
Introducing a new paradigm for accelerators and large experimental apparatus control systems

L. Catani and F. Zani

INFN-Roma Tor Vergata, Roma, Italy

C. Bisegni, G. Di Pirro, L. Foggetta, G. Mazzitelli, and A. Stecchi

INFN-LNF, Frascati, Italy
(Received 19 December 2011; published 29 November 2012)

The integration of web technologies andweb services has been, in the recent years, one of themajor trends

in upgrading and developing distributed control systems for accelerators and large experimental apparatuses.

Usually, web technologies have been introduced to complement the control systems with smart add-ons and

user friendly services or, for instance, to safely allow access to the control system to users from remote sites.

Despite this still narrow spectrum of employment, some software technologies developed for high-

performance web services, although originally intended and optimized for these particular applications,

deserve some features suggesting a deeper integration in a control system and, eventually, their use to develop

someof the control system’s core components. In this paper,wepresent the conceptual designof a newcontrol

system for a particle accelerator and associated machine data acquisition system, based on a synergic

combination of a nonrelational key/value database and network distributed object caching. The use of these

technologies, to implement respectively continuous data archiving and data distribution between compo-

nents, brought about the definition of a new control system concept offering a number of interesting features

such as a high level of abstraction of services and components and their integration in a framework that can be

seen as a comprehensive service provider that both graphical user interface applications and front-end

controllers join for accessing and, to some extent, expanding its functionalities.

DOI: 10.1103/PhysRevSTAB.15.112804 PACS numbers: 07.05.Dz, 07.05.Bx, 07.05.Hd, 29.20.�c

I. INTRODUCTION

Two main motivations support the decision to start inves-
tigating a new approach in the design and development of
distributed control systems (DCS) for particle accelerators.

New developments in this field, similar to what has
happened in recent years, will be basically directed towards
the enhancement of the control systems’ functionalities by
introducing new services, or improving existing ones by
complementing the basic features that are essentially aimed
at the remote control of the accelerator’s components.

These new functionalities, rather than being accessorial,
will be in many cases fundamental for the optimal opera-
tion of new accelerators that will require careful tuning to
achieve the desired performance. An example may be the
data acquisition system that is intended to provide not only
machine physicists, but also the experimental groups, with
all the information needed to recreate the operational state
of the accelerator (set point of components, information
from the beam diagnostic, etc.) at any significant instant
operation of the machine.

The analysis of recent developments on high-
performance software technologies suggests that the design

of new accelerator DCS may profit from solutions
borrowed from cutting-edge Internet services. To fully
profit from these new technologies the DCS model has to
be reconsidered, thus leading to the definition of a new
paradigm.
The second strong motivation for this development fol-

lows the recent approval, by the Italian Ministry for
Education, University and Research, of the construction
of a new international research center for fundamental and
applied physics to be built in the campus of the University
of Rome Tor Vergata. It will consist of an innovative very
high luminosity electron-positron collider named SuperB
[1] and experimental apparatuses, built by an international
collaboration of major scientific institutions under the
supervision of Istituto Nazionale di Fisica Nucleare.
Clearly, it will offer great opportunities, not only for new
discoveries in elementary particle physics and interdisci-
plinary research, but also for breakthrough innovations in
particle accelerator technologies.

II. THE !CHAOS FRAMEWORK

A typical example of software technology emerging
from developments of Internet services is the class of
nonrelational databases known as key/value databases.
They offer an alternative to relational databases that is
having growing success and interest among developers of
web services due to their high throughput, scalability, and
flexibility.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 112804 (2012)

1098-4402=12=15(11)=112804(10) 112804-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.15.112804
http://creativecommons.org/licenses/by/3.0/


Another example is the distributed memory object cach-
ing systems. They provide an in-memory key/value store
for small chunks of frequently requested sets of informa-
tion in order to both respond faster to requests and to
distribute the load of the main server to a scalable cluster
of cache servers.

These two software technologies, clearly cited on
purpose, represent the core components in the design of
this new control system we named !CHAOS [2] (i.e. ‘‘not’’
CHAOS, where CHAOS acronym stands for control
system based on highly abstract open structure) [3,4].

In particular, the key/value database (KVDB) is used by
the data acquisition system (DAQ) for storing what we call
history data, while the distributed object caching (DOC)
implements the service for distributing live data from the
front-end controllers to clients replacing the client/server
communication.

