change. Of course, the low temperature phase

and the hot wormhole phase are connected smoothly at TWH in a region where we can trust the

wormhole analysis in the Schwarzian approximation, as discussed near (4.2.33).

4.4.3 Comparison with the SYK model

In the SYK model, the addition of the interaction corrects the original diagrams by inserting µ

terms in the propagators. If we insert them outside the self energy correction (the Σ bubble),

then we get diagrams which are identical to the ones we discussed in gravity, see Figure 4.10(b).

However, in the SYK model we can also insert µ inside the self energy corrections, these are new

diagrams that are not present in the gravity discussion, see Figure (4.10)(c).

As we mentioned above the region of the phase diagram near temperatures T ∼ T2BH is

different in a generic JT gravity theory plus matter than in SYK. However, we can consider the

folloing gravitations model that would look more qualitatively similar to the SYK model.
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First we note that the SYK ground state entropy is given by S0 = Ns0, where s0 is given by

[17, 127]

es0 = (detG∆)−
1
2 =

ZN
ZD

, for one Majorana fermion (4.4.75)

where the first equality follows from the usual G,Σ action at low energies. The second equality

was mentioned in (4.4.72). This implies that if we want to describe the SYK model in terms of

JT gravity, we should think that when the fermions have Dirichlet boundary conditions, the net

entropy, or value of the topological terms in the action should be zero, φ0 = 0. Then the actual

value of the ground state entropy of the usual, single boundary SYK model, (4.4.75), is simply

given by the contribution of changing the boundary condition for the bulk fields from Dirichlet

to Neumann [127].

Returning now to the coupled model and starting from the high temperature phase, we see

that when we reach the temperature T2BH we are changing to a Dirichlet boundary condition.

This means that the total S0 now becomes zero, which implies that the topology change is easy.

Similarly, if we start from the canonically unstable wormhole phase and approach T2BH, we also

see a change in the boundary conditions so that S0 again becomes zero and topology change is

easy. So we can join the two phases with a change in topology at T2BH. In this way we can

qualitatively understand the transition. We have given evidence that this is a smooth transition

in the coupled SYK model. What we are discussing here is just a cartoon for a gravity picture

of what is happening.

We also see why SYK is different than a generic JT gravity theory with a smaller number of

fields. In such gravity theories the flow from Neuman to Dirichlet would not change S0 by too

much and the topology change remains suppressed. For this reason we have not been able to see

a general mechanism for the transition that would also work in more general gravity theories,

such as the Standard Model in the presence of magnetically charged black holes as discussed in

[125].
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4.5 Conclusion

In this chapter we studied the approach to the ground state of the two coupled SYK models [122].

We first discussed the equilibrium thermodynamics picture. In the microcannonical ensemble we

expect a continuous picture with no phase transition. As the energy decreases, the temperature

decreases up to a value T2BH where the system looks like two separate thermal SYK models with

a small coupling. At T2BH this coupling becomes strong and the system transitions to a “hot

wormhole” phase with negative specific heat. Now the temperature increases up to TWH and then

the wormhole becomes cooler and shorter, and the specific heat becomes positive again. This

whole picture can be understood using simple analytic approximations, except for the transition

region at T ∼ T2BH.

We found that the real time evolution looked as if the system is following the above equilibrium

phase diagram. Unfortunately, for the parameters we could use in our numerical computation,

we could not trust quantitatively the simple analytic approximations. However, these gave a

qualitatively correct answer. The system remained near thermal equilibrium as it cooled down,

except for some deviations in the GLR correlator, which we think should disappear if we were to

cool more slowly.

The conclusion is that, starting with a generic state of the two coupled SYK model, we can

find the ground state by coupling the system to the bath and cooling it down. In particular, the

system does not get stuck in a metastable state. This provides a feasible way to produce a state

close to the TFD.

We also computed the time to form the wormhole. Most of the time is spent near the region

with T ∼ T2BH.

One of our goals was to extract some general lessons for wormhole formation in gravity.

Unfortunately, the SYK model seems to be special, and its special features becomes manifest in

the ease by which we can connect the two black hole phase with the hot wormhole phase near

T ∼ T2BH. These two phases do not seem to be so easy to connect in more general theories of
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gravity. We qualitatively explained why topology is simpler in a gravity theory that is similar to

the SYK model, but harder in a more general theory of gravity.

Nevertheless we cannot say how hard forming a wormhole would be in a more general theory

of gravity, such as the one describing the wormholes in [125]. It seems hard, but maybe there is

an “easy” pathway to form it. It would be interesting to answer this question.

We expect that this article would be relevant for efforts that try to do it using the SYK

model, see the proposal in [129], for example.
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Chapter 5

Spectra of Eigenstates in Fermionic

Tensor Quantum Mechanics

5.1 Introduction and Summary

In recent literature there has been considerable interest in the quantum mechanical models where

the degrees of freedom are fermionic tensors of rank 3 or higher [19, 20]. These models have

solvable large N limits dominated by the so-called melonic diagrams. Such novel large N limits

were discovered and developed in [39, 40, 41, 42, 43, 44, 45, 47, 48], mostly in the context

of zero-dimensional tensor models with multiple U(N) or O(N) symmetries (for reviews, see

[18, 46, 130]). The quantum mechanical tensor models are richer: they have interesting spectra

of energy eigenstates and may have connections with physical systems like the quantum dots.

More amibitiously, large N tensor quantum mechanics may provide a dual description of two-

dimensional black holes [121, 116, 103, 115], in the sense of the gauge/gravity duality [5, 55, 56].

The original motivation [19] for introducing the tensor quantum mechanics is that they have a

large N limit similar to the one in the Sachdev-Ye-Kitaev (SYK) model [16, 131, 88, 17], but

without the necessity of the disorder. Indeed, as shown explicitly in [20], the 2- and 4-point

functions in the large N tensor models are governed by the same Schwinger-Dyson equations as

were derived earlier for the SYK-like models [17, 90, 36, 132, 133].
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At the same time, there are significant differences between the tensor and SYK-like models.

An early hint was the different scaling of the corrections to the large N limit [19] (see also the

further work in [134, 135, 136, 137]); more recently, additional evidence for the differences is

emerging in the operator spectra and Hagedorn transition [138, 139, 140]. The formal structure

of the two types of models is indeed quite different: the SYK-like models containing a large

number of fermions, NSYK, have no continuous symmetries (although an O(NSYK) symmetry

appears in the replica formalism), while in the tensor models one typically encounters multiple

symmetry groups. For example, in the Gurau-Witten (GW) model [19] containing 4 Majorana

rank-3 tensors, the symmetry is O(N)6; there is evidence [134, 138] that this model is the tensor

counterpart of a 4-flavor generalization of the SYK model introduced in [133]. A simpler tensor

quantum mechanics with a single rank-3 Majorana tensor has O(N)3 symmetry [20] and is the

tensor counterpart of the basic SYK model with real fermions. The quantum mechanics of

complex rank-3 fermionic tensor, which has SU(N)2×O(N)×U(1) symmetry [20], is the tensor

counterpart of the variant of SYK model where real fermions are replaced by complex ones [141].

The absence of disorder and the presence of the continuous symmetry groups in the tensor

models endows them with a number of theoretical advantages, but also makes them quite difficult

to study. In the tensor models any invariant operator should be meaningful and be assigned a

definite scaling dimension in the large N limit. While the simplest scaling dimensions coincide

with those in the corresponding SYK-like models, the operator spectrum in tensor models is

much richer: the number of 2k-particle operators grows as 2kk! [138, 139, 140].

Beyond the operator spectrum, it is interesting to investigate the spectrum of eigenstates of

the Hamiltonian. While this spectrum is discrete and bounded for finite N , the low-lying states

become dense for large N leading to the (nearly) conformal behavior where it makes sense to

calculate the operator scaling dimensions. In the SYK model, the number of states is 2NSYK/2,

and numerical calculations of spectra have been carried out for rather large values of NSYK

[92, 142]. They reveal a smooth distribution of energy eigenvalues, which is almost symmetric

under E → −E; it exhibits little sensitivity to the randomly chosen coupling constants Jijkl.
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Such numerical studies of the SYK model have revealed various interesting physical phenomena,

including the quantum chaos.

The corresponding studies of spectra in the GW model [19] and the O(N)3 model [20] have

been carried out in [143, 50, 51, 144, 52, 145, 146], but in these cases the numerical limitations

have been more severe – the number of states grows as 2N
3/2 in the O(N)3 model and as 22N3

in

the GW model. This is why only the N = 2 GW model and N = 2, 3 O(N)3 models have been

studied explicitly so far.1 Furthermore, in the tensor models the states need to be decomposed

into various representations of the symmetry groups. As a result, the details of the energy

spectrum in the O(N)3 tensor model are quite different from those in the corresponding SYK

model with NSYK = N3 fermion species.

The goal of this work is to improve our understanding of energy spectra in the tensor models.

We will mostly focus on the simplest tensor model with O(N)3 symmetry [20] and its general-

ization to O(N1)×O(N2)×O(N3), where the Majorana tensor degrees of freedom are ψabc with

a = 1, . . . , N1; b = 1, . . . , N2; c = 1, . . . , N3, and anti-commutation relations

{ψabc, ψa′b′c′} = δaa
′
δbb
′
δcc
′
. (5.1.1)

The Hamiltonian is taken to be of the “tetrahedral” form [47, 20]

H =
g

4
ψabcψab

′c′ψa
′bc′ψa

′b′c − g

16
N1N2N3(N1 −N2 +N3) , (5.1.2)

and we have added a shift to make the spectrum traceless. In section 5.2 we discuss some essential

features of this model, including its discrete symmetries. In section 5.3 we will derive lower bounds

on the energy in each representation of SO(N1)× SO(N2)× SO(N3). We will show that, in the

melonic large N limit where gN3/2 = J is kept constant, the most stringent bounds (5.3.38) scale

as JN3, in agreement with expectations for a system with N3 degrees of freedom. On the other

1In [146] the exact values of the 140 singlet energies in the O(2)6 GW model were found to square to integers.
Due to the discrete symmetries of the GW model, there are only 5 distinct E < 0 eigenvalues (the singlet spectrum
also contains 50 zero-energy states). For these reasons the singlet spectrum of the O(2)6 GW model exhibits
significant gaps.
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hand, the splitting between lowest states in different representations is found to be of order J/N .

Another derivation of this fact, based on effective action considerations, is presented in section

5.4. While this gap vanishes in the large N limit, we expect the splitting between states in the

same representation to vanish much faster, i.e. as c−N
3
, where c is a positive constant. Such

small singlet sector gaps are needed to account for the large low-temperature entropy, which is

given by the sum over melonic graphs and, therefore, has to be of order N3.

If the global symmetry of the quantum mechanical model is gauged, this simply truncates the

spectrum to the SO(N1)× SO(N2)× SO(N3) invariant states. In section 5.5 we derive integral

formulae for the number of singlets as functions of the ranks Ni. They lead to the conclusion

that the singlets are present only when all Ni are even. The absence of singlets when some of

Ni are odd can often be related to anomalies, which we discuss in section 5.5.2. For the O(N)3

model, the number of singlet states is shown in Table 1; it exhibits rapid growth from 2 for

N = 2, to 36 for N = 4, to 595354780 for N = 6. Thus, even though the O(4)3 model is out

of reach of complete numerical diagonalization because it has 64 Majorana fermions, in contrast

to the SYK model with NSYK = 64, it is far from the nearly conformal large N limit. Indeed,

since the spectrum is symmetric under E → −E [138], the number of distinct singlet eigenvalues

with E < 0 cannot exceed 18. Therefore, there are significant gaps in the singlet spectrum of

the O(4)3 model. On the other hand, the presence of the vast number of singlet states for the

O(6)3 model suggests that the low-lying singlet spectrum should be dense for N = 6 and higher.

For large N the number of singlets grows as exp
(
N3 log 2/2− 3N2 logN/2

)
. Since all of these

states must fit in an energy interval of order N3, it is plausible that the gaps between low-lying

singlet states vanish as c−N
3
.

The O(N1) × O(N2) × O(N3) tensor model (5.1.2) may be viewed as N3 coupled Majorana

N1×N2 matrices [49, 147]. As discussed in section 5.6.1, for N3 = 1 we find a one-matrix model

with O(N1)×O(N2) symmetry, which is exactly solvable because the Hamiltonian may be written

in terms of a quadratic Casimir. When we set N3 = 2 we find a complex N1 ×N2 matrix model

with O(N1)×O(N2)×U(1) symmetry. It may be studied numerically for values of N1 and N2 as

large as 4 and reveals a spectrum which is integer in units of g/4. In section 5.6.3 we explain why
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this fermionic matrix model is again exactly solvable and derive a concise expression (5.6.103)

for its spectrum. When both N1 and N2 are even, so that the spectrum contains singlet states,

we show that the ground state is a singlet. In section 5.6.2 we apply similar methods to another

complex matrix model, which was introduced in [148] and has SU(N1)×SU(N2)×U(1). It is the

N3 = 1 case of the complex tensor quantum mechanics with SU(N1)× SU(N2)×O(N3)× U(1)

symmetry [20]. We show that the Hamiltonian of this model may be expressed in terms of the

symmetry charges. The solvable matrix models presented in section 5.6 have standard ‘t Hooft

limits when N1 = N2 = N is sent to infinity while λ = gN is held fixed. Then the low-lying

states have energies ∼ λN2, while the splittings are of order λ. So, in contrast to the melonic

large N limit, the energy levels don’t become dense in the ‘t Hooft limit of the matrix models.

Nevertheless, these fermionic matrix models are nice examples of exactly solvable ‘t Hooft limits.

5.2 The rank-3 tensor model and its symmetries

The O(N1)×O(N2)×O(N3) tensor model is specified by the action

S =

∫
dt

(
i

2
ψabc∂tψ

abc −H
)
, (5.2.3)

where H is given in (5.1.2). Sometimes it will be convenient to use capital letters A,B, . . . to

denote the multi-index, i.e. A = (a, b, c). It is easy to see that the Hamiltonian (5.1.2) has a

traceless spectrum: 2 ∑
i

diEi = 0 ,
∑
i

di = 2[N1N2N3/2] , (5.2.4)

where di is the degeneracy of eigenvalue Ei.

We can make some general restrictions on the possible values of the energies. Operators ψ

obeying the anti-commutation relation (5.1.1) may be represented as the Majorana γ-matrices in

N1N2N3– dimensional Euclidean space. They have entries which, in our conventions, are integers

divided by
√

2. As a result, the Hamiltonian is an integer matrix times g/16. It is a well-known

2One can easily compute tr(ψabcψab
′c′ψa

′bc′ψa
′b′c) = 1

4
N1N2N3(N1 − N2 + N3) working with ψabc as with a

set of gamma matrices.
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mathematical fact that such matrices cannot have rational eigenvalues. Therefore, in units of

g/16, the energy eigenvalues have to be either integer or irrational numbers. The explicit results

we will find are in agreement with this.

The discrete symmetries of the theory depend on whether some of the ranks are equal. In a

O(N1)×O(N)2 theory, N1 6= N , we may study interchange of the two O(N) groups, which acts

as ψabc → ψacb. The invariant operators can be divided into even or odd under the interchange.

The Hamiltonian (5.1.2) is odd [138], which implies that the energy spectrum is symmetric under

E → −E.

Let us construct the operator which implements the interchange ψabc → ψacb:

P23 = 2N
2(N1+1)/2

∏
a,b=c

ψabc
∏
a,b>c

(
ψabc + ψacb√

2

)
. (5.2.5)

This operator has the following properties

P †23P23 = 1, P †23 = ±P23, P †bcψ
abcPbc = (−1)N

2(N1+1)/2+1ψacb. (5.2.6)

Due to the last relation one can check

P †bcHPbc = P †bc

(g
4
ψabcψab

′c′ψa
′bc′ψa

′b′c − g

16
N1N2N3(N1 −N2 +N3)

)
Pbc =

=
g

4
ψacbψac

′b′ψa
′c′bψa

′cb′ − g

16
N1N2N3(N1 −N2 +N3) =

= −g
4
ψabcψab

′c′ψa
′bc′ψa

′b′c +
g

16
N1N2N3(N1 −N2 +N3) = −H , (5.2.7)

where we have renamed the repeated indices in the second line and used the anti-commutation

relations (5.1.1) in the third line. Let us consider any state that is an eigenvector of the P23, it

exists because P23 is either hermitian or antihermitian

P23|λ〉 = λ|λ〉, 1 = 〈λ|λ〉 = 〈λ|P †23P23|λ〉 = |λ|2〈λ|λ〉 = |λ|2. (5.2.8)
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The energy of such state is equal to zero. Indeed,

E = 〈λ|H|λ〉 = −〈λ|P †bcHPbc|λ〉 = −|λ|2〈λ|H|λ〉 = −E, E = 0 (5.2.9)

Let us now discuss the case when all three ranks are equal and we have O(N)3 symmetry.

Then the invariant operators form irreducible representations of the group S3 which interchanges

the 3 O(N) groups. The Hamiltonian is in the sign representation of degree 1: it is invariant

under the even permutations and changes sign under the odd ones. Therefore, the symmetry of

the Hamiltonian is the alternating group A3, which is isomorphic to Z3.

The SO(Ni) symmetry charges are

Qaa
′

1 =
i

2
[ψabc, ψa

′bc] , Qbb
′

2 =
i

2
[ψabc, ψab

′c] , Qcc
′

3 =
i

2
[ψabc, ψabc

′
] . (5.2.10)

In addition, each O(Ni) group contains Z2 parity symmetries which are axis reflections. Inside

O(N1) there are parity symmetries P a
′
: for a given a′, P a

′
sends ψa

′bc → −ψa′bc for all b, c and

leaves all ψabc, a 6= a′ invariant. It is not hard to see that the corresponding charges are

P a
′

= 2N2N3
∏
bc

ψa
′bc (5.2.11)

One can indeed check that

(
P a
′
)†
ψabcP a

′
= (−1)δa,a′+N2N3ψabc . (5.2.12)

Similarly, there are Z2 charges inside O(N2) and O(N3). A product of two different parity

symmetries within the same O(Ni) group is a SO(Ni) rotation. Therefore, it is enough to

consider one such Z2 parity symmetry within each group and O(Ni) ∼ SO(Ni)× Z2.

The anti-unitary time reversal symmetry T is a general feature of systems of Majorana

fermions; it commutes with them and, therefore, with the Hamiltonian (5.1.2):

T −1ψabcT = ψabc . (5.2.13)
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The action of T on the eigenstates depends on the total number of the Majorana fermions

N1N2N3 and is well-known in the theory of topological insulators and superconductors. If the

total number of fermions is divisible by 8, the operator T acts trivially, so the ground state may

be non-degenerate. Otherwise T acts non-trivially and one finds that the ground state must be

degenerate.

5.3 Energy bounds for the O(N1)×O(N2)×O(N3) model

Since the Hilbert space of the model is finite dimensional, it is interesting to put an upper bound

on the absolute value of the energy eigenvalues in each representation of the symmetry group. In

this section we address this question in two different ways. We first derive a basic linear relation

between the Hamiltonian, a quadratic Casimir operator, and a square of a Hermitian operator

which is positive definite. This gives bounds which are useful for the representations where the

quadratic Casimir of one of the orthogonal groups is near its maximum allowed value. We also

find that the bounds are exactly saturated for N3 = 2, but are not stringent when equal ranks

become large. Then in section 5.3.2 we derive more refined bounds which are more stringent

in the large N limit and give the expected scaling of the ground state energy. Furthermore, we

derive a finite multiplicative factor which corrects the refined bound and allows us to deduce the

ground state energy in the large N limit.

