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Abstract

This thesis is devoted to studying quantum mechanical systems with gravity duals. It is in-
teresting to study holographic correspondence for quantum mechanical systems since we have
much more theoretical control over them compared to quantum field theories. At the same time,
gravity duals to quantum mechanical systems are quite rich as they can include black holes and
wormbholes.

Chapter 2 is based on work [1] with J. Maldacena and studies aspects of gauge symmetry
in Banks-Fishler-Shenker-Susskind(BFSS) model. In the original formulation it includes gauged
SU(N) symmetry. However, we argued that non-singlet states are separated by a finite gap from
the ground state. Therefore, gauging SU(N) symmetry is not important at low energies.

Chapter 3 is based on paper [2] with A. Almheiri and B. Swingle. It is dedicated to study-
ing thermalization dynamics of systems with gravity duals. We argued that average null en-
ergy condition(ANEC) in the bulk leads to a universal bound on the total amount of energy
exchange between two quantum systems. We study this bound perturbatively and in Sachdev-
Ye-Kitaev(SYK) model at arbitrary coupling. As a byproduct, we studied the non-equilibrium
dynamics of SYK, both analytically and numerically.

Chapter 4 is based on paper [3] with J. Maldacena. We study wormhole formation in SYK
model in real time. We start from a high temperature state, let it cool by coupling to a cold
bath and numerically solve for the large N dynamics. Our main result is that the system forms a
wormbhole by going through a region with negative specific heat, taking time that is independent
of N.

Chapter 5 is based on paper [4] with I. Klebanov, F. Popov and G. Tarnopolsky. This paper
is dedicated to studying various spectral properties of large N melonic tensor models. They have
the same large N limit as SYK model, but unlike SYK they do not include disorder average. We

find the exact expression for the number of singlet states and derive various bounds on energies.
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Chapter 1

Introduction

1.1 An overview

By now holographic correspondence [5] is a well-established tool in many different areas of physics,
such as quantum gravity, high energy physics and condensed matter physics. Originally formu-
lated for N' = 4 super Yang Mills theory and IIB supergravity in AdSs x S°, it has led to a
plethora of impressive results in this theory [6]. However, it was quickly realized that it also
implies other deep and sometimes unexpected results, such as the bound for a ratio of shear vis-
cosity to entropy density [7] at large N and the bound on Liapunov exponent in chaotic systems
[8]. However, the most exciting and challenging opportunity it provides is the study of quantum
gravity. Recently there was a huge progress in understanding the properties of entanglement
entropy in systems coupled to gravity which allowed to reproduce the Page curve for an evapo-
rating black hole [9, 10, 11]. Naturally, if we want to understand quantum gravity in the bulk
better, it would be instructive to find an example of holographic duality with a simple theory on
the boundary. The most simple quantum systems are, of course, quantum mechanical systems.
Banks-Fishler—Shenker—Susskind (BFSS) model is a dimensional reduction of SU(N) N =4
super Yang—Mills from four down to one dimension. Despite being a quantum mechanical model

its bulk is ten-dimensional [12]. It provides one of the strongest evidences for the holographic



correspondence, as the gravity predictions from black hole thermodynamics, including stringy o/
corrections, have been matched with numerical Monte—Carlo simulation of this model [13, 14, 15].

One of the most prominent advances in holographic correspondence is the discovery of
Sachdev—Ye-Kitaev model(SYK) [16, 17]. Unlike N/ = 4 super Yang-Mills its formulation is
exceptionally simple: it involves a random quartic interaction of N Majorana fermions. SYK
model is very interesting to both high-energy physics and condensed matter physics: on one hand
it provides UV completion to two-dimensional Jackiw—Teitelboim gravity, on the other hand it is
a soluble example of a non-Fermi liquid. Moreover, at both large N and finite N many properties
of this system can be easily analyzed numerically.

However, SYK model is not a genuine quantum mechanical system, as it involves quenched
disorder average. Its large N expansion is dominated by the so-called melonic diagrams. It was
realized [18, 19, 20] that there are quantum mechanical models involving rank 3 tensor fields
which are dominated by the same class of diagrams. However, they have unusually high sym-
metry groups(O(N)? or O(N)®) and have subleading 1/N corrections which involve additional
contributions compared to SYK model. Despite the fact that they have approximate conformal
symmetry in the IR, it remains an open question if they correspond to any quantum gravity
models.

The present thesis is devoted to studying these three holographic systems: BFSS model,
SYK model and melonic tensor models. In the rest of the Introduction we will give a very brief

overview of the basic properties of these models.

1.2 The DO brane matrix model

In this section we review the DO brane matrix model and its gravity dual. Readers familiar with

this material can jump directly to the next section.



1.2.1 The matrix model

The D0 matrix model [21], or BFSS matrix model [22], has the action

1 1 1 1 1.
S = 7 /dt”ﬁ" <2(DtXI)2 + 5 YaDitbe + 1[XI,XJ]2 + zzwa%ﬂﬁ[wﬂ,xfo (1.2.1)
where all indices are summed over. I,J =1,---,9,a,3 =1,---16. where 4! are nine dimensional

gamma matrices which are real, symmetric and traceless!. ¥, are hermitian N x N matrices,
which can be expanded as 9, = ¥,1" where the T" are a complete set of hermitian N x N
matrices, and we can think of the 7 index as a real index of the adjoint representation of U (V).
Then 7, are Majorana fermions. We have 16 x N? Majorana fermions. This model is invariant
under 16 supersymmetries and also under an SO(9) R-symmetry.

The model has a U(N) gauge symmetry and the derivative is defined as D;B = 0, B +i[A, B]
where A; is the gauge field.

We could choose the gauge where A; = 0 and then we have to impose Gauss’s law:

i

G pu—
2g2

(2[DtXI7X[] + [wavwa]) =0 (1.2.2)

It restricts all states to be singlets under the U(N) symmetry.

Classical zero energy configurations correspond to simultaneously diagonal matrices X.
Quantum mechanically, the model has a zero energy bound state. At finite temperature it is
expected (from the gravity picture) to have a metastable bound state.

It is interesting to ask what the typical size of the matrices X' is in the ground state or in
a thermal state. This was estimated [23] by setting a lower bound for % Tr[X?], using virial

theorem ideas. That lead to

% X)) ~ A3 A= 2N (1.2.3)

! We can view them as coming from the ten dimensional Majorana Weyl representation v/ = I'°T"7.



In a heuristic way, this can also be obtained by dimensional analysis and large N counting if
one assumes that A is the only relevant scale (and not the temperature). This result will be
particularly useful when we analyze the gravity solution.

There is a variant of this model where we add mass terms that break SO(9) — SO(3) x SO(6)

[24]. The additional terms in the action are

SBMN = Sirom (1.2.1)] T Su 5 (1.2.4)
3 9
_ 1 1my2 a2 L (HY? iy2 | M
S, = g2/dtTr<2<3) ;(X) +2(6) i:4(X) + SYm2sU+
3
+i§ 3 X“XbXCeabc> (1.2.5)
a,b,c=1

It also preserves 16 supercharges but with a different supersymmetry algebra, SU(2[4). We
can view view (1.2.4) as a collection of harmonic oscillators and Majorana fermions with some
particular interactions.

The mass terms remove the flat directions in the potential. Apart from the simplest vacuum
with X7 = 0, the BMN model also has additional vacua [25, 26, 27], characterized by non-zero
X% a=1,2,3 such that:

ieape XPXC = %Xﬂ (1.2.6)

This equation is solved by X¢ = %J @ where J* are SU(2) algebra generators in an N-dimensional
representation, not necessarily irreducible. Such solutions represent a collection of fuzzy spheres.
Although this vacuum breaks SU(NN) symmetry, there are no physical Goldstone bosons because
of the gauge symmetry. We will return to SU(N) Goldstone bosons later in Section 2.2 when we

discuss the ungauged model.

1.2.2 The gravity dual

We will be mostly discussing the gravity dual at finite temperature. The geometry is a solution of

ten dimensional type ITA supergravity closely related to the near horizon geometry of a charged



black hole in ten dimensions [28]. It is given by [12]

ds? _Mdt2+ Ado L
o Vo 3| fo(r)r?

dr? + dQ3

dg T3
- N 7
A =
(2m)2 A2d
7
folr) = 1— % do = 2407°, A= ¢2N, (1.2.7)

where 7o and the inverse temperature 8 = 1/T are related byz

1 1 _
7= 6= zmV/Morg 5/2 (1.2.8)

This geometry has an effective radius of curvature given by the radius of S®

R [Ado

which is a function of the radial direction. For this reason we can trust (1.2.7) only in some

region of the geometry, namely 7 < A/3. Note that r has units of energy. At larger values of
r, when A!/3 < r, the curvature is high and we cannot trust the gravity solution. The large r
region is where the boundary is and it corresponds to the UV of the boundary theory. In this
region the matrix model is weakly coupled and we can trust perturbation theory.

The geometry at the horizon of the black hole will be weakly curved as long as
1< A3 (1.2.10)

There is an additional N dependent constraint A\3% < N1%/7 on the validity of this ITA super-

gravity solution that arises when we also demand that the dilaton is not too large at the horizon.

2 We can think of the relation between 8 and ro as a way to translate between time scales in the matrix model
(8) and radial position in the bulk (ro) [29].



In this thesis, we will imagine that we are in the ‘t Hooft limit where N is taken to be very large
compared to other quantities, such as A or 3, or more precisely A33. So we do not have to worry
about this second constraint.

Using the Bekenstein-Hawking formula one can easily find the entropy and free energy®

7 \9/5 7 \9/5
S = N2413/5152/5 (0 ) 7) 14/ <A1/3> ~ 11.5N? <w> (1.2.11)
F = N2AY3 2 413/5152/5 (o ytass [ L R TAN2AYS (L 14/5 1.2.12
- 14 (ﬂ-/ ) )\1/3 ~ . )\1/3 ( i )

These predictions were checked in an increasingly sophisticated set of numerical computations
[13, 30, 14, 31, 32, 33] culminating in [15], where also the leading o/ corrections were Computedf.

The gravity dual for the BMN case is a bit more complicated, it has some gapped states
described in [34] and a black hole thermal state which looks like a deformation of (1.2.7) [35].

The magnitude of the deformation involves p/T and it is very small if /T is small.

1.3 A brief review of Sachdev—Ye—Kitaev model

In this section we will study the conventional SYK model [17, 36]. Let us briefly summarize the
relevant results about the conformal limit, Dyson—Schwinger and Kadanoff-Baym equations and
also introduce our notations.

SYK is a model of N Majorana fermions v; with the all-to-all interactions and a quench

disorder governed by the Hamiltonian:

Hg = iqs/2 Z Ji1~~-iq5¢i1 - @Z)Z’qs (1313)

1<y <<igg <N

3 The temperature dependence can be recovered from the properties of (1.2.7) under rescalings. Namely sending
t—ntand r — n72/5r the metric gets rescaled by an overall factor and the action by S — 1~/%S, which is also
the scaling of the entropy. See Appendix A.3.

41t is an interesting challenge to match the first correction by computing the full tree level o’ corrections to
the tree level ITA supergravity in the effective action.



Coefficients J are real and Gauss-random with variance:

1igg) = Nas 1 (no sum) (1.3.14)

Below we will use the symbol {i} to denote sums like 1 <4 < --- <izg <N
Since we are dealing with the quench disorder we have to introduce replicas in the path
integral. However, in the large N limit the interaction between the replicas is suppressed and in

the replica-diagonal phase (non-spin glass state) the Fuclidean effective action reads:

2

by 1
Ss, Gs] = log Pf (0r — Xg) + 2/dT1d7'2 <—ES(7'1,72)GS(7'1,T2) + {]SGS(Tl»ﬁ)q) (1.3.15)

N

The auxiliary variables ¥ g, Gg have physical meaning: Gg is the Euclidean time-ordered fermion

two-point function,

1 N

Gs(m,7m2) = 3 D _(Twi(m)i(72), (1.3.16)
=1

and Xg is the fermion self-energy. The large N Euclidean saddle-point equations are identical to

the Dyson—Schwinger equations:

Ns(7) = J3Gs(7)%s

(—iw — Yg(w))Gs(w) = 1. (1.3.17)

For later use, note that the energy is

JE [P

as Jo

dr Gs(1)%. (1.3.18)
At low temperatures the system develops an approximate conformal symmetry and the

Green’s function can be found explicitly:

2/q
T

Gg(T) = bsgn(T) m

(1.3.19)

7



The coefficient b is just a numerical constant. It is determined by
1 1
bis T = (2 - ) tan -, (1.3.20)

and for qg =4, b= 1/(4m)/4.

Having reviewed the Euclidean properties, let us turn to the Lorentzian (real time) physics.
It is be convenient to work with the Keldysh contour right away, so we will assume that the
reader is familiar with this technique.

One central object is the Wightman (or “greater”) Green’s function:

G3lt1,12) = G171 8) = =i YWt w(td) (1.3.21)

Please note that we have —i in our definition. Because of the Majorana commutation relations,

the greater Green’s function reduces to —i/2 at coincident points:
G3(ti,th) = —%. (1.3.22)
The “lesser” function G< for Majorana fermions is directly related to G~:
G§(t1,t2) = Gs(t],ty) = =G (t2, 1) (1.3.23)

Two final pieces are the retarded and advanced functions:

G&(t1,t2) = 0(ty — t2) (G5 (t1,t2) — G5 (t1, t2))

GA(t1,12) = 0(t2 — 11) (G5 (11, t2) — G5 (t1.12) (1.3.24)

Now we can finally write down the Lorentzian form of the Dyson—Schwinger equations (4.2.8).
The analytic continuation of the time-ordered Euclidean Green’s function from imaginary time

to real time yields the Wightman function, and because the self-energy equation is naturally



formulated in real time, one gets
Y% (t,to) = —i%5J5 (G5 (t1,12)) % (1.3.25)

However, the continuation in frequency space (from the upper-half plane) yields the retarded

function, therefore the second equation in (4.2.8) transforms into:
GRw)(w-2Bw) =1 (1.3.26)

We need a relation between G® and G in order to close the system of equations. If the system

is in a thermal state, this relation is provided by the fluctuation-dissipation theorem (FDT):

1

(1.3.27)

This system of equations can be solved by an iterative procedure to obtain the real time corre-
lation functions [36, 37].
There is another away we can treat the second DS equation in (4.2.8). We can rewrite it in

the time-domain using the convolution:

B
0-Gg(T) =6(1) + /0 dr’ Sg(r — ")Gs (7). (1.3.28)

Upon the analytic continuation this yields the so-called Kadanoff-Baym equations®:

400
i8t1G§(t1,t2):/ dt' (Rt t)G3 (¢, ta) + 27 (t1,t)GA(H, 12))
400
—i6t2G>(t1,t2):/ dt' (GE(t1,t)S> (¢, t2) + G” (t1, ) S, 12)) . (1.3.29)

The integral on the right hand side is simply the convolution along the Keldysh contour of £5(t], ) *Gs(-, t5).
The precise result for the integral is known as Langreth rule in condensed matter literature [38].



Note that these equations are causal due to the retarded and advanced propagators in the in-

tegrand. A more straightforward way to obtain these equations is to write down the large N

6

effective action (1.3.15) on the Keldysh contour and find the classical equations of motion.

These equations can be used in non-equilibrium situations. They also have a very generic
form that simply encodes the relation between the Green’s function and the self-energy. So, the
actual non-trivial piece of information is the relation (1.3.25). When we couple the system to a
bath the integral equations (1.3.29) will stay exactly the same, whereas the answer for the self-
energy (1.3.25) will change. Appendix B.1 describes our approach to solving the KB equations
(1.3.25).

To conclude this subsection, let us write down the expression for the energy:

Es(t) = (Hs(t)) = —z’qsﬂﬁ /; dt’ (Gs(t,t')%s — Gs(t', 1)) (1.3.30)

Using the equations of motion (1.3.29), it follows that
1
Es(t) = ?ath(t,t). (1.3.31)
S

This is not a general expression; it holds because the SYK Hamiltonian only contains terms with

qs identical fermions.

1.4 Klebanov—Tarnopolsky tensor model

Let us consider the quantum mechanical model of a real anticommuting 3-tensor ¥?¢ with the

action [20]

S = /dt(;wabcat¢abc + ig¢a1b1c1walbgczq/)agblcgwagbzcl) ) (1'4‘32)

SStrictly speaking, for a thermal initial state the right hand side contains the integral over the imaginary axis
running from —if to 0. However we can imagine that all non-equilibrium processes happen at large positive
Lorentzian times so this piece is essentially zero if correlators decay with time. This is the reason why the
integration over t’ starts at —oo.

10



The three indices, each of which runs from 1 to N, are treated as distinguishable, and the

Majorana fermions satisfy the anti-commutation relations
{¢ab67 1/](1%/8/} _ 5aa’5bb’é~cc’ ) (1433)

This model is a somewhat simplified version of the O(N)® symmetric Gurau-Witten model [19].
Both are in the class of 3-tensor models which possess a “melonic” large N limit where J = gN3/2
is held fixed [39, 18, 40, 41, 42, 43, 44, 45, 46, 47, 48]. The large N model is nearly conformal in

the IR [16, 17]; for example, the two-point function is

1/4 _
! ) sen(hy — t2) (1.4.34)

T (s Vg (1)) — _gaa’ gbb soc’ :
(T ()" "¢ (t2))) = =0 6™ 6 (47rg2N3 [t1 — t2]1/2

The model (1.4.32) has the O(N); x O(N)2 x O(N)3 symmetry under the replacement’”

e — MO MEY Mg V' (1.4.35)

M € O(N)l, My € O(N)Q, Ms € O(N)g . (1.4.36)

As far as the group O(N); is concerned, we may think of b and ¢ as flavor indices; therefore 1)
produces N? flavors of real fermions in the fundamental of O(N);. An analogous picture applies
to O(N)z and O(N)3. The three sets of SO(N) symmetry charges are

chuaz — %[wmbc’wagbc] ’ Qg1b2 — %[wabw’d)abgc] ’ ngz — %[wabq’wab@] ) (1'4.37)
The gauging of SO(N); x SO(N)2xSO(N )3 sets these charges to zero; this restricts the operators
to the invariant ones, where all the indices are contracted. In the ungauged model (1.4.32) a

more general class of operators is allowed, and they can be classified according to representations

of the SO(N); x SO(N)3 x SO(N)s.

"More generally, we could consider a model with O(N1) x O(N2) x O(N3) symmetry, where a runs from 1 to
Ni, b from 1 to N2, and ¢ from 1 to N3. This may be thought of as a model of a large number Ny of N; X N3
matrices [49].
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Each O(N) group includes parity transformations (axis reflections) P,,: for a given ag, Py,
sends b — —qh%be for all b, ¢ and leaves all ¥*1% a; # ag invariant. In a physical language,
these are “big” gauge transformations and operators should be invariant under them. Therefore
we can build operators using ¥ and the delta symbol §°¢ only. In the case of SO(N) gauge
group one can use the fully antisymmetric tensor €4, . 4, as well; it is invariant under SO(IV), but
changes its sign under the parity transformations. Because of this, there are additional “long”

operators containing at least N fields, like

N
Olong = €ay...an€by...by€ci...cy H wajbjcj . (1.4.38)

j=1
The difference between gauging O(N) and SO(N) becomes negligible in the large N limit.
Let us define three operations which permute pairs of the O(N) symmetry groups (and thus

interchange indices in the tensor field), while also reversing the direction of time,

Sap 1 P — pbec, t— —t; (1.4.39)
Spe + YIE —5 )P, t— —t; (1.4.40)
Sac 1 ¢ — e, t— —t. (1.4.41)

Each of these transformations preserves the equations of motion for the 1 field,

Tjjabc _ ig(¢3)abc, (¢3)abc = wablclwalbclwalblc ) (1442)

The Hamiltonian, including a quantum shift due to (1.4.33),

4
H— _igwalblclwalengalecQwagbgcl + % _ _ig[walbwl’wmbzcz”wazbwz’ 77/}a2b261] , (1.4'43)

changes sign under each of the transformations S, Spe, Sqe- This means that these transfor-

Ht

mations are unitary: they preserve e*”*. In contrast, the usual time reversal transformation is

anti-unitary because it also requires complex conjugation ¢ — —i.
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The O(N)? invariant operators form representations under the permutation group Sz, which
acts on the three O(NN) symmetry groups (it contains the elements sqp, Spe and sqc). For example,
H is in the degree 1 ”sign representation” of S3: it changes sign under any pair interchange, but
preserves its sign under a cyclic permutation.

It is also interesting to study the spectrum of eigenstates of the Hamiltonian for small values
of N; first steps on this were made in [50, 51, 52]. When gauging the O(N)? symmetry one
needs to worry about the Zy anomaly, which affects the gauged O(NN) quantum mechanics with
an odd number of flavors of real fermions in the fundamental representation [53, 54]. Since for
each of the three O(N) groups we find N? flavors of fundamental fermions, the gauged model is
consistent for even N, but is anomalous for odd N.® This means that, for odd N, the spectrum
does not contain states which are invariant under O(N)3 (for N = 3 this can be seen via an

explicit diagonalization of the Hamiltonian (1.4.43) [50]).

8We are grateful to E. Witten for pointing this out to us.
13



Chapter 2
To gauge or not to gauge?

2.1 Introduction

Many examples of the holographic correspondence involve very strongly coupled large N gauge
theories which are dual to a bulk Einstein gravity theory [5, 55, 56]. In such theories, the gauge
symmetry leads to a reduction in the naive number of low dimension operators from N? to
an order one number. The DO brane matrix model [21], also known as BFSS model [22], is
an example of such gauge/gravity duality [12]. In a 0+1 dimensional theory, the only role of
the gauge symmetry is to impose an SU(N) singlet constraint. Therefore, we can consider an
alternative model where we set A; = 0. The theory now has a global SU(N) symmetry. If
we impose a “Gauss Law” constraint restricting to SU (V) singlets, then we recover the gauged
model. In this work we study the properties of the model where we do not impose this singlet
constraint.

At first sight, one might think that not imposing this constraint leads to many more states,
of order N? of them. The presence of these new states could modify the properties of the system
substantially. This is indeed correct in the weakly coupled regime. However, we will argue that
in the strongly coupled regime we have essentially the same gravity dual description as for the

gauged model.
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In this matrix model, the coupling constant, g2, has dimensions of (mass)®. Therefore it
is weakly coupled at high energies and strongly coupled at low energies. Correspondingly, the
gravity dual has a curvature that depends on the radial position. Near the boundary it is highly
curved, but away from the boundary we have a low curvature region where we can trust Einstein
gravity. See Figure 2.1. This low curvature region corresponds to the energy scales where the
matrix model is strongly coupled.

We will argue/conjecture that the gravity picture of the non-singlet states is the following.
The non-singlet states have an energy of order the order \1/3 = (¢°N )1/ 3 and are located in the
high curvature region, away from the region that is described by Einstein gravity, see Figure 2.1.
In the planar approximation, we also have states corresponding to additional excitations of these
non-singlet states which can be represented as folded strings with their ends stuck to the highly
curved region near the boundary. At finite temperature we can further have non-singlet states
that correspond to black holes with strings that come in from the boundary and end on the black

hole, see Figure 2.2 (b,c).

High curvature region
(perturbative regime of the matrix model)

adjoint excitation
Einstein gravity region

Figure 2.1: Sketch of the gravity solution at finite temperature. The shaded region near the
boundary is highly curved. Moving further inwards we find a region of lower curvature that can
be described by Einstein gravity. We will argue that the lowest energy non-singlet excitations
live purely in the shaded region and have an energy that roughly corresponds to that of a massive
string state located in the interface between the two.
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We have not derived this picture rigorously, we will simply present some plausibility arguments
and consistency checks. In [57], Berkowitz, Hanada, Rinaldi and Vranas present more evidence
supporting this picture by performing a direct numerical simulation of the ungauged model®.

In [58], a similar conclusion was reached for the “double scaling” limit of a single matrix
quantum mechanics for low enough temperatures See also [59, 60, 61, 62, 63] for further discussion
of non-singlets in that model.

We were motivated to ask the question in the title by the Gurau-Witten tensor models [18, 19].
There one has the choice of either imposing or not imposing a singlet constraint. It is sometimes
thought that the models with a singlet constraint would be more likely to have a gravity or
string dual. Our main message is that the existence of a local gravity dual is independent of
whether we do or do not impose this constraint. Einstein-like gravity is associated to very strong
interactions but not to the presence or absence of the boundary theory gauge symmetry (or gauge
redundancies).

When we consider the ungauged model we break supersymmetry, since in the original model
the algebra only closes up to gauge transformations. Nevertheless the modified algebra can be
used to argue that the energy is positive, even for non-singlet states. Of course, singlet states
are the same as those of the gauged model. For non-singlet states, the lowest energy state
appears to be when all branes are separated by a large amount (namely, the matrices get large
diagonal expectation values). In this regime, the non-zero SU(N) charges lead to a kind of
angular potential going like 1/X? for diagonal matrices of typical magnitude X. This potential
leads to even larger expectation values for the matrices. Nevertheless, for finite temperatures,
we expect to have a metastable state where the expectation values of the matrices are relatively
small (or the branes are together), since this state has more entropy. This state can be viewed
as a black hole. Our previous remarks on the equality of the gravity configurations applied for
these metastable black hole configurations.

We are arguing that non-singlets are energetically disfavored at low energies. This seems to

contradict the picture proposed in [64, 65] for the deconfinement/black hole transition that is

! 'We thank the authors of [57] for detailed explanations on their computations and for ongoing discussions.
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based on the idea that the Polyakov loop gets an expectation value. If the only states contributing
were singlets we would get no potential for the eigenvalues of the Polyakov loop. We will discuss
how the two pictures are consistent. We are lead to a picture where the values of the holonomy
indeed break the center symmetry but only by a very small amplitude “wave” in the eigenvalue
distribution.

This chapter is organized as follows. In Section 2.2 we describe how one can remove the
singlet constraint and obtain the deformation of the supersymmetry algebra. We also relate it
to the insertion of Wilson loops in the gauged model. Section 2.3 is devoted to non-singlets.
We first look at the lowest energy excitations of the thermal background. We then consider the
region where all branes are far away. We also use perturbation theory to find the shifts to the
spectrum in the weakly coupled region. We also discuss the thermodynamic properties of the
ungauged model. We discuss further aspects of the Polyakov loop and thermal phase transitions

in section 2.4. After making some further comments we present some conclusions.

2.2 The ungauged model

In this chapter we will consider the situation where we set A; = 0 and we do not impose the
SU(N)-singlet constraintz. This amounts to treating the SU(N) symmetry as a global symmetry
rather than as a gauge symmetry. In higher dimensions, gauging a symmetry introduces extra
degrees of freedom. In quantum mechanics it does not. The theory with A; = 0 is a perfectly
well defined theory, with global SU(NN) symmetry, and we can consider it in its own right. This
theory has a singlet subsector where it identical to the usual one in Section 1.2, but it also has
non-singlet states whose interpretation in the gravity dual we want to elucidate.

It is sometimes said that gauging the SU(N) symmetry reduces the number of operators
drastically and that this is important for the gravity solution to work. We will see that the

gravity solution can be valid whether we gauge the SU(NN) symmetry or not.

2 We could also say that we have a U (N) gauge symmetry. However, since there are no fields charged under
the overall U(1), it does not matter whether we gauge or do not gauge the overall U(1).
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2.2.1 The size of the matrix versus the size of the Einstein gravity region

It is interesting to translate (1.2.3) to the gravity side. On the gravity side we can consider D0
brane probes that sit at particular values of r. A string stretching from this brane probe to r = 0,
or the horizon, has an energy of the order of r. Now, if we consider the mass of an off-diagonal
mode of a matrix in the diagonal background m ~ Xy;,, we expect to get the same energy. It
means that the radial direction is related to matrix elements as r ~ X. Using this procedure to
translate between radial positions and matrix eigenvalues, we now ask: What value of r would
the scale (1.2.3) correspond to? Interestingly, it corresponds to a scale r ~ A/3 which is the
scale at which the supergravity solution breaks down!This important point was emphasized in
[23], and we are repeating it because we think it is not widely appreciated. In fact, some papers
in the literature seem to suggest that the typical size of the matrices in the thermal state would
be X ~ ry. Note that rg < A'/3 in the region where we can trust gravity.

This means that the whole Einstein gravity region of Figure 2.1 corresponds to a highly
quantum region of the wave function for the matrix model. The matrices have large fluctuations.
However, these fluctuations are highly correlated. Indeed, via supersymmetric localization, [66,
67] computed - (Tr[(X! +iX?)?*]). They found a much smaller answer agreeing with naive bulk

expectations. Due to the ¢, in this expectation values there are interesting cancellations.

2.2.2 Lack of supersymmetry

Let us define the hamiltonian of the ungauged model to be simply the one obtained from eq.
(1.2.1) by setting Ay = 0. We can then wonder whether the resulting theory is supersymmetric.
We certainly continue to have the operators ), that were generating the SUSY transformations

before:

1 . 1
Qe = —g—QTr <XI¢’er+i2[XK,XL]1/wKLe) (2.2.1)

where v = % ('yK vl — Ay K ) We can now ask whether these operators commute with the

Hamiltonian. We find

[Qa, H] = — Tt (¥aG) (2.2.2)
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We see that the right hand side can be written in terms of the SU(IN) symmetry generators,
G in (1.2.2). This means that, while (2.2.2) vanishes when it acts on singlet states, it will be

non-vanishing acting on non-singlet states. Therefore we expect that non-singlets will not come

in supersymmetry multiplets. We can also compute the anticommutators
{Qa,Qs} = 2Hdap +2Tr (GXT) 74 (2.2.3)

We see that we get non-zero answers in the right hand side because the supersymmetry trans-
formations only close up to SU(N) transformations. In the gauged model these are gauge trans-
formations. But in the ungauged model we get a non-zero right hand side. Nonetheless, we can
still infer some information from this algebra.

Let us note first, that even for non-singlet states the energy is non-negative. Indeed, since
the supercharges are self-adjoint QL = @, and gamma matrices are traceless, summing over the

spinor indices leads to

16 16
32H = {Qu,Qa} = {QL.Qu} >0 (2:24)
a=1 a=1

2.2.3 Supersymmetric version of the ungauged model

In principle, we could modify the definition of the supercharges so as to have a supersymmetric
theory. We do not think that is possible. Nevertheless, if we are willing to also redefine the
Hamiltonian, then it is possible to preserve some of the supersymmetry. This can be achieved

by adding a new term to the Hamiltonian:
Hasy = H—Tr (X'G) (2.2.5)

This breaks the SO(9) symmetry to SO(8), and it preserves half of the supersymmetry, those
whose spinorial parameter obeys

(V' +1)e=0 (2.2.6)
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Moreover, now we have the standard supersymmetry algebra:

{Q.€,Q.€'} = 2Hgygye.€ (2.2.7)

This might seem surprising at first sight, but there is a simple explanation for the existence of this

Hamiltonian. In this chapter we will concentrate on the model with the original Hamiltonian.

2.2.4 Relation to Wilson loop insertions

There is a physical situation that arises in the gauged model which is very closely connected to
the ungauged model. We can have the original gauged theory and add an external quark in some
representation R, by coupling it through a Wilson line operator in representation R. This is very
closely related to the ungauged theory restricted to the representation R 3. The only difference is
that in the thermal partition function, restricted to representation R, we would include a factor
of the dimension of the representation in the ungauged case but not in the gauged case with a
Wilson loop.

i[ Awdt These break super-

The simplest Wilson loop operators we can consider are Tr  Pe
symmetry. Another commonly considered operator preserves half of the supersymmetries and
has the form Tr  Pe’ Ja(ArX 1), where we have picked one of the scalar fields [68, 69]. The extra
term corresponds to the extra term in the Hamiltonian (2.2.5). When we add the supersymmetric
Wilson loop in the adjoint representation, in the gravity dual we get a string coming in from
the boundary at X' = oo and a string going to X! = —oo. Equivalently, we can say we have a
string anti-string pair with the string pinned on the north pole of the S® and the anti-string on
the south pole of S8. See Figure 2.2 (a).

In conclusion, we can translate many of the statements in this chapter to statements about

insertions of Wilson lines for the original, gauged, model.

3 We can only consider representations transform trivially under the Zx center of S U(N), which are the ones
we can get from products of adjoints.
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2.3 Gravity duals of non-singlets

Let us consider first the gravity dual of the adjoint states, states in the adjoint representation
of SU(N). They are described by the gravity dual of the non-supersymmetric Wilson loop
et/ Awdt  Ag pointed out in [70] (see also [71]), the gravity dual of these Wilson loops differs
from the supersymmetric Wilson loops only through the fact that the strings are not pinned at
a particular point on the sphere, but they can move to any point on the sphere. See Figure
2.2(b,c). In other words, on the boundary of the bulk they obey Neumann, rather than Dirichlet,
boundary conditions in the sphere directions. If we have an adjoint, this means that the string
and the anti-string could lower their energy by coming closer together on the sphere. If they
coincide on the sphere, then we have a folded string whose energy can be lowered by moving the

tip further and further to the boundary, see Figure 2.2(c).

Einstein gravity region

black
hole

(a) (b) ()

Figure 2.2: (a): The string configuration corresponding to a supersymmetric Wilson line in
the adjoint representation. (b): The string and anti-string configuration representing a non-
supersymmetric adjoint. We get it from (a) by moving the left string segment to the right side
of the figure . (c): We further lower the energy configuration of (b) by moving the tip away from
the horizon. The idea is that the end point of this motion is a configuration as in Figure 2.1.

According to the gravity solution, the energy of folded stretched string (at f = oo), with its
tip momentarily at rest, is given by
2 [Te 1
E= / dr = — (Too — Ttip) (2.3.8)
2 Ttip

s
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This computation, valid in the gravity regime, would suggest that we can lower the energy to
zero by moving ry, — r'e, Where 7o is some large r cutoff. However, at very large r we cannot
trust the gravity computation. In other words, the fact that as ry, — 7o the energy goes to
zero cannot be trusted when both of these quantities are in the highly curved region. Therefore,
it could be that even the lowest energy configuration has a non-zero energy. What would be a
natural value for this energy? One natural possibility would be to think that re, oc AY/3 which
is the value of r where the curvature becomes of the order of the string scale. Furthermore, we
can also assume that naive cancellation between 74, and 7o, does not happen and that we get
an energy that is the typical energy of a massive string state at the location given by r ~ A\/3.
From (1.2.7) we find that this is an energy of the order of A3 We get the same answer if we

use dimensional analysis and assume that it will be of the order of the ‘t Hooft coupling. In both

cases we get

Buin = CAY/3 (2.3.9)

where C' is an unknown numerical constant. In the next subsection we will present an argument
saying that C' > 0. Note that C' cannot be negative because we have argued near (2.2.4) that
the energy should be positive. The fact that C is positive is also suggested by the numerical
computation in [57].

We can speculate about the temperature corrections to the estimate (2.3.9). We expect these
to come from the fact that at finite temperature the metric at the transition region, at r ~ /3,

will be changed due to the ry dependent terms in (1.2.7). We expect this to produce an extra

factor of (1 + ali—‘;), where 7 ~ /3. Using (1.2.8) we find then that

1/3 (TP
E=0N (14a () 4+ (2.3.10)

where @, is an unknown numerical constant. The main point is that it is small for T < A!/3.
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2.3.1 Exploring the large X region

In the above discussion we have assumed that the model starts in a state with X ~ 0 and then
we add the adjoint as a perturbation. This is particularly reasonable if the branes are trapped
near the origin by thermal effects.

On the other hand, we can set the temperature to zero and consider a situation where
all branes are separated from each other. In this case, we can ask about the energy of the
adjoint state. First we should note that if we do not gauge the symmetry, then we have a
manifold of Goldstone modes coming from applying the SU(N) transformations to the original
configurations. This manifold has an SU(N) symmetry and we can consider a wave function
which is in the adjoint representation under this global SU(N) symmetry. We can think of this
as a configuration which has an SU(N) “angular momentum” along this manifold. The typical
radius of this manifold is given by the distance between the branes, call it X. Then we get an
energy which goes like

A

We discuss and derive this in more detail in Appendix A.1.2. One can view this final formula as
analogous to the angular momentum potentials we get when a particle moves in three dimensions
in a spherically symmetric potential and with some angular momentum. It makes sense to first
freeze X and then calculate the potential (2.3.11) for the following reason. The effective mass of
the X variables is of order 1/¢g% ~ N which is large in the ‘t Hooft limit. Therefore, the motion in
the X directions produced by (2.3.11) will be relatively slow. This is like the Born-Oppenheimer
approximation. We can trust (2.3.11) when |X]| is large enough that we can use perturbation
theory in the matrix model. This means that A\/X?3 < 1. If we extend this to the boundary of its
regime of validity, namely to X3 ~ ), then we find that the energy becomes ~ A1/3, in agreement
with the estimate (2.3.9). Figure 2.3 shows the form of the potential when we separate the branes
and we are in an adjoint state. The reason we get a constant when |X| < A!/3 is the picture we

suggested in Figure 2.1 where the adjoint is localized in the transition region. When the branes
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are located within the Einstein gravity region they have shed their adjoint charge, leaving it as
a string with endpoints in the high curvature region.

Note that this transition happens at a value of r that coincides with the size of the ground
state wave function (1.2.3). This also suggests that when the X have an expectation value of
this size there will be other degrees of freedom that can carry the adjoint quantum numbers.