Compared to the typical structure of a DCS, usually
represented by the so-called standard model [5] of control
systems, in !CHAOS data produced from front-end con-
trollers is cached in an intermediate layer of DOC for
making it accessible to clients. As a consequence, top
and bottom layers are not directly connected and, espe-
cially, data is not sent by controllers when triggered by
client request. Instead, alternatively to the typical client/
server communication of network distributed systems, in
!CHAOS live data is pushed from front-end controllers
to the DOC layer, according to the independently adjust-
able refresh rate. From the DOC server data sets can be

asynchronously read from any number of client applica-
tions simultaneously.
This solution offers a number of advantages.
First, we can use the same strategy, and topology, for

both distributing live data and storing history data as
shown in Fig. 1. Data sets that need to be updated are
identically pushed, by front-end controllers, to both DOC
and KVDB servers by issuing set commands. It means that
the data collection mechanism for DAQ is inherently in-
cluded in the !CHAOS communication framework because
both live and history data are pushed by the data source (the
front-end controllers) to similarly distributed caching and
storage systems. Moreover, since both DOC and KVDB
use key/value data storage, formatting and serialization of
data sets can be done once for both.
Second, both the client applications and the front-end

controllers are simple clients of the distributed object
caching and DAQ. In particular, provided the DOC has
an object container for each data set of the DCS, defined by
its unique key, a graphical user interface (GUI) client
simply sends to the !CHAOS DOC service a get request
for the object identified by that particular key, i.e., the data
set describing the associated device. On the other side the
controller responsible for that device updates the corre-
spondent data set, according to the push rate defined for it,
by issuing set commands to the DOC.
Data refresh rates, as well as other metadata and global

parameters, will be managed by the metadata server
(MDS) that will be described later.

FIG. 1. Data flow in the !CHAOS framework.

L. CATANI et al. Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-2



It is worth mentioning that in !CHAOS the DOC layer is
not operated as an object caching in a strict sense since the
distributed memory is not populated after clients’ requests.
Instead, each data set (i.e. the value paired to the DOC key)
is by default stored in the DOC and continuously updated
by the front-end controllers. Nevertheless, the data sets
transfer from front-end to clients can still profit from the
high performance of the distributed caching systems that,
in addition, prevents front-end controllers from overload
originated by multiple clients’ requests.

Another benefit of the !CHAOS design is that the front-
end controllers do not need to run servers to provide data to
clients since they themselves are clients of the data distri-
bution and storage services. That improves their robustness
and portability.

A fundamental property of both DOCs and KVDBs is
their intrinsic scalability that allows distributing a single
service over several computers. Moreover, dynamical keys
redistribution allows automatic failover by redirecting to
other servers the load of a failed one. By taking advantage
of this feature !CHAOS can be easily scaled according to
both the different size of the accelerator infrastructure and
the performance required, thus avoiding any potential bot-
tleneck that may be expected as the weakest link of the
starlike communication topology.

The data-pushing strategy allows one to further extend
the abstraction boundary at the front end. The controller’s
functionalities can be simplified and standardized by in-
troducing the control unit (see next paragraph), a manager
and a supervisor of the software modules implementing the
device’s specific control procedures.

In addition, abstraction of services will be implemented
throughout (Fig. 2). Access to live or history data, for
instance, will be provided by !CHAOS application pro-
gramming interfaces (APIs) wrapping the service specific
APIs in such a way that the client’s access to services, and
even internal communications, will not be affected by the
modification or replacement of any core component.

Serializations of data sets and of information passed
between components (e.g. command’s parameters, result
of queries, etc.) will further improve the abstraction of
services by using a binary string as the common format
for the methods’ payload.

The commands dispatching and the events notification
services complement the communication and interconnec-
tion between !CHAOS components. A cross-language
RPC-like software (i.e. MSGPACK [6]), included in the
!CHAOS libraries, will be used by client applications for
sending commands to front-end controllers.

A convenient and efficient solution for events notifica-
tion is IP multicast. Multicast is managed by routers creat-
ing optimal distribution paths for datagrams that can be
sent to a group of destination computers simultaneously in
a single transmission from the source. This is the technique
chosen in !CHAOS for notification of events like alarms,
reconfiguration of services, etc. In a multicast transmission

the source of the event does not require prior knowledge of
who or how many receivers there are. It will be the com-
ponents’ responsibility to subscribe to that and other
classes of events for which they wish to be notified (e.g.
concerning a service, a particular component, etc.).
In conclusion, !CHAOS is a scalable control system

framework providing, at a high level of abstraction, all the
services needed for communication, data archiving, timing,
etc.; GUI applications and front-end controllers access the
framework services and expand its functionalities.