5.3.1 Basic bounds

To derive an energy bound we introduce the hermitian tensor

Abc,b
′c′ =

i

2
[ψabc, ψab

′c′ ] = iψabcψab
′c′ − iN1

2
δbb
′
δcc
′

(Abc,b
′c′)† = −iψab′c′ψabc + i

N1

2
δbb
′
δcc
′

= iψabcψab
′c′ − iN1

2
δbb
′
δcc
′

= Abc,b
′c′ . (5.3.14)

If we think of bc as a combined index which takes N2N3 values, then Abc,b
′c′ are the generators

of the transformations in O(N2N3) ⊃ O(N2) × O(N3). The quadratic Casimir of O(N2N3) ⊃
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O(N2)×O(N3),

C
O(N2N3)
2 =

1

2
Abc,b

′c′Abc,b
′c′ , (5.3.15)

and the quadratic Casimir of the O(N1) symmetry,

C
O(N1)
2 =

1

2
Qaa

′
1 Qaa

′
1 (5.3.16)

are related by

C
O(N2N3)
2 + C

O(N1)
2 =

N1N2N3

8
(N1 +N2N3 − 2) . (5.3.17)

Therefore, for the states which appear in the model, we find the upper bound:

C
O(N1)
2 ≤ 1

8
N1N2N3 (N1 +N2N3 − 2) . (5.3.18)

This bound is saturated only if C
O(N2N3)
2 = 0 so that the state is invariant under SO(N2N3).

The Hamiltonian may be written as

H = −g
4
Abc,b

′c′Abc
′,b′c +

g

16
N1N2N3(N2 −N3) . (5.3.19)

Now we note the inequality

C
O(N2N3)
2 ± 1

2
Abc,b

′c′Abc
′,b′c =

1

4
(Abc,b

′c′ ±Abc′,b′c)2 ≥ 0 (5.3.20)

Combining this with (5.3.17) we get

2

g
H


≤ 1

8N1N2N3 (N1 +N2 −N3 +N2N3 − 2)− CO(N1)
2 ,

≥ CO(N1)
2 − 1

8N1N2N3 (N1 −N2 +N3 +N2N3 − 2) .

(5.3.21)

120



In an analogous fashion we can also derive the bounds in terms of C2:

2

g
H


≤ 1

8N1N2N3 (N2 +N3 −N1 +N1N3 − 2)− CO(N2)
2 ,

≥ CO(N2)
2 − 1

8N1N2N3 (N2 −N3 +N1 +N1N3 − 2)

(5.3.22)

and similarly in terms of C
O(N3)
2 .

An interesting special case, which we will consider in section 5.6, is N3 = 2 where we find

a complex N1 × N2 matrix model. For the singlet states where C
O(N1)
2 = C

O(N2)
2 = 0 the most

stringent bound we get from (5.3.21) and (5.3.22) is

|H| ≤ g

8
N1N2(N1 +N2) . (5.3.23)

In section 5.6 we will show that these bounds are saturated by the exact solution for even N1, N2.

For N1 = N2 = N we have a N ×N matrix quantum mechanics which possesses a ’t Hooft large

N limit where gN = λ is held fixed. In this limit, the ground state energy is E0 = −λ
4N

2, which

has the expected scaling with N for a matrix model.

More generally, if at least one of the ranks is even (we will call it N3), we may introduce the

operators [52]

c̄abk =
1√
2

(
ψab(2k−1) + iψab(2k)

)
, cabk =

1√
2

(
ψab(2k−1) − iψab(2k)

)
,

{cabk, ca′b′k′} = {c̄abk, c̄a′b′k′} = 0, {c̄abk, ca′b′k′} = δaa′δbb′δkk′ , (5.3.24)

where a = 1, 2, . . . , N1, b = 1, 2 . . . , N2 and k = 1, . . . , N3
2 . In this basis the O(N1) × O(N2) ×

U(N3/2) symmetry is manifest. The Hamiltonian becomes [52]

H =
g

2

(
c̄abk c̄ab′k′ca′bk′ca′b′k − c̄abk c̄a′bk′cab′k′ca′b′k

)
+
g

2
(N2 −N1)Q+

g

16
N1N2N3(N2 −N1) ,

(5.3.25)
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where Q = 1
2 [c̄abk, cabk]. The Hamiltonian is invariant under the charge conjugation symmetry

which interchanges cabk with c̄abk.

For any even N3, using the basis (5.3.24) we define the oscillator vacuum state by the condition

cabk〉0 = 0. Since this condition is invariant under O(N1N2), so is 〉0. Furthermore, all the states

that are created by operators that are O(N1N2) invariant are also O(N1N2) invariant and have

energy g
16N1N2N3(N2 −N1). The number of such states is estimated to be the dimension of the

maximal representation for the O(N3) group dimmax ∼ (N1N2)N
2
3 /8 (see apendix C.1 for details).

The relation (5.3.17) also simplifies the search for the singlets. For example, we can first forget

about the group nature of the third index in the approach of [52] and impose the vanishing of

the Casimir of the third group afterwards. By studying the charges under U(1) ∈ U(N3/2) we

find that the singlet states must have N1N2N3/4 creation operators acting on 〉0.

Specifying the bound (5.3.21) to the equal ranks N1 = N2 = N3 = N , we find

C
O(N)1

2 − 1

8
N3(N + 2)(N − 1) ≤ 2

g
H ≤ 1

8
N3(N + 2)(N − 1)− CO(N)1

2 . (5.3.26)

When the bound (5.3.18) is saturated, the corresponding state must have zero energy. This shows

that all the states invariant under O(N2) ⊃ O(N)2 ×O(N)3 have E = 0.

For the singlet states (5.3.26) gives

4

g
|H| ≤ 1

4
N3(N + 2)(N − 1) . (5.3.27)

For N = 2, exact diagonalization gives that the ground states is a singlet with energy E0 = −2g;

this saturates the bound (5.3.27). For N = 3, exact diagonalization gives a ground state with

energy −5
4

√
41g ≈ −8.0039g, which is in the (2, 2, 2) representation of O(3)3. Since for the 2

of SO(3), C1 = 3/4, the bound (5.3.26) is E0 ≥ −33
2 g. This is satisfied and is far from being

saturated.

In the large N limit, J = gN3/2 is held fixed. Thus, we obtain a bound on the lowest singlet

energy E0, which is E0 ≥ −cJN7/2, where c is a positive constant. Since we expect the ground
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state energy to be of order N3, this bound is not very informative at large N . A better bound

at large N will be derived in the next section.

5.3.2 Refined bounds

In this section we present another approach to deriving energy bounds for the O(N1)×O(N2)×

O(N3) invariant states, which gives a more stringent bound in the large N limit than the ones

in the previous section.

Consider an arbitrary singlet density matrix ρ; this means a density matrix invariant under

the O(N1) × O(N2) × O(N3) rotations. For example, it can be ρs =〉s〈s, where 〉s is an singlet

state, or if we have some representation R of the O(N1)×O(N2)×O(N3) with an orthonormal

basis 〉ei, i = 1..dimR we can define the projector on this subspace of the Hilbert space

ρR =
1

dimR

dimR∑
i=1

|ei〉〈ei|, ρR = 1, ρ2
R =

1

dimR
ρR . (5.3.28)

It is easy to see, that this density matrix is invariant under rotations OTρRO = ρR for any

O ∈ O(N1) × O(N2) × O(N3). We can calculate the mean value of the energy for this density

matrix as

E = tr [ρRH] =
g

4
tr
[
ρψabcψab

′c′ψa
′bc′ψa

′b′c
]
− g

16
N1N2N3(N1 −N2 +N3) . (5.3.29)

For a fixed a, b, c we can act by the rotation matrices (that act trivially on the singlet density

matrix ρs) and make the interchange a↔ 1, b↔ 1, c↔ 1. This argument gives us that

E =
g

4
N1N2N3 tr [ρRh]− g

16
N1N2N3(N1 −N2 +N3), h = ψ111ψ1b′c′ψa

′1c′ψa
′b′1 , (5.3.30)

where we sum over the repeated indexes. From now on we consider the density matrix to be

of the form (5.3.28). Now we can estimate the trace in the formula (5.3.30). With the use of
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Cauchy - Schwarz inequality, we have

tr [ρRh]2 ≤ tr
[
ρRh

†h
]

=
1

2
tr
[
ρRψ

ab1ψa1cψ1bcψ1b′c′ψa
′1c′ψa

′b′1
]
. (5.3.31)

Because the density matrix ρR is a singlet we can rotate indices back to get

tr [ρRh]2 ≤ 1

2N1N2N3
tr
[
ρRq

†
abcqabc

]
, qabc = ψab

′c′ψa
′bc′ψa

′b′c . (5.3.32)

We can express it is the following way

(
tr [ρRh]− 1

4
(N1 −N2 +N3)

)2

≤ 1

2N1N2N3
tr
[
ρRq

2
abc

]
+

1

16
(N1 −N2 +N3)2 (5.3.33)

The square of the operator qabc can be expressed as a sum of Casimir operators due to the

virtue of the anticommutation relations. That gives us the bound on the energies of states in

representation R:

|ER| ≤
g

16
N1N2N3

(
N1N2N3 +N2

1 +N2
2 +N2

3 − 4− 8

N1N2N3

3∑
i=1

(Ni + 2)CRi

)1/2
, (5.3.34)

where CRi is the value of Casimir operator in the representation R. For the singlet states this

gives

|E| ≤ g

16
N1N2N3(N1N2N3 +N2

1 +N2
2 +N2

3 − 4)1/2 . (5.3.35)

Since Ci ≥ 0 this bound applies to all energies. Let us note that for N3 = 2 the square root may

be taken explicitly:

|E|N3=2 ≤
g

8
N1N2(N1 +N2) , (5.3.36)

which is identical to the earlier result (5.3.23). In section 5.6 we will show that this is saturated

when N1, N2 are even and the ground state is a singlet.
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For the case when N1 = N2 = N3 = N and N > 2 the bound (5.3.35) is more stringent than

the earlier bound (5.3.27):

|E| ≤ Ebound =
g

16
N3(N + 2)

√
N − 1 (5.3.37)

In the large N limit, Ebound → JN3/16, which is the expected behavior of the ground state

energy; in the melonic limit it scales as N3. We may expand (5.3.34) for large N to find

|ER| ≤
g

16
N3(N + 2)

√
N − 1

(
1− 4

(N + 2)(N − 1)N3

3∑
i=1

CRi + . . .

)
. (5.3.38)

The discussion of the splittings between non-singlet and singlet states in section 5.4 will be in

agreeement with the scaling of the second term.

We can try to estimate how close the singlet ground state 〉vac comes to the bound (5.3.37)

by using the exact propagator G(t) = 〈Tψabc(t)ψdef (0)〉 in the large N limit. To do it let us

consider the two states

|1〉 = ψ111|vac〉, |2〉 = ∂tψ
111|vac〉 , (5.3.39)

where we have introduced ∂tψabc = i[H,ψabc]. We can introduce the angle θ between these states

cos2 θ =
|〈1|2〉|2

〈1|1〉〈2|2〉
= 2

∣∣〈vac|ψ111∂tψ
111|vac〉

∣∣2
〈vac| (∂tψ111)2 |vac〉

= 2

∣∣〈vac|ψabc∂tψabc|vac〉
∣∣2

N1N2N3〈vac| (∂tψabc)2 |vac〉
, (5.3.40)

where we have rotated back the indexes back by using the fact that the 〉vac is a singlet state.

One can notice H = iψabc∂tψ
abc, while 〈vac|

(
∂tψ

abc
)2 |vac〉 is just equal to the bound (5.3.35),

then

cos2 θ =
E2

0

E2
bound

, (5.3.41)

where Ebound is the bound on the singlet ground state energy (5.3.37). The other way to estimate

this angle θ can be done in the following way. We shift the Hamiltonian, such that the ground

state has the zero energy (H − E0)〉vac = 0 and calculate the expectation value for the energy
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for the state |1〉:

〈E〉1 =
〈1| (H − E0) |1〉

〈1|1〉
= 2〈vac|ψ111(H − E0)ψ111|vac〉 = 2i〈vac|ψ111∂tψ

111|vac〉, (5.3.42)

at the same time the second moment of the energy is

〈E2〉1 =
〈1|(H − E0)2|1〉

〈1|1〉
= 2〈vac|ψ111(H − E0)2ψ111|vac〉 = −2g2〈vac|

(
∂tψ

111
)2 |vac〉.

(5.3.43)

Where we have used the fact that ∂tψabc = i[H,ψabc]. After that we can notice that (5.3.40) can

be rewritten as

cos2 θ =
〈E〉21
〈E2〉1

. (5.3.44)

If cos θ = 1, it means that 〈E〉21 = 〈E2〉1 that can be true only if and if ψ111|vac〉 is an eigenstate

of the Hamiltonian. It would give that the propagator is

G(t) = 〈ψabce−iHtψa′b′c′〉 ∝ δaa′δbb′δcc′e−i∆E|t| .

But as we know the solution for the propagator in the large N limit is a conformal propagator.

From this we deduce that the bound can not be saturated. Nevertheless we can estimate the

angle cos2 θ. Indeed, in the large N limit the propagator can be calculated numerically or

approximated by a conformal one. From this we can calculate the 〈E〉1 and 〈E2〉1. We assume

t > t′ = 0, a = a′, b = b′, c = c′ and insert the full basis 〉En of eigenstates of the Hamiltonian in

the propagator to get

〈ψabc(t)ψabc(0)〉 =
∑
n

|〈vac|ψabc|En〉|2 e−i(En−E0)t =

∞∫
0

dEρ(E)e−iEt,

where ρ(E) =
∑
n

|〈vac|ψabc|En〉|2 δ(E − En + E0). (5.3.45)
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The function ρ(E) is known as a structure factor. From this we can calculate

〈E〉1 =

∞∫
0

dE E ρ(E), 〈E2〉1 =

∞∫
0

dE E2 ρ(E), cos2 θ =
〈E〉21
〈E2〉1

. (5.3.46)

One can use conformal propagator to estimate this angle, which gives cos θ ≈ 0.745, while the

numerical calculation [16] gives cos θ = 0.6608. From this and the formula (5.3.41) we get the

ground state energy in the large N limit:

E0 → − cos θ Ebound = − cos θ
JN3

16
≈ −0.041JN3 . (5.3.47)

This answer is close to the numerical result for the ground state energy in the SYK model [142]:

E0 ≈ −0.04JNSYK. One can make analogous calculations for the other representations. It gives

us in the large N limit the following formula for the gap to the lowest state in a representation

R:

E − E0 =
J cos θ

4N2

3∑
i=1

CRi (5.3.48)

5.4 Sigma model and energy gaps

In the large N limit the model 5.2.3 is dominated by melonic diagrams. This allows one to write

down a closed system of Schwinger–Dyson equations for the Green function Gabca′b′c′(t1 − t2) =

〈Tψabc(t1)ψa
′b′c′(t2)〉 and self-energy Σabc

a′b′c′ and the bare Green function Gabca′b′c′,0(ω) = iδaa′δ
b
b′δ

c
c′/ω

For simplicity we shall introduce the multi-index A = (a, b, c). We can look for a solution

in the diagonal form GAB = G(t)δAB and ΣAB = Σ(t)δAB. Then we have the following set of

equations:

G−1(ω) = −iω − Σ(ω) , Σ(t) = J2G3(t) . (5.4.49)

These equations exactly coincide with the Schwinger–Dyson equations of the SYK model and

have a conformal solution.
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It was argued in [139] that the system of equations (5.4.49) can be obtained from the effective

action 3:

Seff = − log Pf (δAB∂t + ΣAB) +

∫
dt1dt2

(
−ΣAB(t1 − t2)GAB(t2 − t1)− g2

4
G4(t1 − t2)

)
(5.4.50)

This action was recently derived from two-particle irreducible diagrams in [137].

In the strong coupling limit J → ∞ one can neglect the bare Green function. Then, as

first noticed in [139], the global symmetry O(N)3 is promoted to the gauged symmetry O(N)3.

Indeed, if we neglect GAB0 (ω) in (5.4.49) then it is easy to see that we can generate a series of

solutions by doing a gauge transformation:

GAB(t1 − t2)→ (OAA′(t1))T GA′B′(t1 − t2)OBB′(t2)

ΣAB(t1 − t2)→ (OAA′(t1))T ΣA′B′(t1 − t2)OBB′(t2)

(5.4.51)

where we introduce matrix O in O(N)3 which equals to OAB = O1
αα′O

2
ββ′O

3
γγ′ .

The effective action (5.5.74) is also invariant under these transformations if one omits the

term ∂t in the Pfaffian. For finite J , the action ceases to be invariant. If we plug the gauge

transformation (5.4.51) into the effective action (5.5.74), the potential does not change, while we

will get a kinetic term for matrices Oi of order 1/J . Indeed, for the conformal solution we have

ΣAB = − (1/G)AB and we can rewrite the kinetic part of the action as

− log Pf (δAB∂t + ΣAB) = − log Pf (δAB − ∂tGAB)− log Pf (ΣAB) (5.4.52)

The second term log Pf (ΣAB) is invariant under gauge transformations. Then expanding the

Pfaffian in the leading order in derivatives we get

1

2

∫
dt Tr ∂tGAB(t, t′)

∣∣∣∣
t′→t

(5.4.53)

3For clarity, we have omitted the indices in the G4 term. Explicitly, this term reads as
Gaβγa′β′γ′G

αbγ
α′b′γ′G

αβc
α′β′c′G

abc
a′b′c′
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Making the gauge transformation (5.4.51) of the conformal solution GAB = δABG and plugging

into (5.4.53) we get:

1

2

∫
dt Tr

(
N3∂tG+N2

3∑
i=1

OTi (t)G(t− t′)∂tOi(t′) + ∂tO
T
i (t)G(t− t′)Oi(t′)

)∣∣∣∣
t→t′

(5.4.54)

Factors N2 come from Tr(OT1 O1) = N . Now one has to regularize the limit t2 → t1 but this

does not going to affect N2 factors. The details are worked out in [149, 137]. The upshot is that

G(t− t′)Oi(t′) becomes ∂tOi(t)/J up to a normalization constant. This leads to the sigma model

action

SSM =
AN2

J

∫
dtTr(∂tO

T
1 ∂tO1 + ∂tO

T
2 ∂tO2 + ∂tO

T
3 ∂tO3) . (5.4.55)

The spectrum of such a quantum mechanical sigma model is well-known: the Hamiltonian is

proportional to the quadratic Casimir and the eigenstates are simply representations of O(N)3.

In our case:

Hgauge =
J

N2A
(C2 (O1(N)) + C2 (O2(N)) + C2 (O3(N))) . (5.4.56)

We note that this has the same structure as the Casimir correction to the energy bound (5.3.38).

Since for the lowest non-singlet representations C2 ∼ N , we find the energy gap between singlets

and non-singlets to be of the order ∼ J/N .