Note that the presence of the potential in Figure (2.3) suggests that the adjoint state with
X ~ 0 is unstable and the system is driven to X ~ co. We think that this is the ultimate fate of
adjoint states. On the other hand, at finite temperature the gravity solution shows that thermal
effects will trap the branes at X ~ 0, leading to a metastable minimum. As we will recall near
(2.3.23), this metastable state is very long lived in the ‘t Hooft limit, so that we only need to

worry about this decay mode at very low temperatures.

Eadj

ONY/3| .. -

~ A\L/3 X

Figure 2.3: Energy of an adjoint state where we explore the flat directions of the potential in
(1.2.1), which correspond to mutually diagonal matrices X . The solid line denotes the potential
computed in the region where we can trust perturbation theory in the matrix model side, which
is A\1/3 < |X|. The details depend on the particular form of the diagonal matrices X. In this
region, the energy comes from the angular momentum along the SU () directions in the moduli
space of vacua of the ungauged model. The horizontal doted line corresponds to the energy of a
massive string state in the transition region, as in Figure (2.1). We expect a smooth transition
region in between. We have not included here the effects of the thermal potential which produces
a large dip near X ~ 0, or r ~ rg, (for T < )\1/3) because it is common to the gauged and
ungauged models.
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2.3.2 Adjoint energies at weak coupling in the BMN matrix model

The BFSS matrix model is always strongly coupled at low energies. On the other hand, the BMN
matrix model has another scale, given by the mass . If we take A < p3, we can trust perturbative
computations even around the simplest, X = 0, vacuum. The expansion parameter is A\/u3. In
the simplest vacuum we have a collection of bosonic and fermionic harmonic oscillators. The
lightest sector with matrix creation—annihilation operators aj»,ai, 1 = 1,...,6 corresponds to
SO(6) operators X' =i, i = 1,...,6, see Appendix A.1.1 for details. Each oscillator a;-r has
energy u/6. In the gauged SU(IN) model we cannot act with a single creation operator because
it would be in the adjoint of SU(N). The first singlet appears for a pair of operators Tr[a;[a}] |0),
where the trace is over the SU(N) indices r, s: Tr[a;fa;[-] = (a;f)rs(a;[);. On the other hand, in
the ungauged model we can have a state of the form a;r|0>. This state has energy u/6 at zero
coupling. One can compute the first perturbative correction and we find that it is given by (see

Appendix A.1.1)

_l’_

SRS
| ©

A
Eadjoint = 2 + - (2.3.12)

where the dots are higher order terms in the A\/u? expansion. The idea is that if we were to sum
all the corrections and continue the answer to strong coupling we would get that E,q; ~ CA\/3
for \/p3 > 1.

It is interesting that one can obtain a relatively simple answer for this one loop shift for the
energy of more general adjoint states. This can be done using the general expression for the one
loop Hamiltonian in [27] and observing that it contains an additional piece for non-singlets in
representation R

N . 9g2
AJJl—loop = AI_Igauuged, 1-loop + TZQCQ(R) (2313)

The explicit expressions for AH 1-loop and A]flgauged’ 1-loop are given in eq. (A.1.14).

In general one should be careful with translating (2.3.13) to the energy shifts, since

~

AHgquged, 1-0op Mmay act differently on non-singlets. This point deserves some clarifications.

Since the trace is cyclic, operators az, forming a single-trace singlet operator Tr[aza;r. ...] are
placed on “a circle”. From this point of view, non-singlets have “boundaries”. So, generically,
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singlets and non-singlets have quite different Hilbert spaces and Aﬁgauged7 l-loop may have
completely different eigenvalues.

For example, in the gauged model on level two we have BPS states Tr[aja;], i # j. However,

Tt TT

in the adjoint sector of the ungauged model operators a; aj and aja; are different if ¢ # j. One can

f T stlll does not receive

T T - CLTCLT receives an

check explicitly using eq. (A 1.14) that the state corresponding a;
corrections from AHgauged 1-loop> whereas antisymmetric combination a;a

2
additional shift of 4¢> <§> . Nonetheless, both symmetric and anti-symmetric combinations get

9gN

contribution from 2 ng(adJ) = The reason the symmetric combination is still protected

against Aﬁgauged7 1-loop 1S that symmetrization restores the cyclic symmetry. It is natural to
conjecture that cyclic-symmetric non-singlets receive the same contribution from AH, gauged, 1-loop
as singlets.

So far we have discussed the vacuum with X = 0. One can also consider a fuzzy sphere
vacuum (ﬁ) with X¢ = £J% a = 1,2,3. In this case, one also expects SU(N) Goldstone
bosons. As in the discussion in section 2.3.1, we could calculate the energy of states with non-
trivial SU(N) quantum numbers by considering states with SU(N) angular momentum along
the manifold spanned by the Goldstone bosons. We discuss this in more detail in Appendix A.1.3

where we found a simple lower bound on the energy of the adjoint of the form

IN A
gRﬁ = ﬁ 5 Eadjoint ’ for ,Ug > A (2314)
where R? = ?W? ° Ty (J} + J3 + J3) is the average radius of the fuzzy spheres. This is consisent

with the expectations based on (2.3.11).

2.3.3 Spectrum above the minimum

We now return to strong coupling. Around the thermal background we have argued that the
minimum energy for the adjoint state is given in (2.3.9). We would now like to discuss excitations
above these states. In the planar limit these excitations will be single strings of operators with

a fundamental index at one end and an antifundamental at the other end, combined so that we
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an adjoint index in total. We expect that these states would be strings whose ends are located
in the high curvature region.

Of course, when we quantize the string we expect a large number of modes. So we expect a
number of energy eigenstates above the minimum given by (2.3.9). The first few are expected
to be separated from the minimum by gaps which are of the same order of magnitude as the
lowest energy itself (2.3.9). In general, it seems complicated to determine this spectrum because
it depends both on what is happening in the high curvature region as well as in the low curvature
region. As the string gets more excited it can dip further into the region described by Einstein
gravity. An example of an excitation would be a stretched folded string that goes from the high
curvature region to some radial position ryy. If 7y is within the weakly coupled region, then
its motion could be as indicated in Figure A.1, namely the tip of the string goes into the weakly
coupled region, it is slowed down by the string that pulls it from the boundary and it bounces

back to the high curvature region®. After it goes back into the high curvature region it could

come back out with other worldsheet excitations, depending on the physics in the high curvature
region. The full spectrum cannot be obtained unless we can solve both parts of the motion,
namely the one in the low curvature region as well as the one in the high curvature region. In
Appendix A.2 we discuss a toy problem where we assume that the string tip is reflected from the
high curvature region without any further excitation, thought this is probably not what happens
in reality.

When the excitation energy is large enough that the string can reach all the way to the
horizon, something new happens. The string falls into the horizon and we end up with a string
and an anti-string pair, each ending on the horizon. The minimum energy when this happens is

given by the energy of a folded string that stretches all the way from the high curvature region

to the horizon,

Thigh~A/3 5 5 / %
Egec = 1/ ’ dr—=caE T s la L (W) (2.3.15)
T Jro T T\ TAL/3

4 We compute the phase shift for this motion in Appendix A.2. A similar computation for the single matrix
model in the double scaling limit was done in [62, 63] and matched to the matrix model.
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where we expect that C' is an order one quantity bigger than C' in (2.3.9).

We will call this the “deconfinement” energy, because above this energy the adjoint is ef-
fectively behaving as two independent excitations, a quark and an anti-quark, corresponding to
the string and antistring segments ending on the horizon. Furthermore, when a string ends on
the horizon, there is an additional factor N in the effective number of states. This arises as
follows. When a string wraps the FKuclidean black hole it has a disk topology, which produces
and additional factor of 1/gs o< N. This is in addition to the factor of N that we get from all the
possible values of the fundamental index at the boundary. This new factor is present for both
the gauged and ungauged models and it is related to the physics at the horizon.

When the string is not reaching the black hole horizon we can effectively think of the large
N Hilbert space as factorizing into the black hole part which lives in the singlet Hilbert space

and non-singlet excitations that live close to the boundary.

,Hnonfsinglets ~ Hsinglets o2y Hboundary string Fock space (2316)

Furthermore there is a Fock space of boundary excitations, generated by the adjoint excitations
which appear as strings with ends in the large curvature region, as in Figure 2.1. Each generator
has the degeneracy of an adjoint, or a factor of N2. °

The strings that end on the horizon can be qualitatively viewed as extra tensor factors, one
for the quarks and one for the anti-quarks (or strings or anti-strings), see Figure 2.2(b). Each
of these generates a Fock space. The string ending on the horizon is expected to have minimum
energy CA1/3 /2. The same is true for the anti-string. This is because the folded string whose tip
is at the horizon has energy CA'/3 by definition. And this is becoming the string /anti-string pair.
The degeneracy of each generator also is proportional to N? but with a temperature dependent
factor that can be computed by considering a string wrapping the black hole, which has an extra

free energy given by (2.3.15) plus a logarithm of N, related to the factor of 1/gs in the partition

function mentioned above. This extra degeneracy is not exact, it simply reflects an increase in

% We are idenfiying N? — 1 ~ N? since we are only discussing the leading N effects.
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the entropy of the combined black hole and string system, but we do not expect to be able to
separate it cleanly into a black hole part and a string part. We get the following schematic

decomposition of the Hilbert space

Hnon—singlets ~ 7'[sing;lets ®Hboundary string Fock®Hhorizon string Fock®Hhorizon antistring Fock (2317)

2.3.4 The free energy

In this subsection we consider the free energy of the ungauged theory. Because gauging is
removing of order N? degrees of freedom, and given that the free energy is of order N2, one
might worry that the free energy of the gauged model would be very different than that of the
ungauged one.

In fact, large N counting tells us that

_BFungauged - 5Fgauged = NQf(Al/SB) (2318)

For simplicity we could start considering the BMN model at weak coupling. In this case, in
the ungauged theory we basically have 9N? bosonic harmonic oscillators, while in the gauged
theory we have 8N? bosonic oscillators since the gauge constraint is essentially removing one
matrix (the one we can diagonalize). The fermions give a subleading contribution in this high

temperature limit. Therefore, in this case we get
3 A
f~—log(up) , A3 K1, 3 <1 (2.3.19)

On the other hand, at strong coupling, A\3> > 1 > Bu, where we can trust the black hole
solution, we have a different picture. The idea is that non-singlets are extra adjoint particles
living near the boundary of the gravity solution. Because of the factorization (2.3.17) they

contribute with extra factors of the form

(14 N2dage PV7°C) (2.3.20)
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in the partition function. This is the contribution of just the lowest energy adjoint state and d 44
is its degeneracy. We expect it to be of order one. The factor of N? comes from the dimension

of the adjoint representation. Therefore we expect that the leading energy difference is
_A)\1/3
6Fgauged - /BFungauged = ]\[QdAdje pAT=o ’ )‘63 >1 (2321)

This shows that Fgauged and Fungauged are exponentially close in the strongly coupled limit, while
they are different at weak coupling (2.3.19).

Let us emphasize that at strong coupling we have a reduction in the naively expected number
of states in both theories. For that reason one might have thought that the gauging or not
gauging would have a large impact. However, we see that this is is not what is happening, both
theories have a common low energy description.

Using the factorized from of the Hilbert space, we can write a more precise form for the free

energy difference

) —(=1)Flog |1 (=1)FeFEr (2.3.22)

where n runs over all the adjoint states which can be bosons or fermions. This follows from
standard large N counting.

We can further improve the discussion by including strings ending at the horizon. These
contributions are most clear in Euclidean space. They still give contributions to f that are
exponentially suppressed o e=PM°C These are smaller than (2.3.21) because C < C.

We have mentioned in the introduction that both ungauged and gauged models are unstable
at very low temperatures. Here we will review more precise estimates for the decay rates (see eg.
[72]). Let us start from the gauged model. Emitting a single DO brane to infinity will lower the

Bekenstein—-Hawking entropy (1.2.11). Therefore such process is suppressed by:

P ~ exp <—g§> = exp <_2]€f> (2.3.23)
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where S is given in (1.2.11). The instability is unsuppressed when

AL/3

Ter~ N5/9

(2.3.24)

Formally, at this temperature the dilaton becomes large at the horizon and one has to lift the
gravity solution (1.2.7) to 11d M-theory black string [12]. Generically, black strings suffer from the
Gregory-Laflamme instability [73], which, in this case, also occurs at the temperature (2.3.24).

The contribution from the lowest adjoint (2.3.21) will enhance (2.3.23) by ~ e PNC How-

—N%% Therefore the instability in the ungauged model

ever at T, this factor is extremely small e
occurs at the same temperature. Indeed, as we have mentioned before, this instability is the

instability of the black hole itself, so excitations near the boundary should not affect it.

2.4 Deconfinement and the eigenvalues Polyakov loop holonomy

The main point of this work is that in theories with gravity duals all non-singlets have high
energies and are not dynamically important at low energies. On the other hand, the arguments in
[64, 65] seem to suggest that non-singlets are important for modifying the eigenvalue distribution
of the Polyakov loop. Furthermore, the fact that this distribution is not uniform is viewed as a
signal of a black hole formation in the bulk.

This seems to be in contradiction with what we are saying, since we are emphasizing that
the non-singlets are dynamically unimportant at low energies and strong coupling. We will here
show why there is no contradiction.

To start, let us suppose that we are studying the gauged model. Then the partition func-
tion includes the integral over the gauge field holonomy, which we can take to diagonal U =
diag (eiel, .. efN ) In the large N limit it is convenient to introduce the normalized density

function p(6)

/ " a0 p(6) =1 (2.4.25)
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and the corresponding moments p, = ffﬁ df ¢ p(h). The moments p, measure the non-
homogeneity of the density function.

Since we only have adjoint fields in the matrix model, the energy can depend only on the
relative distance between the eigenvalues ; —¢;. There is a constant repulsion of order one among
eigenvalues 6; due to the group measure. Integrating out the matter fields leads to an attraction
of eigenvalues. At very low temperatures the repulsions dominates and the density function is
uniform (in the BMN model). As the temperature increases, the attraction becomes stronger
and stronger until the density function jumps to a non-uniform distribution. In other words,
eigenvalues from a cluster [65]. However, since the energy depends on the relative distance only,
the absolute position of the cluster is not fixed, and one has to integrate over this zero mode.
This is the reason why the Polyakov loop in the fundamental representation is still zero after the
transition.

This resembles the gravity computation of the Polyakov loop in the fundamental [64]: one
can have a single string stretched between the horizon and infinity. Such a string has a finite
action and one could expect that the Polyakov loop will not be zero. However, in the black hole

background one has a normalizable mode of the 2-form B,,,, which couples to the string as

exp (ib) , bE/B (2.4.26)

And after the integration over b one gets zero.
If we have just a single adjoint particle of mass CA'/3 and degeneracy d Adj» then the partition

function reads as (see [65] for the derivation):

7= /dp1 exp (—N2|p1|2 [1 - dAdje‘ﬁcA”sD (2.4.27)

where in the exponent we have ignored the small terms proportional to 6_2’80/\1/3, e~38CN% and

so on. The first term in brackets, the one, comes from the SU(IN) measure, whereas the second
term comes from the matter contribution, where |p1|? is the contribution of the trace of the
holonomy in the adjoint representation.
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Assuming that d44; and C are of order 1 and BA/3 > 1, the integral is dominated by p; = 0.
Then, the density is uniform and we expect no black hole!This would be the right conclusion
if the only states we had were the ones corresponding to strings with both ends at the high
curvature region. For example, these are the only non-singlets around the gapped vacua of the
BMN model in the strong coupling region.

However, apart from those strings, we can also have strings ending on the black hole. These
strings effectively behave as quarks and antiquarks, with an overall constraint that there is an
equal number of quarks and anti-quarks. We can view the integral over b in (2.4.26) as enforcing

this constraint. Therefore we can now write a partition function of the form
Z = / dpydb exp (—N2 [\pl\z — de PN by e—“’ﬁl)]) (2.4.28)

where d’ is a temperature dependent quantity that is less important than the exponential factor
we are explicitly writing. We will discuss the origin of d’ below. We now see that, before

integrating over b, the integral does have a non-trivial saddle point for p;
ps = el BAC/2 (2.4.29)

Higher p,, n > 2 are suppressed by factors of (e‘ﬂ/\l/gé/ 2)n. It means that the density p(6) has
a bump determined by the cosine function, see Figure 2.4. Of course, in this discussion we used
the gravity solution to say what answer to expect on the matrix model side. We have not derived

this directly from the matrix model side!We are simply spelling out what answer we expect.

p(0)

27 0

Figure 2.4: The eigenvalue density of the Polyakov loop at strong coupling. It is only slightly
non-uniform.
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We have a non-zero VEV of the Polyakov loop in the adjoint representation:
(Wagj) = (Traqs P/ 4) = N2|pf[? oc N2e=PNC (2.4.30)

In other words, the large energy required to stretch a string from the boundary to the horizon
implies that the expectation value of this Wilson loop is very small. Of course, the Polyakov loop
in the fundamental is still zero since we have an integral over b.

1/3 .
—BAY3C /2 in

Let us say a few words about the pre-exponent factor d’. The combination d’e
eq. (2.4.28) comes from a single string stretched between the boundary at r = 7+, and the horizon
at r = rg. Therefore,

d’ exp (—ml/?’é/z) = Dexp <—ﬁf°’é;r°> (2.4.31)

The prefactor D arises from the one loop integral around the classical string configuration, which
is a string that wraps the radial and Euclidean time directions. Due to the scaling properties
of the solution (1.2.7), it can only give a power law term in the temperature. The exponential
term 57%"27:0 arises from the classical string action. As before, we expect that 7o, is a cutoff
dependent quantity that is independent of the temperature, which we write as 7o /m = CAV/3,
This constant is expected to be larger that C in (2.3.9) since a string/anti-string pair ending
on the horizon can decay into the massive string modes that live at the high curvature regions,
which have the energy (2.3.9). On the other hand the 7 term gives a temperature dependent
term in the exponent

Bro _ B <47W Ad0>2/5 (2.4.32)

2 2w 7
where we have used eq. (1.2.8) to find 7¢ in terms of j.
The adjoint particles that live near the high curvature region (see Figure 2.1) contribute as

e=PN/C t6 the expectation value in (2.4.30), which is suppressed by 1/N? compared to (2.4.30),

but the exponential suppression is smaller, since C' < C. So the full expectation value in the
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adjoint is

(W) ox N2e™PNAC 4 o=BAVRC (2.4.33)

where the dots refer to other contributions described by strings that are not ending at the horizon.
The order N° contribution can be viewed as arising from doing the Gaussian integral in (2.4.27).
In matrix model vacua with no black holes (such as the X = 0 vacuum of the BMN matrix
model) we only get the second term in (2.4.33).

2.5 Further comments

2.5.1 Is there a bulk SU(N) gauge field associated to the SU(N) global sym-

metry of the ungauged model?

The ungauged model has a global SU(N) symmetry. According to the usual expectations, this
should correspond to an SU(N) gauge symmetry in the bulk. On the other hand, we have
argued that the bulk theory, at least in the Einstein gravity region, is essentially the same as
that of the gauged model. In our case, the states charged under SU(N) are localized near the
boundary of the geometry. The fact that a global symmetry might not extend over the full bulk
is not at all surprising and it happens in other situations. For example if we add N; massive
fundamental fields, all with the same mass, to an SU (V) gauge theory, then we have an SU(Ny)
flavor symmetry. In the gravity dual, this is realized as a brane that reaches up to a finite distance
Tmin in the bulk [74]. The larger the mass, the larger ry,;,. For low energies, we explore the bulk
only in the region where r < ryi, and we do not encounter states charged under the global flavor
Symimetry.

Here something similar is happening, the bulk SU (V) gauge symmetry, if present, is located
only in the highly curved region, so it is not visible in the gravity region. And all bulk states
that carry SU(N) charge, have some excitations located in that highly curved region. We can
say that the SU(N) gauge symmetry we expected is “confined” in the bulk gravity region, but

it is present in the highly curved region.
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2.5.2 Are there gauge fields on brane probes?

Let us consider the ungauged model. Let us say that we have a probe D0 brane located in the
region of the geometry described by Einstein gravity. Does this brane probe have a gauge field on
its worldvolume? Naively, one would say no, since we are dealing with the ungauged model. On
the other hand, we have argued that the bulk gravity region should be essentially the same for the
gauged and ungauged models, so that we would expect a gauge field on the probe worldvolume.

We think that the right answer is the second, namely that there is a gauge field on the brane
probes if the probes are in the Einstein gravity region, the region where » < A/3. This seems
to be the only reasonable answer since these are the only kinds of DO branes that we have in
the ten dimensional string theory. This gauge field imposes a constraint saying that the number
of strings ending on the DO brane should be equal to the number coming out. From the matrix
model point of view, the degrees of freedom on the brane probe are effective low energy degrees
of freedom that describe a complicated bound state where the matrices have large fluctuations.
Recall the discussion in section 2.2.1. For this reason they reflect more the dynamics of these
degrees of freedom than the properties of the precise UV definition of the model.

On the other hand, if we consider a DO brane probe in the highly curved region, which is
described in perturbation theory, then we do not expect to have a gauge field on the brane probe,
since we do not have it in the ungauged model.

It would be interesting to understand what kind of transmutation the brane probe undergoes

so that this happens as it crosses from the weakly curved bulk region to the strongly curved one.

2.5.3 The ungauged model and M-theory

In [22] the BFSS model was introduced as a tool to extract the S-matrix for 11 dimensional
M-theory. In contrast to the discussion in most of this chapter, the BF'SS proposal is to consider
a very low energy limit of this matrix model. In this very low energy limit we go very deep inside
the bulk, where the 11th dimension becomes large compared to other quantities and the physics

is expected to reproduce the 11d one. It seems that the difference between the gauged and the
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ungauged model is really lost when we go to such low energies, F o< 1/N, so that we could have

as well started from the ungauged model also.

2.5.4 Physical realizations

It seems that the remarks in this work suggest that if we wanted to build a quantum computer
that simulates this problem we could start with a set of harmonic oscillators and Majorana
fermions and then fine tune the interactions so that we get the ungauged model. This seems
simpler than producing the gauged model where the SU(N) gauge redundancy should emerge
from some other further model. In other words, it seems simpler to try to arrange for a model
having an approximate SU(N) global symmetry than having to produce one with the SU(N)
gauge symmetry. Because the energy of the non-singlets is higher than that of singlets we would
expect that small perturbations that break the SU(N) global symmetry should not be important
in the IR. Still, it is important not to generate terms that lead to relevant perturbations of the

model. But the number of those to fine tune seems smaller than those of all possible couplings.

2.6 Conclusions

We have seen that the Einstein gravity region can be present in both the gauged and ungauged
versions of the model. The extra degrees of freedom of the ungauged model reside in the highly
curved region of the geometry. We can say that both the gauged and ungauged models flow to
the same theory in the infrared. Or that the ungauged model flows to the gauged model in the
IR. Of course, it is not surprising that they have something in common, since the singlet sector
is common to both theories. What we wanted to highlight here was that the non-singlets do not
modify the gravity solution in the region where the gravity approximation is valid.

A very similar story was found in the single matrix quantum mechanics in [58]. There the two
models coincided as long as the temperature was low enough. In that case, at temperatures higher
than a critical temperature the ungauged model would undergo a phase transition, somewhat

reminiscent of the deconfinement transitions. See also [61] for a relation between that phase
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and black holes. In our case, the black hole phase is present both for the gauged and ungauged
models.

We should emphasize that many of our statements can be rephrased in terms of expectations
values of Wilson loops in the gauged model. We mainly talked about the non-supersymmetric
Wilson loop. For example, a Wilson loop in the adjoint representation computed by a string like
the one displayed in Figure 2.1 (and extended along the time direction). This same loop has
higher energy excitations where the string looks like the ones in Figure 2.2(b,c).

We have noted that the fact that the string has high tension implies that the eigenvalue distri-
bution of the thermal holonomy, or Polyakov loop operator, has only a very small inhomogeneity
when we have black hole present, see Figure 2.4. One might have expected that the black hole
formation would result in a stronger eigenvalue localization for the Polyakov loop. This is the
Polyakov loop of the full model, the UV theory, which is the only one we know how to define
precisely in this theory.

In the Gurau-Witten tensor models, in a sense, the opposite from what we said here happens.
In such models, in the leading large N approximation the basic field behaves as a conformal field
with low scaling dimension. Therefore we do not have an energy gap to the non-singlets as we
had in the DO brane matrix model. In those cases the ungauged model seems a better starting

point to describe the physics.
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Chapter 3

SYK thermalization and universal

constraints on energy flow

3.1 Introduction

Motivated by numerous recent experiments probing the out-of-equilibrium dynamics of reason-
ably well isolated quantum many-body systems, e.g. [75, 76, 77], and by long-standing theoretical
questions concerning the nature of information processing in complex quantum systems, there
has been a recent surge of interest in the physics of thermalization. In general, the phenomenon
of thermalization is complex, involving many physical processes, including local relaxation of
disturbances, diffusion of charge and energy, global spreading or scrambling of quantum infor-
mation [78, 79, 80], and much more. This makes the subject complicated and rich.

Given this complexity, one natural starting point is to search for fundamental bounds on
quantum dynamics. For example, in the context of strongly interacting many-body systems,
physicists have speculated about a ‘Planckian’ limit to scattering that might shed light on various
material properties, e.g. [81, 7, 82, 83, 84, 85, 86, 87] i In the context of quantum chaos, a similar

kind of Planckian bound has been derived for the growth as chaos as diagnosed by so-called out-

h

LPlanckian’ because the scattering time estimate uses only Planck’s constant and the thermal scale: T
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of-time-order correlators [8]. One may wonder if such Planckian bounds can also be found for
other aspects of thermalization.

In addition to general bounds, simple solvable models provide another powerful approach to
understand quantum thermalization. Whereas bounds control the shape of the space of possibil-
ities, solvable models give us archetypal behaviors or fixed points to which general models can be
compared. In this context, considerable recent attention has been paid to the Sachdev-Ye-Kitaev
(SYK) model [16, 88, 89, 17, 90, 36, 91, 92] and its variants [93, 94, 95, 96, 97, 98, 99, 100, 101]
as tractable models of chaotic, thermalizing systems.

In this work, we study the equilibration of a system suddenly coupled to a large bath. The
key object in our analysis is the energy curve: the time-dependence of the system energy after
the system-bath coupling is suddenly turned on at zero time. At a schematic level, our results
are as follows. First, we show that the energy curve has generic early time feature in which
the system energy first increases with time even when the bath is cooler than the system. This
initial increase is shown to obey a universal Planckian bound which constrains the shape of the
early time energy bump. Second, we setup and analyze in detail a simple model of system-
bath thermalization in which both system and bath are SYK models and the bath size is much
greater than the system size. We are able to numerically compute the energy curve in this setup,
including the early time energy rise and subsequent crossover to energy loss, the intermediate
time draining of energy from the system, and the late time approach to equilibrium. In the low
temperature limit, we also derive various analytical results, for example, the case of energy loss
into a zero-temperature bath (Sec. 3.3.7).

Our results are related to the physics of black hole evaporation in AdS [102, 103, 104].
One precise connection can be made via the SYK model, which at low temperatures exhibits a
dynamical sector that is identical to a form a quantum gravity in a two-dimensional nearly AdS
spacetime. In this context, we show that our universal bound on the early time bump in the
energy curve is equivalent to an instance of the averaged null energy condition. The latter is an

important constraint on energy flow that is often assumed in general relativity. Moreover, our
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coupled SYK system-bath setup reproduces and generalizes simple phenomenological models of
black hole evaporation in which absorbing boundary conditions were used to extract the radiation.

The rest of the chapter is structured as follows. In the remainder of the Introduction we
summarize our results in more detail. In Section 3.2 we setup and prove a rigorous bound on
early time energy dynamics and demonstrate its relation to the averaged null energy condition
in quantum gravity. In Section 3.3 we setup the coupled SYK cluster model. We analyse its
equilibrium properties and use a Schwinger-Keldysh approach to analyse the system out-of-
equilibrium. We report both numerical studies as well as comprehensive analytical results in
various limits. In particular, Section 3.3.7 is dedicated to studying total evaporation into a zero-
temperature bath. The description of the exact numerical setup and detailed calculations can
be found in Appendices. Section 3.4 contains a brief discussion of our results and possible future

directions.

3.1.1 Summary of results

This section describes the setting for our results and summarizes again the main points in more
technical language. We consider the interaction of a system S with a bath B which is much
larger than the system. This allows one to ignore the backreaction of the system on the bath.
The system and bath have Hamiltonians Hg and Hp, respectively, and at time zero they are
coupled via gHgp. The goal is to understand how the system energy changes as a function of
time due to this coupling.

Just before the coupling is turned on, the system and bath are in independent thermal
states at inverse temperatures Béo) and ﬁg), respectively. The time evolution of the system-bath

composite is

‘ BV Hs BV HE\ |
psp(t) = et (e 7 ® c ZBB gttt (3.1.1)
where
H=Hg+ Hp+ gHgp (3.1.2)
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System Energy
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Time

Figure 3.1: Typical behavior of system energy as a function of time for a large bath at lower
temperature. We distinguish four dynamical regimes, labeled (1), (2), (3), and (4), which are
discussed in detail in the text. Roughly they correspond to the early time energy rise, the
subsequent turnover to energy loss, a sustained period of energy loss, and the final approach to
global equilibrium.

and

Hgsp = 0O50p (3.1.3)

is a product of two Hermitian operators. We also present some numerical calculations (Sec-
tion 3.3.9) where the system and bath are initialized into pure states.

The primary observable of interest is the energy curve of the system,

Es(t) = tr[Hgpsp(t)]. (3.1.4)

A typical energy curve is sketched in Figure 3.1. Assuming the bath is cooler than the system,
there are four key pieces of the energy curve: (1) the very early time energy increase, (2) the
subsequent turnover to energy loss, (3) a sustained period of quasi-steady-state energy loss, and
(4) a final approach to true system-bath equilibrium.

The first main result is a general bound on the energy curve whenever the system-bath
interaction is a single product of operators. For simplicity, consider a limit where the system-bath

coupling ¢ is small, so that the system temperature is approximately constant on the time-scale
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of the inherent system dynamics. Define the integrated energy flux by
S .
F, = / dte "' Eg. (3.1.5)
0
We show that this quantity is guaranteed to be positive for sufficiently large «:
k>2/Bg = F.>0. (3.1.6)

This result is proven for any system and any bath to leading order in perturbation theory in g.
In the context of SYK, we show that it holds more generally (Section 3.3.8). The constant  sets
the time-scale; reintroducing Planck’s constant A and Boltzmann’s constant kp, the boundary

value of k is

2 2h

= = =26x 10" sat Tg =293 K 3.1.7
Bs Tskp S ( )

The other main results are obtained in a particular model in which both system and bath are
SYK clusters. We consider two SYK models, a system composed of N fermions with gg-body
interactions and a bath composed of M fermions with ¢p-body interactions. The system and
bath are coupled via a random term involving fg system fermions and fp bath fermions. We
take M > N so that the bath is unaffected by the coupling to the system. See Section 1.3 for
more details and Ref. [105] for another study of two coupled SYK clusters.

We derive the full large NV, large M Schwinger-Keldysh equations of motion for this system
and numerically solve them following the technique in Refs. [37, 106]. This allows us to compute
the entire energy curve for this system-bath model as a function of the initial system temperature,
the initial bath temperature, and all the other parameters of the model.

Moreover, in the the low temperature limit we are able to solve the Kadanoff-Baym equation
analytically to determine properties of the initial energy bump, the rate of energy loss, and the
approach to final equilibrium.

Finally, using the gravitational description of the low energy dynamics of SYK, we argue that

our general bound on energy flux is equivalent to one instance of a bulk energy bound called
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the average null energy condition. Specifically, we show that the positivity of the energy flux for
k > 27 /Bs implies the ANEC in the bulk integrated over the black hole horizon. Curiously, the
condition k > 27 /fBg is actually weaker than the most general condition proven in perturbation

theory, which is F,, > 0 for all k > 2/fs.

3.2 Bounds on energy dynamics

In this section we discuss the general positivity bound on the integrated energy flux introduced
above. This bound holds perturbatively in the system-bath coupling whenever the system-bath
interaction is a simple product form, Hgg = OgOpg. In subsequent subsections, we discuss
the general situation with multiple operator couplings and the relation to energy conditions in

holography.

3.2.1 Perturbative bound

Recall that the integrated energy flux is defined by

o0 .
F, = / dte " Eg. (3.2.8)
0
In Appendix B.5 we prove that
2
F, >0 for K > — (3.2.9)
Bs

in the weak coupling limit, g — 0, for any system and bath Hamiltonians.

The proof proceeds by explicitly computing the integrated flux Fj in terms of spectral func-
tions associated with the system operator Og and the bath operator Opg. The positivity of the
spectral functions can then be used to constrain the integrated flux. Making no other assump-
tions about the system and bath spectral functions, one can show that F,, > 0 for all k > 2/f8g.

With further assumptions on the system or bath, it might be possible to strengthen this result.
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The details are in Appendix B.5, but a few key formulas are reproduced here. To begin, we

define the spectral function for an operator O via the response function,

XB(t) = —i0()([O(t), 0(0)])s. (3.2.10)

The Fourier transform is denoted X ®(w), and the spectral function A(v) is then

dv  A(v)
XPw)y= | —— 2. 3.2.11
() 2r w + 10t — v ( )
We may further decompose the spectral function A(v) into two positive definite pieces,
Alv)=As(v) — A_(v), (3.2.12)
defined by
Ay(v) =2rm an\(n]O\mHQé(y F [Em — En)) (3.2.13)
where p, = e %7 /Z is the thermal probability.
The integrated flux in terms of the spectral functions Agy and Apy is
dw dw' wA A !
Fo=2g? [ wAs (W) Ap (W) (3.2.14)

2m 21 (w4 w')? + K2

The short-time limit, corresponding the initial rise of energy [part (1) of Figure 3.1], can be

accessed by taking Kk — oo to give

dw d
Fryoo — 2% /wwwA5+ (w)Apy (). (3.2.15)
Using
1
/dwwA+(w) ok /dwwA(w) :/ dwwA(w) > 0, (3.2.16)
w>0

it follows that

Fyvoe >0 (3.2.17)
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in agreement with results in [104].

The long-time limit, corresponding to the steady loss of energy [part (3) of Figure 3.1], can

be accessed by taking k — 0 to give

Faoo = =20 | 92% : 3.2.18
. K Juso 2T 2 sinh 25 sinh 28 ( )

g / dw sinh P50 A () Ap(w)

This expression shows that energy always flows from hot to cold on these timescales. Note that
we are not accessing the final approach to equilibrium since the coupling ¢ is being treated

perturbatively and we are not yet studying the time-dependence of the system temperature.

3.2.2 Multi-operator couplings

It is natural to ask if the bound if the bound can be extended to include more general system-bath

couplings. Consider a coupling of the form
Hgp =Y 0%0%. (3.2.19)
(e

In this case, a more general expression for the integrated flux can be derived which involves mixed
correlators of O% with OP. We have not recorded this expression here because, as we show by
example shortly, the integrated flux in this case does not obey a general positivity condition.?

If the correlations between O% and OF are diagonal, then the positivity result continues to
hold. This is because the diagonal terms reduce to the single product of operators case considered
above. Although this is a special case, it is not an uncommon situation; for example, in the SYK
model, different fermions are approximately decorrelated to leading order in N.

However, for a generic multi-operator coupling the energy may go down initially. For example,
consider a single-qubit system s interacting with a bath qubit b. The unperturbed Hamiltonian
reads as:

Hg+ Hp = wos's + Qbb (3.2.20)

2We thank Daniel Ranard for discussions on multi-operator couplings.
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where s and b are lowering operators in a two-level system. We switch on the following quadratic
interaction at time t = 0:

Hsp =V (s'b+bls) (3.2.21)

It is easy to solve this quadratic theory exactly. If the initial density matrices are diagonal,
ps(m)(t = 0) = diag(l — ng(p), ns(B)): (3.2.22)
then the expression for the system’s energy at early times is given by:
Es(t) = wo(s's)(t) = wong +wo Vi (ng —ng) + .. .. (3.2.23)
From this expression it is obvious that the system energy may go down initially.

3.2.3 Relation to energy conditions in holography

The motivation for the bound discussed above originates from considering evaporating black
holes in AdS [104]. Take the two sided eternal AdS black hole or the wormhole connecting two
asymptotically AdS regions. In the context of AdS/CFT, this geometry can be understood as the
holographic dual of a pair of decoupled but entangled CFTs prepared in the thermofield double
state. We will label these two boundary CFTs as L (left) and R (right), see figure 3.2.

The decoupling of the two CF'T's should be manifested in the bulk dual as the absence of causal
signaling between the two boundaries through the AdS wormhole spacetime. This translates to
the wormhole being non-traversable. Traversability is precluded by the so-called average null
energy condition [107, 108, 109, 110] on the matter stress energy tensor Tj; along the horizon of
the black hole

ANEC : / Toupk®kPd)\ > 0 (3.2.24)
where k% is the null tangent vector along the horizon of the black hole and A is an affine parameter

along the null ray. The eternal black hole with matter in the Hartle-Hawking vacuum has
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Figure 3.2: Geometry of the AdS wormhole dual to two entangled CFTs living on the boundaries.
The ANEC along the horizon (shaded blue) guarantees that a signal sent from the left boundary
(green arrow) does not traverse the wormhole and crashes into the singularity.

vanishing stress tensor along its horizons making it only marginally non-traversable. In fact,
there is a simple protocol that makes the wormhole traversable by coupling the two boundaries
[111).