A. Control units: The !CHAOS front end

Figure 3 shows the logical structure of the software
running in a front-end controller. The control unit (CU),
the CU Toolkit, and the included Common Toolkit are
components of the !CHAOS framework while the device
management modules (DMM) are software modules that
complement the !CHAOS framework functionalities by
providing the interface to the device. The development of
these components is expected either as a contribution, or as
a responsibility, of the device experts.
One or more instances of CU can run simultaneously,

although completely independent, in a front-end controller.
Each CU will be dedicated to a particular device or a
family of devices and specialized for that particular com-
ponent by means of appropriated device management mod-
ules. The latter is a set of routines implementing the
device’s specific functionalities grouped into five general
modules: initialization, deinitialization, control loop, data
set update, and commands execution.

FIG. 2. Abstraction boundary and abstraction of services in the
!CHAOS framework.

INTRODUCING A NEW PARADIGM FOR ACCELERATORS . . . Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-3



The CU Toolkit, by means of its managers, will provide
both the environment for the execution of the control units
and the APIs needed to access the centralized services
(DOC, KVDB, MDS).

Since the CU will control the execution of DMMs, the
former will be responsible for invoking the data set update
module, according to the refresh rate defined for that
device, in turn reading the device status. The data returned
will be used by the CU, via the CU Toolkit, to feed the
KVDB and to refresh the value of the correspondent key/
value pair in the distributed object caching service.

It is worth mentioning that the CU can also be config-
ured to either skip pushing a new data set to DOC and
KVDB if its value has not significantly changed since the
last update or to update it according to a push rate con-
trolled by an external trigger signal.

On the other hand, when a command issued by a client
application is received by the CU, the command execution
module will be invoked for executing it.

The command is delivered to the CU Toolkit running the
command server for all the CUs managed by that particular
controller. When a command is received the CU Toolkit,
by analyzing its domain, identifies the CU to which it is
targeted and appends it to the correspondent command’s
queue. In this case the MSGPACK call ends without error
and the client application can follow the execution of
the command and display the final result by pulling the
device’s data set from DOC.

If the application issuing the command requires a direct
readback from the CU, this can be provided by returning
the command’s results to the client’s call. Alternatively,
since also the UI Toolkit will host a MSGPACK server, the
client application could be notified, yet asynchronously, on

the results of the command’s execution by a message
delivered from the CU. The latter, actually, is the preferred
solution.
Upon receipt of the command, the CU verifies that the

method alias indicated in the command’s header is avail-
able and it can be executed (i.e. there is no other blocking
method pending) and then launches the commands execu-
tion module. The rest of the serialized information con-
taining the instructions for the action to be taken is passed
as it is to the command’s execution module.
The implementation of separated threads assures that

requested periodicity of data set refreshing is preserved
even during any commands’ execution. In addition, the
serialization of the command’s descriptor (i.e. the com-
mand’s header, method name, parameters, etc.) passed to
the execution module allows a common interface for all the
methods to be implemented.
A CU lock mechanism will be implemented for prevent-

ing execution of commands while previous ones, not yet
completed, are still in operation on the same or related
device attributes.
During the command execution, if needed, the refresh

rate of the device can be set, at least temporary, to a higher
value providing the operator and the history data archiving
system with a more detailed description of the attribute
evolution.
Modification of parameters like the data refresh rate are

superintended by the metadata server. Control units or
client applications can request their modification by issu-
ing a command to the MDS. All components concerned
with this change will receive notification by means of the
events notification system.

B. Live data caching

Caching of live data, by means of a distributed object
caching service, and continuous archiving of accelerator
data, by using a distributed key/value database, are the
main innovations introduced by the !CHAOS paradigm.
DOC service is distributed over many nodes working

together to provide clients with a virtual single pool of
solid-state memory by sharing a portion of the RAM of
each node.
Objects are stored in memory as key/value pairs and a

given object is always stored and always retrieved from the
same node in the cluster, unless the number of the node
changes for any reason.
In !CHAOS a DOC’s key identifies a unique data set of

the control system that is the set of information used to
fully describe either a real or virtual accelerator device,
e.g., a group thereof.
Each data set is periodically refreshed by the control unit

in charge of the corresponding device. In the DOC service,
data set refreshing means overwriting the old data, i.e., the
value paired with the device’s key, with newer data describ-
ing the actual state of the device. Refresh rates are set and

FIG. 3. !CHAOS components for the front-end controllers.