5.5 Counting singlet states

Suppose we have a free fermionic system of N Majorana fermions ψI , I = 1, . . . ,M transforming

under some representation R of the gauge group G. We want to compute the number of singlet

states in such a system. In order to do it, we use the following method. The Lagrangian in the

Euclidean space reads as:

L = ψI∂tψ
I + ψIAIJψ

J (5.5.57)

where AIJ is a real gauge field in the representation R. Since Majorana fermions anticommute

with each other, AIJ must be anti-symmetric AIJ = −AJI . The partition function of the gauged
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system at the temperature β is

Zgauged = N
∫
DψDA exp

(
−
∫ β

0
dtL

)
, (5.5.58)

where we have put the fermionic system on a circle with the circumference β with antiperiodic

boundary conditions ψ(t) = −ψ(t+β). The normalization factor N can be easily recovered if we

study the ungauged model. The integration over DA gives the volume of the gauge group and

the integral over the fermion variables will yield just the dimension of the Hilbert space because

the Hamiltonian of the ungauged theory is equal to zero Hungauge = 0. In this case the total

number of states is simply 2M/2:

Zungauged = 2M/2

∫
DA = N

∫
DψDA exp

(
−
∫ β

0
dt ψ∂tψ

)
. (5.5.59)

From now on, we will put β = 1. If we fix Lorentz gauge ∂tA = 0 with A in the Cartan subalgebra,

the Faddeev-Popov determinant gives the Haar measure, while the path integral over Majoranna

fermions gives the partition function of the system with Hamiltonian H = −ψIAIJψJ . Therefore

the (5.5.58) can be rewritten as

Zgauged =

∫
DA Tr

(
exp

(
−ψIAIJψJ

))
, (5.5.60)

The expression under the trace is an operator of rotations and can be interpreted as a character

of the group acting in the Hilbert space of fermions. By the virtue of the representation theory

we know that the integral of the character over a group is equal to the number of the trivial

representations, i.e. the number of the singlet states. Therefore, Zgauged equals the number

of singlet states. If we insert in (5.5.58) a Wilson line in some representation R′, it gives the

character of this representation:

〈
TrR′ exp

(∮
Adt

)〉
= #states in the representation R′. (5.5.61)

130



One can compute the partition function because the integral over ψ in both (5.5.58) and

(5.5.59) is Gaussian; therefore, the problem boils down to computing the Pfaffian:

Zgauged = 2M/2

∫
DAPf(∂t +A)

Pf(∂t)
. (5.5.62)

As discussed above, we fix A to be a constant matrix in the Cartan subalgebra. The Faddeev–

Popov determinant then yields the normalized Haar measure dλNG on the gauge group G [65]:

∫
G
dλNG = 1 . (5.5.63)

Also, since A is anti-symmetric, the eigenvalues of A are pairs of pure-imaginary numbers

iλa,−iλa, a = 1, . . . , bN/2c. The ratio of the Pfaffians is

Pf(∂t +A)

Pf(∂t)
=

M/2∏
a=1

cos(λa/2) . (5.5.64)

There are different ways to derive this formula. One is to compute the ratio of determinants:

Det(∂t +A)

Det(∂t)
=

M/2∏
a=1

∞∏
n=−∞

(
2πi

(
n+ 1

2

)
+ iλa

) (
2πi

(
n+ 1

2

)
− iλa

)(
2πi

(
n+ 1

2

))2 =

M/2∏
a=1

cos(λa/2)2 . (5.5.65)

After that we note that if we go to the Fourier space, both ∂t and A are real anti-symmetric

matrices, so the ratio of Pfaffians must be a real smooth function of λa. Therefore, taking the

square root of eq. (5.5.65) we get eq. (5.5.64). Alternatively, we can calculate the Pfaffian of

∂t +A in Fourier space. The result is the following formula:

#singlet states =

∫
dλNG

M/2∏
a=1

2 cos(λa/2) , (5.5.66)

where we have got the normalization by studying the ungauged theory (5.5.59).

Let us apply this approach to the case when Majorana fermions live in the fundamental

representation of several orthogonal groups. It is important to distinguish between SO(2n) and
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SO(2n+1). The Cartan subalgebra in the SO(2n) algebra consists of the block diagonal matrices

with 2× 2 blocks  0 xi

−xi 0

 , (5.5.67)

where xi is a rotation phase ranging from 0 to 2π. Geometrically it means that for a fixed

SO(2n) transformation, there is a basis in which this transformation looks like a set of rotations

in independent two-planes. In the SO(2n + 1) case the last column/row is zero. It corresponds

to a fixed one-dimensional subspace. Non-normalized Haar measure in these two cases reads as:

dλSO(2n) =
n∏
i<j

sin

(
xi − xj

2

)2

sin

(
xi + xj

2

)2

dx1 . . . dxn, (5.5.68)

dλSO(2n+1) =
n∏
i<j

sin

(
xi − xj

2

)2

sin

(
xi + xj

2

)2 n∏
j=1

sin
(xj

2

)2
dx1 . . . dxn . (5.5.69)

Now we discuss the case where the gauge group is the product of three orthogonal groups

SO(N1)× SO(N2)× SO(N3), so that the gauge field decomposes as

A = A1 ⊗ 1⊗ 1 + 1⊗A2 ⊗ 1 + 1⊗ 1⊗A3 . (5.5.70)

For even Ni in eq. (5.5.66) eigenvalues λa are given by xi+yj+zk, −xi+yj+zk, xi−yj+zk and

xi+yj−zk, with i = 1, . . . , bN1/2c, j = 1, . . . , bN2/2c, k = 1, . . . , bN3/2c. Variables xi, yj , zk are

rotation phases for SO(N1), SO(N2) and SO(N3) respectively. In the case when one of the Ni

is odd we have to add a zero eigenvalue to this list. With the use of the equation (5.5.66) we can

write expicit form of the character of the representation and decompose it in terms of characters

of the irreducible representations. For example, for the O(2)3 model the number of singlets is

given by the integral

16

(2π)3

π∫
−π

dx

π∫
−π

dy

π∫
−π

dz cos

(
x+ y + z

2

)
cos

(
x+ y − z

2

)
cos

(
x− y + z

2

)
cos

(
−x+ y + z

2

)
,

(5.5.71)

whose evaluation gives 2.
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For the O(N)3 model the number of singlets for various even N is given in Table 5.1. For

odd N it is not hard to see that the integral which gives the number of singlets vanishes; this

is related to the fact that each group exhibits an individual anomaly, which we discuss in the

next section.4 In the next section 5.5.1 we will show that the number of singlets grows as

exp
(
N3 log 2/2− 3N2 logN/2

)
for large even N .

N # singlet states

2 2
4 36
6 595354780

Table 5.1: Number of singlet states in the O(N)3 model

Using similar methods, the number of singlets can be calculated in the O(N)6 GW model for

low values of N , and the results are presented in Table 5.2. The fact that there are 140 states

for N = 2 is in agreement with the direct construction of singlet states in [146].

N # singlet states

2 140
3 63358
4 114876653804156708

Table 5.2: Number of singlet states in the O(N)6 Gurau–Witten model

We may similarly calculate the number of singlets for the O(N1) × O(N2) × O(N3) models.

When N2 = N3 = 2, while N1 is even, there are 2 singlets. For the cases where N3 = 2, while N1

and N2 are even, some answers are listed in Table 5.3. We note that the growth of the number

of singlets for the O(N)2×O(2) model is much slower than for the O(N)3 model. For low values

of N it is not hard to write down explicit expressions for all the singlet states in the oscillator

basis; see appendix C.2.3. For example, for the O(4)2 × O(2) model we find that the 4 singlet

energies are ±16g and ±4g.

4 Direct diagonalization of the Hamiltonian for N = 3 [50, 51] reveals that there are no non-degenerate eigen-
values, consistent with this. There are 8 ground states with energy − 5

4

√
41g ≈ −8.00391g; they transform in

the spinorial (2, 2, 2) representation. Substuting the value Ci = 3/4 into the bound (5.3.34) for the energy gives
−11.53g, which is quite close to the actual value.
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(N1, N2) # singlet states

(4,4) 4
(6,4) 4
(6,6) 4
(8,4) 6
(8,6) 8
(8,8) 18
(10,4) 6
(10,6) 8
(10,8) 20
(10,10) 24

Table 5.3: Number of singlet states in the O(N1)×O(N2)×O(2) model

5.5.1 Number of singlets for large N

In this section we will estimate the number of singlets in the SO(N)3 model in the large N limit,

assuming N to be odd N = 2M . For general N , the number of singlets is given by the following

integral:

singlet states =
1

V 3

∫ π

−π
[dx][dy][dz]

M∏
i,j,k=1

16 cos

(
xi + yj + zk

2

)
cos

(
−xi + yj + zk

2

)
×

cos

(
xi − yj + zk

2

)
cos

(
xi + yj − zk

2

)
× (5.5.72)

M∏
i<j

sin2

(
xi − xj

2

)
sin2

(
xi + xj

2

)
sin2

(
yi − yj

2

)
sin2

(
yi + yj

2

)
sin2

(
zi − zj

2

)
sin2

(
zi + zj

2

)

Where V is the volume of SO(N). When N is large, cosine functions oscillate very rapidly, so

the integral localizes near xi = yj = zk = 0. Near this point the integrand is positive, so we can

exponentiate it:

#singlet states =

∫ π

−π
[dx][dy][dz] exp

4
∞∑
n=1

M∑
i,j,k=1

(−1)n+1

n
tn cos(nxi) cos(nyj) cos(nzk)

×
M∏
i<j

sin2

(
xi − xj

2

)
sin2

(
xi + xj

2

)
sin2

(
yi − yj

2

)
sin2

(
yi + yj

2

)
sin2

(
zi − zj

2

)
sin2

(
zi + zj

2

)
(5.5.73)
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Notice that we have introduced a “regulator” t which we have to send to one: t → 1. Similar

integrals count operators in theories with tri-fundamental fields [140]. In such cases t = e−1/T ,

where T is the temperature. So we are interested in the infinite temperature limit. This case has

been studied in detail in [140]. Here we perform a similar analysis. As usual, we will encode the

saddle-point configuration of the angles x, y, z using the density function ρ(x) (obviously it is the

same function for the three SO(N) groups). Moreover this function is symmetric ρ(x) = ρ(−x).

It would be convenient to work with the normalized density
∫ π
−π dxρ(x) = 1. The effective action

now reads as:

S[ρ] =
1

2
N3

∫ π

−π
dxdydz ρ(x)ρ(y)ρ(z)

∞∑
n=1

(−1)n+1tn

n
cos(nx) cos(ny) cos(nz)+

+
1

4
N2

∫ π

−π
dxdx′ρ(x)ρ(x′) log sin

(
x− x′

2

)4

+
1

4
N2

∫ π

−π
dydy′ρ(y)ρ(y′) log sin

(
y − y′

2

)4

+

+
1

4
N2

∫ π

−π
dzdz′ ρ(z)ρ(z′) log sin

(
z − z′

2

)4

(5.5.74)

In the infinite temperature limit the saddle-point density is non-zero only on a small interval

[−x0, x0] where x0 ∼
√

2
N . The leading contribution is coming from the first term and it equals

to 1
2N

3 log 2. But this yields simply the dimensions of the Hilbert space, which is 2
1
2
N3

. The

subleading term is coming from the second term in (5.5.74). Fortunately, we will not need the

exact value of x0 because of the logarithmic behaviour:

∫ x0

−x0

dxdx′ ρ(x)ρ(x′) log sin

(
x− x′

2

)4

∼ 4

∫ x0

−x0

dxdx′ ρ(x)ρ(x′) log (x− x′) ∼

∼ 4

∫ x0

−x0

dxdx′ ρ(x)ρ(x′) log x0 = 4 log x0 ∼ −2 logN (5.5.75)

Therefore the subleading term is −3
4N

2 logN . So, in total we have

#singlet states ∼ exp

(
N3

2
log 2− 3N2

2
logN +O(N2)

)
(5.5.76)
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5.5.2 Anomalies

Since we are studying fermions on a compact space S1 there is a potential global anomaly

associated with π1(G). And indeed it is well-known that π1(SO(N)) = Z2. Corresponding

“large” gauge transformation has a simple description: the gauge transformation matrix is the

identity matrix, apart from one 2× 2 block

cos(2πt) − sin(2πt)

sin(2πt) cos(2πt)

 . (5.5.77)

It is easy to see that after such transformation one chosen rotation phase xi will be shifted by

2π: xi → xi + 2π. It does not matter which xi to pick up, since an even number of 2π-rotation

blocks gives, in fact, a trivial element in π1(SO(N)). It has been known for some time [54] that

a theory of a single Majorana fermion in the fundamental representation of SO(N) is suffering

from this Z2 anomaly. It is instructive to see it using our machinery. The Pfaffian in this case

reads as:
N/2∏
i=1

cos(xi/2) (5.5.78)

Under the shift xj → xj + 2π it changes sign. Therefore the theory is not invariant under large

gauge transformations. In our case of O(N1)×O(N2)×O(N3) group it means that at least two

out of three Ni should be even, otherwise we will have an odd number of anomalous multiplets.

Since this anomaly is associated with only one group we will refer to it as ”individual anomaly”.

It is easy to see that this anomaly is always Z2(in other words, it squares to one), even if we add

more gauge groups.

If the gauge group is a product SO(2n1)×SO(2n2) there is a new anomaly mixing these two

groups. For each group in the product, the large gauge transformation consists of identical 2× 2

blocks: cos(πt) − sin(πt)

sin(πt) cos(πt)

 . (5.5.79)
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Since there are two gauge groups, at t = 1 overall −1 will cancel. Now all phases xi and yj are

shifted by π: xi → xi + π, yj → yj + π. The Pfaffian reads as:

n1∏
i=1

n2∏
j=1

cos

(
xi + yj

2

)
cos

(
xi − yj

2

)
. (5.5.80)

Under the large gauge transformation the Pfaffian acquires (−1)n1n2 . This anomaly means that

for G = SO(2n1) × SO(2n2) × SO(N3), N3 can be odd only if the product N1N2 is even. We

will call this anomaly ”mixed anomaly”. This anomaly is not always Z2 as we will see shortly.

We do not find any more anomalies: using the long exact sequence in homotopy groups one

can show that the fundamental group of SO(2n1) × SO(2n2)/Z2
5 is equal to Z2 × Z2 × Z2 or

Z4×Z2 depending on n1 and n2. Using the above explicit descriptions of the individual anomalies

and the mixed anomaly we see that:

• If n1 and n2 are both even, then the square of the mixed anomaly gives a trivial gauge

transformation. Indeed, for each gauge group the number Ni of 2π-rotation blocks (5.5.77)

is even. Therefore, this is the case of Z2 × Z2 × Z2.

• If only one of ni, say n1, is odd, then the mixed anomaly squares to the individual anomaly

of SO(2n1), since this group will have an odd number of 2π rotation blocks. Therefore, the

anomalies form Z4 × Z2.

• Finally, when both n1 and n2 are odd, then the mixed anomaly squares to the sum of the

individual anomalies. This is again Z4 × Z2.

5.6 Solution of some fermionic matrix models

When N3 = 1 or N3 = 2 the O(N1)×O(N2)×O(N3) symmetric tensor model (5.1.2) simplifies

and becomes a fermionic N1 × N2 matrix model. In this section we discuss the solution of

these models. For the O(N1) × O(N2) real matrix model the Hamiltonian may be expressed

5One has to divide by Z2 because g1 × g2 acts on ψ in the same way as (−g1)× (−g2)
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in terms of the quadratic Casimir operators, which shows that all the states within the same

group representation have the same energy. This also applies to the SU(N1) × SU(N2) × U(1)

symmetric complex fermionic matrix model, which was considered in [148], [150] (see also [151]),

and will be further discussed in section 5.6.2. However, the O(N1) × O(N2) × U(1) complex

fermionic matrix model is more complicated in that there are energy splittings within the same

representation of the symmetry group. Nevertheless, as we show in section 5.6.3 this model is

solvable.

5.6.1 The O(N1)×O(N2) model

Setting N3 = 1 in the O(N1) × O(N2) × O(N3) symmetric tensor model (5.1.2) we find a real

matrix model with O(N1)×O(N2) symmetry:

H =
g

4
ψabψab

′
ψa
′bψa

′b′ − g

16
N1N2(N1 −N2 + 1) . (5.6.81)

Using the SO(N1) and SO(N2) charges

Qaa
′

1 =
i

2
[ψab, ψa

′b] , Qbb
′

2 =
i

2
[ψab, ψab

′
] (5.6.82)

the Hamiltonian may be expressed in terms of the quadratic Casimirs:

H = −g
2
C
SO(N2)
2 +

g

16
N1N2(N2 − 1) =

g

2
C
SO(N1)
2 − g

16
N1N2(N1 − 1) . (5.6.83)

This shows that, under the interchange of N1 and N2, H → −H; therefore, for N1 = N2 the

spectrum is symmetric around zero. The sum of this Casimir operators is fixed:

C
SO(N1)
2 + C

SO(N2)
2 =

1

2
Qaa

′
1 Qaa

′
1 +

1

2
Qbb

′
2 Qbb

′
2 =

1

8
N1N2(N1 +N2 − 2) . (5.6.84)

This shows that there are no states which are singlets under both SO(N1) and SO(N2). The irre-

ducible representations (r1, r2) which appear in the spectrum must satisfy the condition (5.6.84).
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In appendix C.2.1 we list these representations for a few low values of N1 and N2. The complete

lists of the energies and degeneracies are shown in Table 5.4.

For O(N)×O(N) with even N , we find that the ground state is a singlet under O(N)1 and

transforms in the SO(N)2 representation whose Young diagram is a N
2 ×

N
2 square. The ground

state has energy E0 = −gN2(N − 1)/16, while the first excited state is in the fundamental of

O(N)1 which has quadratic Casimir N − 1. Therefore, the energy gap

E1 − E0 =
g

2
(N − 1) . (5.6.85)

In the ’t Hooft large N limit, g ∼ 1/N and the gap stays finite. Therefore, unlike the SYK and

tensor models, the matrix model cannot exhibit quasi-conformal behavior.

(N1, N2) (2,2) (2,3) (2,4) (3,3) (3,4) (4,4) (5,5)
4
gEdegeneracy -12 -16 -26 -38 -68 -1210 -20224

12 32 08 38 -236 -664 -101024

62 620 -454 -4800

454 4800

664 101024

1210 20224

Table 5.4: Spectra of the O(N1)×O(N2) models.

5.6.2 The SU(N1)× SU(N2)× U(1) model

In [20] a class of complex tensor quantum mechanical models with SU(N1)×SU(N2)×O(N3)×

U(1) symmetry was introduced. We will use the Hamiltonian

H = gψ̄abcψ̄a′b′cψab′c′ψa′bc′ + g(N1 −N2)Q+
g

4
N1N2N3(N1 −N2) , (5.6.86)

where ψabc with a = 1, . . . , N1, b = 1, . . . , N2 and c = 1, . . . , N3 are complex fermions with

anti-commutation relations {ψ̄abc, ψa′b′c′} = δaa′δbb′δcc′ . The second and third terms were added

to the Hamiltonian to make it traceless and invariant under the charge conjugation symmetry,

which interchanges ψabc and ψ̄abc. This means it is invariant under Q → −Q, where Q is the
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U(1) charge:

Q = ψ̄abcψabc −
1

2
N1N2N3 . (5.6.87)

If we set N3 = 1 we obtain a complex matrix model with SU(N1)×SU(N2)×U(1) symmetry6

H = gψ̄abψ̄a′b′ψab′ψa′b + g(N1 −N2)Q+
g

4
N1N2(N1 −N2) , (5.6.88)

which is the subject of this section. Note that the index contraction in the first term is different

from those in (5.6.100); the SU(N1) × SU(N2) × U(1) symmetry fixes it uniquely. This matrix

model has some features in common with the O(N1)×O(N2) from the previous section. In both

of them the energy is completely fixed by the quadratic Casimir operators of the symmetry group

factors. Also, neither model contains states invariant under the entire symmetry group.