We will now consider a setting in which this ANEC places a bound on the energy flux of the
boundary system. We will consider the eternal black hole in a 1+1 dimensional setting and allow
it to evaporate by imposing absorbing boundary conditions at the boundary. This is a model
for starting with two entangled holographic quantum systems dual to the eternal black hole and
where one of systems, say the right system, is coupled to an external bath allowing energy to
flow between the two.

Consider the Jackiw-Teitelboim (JT) model [112, 113, 114] coupled to matter given by the

action

I= IJT[¢3 g] + Imatter (3225)

Iyrl¢, 9] = 1673GN /dzaz ¢ (R+2)+ Sj(’;N /aK (3.2.26)

where ¢ is the dilaton and g is the two dimensional metric.® This model has been studied recently

in [115, 116, 103]. Along with this action this theory comes with a pair of boundary conditions

3Note we are disregarding a topological term ¢g f d?zR in the action which is not important for questions we
are interested in regarding dynamics.
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on the metric and dilaton

Pr

1
Juu™~ > ¢=P~ - (3.2.27)

where u is the time along the boundary and € is the radial coordinate distance away from the
boundary. w is sometimes called the physical boundary time. Integrating over the dilaton along
an imaginary contour fixes the metric to be that of AdSs, in which it is convenient to work in

Poincare coordinates

—dt’ +dz?> —4dztdx—
2 _ +
ds® = 2 =T rT=t+z. (3.2.28)

The gravitational constraints of this theory imply that the only dynamical gravitational degree of
freedom lives on the boundary of the spacetime, and is given by the reparameterization between
the Poincare time ¢t and physical boundary time u, t(u).

The ADM energy of the spacetime, or the energy as measured on the boundary, is given by

br
E = Gn {t(u),u} (3.2.29)

The equation of motion of this theory comes from balancing the fluxes of energy of the gravita-

tional sector and the matter.

E = 2(u) [Ty — Tyt p+ (3.2.30)

] |b0undary

where on the right hand of the equation we have the expectation value of the stress tensors
evaluated on the boundary of the spacetime.

The eternal black hole is a vacuum solution of this model with

Tr+w+ = Tm*z* =0 (3231)
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This fixes the reparameterization, up to an SL2(R) transformation, to be

t(u) = gtanh [gu} (3.2.32)

Now lets imagine coupling the right boundary to a large external system in the vacuum to
allow the black hole to evaporate. This will only modify the left moving stress T,-,-. The

equation of motion will therefore be

E =1{*(u)T, (3.2.33)

T ‘ boundary

We want to use this expression to find the stress tensor on the horizon. In general, the relation
between the stress tensor near the boundary and the one at the horizon is very complicated in
the presence of massive matter or graybody factors. We specialize to the case with matter where
these complications are absent, for example by considering conformal matter in the bulk on the
background metric g, with no coupling to the dilaton. Due to holomorphic factorization, we can

write

Tyo (27) = Toma ()| youndary = £ (@) E () (3.2.34)

where we used that x— = t at the boundary. The first equality follows because there is no
dependence on z™ and the stress energy flows on null lines.

We need to plug this into the average null energy along the future horizon on the right
exterior. It is important here that we are working to leading order in the gravitational coupling
kg = BGN /¢y, so that the reparameterization ¢(u) is still given by the unperturbed form (3.2.32).
Therefore, the horizon along which we want to evaluate the ANEC is still at 27 = 3/x. Using

the affine parameterization along the horizon given by

1
= (A) = g — 3 rt = g (3.2.35)
dx~
Em=—"— kt=0 3.2.36
o ( )
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we have

da— 2
/ Tk kPd\ = / T, . (;) d\ (3.2.37)

21w

:/ Ee 5 du (3.2.38)
0

Therefore in this case, the ANEC can be recast as a bound on the integrated energy flux,

_ 27u

ANEC — / Ee 7 du>0. (3.2.39)
0

We see that the ANEC translates to a weighted integral of the energy flux at the boundary. This
weighting factor is what allows the initial positive energy excitation to overwhelm the subsequent
negative energy flux from the black hole losing energy to the external bath. It is interesting that

this condition is implied by the general perturbative bound Eq. (3.1.5).

3.3 Thermalization in SYK

3.3.1 Coupling to a bath

Suppose that one system fermion v couples to an external bath operator Op,
Sint = ZV/du¢OB (3.3.40)
C

If the interaction is weak enough, we can use the 1-loop approximation to the interaction term:

V2
Sint — 7 / duldUQ XB(U]_,UQ),GS(U]_,UQ) (3.3.41)
C

where the function Xp is simply the two-point function of the bath operator Xp(t1,t2) =
(Op(t1)Op(t2))B. Moreover, if the bath is large, we can neglect the back reaction on the bath

and take Xp to be fixed. This logic can be made precise if we couple a large-N SYK to another
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large-M SYK with M > N. Consider a general interaction of the form*
j 7"'7j
Vill’m’ing Yiy + - Wig Xy - Xigy (3.3.42)

where xj, j = 1,..., M are the M Majorana fermions of the bath and Vijll""éjfB is a random
b fag

Gaussian variable with variance

<(Vj17---ajf3>2> _ V(s —1D'/B! (no sum). (3.3.43)

i1ifg NIs—1)[f5
Note that this expression allows for a quite general coupling between fg system fermions and fp
bath fermions. Based on it, we can derive an effective action similar to (1.3.15). The Euclidean

action has the form:

N
S =" widrw — 125" e,

i=1 {i}
M .

+ 3 x50 =i Y TG,
i=1 {5}

— Z'Fy Z ‘/{{Z]}hﬂ“ e wifs Xig -+ Xifs’ (3344)

{i}.{5}
where
v=fsfe+ [s(fs —1)/2+ fe(fB —1)/2. (3.3.45)

The powers of ¢ are needed to make the action real.

*A similar interaction was independently studied in [105, 117]
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It is convenient to introduce the Green’s functions by adding Lagrange multipliers Xg, > p

(which we integrate over the imaginary axis):
1
AS = 38 (Z%(ﬁ)ﬂ%(ﬁ) - NGS(71772)>
1
+ 523 ZXi(Tl)Xi(TQ) — MGpg(r1,712) (3.3.46)
J

If we assume no replica symmetry breaking, we can treat Jg, Jp, V as conventional integration
variables in the path integral. After integrating them out, we can replace fermionic bilinears with
Gs/p- Then the action becomes quadratic in ¢ and x and they can be integrated out as well.

The result is the following effective action:

S = NlogPf (8, — $g) + M log Pf (8; — £p)

2
V2N
2fs

1 N M
+/d71d7'2 (—stGs—MEBGB—FG%S—FGqBB)
qs 4B

- drydry GEGIP. (3.3.47)

Hence, the equations of motion for the bath variables Gp,Xp will be corrected by a term of
order N/M which is suppressed for M > N. However, there is a non-vanishing correction the

the system’s self-energy:

Ss = JAGE T + ASg

AYg = V2GE'ar. (3.3.48)

The same computation can be performed in Lorentzian time with the following result for
>,
AYg:

ASZ (1, ts) = =51 (G (1, 12)) 5 (G (1, 12)) ™ . (3.3.49)

Computations in SYK simplify a lot when we take the large ¢ limit. Now we have additional

parameters fg/p which we can take to infinity along with gg,p. For example, consider large ¢p.
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Then the Euclidean Green’s function has the following expansion:

Gp(r) = %sgn(r) (1 + Zi) (3.3.50)

By taking gp — 400, fp — +00 we get the following term in the interaction:
5 _ /B
G7P¥ = const exp | ~—gp |, (3.3.51)
q

where fp/q can be any rational number. Recall that at zero temperature and large g one has
[36]:
e = ——— (3.3.52)

This provides an example when we know the bath Green’s function explicitly for all times.

3.3.2 Equilibrium

Let us first study the equilibrium Dyson—Schwinger equation in presence of a bath. It happens

that they can be solved in the IR regime. With the above setup, the Euclidean self-energy reads:

Ns = JZGE T+ vVIGhT Gy (3.3.53)

In equilibrium, the system and bath will have the same temperature. Thus, we make an ansatz
for Gg which is an SYK Green function with certain effective parameters g, Js.

Suppose first that we try to retain the same gg, so s = ¢g. Remember that the SYK Green
functions decay for large Lorentzian times as G'g ~ 1/sinh(wt/3)%/95. Thus, there are three

possible situations:

e The system term (Ggs_l) dominates in the IR. Then the interaction with the bath is

irrelevant and in the IR we recover the decoupled system physics.
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e The bath term (GéS_IGgB) dominates. This means Gg with ¢g = qg, JJg = Jg is not a
solution. The interaction is relevant and the system now has an effective ¢g < gg. The

solution can be found by assuming that for a given ¢g the second term is dominant.

e Both terms are of the same order, so the interaction is marginal. This means that ¢g = qg,

but J can be renormalized.

Let us study the particular example of a marginal deformation of gg = 4, where the bath is

also a gg = 4 SYK. Take fg + fg = 4. In Euclidean time the full DS equation reads:
Y= JiGE + VGGl T, (3.3.54)

and in the low energy limit,

YxGg = 0d(t1 — ta). (3.3.55)
Recall also that G p satisfies the following equation in the IR:
J2G% % Gp = 6(t; — t2) (3.3.56)

The ansatz is then Gg = \/\/‘?EG 5. Remembering that in the IR the only dependence on the
S

coupling is G ~ 1/4/Jp, this ansatz can be understood as a renormalization of the quartic SYK
coupling.

From this ansatz it follows that J is determined by,

J2 JfS/2_2
=+ V? b =L (3.3.57)
Js JS s

This corresponds to an increase in the effective coupling Jg relative to Jg. We have also confirmed

this equation in our numerical results.
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3.3.3 Energy flux

We now derive an equation for the rate of change of the system energy within the non-equilibrium
formalism. Suppose we have a generic quantum system with a Hamiltonian Hg, which we couple
to a bath with Hamiltonian Hp and the interaction term is VOpgQOg, which we turn on at time

t = 0. The total Hamiltonian is
H=Hg+ Hp+VO(t)OsOp (3.3.58)
The time derivative of the system’s energy is not zero for ¢ > 0:

d
Eiq = @Hg = —i[H,Hg] = V09,0505, (3.3.59)

where the 0;Og indicates the time derivative of this operator with respect to unperturbed equa-
tions of motion for the system. If the bath is large, we completely ignore the back-reaction on

the bath. Moreover, if V' is small, we can find the right hand side in perturbation theory in V:
Bl = —i(—1)F / 40, (V> Os(H)Os(t) (05 (1) O5(¢)) 5, (3.3.60)
C

where the integral over ¢’ goes along the Keldysh contour from 0 to ¢ and the correlators are
taken in the unperturbed systems. F' is the fermion number of the operator Og. For the SYK

model with a random interaction (3.3.42) this equation leads to

t
Efy = z'VQ/ duG3(u — i€)20,G3 (u — ie)’s. (3.3.61)
—t

In this specific case, this equation can also be derived directly from the Kadanoff-Baym equations

(Appendix B.2) or from Schwarzian (Section 3.3.6).
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3.3.4 Very early time

At very early times, t < 1/Jg,1/Jp, we can assume that Gp and 9,Gg are just constants. Then
we can use the relation (1.3.22) for Gp and Eq. (1.3.31) to connect the derivative with system’s

energy. Collecting the factors of ¢, we obtain:

1

!/ 2

(3.3.62)

Since for SYK E < 0 in thermal equilibrium, we see that the energy initially increases. This is an
illustration of the general statement we discussed in Section 3.2. In the case of SYK, the initial
energy growth rate is proportional to the initial energy. This result is very general for SYK and

an arbitrary bath of Majorana fermions. This is valid for SYK at any coupling Jgp5.

3.3.5 Early time

At early times, the state of the system has not changed much, so we can use the initial Gg in
Eq. (3.3.61). Put another way, Eq. (3.3.61) is already the leading term in V2, so V-corrections
to G'g are smaller. We can trust this approximation as long as change in § is of order V. Below
we will argue that we can use the conformal approximation for Gg, so we must restrict ourselves
to times t 2 1/Jg.

Also, from now on we assume that the system is g¢ = 4 SYK and there is only one system
fermion in the interaction, fg = 1. By going to the conformal limit, we will arrange the situation
so that an analytical calculation of various parts of the energy curve is possible. This is also the
limit of interest for the black hole evaporation problem. Since the bath temperature is set to
zero, we now denote B¢ by just (.

For finite ¢ SYK we know the Green’s function analytically only in the conformal regime,
when u > 1/Jp. If we try to use the conformal answer for G we will encounter a divergence at
u =0 for fp > 2, since at short times Gp ~ 1/y/u. The physically interesting cases of marginal

and irrelevant deformations correspond to fp > 3 so we need to find another approximation to

Gp. One way around this is to couple the system to large-¢ SYK. For simplicity we will study
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the case of zero temperature bath. As we have shown in Section 3.3.1, we can adjust the number

of bath fermions in the interaction such that

B _ 3 71 g
Gy = (2 (gt 1)1/2) (3.3.63)

for any rational number p. Then p = 3 corresponds to a marginal deformation, whereas p > 3
produces an irrelevant interaction.

With this setup, the relevant integrals converge. However, the question of whether we can
use the conformal approximation for Gg is still open. One obvious constraint is that the system
is at strong coupling, so we require

Jsf>1 (3.3.64)

From the integral in Eq. (3.3.61) it follows that the bath probes the system Green’s function at
times of order 1/Jp. In order to use the conformal approximation for Gg, this time should be

large compared to 1/Jg. So we should restrict ourselves to

Js > Jp. (3.3.65)
In the conformal approximation,
- 1/2
Gs=0bl1 3.3.66
s <Z5JS sinh(wu/ﬁ)) ’ ( )

so 0,Gg contains a 1/ u3/? term at small u which generates divergences in integrals. However,

we can integrate by parts to give,

Efy = —iV? (GQB (1)Gs(t) — Gp(—t)/PGs(—t) — /t

—t

du 8,Gp(u)'PGg(u — ze)) . (3.3.67)
Using the fact that for Majorana fermions the Green’s function obeys

Gs,p(—t) = =G5 p(t), (3.3.68)

o8



we can rewrite the flux as

By =2V? Im (GgB (t)Gs(t) — /Ot du 8,Gp(u)BGs(u — ze)) ) (3.3.69)

A comparison between this result and the exact numerical integration for the marginal case
p = 3 is presented in Figure 3.3. Notice that the two curves do not quite match at very early
times. Because of the form of the conformal propagator, the flux behaves as 1/v/t, which is
not physical. Had we taken the exact system two-point function we would have reproduced
the numerical answer perfectly even at very early times. Slight deviations occur later because
the system’s temperature is finally changing. These discrepancies decreases with decreasing the
system-bath coupling.

Energy flux

15x 10-©
1 x10°6
5 x 1077

time

20 30 40 50

Figure 3.3: Early time energy flux as function of time. The solid curve is the analytic result
(3.3.67), and the dots show the direct numerical integration. The parameters used are V? =
2.5%x107°, Jg = 0.5, Jg = 0.005, Binit = 50, dt = 0.1. The conformal approximation is responsible
for the disagreement at early time while the slight change in temperature is responsible for the
disagreement at late time.

We have studied the analytic expression for the marginal case p = 3 in two limits, Jg8 < 1
and JgfB > 1, in Appendix B.3. The parameter 3Jp tells us how “fast” the bath degrees of
freedom are compared to the thermal scale of the system. For a “slow bath” with Jp8 < 1, the

peak occurs at times logarithmically bigger than [:

1
tpeak ~ BIOg <<]BB> 7JBﬁ < 1. (3370)
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In the opposite limit of a “fast bath” with Jg8 <« 1, we find that the peak time is much less
than 3:

tpeak ~ JBﬁ > 1. (3371)

B
(BJB)l/B ’
3.3.6 Intermediate time

At finite temperature the Green’s functions in Eq. (3.3.61) decay exponentially with time. As-
suming that the bath is at a lower temperature than the system, the integral saturates at times
t > [. After this the energy flow comes to a steady state, meaning that it is not sensitive to
when exactly the interaction was switched on.

We can patch this regime with the previous discussion if the coupling is small enough. Namely

the change in temperature over thermal time scale is much less than temperature:
BoL K B — 00 <K 1. (3.3.72)

But this requirement is equivalent to saying that at each point in time the system is in quasi-
equilibrium and has a definite temperature.
We expect that in this regime the system’s dynamics can be described by the Schwarzian. In

this approximation, the system’s Lagrangian is equal to the Schwarzian derivative:

" "\ 2
Siin = — =5 / du Sch(t,u) = O‘S‘[ (t _ 2 <i,> ) . (3.3.73)

Since for ¢ = 4, Jg = Jg/ﬂ and the coefficient in front of the Schwarzian is ag = 0.007. The

system’s energy is given by,

Ozs\/>S h( [ ] ):E0+2712\/§Oz5

Js JsB?

E=EFEy+ (3.3.74)

where Ej is the ground state energy.

60



The interaction with the bath comes from reparametrizations of Gg in the action term

(3.3.41):
V2
Spot :i2/duldUQXB(ul,UQ)Gs(Ul,UQ) = (3375)
c
V2 #/[ug )¢/ [us)] )1/4
217 Je 0 ] =tz X2 )

With this normalization of V2, one has the following extra term in the Dyson-Schwinger equation
(compare with Eq. (3.3.49)):
AYZ = VX3, (3.3.76)

Note that the above action is written on the Keldysh contour, so we have two functions
ty[u],t_[u]. The semiclassical equations of motion are obtained by varying with respect to
ty =ty —t_ and putting ¢y = ¢_ [118]. This way the equations of motion are causal.

During the approach to equilibrium we expect that the solution has the form

t[u] = tanh (;&) , (3.3.77)

where fS[u] is a slowly varying function of u. As discussed, the difference between the times uy, ug
in Gg(u,uz2) should be less than the characteristic scale at which 8 changes: /8" > |u; — us|.

We go through the derivation of the equations of motion in Appendix B.4. The result is:

JsB T T 2(JgB) /2 du Xp(B(u — i€))

. 3.3.78
—o0 sinh®/2 7 (u — ie) ( )

472\ 2ag ., iV/ibV3r3/? /+°° cosh 7 (u — ie)

This result coincides with the general answer (3.3.61) when the system Green’s function is ap-
proximated by the conformal expression and the energy of the system is given by Schwarzian
result (3.3.74).

There is one subtlety here.’ In the Schwarzian approximation the energy above the vacuum

is proportional to — Sch(t[u],u). For a thermal state this is equal to 272/3%. Correspondingly

SWe are grateful to Juan Maldacena for a discussion on this point.
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we expect that the energy flux is proportional to —4723’/33. This is how (3.3.78) was obtained
(see Eq. (B.4.18) in Appendix B.4). However, if we formally evaluate the Schwarzian on the
configuration (3.3.77) we will get an extra term,

2 Artup

ECERCE

— Sch(t[u], u) (3.3.79)

And after differentiating with respect to time u, we get an expression —87243'/33, which is twice
as big as it should be.

The resolution of this problem is that the expression (3.3.77) is not an actual solution if 3[u]
is not constant. The argument of tanh should include an additional term proportional to 3’ in

order to cancel the extra derivative term in Eq. (3.3.79). The true solution is easily found,

(3.3.80)

t[u] = tanh ( Ll W) .

Blu]  2B[u]?

Now we specialize again to the case of a ¢gg = 4 bath and study both marginal and irrelevant
interactions. We also assume that the bath is at strong coupling. And by this we mean that it
is strongly coupled by itself,

JBBbath > 1, (3.3.81)

and it is strongly coupled on the thermal time scale of the system,
JpB > 1. (3.3.82)

Otherwise, the e-prescriptions in integrals should be replaced by the actual UV cut-off
~1/(BJs;B)-

In the subsequent sections we are going to compare Schwarzian results with numerical com-
putations. Our timestep will be dt = 0.1 and Jg = 0.5, so all the numerical answers should
come with ~ Jdt = 0.05 = 5% uncertainty. Later when we check the bound we will estimate the

uncertainties more carefully.
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Marginal deformation: bath at zero temperature

For a marginal deformation with fp = 3 and when the bath is at zero temperature, the function

Xp is given by
b 3
Xp=G% =i () , (3.3.83)

Jgt

and the integral over x evaluates to,

/+oo 1 coshm (x — ie€) iy . (3.3.84)

dx
oo (z —i€)3/2 ginh®/2 1 (x — ie)

The time-dependence of the temperature is therefore

2b4 /
TVOVIs marginal. (3.3.85)

32v205.75%

/

For Jg = Jp we have verified this numerically as shown in Figure 3.4. The above equation yields

B’ =0.00283 for V2 = 0.002, J = 0.5, whereas the best fit from numerics is 5/ = 0.00298.

100 J=0.5, marginal coupling
— 18.37*exp(0.0029 t) -0.49
90 — t~2
t~(3/2)

beta

600 700 800

10 1 1 1
300 400 500
time

Figure 3.4: 8 as a function of time for a marginal coupling. Blue circles are data points, and
the green curve is an exponential fit. The fit almost coincides with data points. Fits for other

powers are shown for comparison.
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Marginal deformation: bath at finite temperature

In this case, we take the conformal SYK answer for the bath Green’s function:
3

b
Xp=G% =i VT . (3.3.86)

\/ﬁBJB sinh (g)

If B ~ 3, then we can expand the integral in powers of 8 — 5:

400 3/2 33/2 _
/ dr ——— b _COS;;T (z “.) - (3.3.87)
—0 53/ sinh3/2 (7;(3; _ Z‘G)%) sinh”“ 7 (z — i€)
_ —§7r5/2 <[5’ B 1) /+Oodx (x —.z'e)fosh27r('x—ie) _
2 BB oo sinh®(7(x — ie))
_ T 25— pp
2 B
The approach to the bath temperature is exponential. Explicitly, we have
, bt V2\/Jg .
= — , marginal. 3.3.88
Again, this matches perfectly with the numerics as shown in Figure 3.5.
Irrelevant deformation: bath at zero temperature
For an irrelevant deformation with fg = 5 we have
Xp = -G} 3.3.89
B
and the integral is
teo 1 h —1
/ dz SRR ;T(x ©) 198, (3.3.90)
o (z —i€)%2 sinh®? 7 (z — ie)
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J_5=0.5,)_B=0.7, beta_B=40, V~2=0.004, f_B=3: marginal

* data, dt=0.1
—— c-A*exp(-L*t), L=0.007551 +- 0.000001

—0.01990 —— ¢+0.398/(p*(L*t+1))"2, L=2.335464 +- 0.034490, p=-0.020016

—0.01992 A

—0.01994 4

energy

—0.01996

—0.01998 -

—0.02000 -

0 100 200 300 400 500 600
time

Figure 3.5: Energy as a function of time for Sy = 35 and g = 40. Only the late time behavior
is shown. The green line is an exponential fit. For comparison we also included fits with £ ~ 1/2.
The analytical answer for the rate is 0.0075 from Eq. (3.3.88).

Hence, the temperature obeys

V28 /Jg

T 0s8v/2n

= 1. irrelevant, fp = o. 3.
p=1.98 irrel 5 3.3.91

Again we have very good agreement with the numerics, see Figure 3.6.

J_S=J_B=0.5, V~2=0.05, beta_bath=infinity

50

454

30 A

25 A

A*t+C, A=0.056732 +- 0.000006

0 100 200 300 400 500
time

Figure 3.6: Energy and [ for the irrelevant coupling qg = 4, fg = 5,Jg = Jg = 0.5. The dense
blue points are numerical data. The analytical answer for the slope is 0.063 from Eq. (3.3.91).
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Irrelevant deformation: bath at finite temperature

On physical grounds, we expect that if the system and the bath have close temperatures then
the flux will be proportional to the temperature difference. Indeed, if fp ~ [ we again get

exponential approach:

+00 5/235/2 L o
/ do — 0 .Coss/;T @ 26‘) = (3.3.92)
—o0 BB/ sinh%/2 (77(3; _ ie)ﬂ%) sinh”“ 7 (z — i€)
+oo . h2 o
_ —§7r7/2 (B B 1)/ dx (x — i€) cosh® 7 (x wji) _
2 BB —00 (sinhZ(ﬂ'(x — ZE)))
_ 8572 g be.
B
Hence, the temperature obeys
216 /T
B =8.57(8p — 5)M, irrelevant, fg = 5. (3.3.93)

8v2rTy* B

For Jg = 0.5, Jp = 0.7 the agreement is again very good as shown in Figure 3.7.

J_$=0.5,]_B=0.7, beta_B=40, V~2=0.06, f B=5: irrelevent

¢ data, dt=0.1
—— c-A*exp(-L*t), L=0.003458 +- 0.000003

—0.019800 A
—— c+0.398/(p*(L*t+1))"~2, L=0.802893 +- 0.006392, p=-0.019988
—0.019825 -

—0.019850 -

—0.019875 A

energy

—0.019900 A

—0.019925 -

—0.019950 -

0 200 400 600 800 1000
time

Figure 3.7: Energy as a function of time for Sy = 35 and Sp = 40. Only the late time behavior is
shown. The green line is an exponential fit. For comparison we also included a fit with £ ~ 1/2.
The analytical answer for the rate is 0.0034 from Eq. (3.3.93).
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3.3.7 Late time: approach to equilibrium and black hole evaporation

We have seen that the late time approach to true equilibrium is in many cases exponential.
This agrees with our physical expectations since the heat flux should be proportional to the
temperature difference.

Obviously, this process of energy flow cannot last forever. At the very least, the temperature

has thermodynamic fluctuations,
T2

(AT)?) = o (3.3.94)

where C), is the heat capacity, which is of order N for SYK if the temperatures is not too low.
These fluctuations imply that once the difference Ts — Th,atn becomes of order AT ~ 1/ VN, we
have effectively reached true equilibrium. In the situations studied so far, this will take a time
of order log N.

However, one important point is the way V2 scales with N. For an evaporating black hole in
which the energy transfer is accomplished by a small number of light fields, the energy loss rate
should be of order N? instead of order N'. This can be modeled by taking V? to scale with N
as N1 instead of as N?, e.g.

2
Vo

V2 A Vi ~ NO. (3.3.95)

Our analysis is still valid in this case, because we can use the classical Schwarzian description
until 5 ~ N and it is not important that the perturbation has 1/N suppression. Hence, the
evaporation time becomes N log N.

However, this estimate is somewhat imprecise. As we just said, we can trust our classical
computation in the previous subsection as long as 8 < N/Jg. Once 8 becomes of order N we
have to quantize the Schwarzian. This is quite complicated given the non-local term (3.3.75) in
the action. Hence, it appears challenging to derive an analogue of Eq. (3.3.78) directly from the
Schwarzian.

As an aside, notice that the problem does simplify when V2 ~ 1/N because when /3 reaches
N/Jg, the integration range in Eq. (3.3.61) is already N log N (instead of log N when V? is order
N?), so we do not need to worry about the boundary term.
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Fortunately, we do not need to carry out the full quantization procedure.® Recall that we

derived Eq. (3.3.61) for any Majorana system interacting with a Majorana bath. It happens
that Eq. (3.3.78) follows from it if we use the classical Schwarzian expression for the energy and
the conformal approximation for the Green’s functions. We will employ the same strategy in the

quantum case. The exact expression for Schwarzian free energy is

22 3
S

F—_
JsB?  2Np

log 3, (3.3.96)

and the energy is

dF  27m%ag 3
EF=F _ = — 4+ 3.3.97
P = 2 T ang (8:3.97)

In particular, when 8 ~ N the last term dominates.
The behavior of SYK Green’s function strongly depends on the relation between ¢, 8 and C
where C' = Nag/Js is the coefficient in front of the Schwarzian term. As long as t,5 < C' we

have the classical result:

Ggrm——t (3.3.98)

: t
J B sinh (§>
Here and below we will suppress the numerical coefficients, but keep the factors of 5 and N
explicit. A generic answer for Gg was obtained in [119, 91]:
1 e (B 3/2 p+oo 9
Gsg~——=¢e 7 = du(k)du(k k1, ko)*x
sv g T (G) [ dtndnten) 2t )

1
X exp (26 (—itki — (B —it)k3 — eki — ekg)) : (3.3.99)

y(k1, k2)? = I‘(11/2)F(1/4 +i(k1 + k2))(1/4 —i(ky + ko)) %

xT(1/4 + i(k1 — k2))D(1/4 — i(ky — ks)) (3.3.100)

du(k) = sinh(27k)kdk. (3.3.101)

SWe are grateful to Alex Kamenev, Juan Maldacena and Luca Iliesiu for discussions about the following com-
putation.
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Suppose that § > C is large in the above expression. Then we can use the saddle-point approx-

imation for ko with the following result:

3/2 0o )
G~ mﬁu ) / dpu(kr) e 2 =MD (14 +ik)2D(1/4 — k)2 (3.3.102)
S ? —00

If t <« C, then the integral is dominated by large ki, so expanding the Gamma functions for
large k; yields

1
Gs~v——— t< C < B, 3.3.103
5 Ts(t—ie) 0 ( )

which is the expected result for zero-temperature case. However, if ¢t > C we can use the saddle

point approximation again, this time for ko [119, 91]:

NB3/2

GS ~ ’
T2 (4 iB)312(t — ie)3/?

t>C, 8> N/Js. (3.3.104)

One cross-check it that the expressions (3.3.103) and (3.3.104) coincide when ¢ ~ N/Jg.

The last step before the actual calculation of the evaporation rate is the expression for Gp.

As we mentioned before, the number of bath fermions M must be much bigger than N. Here we

assume M is big enough to keep the bath classical even at large times ¢, so the Green’s function
is

3 1

o NP S— (3.3.105)
PR e

All these pieces can now be assembled to compute the energy flux. Integrating by parts in

Eq. (3.3.61), we need to compute:

+oo 5 3 %2 400 1
— dt 0,GpGs ~ —— dt ——=Gs(t). 3.3.106

First of all, if we put 8 = oo, the system’s Green’s function (3.3.104) does not have singularities
in the lower half-plane, so we can close the contour and get zero. This is expected: if both the

system and the bath have zero temperature, then flux is zero.

69



To compute the integral at finite beta we consider the full integral representation (3.3.99).
Notice that we can move the integral over ¢ in Eq. (3.3.106) into the lower half-plane such that
t acquires constant imaginary part of order 5. In this case we can use the asymptotic formula in
(3.3.104) for Gs. Hence, the flux is of order

g1

~ eI (3.3.107)

Equating this to the loss of energy (3.3.97), we find only v/¢ behavior for 3 instead of expo-

nential growth:

VEN 1
VENt
As a check, note that for § < N/Jg we had
VZ VI
g YO VISE g g (3.3.110)

N

from Eq. (3.3.85). Equations (3.3.108) and (3.3.85) agree for 5 ~ N/Jg.

t

Thus, in the quantum regime there is a cross-over from exponential behavior, 8 ~ e*, to

power-law behavior, 5 ~ t1/2.

3.3.8 Checking the bound numerically

Having described all the parts of the curve analytically, let us discuss its precise form and
check the proposed bound numerically. Our numerical setup is described in Appendix B.1.
The main limitation comes from the fact that we cannot go to very low temperatures, because
the Green’s functions spread a lot. So we will limit ourselves to finite bath temperature. Also,

we will study two kinds of interactions: marginal fg =1, fp = 3; fg = 2, fp = 2 and irrelevant

fs=1,fp=5;fs=5,fp=1
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v Fy/8 Fap)

0.0 +1077 +10~7
0.005 | (2.05+0.01) x 10=* | (2.06 £ 0.01) x 10~*
0.012 | (4.68 £0.01) x 10~* | (4.73£0.01) x 10~*
0.02 | (7.4740.02) x 10~* | (7.70 £ 0.01) x 10~*

Table 3.1: Results for F/s for the marginal deformation (fs, fg) = (3,1) with Jg = Jp =
0.5, Binit = 20, Bpath = 100. The errors were estimated by comparing the results of dt = 0.1 and
dt = 0.05.

v Fy/s, Fy/p0)

0.01 | (5.1340.03) x 107 | (5.1740.03) x 107>
0.05 | (2.4840.02) x 10~* | (2.51 £0.02) x 10~*
0.1 | (4.79+£0.04) x 10~* | (4.89 +0.03) x 10~*

Table 3.2: Results for F/g for the irrelevant deformation (fs, fp) = (5,1) with Jg = Jp =
0.5, Binit = 20, Bpath = 100. The errors were estimated by comparing the results of dt = 0.1 and
dt = 0.05.

At weak system-bath coupling, we do not expect a violation of the bound since we have a
perturbative proof. However, at very strong coupling the final energy of the system is higher than
the initial energy, because the interaction increases the ground state energy. Hence, something
interesting might happen as we scan from weak coupling to strong coupling.

Our numerical results suggest that the integral in the bound is always bigger than zero. This
is true even if we take §(t) instead of the initial 3. Our result are presented on Figures 3.8, 3.9

and Tables 3.1, 3.2. The main source of error is the fact that the energy not conserved even for

V = 0 because of the discretization scheme, so we include the V' = 0 case for reference.

3.3.9 Comparison to exact finite N calculations

Finally, we verify that the qualitative features of the energy curve persist at small N via direct
numerical integration of the Schrodinger equation. Because it enables us to access larger sys-
tem sizes, we work with pure states instead of mixed states and integrate the full system-bath
Schrodinger equation using a Krylov approach.

As above, the system is a gs-SYK model with NV fermions while the bath is ¢g-SYK model

with M fermions. The fermions are represented in terms of spins using a standard Jordan-Wigner
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J_5=0.5 ]_B=0.5 beta_init=20.0 bath_beta=100.0, (f S,f B)=(1,3), dt=0.1

energy beta
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Figure 3.8: Energy and beta as functions of time for the marginal deformation (fs, fg) = (3,1)
with Jg = Jg = 0.5, Binit = 20, Bpath = 100. The thickness of the beta curve indicates the
uncertainty in beta.

construction. To prepare the inital state, we begin with a product state in the spin basis and

evolve in imaginary time to produce:
|thini) oc e~ PsHs/2=BeHE/2|hr0duct). (3.3.111)

The coupling is then suddenly turned on at time ¢ = 0 and the full system-bath composite is
evolved forward in time. The energy of the system as well as the system-bath entanglement are
measured as a function of time.

In Figure 3.10 we show an example of the energy curve for N = 12, M = 20, g5 =4, qg =4,
fs=1, fp =3, and g = .2. The initial temperatures were 8gg = 1 and Sp¢ = 20 in units where
Js = Jp = 1. One clearly sees the initial energy bump, the subsequent cross-over to energy loss,
the slow draining of energy into the bath, and a final approach to true equilibrium. Note that

the final equilibrium system energy is modulated by finite size fluctuations in the time domain.
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J_5=0.5 ]_B=0.5 beta_init=20.0 bath_beta=100.0, (f S,f B)=(1,5), dt=0.1

energy beta
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Figure 3.9: Energy and beta as functions of time for the irrelevant deformation (fs, fg) = (5,1)
with Jg = Jg = 0.5, Binit = 20, Bpath = 100. The thickness of the beta curve indicates the
uncertainty in beta.

The data shown constitute a single disorder sample with no disorder averaging. Also, the bound

is satisfied for this example.

3.4 Discussion

Inspired by the problem of black hole evaporation, we studied in the detail the physics of ther-
malization for a system suddenly coupled to a bath. Our first key result is a positivity bound
on the integrated energy flux. We proved it in general in perturbation theory and showed that
it implied an instance of the ANEC. Our second key result is a detailed study of the thermal-
ization dynamics for two coupled SYK clusters. In particular, at low energy we gave a thorough
analytical discussion of the energy curve.

There are many directions for future work. One is to understand how far beyond perturbation
theory our bound extends. In the SYK example, we found it to be quite robust. We suspect that

quantum information ideas will be useful in this context, partly because the bulk interpretation
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Figure 3.10: Energy curve for a finite size system-bath setup with N = 12 and M = 20. Other
parameters are discussed in the main text.

of the bound in terms of the ANEC is associated with prohibiting unphysical communication
between two entangled parties. There is also more to understand about the SYK case, for
example, it may be possible to analytically solve the dynamical equations at large q.

More generally, it would be interesting to generalize our analysis to pure states, and to
understand in detail the behavior of the entanglement entropy of various parts of the system.
Finally, it is tempting to try to relate our rigorous Planckian bound on the energy curve to other
more speculative Planckian bounds, for example, in transport physics. One idea for relating
them is to the use the fact that dissipative transport generates heat, so perhaps this fact can be

combined with some version of the setup we considered here?
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Chapter 4

SY K wormhole formation in real

time

4.1 Introduction and Summary

4.1.1 Motivation

The Sachdev—Ye—Kitaev (SYK) model [16, 17, 36, 120] is a strongly interacting but yet solvable
model in the large N limit. At low energies, it displays an approximate conformal symmetry.
In this region, the model has many features in common with nearly AdSs gravity, or Jackiw-
Teitelboim (JT) gravity [112, 113, 121], coupled to matter fields. This is a simple two dimensional
theory of gravity which describes some aspects of nearly extremal black holes in various dimen-
sions.

An interesting variant is to consider a pair of identical SYK models coupled through a simple
bilinear interaction [122], see also [123, 97, 124]. The ground state of this model has a gap, but
its excitation spectrum also displays an approximate conformal symmetry. Furthermore, this
ground state is close to the thermofield double state of two decoupled models. For reasons we
explain below, we call the ground state of this coupled model “the SYK wormhole”.