L. CATANI et al. Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-4



adjusted independently for each device and typical values
span from milliseconds to a few seconds.

Abstraction of live data, similarly to other !CHAOS
services, allows not only the replacement of those libraries
and software packages implementing the core service with
others, but also the coexistence of two or more different
technologies for implementing the same service.

As an example consider an application requiring a more
performant, quasideterministic distribution of live data. It
could be, for instance, a measurement application or a
feedback loop that needs to collect data sets from different
CUs to perform calculations at rates higher than a few kHz.
In this case a system based on reflective memory boards,
having latency in the order of � sec , could be used to
pass data, by mirroring memory locations, from the units
controlling the diagnostic devices to those performing
calculations.

Remarkably, the use of this solution instead of the DOC
will be completely hidden to developers of device manage-
ment modules. Since the CUs implement and abstract the
live data service they will be notified, by means of con-
figuration parameters included in the device’s data set, to
use APIs for the reflective memory boards instead of the
distributed object caching for pushing live data.
Simultaneously, the APIs will push the same data also to
the distributed object caching service for making it avail-
able to other the components of the control system.

C. DAQ

Similarly to DOC, for the DAQ key/value pairs are
pushed to a node of the distributed KVDB to be stored
on its disks. In this case the encoded key contains both the
unique data set indicator and the time stamp. By querying
the DAQ for all the data sets corresponding to a given time
stamp, the status of the accelerator at that particular time
can be recovered.

The time stamp is provided by the internal clock of the
controller’s CPU via the operating system. For the
!CHAOS DAQ, i.e., the continuous archiving system, we
assumed a granularity of 20 msec corresponding to a
maximum data set’s archiving rate of 50 Hz.

This figure represents the time resolution of the
!CHAOS DAQ, the level of details provided in reproducing
the time evolution of each control system’s data set. In
other words, a given data set can be archived in the DAQ
with a frequency up to 50 Hz, which means a new key/
value pair for that data set is written in the KVDB every
20 msec.

Coherency of data set’s time stamps must be guaranteed
by achieving an accuracy of CPU’s synchronization better
than the time resolution. If so, data sets stored in the
DAQ with a given time stamp could be either joined to
coherently reproduce the status of the accelerator at that
particular time, or compared to find correlations in their
time evolution.

D. Synchronization and timing

Either network time protocol or precision time protocol
(PTP) could be implemented, the latter offering a much
better resolution, to achieve the synchronization required
for the distributed !CHAOS components. A more likely
time stamp will be obtained from the timing/triggering
system providing precise timing reference and events
distribution for hardware components, I/O modules, and
procedures.
Preliminary tests with PTP have been performed by

using a number of PCs and servers in the university net-
work. Results confirmed that a synchronization better than
1 ms could be achieved between internal clocks of
!CHAOS servers and control units. This figure goes beyond
the minimum value expected for data refresh intervals in
!CHAOS suggesting that granularity can be improved to
hundreds of Hz or more.
Nevertheless, additional time stamps, or event’s tags,

can be included as secondary keys for the KVDB in the
data set serialization to improve the DAQ time resolution.
This will be the case, for instance, of signals acquired from
ultrafast diagnostics providing measurement of a single
bunch of the beam. Encoded in the primary key, the
‘‘main’’ time stamp, provided by the computer’s internal
clock, will define the coarse time window used for fast
querying, while the secondary key, providing either the
bunch number or the event tag, will give detailed timing
information.
Selection of the timing/triggering solution, and its inte-

gration in !CHAOS, is currently under study. The open
hardware project named ‘‘White Rabbit,’’ from CERN [7],
is currently being considered as a possible candidate or a
valuable reference for selecting the best solution.

E. Data serialization

A key feature of !CHAOS is the solution used to format
data for either storage into either DOC or KVDB or com-
munication between its different components.
Binary serialization is a convenient solution for flatten-

ing even a complex data structure into a one-dimensional
stream of bits suited for transmission through the network.
It is well suited especially for large binary arrays that are
frequently included in data sets of accelerator’s compo-
nents [8].
What is more, both DOC and KVDB allow binary

serialized data. In !CHAOS, BSON [9] serialization is
used for encoding data set to be stored both in the live
dataDOC and in the DAQ. BSON serialization is also used
by the UI toolkit (see next section) for formatting com-
mands sent to front-end control units and for passing
parameters between CU and device management modules.
The software opted for implementing the DOC and the

KVDB are MEMCACHED [10] and MONGODB [11], respec-
tively. They demonstrated to offer the required features and
performances and are supported by a large and growing

INTRODUCING A NEW PARADIGM FOR ACCELERATORS . . . Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-5



community of users. Nevertheless, the abstraction of serv-
ices provided by the !CHAOS components would allow
their replacement, with other implementation of DOC and
KVDB, without any modification of both its functionalities
and API calls.