The SU(Ni) charges with i = 1, 2 are

Qα1 = ψ̄ab(T
α
1 )aa′ψa′b, Qα2 = ψ̄ab(T

α
2 )bb′ψab′ , α = 1, 2, . . . , N2

i − 1 , (5.6.89)

where we used the Hermitian SU(Ni) generators Tαi , i = 1, 2, α = 1, . . . , N2
i − 1, normalized in

the standard fashion:

Tr(Tα1 T
β
1 ) = Tr(Tα2 T

β
2 ) =

1

2
δαβ . (5.6.90)

Using the completeness relation (no sum over i):

(Tαi )aa′(T
α
i )bb′ =

1

2

(
δab′δa′b −

1

Ni
δaa′δbb′

)
. (5.6.91)

6 This Hamiltonian is related to that in section 4 of [148] by changing the coefficients of the second and third
terms.
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we find that the quadratic Casimirs of SU(N2) and SU(N2):

C
SU(N1)
2 = Qα1Q

α
1 =

1

2
ψ̄abψ̄a′b′ψab′ψa′b +

1

2
(N1 −N2)Q− 1

2N1
Q2 +

1

8
N1N2(2N1 −N2) ,

C
SU(N2)
2 = Qα2Q

α
2 = −1

2
ψ̄abψ̄a′b′ψab′ψa′b +

1

2
(N2 −N1)Q− 1

2N2
Q2 +

1

8
N1N2(2N2 −N1) .

(5.6.92)

Adding them, we obtain the constraint

C
SU(N1)
2 + C

SU(N2)
2 =

N1 +N2

2N1N2

(
(N1N2)2

4
−Q2

)
. (5.6.93)

To have the singlets of SU(N1) and SU(N2), we need the RHS to vanish. This means that there

are only two SU(N1)×SU(N2) singlet states: the ones with Q = ±N1N2
2 . These are the oscillator

vacuum |0〉, which is annihilated by all ψab, and the state |0′〉 =
∏
a,b ψ̄ab|0〉, which is annihilated

by all ψ̄ab.

The absence of singlets for other values of Q may be seen explicitly as follows. The states

with charge −N1N2
2 +m have the form

ψ̄a1b1ψ̄a2b2 . . . ψ̄ambm |0〉 , (5.6.94)

but there is no way to contract the indices of SU(N1) and of SU(N2); in contrast to the O(N)

case, the tensor δa1a2 is not available. If N1 = N2 = N there seems to be a state at level N

obtained by contracting (5.6.94) with εa1...aN εb1...bN , but this state vanishes due to the Fermi

statistics.

Using (5.6.92) we can express the Hamiltonian (5.6.88) in terms of the Casimirs:

H = g
(

2C
SU(N1)
2 +

1

N1
Q2 − 1

4
N2

1N2

)
. (5.6.95)
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Therefore, all the states in the same representation of SU(N1)× SU(N2)×U(1) are degenerate,

which makes this matrix model very simple. In table 5.5 we list the spectra of the the Hamiltonian

(5.6.88) for a few different values of N1 and N2.

(N1, N2) (1,2) (1,3) (2,2) (2,3)
2
gEdegeneracy -12 -16 -43 -512

12 32 010 -316

43 112

320

94

Table 5.5: Spectra of the SU(N1)× SU(N2)× U(1) symmetric matrix models.

5.6.3 The O(N1)×O(N2)× U(1) model

Setting N3 = 2 in the O(N1)×O(N2)×O(N3) symmetric tensor model (5.1.2) we find a complex

matrix model with O(N1)×O(N2)×U(1) symmetry. This model has some features in common

with the SU(N1) × SU(N2) × U(1) model discussed in the previous section; they possess the

same 2N1N2 dimensional Hilbert space. However, in the present model the symmetry is broken

to O(N1)×O(N2)×U(1) by the Hamiltonian. Although the model is still exactly solvable, it is

quite interesting in that the energy is not completely fixed by the quadratic Casimir operators

of O(N1) × O(N2) × U(1). Also, as we have seen in section 5.5, for even N1 and N2 the model

contains singlet states.

To construct the Hilbert space, we define the operators [52]

ψ̄ab =
1√
2

(
ψab1 + iψab2

)
, ψab =

1√
2

(
ψab1 − iψab2

)
,

{ψ̄ab, ψ̄a′b′} = {ψab, ψa′b′} = 0, {ψ̄ab, ψa′b′} = δaa′δbb′ , (5.6.96)

where a = 1, 2, . . . N1 and b = 1, 2 . . . N2. In this basis, the O(2) charge is

Q =
1

2
[ψ̄ab, ψab] = ψ̄abψab −

1

2
N1N2 ,

[Q, ψ̄ab] = ψ̄ab, [Q,ψab] = −ψab ,
(5.6.97)
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while the SO(N1) and SO(N2) charges are

Qaa
′

1 = i
(
ψ̄abψa′b − ψ̄a′bψab

)
,

Qbb
′

2 = i
(
ψ̄abψab′ − ψ̄ab′ψab

)
. (5.6.98)

Squaring these charges, we find the following expressions for quadratic Casimirs:

C
O(N1)
2 =

1

2
Qaa

′
1 Qaa

′
1 = ψ̄abψ̄ab′ψa′bψa′b′ + ψ̄abψ̄a′b′ψab′ψa′b + (N1 − 1)

(
Q+

1

2
N1N2

)
,

C
O(N2)
2 =

1

2
Qbb

′
2 Qbb

′
2 = ψ̄abψ̄a′bψab′ψa′b′ − ψ̄abψ̄a′b′ψab′ψa′b + (N2 − 1)

(
Q+

1

2
N1N2

)
. (5.6.99)

Setting k = 1 in (5.3.25), we find that the traceless form of the Hamiltonian is

H =
g

2

(
ψ̄abψ̄ab′ψa′bψa′b′ − ψ̄abψ̄a′bψab′ψa′b′

)
+
g

2
(N2 −N1)Q+

g

8
N1N2(N2 −N1) . (5.6.100)

This Hamiltonian exhibits the charge conjugation symmetry which acts as ψ̄ab ↔ ψab. This

means that states with opposite eigenvalues of Q have the same energy.

There is a “Clifford vacuum” state, which satisfies

ψab|0〉 = 0 , Q|0〉 = −N1N2

2
|0〉 , H|0〉 =

g

8
N1N2(N2 −N1)|0〉 . (5.6.101)

There is also the conjugate vacuum |0′〉 =
∏
ab ψ̄ab|0〉 which satisfies

ψ̄ab|0′〉 = 0 , Q|0′〉 =
N1N2

2
|0′〉 , H|0′〉 =

g

8
N1N2(N2 −N1)|0′〉 . (5.6.102)

Both of these states are invariant not only under O(N1) × O(N2), but under the enhanced

symmetry O(N1N2). It is interesting to note that the states |0〉 and |0′〉 saturate the energy

bound (5.3.34). Indeed, substituting N3 = 2, C
O(N3)
2 = Q2 = (N1N2)2/4, C

O(N1)
2 = C

O(N2)
2 = 0

into that equation we find |E| ≤ g
8N1N2|N2 − N1|. In fact, the bound obtained from (5.3.21)
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completely fixes the energy to be g
8N1N2(N2−N1) because the states are O(N1N2) invariant and

C
O(N1N2)
2 = 0.

The states with vanishing O(2) charge Q are obtained by acting on |0〉 with N1N2
2 creation

operators ψ̄ab. Then, to insure that the state is also a singlet under SO(N1)× SO(N2), we have

to contract the indices using the invariant tensors εa1,...aN1
, δa1a2 and εb1,...bN2

, δb1b2 . Some states

invariant under SO(N1)× SO(N2)×O(2) are listed in Appendix C.2.3.

For low values of N1 and N2 it is possible to construct the complete spectrum via direct

numerical diagonalization. If N1 = N2 or if one or both Ni are equal to 2, the spectrum

is symmetric under E → −E due to the fact that the interchange of two O(N) groups send

H → −H. For all other values of Ni the spectrum is not symmetric under E → −E. The results

for some low values of N1, N2 are shown in table 5.6. For the O(4)2 ×O(2) model the spectrum

is plotted in figure 5.1.

Figure 5.1: Spectrum of the O(4)2 × O(2) model. There are four singlet states, and the stars
mark their energies.

A remarkable feature of the spectra is that all the eigenvalues of 4H/g are integers. This

suggests that this fermionic matrix model is exactly solvable for any N1 and N2. This is indeed

the case, as we now show. The Hilbert space can be constructed by repeatedly acting with ψ̄ab

on the vacuum state |0〉. One can group the a, b indices into a multi-index A, ranging from 1 to

N1N2. The commutation relations are invariant under the action of SU(N1N2) on the Hilbert

space, which preserves the commutation relations. Let us notice that the first term of Hamiltonian
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(N1, N2) (2,2) (2,3) (3,3) (2,4) (4,3) (4,4)
4
gEdegeneracy -81 -132 -206 -241 -346 -641

014 -76 -1618 -162 -2824 -4855

81 -32 -1216 -1216 -248 -40106

-122 -860 -823 -2276 -36256

122 -442 -416 -2040 -32810

32 0228 0140 -1814 -28256

76 442 416 -16152 -243250

132 860 823 -14168 -201024

1216 1216 -1240 -164985

1618 162 -10170 -123072

206 241 -8240 -88932

-6194 -43584

-4384 012874

-2270 43584

0248 88932

2640 123072

4384 164985

676 201024

8312 243250

10216 28256

1432 32810

16128 36256

18168 40106

2064 4855

2610 641

2824

306

382

Table 5.6: Spectra of the O(N1)×O(N2)×O(2) models, which were obtained by a direct matrix
diagonalization of the Hamiltonian (5.3.25) whose spectrum is traceless. If both N1 and N2 are
even, the ground state is non-degenerate and is therefore a singlet.

(5.3.25) is invariant under SU(N1)×O(N2)×U(1), while the second under O(N1)×SU(N2)×U(1)

groups. Therefore, the full Hamiltonian is invariant only under the action of O(N1) × O(N2)×

group. The complete Hilbert space is transformed under the SU(N1N2) group that can be split

into SU(N1)× SU(N2) representations. In each representation R under SU(N2), operators Qα2

act by matrices (Tα2 )R in the corresponding representation R. In turn, these representations

can be split into SO(N1)× SO(N2) irreducible representations. Since the Hamiltonian has only
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SO(N1) × SO(N2) symmetry, all the states in such a representation are degenerate (of course,

not all the states in a given SU(N1)× SU(N2) representation are in general degenerate).

Now we take the difference between equations (5.6.99), and also use the difference of equations

(5.6.92), to find the following nice expression for the Hamiltonian:

H = −g
2

(
2C

SU(N1)
2 − 2C

SU(N2)
2 − CSO(N1)

2 + C
SO(N2)
2 +

N2 −N1

N1N2
Q2

)

= −g
2

(
4C

SU(N1)
2 − CSO(N1)

2 + C
SO(N2)
2 +

2

N1
Q2 − 1

4
N1N2(N1 +N2)

)
, (5.6.103)

where we used (5.6.93) to obtain the second line from the first. Due to the C
SO(Ni)
2 terms, the

spectrum is not symmetric under SU(N1)× SU(N2).

Using (5.6.103) we can show that the lowest singlet saturates the energy bound (5.3.36), i.e.

it is a ground state. For a singlet, Q and the quadratic Casimir operators of SO(N1) and SO(N2)

vanish. To minimize the energy we should take a state which has the greatest possible value of

C
SU(N1)
2 allowed by (5.6.93). Thus, it has C

SU(N1)
2 = (N1+N2)N1N2

8 and C
SU(N2)
2 = 0, i.e. it

is invariant under SO(N1) × SU(N2) × O(2). Substituting this into (5.6.103) we see that this

state has E = −g
8(N1 + N2)N1N2, i.e. it saturates the bound (5.3.36). This value of Casimir

corresponds to the rectangular Young diagram bN1/2c × N2 for SU(N1). Similarly, the singlet

state with the highest possible energy, E = g
8(N1 + N2)N1N2, has C

SU(N2)
2 = (N1+N2)N1N2

8 and

C
SU(N1)
2 = 0, i.e. it is invariant under SU(N1)× SO(N2)×O(2).

To calculate the energies of all states, we need to first decompose the Hilbert space into

SU(N1)L × SU(N2)R representations and then, in turn, decompose these representations into

SO(N1)L×SO(N2)R representations. To find which SU(N1)L×SU(N2)R representations (L,R)

we have in the Hilbert space, we need to compute the following integral over SU(N1)L×SU(N2)R:

multiplicity (L,R) =

∫
dU1dU2 exp

( ∞∑
n=1

(−1)n+1

n
TrUn1 TrUn2

)
TrL U1 TrR U2 (5.6.104)
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We can always put U1 and U2 in a diagonal form: U1 = diag(w1, . . . , wN1), U2 = diag(q1, . . . , qN2).

wi and qi are corresponding SU holonomies, i.e. |wi| = |qi| = 1 and w1 . . . wN1 = q1 . . . qN2 = 1.

Actually, it is not neccessary to compute the above integral for various representations. It

is very well-known that characters of SU(N1) representations are Schur polynomials TrL U1 =

χL(w) which form a basis in the space of symmetric functions of N1 variables. This space also

contains the so-called power series polynomials TrUn1 = pn(w) = wn1 + · · · + wnN1
. A conversion

from power series pn to χL can be easily done on a computer. For example,

p1 = χ , p2
1 = χ + χ ,

p2 = χ − χ , p1p2 = χ − χ . (5.6.105)

This suggests the following simple procedure yielding the list of all representations directly. One

expands the exponent

exp

( ∞∑
n=1

(−1)n+1

n
xn Tr Un1 Tr Un2

)
= exp

( ∞∑
n=1

(−1)n+1

n
xnpn(w)pn(q)

)
(5.6.106)

in power series in x. Then at each level xk we have a polynomial in pl(w) and pm(q). It

can be re-expressed in terms of Schur polynomials. This gives the list of representations under

SUL(N1) × SUR(N2) at level k, i.e. for states where there are k raising operators ψ̄ acting on

the vacuum.

After finding the representations under SU(N1)L × SU(N2)R, we need to decompose then

in terms of SO(N1)L × SO(N2)R representations. Recall that both SU and SO representations

are classified by Young diagrams. The only difference is that for SO representations one has to

subtract all the traces in each row, where indices are symmetric. It means that if we want to

extract SO representations from a given SU representation λ, we need to consecutivly remove

all possible pairs of boxes in each row. The resulting sequence of Young diagrams give SO

representations.
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Let us exhibit this method to find the spectrum of the O(2)3 model. We have the following

representations under SU(2)L × SU(2)R
7:

2([1], [1]) + 2([2], [2]) + ([1], [3]) + ([3], [1]) . (5.6.107)

The [2] of SU(2) gives the spin 1 SO(2) representation, whereas the [3] decomposes as [3] = 2+0.

So we have the following SO(2)× SO(2) representations:

2(0, 0) + 2(1, 1) + 2(0, 0) + (0, 2) + (2, 0) . (5.6.108)

The two states (0, 0) coming from ([1], [3]) and ([3], [1]) have energies ±2g, while all the other

states have energy zero. If we label the states by their O(2)3 charges (Q1, Q2, Q3), we find, in

agreement with [144], that the states with E = ±2g are (0, 0, 0), while the 14 zero-energy states

are

(1, 1, 1), (0, 0, 2), (0, 2, 0), (2, 0, 0), (1, 1,−1), (1,−1, 1), (−1, 1, 1),

(−1,−1,−1), (0, 0,−2), (0,−2, 0), (−2, 0, 0), (−1,−1, 1), (−1, 1,−1), (1,−1,−1) . (5.6.109)

These states may be decomposed into irreducible representations of the alternating group A3.

For example, the state with charges (1, 1, 1) is invariant under A3; the 3 states with charges

(0, 0, 2), (0, 2, 0), (2, 0, 0) can be combined into an invariant combination and a dimension 2 rep-

resentation; etc.

As a further check, in appendix C.2.2 we calculate the spectrum of the O(3) × O(2) × O(2)

model using this method. The results for the energies and their degeneracies agree with the direct

diagonalization of the Hamiltonian, whose results are assembled in Table 5.6. We also note that,

due to the charge conjugation symmetry, the energies and representations at oscillator level n

are the same as at level N1N2 − n.

7Here we are using the notation multiplicity([dim]L, [dim]R) for the SU(2)L × SU(2)R representations and
multiplicity(spinL, spinR) for SO(2)L × SO(2)R representations. For non-zero spin J , the SO(2) representation is
two-dimensional and includes the states with SO(2) charge Q = ±J .
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Appendix A

Details of BFSS calculations

A.1 Details of the perturbative computations

A.1.1 Non singlets in the BMN matrix model

In this Appendix we will study the BMN matrix model. Lagrangian reads as follows:

L =
1

g2

(
1

2

9∑
I=1

(
ẊI
)2
− 1

2

(µ
3

)2 ∑
a=1,2,3

(Xa)2 − 1

2

(µ
6

)2∑
i≥4

(Xi)2 +
1

2
ψψ̇ − µ

8
ψγ123ψ+

−i1
3
µg

3∑
a,b,c=1

Tr
(
XaXbXc

)
εabc +

1

4
Tr
(
[XI , XJ ]2

)
+ i

1

2
Tr
(
ψγI [ψ,XI ]

)) (A.1.1)

And supersymmetry transformations are given by:

[
Qε,XI

]
= ψγIε(t)

[Qε, ψ] =

(
γIDXI + cIµX

IγIγ123 + i
1

2
[XI , XJ ]γIJ

)
ε(t)

[Qε,A] = ε(t)ψ

ε(t) = e−
1
12
µγ123tε0

ca = 1/3 for a = 1, 2, 3 and ci = −1/6 for i ≥ 4

(A.1.2)
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Note that supersymmetry transformations are time dependent. In the supercharge we have an

additional term proportional to µ:

Qε = Tr

(
−P IψγIε− i 1

2g2
[XK , XL]ψγKLε−

µ

g
cIX

IψγIγ123ε

)
(A.1.3)

Apart from the gauge transformation generator, supercharge anticommutator now also contains

rotations generators Mαβ:

{Qα, Qβ} = 2Hδαβ + 2 Tr
(
GXL

)
γLαβ +Mαβ (A.1.4)

Mαβ = −(µ/3)
∑
i,j≥4

Tr(XjP i) (γjiγ123)αβ + (2/3)µ
3∑

a,b,c=1

Tr(XaP b)εabcγcαβ

−
µ

6g2

∑
i,j≥4

Tr (ψγijψ)
(
γijγ123

)
αβ

+
µ

12g2

∑
a,b∈1,2,3

Tr (ψγabψ)
(
γabγ123

)
αβ

(A.1.5)

Also recall that the gauge transformation generator is given by:

G =
i

2g2

(
2[DtX

I , XI ] + [ψα, ψα]
)

(A.1.6)

Again, since the super charge gauge is invariant:

[Qα, G] = 0 (A.1.7)

Hamiltonian is given by:

H =
1

g2
Tr

(
g4
P 2
I

2
− 1

4
[XI , XJ ]2 − i1

2
ψγI [ψ,XI ] +

1

2

(µ
3

)2 ∑
a=1,2,3

(Xa)2 +

+
1

2

(µ
6

)2∑
i≥4

(Xi)2 +
µ

8
ψγ123ψ + i

µ

3

3∑
a,b,c=1

Tr
(
XaXbXc

)
εabc

) (A.1.8)
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However since the supersymmetry transformations are time-dependent now, commutator of

Hamiltonian with a supercharge is proportional to a supercharge:

[Qα, H] = −Tr(ψαG)−
µ

12
Qβγ

123
βα (A.1.9)

As in the BFSS case, we can remove the gauge transformation generators from the SUSY

algebra by imposing (2.2.6) and redefining Hamiltonian:

Hnew = H − Tr
(
X1G

)
(A.1.10)

Now lets discuss the perturbative spectrum of this model. It would be convenient to introduce

indices from the beginning of the Latin alphabet a, b, c, . . . running from 1 to 3 whereas i, j, k, . . .

run from 4 to 9. We can introduce creation-annihilation operators by:

ab =

√√√√ 3

µ

gPb√
2
− i

µ

3
√

2g
Xb



ai =

√√√√ 6

µ

gPi√
2
− i

µ

6
√

2g
Xi


(A.1.11)

SO(6) sector oscillators has mass µ/6 and SO(3) sector has mass µ/3. Free Hamiltonian reads

as:

H0 =
µ

3
Tr a†bab +

µ

6
Tr a†iai (A.1.12)

Let us concentrate on the lightest SO(6) sector. The leading order correction to the energy was

computed in [27] to be:

V
(1)

eff = g2

 3

µ


2N : Tr a†iai : +

1

2
: Tr[a†i , ai][a

†
j , aj ] : −

1

2
: Tr[a†i , aj ][a

†
i , aj ] : − : Tr[a†i , a

†
j ][ai, aj ] :


(A.1.13)
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where one has to sum over all possible indices i, j ranging from 4 to 9.