A conceptually similar state also arises when one considers two nearly extremal black holes

that are relatively close, so that they are coupled. In this case, a traversable wormhole can connect
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the near extremal throats [125]. This can be effectively modeled by a nearly AdSs gravity theory
where we have direct interactions between the values of the bulk fields near the two boundaries
[111, 122]. In other words, thinking of the Penrose diagram of AdSs as a strip, we put boundary
conditions for the bulk fields that connect the two boundaries. The two boundaries are causally
connected through the bulk, so that this spacetime describes a wormhole. This wormhole is
the lowest energy configuration of the system and it also displays the approximate SL(2, R)
isometries of nearly AdSs.

Given that this is a remarkable state, we are interested in knowing whether it is easy to get
to it. In other words, if we start out from a general excited state of the coupled model, can
we easily get to the ground state by cooling the system down? Or will the system get stuck in
some other state? At first sight the answer seems straightforward, if it is the ground state, the
system will surely find it if it can shed its excess energy to the bath. On the other hand, from the
gravity perspective, the process involves a topology change. Such topology change might happen
via a tunneling solution, but it would be exponentially suppressed in N (or the entropy of each

separate black hole).

4.1.2 Wormbhole formation in SYK

With this motivation in mind, we study this problem for the two coupled SYK models. We
start with a relatively high temperature state of the coupled model which looks like two thermal
density matrices, one for each SYK factor. Then we couple the system to a bath and study the
evolution in real time by solving the large N Schwinger-Dyson equations. We find that the system
indeed finds the “SYK wormhole” ground state in a time that is independent of N. In particular,
there is no exponential suppression. Notice that the ability to efficiently find this ground state
also makes it possible to prepare the thermofield double (TFD) state of the decoupled model, by
simply switching off the interaction between the two sides [122], after we have found the ground
state.

The approach we used is the following. The large N Dyson—Schwinger equations form a closed

system for the two-point function [16, 17, 36, 120]. In the out-of-equilibrium situation that we are
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considering, these equations are commonly referred to as the Kadanoff-Baym (KB) equations.
We couple the system of two interacting SYK models to a large bath and find the real time
dynamics using KB equations. The problem of coupling SYK to a bath was recently studied in
[2] and we borrow some results from there. Also, the KB equations for a single SYK was recently
studied numerically in [37, 106]. Here we study this problem solving the dynamical equations at
q = 4. The problem has many time scales and due to numerical limitations we could not separate
them all by large amounts. However, our numerical results seem to confirm the picture where
the system follows the microcanonical equilibrium curve. We now briefly review this equilibrium

thermodynamics.

4.1.3 Equilibrium thermodynamics

In the canonical ensemble the system has two phases: the low temperature one corresponding
to the ground state, the SYK wormhole, and its excitations; and a higher temperature phase
which is closer to two separate thermal SYK systems. The two phases are separated by a first
order phase transition. In the large ¢ limit, the black hole phase and the wormhole phase are
smoothly connected by a canonically unstable phase with negative specific heat [122]. However,
in the microcanonical ensemble, we expect that the system smoothly interpolates between these
two phases. In other words, in the microcanonical ensemble we expect no phase transition as we
lower the energy.

Figure 4.1 shows energy vs inverse temperature 3 for ¢ = 4. We use energy instead of free
energy or entropy because we will be dealing mostly with Lorentzian non-equilibrium correlators
numerically and it is easier to find the temperature and the energy from them. There are three
different regions. At high temperatures T" > Tspp we have the phase we name the “two black
holes phase”. At low temperatures 1" < Ty we have the phase we call “cold wormhole” phase,
which can be viewed a as a wormhole with few thermal excitations. The two phases overlap,
since Topg < Twu. In the intermediate temperatures regime Topy < 1T' < Twph we also expect a
canonically unstable, but microcanonically stable, phase that we call “the hot wormhole phase”.

As we mentioned above, this phase can be found analytically in the large ¢ limit. It has positive
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Figure 4.1: Dots: energy vs beta obtained by numerically solving DS equations
for two coupled SYK models with J = 0.5, = 0.0053. Blue dots correspond to
the “two black holes phase”, whereas green dots correspond to the “cold wormhole
phase”. Red dashed line: curve for the “hot wormhole” phase expected from a low
energy analytic analysis. The question mark “?” reminds us that we were not able

to find it as a solution of the euclidean DS equations.

entropy but negative specific heat. However, at finite ¢ we do not known much about this phase,
since we have been unable to find it by solving the Euclidean Schwinger Dyson equations. We
interpret this failure as resulting from its canonical instability. This is why we put a question
mark in Figure 4.1. We will find evidence for this phase through the real time evolution, since
we will find that the temperature goes up as the energy monotonically goes down. There is
also analytic evidence from a low energy analysis, as we will review later. The names “hot” or
“cold” wormbhole refer to how these would feel to an observer who is inside the wormhole, at
its center, in a gravity picture for these configurations. As is clear from Figure 4.1, there are
outside temperatures where we can have both a “cold” and “hot” wormhole. When we talk about

temperatures in this chapter, we are always referring to the physical temperature as seen from

the outside.
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Figure 4.1 also displays the critical temperature, 7., when two stable phases switch dominance
in the canonical ensemble. For Topy < T < 1. two black hole phase is thermodynamically
metastable but is not a global minimum for the free energy. Similarly for T, < T < Twyg and
the cold wormhole phase. For our problem the microcanonical ensemble is more relevant. Notice
that the different “phases” are continuously connected in the microcanonical ensemble, so they
are not really sharply separated phases.

For small values of u, the coupling between the two SYK models, we can make different
analytic approximations for the different parts of the curve. For the two black hole region we
can start with two separate thermal SYK models and use perturbation theory in u. In this
regime, the left-right correlator Gpr is small and of order u. The gravity picture is that we
have two separate hyperbolic disks with a boundary perturbation that connects the bulk fields
on the two disks. We find that Thpy is in the region where this perturbation theory breaks
down. For low temperatures the left-right correlator is of order one. We can access this regime
by assuming that the system is close to the thermofield double state. The relevant part of the
dynamics is captured by the Schwarzian mode. This aspect of the dynamics is the same for the
SYK model and the nearly-AdSy gravity theory [116, 115, 103]. This describes both the cold
wormhole and hot wormhole phases. In particular, we can see the existence of the hot wormhole
phase in this approximation [122]. In particular, the temperature Tyyy can be found within this

approximation. We review this description in Section 4.2.3.

4.1.4 Gravity picture

One of our motivations was to understand whether a similar wormhole formation process occurs
in more general theories of nearly-AdSs gravity with matter.

With this goal in mind we will present a gravity picture for the transition we have in the SYK
model. We do not know the precise gravity dual of the SYK model. But we consider a nearly-
AdSs gravity theory that has some of the same features. For questions that mainly involve the
Schwarzian mode, the SYK and nearly-AdS; answers match precisely [116, 115, 103]. However,

wormhole formation goes slightly beyond this approximation, and we need to incorporate one
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“zero temperature”

important feature that is related to the origin of the ground state entropy, or
entropy, Sp, of the SYK model. If we start from a phase consisting of two thermal states, then
the entropy will have a large contribution of size 25y (plus thermal corrections). As the wormhole
forms, the system should be able to shed this large entropy into the bath. In gravity this involves
topology change, which would naively be exponentially suppressed. On the other hand, as we
discussed above, this happens without any such suppression in SYK.

We can reproduce this from a gravity picture as follows. First we view the two coupled
systems as a nearly-AdSy gravity theory with N bulk fermion fields with Neumann boundary
conditions. The two black hole phase consists of two hyperbolic disks with an interaction between
the boundary values of the bulk fields. As we lower the temperature, this interaction effectively
becomes strong and the theory flows to a new IR fixed point. The new fixed point is simply a
theory with different boundary conditions, namely Dirichlet boundary conditions. This change
in boundary conditions is similar to the one discussed in [126]. The two disks decouple again
but the boundary conditions are effectively changed from Neumann to Dirichlet. Now we use
the observation in [127], that %0 is equal to the ratio of the Neumann vs Dirichlet disk partition
functions for N fermions. This means that the effective theory in the IR, with Dirichlet boundary

condition has now ng !

= 0. This means that topology change “costs us nothing”, and we can
easily transition into the wormhole phase. In fact, by a similar argument we can say that the
end of the hot wormhole phase also corresponds to the region where the interactions between the
two sides of the global AdSs strip produce a flow that change the boundary conditions of the
fermions from Neumann to Dirichlet.

In summary, we provide a qualitative gravity mechanism for the formation of the SYK worm-
hole. The purpose of this explanation was to contrast SYK with what we expect in a generic
gravity theory. A generic gravity theory can have a number of fields much smaller than Sy. In
this case, the change in boundary conditions would not significantly change Sy and it would still
be difficult to change the topology. For this reason we could not answer the question of whether

there is an “easy way” of forming the wormhole for more general gravity theories, such as the

case of four dimensional magnetically charged wormholes in the Standard Model [125].
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The chaper is organized as follows. In Section 4.2 we review the two coupled SYK model
[122]. We describe the perturbative approach at high temperatures, for the “two black hole
phase”. We also review the Schwarzian description of the low energy dynamics that describes
the hot and cold wormhole phases. Section 4.3 contains our real time analysis of the formation
of the wormhole. We set up the coupling to the bath, we write the Kadanoff-Baym equations
(the real time Schwinger Dyson equations), and we present the result of a numerical analysis for
some particular values of the parameters. In section 4.4, we discuss differences and similarities
between SYK and nearly-AdSy (or JT) gravity and also provide the qualitative picture of the

transition. Various computational details are discussed in the appendices.

4.2 The two coupled SYK model and its thermodynamics

4.2.1 Definition and properties of the ground state

Here we review properties of the two coupled SYK models introduced in [122]. The Hamiltonian

of the model consists of two SYK terms coupled by an interaction
H = Héyk + Hf i + Hine (4.2.1)

where

Hiy + Bk = S T (fvfebel + v fufel) (4.2.2)
1<i<j<k<I<N

where the couplings are the same for both factors. They are Gaussian random variables with
variance

312
<J22]kl> = W’ no sum (423)

There is also a generalization where we consider a ¢ fermion interaction term, instead of four.

The interaction term has the form
N
Hin = ip Yy of ]! (4.2.4)
j=1
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In the large N limit, p and J stay fixed. We will mostly consider the case pu/J < 1 and also
consider temperatures 7'/J < 1. This will be true even for what we call “high” temperatures.

As an aside, let us mention that we can couple the two systems by an operator of dimension
A
Hiy, = i 1(Oa)1(Oa)R (4.2.5)

where F' is the fermion number of Oa. We will mostly consider the case of (4.2.4) which corre-
sponds to A = 1/4 at low energies. However, we will give certain estimates for generic A.
Like a single SYK, this model, (4.2.1), is solvable in the large N limit. We have four types of

correlators: Grr,Grr, GrLr, GrL, each defined in Euclidean space as
Gup(T) = (T (T)Yp(0)) ,  with a,b=1L, R (4.2.6)
Since we are dealing with Majorana fermions we have
Gro(0t) = Grr(0") = % (4.2.7)
We have a closed system of Dyson—Schwinger equations for the two point functions [122]

aTG(lb(T) = Z Dac * Gcb(T) + 5ab5(7-) (428)

Yap(T) = J?Gap(7)® —iptapd(7) ,  no sum (4.2.9)
where the convolution * is taken along the Euclidean circle, a,b = L, R, and pgy is given by

0 pu
fap = (4.2.10)

—n 0

The system has a Z4 symmetry ¢, — —%gr, ¥Yr — ¥. Throughout our numerical computation

we do not assume that this symmetry in unbroken. We find that it is unbroken, since the
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(Euclidean) correlators we obtained obey the following relations:
G, = Grpg pure real , Grr = —GRr pure imaginary (4.2.11)

A convenient expression for the energy is

E g (P 4 4 4 ,
N = 4/(; dr (_GLL — GRR - QGLR) + 'L,LLGLR(O) (4212)

The interaction term (4.2.4) is a relevant perturbation, since for a single SYK model the
fermion ¢ has dimension A = 1/4. Therefore at relatively high temperatures we expect that
we have two weakly coupled SYK models, whereas at low temperatures the system flows into a

gapped phase with a gap that scales as [122]

1
Egap o< p2/3JY3 for % <1, andg=4, A= (4.2.13)

Moreover the ground state is close to the TFD of the two models with effective (inverse) tem-

perature B~:
. J\ s
TFD) = S e B2\ B x B, B o () coa=t (42.14)
- 2

The energy of the ground state, relative to the energy of the two decoupled SYK models, scales

as
4/3

Eg — 2By syk x —N% (4.2.15)

And for general A, Eg — 2FEj syk —,uﬁ
Since there is a gap and the ground state is unique, the entropy is small in the “cold wormhole
phase”. Whereas in the two black hole phase, we have a big entropy 25y, where Sy =~ N x 0.23
is the “zero temperature” entropy of a single SYK model. The transition temperature T, is

estimated by
Eg

Te~ —— x

f =4 4.2.1

N ‘
W] Wl



For arbitrary temperatures the Dyson-Schwinger equations can be solved numerically by
starting from Gpr = Grr = 0,Grr = Grr = % and then using an iteration procedure similar
to one described in [36]. After obtaining the solution for some value of temperature, we can use
it as a seed for the iteration procedure at higher/lower temperature. Figure 4.1 shows energy as

a function of beta for particular values of parameters J = 0.5, u = 0.0053.

4.2.2 Perturbation theory at high temperature
Here we use the term “high” temperatures for temperatures for the two black hole branch of the
diagram T > Thpy, but still T/J < 1.

For p = 0 we have two copies of the conventional SYK correlators [16, 17]

9 1/4
G(7)rL = G(T)rr = bsgn(T) % ) , GrLr=0 (4.2.17)

1
7 (aig
with b* = 1/(47).

Now we turn on a small value of y1 (4.2.4). If we are at sufficiently high temperature then
the coupled system is still in the phase with two separate black holes [122]. Nonetheless, the
correlation between left- and right- SYK is not zero. We can try to use the conformal perturbation
theory to study the system.

To linear order in u, only Gpr Green functions receive a correction:

B
AGLr(m — 1) = Zﬂ/ dr Grp(mi — 7)GRrr(T — 72) (4.2.18)
0

This integral is computed analytically in Appendix B.6. We can compare this leading order
approximation against exact numerical solution of the Dyson—Schwinger equation for J = 0.5, u =

0.05 and different fs, see Figure 4.2.
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Figure 4.2: Euclidean Green function Gpg. The blue points correspond to the exact solution, and the
red ones to the conformal answer (B.6.87). Left: 8 = 20. Right: 8 = 53. For this values of parameters
the transition to the wormhole phase happens around fopn ~ 61. The approximation is better for higher
temperatures.

Also in Appendix B.6 we computed the p? correction to the energy. So that at low tempera-

tures we have the following expression for the energy:

E = 2BEsyk +AE (4.2.19)
212092
Esyk = FEosyk + ——25— (4.2.20)
JB
Epsyk = —J x0.04063(1), ag = 0.0071 4+ 0.0004 (4.2.21)
1 pu? ( T )

AE = —(2log——-2—0¢1 ), c1 = 1.66(1
i J 57 1 1 (1)

where Fsyk is the low-temperature result for a single SYK [36] and AFE is the leading u? correc-
tion derived in Appendix B.6. The comparison between (4.2.19) and the numerics is presented
on Figure 4.6(b).

This approximation works better for high temperatures and then deteriorates close to Top,
where the phase is supposed to connect with the hot wormhole phase.

Let us find out until what temperature we can trust the perturbation series in p, (4.2.4).
The first point is that only even terms are non-zero. The term of order 2" contains a 2n-point

function on the left and 2n-point function on the right, each of these now computed in a single

SYK model. We are only interested in connected correlators for computing the corrections to
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the free energy. Higher point functions in SYK have two contributions: a purely conformal piece
which is independent of 8, up to an overall factor of (1 / m) s in (m ), plus contributions
from the Schwarzian which are enhanced by an extra factor of 5J. We claim that the Schwarzian
contributions are in fact zero, see Appendix B.7. The reason behind this cancellation is the
following. When we work at large N we are solving the classical equations. The reparametrization
mode has a solution that is time translation invariant. The two sides are coupled by convolutions
of Green’s functions but this translation symmetry remains unbroken. This means that there is
no source for higher Fourier components of the reparametrization mode, so that the standard
thermal solution continues to be a solution.

The integrals over time give 32". In total, we have “é;ﬁ'%in So the expansion parameter is

pnp pp
—_— for g=4, or , for general 4.2.22
Ve A (763 enerla f222)

So we can trust the above perturbative answer until temperature

1
Thert x J (%) e (4.2.23)

For A = 1/4 this scales as p?, whereas T, o 1% is much larger.
We conjecture that the transition temperature Togyg, when the two black holes phase cease

to exist, in fact coincides with T, when the perturbation theory in p breaks down

1
ﬁ) e (4.2.24)

TogH ~ Tpert o J (J

We check this prediction for A = 1/4 against the numerical phase diagram obtained in [122]. See
Figures 4.3, 4.5.

One last comment on the leading result (4.2.18). In Appendix B.7, we studied the gravita-
tional dressing of this term, searched for instabilities that would spontaneously break the U(1)

time translation symmetry, but did not find any.
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Figure 4.3: A reprint of the phase diagram obtained numerically in [122] for J = 0.5.
The right solid black curve indicates Twy, purple line T, and left solid black line Topy.

The dashed horizontal line is at © = 0.05

, the value of 1 we will use in our real time

numerical simulation. In this case Sopy ~ 61, 8. ~ 54, Bwu ~ 49.
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Figure 4.4: The fit for Twy using the numerical
data from [122] in Figure 4.3, using only data points
with p < 0.03. The fit is consistent with the analyt-
ical prediction p ~ T3/2,
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Figure 4.5: The fit for Topy using the numerical
data from [122] in Figure 4.3, using only data points
with p < 0.03. The fit is consistent with the analyt-
ical prediction p ~ VT.

4.2.3 Low temperature thermodynamics using the Schwarzian

In this section we review the results of [122] on the Schwarzian description of the wormhole. We

will see that the Schwarzian indeed admits a wormhole solution at low temperatures. Moreover,

by including the matter contribution to the partition function one is able to see two phases
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which join at (inverse) temperature Swy. One phase has positive heat capacity and almost zero
entropy. This is a cold and mostly empty wormhole. The second phase has higher energy longer
throat and negative heat capacity. This is wormhole with extra matter excitations inside. We
will see shortly that at small enough p this approximation predicts Swy with good accuracy.

As we have mentioned before, the ground state of the system is close to the TFD state. Since
we have global AdSs we have the following G g correlator in Euclidean signature:

Grr = ib (4.2.25)

\/QJ cosh (%)

where t7,tg are times on left /right.
The action in the Schwarzian approximation now includes two kinetic terms! and an interac-

tion

S = Sun+ S (4.2.26)
S = —N‘?‘“s / du ({tanh (tL§“)>,u}+{tanh (tR§“)>,u}> (4.2.27)

/ 1/4
Sint = —Niu/duGLR N”b/ Wt ( ) (4.2.28)
\/ tR(u))

with ag in (4.2.21). The wormhole solution is simply t;, = tg = t'u, where t’ is a constant. The

effective temperature, 8 of the TFD state is given by
B=tp (4.2.29)

Inserting into the action we get the free energy

J Vv2J

(4.2.30)

'For q=4, J = V27 hence the extra v/2.
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We should also include the contribution from matter fields in the wormhole throat. If the tem-
perature is low enough we excite only the lightest excitation in the bulk, which is the elementary

fermion with mass 1/4. Its contribution to the free energy is:
1 —B/4 L —vs/a
AF/N =~ log (1 te ) ~ -5 (4.2.31)

Extremizing the free energy with respect to t’, which is the same as extremizing the full effective

action, we have the following equation to determine t’ and correspondingly /5’ :

_OFey _ 205V2,  pb g L -vs (4.2.32)

0 —
ot/ J 2v/2J 4

This equation has a solution with very small t' which we can not trust, because we were
assuming that the temperatures are low. For large enough 8 two additional solutions emerge.
One of them correspond to what we call the cold wormhole and the other to the hot wormhole.
The latter has negative heat capacity and can be viewed as a wormhole with more excitations
in the throat. Figure 4.6 shows the two branches for two different values of p/J and their
comparison to the numerical solution to the DS equations.

We can calculate Ty from this equation. We simply need to find when these two solutions
merge. To keep the discussion general, we consider general A, which corresponds to the case
when the two sides are coupled through the product of two operators of dimension A. The
equation for t’ now reads as:

2043\@,6/ LN
J 2(27)28

t2A1 L Ae7tPA = (4.2.33)

The cold wormhole branch can be approximately found [122] by neglecting the thermal excitations
exponent in the above equation, so that t’ is equal

u

/
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Whereas the unstable branch with excitations can be approximated by neglecting the Schwarzian
kinetic term ~ agt’:

J%t’m—l ox et'AA (4.2.35)

Plugging the t’ from the first solution (4.2.34) into the above equation we find the Tyy:

pTIm 2B

T ~
WHO(logJ/u log J/p’

for A=1/4 (4.2.36)

Of course, both (4.2.34) and (4.2.35) are good for T' < Tyyyu. Here we presented just estimates,

but it is straightforward to solve (4.2.33) numerically, see Figure 4.6.

We can also compute the energy using?

OF OF dt’ agV?2 ub t
E=F+TS=F+38—+B3—-— =2F t2 — t1/2 4 2 tB/4 (4237
+ +ﬂ85+58t’d5 0.8YK + N + e ( )

where Ejsyk is the ground state energy of a single SYK, see (ﬁ)

In Figure 4.6 we have compared the results computed using eq. (4.2.37) with the numerical
solution of the DS equation. For the value p = 0.05, which is the one we will use for the real time
numerical computation, the agreement is not very good, but the qualitative form of the curve is
similar, see Figure 4.6(a). This means that that yx is not low enough for an accurate Schwarzian
description. Indeed if we lower p we get very good agreement. See Figure 4.6(b) for u = 0.0053.

To summarize, for small i, we have a hierarchy of temperatures

/J,2712A 'u/
H X ~ )
log /i log J/p

2/3
Tw

for A=1/4

T, x Mﬁ ~ 3 (4.2.38)

1
L 2
Topy o< pu1=28 ~ p

where the rightmost term corresponds to A = 1/4.

*When computing the derivatives one has to keep in mind that t’ is a function of 8. And use (4.2.32).
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Figure 4.6: Thermodynamics of the model for two different values of 1/.J. In both
J=0.5and in (a) . = 0.05 and in (b) u = 0.0053. The dots correspond to numerical
solutions of the DS equation. The blue ones for the two black hole phase and the green
ones for the cold wormhole phase. The black line is the ground state energy of two
decoupled SYK, 2Ej sy k (on the left plot it lies above the visible area). Blue curve:
the perturbative result (4.2.19) for the energy. Green curve: wormhole branch of eq.
(4.2.32). Red curve: unstable branch of eq. (4.2.32). The uncertainties, represented
as shaded regions, come from the uncertainties in Ey gykx and ag. We see that in (b)
the agreement is very good. However, in (a) the agreement is not so good, but the
qualitative form of the curve is similar, if we joint the two end points of the dotted
lines.

4.3 Real time results

4.3.1 Coupling to a bath

2 black holes, numerics

Wormhole, numerics
—— Unstable, Schwartzian
—— Wormhole, Schwartzian

2 decoupled SYK +
leading mu correction

—— 2 decoupled SYK ground state

In order to study the real-time formation of the wormhole, we need to cool down the system.

Before considering real-time dynamics, first we need to understand how to couple our system to

a thermal bath. Ideally we want the bath to be a large system in order to avoid back-reaction.

Generally, we can couple a system’s operator Og to a bath operator Op:

AS =if'v / dr O50p

where F' is the fermionic number of Og.
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If V is small and the bath is large we can study this interaction in the Lindblandian approxi-
mation by considering the 1-loop result and assuming that there is no back reaction on the bath,

such that we can substitute the product Op(t1)Og(t2) by VEV (Op(t1)Og(t2))B:
AS = —V? / dridrs Os(1)Os(72)(On(r)On(72)) 5 (4.3.40)

For our problem we have a varying temperature that sets an energy scale for the model.
Specially for our numerical analysis, it is convenient to choose an interaction that is scale invariant
(at least approximately), so that the effects of coupling to the bath are independent of the
temperature. Otherwise the bath might be effectively decoupling in some temperature range and
the system would take long to cool down.

A natural model for the bath is another SYK, possibly with larger number of fermions. We
can consider the bath to be another single-SYK model with ¢ = ¢p with large number of fermions
M, much larger than the number of fermions in our system N. Recently this problem was studied
in [2], we refer to this paper for details. If we denote the bath fermions by xq, then the coupling
can involve an arbitrary number s of system fermions and p bath fermions.

Again, to warm-up, let us first consider the case when the system consists of a single-SYK

model. The coupling between the bath and the system has the form:

['bath—system = V;?i:é‘sapl/}il R ¢ionq e Xay (4341)

where V is a random Gaussian-distibuted coupling. By choosing its variance appropriatly, the
back reaction can be made of order N/M < 1. The Euclidean Dyson—Schwinger equations for
the system stay the same except for a correction to the self-energy: the self-energy acquires an
additional term,

AY =Yg = nGLGs! (4.3.42)

where Gp is bath two-point function and 7 is proportional to the variance of V.
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We can get a marginal interaction with s = 1,p = 3, when the bath consists of ¢ = 4 SYK
models (with, say Jp = Jg). This is the bath we will use. More precisely, we introduce two

separate baths, one for each SYK factor

Ebath-system = V;alogang,ionl Xaz Xas + %a1aza3¢R7i>~<al)~<a22a3 (4'3-43)

where V and V are independent Gaussian-distributed variables. This interaction leaves Y r

unperturbed, but the other two self-energies have additional terms now:
AYp = AYgrr = Xp = nG%h (4.3.44)
The above equations are written in Euclidean signature. We now turn to Lorentzian equations.

4.3.2 Kadanoff-Baym equations

We now write down the Lorentzian time version of the DS equations. For details see Appendix
B.8.

Here we will discuss the non-equilibrum situation following [36] and [37]. It is convenient
to work right away on the Keldysh time contour, see [118] for a comprehensive introduction.
We will need Lorentzian time correlators which are not time ordered. This can be achieved by
introducing a Keldysh time contour which runs from —oo to +00 and then back from +oo to

+o0. First, one introduces a Wightman function

Gty ty) = —i(Walty )n(t3)), (4.3.45)

where t1, t5 lie on different sides of the contour. This simply means that 1, (t2) is always located
to the right of 1,(t1) in the correlator, regardless of time-ordering. This is why the Keldysh

contour consists of two parts. Note the overall ¢ in front of the correlator. Since we are dealing
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with simple Majorana fermions the “lesser” function G3; is given by:
G5t t2) = =Gy, (t2, t1) (4.3.46)
Also we will need retarded and advanced Green functions:

GE (t1,t2) = 0(t1 — t2) (G, (t1, ) — G5 (11, 12)) (4.3.47)

Gi(t,ta) = 0(t2 — t1) (G5 (L1, 1) — G (t1, 1))

Dyson—Schwinger equations written on the Keldysh contour are known as Kadanoff-Baym equa-
tions, and are useful for non-equilibrium situations. Let us write them down explicitly for a single

SYK:

“+o00
10, G” (t1,t2) = L x G = / dt (SF(t1,1)G™ (t,12) + X7 (11, )G (L, 1))
400
Li0,C7 (tts) = G X = / dt (GR(t1, )57 (1, 1) + G (11, )54 (1, 1)) (4.3.48)

—00

where the self-energy ¥~ is given by
S (t, b9) = —J% (G7 (11, 12))° (4.3.49)

These equations for the complete system of two interacting SYKs and a bath are derived using
the path integral in Appendix B.9.

Remember that the “greater” Green function G> (¢ ,t5) has time arguments lying on different
sides of the Keldysh contour, this is why we do not have a delta-function on the right hand side of
(4.3.48). The integral in the right hand side of (4.3.48), which involves different Green functions,
is just a simple convolution ¥« G along the Keldysh contour [38]. We can show it by writing the
anti-time ordered ¥ = ¥~ — ©% and the time ordered G = G4 + G™. One can easily see that

equations (4.3.48) are casual.
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Let us mention one subtlety. Strictly speaking, if one starts from a thermal state, then the
precise Keldysh contour involves imaginary time stip at the end of the lower branch, at ¢ = 0.
This time strip has length 5 and prepares the thermal state. One can bypass this as follows.
First we set the coupling to the bath to zero. Then we find the real time correlators at thermal
equilibrium by solving the real time equations imposing the appropriate relations between the
Green’s functions, see e.g. (B.8.109). We then evolve the system for some time ¢ > 8 and then
we turn on the coupling to the bath. For more details see Appendix B.10.

For two coupled SYK models one has to be very careful with the p term. To understand its

form on the Keldysh contour we can go back to G, X effective action derived in Appendix B.9

S

, 1 J? 1
ZN = iTI‘IOg (w — Eab(w)) — %{;/cdtldh <8Gab(t1,t2)4 —+ QZab(tl,tg)Gab(tl,tQ)) +

.
+§M dt (Grr(t,t) — Grr(t,t)) — g / dtrdty (Grr(ti,t2) + Grr(ti, t2) Gt t2)

c c
(4.3.50)

We see that the p contribution to X(t1,t2) is
AZab(tl, tg) = ipapdc (751 — tg) (4.3.51)

In this expression t1,ta can be on either side of the Keldysh contour, this is why 3 does not have
an additional index, like >, R, A. Notice that the delta-function d¢ is defined on the Keldysh
contour as well. It yields non-zero answer if and only if ¢; = ¢ and ¢, t2 are on the same side of
the contour. Let us compute the contribitution of this term to the convolution ¥ x G along the

Keldysh contour:

AS*G)(t],13)ap = z',uac/dt Sc(ty —t)Gap(t —13) = ipacGo (11, 13) (4.3.52)
C
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The final form of the Kadanoff-Baym equations, including the bath, is:

+o0
10y, Gy (t1, t2) = ipacG o (th, t2) +/ dt (SE(t1,8)G5 (¢, t2) + S (t1, 1) G4 (¢, 12))
+o0
—i0, G (t1, t2) = —ipecG o (t1, t2) +/ dt (GE(t1,0)55,(t, t2) + G2 (t, 1) 5 (, 12))
(4.3.53)
where piqp is defined in eq. (4.2.10) and the self-energy is
S2, (b, te) = —J% (G2y(t1,12))° — nday (G5 (t1, ) (4.3.54)

4.3.3 Forming the wormhole

Our numerical setup for solving KB equation (4.3.53),(4.3.54) is presented in Appendix B.10.
We prepare initial Lorentz Green’s functions using Lorentz-time Dyson—Schwinger equations
described in Appendix B.8. Our initial Green’s functions correspond to two interacting SYK
models with non-zero p at thermal equilibrium. In order to save computational time, the initial
temperature is chosen close to (and slightly higher than) the transition temperature Thopy.

We extract the temperature using the Fluctuation-Dissipation Theorem(FDT) for the two-
point functions. Precisely, our numerical setup gives us the G~ and G< Green’s functions. At
thermal equilibrium a certain combination of these Green’s functions (eq. (B.10.128)) must be
equal to tanh(Sw/2) in the frequency domain. So we take the numerically obtained G~ and G<,
make a discrete Fourier transform and fit eq. (B.10.128) with the tanh. We refer to Appendix
B.10 for details about the precise choice of the Green’s functions and the frequency domain for
fit.

Our benchmark parameters are J = Jp = 0.5 (the system and the bath have the same
coupling strength), i = 0.05. In this case, from Figure 4.3 we expect fopn ~ 61, Bc ~ 54, Swn ~
49.
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We considered a few values for the system-bath coupling, n = 0.04, 0.02, 0.01. Figure 4.7
shows the results for Bp.n = 80, n = 0.04, Binitial = 40 for different time steps. The energy is

computed using eq. (B.10.127).

J=0.5 eta=0.04

Energy Beta
— dt= 80 —
~0.043 dt=0.2 —
dt=0.1
—0.044 |
‘ 70 - J—
/'/ S
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409 \ —— dt=0.2
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(a) (b)

Figure 4.7: Numerical results for J = 0.5 and p = 0.05, S5 = 80 and timesteps
dt = 0.2,0.1. (a) The energy as a function of time. The initial rise is due to the
fact that we are coupling the bath to the system, and this changes the energy [2].
We then see the energy decreasing monotonicallly. (b) The inverse temperature as
a function of time. We also see an initial sharp increase due to the coupling of the
bath, then we see a decrease. Then a slight increase of the temperature that signals
the phase with negative specific heat. Finally the temperature decreases again.

We can perform another check, this time taking 1 much smaller, namely n = 0.01. The result
is shown on Figure 4.8. A few comments are in order. As is explained in detail in [2] the marginal
system-bath interaction we will renormalize J, making it bigger. This is why expect that the
actual transition will happen at higher 5. This is indeed what we see. Moreover, the interaction
with the bath will shift the ground state energy. To compensate for this we have shifted the
energy vs beta curve in Figure 4.8 to match the final energy.

The red curve in Figure 4.8 has wild oscillations in temperature near the equilibrium for small
1, see also Figures 4.7(b). The reason is the following. Because of the numerical error there is an

additional flux of energy which pushes the system out of equilibrium. From the phase diagram
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Figure 4.8: The comparison between E() in equilibrium(blue points) and the real-
time evolution of the system as it cools down (solid red line). The bath parameters
are 7 = 0.01, Bpath = 80. The initial linear ramp of the red curve occurs because
we switch on the coupling with the bath linearly in time. The dashed red line is the
same as the solid line but shifted to match the final energy on the phase diagram.
The green dot shows the equilibrium value of the system+bath energy.

(blue points) we see that the derivative d3/dFE is very large. If 1) is not big enough, the relaxation
time is not small enough to smooth out these fluctuations.

The crucial question is whether we indeed have reached the wormhole phase or not. In
principle, we might have ended up in some other phase. To verify that we have reached the
wormhole we can make a precise check of the system’s energy.

In the real-simulation the final value of the energy is(in units where J = 0.5):

Exp = —0.05282(2) (4.3.55)

where the uncertainty comes from changing the size of the diagonal strip and changing the
timestep. Also we can ask ourselves how carefully is the initial state prepared. For an exact

two-point function we know that G.,(0) = —0.5i. However, the iterations of the real-time DS
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equations have Gg4q(0) = —0.5002i. The error coming from this is esentially the same as in the
above number.

How do we compare this result with the equilibrium phase diagram? In fact, we can solve
Fuclidean Dyson—Schwinger equation for the coupled system-+bath and compare the equilibrium
energy. We start from the Euclidean correlators in the wormhole phase, add coupling to the bath
and solve the DS equations again. The value of the energy we obtained this way is(again in units
where J = 0.5):

Eps = —0.05276(3) (4.3.56)

It is represented as green dot in Figure 4.8. The uncertainty is estimated by changing the
number of discretization points and imposing different cutoffs for the iteration procedure. We
see an agreement with (4.3.55) within one standard deviation. This suggests that we indeed
reached the wormbhole.

To understand what happens near the transition we can look at the maximum value of G g,
see Figure 4.9 (lower part). We can notice that, during the transition through the unstable phase,
the imaginary value of the correlator (which is proportional to the anticommutator) rapidly grows,
indicating the growth in the information transmission rate.

Another thing we can see is that coupling to a bath generically thwarts the information
transmission between the sides; for larger bath coupling 7 the ratio Im G r/ Re G R is smaller.

Figure 4.8 shows that the system is more or less following the thermodynamic curve. We see
that the temperature and energy are smooth everywhere and the transition goes through a phase
with negative heat capacity, where the energy decreases and the temperature increases.

To check whether the system remains thermal at all times we performed an additional check.
Using the fluctuation dissipation theorem (FDT) we can find the temperature two ways: from
LL correlator and the LR correlator, using (B.10.128). The result is shown on Figure 4.9 (upper
part). We see that LL correlator is very close to thermal and the curve shows a clear period
of temperature increase. In contrast, the temperature extracted from the LR correlator has big

errorbars. This means that the LR correlator has larger deviations from precise thermality, and
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Figure 4.9: (Upper part) /8 as a function of time for = 0.02 and 0.04. The error
bars are taken from the covariance matrix, so the meaningful quantity is the relative
size between them. (Lower part) the maximum of value of G for the same values
of 7.

larger violations to the relation (B.10.128). We think that this happens for the following reason.
We couple each SYK system to its own bath, so we have two uncorrelated baths. This introduces
incoherence to the system, which can be seen on Figure 4.9: GrR is decreases when we increase
1. Moreover we are in the regime of small g, which means that the two sides interact weakly,
so the equilibration time for G p is much bigger than for Gr;. Therefore we expect that the
error bars for LR temperature are big because our system-bath coupling is too big. And, if we

managed to cool the system down more slowly, then the LR correlators would remain thermal.
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Unfortunately, with our limited computer resources we could not go below n = 0.01. So we do

not have a clear evidence for this interpretation.

4.3.4 Time to form the wormhole

In this subsection we provide analytic estimates for the time it takes to form the wormhole. We
will first estimate the time it takes to reach Togg and then the time it takes to reach from there
to Twp. At this point we basically have a cold wormhole, so we will consider it to be already
formed. We could also consider it formed once we reach Topy and we start moving on the hot
wormhole region.