Therefore for the simplest adjoint state a†i |0〉 the first-order correction is positive. We can

rewrite the effective potential in a bit different form [27]:

V
(1)

eff = g2

 3

µ


21

2

(
: Tr[a†i , a

i]T a :
)(

: Tr[a†i , a
i]T a :

)
−

1

2
: Tr[a†i , aj ][a

†
i , aj ] : − : Tr[a†i , a

†
j ][ai, aj ] :


(A.1.14)

The last two terms are exactly the 1-loop dilatation operator in N = 4 SYM. One can show

that the first term is zero for singlet states. For non-singlet states build from a†i its value is

proportional to the number of non-contracted indices. That is, this term is proportional to the

quadratic Casimir of the corresponding representation. To sum up, at 1-loop level the energy of

non-singlets in the representation R goes up:

∆Ĥ1-loop = ∆Ĥgauged, 1-loop +
9g2

2µ2
C2(R) (A.1.15)

However, if we study the modified Hamiltonian (A.1.10), we have to take into account the correc-

tion coming from the operator Tr
(
X1G

)
. Second-order perturbation theory for this additional

correction yields:

−g2

 3

µ


2: N Tr a†iai : +

1

2
: Tr[a†i , ai][a

†
j , aj ] :

 (A.1.16)

This contribution completely cancels the non-singlet contribution in (A.1.14). It means that the

theory with supersymmetric Wilson loop has a protected SO(6) sector, like the original theory.

For example, the energy of the simplest adjoint state a†i |0〉 is protected and is given by

E =
µ

6
(A.1.17)
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A.1.2 BFSS model

In this Appendix we will discuss the perturbative spectrum of adjoints and derive the estimate

(2.3.11). We consider a background with diagonal matrices 〈XI〉 = BI = diag(BI
1 , . . . , B

I
N ).

These break the SU(N) symmetry, so we will have a compact manifold of Goldstone bosons. In

principle we need to study the quantum mechanics on this manifold. Since SU(N) acts on this

manifold this quantum mechanics gives rise to states charged under SU(N). From the analysis

of the gauged model we know that there is a single uncharged state. We now want to discussed

the states with SU(N) charges. One can obtain their spectrum as follows.

We want to study the angular motion around the diagonal background 〈XI〉 = BI . Therefore

we focus on XI in the following form:

XI(t) = U(t)BIU †(t) (A.1.18)

and plug this expression into the original Lagrangian to find the effective action for U :

S =
1

2g2

∫
dtTr

(
(U †∂tU) s

r ( ~Br − ~Bs)
2(U †∂tU) r

s

)
(A.1.19)

where we have used a shot-hand notation
∑9

I=1(BI
r −BI

s )2 = ( ~Br − ~Bs)
2

Now we need to analyse the symmetries carefully. Under the original SU(N) gauge transfor-

mation L, XI transforms as in eq. (A.1.18): XI → LXIL†. It is equivalent to multiplying U by

L from the left :

U → LU (A.1.20)

In other words, the original gauge group SU(N) acts by left rotations of U . Obviously, it is a

symmetry of (A.1.19). So the states will come in SU(N) multiplets. The corresponding charges

are given by:

G s
r =

1

g2
Tr
(
U †∂tU [BI , [BI , U †T s

r U ]]
)

(A.1.21)
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It is straightforward to check that they coincide with the charges G in the Gauss law (1.2.2), as

expected. Note that G s
r is not a matrix element, but a charge corresponding to SU(N) algebra

generator T s
r which has only one non-zero element on r-row and s-column.

However, we can also multiply U by a SU(N) matrix R from the right :

U → UR (A.1.22)

This is not a symmetry of (A.1.19). So the corresponding current

G̃ s
r =

1

g2
Tr
(
U †∂tU [BI , [BI , T s

r ]]
)

=
1

g2
(U †∂tU) s

r ( ~Br − ~Bs)
2 (A.1.23)

does not commute with the Hamiltonian. Nonetheless, as was clarified in [59, 58] left and right

multiplications of U are tightly related. To understant this, let us consider a wave function

Ψa
R(XI), a = 1, . . . ,dimR in some representation R under the gauge group. Since it lives in the

representation R it has, by definition, the following decomposition:

Ψa
R(XI) =

dim R∑
b=1

UabR ψb
(
BI
)

(A.1.24)

where UabR is the ab matrix element of U in the representation R. We are interested solely in

ψb
(
BI
)

which also lives in R. Left SU(N) rotations of U rotate Ψa
R(XI) and U , leaving ψb(B

I)

invariant. Whereas right rotations transform U and ψb(B
I), leaving Ψa

R(XI) invariant. Note

that in both cases the representation R is the same. It means that charges G̃ s
r act on states

ψb
(
BI
)

by the corresponding generator (T s
r )R in the representation R.

What is the physical meaning of operators G̃ s
r ? One can think about XI as a rigid body

in a space acted on by the SU(N) transformations. Since Ψa
R(XI) stays invariant under G̃ s

r ,

they have a meaning of angular momentum operators in the frame where the body is fixed. It

is well-known from the classical mechanics, that such operators are very useful for studying the

rigid body motion, despite the fact that they are not conserved.
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As we have just mentioned, G̃ s
r do not commute with the Hamiltonian. However, the Hamil-

tonian can be expressed in terms of them. Indeed, it is easy to see that

H =
g2

2

N∑
r,s=1

G̃ r
s G̃

s
r

( ~Bs − ~Br)2
(A.1.25)

When we focus on a particular representationR, then G̃ s
r act by the SU(N) generator (T s

r )R

in this representation. The corresponding wave function depends only on BI . This wave function

is exactly what we previously called ψb(B
I). Naively, H is a dimR × dimR matrix. However,

the expression for the charges in (A.1.23) implies that the diagonal elements G̃ s
s = 0 vanish (no

sum). This implies that we have much less components. As we will see shortly, in the simplest

case of the adjoint representation instead of the naive N2 − 1 we will have only N − 1 states.

Generically all these states have different energies. However, we would like to emphasize that

each of these N − 1 eigenstates has a degeneracy N2 − 1(or dimR in the generic case) because

of the angular degree of freedom U which we have eliminated.

So far we have been using the canonical quantization of non-singlets. Below we will re-derive

(A.1.25) using the path integral techniques. Moreover, the fact that we always have a degeneracy

dimR will become especially clear.

For the case of a single matrix model the result (A.1.25) was obtained in [59, 58, 60]. But

unlike the one matrix case, we cannot diagonalize all the matrices simultaneously for generic

matrix configurations. Therefore (A.1.25) will receive higher loop corrections from off-diagonal

fluctuations of XI and ψα.

There is another, more clean-cut way, how to derive eq. (A.1.25) which will illustrate the

above points. As we have mentioned in section 2.2.4 if we are interested in excitations of the

ungauged model in a representation R̄(conjugate to R) under SU(N) we can study the gauged

model coupled to a Wilson line in representation R:

dimRTrR P exp

(
i

∫
dt At

)
= dimRTrP exp

(
i

∫
dt (At)

s
r (T r

s )R

)
(A.1.26)
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At this point it is by no means necessary to think about At as a gauge field. In the ungauged

case one can think about it as an auxillary Lagrange multiplier which forces the states to live

in a particular representation. Note, however, that in the ungauged model we have to multiply

the Wilson loop by the dimension of the corresponding representation. This can be explained as

follows. In the ungauged model we put At to be zero. We can achieve this by inserting the delta

function into the path integral:

δ

(
P exp

(
i

∫
dt At

))
(A.1.27)

Now we can re-express the delta function in terms of characters [60]:

δ

(
P exp

(
i

∫
dt At

))
=
∑
R

dimRTrR P exp

(
i

∫
dt At

)
(A.1.28)

We separate XI into the constant background BI and a fluctuation Y I : XI = BI +Y I . Then

the part of the (bosonic) action containing At reads as:

1

2g2

∫
dt Tr

(
∂tY

I + i[At, Y
I ] + i[At, B

I ]
)2

(A.1.29)

At 1-loop level we can simply ignore Y I and integrate out only At. However at higher loops one

has to take Y I into account. Without Y I we have a simple quadratic action for At:

− 1

2g2

∫
dt ( ~Br − ~Bs)

2(At)
s
r (At)

r
s (A.1.30)

Overall, we have the following expression:

dimR
∫
DAt exp

(
− 1

2g2

∫
dt ( ~Br − ~Bs)

2(At)
s
r (At)

r
s

)
TrP exp

(
i

∫
dt (At)

s
r (T r

s )R

)
(A.1.31)

Integration over At yields the angular potential (A.1.25).

Note that because of the factor dimR, each eigenstate of the angular potential (A.1.25) will

contribute to the partition function with degeneracy dimR.
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In the adjoint case (G̃ s
r )R acts by a commutator with T s

r on the matrix w in the SU(N) alge-

bra. Moreover w has to be diagonal, since the diagonal charges G̃ s
s vanish: w = diag(w1, . . . , wN ).

So we have the following eigenvalue problem1

Ewr =
g2

2

N∑
s=1, s 6=r

wr − ws
( ~Br − ~Bs)2

, with
N∑
r=1

wr = 0 (A.1.32)

where the last constraint comes from the restriction that the diagonal matrix w is in the adjoint.

This Eigenvalue problem will have N−1 eigenstates. We could identify the potential in figure 2.3

as the lowest energy state of this Hamiltonian, as a function of the ~Bs. In general, the eigenvalues

will depend on the particular pattern of the distances ( ~Br − ~Bs)
2. In the next subsection we

solve it for the case when a large number of vectors ~Bs is uniformly distributed on S8.

There is another very simple case when the energy can be obtained exactly. Suppose we are

considering a configuration where the N vector ~Bs take only two values: N1 are given by ~B1

and the rest, N2 = N − N1, by ~B2. Equation (A.1.32) will be well-defined if wi obey the same

property: there are N1 coordinates w1 and N2 of w2. Using the constraint N1w1 +N2w2 = 0 we

easily obtain the energy:

E =
λ

2( ~B1 − ~B2)2
(A.1.33)

The result depends only on the sum N1 +N2 and not on the individual N1,N2. Also, the factor

N in the numerator is important: we expect that the energy of adjoint excitations will scale as

λ1/3. Indeed, the expected size of the ground state wave function is X ≈ λ1/3. This is the value

of X where this computation breaks down. We can then identify the energy at this value of X

as the order of magnitude of the energy of the adjoint excitation

Eadj ≈ λ/X2 = λ1/3 (A.1.34)

1This can be easily obtained using the following relations [T s
r , w] = (ws −wr)T s

r . and also T s
r T

s
r = 0, r 6= s

and (T s
r T

r
s )vo = δrvδro (no sum over r, s)
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Solving the potential for a uniform distribution

There is another case when we can solve (A.1.32) exactly. Namely, lets consider the large N

limit with the N vectors ~Bs uniformly distributed on S8 of radius X. We will show below that

the lowest energy state has energy

E1 =
9λ

28X2
(A.1.35)

and we will further compute spectrum around the ground state.

This is shown as follows. With a large number of vectors uniformly distributed on S8 we can

make a continuous approximation. Then eq. (A.1.32) becomes

Ew(~n) =
λ

2X2VolS8

∫
dΩ′8

w(~n)− w(~n′)

|~n− ~n′|2
,

∫
dΩ8 w(~n) = 0 (A.1.36)

where ~n and ~n′ belong to a S8 of unit radius. Now the adjoint problem (A.1.36) has SO(9) rota-

tion symmetry. It means that the eigenfunctions are basically given by the spherical harmonics

in nine dimensions and the energy depends only on the total angular momentum l. It is the most

convenient to evaluate the energy using the wave function which depends only on one polar angle

θ (the angle between the unit vector and X9 axis). For such functions the measure dy reads

as VolS7 sin7 θdθ = VolS7 (1 − t2)3dt In this case w(~n) is simply the Gegenbauer polynomial

C
(7/2)
l (t). Therefore,

ElC
(7/2)
l (1) =

35λ

64X2

∫ 1

−1
dt

(1− t2)3

2(1− t)

(
C

(7/2)
l (1)− C(7/2)

l (t)
)

(A.1.37)

which leads to the following energies:

El =
3λ

8X2

(
1− 1

C
(7/2)
l (1)

)
∼ 3λ

4X2

(
1− 1

7l6

)
, l� 1 (A.1.38)

This energy comes with a degeneracy

Nl =
(2l + 7)(l + 6)!

7!l!
∼

2l7

7!
, l� 7 (A.1.39)
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It is interesting that we get a finite range of energies, from a minimum one to a maximum.

This pattern is similar to what we get by a simple WKB quantization of a toy model for the

motion of a folded string in Appendix A.2. However, in the gravity case, we can also have the

possibility of the string falling into the black hole which leads to a much larger number of states,

a number proportional to N2, one factor of N each for the separate string and anti-string ending

on the black hole.

A.1.3 Goldstone modes and SU(N) rotators for the BMN model vacua

Now let us discuss the spectrum around other vacua, where the matrices have non-zero expec-

tation values of the form Xa = µ
3J

a. This case can be analyzed as in the previous section. The

only difference is that the initial action is

S =
µ2

18g2

∫
dt

3∑
a=1

Tr[Ja, U †∂tU ]2 =
µ2

18g2

∫
dt

3∑
a=1

TrU †∂tU [Ja, [Ja, U †∂tU ]] (A.1.40)

And the right SU(N) charge equals:

G̃p =
µ2

9g2

∫
dt

3∑
a=1

Tr
(

[Ja, [Ja, U †∂tU ]]T p
)

(A.1.41)

with T p, p = 1, . . . , N2 − 1 belonging to SU(N) algebra.

As we have mentioned in the main text, Ja are not necessary in the irreducible representation.

Generically, we need to decompose it into L irreducible representations of dimensions Nk, k =

1, . . . , L such that N1 + . . . + NL = N . For simplicity we study the maximal representation

L = 1 and N1 = N , although the calculation below can be generalized to L > 1 case. Even for

the maximal case, when we have only one representation it is quite difficult to obtain the exact

spectrum. However, it is easy to find a sensible lower bound.
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Since we have only the kinetic term the energy equals:

E =
µ2

18g2
Tr

∫
dt

3∑
a=1

[Ja, U †∂tU ]2 (A.1.42)

Generically, there are many ways to select Lie algebra generators T p. However, there is a very

special choice of T p, namely the fuzzy spherical harmonics Y j
m, j = 1, . . . , N − 1, m = −j, . . . , j.

The nice thing about them is that they are eigenvalues of the fuzzy sphere Laplacian:

3∑
a=1

[Ja, [Ja, Y j
m]] = j(j + 1)Y j

m (A.1.43)

Also they are orthogonal:

Tr
(
Y j
mY

j′

m′

)
=

1

2
δjj′δ−mm′ (A.1.44)

Because of that they also satisfy the completeness relation:

∑
jm

(
Y j
m

) s
r

(
Y j
−m

) o

v
=

1

2

(
δorδ

s
v −

1

N
δorδ

s
v

)
, r, s, v, o = 1, . . . , N (A.1.45)

Correspondingly we have the non-conserved charges G̃jm:

G̃jm = j(j + 1)
µ2

9g2
Tr
(
U †∂tUY

j
m

)
(A.1.46)

Finally, we can rewrite the Hamiltonian in terms of G̃jm using eq. (A.1.45):

H =
µ2

9g2

3∑
a=1

∑
jm

Tr
(
U †∂tUY

j
m

)
Tr
(
Y j
−m[Ja, [Ja, U †∂tU ]]

)
=

=
µ2

9g2

∑
jm

j(j + 1) Tr
(
U †∂tUY

j
m

)
Tr
(
Y j
−mU

†∂tU
)

=

=
9g2

µ2

∑
jm

G̃jmG̃
j
−m

j(j + 1)

(A.1.47)
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As we have promised, we have re-expressed the Hamiltonian in terms of charges G̃. If we focus

on some particular representation R, then G̃jm act as Lie algebra generators (Y j
m)R in this repre-

sentation. For example, the sum
∑

jm G̃
j
mG̃

j
−m = C2(R) equals to the quadratic Casimir of the

representation. Since j ≤ N − 1 we obtain the following lower bound for the energy:

H ≥ 9g2

µ2

1

N(N − 1)
C2(R). (A.1.48)

The above derivation can be repeated when we have several fuzzy spheres with corresponding

representations Nk. In this case one arrives at the following bound:

H ≥ 1

max Nk(Nk − 1)

9g2

µ2
C2 (R) (A.1.49)

For the adjoint representation of SU(N) the quadratic Casimir C2(adj) is simply N . The other

representations that appear are those that can arise from products of adjoints. These are the

representations that transform trivially under the ZN center of SU(N).

For “small” fuzzy spheres, when Nk ∼ O(N0) and L ∼ O(N), Eadj & λ/µ2. However, if we

have a “big” sphere, when some Nk ∼ N and so L ∼ 1, adjoints can have much smaller energy

Eadj ≥ g2

Nµ2 . Note that both these bounds are consistent with

E ∼ g2N

R2
C2(R) (A.1.50)

with R2 = 1
3N Tr

(
J2

1 + J2
2 + J2

3

)
. Since for each irreducible representation Nk we have the

following identity:

J2
1 + J2

2 + J2
3 =

N2
k − 1

4
1 (A.1.51)

where the right hand side is simply the quadratic Casimir of SU(2) in the representation of

dimension Nk.

(A.1.50) is what we would have naively guessed based on the similar formula for the case of

diagonal matrices X that we derived in appendix (A.1.2), and was mentioned in (2.3.11).
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A.2 Analyzing the motion of a folded string

In this appendix we consider the motion of a folded stretched string. This is just a one parameter

family of solutions out of the whole space of possible string motions.

Figure A.1: Radial excitations of the adjoint string. The string tip moves close to a null-geodesic
(bold line). r∞ ∼ λ1/3 is the region where the high curvature region starts. We imagine that
when the string reaches that point it bounces back with some reflection factor.

We can view the motion of the tip from the high curvature region to the low curvature and

back as a kind of scattering problem. See Figure A.1. So we can calculate the total phase shift

accumulated during the process via a WKB approximation.

We view the system as the tip of a string which is approximated as a particle with large

momentum p and energy linear in the momentum. This tip is acted on by the rest of the string

which provides a potential. The full Hamiltonian is

H =

√
− gtt
grr
|p|+ r∞ − r

π
(A.2.52)

where p is the momentum conjugate to r. The tip of the string starts from the large r region

with very high ingoing radial momentum, the string pulls and slows it down until the tip bounces

back to the large r region, see Figure A.1. The total phase shift then is

δbulk = 2

∫ r∞

r∞−πE
dr p (A.2.53)
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Which can be re-written in terms of the total energy E given in (A.2.52). This gives for E →
r∞

π
:

δbulk =
8
√
λd0

15π(πE∞ − πEn)3/2
(A.2.54)

Where E∞ ≡ C̃λ1/3 is the energy of a folded string that stretches all the way to r = 0. For this

reason we expect that C̃ > C by an order one amount. A similar problem in the linear dilaton

background that is dual to the double scaling limit of a single matrix model was analyzed in [62]

and matched to the matrix model computation in [63].

In order to figure out the whole motion, we need to know how the tip bounces back from

the high curvature region. This seems to be a difficult problem since the state that comes out

could have more excitations on the string worldvolume. Solving this would involve connecting

the motion in the weakly curved region to the motion in the perturbative matrix model region.

We will not do this here. Instead we will simply assume that the problem is such that the string

tip comes back out with an extra phase shift δhigh from the high curvature region. Furthermore

we will assume that it is basically a constant for E ∼ E∞. This is a non-trivial assumption and

it is likely wrong. The only reason we make it is to define a toy problem where we can now

semiclassically quantize the motion by setting

δbulk(E) + δhigh = 2πn (A.2.55)

Leading to

En ∼ λ1/3

C̃ − 1

π

 4
√
d0

15π2(n− n0)


2/3
 , n0 ≡

δhigh

2π
(A.2.56)

Note that n0 is not an integer.

We see that there is an infinite tower of excitations. For non-zero temperature, there is

actually an nmax − n0 ∝ T−3/5 where the states change behavior qualitatively, the folded string

falls into the black hole horizon and stays there forever. (At finite N the string can break and
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the fold can return to infinity). To describe this behavior we need to study the non-extremal

metric (1.2.7). Now we have a non-extremal black hole with a horizon at r = r0. If the string

has enough energy to reach the horizon, then the tip will fall into the black hole and never come

back. This sets an upper bound for the energy:

Edec − E∞ = −
r0

π
(A.2.57)

Moreover now we have a finite number of excited states that do not fall into the black hole

nmax − n0 =
√
λd0

∫ r∞

r0

dr
r − r0

π2r7/2(1− r7
0/r

7)
=

4.06
√
λd0

14π2r
3/2
0

∼ T−3/5, for r∞ � r0 (A.2.58)

For states with E > Edec, the string tip falls into the black hole and the state becomes a

string and an anti-string, both ending at the horizon as independent excitations.

A.3 Scaling properties of the solution and the action

In this Appendix we briefly discuss some scaling properties of the solution (1.2.7). We find that

under the following rescaling of the coordinates the metric and the dilaton rescale as

t→ ηt , r → η−2/5r

ds2 → ds2 η−3/5 , e2φ → e2φ η−21/5 (A.3.59)

The gravity action scales as

Sgravity =

∫
d10x e−2φ√gR ∼ η−9/5 ∼ T 9/5 (A.3.60)

Notice that β is rescaled when we rescale time. This is the correct behaviour of the Bekenstein–

Hawking entropy (1.2.11). Notice that the action and entropy scale in the same way. Notice that
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since the action changes (A.3.59) is not a symmetry of the action, but it helps determine the

temperature dependence.

It turns out that the Dirac–Born–Infeld(DBI) action for a probe D0 brane in the extremal

geometry (1.2.7) with r0 = 0 has exactly the same scaling behaviour. This can be checked

explicitly, but we can also derive it by the following observations. The action is

SDBI = −
∫
e−φds+

∫
Atdt (A.3.61)

We now observe

• The derivative of the free energy with respect to the charge yields the difference between

the RR 1-form at the horizon and infinity2:

∂F

∂N
= At

∣∣∣∣
horizon

−At
∣∣∣∣
infinity

(A.3.62)

this is why At scales as the free energy.

• Notice that the expression for At in (1.2.7) does not contain r0. This is why it has exactly

the same scaling for both extremal and non-extremal cases.

• Finally, both terms in (A.3.61) scale in the same way as in the extremal case because of

the supersymmetry (there should be no force acting on a D0 brane at rest).

Now, this observation also explains why the following action has the same rescaling properties

S =

∫
dt

[
~v2
i + (const)

(~vi − ~vj)4

|~ri − rj |7

]
(A.3.63)

under (A.3.59). The reason is that the velocity expansion of (A.3.61) gives rise to a particular

case of this action.

The point of these observations is to “explain” the observation in [152, 153] that (A.3.63) has

the same scaling as the entropy. The arguments used in that paper were scaling arguments, and

2More precisely, one has to subtract the zero-temperature value in order to make this expression finite.

165



they have reproduced the entropy for simple scaling reasons. But it seems that the thermody-

namics of (A.3.63) is really ill defined because it has a “fall to the center” instability.
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Appendix B

SYK technicalities

B.1 Numerical setup for KB equations

This appendix describes our approach to the numerical solution of the Kadanoff–Baym equations.

Our strategy is based on previous work on SYK reported in [37, 106].

We use a uniform two-dimensional grid to approximate the (t1, t2) plane. The grid spacing

dt plays the role of a UV cutoff and should be much smaller than 1/JS and 1/JB. To fix the

units of energy and time, we set J = 0.5. In these units, we consider three grid spacings:

dt = 0.2, dt = 0.1, and dt = 0.05. The primary numerical cost arises from the grid size, as

the overall size must be large to study low temperature effects. Typically, the Green’s functions

decay exponentially, so the calculation can be streamlined by restricting attention to a strip

|t1 − t2| . cβmax as shown in Figure B.5. All Green’s functions are put to zero outside the strip.

We take βmax to be the largest β in the problem, typically the inverse bath temperature. In

practice, c is taken large enough to see converged results.

The initial Green’s function is found by numerically solving the Lorentzian Schwinger–Dyson

equation in equilibrium. To compute the integral in the KB equations we use the trapezoid

method, and for the time propagation, we use a predictor-corrector scheme. Some care is needed

when propagating along the diagonal. Fortunately, for Majorana fermions there is a simple

167



t1

t2

Initial

t1

t2

Figure B.1: Geometry of the (t1, t2) plane. The initial Green’s functions are placed inside the
gray box.

relation:

G>S (t, t) = − i
2
. (B.1.1)

However, for the Green’s function obtained by numerically solving the DS equation the diagonal

value is not exactly −i/2, so on a discrete lattice we just propagate this value:

G>S (j, j) = G>S (0, 0). (B.1.2)

The integral in the bound (3.1.5) is also computed using the trapezoid rule and the energy

time derivative is discretized in a simple way: (Ej+1−Ej)/dt. To estimate the error the integral

is computed for different time steps and without the coupling to the bath. Note also that we can

not really integrate all the way to infinity. In order not to rely on any extrapolations, we use a

crude upper-bound for the error obtained from integration over a finite interval. Obviously, since

the flux is decreasing and beta in increasing to βb we have the following inequality:

∫ ∞
tf

dt E′Se
−κt/β(t) ≤ E′S(tf )

∫ +∞

tf

dte−κt/βb =
1

κ
E′S(tf )βbe

−κtf/βb = Ierr
κ . (B.1.3)
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Finally, there is a question of how to define the temperature at particular time t in non-equilibrium

situation? There are two possibilities. We can consider the “diagonal slice” G>eq(t; δ):

G>eq,t(δ) = G>S (t− δ, t+ δ), (B.1.4)

treat it as a two-point function in the equilibrium, and find the temperature using the fluctuation-

dissipation theorem (FDT):

Im(G>eq,t(ω) +G<eq,t(ω))

(−2) ImGReq,t(ω)
= − tanh

β(t)ω

2
. (B.1.5)

However, this choice does not respect causality in time. Another choice is the “corner slice”:

G>eq(t, δ):

G>eq,t(δ) = θ(δ)G>S (t− δ, t) + θ(−δ)G>S (t, t+ δ). (B.1.6)

This choice respects causality and this corner Green’s function enters in the definition of energy

(1.3.30). Therefore we will adopt the corner definition. Unfortunately, the FDT holds for low

frequencies only, since large frequencies are affected by the size of the discretization step. However

in all our setups the relation (B.10.128) holds for low frequencies up to the frequencies of order

of the discretization step 1/dt. see Figure B.6 for a typical behavior.

Figure B.2: (Orange) The left hand side of eq. (B.10.128) for β = 80, dt = 0.2. The Green
function is localized on a strip of width L = 1600. (Blue) tanh function. They coincide up to
frequencies corresponding to the timescale ∼ β/30 ∼ 2.6, which is comparable to the timestep
0.2.
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B.2 Energy flux from KB equations

Consider the case q = 4 and one system fermion in the interaction (fS = 1). The generalization

to other cases is straightforward. For clarity, we denote the system’s “greater” Green’s function

G> simply by GS and bath’s “greater” function as GB. The energy is given by:

ES(t1) = −i
J2
S

4

∫ t

−∞
dt2

(
GS(t1, t2)4 −GS(t2, t1)4

)
. (B.2.7)

Our approach is to differentiate it and use the KB equations. We will assume that the coupling

to the bath is switched on at time t = 0:

dES(t1)

dt1
= V 2J2

S

∫ t1

−∞
dt2

∫ t1

0
dt3

(
GB(t1, t3)fB +GB(t3, t1)fB

)(
GS(t1, t2)3GS(t3, t2)−

GS(t2, t1)3GS(t2, t3)
)

+

V 2J2
S

∫ t1

−∞
dt2

∫ t2

0
dt3 (GS(t3, t2) +GS(t2, t3))

(
−GS(t1, t2)3GB(t1, t3)fB+

GS(t2, t1)3GB(t3, t1)fB
)
. (B.2.8)

This is the leading term in V . If we trust this expansion, then we can use the initial GS to

find the flux.

We can exchange the integration order in the second term:

∫ t1

−∞
dt2

∫ t2

0
dt3 →

∫ t1

0
dt3

∫ t1

t3

dt2 →
∫ t1

0
dt3

(∫ t1

−∞
dt2 −

∫ t3

−∞
dt2

)
. (B.2.9)

After that, we use the equilibrium Dyson–Schwinger equation for GS to convert the convolution

over t2 into a time derivative, arriving at

E′S = iV 2

∫ t

−t
duGB(u− iε)fB∂uGS(u− iε). (B.2.10)
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B.3 Locating the peak

Suppose that the bath is “fast”: JBβ � 1. If we assume that tpeakJB � 1, then GB varies slowly

and we can Taylor expand it around u = 0 to greatly simplify the result. In the first part of Eq.

(3.3.69) we can simply put GfBB = −i/2, whereas in the integral we put ∂uG
fB
B = −3JB/2. Up

to an overall coefficient the flux is

Im

 i
√
i√

sinh
(
πu
β

) +
3βJB
π

EllipticF

(
π(β − 2iu)

4β
, 2

) (B.3.11)

Assuming u/β � 1 we can approximate the elliptic function by a constant:

EllipticF

(
π(β − 2iu)

4β
, 2

)
≈ −iEllipticK(−1). (B.3.12)

Now it is easy to balance the two terms to estimate

tpeak ∼ β log

(
1

JBβ

)
, JBβ � 1. (B.3.13)

Note that both assumptions, tpeak/β � 1 and tpeakJB � 1, are satisfied.

In the opposite regime, JBβ � 1, we assume that tpeak/β � 1. Then we can expand GS :

GS =
b
√
iπ√
JSβ

( √
β√
πu
− 1

12

(
πu

β

)3/2
)
. (B.3.14)

Now the integral in Eq. (3.3.69) can be computed analytically to give a lengthy expression with

rational functions and a logarithm. However, if we assume that tpeakJB � 1 and expand in large

time u, then we find that the leading imaginary contributions are

2iβ2J2
B − u3J2

Bπ
2 log (4iJB(u− iε)) . (B.3.15)
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Thus, we have the estimate:

tpeak ∼
β

(βJB)1/3
, JBβ � 1. (B.3.16)

Again, our two assumptions, tpeakJB � 1 and tpeak/β � 1, are satisfied.

B.4 Equation of motion in Schwarzian

It is convenient to first compute the variation with respect to a general reparametrization t(u),

then later to plug in the thermal solution,

t[u] = tanh

(
πu

β

)
. (B.4.17)

As is well-known, the variation of the Schwarzian is equal to minus the time derivative of the

Schwarzian. After we vary with respect to t+ − t− and put t+ = t−, the leading term is

∂t (Sch(t[u], u)) =
β

π
cosh2 πu

β
∂u (Sch(t[u], u)) =

β

π
cosh2 πu

β
∂u

(
2π2

β2

)
. (B.4.18)

Now we deal with the interaction term. One has to vary

∫
C
du1du2 XB(u1 − u2)

(
t′1t
′
2

(t1 − t2)2

)1/4

. (B.4.19)

Since V 2 is already small, after taking the variation we can plug in the thermal solution. Another

reason for this is that the integral is dominated by u12 < β, whereas β[u] changes on scales much

bigger than β.

Variation with respect to the t1 yields

−
∫
C
du2

(
XB(u1 − u2)

(t′1t
′
2)1/4

2(t1 − t2)3/2
+ ∂u1

(
XB(u1 − u2)

(t′1t
′
2)1/4

4t′1(t1 − t2)1/2

))
. (B.4.20)
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Recall that the combination

(t′1t
′
2)1/4

(t1 − t2)1/2
=

 π/β

sinh
(
π(u1−u2)

β

)
1/2

(B.4.21)

is proportional to GS(u1−u2), so it is a function only of the difference u1−u2. Therefore, if ∂u1

does not act on 1/t1 it can be transformed into ∂u2 to give a total derivative.

After taking the derivative we will have

−
∫
C
du2 XB(u1 − u2)

cosh πu1
β

2 sinh3/2
(
π(u1−u2)

β

) (cosh
πu1

β
+ sinh

πu1

β
sinh

π(u1 − u2)

β

)
, (B.4.22)

which is equal to

−
∫
C
du2 XB(u1 − u2)

cosh2 πu1
β

2 sinh3/2
(
π(u1−u2)

β

) . (B.4.23)

Hence, in the end we have:

−2× cosh

(
πu1

β

)2 ∫
C
du2 XB(u1 − u2)

cosh π
β (u1 − u2)

2 sinh3/2 π
β (u1 − u2)

, (B.4.24)

where an extra factor of 2 came from a similar variation with respect to the t2.

Now we need to remember that we are working on the Keldysh contour, and the variation is

over t+ − t−. This gives four pieces:

• u1,+, u2,+,

• u1,−, u2,−,

• u1,+, u2,−,

• u1,−, u2,+.

173



These integrals combine into twice the integral over the Wightman functions:

2×
∫ +∞

−∞
du2. (B.4.25)

The last step is to change variables: u2 → xβ + u1 and combine this contribution with that of

the kinetic term (B.4.18):

8π2αS
JSβ3

β′ =
i
√
ibV 2π3/2

(JS)1/2β1/2

∫ +∞

−∞
dx XB(β(u− iε)) coshπ (x− iε)

sinh3/2 π (x− iε)
. (B.4.26)

Note that the factor of cosh2(πu1/β) has cancelled out, meaning that the ansatz with slowly-

varying beta is actually consistent with the equations of motion.

B.5 Bounds on energy flow

B.5.1 Perturbative energy flow calculation for bosonic coupling

Consider a system initially in a thermal state of the form

ρ0 =
e−βSHS−βHB

ZSZB
(B.5.27)

where the initial system Hamiltonian is HS and the bath Hamiltonian is HB. At time zero, a

system bath coupling gHSB is turned on, at which point the full Hamiltonian is

H = H0 + gHSB (B.5.28)

where H0 = HS +HB.

The rate of the change of the system energy as a function of time is

E′S = tr
(
ρ0e

iHt[igHSB, HS ]e−iHt
)
. (B.5.29)
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This equation follows from the fact that [H,HS ] = g[HSB, HS ]. Let us assume that the system-

bath coupling is of the form

HSB = OSOB, (B.5.30)

noting that the most general coupling is a sum of such terms. Then the rate of energy change is

E′S = 〈eiHtig[OS , HS ]OBe
−iHt〉0. (B.5.31)

To work perturbatively in g, we move to the interaction picture, defining

e−iHt = e−iH0tU. (B.5.32)

To zeroth order in g, U is simply the identity, in which case E′ = 0 as follows form the thermality

of the initial state.

To first order in g, U is given by

U = 1− ig
∫ t

0
dt′HSB(t′) + · · · (B.5.33)

where HSB(t′) denotes the Heisenberg operator with respect to H0 at time t′. The rate of energy

change to second order in g is

E′S = (ig)2

∫ t

0
dt′〈[OS(t′)OB(t′), [OS , HS ](t)OB(t)]〉0. (B.5.34)

From the equation of motion

[OS , HS ](t) = i∂tOS(t), (B.5.35)

it follows that

E′S = ig2

∫ t

0
dt′〈[∂tOS(t)OB(t), OS(t′)OB(t′)]〉0. (B.5.36)
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Note that the commutator has also been reversed, hence the extra minus sign. There are two

terms from the commutator,

[∂tOS(t)OB(t), OS(t′)OB(t′), ] = ∂tOS(t)OS(t′)[OB(t), OB(t′)]

+ [∂tOS(t), OS(t′)]OB(t′)OB(t). (B.5.37)

Since the initial state factorizes, it follows that the energy rate of change can be written as a

sum of products of system and bath correlators; these are defined as

XS/B = 〈OS/B(t)OS/B(t′)〉0 (B.5.38)

and

XR
S/B = −i〈[OS/B(t), OS/B(t′)]〉0. (B.5.39)

Since the O operators are Hermitian, it follows that 〈O(t′)O(t)〉 = 〈O(t)O(t′)〉∗. Then the rate

of energy change is

E′S = −g2

∫ t

0
dt′
{
∂tXS(t− t′)XR

B (t− t′) + ∂tX
R
S (t− t′)X∗B(t− t′)

}
. (B.5.40)

Note that technically the time derivative acts on both θ(t) and OS(t) in XR
S , but this doesn’t

matter because OS commutes with itself. We have used the fact that the initial state is thermal

to conclude that the dependence on t, t′ reduces to a dependence on t− t′ only.