In order to estimate these times we need an expression for the rate of energy emission into
the bath. For a general coupling between a system and a large bath the energy loss rate can be
written as (see [2] for more discussion)

de . [T . t+t t—1 -

e 2in /Oo dt 0;Grr <, 2> Gp(t) (4.3.57)
where factor of 2 comes from having both sides of coupled to a bath. In the above integral, we
can replace the system two point function by the thermal one at the instantaneous temperature,
assuming that the temperature varies slowly. Moreover, for SYK at low temperatures we can
simply use conformal approximations for two-point functions.

If the bath temperature is much lower, than the system’s temperature we can approximate

bath Green’s function by the zero temperature one
Gp=b——-— (4.3.58)

Reaching Topg

In the two black hole holes phase we assume that Gy, is approximated by a single SYK thermal

two-point function

Grr(t) =0 VT : (4.3.59)
\//Bisinh T

101




Plugging these into (4.3.57) we see that the answer is determined by dimensional analysis up to

an irrelevant numerical coefficient?:

E
B onst—1 (4.3.60)

dt J%/Q\/jIBQ

Differentiating the energy expression (4.2.20) with respect to the time, and solving a simple

differential equation for 3(t), we find that it grows exponentially

B(t) ~ Binit €xp (const Wﬁt> (4.3.61)

B

So that the time Atopy needed to go through the two black hole phase and reach Topy ~ u?/J

depends only logarithmically on u:

3/2
J
AtQBHN B lo

VJIn & 12 B

(4.3.62)

Reaching Twy

Now let us calculate time Atwy which is needed to go through the hot wormhole phase and reach
Twn. To this end we will employ some results from the end of Section 4.2.3 about Schwarzian.
This Schwarzian approximation breaks for very hot wormholes with temperature of order Topy,
but holds for lower temperatures.

Suppressing the numerical coefficients, Gy, in this regime is given by:

Vit
VT sin (¥ (t — ie))

Grr(t) o< (4.3.63)

where t/(t) is determined by the solution of eq. (4.2.32). The hot wormhole(unstable branch) is

characterized by having t' < 1, so eq. (4.2.32) can be simplified by neglecting Schwarzian kinetic

3We refer to [2] for the numerical coefficient.
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term (the first term in eq. (4.2.32))

exp (—t/8/4) ~ t,% (4.3.64)

This approximation breaks down near 7" ~ Tywg, so we further assume that we use this approxi-
mation for temperatures which are slightly below or of order Tywy.
From this equation, up to a logarithmic term in p, t' and g are related by t' ~ 1/3. Using

(4.3.64), the energy (4.2.37) can be written as

E — 2By sy _LJﬁ (4.3.65)
We see that the heat capacity is negative
dFE dE [6]
C’hot wormhole = ﬁ = —52% X 'u\>/j> (4366)

We can compare the absolute value of this expression with the heat capacity of a regular SYK

1
Csyk ~ 75

C ot wormhnole T 3/2
!htCSYKhlI x VT2 <Vj\jH> (4.3.67)

This ratio is much bigger than 1 for § > 1/(J1/3,u2/3) ~ Bwi. So apart from the region close to
Twy the hot wormhole has a large negative heat capacity, compared to a single SYK model at
the same temperature.

The energy flux can be computed using the expression (4.3.63) for Grr. The result is again
determined by scale symmetry and it is again proportional to t'? ~ 1/8? as in (4.3.60). However,
because of the big negative heat capacity, the time it takes to go through this region is much

longer than (4.3.62). Solving for 5(t) we get

3/2 3/2 n
0/ - 1/ = 3/2 (tl - to) (4368)
pdg
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In our case we start from [y ~ Sopy and end with 51 ~ SBwyg. Since Bopy > PBwu the overall
time length is mostly determined by the region near Topy:

J3/2J]?;,/2

(4.3.69)
n?

AtWH ~

This timescale is much larger than Atwp, (4.3.62), which scaled only logarithmically in .
Moreover, it is mostly determined by the region near Topy, which is where the approximation is
breaking down. So (4.3.69) should only be viewed as an order of magnitude estimate.

Our numerical results for 3(t) on Figures 4.7 and 4.9 seem to qualitatively support these

conclusions. Notice that, as expected, the times are inversely proportional to the coupling to the

bath 7.

4.4 Two coupled black holes in gravity

The low energy description of the SYK model has some features in common with certain two
dimensional theories of gravity. In this section, we study a similar problem in a gravitational
theory in order to compare to the answers we found above.

We consider a Jackiw-Teitelboim theory of gravity coupled to matter, see [116, 115, 103] for
details. This gravity theory describes a two dimensional black hole with an AdSs geometry.
The AdS5 space has a boundary. We consider a system containing two such black hole exteriors
and we introduce a coupling for the two dimensional matter fields propagating in the bulk. We
assume that have N such matter fields. Let us say that x is a matter field with a certain mass m
in the bulk and quantized with Neumann boundary conditions so that its dimension is A, with

A < 1/2. We couple their boundary values through a term, for each field,

S—in [duwloxa(w . i= (4.4.70)
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were we imagine that J~! is related to a cutoff in the radial Ad.Sy directionf and u is the physical

boundary time.

4.4.1 High temperature phase

We now consider the high temperature phase where in FEuclidean space we have two separate
disks that are connected through the interaction (4.4.70). Concentrating on the matter system,
this interaction is easy to analyze because the full matter theory is just quadratic. In principle,
we also need to consider the effects of gravity, and we will discuss them later. This interaction,
(4.4.70), leads to the Feynman diagrams in Figure 4.10(a), which can be easily summed, as we
explain below. Since the interaction is relevant, it becomes important at low temperatures. For
sufficiently low temperatures, the net effect is to change the boundary conditions for the bulk
fermions x from Neumann to Dirichlet. Namely, at low temperatures we get two decoupled disks
with Dirichlet boundary conditions for bulk fermions. We now discuss this more explicitly.
When i = 0 we have two separate disks and the matter partition function is just given by Z]2V,
namely the square of the partition function of a fermion with Neumann boundary conditions.
Starting from this state we can now sum the diagrams in Figure (4.10)(a). For each fermion

field, we get

D=

Z, = Z% exp {;Tr[log(l +iaG)(1 — mG)}} = 7% [det(1 + 3*G3)] (4.4.71)

%]_QA as a matrix with indices uy, us. We have set 8 = 27

where we think of G(u1,uz2) o [sin
for simplicity and we will restore it later.
For large ;i we find that the partition function gets an additional factor of the determinant

of Ga. It turns out that this produces the Dirichlet partition function [127, 128|

1

Zps1 = Z3 det Gae™ WP o 7 e(i) o« —(fi) 25 (4.4.72)

“With the AdS metric ds® = (dz? + dz?)/z%, this is the cutoff at z = ¢, and we are defining J = 1/e.
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In the last equality we neglected the energy contribution, since we will be focusing on the ground

state entropy contributions.

u

(a) (b) (c)

Figure 4.10: (a) Field theory diagrams when we add an interaction term ifixrx g at
the boundary of two disks. Here we picture one disk and the second as the outside.
So xEx! propagators are the ones inside the disk and xfx ! are outside the disk. (b)
Diagrams in the two coupled SYK model that reproduce the field theory diagrams in
(a). (¢) An example of a diagram in the two coupled SYK model that is not present
in field theory.

The conclusion is that if we start out with two disks with Neumann boundary conditions, after
we turn on the relevant perturbation (4.4.70), for very low temperatures we get two decoupled
disks again but with Dirichlet boundary conditions. This implies that for very low temperatures,
the bulk fermion would be dual to an operator of dimension 1 — A.

Restoring the factors of 3, this transition happens at Sopp given by

1

1~ ABL2A or  Thpm o (JQLA) s (4.4.73)

For ¢ = 4 this reproduces (4.2.24). This is not surprising because we were summing the same
type of diagrams. However, in the gravity case these are all the diagrams, so we can study the
whole flow. The new IR fixed point simply corresponds to flipping the boundary conditions to
Dirichlet. So nothing too dramatic happens in the gravity solution when we go to temperatures
lower than the temperature Tbpy in (4.4.73), except that the change in the boundary conditions

will change the value of the ground state entropy.
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In this discussion, we have ignored the dynamics of gravity. In principle, we could wonder
whether we should consider non-trivial solutions of the Schwarzian theory. If we assume that
the solution is invariant under translations for each disk, then, up to gauge symmetries of the
Schwarzian theory, the only solution is the usual one. In Appendix B.7, we examine whether
non-constant Schwarzian modes could lower the action. We find that they do not, at least in
the approximation we considered. In our analysis we assumed that gravity is classical, which is
correct if ¢, /B > 1. Here ¢, is the JT gravity analog of the coefficient of the Schwarzian, the
analog of Nag/J. We have also assumed that we have a relatively low number of bulk quantum
fields so that the effects of integrating them out does not significantly change the value of Sy, the
ground state entropy. This is the regime where the gravity theory is simplest. As we will discuss

below, the SYK model is different in this respect.

4.4.2 Low temperature phase

At very low temperatures the coupling (4.4.70) leads to the formation of a wormhole [122]. This
is identical to the small ;1 coupled SYK model analysis of section 4.2.3, since the effects of gravity
can also be described in terms of the Schwarzian mode.

When we decrease the temperature along the negative specific heat region (the hot wormhole
phase), the wormbhole is getting longer and longer. Or, more precisely, there is a larger redshift
factor between the boundary and the center of the wormhole. Then, the interaction, which is a
relevant deformation, becomes stronger. When we considered the problem for the disks, we found

that for strong interactions we get an effective change in boundary conditions from Neumann to

Dirichlet. Here we expect the same phenomenon when t’ is becomes
/ no\1-—2a
t' o Topn (—) (4.4.74)

where t’ is the variable in (4.2.32), which is proportional to the value of the redshift factor at
the center of the wormhole. In other words, t' becomes of the order of the temperature Topy in

(4.4.73). We refer to Appendix B.11 for details. At this value of t’ the wormhole is so long that
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the approximations used in deriving (4.2.33) are no longer valid. Interestingly, due to (4.2.35),
this happens also at a temperature of the order of Togy, which is the temperature where the two
disk solutions starts being corrected. This might appear as a coincidence, but it is not. In the
hot wormhole phase we find that the temperature sets the value of t and thus the amount of
RG flow that the relevant left-right interaction undergoes. Therefore, this interaction becomes
relevant at the same place.

This statement can be further verified by checking whether the hot wormhole thermodynamic
curve (red curve in figure 4.6) will join with the two black hole phase (blue curve in figure 4.6)
at T = Topg. In the hot wormhole phase the energy is given by (4.3.65) and in the two black
hole phase by (w) Indeed, the two curves join at T' ~ Topy.

In a gravity theory with a relatively low number of fields, we expect that after Togy the
wormhole phase might not exist any longer.

One conclusion is that, in a general JT gravity theory plus matter, we do not seem to be able
to easily join the high temperature phase and the hot wormhole phase. This is mysterious in
the gravity theory because it involves a topology change. Of course, the low temperature phase
and the hot wormhole phase are connected smoothly at Tiyi in a region where we can trust the

wormhole analysis in the Schwarzian approximation, as discussed near (4.2.33).

4.4.3 Comparison with the SYK model

In the SYK model, the addition of the interaction corrects the original diagrams by inserting p
terms in the propagators. If we insert them outside the self energy correction (the ¥ bubble),
then we get diagrams which are identical to the ones we discussed in gravity, see Figure 4.10(b).
However, in the SYK model we can also insert p inside the self energy corrections, these are new
diagrams that are not present in the gravity discussion, see Figure (4.10)(c).

As we mentioned above the region of the phase diagram near temperatures T ~ Topy is
different in a generic JT gravity theory plus matter than in SYK. However, we can consider the

folloing gravitations model that would look more qualitatively similar to the SYK model.
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First we note that the SYK ground state entropy is given by Sy = Nsg, where sq is given by

[17, 127]
ZN

e’0 = (detGA)_% = Z7D ,

for one Majorana fermion (4.4.75)

where the first equality follows from the usual G, % action at low energies. The second equality
was mentioned in (4.4.72). This implies that if we want to describe the SYK model in terms of
JT gravity, we should think that when the fermions have Dirichlet boundary conditions, the net
entropy, or value of the topological terms in the action should be zero, ¢g = 0. Then the actual
value of the ground state entropy of the usual, single boundary SYK model, (4.4.75), is simply
given by the contribution of changing the boundary condition for the bulk fields from Dirichlet
to Neumann [127].

Returning now to the coupled model and starting from the high temperature phase, we see
that when we reach the temperature Topg we are changing to a Dirichlet boundary condition.
This means that the total Sy now becomes zero, which implies that the topology change is easy.
Similarly, if we start from the canonically unstable wormhole phase and approach Thpp, we also
see a change in the boundary conditions so that Sy again becomes zero and topology change is
easy. So we can join the two phases with a change in topology at Tobpy. In this way we can
qualitatively understand the transition. We have given evidence that this is a smooth transition
in the coupled SYK model. What we are discussing here is just a cartoon for a gravity picture
of what is happening.

We also see why SYK is different than a generic JT gravity theory with a smaller number of
fields. In such gravity theories the flow from Neuman to Dirichlet would not change Sy by too
much and the topology change remains suppressed. For this reason we have not been able to see
a general mechanism for the transition that would also work in more general gravity theories,
such as the Standard Model in the presence of magnetically charged black holes as discussed in

123

109



4.5 Conclusion

In this chapter we studied the approach to the ground state of the two coupled SYK models [122].
We first discussed the equilibrium thermodynamics picture. In the microcannonical ensemble we
expect a continuous picture with no phase transition. As the energy decreases, the temperature
decreases up to a value Togy where the system looks like two separate thermal SYK models with
a small coupling. At Togy this coupling becomes strong and the system transitions to a “hot
wormhole” phase with negative specific heat. Now the temperature increases up to Ty and then
the wormhole becomes cooler and shorter, and the specific heat becomes positive again. This
whole picture can be understood using simple analytic approximations, except for the transition
region at T ~ Thrpy.

We found that the real time evolution looked as if the system is following the above equilibrium
phase diagram. Unfortunately, for the parameters we could use in our numerical computation,
we could not trust quantitatively the simple analytic approximations. However, these gave a
qualitatively correct answer. The system remained near thermal equilibrium as it cooled down,
except for some deviations in the G correlator, which we think should disappear if we were to
cool more slowly.

The conclusion is that, starting with a generic state of the two coupled SYK model, we can
find the ground state by coupling the system to the bath and cooling it down. In particular, the
system does not get stuck in a metastable state. This provides a feasible way to produce a state
close to the TFD.

We also computed the time to form the wormhole. Most of the time is spent near the region
with T ~ Thpy.

One of our goals was to extract some general lessons for wormhole formation in gravity.
Unfortunately, the SYK model seems to be special, and its special features becomes manifest in
the ease by which we can connect the two black hole phase with the hot wormhole phase near

T ~ Topg. These two phases do not seem to be so easy to connect in more general theories of
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gravity. We qualitatively explained why topology is simpler in a gravity theory that is similar to
the SYK model, but harder in a more general theory of gravity.

Nevertheless we cannot say how hard forming a wormhole would be in a more general theory
of gravity, such as the one describing the wormholes in [125]. It seems hard, but maybe there is
an “easy” pathway to form it. It would be interesting to answer this question.

We expect that this article would be relevant for efforts that try to do it using the SYK

model, see the proposal in [129], for example.
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Chapter 5

Spectra of Eigenstates in Fermionic

Tensor Quantum Mechanics

5.1 Introduction and Summary

In recent literature there has been considerable interest in the quantum mechanical models where
the degrees of freedom are fermionic tensors of rank 3 or higher [19, 20]. These models have
solvable large N limits dominated by the so-called melonic diagrams. Such novel large N limits
were discovered and developed in [39, 40, 41, 42, 43, 44, 45, 47, 48], mostly in the context
of zero-dimensional tensor models with multiple U(N) or O(N) symmetries (for reviews, see
[18, 46, 130]). The quantum mechanical tensor models are richer: they have interesting spectra
of energy eigenstates and may have connections with physical systems like the quantum dots.
More amibitiously, large N tensor quantum mechanics may provide a dual description of two-
dimensional black holes [121, 116, 103, 115], in the sense of the gauge/gravity duality [5, 55, 56].
The original motivation [19] for introducing the tensor quantum mechanics is that they have a
large N limit similar to the one in the Sachdev-Ye-Kitaev (SYK) model [16, 131, 88, 17], but
without the necessity of the disorder. Indeed, as shown explicitly in [20], the 2- and 4-point
functions in the large N tensor models are governed by the same Schwinger-Dyson equations as

were derived earlier for the SYK-like models [17, 90, 36, 132, 133].
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At the same time, there are significant differences between the tensor and SYK-like models.
An early hint was the different scaling of the corrections to the large N limit [19] (see also the
further work in [134, 135, 136, 137]); more recently, additional evidence for the differences is
emerging in the operator spectra and Hagedorn transition [138, 139, 140]. The formal structure
of the two types of models is indeed quite different: the SYK-like models containing a large
number of fermions, Ngyk, have no continuous symmetries (although an O(Ngyk) symmetry
appears in the replica formalism), while in the tensor models one typically encounters multiple
symmetry groups. For example, in the Gurau-Witten (GW) model [19] containing 4 Majorana
rank-3 tensors, the symmetry is O(NN); there is evidence [134, 138] that this model is the tensor
counterpart of a 4-flavor generalization of the SYK model introduced in [133]. A simpler tensor
quantum mechanics with a single rank-3 Majorana tensor has O(N)? symmetry [20] and is the
tensor counterpart of the basic SYK model with real fermions. The quantum mechanics of
complex rank-3 fermionic tensor, which has SU(N)? x O(N) x U(1) symmetry [20], is the tensor
counterpart of the variant of SYK model where real fermions are replaced by complex ones [141].

The absence of disorder and the presence of the continuous symmetry groups in the tensor
models endows them with a number of theoretical advantages, but also makes them quite difficult
to study. In the tensor models any invariant operator should be meaningful and be assigned a
definite scaling dimension in the large N limit. While the simplest scaling dimensions coincide
with those in the corresponding SYK-like models, the operator spectrum in tensor models is
much richer: the number of 2k-particle operators grows as 2Fk! [138, 139, 140)].

Beyond the operator spectrum, it is interesting to investigate the spectrum of eigenstates of
the Hamiltonian. While this spectrum is discrete and bounded for finite IV, the low-lying states
become dense for large N leading to the (nearly) conformal behavior where it makes sense to
calculate the operator scaling dimensions. In the SYK model, the number of states is 2% SYK/2
and numerical calculations of spectra have been carried out for rather large values of Ngyk
[92, 142]. They reveal a smooth distribution of energy eigenvalues, which is almost symmetric

under £ — —F; it exhibits little sensitivity to the randomly chosen coupling constants J;jx;.
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Such numerical studies of the SYK model have revealed various interesting physical phenomena,
including the quantum chaos.

The corresponding studies of spectra in the GW model [19] and the O(N)? model [20] have
been carried out in [143, 50, 51, 144, 52, 145, 146], but in these cases the numerical limitations
have been more severe — the number of states grows as 2V °/2 in the O(N)? model and as 22V *in
the GW model. This is why only the N =2 GW model and N = 2,3 O(N)? models have been
studied explicitly so far.i Furthermore, in the tensor models the states need to be decomposed
into various representations of the symmetry groups. As a result, the details of the energy
spectrum in the O(N)? tensor model are quite different from those in the corresponding SYK
model with Ngyk = N3 fermion species.

The goal of this work is to improve our understanding of energy spectra in the tensor models.
We will mostly focus on the simplest tensor model with O(N)? symmetry [20] and its general-
ization to O(N7) x O(Ny) x O(N3), where the Majorana tensor degrees of freedom are ¢%¢ with

a=1,...,Ni;b=1,...,Ny; c=1,..., N3, and anti-commutation relations
{wabc wa’b’c’} _ 5aa’5bb’5cc’ ) (5.1‘1)
The Hamiltonian is taken to be of the “tetrahedral” form [47, 20]

H — %wabcwab’dwa/bc’wa/b’c . %N1N2N3(Nl — N2 _|_ N3) s (512)

and we have added a shift to make the spectrum traceless. In section 5.2 we discuss some essential
features of this model, including its discrete symmetries. In section 5.3 we will derive lower bounds
on the energy in each representation of SO(N7) x SO(N3) x SO(N3). We will show that, in the
melonic large N limit where gN3/2 = .J is kept constant, the most stringent bounds (5.3.38) scale

as JN3, in agreement with expectations for a system with N? degrees of freedom. On the other

Tn [146] the exact values of the 140 singlet energies in the O(2)® GW model were found to square to integers.
Due to the discrete symmetries of the GW model, there are only 5 distinct E < 0 eigenvalues (the singlet spectrum
also contains 50 zero-energy states). For these reasons the singlet spectrum of the O(2)® GW model exhibits
significant gaps.
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hand, the splitting between lowest states in different representations is found to be of order J/N.
Another derivation of this fact, based on effective action considerations, is presented in section
5.4. While this gap vanishes in the large N limit, we expect the splitting between states in the

3 . . .
N°where ¢ is a positive constant. Such

same representation to vanish much faster, i.e. as ¢~
small singlet sector gaps are needed to account for the large low-temperature entropy, which is
given by the sum over melonic graphs and, therefore, has to be of order N3.

If the global symmetry of the quantum mechanical model is gauged, this simply truncates the
spectrum to the SO(N1) x SO(N2) x SO(N3) invariant states. In section 5.5 we derive integral
formulae for the number of singlets as functions of the ranks IV;. They lead to the conclusion
that the singlets are present only when all N; are even. The absence of singlets when some of
Nj are odd can often be related to anomalies, which we discuss in section 5.5.2. For the O(N )3
model, the number of singlet states is shown in Table 1; it exhibits rapid growth from 2 for
N =2, to 36 for N = 4, to 595354780 for N = 6. Thus, even though the O(4)% model is out
of reach of complete numerical diagonalization because it has 64 Majorana fermions, in contrast
to the SYK model with Ngykg = 64, it is far from the nearly conformal large N limit. Indeed,
since the spectrum is symmetric under £ — —E [138], the number of distinct singlet eigenvalues
with £ < 0 cannot exceed 18. Therefore, there are significant gaps in the singlet spectrum of
the O(4)® model. On the other hand, the presence of the vast number of singlet states for the
O(6)3 model suggests that the low-lying singlet spectrum should be dense for N = 6 and higher.
For large N the number of singlets grows as exp (N3 log2/2 — 3N?log N/Z). Since all of these
states must fit in an energy interval of order N3, it is plausible that the gaps between low-lying
singlet states vanish as ¢V .

The O(N1) x O(Nz) x O(N3) tensor model (5.1.2) may be viewed as N3 coupled Majorana
Ny x Ny matrices [49, 147]. As discussed in section 5.6.1, for N3 = 1 we find a one-matrix model
with O(N7) x O(N2) symmetry, which is exactly solvable because the Hamiltonian may be written
in terms of a quadratic Casimir. When we set N3 = 2 we find a complex N; X Ny matrix model

with O(N1) x O(N2) x U(1) symmetry. It may be studied numerically for values of N1 and Ny as

large as 4 and reveals a spectrum which is integer in units of g/4. In section 5.6.3 we explain why
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this fermionic matrix model is again exactly solvable and derive a concise expression (5.6.103)
for its spectrum. When both N; and N, are even, so that the spectrum contains singlet states,
we show that the ground state is a singlet. In section 5.6.2 we apply similar methods to another
complex matrix model, which was introduced in [148] and has SU(Ny) x SU(N2) x U(1). It is the
N3 =1 case of the complex tensor quantum mechanics with SU(Np) x SU(N2) x O(N3z) x U(1)
symmetry [20]. We show that the Hamiltonian of this model may be expressed in terms of the
symmetry charges. The solvable matrix models presented in section 5.6 have standard ‘t Hooft
limits when N7 = Ny = N is sent to infinity while A = g/N is held fixed. Then the low-lying
states have energies ~ AN?2, while the splittings are of order A. So, in contrast to the melonic
large N limit, the energy levels don’t become dense in the ‘t Hooft limit of the matrix models.

Nevertheless, these fermionic matrix models are nice examples of exactly solvable ‘t Hooft limits.

5.2 The rank-3 tensor model and its symmetries

The O(N1) x O(N2) x O(N3) tensor model is specified by the action

— 1 abc abc
S_/ dt<2w Ay H> , (5.2.3)

where H is given in (5.1.2). Sometimes it will be convenient to use capital letters A, B, ... to

denote the multi-index, i.e. A = (a,b,c). It is easy to see that the Hamiltonian (5.1.2) has a

traceless spectrum: 3

N diEi=0, Y dj=2MNVNs (5.2.4)

where d; is the degeneracy of eigenvalue F;.

We can make some general restrictions on the possible values of the energies. Operators 1
obeying the anti-commutation relation (5.1.1) may be represented as the Majorana y-matrices in
N1 Ny N3— dimensional Euclidean space. They have entries which, in our conventions, are integers

divided by v/2. As a result, the Hamiltonian is an integer matrix times g/16. It is a well-known

20ne can easily compute tr(w“bcw“blclwalbc’w”/blc) = iNlNQNB(Nl — N2 4 N3) working with ¢ as with a
set of gamma matrices.
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mathematical fact that such matrices cannot have rational eigenvalues. Therefore, in units of
g/16, the energy eigenvalues have to be either integer or irrational numbers. The explicit results
we will find are in agreement with this.

The discrete symmetries of the theory depend on whether some of the ranks are equal. In a
O(N7) x O(N)? theory, N1 # N, we may study interchange of the two O(IN) groups, which acts
as ¢ — 9% The invariant operators can be divided into even or odd under the interchange.
The Hamiltonian (5.1.2) is odd [138], which implies that the energy spectrum is symmetric under
E— -F.

Let us construct the operator which implements the interchange )¢ — 1%?:

abc acb
Py = 2N2(N1+1)/2 H 7’babc H <1/’ \‘/gi/f > (525)

a,b=c a,b>c

This operator has the following properties
2
PhiPy =1, Ply=+Py3, Ply®P, = (—1)N NitD/2+1ach (5.2.6)
Due to the last relation one can check

PJCHPI)C _ PIJLC <%¢abcwab’c/wa/bc’wa/b/c o iNlNgNg(Nl — Ny + Ng)) Pbc —

16
_ %¢acb,¢)ac’b/,¢)alclb,¢a/6b/ — %NlNQN:}(Nl — No + Ng) =
— _%wabcwab/c/wa/bclwa/b’c + %NlNQNS(Nl _ N2 _|._ NS) — —H, (527)

where we have renamed the repeated indices in the second line and used the anti-commutation
relations (5.1.1) in the third line. Let us consider any state that is an eigenvector of the Pa3, it

exists because P»3 is either hermitian or antihermitian

PosA) = AI), 1= (AIA) = (\[PLPasl ) = [AP(AA) = AP (5.2.8)
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The energy of such state is equal to zero. Indeed,
E=(\H\) = —(\|P} HPy|]\) = =N?(\[H|\) = —E, E=0 (5.2.9)

Let us now discuss the case when all three ranks are equal and we have O(N)? symmetry.
Then the invariant operators form irreducible representations of the group Ss which interchanges
the 3 O(N) groups. The Hamiltonian is in the sign representation of degree 1: it is invariant
under the even permutations and changes sign under the odd ones. Therefore, the symmetry of
the Hamiltonian is the alternating group As, which is isomorphic to Z3.

The SO(N;) symmetry charges are
’ 1/ / / /l: / / Z /
Qtlza _ 5[¢abc7 wa bc] ’ gb — i[wabc’ wab c] , Qgc — 5[wmbc7 1/}abc ] ) (5'2‘10)

In addition, each O(N;) group contains Z, parity symmetries which are axis reflections. Inside
O(N1) there are parity symmetries P for a given a’, P sends 9% — —p@%¢ for all b, ¢ and

leaves all ¥%¢ a # a’ invariant. It is not hard to see that the corresponding charges are

P = oM Ns T 't (5.2.11)
be
One can indeed check that
<Pa/)T¢abcPa’ _ (_1)5a7a/+N2N3¢abc ] (5212)

Similarly, there are Zy charges inside O(N3) and O(N3). A product of two different parity
symmetries within the same O(NV;) group is a SO(N;) rotation. Therefore, it is enough to
consider one such Zy parity symmetry within each group and O(N;) ~ SO(N;) x Zs.

The anti-unitary time reversal symmetry 7 is a general feature of systems of Majorana

fermions; it commutes with them and, therefore, with the Hamiltonian (5.1.2):

T Yo T = thape - (5.2.13)
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The action of T on the eigenstates depends on the total number of the Majorana fermions
NiNo N3 and is well-known in the theory of topological insulators and superconductors. If the
total number of fermions is divisible by 8, the operator T acts trivially, so the ground state may
be non-degenerate. Otherwise T acts non-trivially and one finds that the ground state must be

degenerate.

5.3 Energy bounds for the O(N;) x O(N;) x O(N3) model

Since the Hilbert space of the model is finite dimensional, it is interesting to put an upper bound
on the absolute value of the energy eigenvalues in each representation of the symmetry group. In
this section we address this question in two different ways. We first derive a basic linear relation
between the Hamiltonian, a quadratic Casimir operator, and a square of a Hermitian operator
which is positive definite. This gives bounds which are useful for the representations where the
quadratic Casimir of one of the orthogonal groups is near its maximum allowed value. We also
find that the bounds are exactly saturated for N3 = 2, but are not stringent when equal ranks
become large. Then in section 5.3.2 we derive more refined bounds which are more stringent
in the large N limit and give the expected scaling of the ground state energy. Furthermore, we
derive a finite multiplicative factor which corrects the refined bound and allows us to deduce the

ground state energy in the large N limit.

5.3.1 Basic bounds

To derive an energy bound we introduce the hermitian tensor

/Al ) /Al /A Nl / /
Abc,b c _ 1 abc ,pab’c’y _ . pabc,ab’c’ -75bb §ee
ST, g = ity i

(Abc,b’c’)]L — _iwab’c’wabc + i%ébb’écc’ _ iwabc¢ab’c’ N i%ébb’écc’ — Abc,b’c’ ) (5.3‘14)

If we think of be as a combined index which takes NoN3 values, then AP'¢" are the generators

of the transformations in O(N2N3) D O(N3) x O(N3). The quadratic Casimir of O(N2N3) D
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O(N2) x O(N3),

020(N2N3) _ %Abc,b’c’Abc,b’c’ : (5.3.15)
and the quadratic Casimir of the O(N;) symmetry,
cOM) _ % aa’ (yaa’ (5.3.16)
are related by
CcOWas) | cOM) % (N1 + NoN3 — 2) (5.3.17)
Therefore, for the states which appear in the model, we find the upper bound:
coM) < éNlNzNg (N1 + NoN3 — 2) . (5.3.18)

020(N2N3)

This bound is saturated only if = 0 so that the state is invariant under SO(N2N3).

The Hamiltonian may be written as

H— —%Abc’b'C/Abc/vb/c X %N1N2N3(N2 — N3) . (5.3.19)

Now we note the inequality

C2O(N2N3) 4+ %Abc,b’c’Abc’,b'c — i(Abc,b’c' £+ Abc’,b’c)Z >0 (5320)
Combining this with (5.3.17) we get

2 < %N1N2N3 (N7 + Ny — N3 + NoN3 — 2) — C;)(Nl) ,
s (5.3.21)

g > CZO(Nl) - %N1N2N3 (N1 — Ng + N3+ NoN3 — 2) .
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In an analogous fashion we can also derive the bounds in terms of Cs:

5 | < LNINyNg (Ny 4 Ny — Ny + Ny Ny — 2) — C9 V)
" (5.3.22)

g CF™N2) _ LN Ny Ny (Ny — N3 + Ny 4+ N1 N3 — 2)

v

and similarly in terms of CQO (Na),

An interesting special case, which we will consider in section 5.6, is N3 = 2 where we find
a complex N; X N matrix model. For the singlet states where C’;')(Nl) = CQO(N2) = 0 the most

stringent bound we get from (5.3.21) and (5.3.22) is

1H| < %NlNg(Nl +Ny) (5.3.23)

In section 5.6 we will show that these bounds are saturated by the exact solution for even Ny, N».
For Ny = Ny = N we have a N x N matrix quantum mechanics which possesses a 't Hooft large
N limit where gIN = X is held fixed. In this limit, the ground state energy is Fy = —%N 2 which
has the expected scaling with N for a matrix model.

More generally, if at least one of the ranks is even (we will call it N3), we may introduce the

operators [52]

_ 1 ab(2h— o 1 ab(%h— Ca
k=5 (1/) b2k=1) | o) b(2k)> ;= (1/} b(2k=1) _ b(2k)> 7
{cabks Carvrir } = {Cabks Cavrir } = 0, {Cabks Cartrir } = Gaar Oty Ok » (5.3.24)

where a = 1,2,..., Ny, b=1,2...,Ny and k = 1,..., 22, In this basis the O(N7) x O(N2) x

U(N3/2) symmetry is manifest. The Hamiltonian becomes [52]

_ _ g g
H = Z(CabkCab/ k' Carbk Ca't' ks — CabkCalbky Cab/ k' Cartrk) + = (N2 — N1)Q + —- N1 NaN3(Ny — Ny),

2 16

N[

(5.3.25)
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where QQ = %[Eabk,cabk]. The Hamiltonian is invariant under the charge conjugation symmetry
which interchanges cqpr With Cop-

For any even N3, using the basis (5.3.24) we define the oscillator vacuum state by the condition
Capk:)0 = 0. Since this condition is invariant under O(N;N2), so is )0. Furthermore, all the states
that are created by operators that are O(/N;Ny) invariant are also O(N;N3) invariant and have
energy %NlNQNg (N3 — Np). The number of such states is estimated to be the dimension of the

maximal representation for the O(N3) group dimypayx ~ (NlNg)N:? /8 (

see apendix C.1 for details).
The relation (5.3.17) also simplifies the search for the singlets. For example, we can first forget
about the group nature of the third index in the approach of [52] and impose the vanishing of
the Casimir of the third group afterwards. By studying the charges under U(1) € U(N3/2) we
find that the singlet states must have NjNoN3/4 creation operators acting on )0.

Specifying the bound (5.3.21) to the equal ranks Ny = Ny = N3 = N, we find

cOWn _ éN?’(N +2(N—1)<H<=N3N+2)(N—1)— oW (5.3.26)

Q| N
| =

When the bound (5.3.18) is saturated, the corresponding state must have zero energy. This shows

that all the states invariant under O(N?) D O(N)a x O(N)3 have E = 0.

For the singlet states (5.3.26) gives
4 1,
—|H| < EN (N+2)(N-1). (5.3.27)
g

For N = 2, exact diagonalization gives that the ground states is a singlet with energy Fy = —2g;
this saturates the bound (5.3.27). For N = 3, exact diagonalization gives a ground state with
energy —%\/éﬁg ~ —8.0039¢g, which is in the (2,2,2) representation of O(3)3. Since for the 2
of SO(3), C1 = 3/4, the bound (5.3.26) is Ey > —34. This is satisfied and is far from being
saturated.

In the large N limit, J = gN3/2 is held fixed. Thus, we obtain a bound on the lowest singlet

energy Ep, which is Ey > —cJN7/2, where ¢ is a positive constant. Since we expect the ground
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state energy to be of order N3, this bound is not very informative at large N. A better bound

at large N will be derived in the next section.

5.3.2 Refined bounds

In this section we present another approach to deriving energy bounds for the O(N7) x O(N3) X
O(N3) invariant states, which gives a more stringent bound in the large N limit than the ones
in the previous section.

Consider an arbitrary singlet density matrix p; this means a density matrix invariant under
the O(N1) x O(N2) x O(N3) rotations. For example, it can be ps; =)s(s, where )s is an singlet
state, or if we have some representation R of the O(N;) x O(N2) x O(N3) with an orthonormal

basis )e;,i = 1..dim R we can define the projector on this subspace of the Hilbert space

1 dim R 1
= e, =1 2 = . 3.2
R DI CIC NS R S e 2 (5.3.28)

It is easy to see, that this density matrix is invariant under rotations O”prO = pg for any
O € O(N1) x O(N2) x O(N3). We can calculate the mean value of the energy for this density

matrix as

E =tr|prH] = %tr [pwabcwb’dw’bdw’b’c - %NlNzNg(Nl — Ny + N3). (5.3.29)

For a fixed a,b,c we can act by the rotation matrices (that act trivially on the singlet density

matrix ps) and make the interchange a <+ 1,b <> 1, ¢ <» 1. This argument gives us that
E= %le\fz]v3 tr [prh] — I%NlNgNg(Nl — Ny + Ng), b= Hgploe a1yl (53 30)

where we sum over the repeated indexes. From now on we consider the density matrix to be

of the form (5.3.28). Now we can estimate the trace in the formula (5.3.30). With the use of
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Cauchy - Schwarz inequality, we have
1 V) / / AN)
Because the density matrix pg is a singlet we can rotate indices back to get

1
tr [prh)? <

1- o b/ / /b / /b/
= ON\NoNs tr [PRqabc%bc} s Qabe = P EPTIEPTTEL (5.3.32)

We can express it is the following way

1
tr [praZ] + —= (N1 — No + N3)*  (5.3.33)

1 2 1
(tl‘ [,ORh] — Z(Nl —N2+N3)) < 6

— 2N1 N9 N3

The square of the operator gu,;. can be expressed as a sum of Casimir operators due to the
virtue of the anticommutation relations. That gives us the bound on the energies of states in

representation R:

3 1/2
Z(Ni+2)C’Z~R> . (5.3.34)

8

g 2 2 2
E <—NNN<NNN N N. Ny —4— ————
|Er| < 16 V2V (V2 3+ N{ + Ny + N3 N N, N;

where CZ-R is the value of Casimir operator in the representation R. For the singlet states this
gives

[B| < {ENiNoNs(NiNoN5 + N7 + N3 + N3 = 4)!/2. (5.3.35)

Since C; > 0 this bound applies to all energies. Let us note that for N3 = 2 the square root may

be taken explicitly:
1Bl N2 < gNlNQ(Nl + Na), (5.3.36)

which is identical to the earlier result (5.3.23). In section 5.6 we will show that this is saturated

when N7, Ny are even and the ground state is a singlet.
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For the case when N; = Ny = N3 = N and N > 2 the bound (5.3.35) is more stringent than

the earlier bound (5.3.27):

|E| < Epound = %N%N +2)VN -1 (5.3.37)

In the large N limit, Epoyng — JN3/16, which is the expected behavior of the ground state

energy; in the melonic limit it scales as N3. We may expand (5.3.34) for large N to find

3
|Br| < %Nz(z\w 2)V'N — 1 (1 T 2)(?\[ B ;CF +.. ) : (5.3.38)

The discussion of the splittings between non-singlet and singlet states in section 5.4 will be in
agreeement with the scaling of the second term.

We can try to estimate how close the singlet ground state )vac comes to the bound (5.3.37)
by using the exact propagator G(t) = (T¥®¢(t)y%*f(0)) in the large N limit. To do it let us
consider the two states

1) = M |vac), |2) = dppttt|vac), (5.3.39)

where we have introduced 9ptp. = i[H, w“bc]. We can introduce the angle 6 between these states

2 1115 5,111 2 abcq ,abe 2
2g - MR _, [(vacp Moy ™ vac) | |(vacly By ]vac)| 5.3.40
OO UNRE T fac @ )N No Nyl (G ) )

where we have rotated back the indexes back by using the fact that the )vac is a singlet state.

One can notice H = i1)®°9;1p?¢, while (vac| (8t¢“bc)2 |vac) is just equal to the bound (5.3.35),

then
B3
E? ’

bound

cos® ) = (5.3.41)

where Epoung is the bound on the singlet ground state energy (5.3.37). The other way to estimate
this angle 6 can be done in the following way. We shift the Hamiltonian, such that the ground

state has the zero energy (H — Ep))vac = 0 and calculate the expectation value for the energy
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for the state |1):

(1 (H — Eo) |1)
(1)

(E)y = = 2(vac|p" N (H — Eo)y 't vac) = 2i(vac[p 1oyt [vac),  (5.3.42)

at the same time the second moment of the energy is

1|(H — Ep)*|1)

_{
=

= 2(vac|p' M (H — Eg)*y! |vac) = —2¢%(vac| (8t¢111)2 |vac).

(5.3.43)

Where we have used the fact that 0spape = i[H,1%]. After that we can notice that (5.3.40) can

be rewritten as

cos’ 0 =

(5.3.44)

If cos § = 1, it means that (E)? = (E?); that can be true only if and if ¢! |vac) is an eigenstate

of the Hamiltonian. It would give that the propagator is

G(t) _ <wabce—thwa’b’c’> x 5aa’5bb’5cc’e—iAE\t| .

But as we know the solution for the propagator in the large N limit is a conformal propagator.
From this we deduce that the bound can not be saturated. Nevertheless we can estimate the
angle cos?d. Indeed, in the large N limit the propagator can be calculated numerically or
approximated by a conformal one. From this we can calculate the (E); and (E?);. We assume
t>t'=0,a=d,b="V,c=c and insert the full basis ) E,, of eigenstates of the Hamiltonian in

the propagator to get

(Pabe(H)abe(0)) = D [(vac|ape| En)|* e~ En—Eo)t = /dEp(E)e—iEt’
" 0
where  p(E) =Y |(vac|ape| En)|* 8(E — By + Ep). (5.3.45)
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The function p(E) is known as a structure factor. From this we can calculate

o0 o0

(E) —/dEEp(E), (E%), —/dEEQp(E), cos? 0 =
0 0

(5.3.46)

One can use conformal propagator to estimate this angle, which gives cosf =~ 0.745, while the
numerical calculation [16] gives cosf = 0.6608. From this and the formula (5.3.41) we get the

ground state energy in the large N limit:

JN3 5
Ey — —cosl Eppyng = — cos ST ~ —0.041JN" . (5.3.47)

This answer is close to the numerical result for the ground state energy in the SYK model [142]:
FEy ~ —0.04J Ngyk. One can make analogous calculations for the other representations. It gives
us in the large NV limit the following formula for the gap to the lowest state in a representation
R:
_ Jcost R
E—Ey=" o Z of (5.3.48)

5.4 Sigma model and energy gaps

In the large N limit the model 5.2.3 is dominated by melonic diagrams. This allows one to write
down a closed system of Schwinger—Dyson equations for the Green function Ggf’g, st —t2) =
(Tap(t1)h%Y ¥ (t3)) and self-energy 2% , and the bare Green function G5, olw) =15, 62,05 Jw

For simplicity we shall introduce the multi-index A = (a,b,c). We can look for a solution

in the diagonal form GAB = G(t)04P and 4B = %(¢)645. Then we have the following set of

equations:

Gl w) = —iw—2w), X(t)=J*G3). (5.4.49)

These equations exactly coincide with the Schwinger-Dyson equations of the SYK model and

have a conformal solution.
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It was argued in [139] that the system of equations (5.4.49) can be obtained from the effective

3

action

Set = —log Pf (6450, + Sap) + /dtldt2 <—2A3(t1 —t2)GAB(ty — 1) — ng4(t1 — t2)>
(5.4.50)
This action was recently derived from two-particle irreducible diagrams in [137].

In the strong coupling limit J — oo one can neglect the bare Green function. Then, as
first noticed in [139], the global symmetry O(N)?3 is promoted to the gauged symmetry O(N)3.
Indeed, if we neglect G§'Z(w) in (5.4.49) then it is easy to see that we can generate a series of
solutions by doing a gauge transformation:

Gap(ti —ta) = (Oaw(t1)) Garp(ti — t2)Oppi(t2)
(5.4.51)

Sap(ts —t2) = (Oan(t) Sap(t1 — t2)Opp (t2)

where we introduce matrix O in O(N)? which equals to Oap = Oia,O%B,Ogvl.

The effective action (5.5.74) is also invariant under these transformations if one omits the
term 9, in the Pfaffian. For finite J, the action ceases to be invariant. If we plug the gauge
transformation (5.4.51) into the effective action (5.5.74), the potential does not change, while we

will get a kinetic term for matrices O of order 1/.J. Indeed, for the conformal solution we have

Yap = —(1/G) 45 and we can rewrite the kinetic part of the action as
—log Pf (04p0; + X ap) = —log Pt (04ap — 0:G ap) — log Pf (X 4B) (5.4.52)

The second term log Pf (X 4p) is invariant under gauge transformations. Then expanding the

Pfaffian in the leading order in derivatives we get

1
/dt Tr 0;Gap(t,t) (5.4.53)
2 t'—t
3For clarity, we have omitted the indices in the G* term. Explicitly, this term reads as
afy aby afc abc
Ga/B/,Y/Ga/b/,y/GalB/ClGa/b/cl
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Making the gauge transformation (5.4.51) of the conformal solution Gap = 045G and plugging

into (5.4.53) we get:

3
L / dt Tr (Nf”ata +N2) OF ()G(t —t)0,04(t") + 8,0] (H)G(t — t’)Oi(t’)> (5.4.54)

2 -
=1

t—t’

Factors N? come from Tr(O7O;) = N. Now one has to regularize the limit to — t; but this
does not going to affect N2 factors. The details are worked out in [149, 137]. The upshot is that
G(t—1t")O;(t") becomes 9;0;(t)/J up to a normalization constant. This leads to the sigma model

action

A

Ssm =

2
f]V / dt Tr(8,01 0,0, + 0,03 0,05 + 9,0%9,03) . (5.4.55)

The spectrum of such a quantum mechanical sigma model is well-known: the Hamiltonian is
proportional to the quadratic Casimir and the eigenstates are simply representations of O(N)3.
In our case:

J

Hgange = 3751 (C2 (O1(N)) + C2 (O2(N)) + C2 (O3(N))) - (5.4.56)

We note that this has the same structure as the Casimir correction to the energy bound (5.3.38).

Since for the lowest non-singlet representations Cy ~ N, we find the energy gap between singlets

and non-singlets to be of the order ~ J/N.

5.5 Counting singlet states

Suppose we have a free fermionic system of N Majorana fermions ¢!, I = 1,..., M transforming
under some representation R of the gauge group G. We want to compute the number of singlet
states in such a system. In order to do it, we use the following method. The Lagrangian in the
Euclidean space reads as:

L =yploppt + Tl Appp” (5.5.57)

where Ar; is a real gauge field in the representation R. Since Majorana fermions anticommute

with each other, A;; must be anti-symmetric A7y = —Aj;. The partition function of the gauged
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system at the temperature 3 is

8
Zganged = N / DY DA exp (— / dtL) : (5.5.58)
0

where we have put the fermionic system on a circle with the circumference § with antiperiodic
boundary conditions ¢ (t) = —t(t+ ). The normalization factor A can be easily recovered if we
study the ungauged model. The integration over DA gives the volume of the gauge group and
the integral over the fermion variables will yield just the dimension of the Hilbert space because
the Hamiltonian of the ungauged theory is equal to zero Hypgauge = 0. In this case the total

number of states is simply 2M/2:

8
Zungauged = 2172 / DA=N / DYy DA exp (— / dt wﬂp) . (5.5.59)
0

From now on, we will put 5 = 1. If we fix Lorentz gauge ;A = 0 with A in the Cartan subalgebra,
the Faddeev-Popov determinant gives the Haar measure, while the path integral over Majoranna
fermions gives the partition function of the system with Hamiltonian H = —! A7 97, Therefore

the (5.5.58) can be rewritten as

Zgauged = / DA Tr (exp (—¢1A1J¢J)) ’ (5560)

The expression under the trace is an operator of rotations and can be interpreted as a character
of the group acting in the Hilbert space of fermions. By the virtue of the representation theory
we know that the integral of the character over a group is equal to the number of the trivial
representations, i.e. the number of the singlet states. Therefore, Zsaugea equals the number
of singlet states. If we insert in (5.5.58) a Wilson line in some representation R', it gives the

character of this representation:

<Tr73/ exp <7{ Adt>> = #states in the representation R'. (5.5.61)
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One can compute the partition function because the integral over ¢ in both (5.5.58) and

(5.5.59) is Gaussian; therefore, the problem boils down to computing the Pfaffian:

Pf(0; + A)

PE) (5.5.62)

Zganged = 2M/? / DA

As discussed above, we fix A to be a constant matrix in the Cartan subalgebra. The Faddeev—

Popov determinant then yields the normalized Haar measure d)\g on the gauge group G [65]:

/ A\ =1. (5.5.63)
G

Also, since A is anti-symmetric, the eigenvalues of A are pairs of pure-imaginary numbers

iAg, —iAg, a = 1,...,|N/2]. The ratio of the Pfaffians is

M2

PE(0; + A)
i) H cos(Aa/2) . (5.5.64)

There are different ways to derive this formula. One is to compute the ratio of determinants:

M/2 . 1 . M/2
Det(0; + A) 2m ) + i\ ) (2m (n + 5) - z)\a) 9
= cos(A,/2). (5.5.65
P 1L IL S (2ri (n+ )’ L e/, 2562

After that we note that if we go to the Fourier space, both 0; and A are real anti-symmetric
matrices, so the ratio of Pfaffians must be a real smooth function of A,. Therefore, taking the
square root of eq. (5.5.65) we get eq. (5.5.64). Alternatively, we can calculate the Pfaffian of
0; + A in Fourier space. The result is the following formula:

M/2
#singlet states = /d)\g H 2cos(Aa/2), (5.5.66)

a=1

where we have got the normalization by studying the ungauged theory (5.5.59).
Let us apply this approach to the case when Majorana fermions live in the fundamental

representation of several orthogonal groups. It is important to distinguish between SO(2n) and
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SO(2n+1). The Cartan subalgebra in the SO(2n) algebra consists of the block diagonal matrices
with 2 x 2 blocks

: (5.5.67)

where x; is a rotation phase ranging from 0 to 2w. Geometrically it means that for a fixed
SO(2n) transformation, there is a basis in which this transformation looks like a set of rotations
in independent two-planes. In the SO(2n + 1) case the last column/row is zero. It corresponds

to a fixed one-dimensional subspace. Non-normalized Haar measure in these two cases reads as:

n 2 2
. XTi— X; . T+ T;
dAso(2n) = H sin < 5 ]> sin <2J> dri...dzy, (5.5.68)
1<]
- T;— X 2 T+ x; zn Ti\2
dAsoent1) = H sin ( 5 J> sin < 5 J) H sin (?j> dzy ...dz, . (5.5.69)
1<j j=1

Now we discuss the case where the gauge group is the product of three orthogonal groups

SO(N1) x SO(N3) x SO(N3), so that the gauge field decomposes as
A=A'9101+1A4%R1+101® A°. (5.5.70)

For even N; in eq. (5.5.66) eigenvalues A, are given by x; +y;+zk, —xi+y;+2zk, ©;—y;+z, and
xi+yj—z, withi=1,...,[N1/2],5=1,...,[No/2], k =1,...,[N3/2]. Variables z;, y;, 2z are
rotation phases for SO(Ny), SO(Nz2) and SO(N3) respectively. In the case when one of the N;
is odd we have to add a zero eigenvalue to this list. With the use of the equation (5.5.66) we can
write expicit form of the character of the representation and decompose it in terms of characters
of the irreducible representations. For example, for the O(2)? model the number of singlets is

given by the integral

16 /dx/dy/dzcos Tyt (FRY =2 (T VtE) [ E Ytz
(27)3 2 2 2 2 ’

(5.5.71)

whose evaluation gives 2.
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For the O(N)? model the number of singlets for various even N is given in Table 5.1. For

odd N it is not hard to see that the integral which gives the number of singlets vanishes; this
is related to the fact that each group exhibits an individual anomaly, which we discuss in the
next section.f In the next section 5.5.1 we will show that the number of singlets grows as
exp (N3 log2/2 — 3N?log N/2) for large even N.

N ‘ # singlet states

2 2

4 36
6 595354780

Table 5.1: Number of singlet states in the O(N)? model

Using similar methods, the number of singlets can be calculated in the O(N)® GW model for
low values of N, and the results are presented in Table 5.2. The fact that there are 140 states

for N = 2 is in agreement with the direct construction of singlet states in [146].

N ‘ # singlet states

2 140

3 63358

4 | 114876653804156708

Table 5.2: Number of singlet states in the O(N)® Gurau-Witten model

We may similarly calculate the number of singlets for the O(Ny) x O(N2) x O(N3) models.
When Ny = N3 = 2, while N; is even, there are 2 singlets. For the cases where N3 = 2, while NV}
and NNy are even, some answers are listed in Table 5.3. We note that the growth of the number
of singlets for the O(NN)? x O(2) model is much slower than for the O(NN)? model. For low values
of N it is not hard to write down explicit expressions for all the singlet states in the oscillator
basis; see appendix C.2.3. For example, for the 0O(4)? x O(2) model we find that the 4 singlet

energies are £16g and +4g.

* Direct diagonalization of the Hamiltonian for N = 3 [50, 51] reveals that there are no non-degenerate eigen-
values, consistent with this. There are 8 ground states with energy —%\/éﬁg ~ —8.00391g; they transform in
the spinorial (2,2,2) representation. Substuting the value C; = 3/4 into the bound (5.3.34) for the energy gives
—11.53g, which is quite close to the actual value.
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(N1, No) | # singlet states
(4,4) 4
(6,4) 4
(6,6) 4
(8,4) 6
(8,6) 8
(8,8) 18
(10,4) 6
(10,6) 8
(10,8) 20
(10,10) 24

Table 5.3: Number of singlet states in the O(N1) x O(N3) x O(2) model

5.5.1 Number of singlets for large N

In this section we will estimate the number of singlets in the SO(IN)? model in the large N limit,
assuming N to be odd N = 2M. For general N, the number of singlets is given by the following

integral:

1 L o
singlet states = Vg/ [da] [dy][d2] H 16 cos <$Z+y2ﬂ+z’“) cos (W) y

i,5,k=1
cos (B YiT 2k [ TiTY T2 (5.5.72)
2 2
l Ti— Xy Ti+ T —+ Zi — Zj Zi + Zj
Hsin2 (22J> sin? <22]> sin (yz 2 yj) sin (yl 2 yj) sin? <22]> sin? <l2]>

Where V' is the volume of SO(N). When N is large, cosine functions oscillate very rapidly, so
the integral localizes near x; = y; = 2z, = 0. Near this point the integrand is positive, so we can

exponentiate it:

n+1
#singlet states:/ [dx][dy][dz] exp 42 Z ) t" cos(nz;) cos(ny;) cos(nzg) | X
n=1147,k=1
M
by 2 2 2 2 2 2

(5.5.73)
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Notice that we have introduced a “regulator” ¢ which we have to send to one: ¢ — 1. Similar
integrals count operators in theories with tri-fundamental fields [140]. In such cases t = e~ /7|
where T is the temperature. So we are interested in the infinite temperature limit. This case has
been studied in detail in [140]. Here we perform a similar analysis. As usual, we will encode the
saddle-point configuration of the angles x, y, z using the density function p(z) (obviously it is the
same function for the three SO(N) groups). Moreover this function is symmetric p(z) = p(—x).

It would be convenient to work with the normalized density ["  dap(z) = 1. The effective action

now reads as:

1 n+1tn

S[p] = 2N3/ drdydz p(x Z cos(nz) cos(ny) cos(nz)+

n=1
/

— 4 AN
+ v / dzdz'p(z)p(a’) log sin <x Qx) - ZN2 / dydy'p(y)p(y') log sin (y 2y> +

/

1 i —2\*
+4N2/ dzdz' p(2)p(2')logsin <Z 5 & ) (5.5.74)

In the infinite temperature limit the saddle-point density is non-zero only on a small interval
[—x0, o] where g ~ \/% . The leading contribution is coming from the first term and it equals
to %N 3]log2. But this yields simply the dimensions of the Hilbert space, which is 25N’ The
subleading term is coming from the second term in (5.5.74). Fortunately, we will not need the

exact value of xg because of the logarithmic behaviour:

xo _ 4 xo
/ dxdx’ p(x)p(x) logsin (:c 5 T ) ~ 4/ dzdx’ p(x)p(x')log (x — 2) ~
—zo

.
o

~ 4/ dzdx’ p(z)p(x')logzg = 4logzg ~ —2log N (5.5.75)
o

Therefore the subleading term is —%N 2]log N. So, in total we have

_ N3 3N? 9
#singlet states ~ exp > log 2 — 5 log N + O(N?) (5.5.76)
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5.5.2 Anomalies

Since we are studying fermions on a compact space S there is a potential global anomaly
associated with 71(G). And indeed it is well-known that m1(SO(N)) = Zy. Corresponding
“large” gauge transformation has a simple description: the gauge transformation matrix is the
identity matrix, apart from one 2 x 2 block
cos(2mt) —sin(27t) (5.5.77)
sin(27t)  cos(27t)
It is easy to see that after such transformation one chosen rotation phase x; will be shifted by
2m: x; — x; + 27. It does not matter which x; to pick up, since an even number of 27-rotation
blocks gives, in fact, a trivial element in 71 (SO(N)). It has been known for some time [54] that
a theory of a single Majorana fermion in the fundamental representation of SO(N) is suffering
from this Zo anomaly. It is instructive to see it using our machinery. The Pfaffian in this case
reads as: N2
I cos(x:i/2) (5.5.78)
i=1
Under the shift x; — x; 4 27 it changes sign. Therefore the theory is not invariant under large
gauge transformations. In our case of O(N;) x O(N2) x O(N3) group it means that at least two
out of three N; should be even, otherwise we will have an odd number of anomalous multiplets.
Since this anomaly is associated with only one group we will refer to it as ”individual anomaly”.
It is easy to see that this anomaly is always Zs(in other words, it squares to one), even if we add
more gauge groups.
If the gauge group is a product SO(2n;) x SO(2n2) there is a new anomaly mixing these two
groups. For each group in the product, the large gauge transformation consists of identical 2 x 2

blocks:
cos(mt) —sin(wt
(t) () (5.5.79)
sin(rt)  cos(mt)
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Since there are two gauge groups, at ¢t = 1 overall —1 will cancel. Now all phases x; and y; are

shifted by 7: x; — x; +m, y; — y; + 7. The Pfaffian reads as:

T Ti + Y Ti —Yj
HHcos —y o Jeos| =5 |- (5.5.80)

i=1j=1

Under the large gauge transformation the Pfaffian acquires (—1)™"2. This anomaly means that
for G = SO(2n1) x SO(2n2) x SO(N3), N3 can be odd only if the product NjNs is even. We
will call this anomaly "mixed anomaly”. This anomaly is not always Zy as we will see shortly.
We do not find any more anomalies: using the long exact sequence in homotopy groups one
can show that the fundamental group of SO(2n;) x SO(2n2)/Zgi is equal to Zy X Zy X Zs or
Z,x Zy depending on ny and ne. Using the above explicit descriptions of the individual anomalies

and the mixed anomaly we see that:

e If ny and ny are both even, then the square of the mixed anomaly gives a trivial gauge
transformation. Indeed, for each gauge group the number N; of 27-rotation blocks (5.5.77)

is even. Therefore, this is the case of Zs x Zo X Z.

e If only one of n;, say n1, is odd, then the mixed anomaly squares to the individual anomaly
of SO(2n;), since this group will have an odd number of 27 rotation blocks. Therefore, the

anomalies form Z4 x Z.

e Finally, when both nqy and no are odd, then the mixed anomaly squares to the sum of the

individual anomalies. This is again Z4 x Zs.

5.6 Solution of some fermionic matrix models

When N3 =1 or N3 =2 the O(Ny) x O(N2) x O(N3) symmetric tensor model (5.1.2) simplifies
and becomes a fermionic Ny X No matrix model. In this section we discuss the solution of

these models. For the O(NN1) x O(NN2) real matrix model the Hamiltonian may be expressed

One has to divide by Z, because g1 x g2 acts on ¢ in the same way as (—g1) X (—g2)
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in terms of the quadratic Casimir operators, which shows that all the states within the same
group representation have the same energy. This also applies to the SU(N1) x SU(N2) x U(1)
symmetric complex fermionic matrix model, which was considered in [148], [150] (see also [151]),
and will be further discussed in section 5.6.2. However, the O(Ny) x O(Nz) x U(1) complex
fermionic matrix model is more complicated in that there are energy splittings within the same
representation of the symmetry group. Nevertheless, as we show in section 5.6.3 this model is

solvable.

5.6.1 The O(N;) x O(Ny) model

Setting N3 = 1 in the O(N;) x O(N2) x O(N3) symmetric tensor model (5.1.2) we find a real

matrix model with O(N7) x O(N2) symmetry:

Using the SO(N7) and SO(N3) charges
aCLI /I/ a a/ / /l/ a a /
Ql = 5[1/} b7¢ b] ) gb = 5[1/) bﬂ/} b] (5682)
the Hamiltonian may be expressed in terms of the quadratic Casimirs:

H = _gcﬁo(]\@ n 1%N1N2(N2 1) = goﬁo“\’“ . I%NlNQ(Nl —1). (5.6.83)

This shows that, under the interchange of N; and No, H — —H; therefore, for Ny = Ny the

spectrum is symmetric around zero. The sum of this Casimir operators is fixed:

1 / A TSNV |
Cy 7™ 4+ 0y = DQ1T QI + Y QY = SNiNa(Wy + Ny —2) (5.6.84)

This shows that there are no states which are singlets under both SO(N7) and SO(N3). The irre-

ducible representations (71, 7r2) which appear in the spectrum must satisfy the condition (5.6.84).
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In appendix C.2.1 we list these representations for a few low values of Ny and N2. The complete
lists of the energies and degeneracies are shown in Table 5.4.

For O(N) x O(N) with even N, we find that the ground state is a singlet under O(N); and
transforms in the SO(N ) representation whose Young diagram is a % X % square. The ground
state has energy Ey = —gN?(N — 1)/16, while the first excited state is in the fundamental of

O(N); which has quadratic Casimir N — 1. Therefore, the energy gap
Bl — Ey= %(N —1). (5.6.85)

In the 't Hooft large N limit, g ~ 1/N and the gap stays finite. Therefore, unlike the SYK and

tensor models, the matrix model cannot exhibit quasi-conformal behavior.

(N1, Na) (2,2) | (2,3) | (2,4) | (3,3) | (3,4) | (4,4) (5,5)
%Edegeneracy -1o -1g -2¢6 -38 -63 -1219 -20994
Iy 32 Os 38 | 236 | -66a | -101024

62 G20 | -454 | -4800

454 4800
G4 | 101024

1210 | 20224

Table 5.4: Spectra of the O(N1) x O(N2) models.

5.6.2 The SU(N,) x SU(N;) x U(1) model

In [20] a class of complex tensor quantum mechanical models with SU(Nj) x SU(N3) x O(N3) x

U(1) symmetry was introduced. We will use the Hamiltonian
H = g@abc@za’b’cwab’c’wa’bc’ + g(Nl - NQ)Q + %NINQN?)(NI - NZ) y (5686)

where Ygp. with a = 1,...,N1, b = 1,..., Ny and ¢ = 1,..., N3 are complex fermions with
anti-commutation relations {¥upe, Yarver } = GaarOpprdeer. The second and third terms were added
to the Hamiltonian to make it traceless and invariant under the charge conjugation symmetry,

which interchanges g5 and tupe. This means it is invariant under Q@ — —@Q, where Q is the
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U(1) charge:
- 1
Q = YabcVPabe — §N1N2N3 : (5.6.87)

If we set N3 = 1 we obtain a complex matrix model with SU(Ny) x SU(N2) x U(1) symmetry®
H = ¢9asPartyVapr Yy + (N1 — No)Q + %NlNQ(Nl N, (5.6.88)

which is the subject of this section. Note that the index contraction in the first term is different
from those in (5.6.100); the SU(Ny) x SU(N2) x U(1) symmetry fixes it uniquely. This matrix
model has some features in common with the O(N;) x O(N3) from the previous section. In both
of them the energy is completely fixed by the quadratic Casimir operators of the symmetry group
factors. Also, neither model contains states invariant under the entire symmetry group.

The SU(N;) charges with i = 1,2 are

QY = Vab(T) aarVaryy QS = Vap(T8 oy ey , a=1,2,..., N} =1, (5.6.89)

where we used the Hermitian SU(N;) generators T, i = 1,2, a =1,..., N? — 1, normalized in
the standard fashion:

1
Te(TPTY) = Te(T9TY) = §5a5 . (5.6.90)
Using the completeness relation (no sum over 7):

2 (BB~ <G (5.6.91)

(T;a)aa’ (T%a)bb’ =
2 i

5 This Hamiltonian is related to that in section 4 of [148] by changing the coefficients of the second and third
terms.
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we find that the quadratic Casimirs of SU(N2) and SU(N2):

1- - 1 1 1
CigU(Nl) =QTQT = i%b%/b'%b/%'b + §(N1 - N2)Q — sz + §N1N2(2N1 — Na)

SU(N. 1o - 1 1 1
VM) — gay = —5%1)%/1;/%1;/%'1) + §(N2 - N1)Q — TNQQQ + §N1N2(2N2 - N

(5.6.92)

Adding them, we obtain the constraint

2
C2SU(N1) JrCésU(Nz) _ ]\2[1]V+J\]f\72 <(N151V?) — Q2> ) (5.6.93)
14V2

To have the singlets of SU(N;p) and SU(NV2), we need the RHS to vanish. This means that there

are only two SU(Ny) x SU(N2) singlet states: the ones with Q = :I:NlZN2 . These are the oscillator
vacuum |0), which is annihilated by all ¢4, and the state [0') =[], , 1ap|0), which is annihilated
by all 9gp.

The absence of singlets for other values of () may be seen explicitly as follows. The states

with charge —% + m have the form

T/Za1b17/;a2b2 cee @ambmm) 5 (5694)

but there is no way to contract the indices of SU(N;) and of SU(N3); in contrast to the O(N)
case, the tensor 04,4, is not available. If Ny = Ny = N there seems to be a state at level N
obtained by contracting (@) with €4, .an€b,..by, but this state vanishes due to the Fermi
statistics.

Using (5.6.92) we can express the Hamiltonian (5.6.88) in terms of the Casimirs:

1 1
H= g(2O§U<N1) @ - ZNng) . (5.6.95)
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Therefore, all the states in the same representation of SU(Ny) x SU(N2) x U(1) are degenerate,

which makes this matrix model very simple. In table 5.5 we list the spectra of the the Hamiltonian

(5.6.88) for a few different values of N; and No.

(N1, Na) (1,2) | (1,3) | (2,2) | (2,3)
%Edegeneracy -1o '16 ‘43 -512
19 32 010 | -316

43 T2

320

94

Table 5.5: Spectra of the SU(N;y) x SU(N2) x U(1) symmetric matrix models.

5.6.3 The O(N;) x O(Ny) x U(1) model

Setting N3 = 2 in the O(N7) x O(N2) x O(N3) symmetric tensor model (5.1.2) we find a complex

matrix model with O(Ny) x O(Nz) x U(1) symmetry. This model has some features in common

with the SU(Ny) x SU(N2) x U(1) model discussed in the previous section; they possess the

same 2M1V2 dimensional Hilbert space. However, in the present model the symmetry is broken

to O(N7) X O(N2) x U(1) by the Hamiltonian. Although the model is still exactly solvable, it is

quite interesting in that the energy is not completely fixed by the quadratic Casimir operators

of O(N1) x O(N2) x U(1). Also, as we have seen in section 5.5, for even N1 and Na the model

contains singlet states.

To construct the Hilbert space, we define the operators [52]

Bap = \}5 <¢ab1 + i¢ab2> . ap = \}Q (wabl _ w}abz) 7

{Jjaba Jja’b’} = {%b, wa’b’} = 07 {Izjaba wa’b’} = 5aa’5bb’ )
where a = 1,2,... Ny and b =1,2... Ny. In this basis, the O(2) charge is

Q = %[&abawab] = &abwab - %N1N27
[Qa ’(Eab] = &aby [Qv wab] = *wab )
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while the SO(N;) and SO(N2) charges are

Q' =i (Paptoars — Vavap)
=i (Yap¥aty — VapVab) - (5.6.98)

Squaring these charges, we find the following expressions for quadratic Casimirs:

O(N 1 ’ ’ - - - - 1
C(2 () = §Q(1m ?Lm = Yapar VarvParty + YabPart Vab Yarp + (Nl - 1) <Q + 2N1N2> )
1

O(N.
CQ( 2):2

/ / 1
& bb wabwa’bwab’wa’b’ - %b%fb/%b/%/b + (NQ — 1) (Q + 2N1N2> . (5.6.99)

Setting k = 1 in (5.3.25), we find that the traceless form of the Hamiltonian is

%(¢ab¢ab/¢a’bwa’b’ @Zab&a’bwab’@ba’b’) + g(NQ - Nl)Q + gNlNQ(NQ - Nl) . (56100)

This Hamiltonian exhibits the charge conjugation symmetry which acts as g, < 1e. This
means that states with opposite eigenvalues of ) have the same energy.

There is a “Clifford vacuum” state, which satisfies

N1N2

Yal0) =0, Qo) = 0),  H|0) = SN Np(Na — N1)[0) - (5.6.101)

There is also the conjugate vacuum [0') = [],, ¥ap|0) which satisfies

al0) =0, Qo) =1

0y,  H|0) = gz\az\&(z\f2 — N[O (5.6.102)

Both of these states are invariant not only under O(N;) x O(N3), but under the enhanced
symmetry O(N1Nz). It is interesting to note that the states |0) and |0') saturate the energy
bound (5.3.34). Indeed, substituting N3 = 2, C’QO(N3) = Q% = (N1 Ny)?/4, C’S(Nl) = C’S(Nz) =0

into that equation we find |E| < N1Ny|Ny — Ni|. In fact, the bound obtained from (5.3.21)
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completely fixes the energy to be %N1N2(N2 — N1) because the states are O(N1N2) invariant and
CcIMNN2) g,

The states with vanishing O(2) charge @ are obtained by acting on |0) with w creation
operators v4. Then, to insure that the state is also a singlet under SO(N7) x SO(N>), we have
to contract the indices using the invariant tensors €ar,.any > Oayay and €by, by Op,by- SOme states
invariant under SO(Ny) x SO(Nz) x O(2) are listed in Appendix C.2.3.

For low values of N7 and N it is possible to construct the complete spectrum via direct
numerical diagonalization. If N3 = Ny or if one or both N; are equal to 2, the spectrum
is symmetric under E — —F due to the fact that the interchange of two O(N) groups send
H — —H. For all other values of N; the spectrum is not symmetric under E — —FE. The results
for some low values of Ny, Ny are shown in table 5.6. For the O(4)? x O(2) model the spectrum

is plotted in figure 5.1.

15000 : ; . . : ; :
§ 10000 F .
)
(0]
S
& 5000 m || :
0 i ”nnlﬂ " ” ” H HH"n“ i o
x* O ) €
-80 -60 -40 20 0 20 40 60 80
4E/g

Figure 5.1: Spectrum of the O(4)? x O(2) model. There are four singlet states, and the stars
mark their energies.

A remarkable feature of the spectra is that all the eigenvalues of 4H/g are integers. This
suggests that this fermionic matrix model is exactly solvable for any Ny and Ns. This is indeed
the case, as we now show. The Hilbert space can be constructed by repeatedly acting with 1,
on the vacuum state |0). One can group the a,b indices into a multi-index A, ranging from 1 to
NiNsy. The commutation relations are invariant under the action of SU(NjN2) on the Hilbert

space, which preserves the commutation relations. Let us notice that the first term of Hamiltonian
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(Nla NZ) (2a2) (273) (373) (274) (4’3) (4’4)
o Baegeneracy | 81 [ -132 [ -206 | -241 | -346 | 64
014 -Te | -1618 | -169 | -2894 -48s5
-log | -860 | -823 | -2276 | -36256
log | -442 | -416 | 2040 | -32s10
32 0228 | O140 | -1814 | -28256
76 442 416 | -16152 | -243250
132 | 860 823 | -14168 | -201024
1296 | 1216 | -1240 | -164985
1615 | 162 | -10170 | -123072
206 | 241 | -8240 | -8s932
-6194 | -43584
-4384 | O12874
-2970 | 43584
0248 88932
2640 | 123072
d3gq | 164985
676 2071024
8312 | 243250
10216 | 28256
1432 | 32810
16128 | 36256
18168 | 40106

2064 4855
2610 644
2894
306
382

Table 5.6: Spectra of the O(N1) x O(N3) x O(2) models, which were obtained by a direct matrix
diagonalization of the Hamiltonian (5.3.25) whose spectrum is traceless. If both N and N» are
even, the ground state is non-degenerate and is therefore a singlet.

(5.3.25) is invariant under SU(N1) x O(Nz) x U (1), while the second under O(Ny)x SU(N2)xU(1)
groups. Therefore, the full Hamiltonian is invariant only under the action of O(N7) x O(N2)x
group. The complete Hilbert space is transformed under the SU(NjN2) group that can be split
into SU(N1) x SU(N3) representations. In each representation R under SU(N3), operators Q%

act by matrices (T5")r in the corresponding representation R. In turn, these representations

can be split into SO(N;1) x SO(N3) irreducible representations. Since the Hamiltonian has only
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SO(N1) x SO(N2) symmetry, all the states in such a representation are degenerate (of course,
not all the states in a given SU(N;) x SU(N3) representation are in general degenerate).
Now we take the difference between equations (5.6.99), and also use the difference of equations

(5.6.92), to find the following nice expression for the Hamiltonian:

Ny — N
et <2C§U<N1) a0 _ 500y o | Na = My 1@2)

2 N1No
2 1
_ _g <4C§U(Nl) — O 0O Q7 = TN (N + N2)> : (5.6.103)
1

where we used (5.6.93) to obtain the second line from the first. Due to the Cg o) terms, the
spectrum is not symmetric under SU(N;) x SU(Na).

Using (5.6.103) we can show that the lowest singlet saturates the energy bound (5.3.36), i.e.
it is a ground state. For a singlet, ) and the quadratic Casimir operators of SO(N7) and SO(N3)
vanish. To minimize the energy we should take a state which has the greatest possible value of
C’QSU(Nl) allowed by (5.6.93). Thus, it has C’égU(Nl) = w and C2SU(N2) =0, ie. it
is invariant under SO(N1) x SU(Nz) x O(2). Substituting this into (5.6.103) we see that this
state has £ = —2(Ny 4+ Na)N1No, i.e. it saturates the bound (5.3.36). This value of Casimir

corresponds to the rectangular Young diagram |N;/2| x Ny for SU(Np). Similarly, the singlet
state with the highest possible energy, £ = £(Ny 4+ N2)N1 Ny, has CfU(M) = w and
VM) — 0, e, it is invariant under SU(Ny) x SO(N3) x O(2).