It is useful to rewrite the two terms in E′S using a spectral representation. The first term is

∂tXS(t− t′)XR
B (t− t′) =

∫
dω

2π

dω′

2π

dν

2π
e−i(ω+ω′)(t−t′)−iωAS+(ω)AB(ν)

ω′ + i0+ − ν
. (B.5.41)

The second term is

∂tX
R
S (t− t′)X∗B(t− t′) =

∫
dω

2π

dω′

2π

dν

2π
e−i(ω−ω

′)(t−t′)−iωAS(ν)AB+(ω′)

ω + i0+ − ν
. (B.5.42)
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The integral over t′ in the expression for E′S can be done to yield

∫ t

0
dt′e−i(ω+ω′)(t−t′) =

1− e−i(ω+ω′)t

i(ω + ω′)
(B.5.43)

and ∫ t

0
dt′e−i(ω−ω

′)(t−t′) =
1− e−i(ω−ω′)t

i(ω − ω′)
. (B.5.44)

With a view towards the desired inequality, one can integrate these expressions against e−κt for

arbitrary κ. The result is

∫ ∞
0

dte−κt
1− e−i(ω+ω′)t

i(ω + ω′)
=

1

κ[κ+ i(ω + ω′)]
(B.5.45)

and ∫ ∞
0

dte−κt
1− e−i(ω−ω′)t

i(ω − ω′)
=

1

κ[κ+ i(ω − ω′)]
. (B.5.46)

In the first term the ω′ integral can be carried out by contour, similarly for the ω integral in

the second term (because these frequencies do not appear in the spectral functions). Closing in

the upper half plane gives

∫
dω′

2π

1

κ[κ+ i(ω + ω′)]

1

ω′ + i0+ − ν
= − 1

κ(ν + ω − iκ)
(B.5.47)

and ∫
dω

2π

1

κ[κ+ i(ω − ω′)]
ω

ω + i0+ − ν
=

−ω′ − ν − iκ
2κ(−ω′ + ν − iκ)

. (B.5.48)

Adding back all the factors, the first term becomes

−g2

∫
dω

2π

dν

2π

−iωAS+(ω)AB(ν)

−κ[ω + ν − iκ]
(B.5.49)

and the second term is

−g2

∫
dω′

2π

dν

2π

−i(−ω′ − ν − iκ)AS(ν)AB+(ω′)

2κ(−ω′ + ν − iκ)
. (B.5.50)
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To compare the two terms, we relabel variables in both terms so that ω appears in AS and ω′

appears in AB. The full expression for the integrated energy rate of change is thus

Fκ = i
g2

κ

∫
dω

2π

dω′

2π

[
−ωAS+(ω)AB(ω′)

ω + ω′ − iκ
− (ω′ + ω + iκ)AS(ω)AB+(ω′)

2(−ω′ + ω − iκ)

]
. (B.5.51)

The useful identity A+(−ω) = A−(ω) gives

∫
dωA(ω)f(ω) =

∫
dωA+(ω)[f(ω)− f(−ω)]. (B.5.52)

Applied to the first term (ω′ integral), an equivalent integrand is

AS+AB+

(
− ω

ω + ω′ − iκ
+

ω

ω − ω′ − iκ

)
. (B.5.53)

Applied to the second term (ω integral), an equivalent integrand is

−AS+(ω)AB+(ω′)

2

(
ω′ + ω + iκ

−ω′ + ω − iκ
− ω′ − ω + iκ

−ω′ − ω − iκ

)
(B.5.54)

or

AS+(ω)AB+(ω′)

(
ω

−ω + ω′ + iκ
+

ω

ω + ω′ + iκ

)
. (B.5.55)

The terms may be recombined to give

AS+(ω)AB+(ω′)

(
− ω

ω + ω′ − iκ
+

ω

ω + ω′ + iκ

)
, (B.5.56)

thanks to a cancellation of two terms. The real part is then simply zero while the imaginary part

is

Im : − 2ωκ

(ω + ω′)2 + κ2
. (B.5.57)

Combined the imaginary overall prefactor, it follows that the integrated rate of change is

Fκ =

∫
dte−κtE′S = 2g2

∫
dω

2π

dω′

2π

ωAS+(ω)AB+(ω′)

(ω + ω′)2 + κ2
. (B.5.58)
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The integrated flux simplifies in various limits. For example, κ→∞ corresponds to the short

time limit. The integrated flux obeys

Fκ→∞ → 2
g2

κ2

∫
dω

2π

dω′

2π
ωAS+(ω)AB+(ω′). (B.5.59)

Using ∫
dωωA+(ω) =

1

2

∫
dωωA(ω) =

∫
ω≥0

dωωA(ω) ≥ 0, (B.5.60)

it follows that

Fκ→∞ ≥ 0 (B.5.61)

in agreement with Almheiri’s lemma.

The limit κ → 0 corresponds to the long time limit in which case the flux is dominated by

the late time value. The integral over ω can be done by replacing the denominator with a delta

function of ω + ω′ times π/κ,

Fκ→0 → −
g2

κ

∫
dω′

2π
ω′AS+(−ω′)AB+(ω′). (B.5.62)

Relabeling ω′ as ω, the integral can be written

Fκ→0 → −
g2

κ

∫
dω

2π
ω

AS(ω)AB(ω)

(eβSω − 1)(1− e−βBω)
. (B.5.63)

This form is convenient since A(ω) is antisymmetric and so the product of two is symmetric.

The integral can also be written

Fκ→0 → −
g2

κ

∫
dω

2π
ω
e(βB−βS)ω/2AS(ω)AB(ω)

4 sinh βSω
2 sinh βBω

2

. (B.5.64)

Using the symmetry of the integrand, this can be written once more as

Fκ→0 → −
g2

κ

∫
ω≥0

dω

2π
ω

sinh (βB−βS)ω
2 AS(ω)AB(ω)

2 sinh βSω
2 sinh βBω

2

. (B.5.65)
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This form is nice because it makes it clear that the energy flow is negative or positive depending

only on whether βB − βS is positive or negative.

B.5.2 Review of spectral representation

Here we briefly review the spectral representation used above. Consider a Hermitian operator O

in a system with Hamiltonian H in a thermal state at temperature T = 1/β. The two correlators

of interest are

X = 〈O(t)O(0)〉 (B.5.66)

and

XR(t) = −iθ(t)〈[O(t), O(0)]〉. (B.5.67)

Both correlators have an expansion in terms of energy eigenstates. These are

X(t) =
∑
n,m

pn|〈n|O|m〉|2ei(En−Em)t (B.5.68)

and

XR(t) = −iθ(t)
∑
n,m

pn|〈n|O|m〉|2
[
ei(En−Em)t − e−i(En−Em)t

]
. (B.5.69)

The Fourier transforms are

X(ω) =

∫ ∞
−∞

dteiωtX(t) =
∑
n,m

∑
n,m

pn|〈n|O|m〉|22πδ(ω − (Em − En)) (B.5.70)

and

XR(ω) =
∑
n,m

∑
n,m

pn|〈n|O|m〉|2
(

1

ω + i0+ − (Em − En)
− 1

ω + i0+ + (Em − En)

)
. (B.5.71)

The spectral function is defined by the equation

XR(ω) =

∫
dν

2π

A(ν)

ω + i0+ − ν
, (B.5.72)
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from which it follows that

A(ν) = A+(ν)−A−(ν) (B.5.73)

with

A±(ν) =
∑
n,m

pn|〈n|O|m〉|22πδ(ν ∓ (Em − En)). (B.5.74)

Exchaning n and m in the definition of A− shows that

A− =
∑
n,m

pm|〈n|O|m〉|22πδ(ν − (Em − En)), (B.5.75)

and using Em = En + ν plus the explicit form of pm, it follows that

A− = e−βνA+ (B.5.76)

and that

A(ν) = (1− e−βν)A+(ν). (B.5.77)

We also see that X(ω) obeys

X(ω) = A+(ω). (B.5.78)

B.5.3 General argument for perturbative bound

Once again, the integrated flux is

Fκ = 2g2

∫
dω

2π

dω′

2π

ωAS+(ω)AB+(ω′)

(ω + ω′)2 + κ2
. (B.5.79)

Convering to AS(ω) gives

Fκ = 2g2

∫
dω

2π

dω′

2π

ωAS(ω)AB+(ω′)

(ω + ω′)2 + κ2

1

1− e−βSω
. (B.5.80)
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Using the fact that ωAS(ω) is symmetric in ω, we may symmetrize the remaing function of ω

without changing the integral. The result is

Fκ = g2

∫
dω

2π

dω′

2π

ωAS(ω)AB+(ω′)[ω2 + ω′2 + κ2 − 2ωω′ coth βSω
2 ]

[(ω + ω′)2 + κ2][(ω − ω′)2 + κ2]
. (B.5.81)

Now the only potentially negative part of this expression is the function

f = ω2 + ω′2 + κ2 − 2ωω′ coth
βSω

2
. (B.5.82)

It is interesting to ask under what conditions f ≥ 0. It may be written as

f =

(
ω′ − ω coth

βSω

2

)2

+ κ2 + ω2

(
1− coth2 βSω

2

)
. (B.5.83)

The function ω2(1 − coth2(ω/2)) is symmetric and monotonically increasing for positive ω. Its

value at ω = 0 is − 4
β2
S

. Hence it follows that if κ is large enough, the function κ2 + x2(1 −

coth2(x/2)) is non-negative. From this we conclude that Fκ ≥ 0 provided

κ ≥ 2

βS
. (B.5.84)

This constraint applies for any system and bath provided that: (1) the system-bath coupling

is a product of two Hermitian operators and (2) we work perturbatively in the coupling.

B.6 Perturbation theory in µ

Let us start from computing µ correction to GLR. We need to compute

∆GLR(τ1 − τ2) = iµ

∫ β

0
dτ GLL(τ1 − τ)GRR(τ − τ2) =

= i
µb2π

Jβ

∫ β

0
dτ sgn(τ1 − τ) sgn(τ − τ2)

1√
sin
(
π|τ1−τ |

β

) 1√
sin
(
π|τ−τ2|

β

) (B.6.85)
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Because of the translational invariance along the thermal circle the answer depends on τ1 − τ2

only. So one can put τ2 = 0. After changing the variables to x = tan (πτ/β) we have the following

integral:

i(1 + x2
1)1/4 × µb2

J

∫ ∞
−∞

dx sgn(x1 − x) sgn(x)
1√

|x|
√
|x1 − x|

√
1 + x2

(B.6.86)

This integral can be computed analytically. Because of the sgn functions there are three

integration domains. So the answer has three parts:

∆GLR(x(τ)) = i
µb2

J
(I1 − I2 + I3)(1 + x2)1/4 (B.6.87)

where

I1 =
2√

1− ix

(
EllipticK

(
1− 2x

i+ x

)
− iEllipticF

(
π

4
,

2x

i+ x

))
I2 =

2

(1 + x2)1/4
EllipticK

(
1

2
− 1

2
√

1 + x2

)
(B.6.88)

I3 =
2

x
3F2

(
1

2
,
1

2
, 1;

3

4
,
5

4
;− 1

x2

)

Now, let us compute the correction to energy. From the path integral the leading correction

to the free energy is

−β∆F = −µ
2β

2

∫ β

0
dτ GLL(τ)GRR(τ) (B.6.89)

We can recover the integral by taking τ → 0 limit in the conformal answer (B.6.87) for GLR.

Unfortunatelt it produces a logarithmic UV divergence which we cut at τ = 1/J :

∆F =
1

2
√

4π

µ2

J

(
2 log

π

Jβ
− c1

)
(B.6.90)

where c1 is the cut-off dependent constant. We can not find it from the conformal perturbation

theory, because it is an effective low-energy theory with a build-in UV cutoff of order J . From
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the above expression we read off the energy correction:

∆E =
1

2
√

4π

µ2

J

(
2 log

π

Jβ
− 2− c1

)
(B.6.91)

Also notice that the constant −c1 − 2 is not simply a correction to the ground state energy. As

we mentioned in the main text, perturbation theory in µ breaks down at large β2BH ∼ J/µ2, so

we can not take the limit β → ∞ in this expression. This is signalled by the presence of the

logarithm. This divergence has IR nature, and it is not caused by using the conformal answer in

the integral (B.6.89).

To extract c1 we can compute integral (B.6.89) using the numerically obtained GLL. We find

that c1 = 1.66(1). This agrees very well with the actual numerical result for the energy - Figure

4.6.

B.7 Checking whether Schwarzian fluctuations are stable

Let us start from doing a 1-loop calculation for Schwarzian first. We again assume that we in the

phase with two separate black holes. Then the action will involve two Schwarzian terms plus the

interaction piece. For a moment we can imagine that instead of a simple interaction µψLψR we

have a term involving composite operators iFµOLOR with zero expectation values: 〈OL(R)〉 = 0.

F is the OL(R) fermionic number. The Schwarzians interact because Schwarzians gravitationally

dress OL(R) by time reparametrizations.

In the perturbation theory the leading contribution is of order µ2:

∫
DψLDψR exp

(
−SL − SR − iFµ

∫
du OLOR

)
= (B.7.92)

=

∫
DψLDψR exp

(
−SL − SR − µ2

∫
du1du2〈OLOL〉〈OROR〉

)

184



Explicitly the action is:

S = −
∫
du

NαS
J
{fL, u} −

∫
du

NαS
J
{fR, u}− (B.7.93)

N
µ2c2
O

J4∆

∫
du1du2

(
f ′L(u1)f ′L(u2)

(fL(u1)− fL(u2))2

)∆( f ′R(u1)f ′R(u2)

(fR(u1)− fR(u2))2

)∆

where ∆ is the dimension of OL(R), for ψL it is ∆ = 1
4 and {f, u} denotes Schwarzian derivative:

{f(u), u} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(B.7.94)

Finite temperature solution without interaction reads as:

fL = fR = tan
πu

β
(B.7.95)

We can perturb it by εL, εR:

fL = tan

(
πu

β
+ εL(u)

)
(B.7.96)

fR = tan

(
πu

β
+ εR(u)

)
(B.7.97)

(B.7.98)

and to see whether the two black hole system has a perturbative instability at some temperature.

For simplicity we can put β = π and expand ε in Fourier modes:

ε =
+∞∑

n=−∞
εne

2inu (B.7.99)

Before doing an actual computation, let us stop and explain why Schwarzian does not con-

tribute classicaly here and at higher loops. By classically we mean that its contribution is

suppressed by 1/N . Since we are in a thermal state (B.7.96) is the a translation symmetry along

the Euclidean time u. This is why after expanding in Fourier modes (B.7.99) we will not have

terms linear in εn. It means that the thermal solution (B.7.96) is still a classical solution of
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Schwarzian equations of motion even with complicated non-local interaction induced by loops.

Since we have an overall N in front of the action, integrating out εn will lead to a subleading

correction.

Let us return to the actual 1-loop calculation. The only subtlety is that one has to be careful

with the time ordering, since the denominator involves

(
sin2

(
u1 − u2 + εL(u1)− εL(u2)

))∆
= sin2∆ |u1 − u2 + εL(u1)− εL(u2)| (B.7.100)

The result for the marginal deformation ∆ = 1/2:

S/N =
αS
J β

+∞∑
n=2

εl,r−n
(
n4 − n2

)
εL,Rn +

c2
∆µ

2β2

(Jβ)2

(
8π2|εL2 − εR2 |2 + 32π2|εL3 − εR3 |2 + 80π2|εL4 − εR4 |2

)
+. . .

(B.7.101)

and the coefficients tend to grow. One can also evaluate non-quadratic terms. Below are the first

three. All of them have positive coefficients too:

+28π2|εL2 − εR2 |4 + 224π2|εL3 − εR3 |4 + 952π2|εL3 − εR3 |4 + . . . (B.7.102)

+
2860π2

9
|εL2 − εR2 |6 + . . .

For the case of relevant deformation µψLψR with ∆ = 1/4 the results are similar. The

interaction term has the expansion:

8

3
|εL2 + εR2 |2 + 8|εL2 − εR2 |2 +

48

5
|εL3 + εR3 |2 +

80

3
|εL3 − εR3 |2 + . . . (B.7.103)

+
304

15
|εL2 + εR2 |4 +

4432

105
|εL2 − εR2 |4 +

7146

55
|εL3 + εR3 |4 +

137018

495
|εL3 − εR3 |4 + . . .

+
135424

693
|εL2 + εR2 |6 +

1053952

2835
|εL2 − εR2 |6 + . . . (B.7.104)

And the coefficient in front is b2 µ
2β2

Jβ .

In principle, we can go to higher orders in µ. Curiously, µ4 correction is negative for ε2.
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B.8 Lorentz time Dyson–Schwinger equation

B.8.1 Single SYK

Let us first consider a single SYK in Euclidean time. Then the DS equations have the form:

Σ(τ) = J2G(τ)3

(−iω − Σ(ω))G(ω) = 1 (B.8.105)

Now we want to switch to Lorentzian time. We define the Wightman function with an extra

−i:

−i〈ψi(t)ψi(0)〉 = G>(t) (B.8.106)

As is well-known, upon the analytical continuation in time domain, the time-ordered Eu-

clidean two-point function becomes the Wightman function, therefore1:

Σ>(t) = −J2
(
G>(t)

)3
(B.8.107)

The other DS equation is written in the frequency space, this is why after the analytic continu-

ation it will involve the retarded components:

GR(ω)(ω − ΣR(ω)) = 1 (B.8.108)

So far we have not used any information about the state we are considering. This informa-

tion is needed to connect G> and GR. In thermal state we can use Fluctuation-Dissipation

Theorem(FDT):

G>(ω) =
2i ImGR(ω)

e−βω + 1
(B.8.109)

An example of how the Wightman’s function look is presented on Figure B.3.

1The minus sign is subtle: one can recover it either from the effective action (4.3.50) on the Keldysh contour
or doing a careful analytic continuation through the frequency space as was done in [36]
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Re G^>
Im G^>

Figure B.3: Wightman’s function G> for single q = 4 SYK with J = 0.5, β = 40

B.8.2 Two coupled SYK

Now we have 4 Green’s functions. The self-energies have similar expressions:

Σ>
ab(t) = −J2(G>ab(t))

3 + iµab (B.8.110)

and the equation (B.8.108) should be understood as a matrix equation. For the diagonal Green’s

functions the FDT has the same form:

G>(ω)aa =
2i ImGRaa(ω)

e−βω + 1
(B.8.111)

However the imaginary part of the off-diagonal components is skew-symmetric in time, so we

have:

G>(ω)LR =
ReGRLR(ω)

e−βω + 1
(B.8.112)

This system of equations can be solved numerically by the iteration procedure used for a

single SYK model [36]. To ensure that the iteration procedure converges to an actual solution

we monitor the discrepancies of eqs. (4.2.8):

dab =
1

Npoints
‖∂τGab(τ)− Σac ∗Gcb(τ)− δabδ(τ)‖2 (B.8.113)
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and make sure that dab < 10−10. The typical number of discretization points is Npoints ∼ 217.