To calculate the energies of all states, we need to first decompose the Hilbert space into
SU(N1)r, x SU(N2)g representations and then, in turn, decompose these representations into

SO(N1) 1, x SO(N2) R representations. To find which SU(Nj)r x SU(N2)g representations (L, R)

we have in the Hilbert space, we need to compute the following integral over SU (N7 )z x SU(N2)g:

X 1\n+l
multiplicity (L, R) :/ dU dUs exp (Z L
n

n=1

TI‘Uln TI‘US) TI‘L U1 TI‘RUQ (5.6.104)
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We can always put U; and Us in a diagonal form: U; = diag(ws, ..., wy,), Uz = diag(qi, ..., qn,)-
w; and ¢; are corresponding SU holonomies, i.e. |w;| = |¢;| =1 and wy ... wn, =q1...qn, = 1.
Actually, it is not neccessary to compute the above integral for various representations. It
is very well-known that characters of SU(NN;) representations are Schur polynomials Try Uy =
Xr(w) which form a basis in the space of symmetric functions of N; variables. This space also
contains the so-called power series polynomials Tr U = p,(w) = w} + -+ + wiy, - A conversion

from power series p, to xr can be easily done on a computer. For example,

PL=X P =X +XH7

P2 =X — XH, P1P2 = X[ TT]— X@- (5.6.105)

This suggests the following simple procedure yielding the list of all representations directly. One

expands the exponent

oo (_1 n+1

= (_1)n+1 n n n n
exp (Z — Tr U Tr U2> = exp (Z — ¢ pn(w)pn(q)> (5.6.106)
n=1

n=1

in power series in x. Then at each level z¥ we have a polynomial in p;(w) and p,,(q). It
can be re-expressed in terms of Schur polynomials. This gives the list of representations under
SUL(N1) x SUR(N2) at level k, i.e. for states where there are k raising operators 1 acting on
the vacuum.

After finding the representations under SU(Ni)r x SU(N2)gr, we need to decompose then
in terms of SO(N1)r x SO(N2)rR representations. Recall that both SU and SO representations
are classified by Young diagrams. The only difference is that for SO representations one has to
subtract all the traces in each row, where indices are symmetric. It means that if we want to
extract SO representations from a given SU representation A, we need to consecutivly remove
all possible pairs of boxes in each row. The resulting sequence of Young diagrams give SO

representations.
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Let us exhibit this method to find the spectrum of the O(2)® model. We have the following

representations under SU(2), x SU(2)g ":

2([1], (1) + 2([2], [2]) + ({1, [3]) + (3], [1]) - (5.6.107)

The [2] of SU(2) gives the spin 1 SO(2) representation, whereas the [3] decomposes as [3] = 240.

So we have the following SO(2) x SO(2) representations:

2(0,0) + 2(1,1) 4 2(0,0) + (0,2) + (2,0) . (5.6.108)

The two states (0,0) coming from ([1],[3]) and ([3],[1]) have energies +2¢, while all the other
states have energy zero. If we label the states by their O(2) charges (Q1, Q2, Q3), we find, in
agreement with [144], that the states with E = £2g are (0,0,0), while the 14 zero-energy states

are

(17 17 1)7 (0707 2)7 (07 2> O)a (27 07 0)7 (17 17 _1)7 (17 _17 1)7 (_17 1a 1)7

(=1,-1,-1),(0,0,-2), (0,—2,0), (—=2,0,0), (=1, —1,1), (=1,1,—1),(1,=1,—=1) . (5.6.109)

These states may be decomposed into irreducible representations of the alternating group As.
For example, the state with charges (1,1,1) is invariant under As; the 3 states with charges
(0,0,2),(0,2,0),(2,0,0) can be combined into an invariant combination and a dimension 2 rep-
resentation; etc.

As a further check, in appendix C.2.2 we calculate the spectrum of the O(3) x O(2) x O(2)
model using this method. The results for the energies and their degeneracies agree with the direct
diagonalization of the Hamiltonian, whose results are assembled in Table 5.6. We also note that,
due to the charge conjugation symmetry, the energies and representations at oscillator level n

are the same as at level Ny Ny — n.

"Here we are using the notation multiplicity([dim]z,[dim]r) for the SU(2)r x SU(2)r representations and
multiplicity (spin; , sping) for SO(2)r x SO(2)r representations. For non-zero spin J, the SO(2) representation is
two-dimensional and includes the states with SO(2) charge Q = +J.
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Appendix A

Details of BFSS calculations

A.1 Details of the perturbative computations

A.1.1 Non singlets in the BMN matrix model

In this Appendix we will study the BMN matrix model. Lagrangian reads as follows:

OGO pa I

I=1 a=1,2,3 i>4

5 (A.1.1)
1 1 1
—izng Y T (X“XbXC> cave + 7 T (X1, X712) 45 Tr (mﬂw,xﬂ))
a,b,c=1
And supersymmetry transformations are given by:
[Qe, XT] =y e(t)
1
Qe v] = <waXf t erp Xy s + iz (X7, XJh”) €(t)
(A.1.2)

[Qe, A] = e(t)y

e(t) = e~ 12HM2stey

cg=1/3fora=1,2,3 and ¢; = —1/6 for i > 4
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Note that supersymmetry transformations are time dependent. In the supercharge we have an

additional term proportional to wu:

o1
Qe =Tr (—PfWe — ZTgQ[XK, X pyrere — gczxfwfmge)

(A.1.3)

Apart from the gauge transformation generator, supercharge anticommutator now also contains

rotations generators M,g:

{Qa, Qs} = 2Hbap +2Tr (GX") vk + Mag

3
Mag = —(1/3) 3 Te(X00PY) (gmas)os + (/3 3 Te(XOPY)e™n,
1,j>4 a,b,c=1

g 2 0w (0 )t g 3 Twa) ()

i,j>4 a,b€1,2,3 af

Also recall that the gauge transformation generator is given by:

1

G pu—
2g2

(Q[Dtle XI] + [wcw %])

Again, since the super charge gauge is invariant:

[Qou G] =0
Hamiltonian is given by:
oL (0 L eop g e (4) 3 x+
92 2 4 2 ’ 2\3/) .

3
1 rpN2 N2, M - b
(B S e B 2S T(X“XXC) b
+ (6> Z.>4( ) +8¢’Y1231/1+13ab0:1 r €ab
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(A.L7)

(A.1.8)



However since the supersymmetry transformations are time-dependent now, commutator of

Hamiltonian with a supercharge is proportional to a supercharge:

p 123
[Qa H] = = Tr(aG) = 5Q875a (A.1.9)

As in the BFSS case, we can remove the gauge transformation generators from the SUSY

algebra by imposing (2.2.6) and redefining Hamiltonian:
H"™ = H—Tr (X'G) (A.1.10)

Now lets discuss the perturbative spectrum of this model. It would be convenient to introduce
indices from the beginning of the Latin alphabet a, b, c, ... running from 1 to 3 whereas i, j, k, . . .

run from 4 to 9. We can introduce creation-annihilation operators by:

3[9P  n
ap = ; ﬁ — Z%Xb
(A.1.11)
6 9P
a; = ; %—ZmXZ

SO(6) sector oscillators has mass p/6 and SO(3) sector has mass 11/3. Free Hamiltonian reads

as:

Hy = gTr ayay + 6Tr a;a; (A.1.12)

Let us concentrate on the lightest SO(6) sector. The leading order correction to the energy was

computed in [27] to be:

(1) 2 3 T ! T T ! T T Tt
Ve =g m N :Tra;a; : +§ : Tra;, a;la}, aj] - —3 Trla;, as]la;, a;] « — : Tr[a;, ajl[a;, a;] -

(A.1.13)
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where one has to sum over all possible indices 4, j ranging from 4 to 9.
Therefore for the simplest adjoint state aj»|0) the first-order correction is positive. We can

rewrite the effective potential in a bit different form [27]:

2
3 1 1
1 _ 2 . T iya L (. T iya . [P T P S R AP
Vg =g m 5( Tra;,a'|T ) ( Tr[a;,a'|T ) — 3¢ Trla;,a;](a;, a;] : .Tr[ai,aj][al,aj] :
(A.1.14)

The last two terms are exactly the 1-loop dilatation operator in N/ = 4 SYM. One can show
]

that the first term is zero for singlet states. For non-singlet states build from a; its value is
proportional to the number of non-contracted indices. That is, this term is proportional to the
quadratic Casimir of the corresponding representation. To sum up, at 1-loop level the energy of
non-singlets in the representation R goes up:

9g°

Afll—loop = AI:Igauged, 1-loop + TMQCZ(R) (A~1-15)

However, if we study the modified Hamiltonian (A.1.10), we have to take into account the correc-
tion coming from the operator Tr (X 1G). Second-order perturbation theory for this additional

correction yields:
2

3 1
- | - : NTraIai g Tr[a;[,ai][a;f.,aj] : (A.1.16)

This contribution completely cancels the non-singlet contribution in (A.1.14). It means that the
theory with supersymmetric Wilson loop has a protected SO(6) sector, like the original theory.

For example, the energy of the simplest adjoint state aZT|O> is protected and is given by

E=— (A.1.17)
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A.1.2 BFSS model

In this Appendix we will discuss the perturbative spectrum of adjoints and derive the estimate
(2.3.11). We consider a background with diagonal matrices (X') = B! = diag(B{,...,B}).
These break the SU(NN) symmetry, so we will have a compact manifold of Goldstone bosons. In
principle we need to study the quantum mechanics on this manifold. Since SU(N) acts on this
manifold this quantum mechanics gives rise to states charged under SU(N). From the analysis
of the gauged model we know that there is a single uncharged state. We now want to discussed
the states with SU(N) charges. One can obtain their spectrum as follows.

We want to study the angular motion around the diagonal background (X’) = B!. Therefore

we focus on X7 in the following form:
XLty =U@)B'UT(¢t) (A.1.18)
and plug this expression into the original Lagrangian to find the effective action for U:

S = 2;2 at T (U'00), (B, -~ B o)) (A.1.19)
where we have used a shot-hand notation >7_, (B! — BI)? = (B, — By)?

Now we need to analyse the symmetries carefully. Under the original SU(N) gauge transfor-
mation L, X! transforms as in eq. (A.1.18): X! — LXTLT. Tt is equivalent to multiplying U by
L from the left:

U— LU (A.1.20)

In other words, the original gauge group SU(N) acts by left rotations of U. Obviously, it is a
symmetry of (A.1.19). So the states will come in SU(N) multiplets. The corresponding charges
are given by:

1
G, = 5™ (Ulaus!, 1B U'T U]) (A1.21)
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It is straightforward to check that they coincide with the charges G in the Gauss law (1.2.2), as
expected. Note that G,* is not a matrix element, but a charge corresponding to SU(N) algebra
generator 7..° which has only one non-zero element on r-row and s-column.

However, we can also multiply U by a SU(NN) matrix R from the right:
U—UR (A.1.22)

This is not a symmetry of (A.1.19). So the corresponding current

Gp=5Tr (UTatU[BI, [BI,TTS]]) = g—Q(UTatU)ﬁ(BT - B,)? (A.1.23)
does not commute with the Hamiltonian. Nonetheless, as was clarified in [59, 58] left and right
multiplications of U are tightly related. To understant this, let us consider a wave function

¥% (XT), a=1,...,dimR in some representation R under the gauge group. Since it lives in the

representation R it has, by definition, the following decomposition:

dim R
Ue(XT) = > URyy (B (A.1.24)
b=1

where U%b is the ab matrix element of U in the representation R. We are interested solely in
¥y (B!) which also lives in R. Left SU(N) rotations of U rotate % (X’) and U, leaving v, (B')
invariant. Whereas right rotations transform U and v;(B?), leaving U% (X7) invariant. Note
that in both cases the representation R s the same. It means that charges érs act on states
Uy (BI ) by the corresponding generator (7,.%)% in the representation R.

What is the physical meaning of operators érs? One can think about X! as a rigid body
in a space acted on by the SU(N) transformations. Since ¥4%(X7) stays invariant under G,*,
they have a meaning of angular momentum operators in the frame where the body is fixed. It
is well-known from the classical mechanics, that such operators are very useful for studying the

rigid body motion, despite the fact that they are not conserved.
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As we have just mentioned, @T,S do not commute with the Hamiltonian. However, the Hamil-

tonian can be expressed in terms of them. Indeed, it is easy to see that

2 N ~

g GJ/G,’

== — A.1.25
5 §: . B ( )

When we focus on a particular representation R, then G,* act by the SU(N) generator (T..%)x
in this representation. The corresponding wave function depends only on B!. This wave function
is exactly what we previously called 1,(B'). Naively, H is a dim R x dim R matrix. However,
the expression for the charges in (A.1.23) implies that the diagonal elements G,* = 0 vanish (no
sum). This implies that we have much less components. As we will see shortly, in the simplest
case of the adjoint representation instead of the naive N? — 1 we will have only N — 1 states.
Generically all these states have different energies. However, we would like to emphasize that
each of these N — 1 eigenstates has a degeneracy N2 — 1(or dim R in the generic case) because
of the angular degree of freedom U which we have eliminated.

So far we have been using the canonical quantization of non-singlets. Below we will re-derive
(A.1.25) using the path integral techniques. Moreover, the fact that we always have a degeneracy
dim R will become especially clear.

For the case of a single matrix model the result (A.1.25) was obtained in [59, 58, 60]. But
unlike the one matrix case, we cannot diagonalize all the matrices simultaneously for generic

matrix configurations. Therefore (A.1.25) will receive higher loop corrections from off-diagonal

fluctuations of X7 and 1,

There is another, more clean-cut way, how to derive eq. (A.1.25) which will illustrate the
above points. As we have mentioned in section 2.2.4 if we are interested in excitations of the
ungauged model in a representation R(conjugate to R) under SU(N) we can study the gauged

model coupled to a Wilson line in representation R:

dim R Trg P exp (i/dt At> = dim R Tr P exp <i/dt (At)Ts(TST)R> (A.1.26)
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At this point it is by no means necessary to think about A; as a gauge field. In the ungauged
case one can think about it as an auxillary Lagrange multiplier which forces the states to live
in a particular representation. Note, however, that in the ungauged model we have to multiply
the Wilson loop by the dimension of the corresponding representation. This can be explained as
follows. In the ungauged model we put A; to be zero. We can achieve this by inserting the delta

function into the path integral:

(e (s [ 0) A1)

Now we can re-express the delta function in terms of characters [60]:

) <Pexp (i/dt At)> = ;dimRTrR Pexp (i/dt At> (A.1.28)

We separate X! into the constant background B! and a fluctuation Y/: X! = B/ + Y. Then

the part of the (bosonic) action containing A; reads as:

1
52 dt Tr (0,Y! +i[An, Y] +i[As, BT)

? (A.1.29)

At 1-loop level we can simply ignore Y/ and integrate out only A;. However at higher loops one

has to take Y into account. Without Y/ we have a simple quadratic action for A;:
1 — —
T2 /dt (Br — Bo)*(An),* (Ar)" (A.1.30)

Overall, we have the following expression:

amR [ DA exp (~5 [[at (B, ~ B0 (a0 ) Tepes (i [ (40,50 )
(A.1.31)

Integration over A; yields the angular potential (A.1.25).

Note that because of the factor dim R, each eigenstate of the angular potential (A.1.25) will

contribute to the partition function with degeneracy dimR.
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In the adjoint case (G,*)r acts by a commutator with 7., on the matrix w in the SU(N) alge-
bra. Moreover w has to be diagonal, since the diagonal charges G s> vanish: w = diag(wy, ..., wy).
So we have the following eigenvalue problem!

9 N N
Bu, =L ST with Y w =0 (A.1.32)
r=1

w w
2 s=1, s#r (BT - 35)2

where the last constraint comes from the restriction that the diagonal matrix w is in the adjoint.
This Eigenvalue problem will have N —1 eigenstates. We could identify the potential in figure 2.3
as the lowest energy state of this Hamiltonian, as a function of the B,. In general, the eigenvalues
will depend on the particular pattern of the distances (ér — 53)2. In the next subsection we
solve it for the case when a large number of vectors B, is uniformly distributed on S%.

There is another very simple case when the energy can be obtained exactly. Suppose we are
considering a configuration where the N vector B, take only two values: Nj are given by B
and the rest, No = N — Ny, by B, Equation (A.1.32) will be well-defined if w; obey the same
property: there are N7 coordinates wy and Ny of ws. Using the constraint Niwi + Nowo = 0 we
easily obtain the energy:

A

2(By — Bs)?

The result depends only on the sum N7 + Ny and not on the individual Ny,N». Also, the factor
N in the numerator is important: we expect that the energy of adjoint excitations will scale as
A/3. Indeed, the expected size of the ground state wave function is X ~ A/3. This is the value
of X where this computation breaks down. We can then identify the energy at this value of X

as the order of magnitude of the energy of the adjoint excitation

Eagy = A/ X2 =23 (A.1.34)

'This can be easily obtained using the following relations [T,.*, w] = (ws — w,)T,.*. and also T,°T,* =0, r # s
and (1,.°T," )vo = 0rvdro (nO sum over 7, s)
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Solving the potential for a uniform distribution

There is another case when we can solve (A.1.32) exactly. Namely, lets consider the large N
limit with the N vectors B, uniformly distributed on S® of radius X. We will show below that

the lowest energy state has energy
9\

Bl = —_
1™ 98 x2

(A.1.35)

and we will further compute spectrum around the ground state.
This is shown as follows. With a large number of vectors uniformly distributed on S® we can
make a continuous approximation. Then eq. (A.1.32) becomes
~ ~
Fu(i) = 2}(2@0188 /ng w(”>__:’(’” /ng w(il) = 0 (A.1.36)
where 71 and 7’ belong to a S® of unit radius. Now the adjoint problem (A.1.36) has SO(9) rota-
tion symmetry. It means that the eigenfunctions are basically given by the spherical harmonics
in nine dimensions and the energy depends only on the total angular momentum [. It is the most
convenient to evaluate the energy using the wave function which depends only on one polar angle
6 (the angle between the unit vector and X axis). For such functions the measure dy reads
as Volgr sin” 8df = Volgr (1 — t2)3dt In this case w(f) is simply the Gegenbauer polynomial
01(7/2) (t). Therefore,

1/2)y _ 39N [T (L=t (72
EC! (1)—64X2/1dt T (q (1) - C! (t)) (A.1.37)

which leads to the following energies:

3\ 1 3\ 1
E = e 1— T0 e <1 — 7l6> ,I>1 (A.1.38)
C (1)

This energy comes with a degeneracy

U+7)(1+6) 27
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It is interesting that we get a finite range of energies, from a minimum one to a maximum.
This pattern is similar to what we get by a simple WKB quantization of a toy model for the
motion of a folded string in Appendix A.2. However, in the gravity case, we can also have the
possibility of the string falling into the black hole which leads to a much larger number of states,
a number proportional to N2, one factor of N each for the separate string and anti-string ending

on the black hole.

A.1.3 Goldstone modes and SU(N) rotators for the BMN model vacua

Now let us discuss the spectrum around other vacua, where the matrices have non-zero expec-
tation values of the form X* = £.J?. This case can be analyzed as in the previous section. The

only difference is that the initial action is

2 2
H a 71t H T a [ya gyt
S =157 ] a§ 1:TrJ UtaU? = Tl § jTrU aUJe I8, UtU]] (A.1.40)

And the right SU(N) charge equals:

L ZTr(J“ (e, uto,u)T ) (A.1.41)

9g2
with TP, p=1,..., N2 — 1 belonging to SU(N) algebra.
As we have mentioned in the main text, J* are not necessary in the irreducible representation.
Generically, we need to decompose it into L irreducible representations of dimensions Ny, k =
., L such that Ny + ...+ N = N. For simplicity we study the maximal representation
L =1 and Ny = N, although the calculation below can be generalized to L > 1 case. Even for
the maximal case, when we have only one representation it is quite difficult to obtain the exact

spectrum. However, it is easy to find a sensible lower bound.
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Since we have only the kinetic term the energy equals:

2 3
o 1% a T 2
B=1s Tr/dt a§_1[J ,UTa,U]

(A.1.42)

Generically, there are many ways to select Lie algebra generators T?. However, there is a very

special choice of TP, namely the fuzzy spherical harmonics Y%, j=1....N—1, m=—j,...,5.

The nice thing about them is that they are eigenvalues of the fuzzy sphere Laplacian:

3
Z[Ja7 [Ja7 Y#l]] =30+ 1)Yn]1

a=1

Also they are orthogonal:

. .y 1
Tr <Y,$1YT{L,) — 383570

Because of that they also satisfy the completeness relation:

. No 1 1
Z (v3),! <Y£m>v = (5353 - Na;:ag) rsv,0=1,...,N
jm

Correspondingly we have the non-conserved charges Gl

2
~. 1% .
GI o= j(j+1)—Tr (UT@UY,%)

Finally, we can rewrite the Hamiltonian in terms of G2, using eq. (A.1.45):

. 5;223:2“ (Ufath@ Tr (yjm[Ja, [Ja,UTatUH) =

a=1 jm
= S 0T (U0 g) T (V2,0 =
jm

_ 9g2 éiné]_m

p = j(i+ 1)
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As we have promised, we have re-expressed the Hamiltonian in terms of charges G. If we focus
on some particular representation R, then éin act as Lie algebra generators (Y,%)R in this repre-
sentation. For example, the sum }. GI,G? = C5(R) equals to the quadratic Casimir of the
representation. Since j < N — 1 we obtain the following lower bound for the energy:

9¢> 1

H2 oy O R (A.1.48)

The above derivation can be repeated when we have several fuzzy spheres with corresponding
representations Ng. In this case one arrives at the following bound:

L g

H >
~ max Ni(Ng — 1) p?

Cy (R) (A.1.49)

For the adjoint representation of SU(N) the quadratic Casimir Cy(adj) is simply N. The other
representations that appear are those that can arise from products of adjoints. These are the
representations that transform trivially under the Zy center of SU(N).

For “small” fuzzy spheres, when Ny ~ O(NY) and L ~ O(N), E,q; 2 A\/p?. However, if we
have a “big” sphere, when some N, ~ N and so L ~ 1, adjoints can have much smaller energy
Eqq; > Ng—;. Note that both these bounds are consistent with

g°N
E ~ ?CQ(R) (A.1.50)
with R? = z]%NTr (JZ+J3+ J3). Since for each irreducible representation Nj we have the
following identity:
NZ—-1

JE+ T34+ JE = 1 (A.1.51)

where the right hand side is simply the quadratic Casimir of SU(2) in the representation of
dimension Nj.

(A.1.50) is what we would have naively guessed based on the similar formula for the case of

diagonal matrices X that we derived in appendix (A.1.2), and was mentioned in (2.3.11).
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A.2 Analyzing the motion of a folded string

In this appendix we consider the motion of a folded stretched string. This is just a one parameter

family of solutions out of the whole space of possible string motions.

1/,,.5/2

Figure A.1: Radial excitations of the adjoint string. The string tip moves close to a null-geodesic
(bold line). roo ~ A/3 is the region where the high curvature region starts. We imagine that
when the string reaches that point it bounces back with some reflection factor.

We can view the motion of the tip from the high curvature region to the low curvature and
back as a kind of scattering problem. See Figure A.1. So we can calculate the total phase shift
accumulated during the process via a WKB approximation.

We view the system as the tip of a string which is approximated as a particle with large
momentum p and energy linear in the momentum. This tip is acted on by the rest of the string

which provides a potential. The full Hamiltonian is

_gtt Too =T

Grr

H= | + (A.2.52)

where p is the momentum conjugate to r. The tip of the string starts from the large r region
with very high ingoing radial momentum, the string pulls and slows it down until the tip bounces

back to the large r region, see Figure A.1. The total phase shift then is

Obulk = 2/ R p (A.2.53)

co—THE
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”
Which can be re-written in terms of the total energy E given in (A.2.52). This gives for £ — =,
T

8v/ Ady
5m(nEs — TEy)3/?

Obulk = 7 (A.2.54)

Where Es = CAY3 is the energy of a folded string that stretches all the way to » = 0. For this
reason we expect that C' > C by an order one amount. A similar problem in the linear dilaton
background that is dual to the double scaling limit of a single matrix model was analyzed in [62]
and matched to the matrix model computation in [63].

In order to figure out the whole motion, we need to know how the tip bounces back from
the high curvature region. This seems to be a difficult problem since the state that comes out
could have more excitations on the string worldvolume. Solving this would involve connecting
the motion in the weakly curved region to the motion in the perturbative matrix model region.
We will not do this here. Instead we will simply assume that the problem is such that the string
tip comes back out with an extra phase shift dpien from the high curvature region. Furthermore
we will assume that it is basically a constant for £ ~ E,. This is a non-trivial assumption and
it is likely wrong. The only reason we make it is to define a toy problem where we can now

semiclassically quantize the motion by setting

Obulk(E) + Onigh = 270 (A.2.55)
Leading to
2/3
~ 1 4y/dy Shieh
Ep~ MBI C— 2| = e A2.
¢ 7 | 1572(n — ng) ’ "= Ton (A.2.56)

Note that ng is not an integer.
We see that there is an infinite tower of excitations. For non-zero temperature, there is
actually an ny,q, — ng T-3/5 where the states change behavior qualitatively, the folded string

falls into the black hole horizon and stays there forever. (At finite N the string can break and
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the fold can return to infinity). To describe this behavior we need to study the non-extremal
metric (1.2.7). Now we have a non-extremal black hole with a horizon at r = rg. If the string
has enough energy to reach the horizon, then the tip will fall into the black hole and never come
back. This sets an upper bound for the energy:

To

Edec - Eoo = _? (A257)

Moreover now we have a finite number of excited states that do not fall into the black hole

Too r—ro 4.06+/\dg
Nmax — N0 = \/E/ dr = 3/2 ~ T73/5, for Too > T0 (A258)
ro 0

w1 =g /rT) 14n2r
For states with EF > FEge, the string tip falls into the black hole and the state becomes a
string and an anti-string, both ending at the horizon as independent excitations.
A.3 Scaling properties of the solution and the action

In this Appendix we briefly discuss some scaling properties of the solution (1.2.7). We find that

under the following rescaling of the coordinates the metric and the dilaton rescale as

t—nt, 7“—>17_2/5r
ds®> — ds®> n~3/5 | e2? — 2 p21/5 (A.3.59)
The gravity action scales as
Sgravity = /dlox 6_2¢\/§R ~ 77_9/5 ~ T9/5 (A360)

Notice that § is rescaled when we rescale time. This is the correct behaviour of the Bekenstein—

Hawking entropy (1.2.11). Notice that the action and entropy scale in the same way. Notice that
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since the action changes (A.3.59) is not a symmetry of the action, but it helps determine the
temperature dependence.

It turns out that the Dirac-Born-Infeld(DBI) action for a probe DO brane in the extremal
geometry (1.2.7) with 79 = 0 has exactly the same scaling behaviour. This can be checked

explicitly, but we can also derive it by the following observations. The action is

SDBI = /€_¢d5+/Atdt (A.3.61)

We now observe

e The derivative of the free energy with respect to the charge yields the difference between

the RR 1-form at the horizon and infinity:

OF

= (A.3.62)

infinity
this is why A; scales as the free energy.

e Notice that the expression for A; in (1.2.7) does not contain rg. This is why it has exactly

the same scaling for both extremal and non-extremal cases.

e Finally, both terms in (A.3.61) scale in the same way as in the extremal case because of

the supersymmetry (there should be no force acting on a D0 brane at rest).

Now, this observation also explains why the following action has the same rescaling properties

q (v; — v;)*

under (A.3.59). The reason is that the velocity expansion of (A.3.61) gives rise to a particular
case of this action.
The point of these observations is to “explain” the observation in [152, 153] that (A.3.63) has

the same scaling as the entropy. The arguments used in that paper were scaling arguments, and

2More precisely, one has to subtract the zero-temperature value in order to make this expression finite.
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they have reproduced the entropy for simple scaling reasons. But it seems that the thermody-

namics of (A.3.63) is really ill defined because it has a “fall to the center” instability.
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Appendix B

SY K technicalities

B.1 Numerical setup for KB equations

This appendix describes our approach to the numerical solution of the Kadanoff-Baym equations.
Our strategy is based on previous work on SYK reported in [37, 106].

We use a uniform two-dimensional grid to approximate the (t1,t2) plane. The grid spacing
dt plays the role of a UV cutoff and should be much smaller than 1/Jg and 1/Jp. To fix the
units of energy and time, we set J = 0.5. In these units, we consider three grid spacings:
dt = 0.2, dt = 0.1, and dt = 0.05. The primary numerical cost arises from the grid size, as
the overall size must be large to study low temperature effects. Typically, the Green’s functions
decay exponentially, so the calculation can be streamlined by restricting attention to a strip
|t1 — ta] < ¢Bmax as shown in Figure B.5. All Green’s functions are put to zero outside the strip.
We take Bmax to be the largest S in the problem, typically the inverse bath temperature. In
practice, c is taken large enough to see converged results.

The initial Green’s function is found by numerically solving the Lorentzian Schwinger—Dyson
equation in equilibrium. To compute the integral in the KB equations we use the trapezoid
method, and for the time propagation, we use a predictor-corrector scheme. Some care is needed

when propagating along the diagonal. Fortunately, for Majorana fermions there is a simple
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Figure B.1: Geometry of the (¢1,t2) plane. The initial Green’s functions are placed inside the
gray box.

relation:

G3(t 1) = —%. (B.1.1)

However, for the Green’s function obtained by numerically solving the DS equation the diagonal

value is not exactly —i/2, so on a discrete lattice we just propagate this value:
G3(3.3) = G3(0,0). (B.12)

The integral in the bound (3.1.5) is also computed using the trapezoid rule and the energy
time derivative is discretized in a simple way: (Ej41 — Ej)/dt. To estimate the error the integral
is computed for different time steps and without the coupling to the bath. Note also that we can
not really integrate all the way to infinity. In order not to rely on any extrapolations, we use a
crude upper-bound for the error obtained from integration over a finite interval. Obviously, since

the flux is decreasing and beta in increasing to 5, we have the following inequality:

[e’¢) “+o0o 1
/t dt Ege™"PO) < Bl(tf) /t dte—"t/By — EE’S(tf)ﬁbe*”tf/ﬁb = I, (B.1.3)
f f
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Finally, there is a question of how to define the temperature at particular time ¢ in non-equilibrium

situation? There are two possibilities. We can consider the “diagonal slice” Gg,(t;0):
Gogt(0) = G5 (t — 6,1 +9), (B.1.4)

treat it as a two-point function in the equilibrium, and find the temperature using the fluctuation-

dissipation theorem (FDT):

Im(Ggq,t(w) + G:q,t(w» _ ﬁ(t)w
C)maE,w) e (19

However, this choice does not respect causality in time. Another choice is the “corner slice”:
Gy (t,0):
G t(0) = 0(8)G5(t — 6,1) + 0(—8)G35 (L, +9). (B.1.6)

This choice respects causality and this corner Green’s function enters in the definition of energy
(1.3.30). Therefore we will adopt the corner definition. Unfortunately, the FDT holds for low
frequencies only, since large frequencies are affected by the size of the discretization step. However
in all our setups the relation (B.10.128) holds for low frequencies up to the frequencies of order

of the discretization step 1/dt. see Figure B.6 for a typical behavior.

1.0 1 ‘—
0.5 - \
|
051 |

104 \ |

—AIIO —IZO (I) 2‘0 4‘0
beta n/L
Figure B.2: (Orange) The left hand side of eq. (B.10.128) for 8 = 80, dt = 0.2. The Green
function is localized on a strip of width L = 1600. (Blue) tanh function. They coincide up to
frequencies corresponding to the timescale ~ (/30 ~ 2.6, which is comparable to the timestep
0.2.
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B.2 Energy flux from KB equations

Consider the case ¢ = 4 and one system fermion in the interaction (fg = 1). The generalization
to other cases is straightforward. For clarity, we denote the system’s “greater” Green’s function

G~ simply by Gg and bath’s “greater” function as Gp. The energy is given by:

J2 t
Es(ty) = —Zf/ dty (Gg(tl,t2)4 — Gs(tg,t1)4) . (B.2.7)

Our approach is to differentiate it and use the KB equations. We will assume that the coupling

to the bath is switched on at time t = 0:

dEs(t t t
dBs(t) = Vng/ dtz/ dts (GB(tl,t:s)fB + GB(t?)atl)fB) (Gs(t17t2)3Gs(t3,t2)—
—00 0

dtq
Gs(t2,t1)*Gs(ta, t3)>+
t1 to
V2J§/ dtg/ dts (Gs(ts, t2) + Gs(ta,t3)) (7 Gs(t1,t2)3Gp(ty, t3)/B+
—0o0 0
GS(t2at1)3GB(t3>t1)fB>- (B.2.8)
This is the leading term in V. If we trust this expansion, then we can use the initial Gg to

find the flux.

We can exchange the integration order in the second term:

t1 to t1 t1 t1 t1 t3
/ dtQ/ dtg — / dtg/ dty — / dtg </ dty — / dt2> . (B.2.9)
—00 0 0 t3 0 —00 —00

After that, we use the equilibrium Dyson—Schwinger equation for Gg to convert the convolution

over to into a time derivative, arriving at

t
By =iV? / duGp(u —i€)/20,Gs(u — ic). (B.2.10)
—t
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B.3 Locating the peak

Suppose that the bath is “fast”: JpfB < 1. If we assume that ¢,ec.xJp < 1, then G'g varies slowly
and we can Taylor expand it around u = 0 to greatly simplify the result. In the first part of Eq.
(3.3.69) we can simply put GQB = —i/2, whereas in the integral we put &LGQB = —3Jp/2. Up
to an overall coefficient the flux is

. Wi 388 g er (“(5—2“‘) 2> (B.3.11)

inh (%) v

Assuming u/3 > 1 we can approximate the elliptic function by a constant:

(6 — 2iu)

EllipticF
iptic ( 15

,2) ~ —i EllipticK(—1). (B.3.12)
Now it is easy to balance the two terms to estimate

1
tpeak ™~ Blog <JBB) , Jpb 1. (B.3.13)

Note that both assumptions, tpear/B > 1 and tpeaJp < 1, are satisfied.

In the opposite regime, Jpff < 1, we assume that tpeax/f < 1. Then we can expand Gg:

Gy = VI (‘/B ! <7m)3/2>. (B.3.14)

VIsB \ Vru o 12

Now the integral in Eq. (3.3.69) can be computed analytically to give a lengthy expression with
rational functions and a logarithm. However, if we assume that ¢,cax/p > 1 and expand in large

time u, then we find that the leading imaginary contributions are

2i(6%J% — ud Jn? log (4iJp(u — ic)) . (B.3.15)

171



Thus, we have the estimate:

g

G AL (B.3.16)

tpeak ~

Again, our two assumptions, tpeak /B > 1 and tpeax/f < 1, are satisfied.

B.4 Equation of motion in Schwarzian

It is convenient to first compute the variation with respect to a general reparametrization t(u),

then later to plug in the thermal solution,

tm]:mmh<if>. (B.4.17)

As is well-known, the variation of the Schwarzian is equal to minus the time derivative of the

Schwarzian. After we vary with respect to t —t_ and put ¢4 = t_, the leading term is

2 2
8y (Sch(t[u], u)) = gcoshQ %au (Sch(t[u], u)) = gcosh2 %au <57T2) . (B.4.18)
Now we deal with the interaction term. One has to vary
vty \Y*
duidug X — —c . B.4.19
/c tady Xt~ 2) ((t1 - t2)2> ( )

Since V2 is already small, after taking the variation we can plug in the thermal solution. Another
reason for this is that the integral is dominated by u12 < 3, whereas [[u] changes on scales much
bigger than 5.

Variation with respect to the ¢; yields

()" ()"
— | dus [ Xp(ur —u2) L2 w8, | Xp(ug —us)— A2, B.4.20
/c U ( B(u1 u2)2(t1 = ) + B(u; u2)4t’1(t1 NIV ( )
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Recall that the combination

1/2
(Gt ™/B
(b= 12)!/2 \ sin (2

(B.4.21)

is proportional to Gg(u; — u2), so it is a function only of the difference u; — uy. Therefore, if 9,
does not act on 1/t; it can be transformed into 9,, to give a total derivative.

After taking the derivative we will have

—/dUQ XB(u1 —UQ) B
C

2 sinh3/2 <”(“1ﬂ*“2) >

cosh T4
< B B B

cosh ™ 4+ sinh "L ginh 7r(u1—u2)> , (B.4.22)

which is equal to

cosh” % (B 4 23)
: 13/2 w(u1—u2) ’ o
2sinh (71/3 2 )

—/du2 Xp(up — ug)
C

Hence, in the end we have:

2 cosh Z (uy — us
—2 % cosh (7ru1> /duz Xp(up — ug) 352( ) , (B.4.24)
B c 2sinh®/ 7 (u1 —up)

where an extra factor of 2 came from a similar variation with respect to the to.
Now we need to remember that we are working on the Keldysh contour, and the variation is

over ty —t_. This gives four pieces:
® Uy, U2 4,
® Up—, U2,—,
® UL+, U2,—,

® Uy, U+
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These integrals combine into twice the integral over the Wightman functions:

+o0
2 / dus. (B.4.25)

—0o0

The last step is to change variables: us — 8 + u; and combine this contribution with that of

the kinetic term (B.4.18):

—c0 de Xp(flu —ic)) sinh®2 7 (& — i€)

(B.4.26)

sn2ag ,  iVibV2m3/? /‘H’O coshm (x — ie€)
jsﬁ?’ (JS>1/251/2

Note that the factor of cosh?(7u;/3) has cancelled out, meaning that the ansatz with slowly-

varying beta is actually consistent with the equations of motion.

B.5 Bounds on energy flow

B.5.1 Perturbative energy flow calculation for bosonic coupling
Consider a system initially in a thermal state of the form

e BsHs—BHp

B.5.2
775 (B.5.27)

po =

where the initial system Hamiltonian is Hg and the bath Hamiltonian is Hp. At time zero, a

system bath coupling gHgp is turned on, at which point the full Hamiltonian is
H = Hy+ gHgp (B.5.28)

where Hy = Hg + Hp.

The rate of the change of the system energy as a function of time is

Eg = tr (poe™'[igHsp, Hgle 1) . (B.5.29)
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This equation follows from the fact that [H, Hg] = g[Hsp, Hs]. Let us assume that the system-
bath coupling is of the form
Hsp = O50g, (B.5.30)

noting that the most general coupling is a sum of such terms. Then the rate of energy change is
EY = (¢'ig[Og, Hs]Oge M), (B.5.31)

To work perturbatively in g, we move to the interaction picture, defining
et — gmiHotyy (B.5.32)

To zeroth order in g, U is simply the identity, in which case E’ = 0 as follows form the thermality
of the initial state.

To first order in g, U is given by
¢
U=1-ig / dt Hep(t') + - - (B.5.33)
0

where Hgp(t') denotes the Heisenberg operator with respect to Hy at time t'. The rate of energy

change to second order in g is
t
Eg = (ig)® / dt'([0s(t)Og(t'), [Os, Hs](t)Op(t)))o- (B.5.34)
0
From the equation of motion
[Og, Hg|(t) = i0,05(t), (B.5.35)
it follows that

By =ig? [ at([0,05008(0.05(¢105 ()] (B.5.36)

175



Note that the commutator has also been reversed, hence the extra minus sign. There are two

terms from the commutator,

[0:05(t)O5(t), Os(t)OB(t),] =0:05(t)O0s(t)[OB(t), O ()]

+[0:05(t), 0s(t)]OB(t) O5(1). (B.5.37)

Since the initial state factorizes, it follows that the energy rate of change can be written as a

sum of products of system and bath correlators; these are defined as

Xs/5 = (0g/5(t)0g/5(t'))o (B.5.38)

and

Xg/B = —i({[Og/B(t), Og/B()])o. (B.5.39)

Since the O operators are Hermitian, it follows that (O(t')O(t)) = (O(t)O(t'))*. Then the rate

of energy change is
t
Bl = —g / dt' {8, Xs(t — ) XB(t — ')+ ,XE(t — )Xt — ). (B.5.40)
0

Note that technically the time derivative acts on both 6(t) and Og(t) in X%, but this doesn’t
matter because Og commutes with itself. We have used the fact that the initial state is thermal
to conclude that the dependence on ¢, reduces to a dependence on t — ¢’ only.

It is useful to rewrite the two terms in EY using a spectral representation. The first term is

dwdw dv 0y —iwAg (w)Ap(v)
X Y XR _ Yy — i(w+w’) (t—t") S+ . B.5.41
O Xs(t —1)Xp(t—1) 2m 27 27re W +i0t —v (B-541)

The second term is

Bt — )Xyt —t) = [ LD i) TASW) A ()

B.5.42
2 27 27 w+ 10T —v ( )
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The integral over ¢’ in the expression for EY can be done to yield

t ' , , _ —i(wtw)t
/ dite—ilote) ey _ L= TR (B.5.43)
i Wt )
and
t A ) , _ —i(w—w)t
/ it ity _ L e T (B.5.44)
0 i(w—w')

With a view towards the desired inequality, one can integrate these expressions against e ** for

arbitrary x. The result is

* gpem L e 1 B.5.45
/0 ‘ i(w+w) K[k +i(w+ W) (B.5.45)
and
00 1— e*i(wfw/)t 1
dte™ " = . B.5.46
/0 ° i(w—w) Kk + i(w — w')] ( )

In the first term the w’ integral can be carried out by contour, similarly for the w integral in
the second term (because these frequencies do not appear in the spectral functions). Closing in

the upper half plane gives

duw’ 1 1 1
hatadl = _ B.5.47
/ 21 k[lk +i(w+ )] W +i0F —v k(v +w —ik) ( )
and
dw 1 w —w' —v—ikK
— = . B.5.4
/27T klk+i(w—w)]w+i0t —v  2k(—w + v —ik) (B.5.48)
Adding back all the factors, the first term becomes
27 21 —k|w + v — K] o
and the second term is
o [dwdy —i(—w — v — i/i)AS(V)AB+(w/). (B.5.50)

o 27 26(—w' + v — iK)
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To compare the two terms, we relabel variables in both terms so that w appears in Ag and '

appears in Ap. The full expression for the integrated energy rate of change is thus

F.=1i—
" Z/{ 2 27

g [ dwdd [_WA5+ (WAp(W) (W +w+ir)As(w)Api (W) (B.551)

w4+ w — ik 2(—w' +w —iK)

The useful identity A4 (—w) = A_(w) gives

[wa@ie) = [awa,@ire - f-o) (B.5.52)

Applied to the first term (w’ integral), an equivalent integrand is

AS+AB+ <— d + d ) . (B553)

wHw —ik w—w —ik

Applied to the second term (w integral), an equivalent integrand is

CAgi (WA (W) (W Hw+ m W w+t m (B.5.54)
2 —w+tw—ik W —w—1k
or
Ags(w)Apy (W “ “ . B.5.
s+ @104 (oo * oo (B.5.59)
The terms may be recombined to give
Ags (@) Ap (W) [ ——= “ B.5.56
s+(w) B+(w)< w+w’—z’/<a+w—|—w’+i/<a ’ ( )

thanks to a cancellation of two terms. The real part is then simply zero while the imaginary part
is

2wk

Combined the imaginary overall prefactor, it follows that the integrated rate of change is

dw dw' wAg; (W) Ap+ (W)
27 21 (w4 w')? + K2

F, = / dte ™ Ely = 24* (B.5.58)
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The integrated flux simplifies in various limits. For example, x — 0o corresponds to the short

time limit. The integrated flux obeys

2 /
g dw dw
Using
1
/dwwA+(w) =3 /dwwA(w) :/ dwwA(w) > 0, (B.5.60)
w>0
it follows that
Fiy00>0 (B.5.61)

in agreement with Almheiri’s lemma.
The limit kK — 0 corresponds to the long time limit in which case the flux is dominated by
the late time value. The integral over w can be done by replacing the denominator with a delta

function of w + w’ times 7/k,
g dw' ’ /
Fio— —— | —wAsi(—w)Ap+(w'). (B.5.62)

Relabeling w’ as w, the integral can be written

FH—)0_>_

g2 / dw As(w)Ap(w) (B.5.63)

% ) 2n V(P —1)(1 — e Bow)’

This form is convenient since A(w) is antisymmetric and so the product of two is symmetric.

The integral can also be written

2 (Bp—Bs)w/2

g dw e Ag(w)Ap(w)
F, - - [ — . B.5.64
"7 7% J 20” 4sinh 55 sinh 2a¥ (B.5.64)

Using the symmetry of the integrand, this can be written once more as

Foyo— —2 “w . (B.5.65)

g* / dw sinh MAs(w)AB(w)
K Juso 2T 2 sinh ’BST‘” sinh 63%
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This form is nice because it makes it clear that the energy flow is negative or positive depending

only on whether Sp — Bg is positive or negative.

B.5.2 Review of spectral representation

Here we briefly review the spectral representation used above. Consider a Hermitian operator O

in a system with Hamiltonian H in a thermal state at temperature 7" = 1/3. The two correlators

of interest are

X =(01)0(0))

and

XH(t) = —ib(1)([O(t), 0(0)]).

Both correlators have an expansion in terms of energy eigenstates. These are

= pal(n|O|m)[?eFn=Em)t

n,m
and

XR( = —if(t an (n|O|m)|? [ Em)t _ e_i(E”_Em)t} .

The Fourier transforms are

X(w):/ dte™ X (t) =Y Y pal(n|Ofm) P2m6(w — (B — En))

n,m n,m

and

1 1
= Zan]<n|O|m>|2 <w +i0t — (B — Ey) B w40t + (B, — En)) '

n,m n,m

The spectral function is defined by the equation

dv  A(v)

Xtwy= | ——F—
() 21w + 0t — v’
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(B.5.67)

(B.5.68)

(B.5.69)

(B.5.70)

(B.5.71)

(B.5.72)



from which it follows that

A(v) = Au(v) - A_(v)

with

Ar(v) =) pal(n|Om) P2m6(v F (Em — En))-

n,m

Exchaning n and m in the definition of A_ shows that

A== 3 pullOlm)P278(v — (Eun — En)),

n,m

and using E,, = E, + v plus the explicit form of p,,, it follows that
A_=e A,
and that
Alw) = (1 —e )AL (v).
We also see that X (w) obeys
X(w) =A4(w).
B.5.3 General argument for perturbative bound

Once again, the integrated flux is

dw dw' wAsy (w)Ap (W)
2m 21 (w+w')? + K2

F, = 292

Convering to Ag(w) gives

o o /dwdwwAs<w)AB+(w’> 1

21 21 (W w2+ kK2 1 —e Bsw’
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(B.5.75)

(B.5.76)

(B.5.77)

(B.5.78)

(B.5.79)

(B.5.80)



Using the fact that wAg(w) is symmetric in w, we may symmetrize the remaing function of w

without changing the integral. The result is

y [ dwde’ WAs(w) ARy (W)[w? + w? + K2 — 2ww coth 5]

Ee=9" | 5 or (w+ ) + 72w — )2 + 7] (B-581)
Now the only potentially negative part of this expression is the function
f=w?+w?+ k? — 2w coth BSTw (B.5.82)
It is interesting to ask under what conditions f > 0. It may be written as
f= <w' — wcoth B‘;w>2 + K2 + w? <1 — coth? [3;w> . (B.5.83)

The function w?(1 — coth?(w/2)) is symmetric and monotonically increasing for positive w. Its

value at w = 0 is —é%. Hence it follows that if s is large enough, the function x? + z%(1 —
S

coth?(x/2)) is non-negative. From this we conclude that F > 0 provided

52;. (B.5.84)
S

This constraint applies for any system and bath provided that: (1) the system-bath coupling
is a product of two Hermitian operators and (2) we work perturbatively in the coupling.
B.6 Perturbation theory in pu

Let us start from computing p correction to Gpr. We need to compute

B
AGLR(Tl —7'2) = iu/ dr GLL(Tl —T)GRR(T—TQ) =
0

1 1

i (25571) fsin (152)

(B.6.85)

pb*m /5
_ ) — d —_ —_
7 75 ), T sgn(m — 7)sgn(r — 12)
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Because of the translational invariance along the thermal circle the answer depends on 7 — 7
only. So one can put 79 = 0. After changing the variables to = tan (77/f) we have the following
integral:

& 1

b2
i1+ 2 x ,uj/ dzr sgn(xy — x)sgn(x

oo \/|x\/|x1—x]\/1+x2

(B.6.86)

This integral can be computed analytically. Because of the sgn functions there are three

integration domains. So the answer has three parts:

b2
AGLr(z(T)) = ”7(11 I + I3)(1 + 22) /4 (B.6.87)
where

2 2z T 2z
I; = ———— | EllipticK — ¢EllipticF
! V1-— zx( P ( z+x> P (4 +x)>

2 1 1
Ib, = —FEllipticK [ = — ——— B.6.88
s = ek (5t (B.6.5)
2 11 35 1

I3 = —3F 1=, - ——
3 342 < 2 2 747 4a .’I,'2>

Now, let us compute the correction to energy. From the path integral the leading correction

to the free energy is

—ﬁAF_—/ dr Gri(r)GRrr(7) (B.6.89)

We can recover the integral by taking 7 — 0 limit in the conformal answer (B.6.87) for G r.

Unfortunatelt it produces a logarithmic UV divergence which we cut at 7 = 1/.J:

AF = 1 "2<210”—c> (B.6.90)
Tovar g \"®us @ o

where c; is the cut-off dependent constant. We can not find it from the conformal perturbation

theory, because it is an effective low-energy theory with a build-in UV cutoff of order J. From
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the above expression we read off the energy correction:

AE—1”2<210 7T—2—c> (B.6.91)
TovanJ " BB ' -

Also notice that the constant —c¢; — 2 is not simply a correction to the ground state energy. As
we mentioned in the main text, perturbation theory in p breaks down at large fBopu ~ J/p?, so
we can not take the limit 5 — oo in this expression. This is signalled by the presence of the
logarithm. This divergence has IR nature, and it is not caused by using the conformal answer in
the integral (B.6.89).

To extract ¢; we can compute integral (B.6.89) using the numerically obtained Gr,. We find
that ¢; = 1.66(1). This agrees very well with the actual numerical result for the energy - Figure

4.6.

B.7 Checking whether Schwarzian fluctuations are stable

Let us start from doing a 1-loop calculation for Schwarzian first. We again assume that we in the
phase with two separate black holes. Then the action will involve two Schwarzian terms plus the
interaction piece. For a moment we can imagine that instead of a simple interaction uyrywr we
have a term involving composite operators it uO;,Op with zero expectation values: (O Lr)) = 0.
F is the Op,gy fermionic number. The Schwarzians interact because Schwarzians gravitationally
dress Op () by time reparametrizations.

In the perturbation theory the leading contribution is of order j?:

/DwLDwR exp (—SL — Sp— Z'F,u/du OLOR> = (B.7.92)

= /Dq/}LD@DR exp <SL — Sk u2/du1du2<oLoL><OROR>)
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Explicitly the action is:

N;S{fL,u} — [ du N;S {fr,u}— (B.7.93)

D [ i (L1 w2)  \® ( f(um) f(un)  \®
Nﬂﬁ/dMQ(mwo<mWw)(me—mwmg

S=— [ du

where A is the dimension of Org), for ¢y, it is A = % and {f,u} denotes Schwarzian derivative:

_ By
G =125 (%) (B.7.91)

Finite temperature solution without interaction reads as:

fLZfRZtan% (B.7.95)

We can perturb it by €1, €g:
fr = tan <7T; + eL(U)> (B.7.96)
fr = tan (ﬂ; + eR(U)) (B.7.97)

(B.7.98)

and to see whether the two black hole system has a perturbative instability at some temperature.

For simplicity we can put 8 = 7w and expand € in Fourier modes:

+o00
€= Z €ne2m (B.7.99)

n=—oo

Before doing an actual computation, let us stop and explain why Schwarzian does not con-
tribute classicaly here and at higher loops. By classically we mean that its contribution is

suppressed by 1/N. Since we are in a thermal state (B.7.96) is the a translation symmetry along

the Euclidean time u. This is why after expanding in Fourier modes (B.7.99) we will not have

terms linear in €,. It means that the thermal solution (B.7.96) is still a classical solution of
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Schwarzian equations of motion even with complicated non-local interaction induced by loops.
Since we have an overall NV in front of the action, integrating out ¢, will lead to a subleading
correction.

Let us return to the actual 1-loop calculation. The only subtlety is that one has to be careful

with the time ordering, since the denominator involves
. A .
(sin? (wy — w2 + el (uy) — EL(UQ))) = sin®® |up — ug + €F(uy) — €& (ug)| (B.7.100)

The result for the marginal deformation A = 1/2:

AW B
S/N— Z n —n? eﬁR—i— (AJB) (87T2|62 — eB? 4 3202 |k — €B? + 80m?|ek 65‘2)4—

(B.7.101)

and the coefficients tend to grow. One can also evaluate non-quadratic terms. Below are the first

three. All of them have positive coefficients too:

42872 |l — eB|* 4 22472 €l — Bt + 95272 |l — BT 4L (B.7.102)

28607
+ 971-’65—65’6—}—...

For the case of relevant deformation piprvr with A = 1/4 the results are similar. The

interaction term has the expansion:

8 48 80
§|6§+6§|2—|—8\62 — elY? —|e§+e§|2+§|e§—e§|2+... (B.7.103)
+30 ‘ 3‘4 4432 R|4 7146| R|4 137018| |
—_— € — €
K 105 55 18 € 495 33
135424 1053952

And the coefficient in front is b2£ Jg

In principle, we can go to higher orders in p. Curiously, u* correction is negative for es.
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B.8 Lorentz time Dyson—Schwinger equation

B.8.1 Single SYK

Let us first consider a single SYK in Euclidean time. Then the DS equations have the form:

»(r) = J?G(1)?

(—iw — X(w))G(w) =1 (B.8.105)

Now we want to switch to Lorentzian time. We define the Wightman function with an extra

—i(1i(t)1:(0)) = G (t) (B.8.106)

As is well-known, upon the analytical continuation in time domain, the time-ordered Eu-

clidean two-point function becomes the Wightman function, therefore':
(1) = =% (G (1)’ (B.8.107)

The other DS equation is written in the frequency space, this is why after the analytic continu-

ation it will involve the retarded components:
GRw)(w—2Fw) =1 (B.8.108)

So far we have not used any information about the state we are considering. This informa-
tion is needed to connect G~ and GT. In thermal state we can use Fluctuation-Dissipation

Theorem(FDT):

~ 2iIm GF(w)

¢ W) = =g (B.8.109)

An example of how the Wightman’s function look is presented on Figure B.3.

'The minus sign is subtle: one can recover it either from the effective action (4.3.50) on the Keldysh contour
or doing a careful analytic continuation through the frequency space as was done in [36]
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J=0.5 beta=40.0
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Figure B.3: Wightman’s function G~ for single ¢ = 4 SYK with J = 0.5, 8 = 40

B.8.2 Two coupled SYK

Now we have 4 Green’s functions. The self-energies have similar expressions:
Sap(t) = = TG (1)) + iptab (B.8.110)

and the equation (B.8.108) should be understood as a matrix equation. For the diagonal Green’s
functions the FDT has the same form:
2i Im GE (w)
> _
G7(Waa = —_5; ‘_fl (B.8.111)
However the imaginary part of the off-diagonal components is skew-symmetric in time, so we

have:
Re G]L%R(W)

G~ =
(W)Lr e Pw + 1

(B.8.112)

This system of equations can be solved numerically by the iteration procedure used for a
single SYK model [36]. To ensure that the iteration procedure converges to an actual solution
we monitor the discrepancies of eqs. (4.2.8):

1

dab =
Npoints

10-Gap(T) = Lae * Gep(T) — Sap6(7) || (B.8.113)
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and make sure that dg, < 107!, The typical number of discretization points is Npoints ~ 217,
Before the transition the diagonal Green’s function look similar to single SYK ones - Figure

B.4

0.2+

0.0
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0.06} — ImG~>_LR |
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0.02}
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-0.06 : - - - - - -
-200 -150 ~-100 -50 0 50 100 150 200

Figure B.4: Wightman’s function G~ for two coupled ¢ = 4 SYK with J =
0.5, ©=0.05, =40

B.9 Derivation of the effective action

Let us write down explicitly the total action for the system on the Keldysh contour C. We will
suppress the bath action. Bath fermions y, and x., a = 1,..., M belong to independend ¢ = 4

SYK systems with coupling Jg. We denote their two-point functions by Gp:

_ 1 _ 1 .
Gplty 1) = —ig: D et )xalts)) = o S Ralt))Xa(tD)) (B.9.114)
The total action consists of four terms:
Stot = Skin + S5+ S, + Shath (B.9.115)
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e Sy is a standard kinetic term for fermions:
iSkin = 1 /C dt Z (VfOupf + Y oppT) (B.9.116)
J
e S5 is SYK interaction:
Sy =i / dt S Ty (VEOREEGE + wReRulR) (B.9.117)
1<j<k<l
e S, is Maldacena—Qi interaction term:
iS, = / dt 1y iyl (B.9.118)
c -
J
e Finally Sp.¢n is interaction with the bath:

iSpath = i / ity (X/iala"’o‘wL,ixalxman +17ﬁla2awR,i>zal>za2>za3> (B.9.119)

a<a<as,t

As usual, we can integrate out the disorders leading to bi-local expression in terms of 1, ¥ and
X. Couplings V and V are Gaussing with the variance [2]:

3ln

373 Do sum (B.9.120)

(Vo) = (Vo)) =

The action can be made quadratic in fermions by introducing the largrangian multiplier 3, which

is integrated over along the imaginary axis:

. N
iStag = / dtrdty Y Sap(tr,tz) | Gapl(tr tz) — Zw t)e (B.9.121)
ab

Note that we have an overall minus if front of the action. It is important for the equation

connecting the self-energies 3 and Green’s functions. Integrating out the fermions produces we
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effective action (4.3.50):

Stot

1 J? 41
3 pu— 7T —_ _— — —
i = 5 Trlog(w—Zap(w)) Eab /CdtldtQ ( g Can(ty,t2)" + 22ab(t1at2)Gab(t17t2)> +

v / dt (Gralt,t) ~ Gru(t, 1) — 1 / dtrdts (Gro(tr, 1) + Grr(t, ) Gt 1)
C C

(B.9.122)

Variation of this action with respect to X, and G, yield the KB equations (4.3.53) and (4.3.54)

B.10 Numerical methods for wormhole formation

Now let us describe the numerical method for solving Kadanoff-Baym equations. Numerical
solution of Kadanoff-Baym equations for SYK model was described previously in [37, 106] and
our approach is essentially the same.

We will use two-dimensional grid with uniform timestep to discretize (¢1,t2) plane. The
timestep dt should be much smaller than the characteristic time-scales in SYK 1/.J,1/u. Since
u < J, the 1/J constraint is much stricter. We will work with J = 0.5 this is just a choice to
fix energy units. Our time steps will be 0.2,0.1,0.05. The main numerical limitation comes from
the fact that the Green functions have spread ~ 3, so we can not go to very big f, since we will
have to use a huge grid. At finite temperature the Green functions decay exponentially, so to
greatly speed up the computation we will concentrate on the strip |t; —t2| < ¢Bmax on the (t1,t2)
plane - Figure B.5. We will assume that outside this strip all the Green functions are zero. The
constant [max i the maximal 3 in the problem at hand. In our case Smax = S - bath’s beta.
One can verify that one c¢ is big enough the result of the computation does not change.

With the computation power avaliable to us, in order to keep the computation time to be of
order of dozens of hours,  should be less than 100. This limits us to = 0.05. For g = 0.05 the

transition beta is ~ 61 - see Figure 4.6.
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Initial

>

>t

Figure B.5: Geometry of the (¢, t3) plane. The initial Green functions are placed inside the gray
box.

The system-bath coupling 1 should be much smaller than J? = 0.25 so that the system remain
thermal. We will use 7 in the range 0.01 — 0.04. Moreover to avoid large gradients we will switch
on the coupling linearly, with the switch-on time Tyywitc, = 20.

Initial Green function is found by numerically solving Lorentz-time equilibrium Dyson—
Schwinger equation as described in Appendix B.8. The bath Green function is obtained in a
similar fashion. In order to avoid large speads in the bath’s Green function, Sp will be in the
range 70 — 100.

To compute the integral in KB equations we will use trapezoid method and for the time
propagation we use predictor-corrector scheme. The same techniques have been used in [37, 106].
For KB equations one has to be careful with propagating the Green function along the diagonal.

Fortunately, for Majorana fermions there is a simple relation:

G2 (t,t) = —% (B.10.123)
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However, for the Green function obtained by numerically solving the DS equation the diagonal

value is not exactly —i/2, so on a discrete lattice we will just propagate this value:
Gaald, 5) = G24(0,0) (B.10.124)

For the mixed G g we do not have a simple relation like that. So we will use again the predictor-
corrector scheme. The value on the diagonal can be found by either propagating along ¢; or ts.
We will take the avarge of these results.

Let us define the “corner slice” Green functions as G7. , ():
GT.ap(7) = 0(2)Go (T — 2, T) + 0(—2)Go (T, T + ) (B.10.125)
Then the energy at time ¢t = T" can be computed analogously to eq. (4.2.12):

E ) '
N % <8$G7>“,LL +0:G7 rr + ZSLG;,LR) , at =0 (B-10.126)

Computing the time derivatives using the KB equtions one arrives at the following integral form:

E

g2 |
LR / drsgn(z) (C7.p ()" + O (@) + 207 1 p(0)*) + G 1(0)  (B10.127)

Along the time evolution the system cools down, so formally the temperature is not well
defined. However, if the cooling process is slow we might expect that at each point in time the
short-time correlators will be thermal. In order to extract the temperature we need to choose
the 1D slice of the Green function GE’ . b0 use the Fluctuation-Dissipation theorem(FDT). For
the same side correlators and different side correlators it looks slightly different. For the same

side case we have:
I (G7,00() + G70al®) (7
(—2)mGE, ) 2

(B.10.128)
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where for different sides it reads as:

Re (G7() + Ginl@) p(y
(DRG0 2

a#b (B.10.129)

To the extent that the system is in thermal equilibrium, it is time translation invariant and
it does not matter what the value of ¢; + to is. We will actually choose the corner slice Green
function G; w10 (B.10.125). This choice is motivated by the fact that exactly these Greens
function enter in the definition of energy (B.10.127).

Then one can fit it the left hand side of (B.10.128) with the tanh function to extract the
temperature. We need to select a frequency range of at least a couple of temperatures in order
to really probe the thermalization. On the other hand, for very large frequencies the numerical
data has a lot of noise coming from discrete timestep, see Figure B.6. Typically we will fit eq.
(B.10.128) up to frequencies of order 10 temperatures, i.e. fn/L ~ 10. Although the results do

not depend much of this choice.

1.09 to i —
0.5 A

0.0 - ‘

-1.0 - 77 AW

-40 20-10 0 10 20 40
beta n/L

Figure B.6: (Orange) The left hand side of eq. (B.10.128) for 5 = 80, dt = 0.2. The

Green function is defined on a strip of width L = 1600. (Blue) tanh function. We

expect that they should match for frequencies much less than the inverse discretiza-

tion timestep: n/L < 1/dt. In on this graph this UV cutoff is at Snmax/L ~ 400.

The region used for the fit, 5|n|/L < 10, is within the dashed lines.
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B.11 Change of boundary conditions

First we need derive an analogue of (4.4.72) for the case of global AdS;. We start from fermions
having Dirichlet boundary conditions on both boundaries and add an extra fermion x7 z on the
boundary to initiate the flow from Dirichlet to Neumann boundary conditions. Essentially this

way we perform a Legendre transformation [126]. This way we obtain the relation:

Zn = Zpy/det G1_a (B.11.130)

where G1_A is the matrix

GiL, GLR
;LA ;RA (B.11.131)
GiZa GiZA

with with standard conformal correlators

L ' £\ 282
G1ZA o | sinh 3 (B.11.132)

i £\ 282
G1A o | cosh 3 (B.11.133)

Now let us return to our problem with the p term. So now we have Neumann fermions plus
the interaction term pirwg coupling the two boundaries. The partition function can be easily

found:

Z, = Z,FD\/det (14 4Ga) (B.11.134)

where the matrix [ is given by eq. (4.2.10). For large u we have

Zys1 o< Zyy/det Ga (B.11.135)

To conclude that Z,,5.1 o< Zp we need the matrix relation

Gi-a(w)Ga(w) =1id (B.11.136)
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In fact this relation coincides with the conformal(i.e. neglecting the time derivative) Dyson—

Schwinger equation (4.2.8).
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Appendix C

Casimirs and matrix models

C.1 The eigenvalues of the quadratic Casimir operator

In this appendix we describe the value of quadratic Casimir operator for the representations of
O(N) and SU(N) groups in terms of Young diagrams. To extract the irreducible representation
corresponding to a Young diagram from a generic tensor, we first fill in the boxes with this
tensor indices, then we symmetrize over the indexes in the rows and after that antisymmetrize
the indexes in the columns. In the case of the orthogonal group we additionally subtract all
possible traces from the tensor.

For the representation of the group O(N) that is described by the Young diagram Y with
row lengths \;, the quadratic Casimir operator is equal to

[N/2]

o™ = 37 N (i + N - 2i) (C.1.1)
=1

The dimension of this representation reads as:

k ' i

dimA:1H()\i—i_]zfj\f__ki;i_l)'n()\hL)\jJrNij) (C.1.2)
) ! e
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where h) is the product of all hook lengths. For each box the hook length is defined as:
(hook length) = (number of boxes to the right) + (number of boxes below) + 1 (C.1.3)

The following lemma will be useful for studying the matrix models. Let us consider two groups
O(2n) and O(2m) and Young diagram Y,, for group O(2n) such that the length of the rows is
less then m. There is a maximal Young diagram — a rectangular n x m, that we shall denote
as Ynxm. We would like to consider a specific Young diagram Y, = (Yoxm/ Yn)T for a group

O(2m), where T stands for transposition. Then
Oy + Cy™ = n*m +nm? —nm . (C.1.4)

The proof goes as following. Let A; be the length of rows of the diagram Y,,, we introduce
)\0 =m, )\n+1 = 0. Then
Cym = i (Ni+2(n —i)) (C.1.5)

i=1
The value of Casimir operator of C; ™ can be expressed as the following. The difference A; — Aj41
is just equal to the number of the rows that has length n — 7. Then
oym = f: [N = A1) (= 0)2 4 (n — i) (A = A2y — N+ iy (C.1.6)
i=0
After that it is easy to see
oy :mn2+nm2—nm—zn:)\i (A +2(n —1)) (C.1.7)

1=0

So eventually it gives us

Oy + CY* = mn? + nm? —nm . (C.1.8)
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We will call the representation with Young diagram Y;,x., to be maximal and for O(N) group
the dimension is dimyayx ~ nm’/2,
We will also need an explicit expression for the quadratic Casimir of SU(NN). For a Young

diagram Y with row lengths \;, column lengths j; and total number of boxes b it is given by:

1 b?
C2SU(N),Y =3 <bN T Z)\ZZ _ Zug _ N> ) (C.1.9)

C.2 Examples of energy spectra in the matrix models

C.2.1 The O(N;) x O(N2) model for small Ny, N,

Let us list the allowed representations for some low values of Ny and Na. For O(2) we label
the representations by the integer charge ) so that the quadratic Casimir 020 @ _ Q?; for
O(3) by spin j so that 020(3) = j(j + 1); for O(4) ~ SU(2) x SU(2) by spins (j1,72) so that
5™ =251 (1 + 1) + 25(jo + 1),

For the O(2) x O(2) model we find 2 states with 4E /g = —1 with charges (£1,0) and 2 states
with 4E/g = 1 with charges (0, +1).

For the O(2) x O(3) model we find 6 states with 4E/g = —1 which have SO(3) spin 1 and
SO(2) charges +1/2; and 2 states with 4E/g = 3 which have SO(3) spin 0 and SO(2) charges
+3/2.

For the O(3) x O(3) model we find 8 states with 4E /g = —3 which have spins (1/2,3/2); and
8 states with 4F /g = 3 which have spins (3/2,1/2) (note the appearance of half-integral spins
which correspond to spinorial representations).

For the O(2) x O(4) model we find 6 states with 4E/g = —2 which have SO(2) charge zero
and are in the SO(4) representation (1,0)+ (0,1); 8 states with E = 0 which have SO(2) charges
+1 and are in the SO(4) representation (1/2,1/2); and 2 states with 4E/g = 6 which have SO(2)
charges +2 and are SO(4) singlets.

For the O(3) x O(4) model we find 8 states with 4E /g = —6 which have SO(3) spin zero and
are in the SO(4) representation (3/2,0) + (0,3/2); 36 states with 4E/g = —2 which have SO(3)

199



spin 1 and are in the SO(4) representation (1/2,1)+ (1,1/2); and 20 states with 4E/g = 6 which
have SO(3) spin 2 and are in the SO(4) representation (1/2,0) + (0,1/2).

For the O(4) x O(4) model we find 10 ground states with 4E/g = —12 which are SO(4);
singlets and are in the SO(4), representation (2,0) + (0, 2); 64 states with 4FE/g = —6 which are
in SO(4); representation (1/2,1/2) and in the SO(4)2 representation (1/2,3/2)+(3/2,1/2); etc.

For the O(6) x O(6) model we find 84 ground states with 4F/g = —45 which are SO(6);
singlets and are in the SO(6)2 representation whose Young diagram is a 3 x 3 square. The first
excited state has 4E/g = —35; it transforms as a vector of SO(6); and in the representation of
SO(6)2 whose Young diagram has 3 boxes in the first row, 3 in the second row, and 2 in the
third row.

Due to the relation (C.1.4) we can state the general correspondence between the representa-

tions of O(N7) x O(N3) if N7 and Ny are even. If the state is described by representation Y; for

the group O(Ny), then it has the representation (YNl/ngz/z/H)T for the second group O(N3).

C.2.2 The O(2) x O(3) x U(1) model

As was described in the main text, first we have to find SU(2) x SU(3) representations and then
decompose into SO(2) x SO(3) irreducible representations. After that we can directly apply the
exact formula (5.6.103) for the energy.

Let us list the explicit form of quadratic Casimirs. For SO(2) the quadratic Casimir is simply
Q?, where Q is the charge. For SU(2) and SO(3) it equals j(j + 1) where j is spin(an integer for
SO(3) and half-integer for SU(2)). For SU(3) the quadratic Casimir in our normalization reads
as:

1 1
VO g (R 0w an) (C:2.10)

where [1 > lo > ... are the row lengths of the Young diagram )\ defining the representation .
For example, CfU(S) (D) = 3, CQSU(g) () = % and CfU(g) () = 3 (the last one is the adjoint
representation).

The spectrum can be found in Table C.1; it coincides with the one in Table 5.6.
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Level SU(2) x SU(3) irrep SO(2) x SO(3) irrep § Energy

0 T XD T XD -3
1 Ox O Ox -1
2 (T x [xg 1
2 g x [ -7
2 @ X[ I X[ 1
2 DX D 13
3 O x H [ X [T -1
3 X[ 7
3 (T1IXJ [T1IX D 3
3 Ox o -13
4 g X [1] [ %] 13
4 o X [1] 1
4 (11X o x [ -7
4 Mx0 1
5 Ox Ox -1
6 T X T X I -3

Table C.1: Energy spectrum of the O(2) x O(3) x O(2) model. Due to the charge conjuga-
tion symmetry for the last O(2) charge, the energies and representations are invariant under
transformation level — 6 — level.

C.2.3 Explicit form of some singlet states

The construction of singlet states for the O(N7) x O(N2) x O(N3) tensor quantum mechanics is
in general a difficult problem, but it simplifies when one of the groups is O(2). The singlet states,
which exist only when N; and Ny are even, may sometimes be written down by inspection in the
oscillator basis. In this basis, in addition to the manifest SO(N;) x SO(Nz) symmetry, there is
manifest discrete Zo x Zs parity symmetry contained inside O(N7) x O(Na).

For example, for the O(2)3 model there are only two singlet states

6a1a2(5b1b2'&a151&a252‘0> ’ €b1b26ala2@a1bl1ﬁa2b2‘0> ) (0'2'11)

since due to the Fermi statistics the other two invariant contractions vanish. Under the Zy x Z9
symmetry these states are (—,+) and (+, —), respectively. In agreement with section 5.6.3, one
of these states is invariant under SU(2) x SO(2) x SO(2), while the other under SO(2) x SU(2) x
SO(2).
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Generalizing to any O(N7) x O(2)? model with even N7, we again find only two singlet states.

They may be written as

n - o7 Ny /2
Eal,...aNl 6[)1[72 “e e 5bN171bN1 ¢a1b1 “ e ,(;baNlel |0> bl (6b1b25a1a2¢a1b1¢a2b2) 1/ |0> . (0212)

One of these states is invariant under SU(N;) x SO(2) x SO(2), while the other under SO(N;) x
SU(2) x SO(2).

For the O(4)? x O(2) model there are 4 singlet states

€arasazas€asagaragObibs - - - ObabgWarby - - - Vagbg|0) 5 €bibobsbs€bsbebrbgOaras - - - OasagWVarby - - - Yagbs|0)
(€arasasasObibsObsbsVarby - - - Yasbs) (OasasOarasObsbr Obsbs Vasbs - - - Vagbs ) [0)

(€b1b2b3b45a1a25@3@41;@{;1 . -'(Ea4b4) (5b5b65b7b85‘15a76@6a81ﬁa5b5 e 'szasbg) ’0> . (0'2‘13)

The first pair of states have energies E' = +16¢g, saturating the energy bound (5.3.23). One of
these states is invariant under SU(4) x O(4) x O(2), while the other under O(4) x SU(4) x O(2).
The second pair of states have energies FF = +4g.

Defining the antisymmetric matrix M3, = 1/;ab1 1/;&1)2, we can write the first two states as
1
(tr M*+ §(tr M2)2> |0) (C.2.14)

By analogy with (C.2.14), for N a multiple of 4 we may build a set of states by acting on |0)
with traces of powers of M. For example, for N = 8 we can act with tr M6, tr M2 tr M1, etc.
The number of such terms is P(8), i.e. the number of partitions of 8 into positive integers, and
P(8) = 22. For O(12)? x O(2) the number of such terms is P(18) = 385. However, these terms
are not linearly independent, so this should be regarded as an upper bound on the number of

invariant states.
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More generally, for O(N)? x O(2) with N a multiple of 4, this upper bound is P(N?/8), which

grows exponentially with N:

2 TN
P(N?/8) — N2y5 P (N?) : (C.2.15)
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