Before the transition the diagonal Green’s function look similar to single SYK ones - Figure

B.4
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Re G^>_LR
Im G^>_LR

Figure B.4: Wightman’s function G> for two coupled q = 4 SYK with J =
0.5, µ = 0.05, β = 40

B.9 Derivation of the effective action

Let us write down explicitly the total action for the system on the Keldysh contour C. We will

suppress the bath action. Bath fermions χα and χ̃α, α = 1, . . . ,M belong to independend q = 4

SYK systems with coupling JB. We denote their two-point functions by GB:

G>B(t−1 , t
+
2 ) = −i 1

M

∑
α

〈χα(t−1 )χα(t+2 )〉 = −i 1

M

∑
α

〈χ̃α(t−1 )χ̃α(t+2 )〉 (B.9.114)

The total action consists of four terms:

Stot = Skin + SJ + Sµ + Sbath (B.9.115)
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• Skin is a standard kinetic term for fermions:

iSkin = i

∫
C
dt
∑
j

(
ψLj ∂tψ

L
j + ψRj ∂tψ

R
j

)
(B.9.116)

• SJ is SYK interaction:

iSJ = i

∫
C
dt

∑
i<j<k<l

Jijkl
(
ψLi ψ

L
j ψ

L
k ψ

L
l + ψRi ψ

R
j ψ

R
k ψ

R
l

)
(B.9.117)

• Sµ is Maldacena–Qi interaction term:

iSµ =

∫
C
dt µ

∑
j

ψLj ψ
R
j (B.9.118)

• Finally Sbath is interaction with the bath:

iSbath = i

∫
C
dt

∑
α1<α2<α3,i

(
V α1α2α3
i ψL,iχα1χα2χα3 + Ṽ α1α2α3

i ψR,iχ̃α1χ̃α2χ̃α3

)
(B.9.119)

As usual, we can integrate out the disorders leading to bi-local expression in terms of ψ, χ and

χ̃. Couplings V and Ṽ are Gaussing with the variance [2]:

〈(V α1α2α3
i )2〉 = 〈

(
Ṽ α1α2α3
i

)2
〉 =

3!η

M3
, no sum (B.9.120)

The action can be made quadratic in fermions by introducing the largrangian multiplier Σ, which

is integrated over along the imaginary axis:

iSlag = −N
2

∫
C
dt1dt2

∑
ab

Σab(t1, t2)

Gab(t1, t2)− 1

N

∑
j

ψaj (t1)ψbj(t2)

 (B.9.121)

Note that we have an overall minus if front of the action. It is important for the equation

connecting the self-energies Σ and Green’s functions. Integrating out the fermions produces we
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effective action (4.3.50):

i
Stot

N
=

1

2
Tr log (ω − Σab(ω))−

∑
ab

∫
C
dt1dt2

(
J2

8
Gab(t1, t2)4 +

1

2
Σab(t1, t2)Gab(t1, t2)

)
+

+
iµ

2

∫
C
dt (GLR(t, t)−GRL(t, t))− η

2

∫
C
dt1dt2 (GLL(t1, t2) +GRR(t1, t2))G3

B(t1, t2)

(B.9.122)

Variation of this action with respect to Σab and Gab yield the KB equations (4.3.53) and (4.3.54)

B.10 Numerical methods for wormhole formation

Now let us describe the numerical method for solving Kadanoff–Baym equations. Numerical

solution of Kadanoff–Baym equations for SYK model was described previously in [37, 106] and

our approach is essentially the same.

We will use two-dimensional grid with uniform timestep to discretize (t1, t2) plane. The

timestep dt should be much smaller than the characteristic time-scales in SYK 1/J, 1/µ. Since

µ � J , the 1/J constraint is much stricter. We will work with J = 0.5 this is just a choice to

fix energy units. Our time steps will be 0.2, 0.1, 0.05. The main numerical limitation comes from

the fact that the Green functions have spread ∼ β, so we can not go to very big β, since we will

have to use a huge grid. At finite temperature the Green functions decay exponentially, so to

greatly speed up the computation we will concentrate on the strip |t1− t2| . cβmax on the (t1, t2)

plane - Figure B.5. We will assume that outside this strip all the Green functions are zero. The

constant βmax is the maximal β in the problem at hand. In our case βmax = βB - bath’s beta.

One can verify that one c is big enough the result of the computation does not change.

With the computation power avaliable to us, in order to keep the computation time to be of

order of dozens of hours, β should be less than 100. This limits us to µ & 0.05. For µ = 0.05 the

transition beta is ∼ 61 - see Figure 4.6.
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t1

t2

Initial

t1

t2

Figure B.5: Geometry of the (t1, t2) plane. The initial Green functions are placed inside the gray
box.

The system-bath coupling η should be much smaller than J2 = 0.25 so that the system remain

thermal. We will use η in the range 0.01− 0.04. Moreover to avoid large gradients we will switch

on the coupling linearly, with the switch-on time Tswitch = 20.

Initial Green function is found by numerically solving Lorentz-time equilibrium Dyson–

Schwinger equation as described in Appendix B.8. The bath Green function is obtained in a

similar fashion. In order to avoid large speads in the bath’s Green function, βB will be in the

range 70− 100.

To compute the integral in KB equations we will use trapezoid method and for the time

propagation we use predictor-corrector scheme. The same techniques have been used in [37, 106].

For KB equations one has to be careful with propagating the Green function along the diagonal.

Fortunately, for Majorana fermions there is a simple relation:

G>aa(t, t) = − i
2

(B.10.123)
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However, for the Green function obtained by numerically solving the DS equation the diagonal

value is not exactly −i/2, so on a discrete lattice we will just propagate this value:

G>aa(j, j) = G>aa(0, 0) (B.10.124)

For the mixed GLR we do not have a simple relation like that. So we will use again the predictor-

corrector scheme. The value on the diagonal can be found by either propagating along t1 or t2.

We will take the avarge of these results.

Let us define the “corner slice” Green functions as G>T,ab(x):

G>T,ab(x) = θ(x)G>ab(T − x, T ) + θ(−x)G>ab(T, T + x) (B.10.125)

Then the energy at time t = T can be computed analogously to eq. (4.2.12):

E

N
=
i

4

(
∂xG

>
T,LL + ∂xG

>
T,RR +

iµ

2
G>T,LR

)
, at x = 0 (B.10.126)

Computing the time derivatives using the KB equtions one arrives at the following integral form:

E

N
= −iJ

2

4

∫ ∞
−∞

dx sgn(x)
(
G>T,LL(x)4 +G>T,RR(x)4 + 2G>T,LR(x)4

)
+ iµG>T,LR(0) (B.10.127)

Along the time evolution the system cools down, so formally the temperature is not well

defined. However, if the cooling process is slow we might expect that at each point in time the

short-time correlators will be thermal. In order to extract the temperature we need to choose

the 1D slice of the Green function G>S,ab to use the Fluctuation-Dissipation theorem(FDT). For

the same side correlators and different side correlators it looks slightly different. For the same

side case we have:
Im
(
G>T,aa(ω) +G<T,aa(ω)

)
(−2) ImGRT,aa(ω)

= − tanh
β(T )ω

2
(B.10.128)
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where for different sides it reads as:

Re
(
G>T,ab(ω) +G<T,ab(ω)

)
(−2) ReGRT,ab(ω)

= − tanh
β(T )ω

2
, a 6= b (B.10.129)

To the extent that the system is in thermal equilibrium, it is time translation invariant and

it does not matter what the value of t1 + t2 is. We will actually choose the corner slice Green

function G>T,ab in (B.10.125). This choice is motivated by the fact that exactly these Greens

function enter in the definition of energy (B.10.127).

Then one can fit it the left hand side of (B.10.128) with the tanh function to extract the

temperature. We need to select a frequency range of at least a couple of temperatures in order

to really probe the thermalization. On the other hand, for very large frequencies the numerical

data has a lot of noise coming from discrete timestep, see Figure B.6. Typically we will fit eq.

(B.10.128) up to frequencies of order 10 temperatures, i.e. βn/L ∼ 10. Although the results do

not depend much of this choice.

0 10 20 40-10-20-40

Figure B.6: (Orange) The left hand side of eq. (B.10.128) for β = 80, dt = 0.2. The
Green function is defined on a strip of width L = 1600. (Blue) tanh function. We
expect that they should match for frequencies much less than the inverse discretiza-
tion timestep: n/L � 1/dt. In on this graph this UV cutoff is at βnmax/L ∼ 400.
The region used for the fit, β|n|/L ≤ 10, is within the dashed lines.
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B.11 Change of boundary conditions

First we need derive an analogue of (4.4.72) for the case of global AdS2. We start from fermions

having Dirichlet boundary conditions on both boundaries and add an extra fermion χL,R on the

boundary to initiate the flow from Dirichlet to Neumann boundary conditions. Essentially this

way we perform a Legendre transformation [126]. This way we obtain the relation:

ZN = ZD

√
det Ĝ1−∆ (B.11.130)

where Ĝ1−∆ is the matrix GLL1−∆ GLR1−∆

GRL1−∆ GRR1−∆

 (B.11.131)

with with standard conformal correlators

GLL1−∆ ∝
(

sinh

(
t

2

))2∆−2

(B.11.132)

GLR1−∆ ∝
(

cosh

(
t

2

))2∆−2

(B.11.133)

Now let us return to our problem with the µ term. So now we have Neumann fermions plus

the interaction term µψLψR coupling the two boundaries. The partition function can be easily

found:

Zµ = Zµ=0

√
det
(

1 + µ̂Ĝ∆

)
(B.11.134)

where the matrix µ̂ is given by eq. (4.2.10). For large µ we have

Zµ�1 ∝ ZN
√

det Ĝ∆ (B.11.135)

To conclude that Zµ�1 ∝ ZD we need the matrix relation

Ĝ1−∆(ω)Ĝ∆(ω) = id (B.11.136)

195



In fact this relation coincides with the conformal(i.e. neglecting the time derivative) Dyson–

Schwinger equation (4.2.8).
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Appendix C

Casimirs and matrix models

C.1 The eigenvalues of the quadratic Casimir operator

In this appendix we describe the value of quadratic Casimir operator for the representations of

O(N) and SU(N) groups in terms of Young diagrams. To extract the irreducible representation

corresponding to a Young diagram from a generic tensor, we first fill in the boxes with this

tensor indices, then we symmetrize over the indexes in the rows and after that antisymmetrize

the indexes in the columns. In the case of the orthogonal group we additionally subtract all

possible traces from the tensor.

For the representation of the group O(N) that is described by the Young diagram Y with

row lengths λi, the quadratic Casimir operator is equal to

C
O(N),Y
2 =

bN/2c∑
i=1

λi (λi +N − 2i) (C.1.1)

The dimension of this representation reads as:

dimλ =
1

hλ

k∏
i=1

(λi +N − k − i− 1)!

(N − i)!

i∏
j=1

(λi + λj +N − i− j) (C.1.2)
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where hλ is the product of all hook lengths. For each box the hook length is defined as:

(hook length) = (number of boxes to the right) + (number of boxes below) + 1 (C.1.3)

The following lemma will be useful for studying the matrix models. Let us consider two groups

O(2n) and O(2m) and Young diagram Yn for group O(2n) such that the length of the rows is

less then m. There is a maximal Young diagram – a rectangular n × m, that we shall denote

as Yn×m. We would like to consider a specific Young diagram Ym = (Yn×m/Yn)T for a group

O(2m), where T stands for transposition. Then

CYn2 + CYm2 = n2m+ nm2 − nm . (C.1.4)

The proof goes as following. Let λi be the length of rows of the diagram Yn, we introduce

λ0 = m,λn+1 = 0. Then

CYn2 =

n∑
i=1

λi (λi + 2(n− i)) (C.1.5)

The value of Casimir operator of CYm2 can be expressed as the following. The difference λi−λi+1

is just equal to the number of the rows that has length n− i. Then

CYm2 =
n∑
i=0

[
(λi − λi+1) (n− i)2 + (n− i)

(
λ2
i − λ2

i+1 − λi + λi+1

)]
(C.1.6)

After that it is easy to see

CYm2 = mn2 + nm2 − nm−
n∑
i=0

λi (λi + 2(n− i)) (C.1.7)

So eventually it gives us

CYm2 + CYn2 = mn2 + nm2 − nm . (C.1.8)
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We will call the representation with Young diagram Yn×m to be maximal and for O(N) group

the dimension is dimmax ∼ nm
2/2.

We will also need an explicit expression for the quadratic Casimir of SU(N). For a Young

diagram Y with row lengths λi, column lengths µj and total number of boxes b it is given by:

C
SU(N),Y
2 =

1

2

(
bN +

∑
λ2
i −

∑
µ2
j −

b2

N

)
. (C.1.9)

C.2 Examples of energy spectra in the matrix models

C.2.1 The O(N1)×O(N2) model for small N1, N2

Let us list the allowed representations for some low values of N1 and N2. For O(2) we label

the representations by the integer charge Q so that the quadratic Casimir C
O(2)
2 = Q2; for

O(3) by spin j so that C
O(3)
2 = j(j + 1); for O(4) ∼ SU(2) × SU(2) by spins (j1, j2) so that

C
O(4)
2 = 2j1(j1 + 1) + 2j2(j2 + 1).

For the O(2)×O(2) model we find 2 states with 4E/g = −1 with charges (±1, 0) and 2 states

with 4E/g = 1 with charges (0,±1).

For the O(2) × O(3) model we find 6 states with 4E/g = −1 which have SO(3) spin 1 and

SO(2) charges ±1/2; and 2 states with 4E/g = 3 which have SO(3) spin 0 and SO(2) charges

±3/2.

For the O(3)×O(3) model we find 8 states with 4E/g = −3 which have spins (1/2, 3/2); and

8 states with 4E/g = 3 which have spins (3/2, 1/2) (note the appearance of half-integral spins

which correspond to spinorial representations).

For the O(2) × O(4) model we find 6 states with 4E/g = −2 which have SO(2) charge zero

and are in the SO(4) representation (1, 0)+(0, 1); 8 states with E = 0 which have SO(2) charges

±1 and are in the SO(4) representation (1/2, 1/2); and 2 states with 4E/g = 6 which have SO(2)

charges ±2 and are SO(4) singlets.

For the O(3)×O(4) model we find 8 states with 4E/g = −6 which have SO(3) spin zero and

are in the SO(4) representation (3/2, 0) + (0, 3/2); 36 states with 4E/g = −2 which have SO(3)
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spin 1 and are in the SO(4) representation (1/2, 1)+(1, 1/2); and 20 states with 4E/g = 6 which

have SO(3) spin 2 and are in the SO(4) representation (1/2, 0) + (0, 1/2).

For the O(4) × O(4) model we find 10 ground states with 4E/g = −12 which are SO(4)1

singlets and are in the SO(4)2 representation (2, 0) + (0, 2); 64 states with 4E/g = −6 which are

in SO(4)1 representation (1/2, 1/2) and in the SO(4)2 representation (1/2, 3/2) + (3/2, 1/2); etc.

For the O(6) × O(6) model we find 84 ground states with 4E/g = −45 which are SO(6)1

singlets and are in the SO(6)2 representation whose Young diagram is a 3× 3 square. The first

excited state has 4E/g = −35; it transforms as a vector of SO(6)1 and in the representation of

SO(6)2 whose Young diagram has 3 boxes in the first row, 3 in the second row, and 2 in the

third row.

Due to the relation (C.1.4) we can state the general correspondence between the representa-

tions of O(N1)×O(N2) if N1 and N2 are even. If the state is described by representation Y1 for

the group O(N1), then it has the representation
(
YN1/2×N2/2/Y1

)T
for the second group O(N2).

C.2.2 The O(2)×O(3)× U(1) model

As was described in the main text, first we have to find SU(2)×SU(3) representations and then

decompose into SO(2)×SO(3) irreducible representations. After that we can directly apply the

exact formula (5.6.103) for the energy.

Let us list the explicit form of quadratic Casimirs. For SO(2) the quadratic Casimir is simply

Q2, where Q is the charge. For SU(2) and SO(3) it equals j(j+ 1) where j is spin(an integer for

SO(3) and half-integer for SU(2)). For SU(3) the quadratic Casimir in our normalization reads

as:

C
SU(3)
2 (=

1

2

(
l21 + l22 −

1

3
(l1 + l2)2 + 2l1

)
, (C.2.10)

where l1 > l2 > . . . are the row lengths of the Young diagram λ defining the representation λ.

For example, C
SU(3)
2 ( ) = 4

3 , C
SU(3)
2 ( ) = 10

3 and C
SU(3)
2 ( ) = 3 (the last one is the adjoint

representation).

The spectrum can be found in Table C.1; it coincides with the one in Table 5.6.
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Level SU(2)× SU(3) irrep SO(2)× SO(3) irrep 4
g Energy

0 ∅×∅ ∅×∅ -3

1 × × -1

2 × × 1
2 ∅× -7

2 ∅× ∅× 1
2 ∅×∅ 13

3 × × -1

3 × 7

3 ×∅ ×∅ 3
3 ×∅ -13

4 ∅× ∅×∅ 13
4 ∅× 1

4 × ∅× -7
4 × 1

5 × × -1

6 ∅×∅ ∅×∅ -3

Table C.1: Energy spectrum of the O(2) × O(3) × O(2) model. Due to the charge conjuga-
tion symmetry for the last O(2) charge, the energies and representations are invariant under
transformation level→ 6− level.

C.2.3 Explicit form of some singlet states

The construction of singlet states for the O(N1)×O(N2)×O(N3) tensor quantum mechanics is

in general a difficult problem, but it simplifies when one of the groups is O(2). The singlet states,

which exist only when N1 and N2 are even, may sometimes be written down by inspection in the

oscillator basis. In this basis, in addition to the manifest SO(N1)× SO(N2) symmetry, there is

manifest discrete Z2 × Z2 parity symmetry contained inside O(N1)×O(N2).

For example, for the O(2)3 model there are only two singlet states

εa1a2δb1b2ψ̄a1b1ψ̄a2b2 |0〉 , εb1b2δa1a2ψ̄a1b1ψ̄a2b2 |0〉 , (C.2.11)

since due to the Fermi statistics the other two invariant contractions vanish. Under the Z2 ×Z2

symmetry these states are (−,+) and (+,−), respectively. In agreement with section 5.6.3, one

of these states is invariant under SU(2)×SO(2)×SO(2), while the other under SO(2)×SU(2)×

SO(2).
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Generalizing to any O(N1)×O(2)2 model with even N1, we again find only two singlet states.

They may be written as

εa1,...aN1
δb1b2 . . . δbN1−1bN1

ψ̄a1b1 . . . ψ̄aN1
bN1
|0〉 ,

(
εb1b2δa1a2ψ̄a1b1ψ̄a2b2

)N1/2 |0〉 . (C.2.12)

One of these states is invariant under SU(N1)×SO(2)×SO(2), while the other under SO(N1)×

SU(2)× SO(2).

For the O(4)2 ×O(2) model there are 4 singlet states

εa1a2a3a4εa5a6a7a8δb1b5 . . . δb4b8ψ̄a1b1 . . . ψ̄a8b8 |0〉 , εb1b2b3b4εb5b6b7b8δa1a5 . . . δa4a8ψ̄a1b1 . . . ψ̄a8b8 |0〉 ,(
εa1a2a3a4δb1b2δb3b4ψ̄a1b1 . . . ψ̄a4b4

) (
δa5a6δa7a8δb5b7δb6b8ψ̄a5b5 . . . ψ̄a8b8

)
|0〉 ,(

εb1b2b3b4δa1a2δa3a4ψ̄a1b1 . . . ψ̄a4b4

) (
δb5b6δb7b8δa5a7δa6a8ψ̄a5b5 . . . ψ̄a8b8

)
|0〉 . (C.2.13)

The first pair of states have energies E = ±16g, saturating the energy bound (5.3.23). One of

these states is invariant under SU(4)×O(4)×O(2), while the other under O(4)×SU(4)×O(2).

The second pair of states have energies E = ±4g.

Defining the antisymmetric matrix Mb1b2 = ψ̄ab1ψ̄ab2 , we can write the first two states as

(
trM4 ± 1

2
(trM2)2

)
|0〉 (C.2.14)

By analogy with (C.2.14), for N a multiple of 4 we may build a set of states by acting on |0〉

with traces of powers of M . For example, for N = 8 we can act with trM16, trM2 trM14, etc.

The number of such terms is P (8), i.e. the number of partitions of 8 into positive integers, and

P (8) = 22. For O(12)2 × O(2) the number of such terms is P (18) = 385. However, these terms

are not linearly independent, so this should be regarded as an upper bound on the number of

invariant states.
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More generally, for O(N)2×O(2) with N a multiple of 4, this upper bound is P (N2/8), which

grows exponentially with N :

P (N2/8)→ 2

N2
√

3
exp

(
πN

2
√

3

)
. (C.2.15)
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