F. Metadata server

Another fundamental component in the !CHAOS frame-
work is the metadata server (Fig. 4). It is designed to store
and provide the !CHAOS services with information such
as CU configuration, commands list, commands and data
syntax and semantic, naming service, etc.

Object relational mapping packages will be employed to
abstract the relational database, used for storing metadata,
by mapping its tables into Java object.

The metadata server will be also the central authority for
!CHAOS components. It will keep track, for instance, of
the control units instantiations. As supervisor of their
initialization, it will manage, at start-up, the registration
of CUs’ services and data sets providing them with a
systemwide unique reference to be properly addressed by
client applications. Information managed by the MDS will
be stored in a conventional, compared to the KVDB used
for the DAQ, relational database distributed over a cluster
of servers for scalability and availability. A cluster of
Tomcat servers will implement the front-end layer of the
MDS.

G. Scalability and failover

It has been already mentioned that the !CHAOS frame-
work is designed to easily adapt its size and performance to
requirements of the accelerators’ infrastructure by taking
advantage of scalability of its core components.

In the case of live data service, the scalability is inherent
in the data object caching technology. In a cluster of DOC
servers each single instance is running independently such
that they are not aware of being members of a cluster.
Instead, the distribution of keys among the different servers
is managed by clients that, by following a common rule,
write (read) key/value pairs to (from) the server they
recognize as liable for that particular key.
A simple strategy, commonly used for load distribution

and failover, consists in ordering and equally dividing the
keys among the servers by using an algorithm, provided as
part of the client software, that at system startup, creates a
hash table mapping the keys to the servers in the cluster. As
an example, assuming that keys of our key/value pairs are
represented by series of digits and that the cluster of the
DOC service is composed of five nodes, the algorithm
would assign to server #1 keys beginning with ‘‘0’’ and
‘‘1’’, to server #2 keys beginning with ‘‘2’’ and ‘‘3’’, and so
on. Provided the key values are more or less randomly
distributed, they will also be equally distributed among
servers.
If one of the servers fails then its block of keys will be

automatically assigned to the preceding one, the last server
being precedent to the first. This rule becomes more clear if
we imagine the key space as a continuum where keys are
distributed along a circumference that is virtually divided
in equal sectors identifying key ranges assigned to each
server in the cluster. For instance, if server #2 fails then
writes (reads) to (from) keys beginning with ‘‘2’’ and ‘‘3’’
will be addressed to server #1; if #1 fails then the back-up
node will be server #5, and so on. Clearly, the back-up
server should be able to support, at least temporarily, this
extra load.
While this simple scalability and failover strategy works

well for object caching applied to internet services, it is not
the optimum for !CHAOS requirements. Among the pos-
sible alternatives we are currently working on a solution
that can be summarized as the following.
Data set assignment (i.e. distribution of keys) to

MEMCACHED servers is managed by the MDS that provides

control units and user interface toolkits with the list of
primary and secondary servers for each data set. In the case
of failure of a primary server both writing (typically CUs)
and reading clients automatically switch to the first sec-
ondary server in the list and then to the following one in
case the latter also fails. To achieve balancing between the
servers, data sets are distributed by taking into account the
product ðdata set sizeÞ � ðnominal refresh rateÞ such that
bytes per seconds written to each server will be uniformly
distributed. Also, secondary keys will be chosen to pre-
serve a reasonable balancing in case of failure of one or
more servers in the cluster.
In the case of failure, switching from one server to

another might result in data loss if the data set refresh
rate is set to values higher than 100 Hz. We expect theFIG. 4. The !CHAOS metadata server.

L. CATANI et al. Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-6



time needed to migrate to a secondary MEMCACHED server
to be in the order of 10 milliseconds or less. This figure
corresponds to the value that will be set as the timeout of
network connections. It will depend on the average load of
both the servers and the network during operations.

In the cases where a loss of even a single data set update
cannot be tolerated, as for synchronized measurements, we
introduced in the control unit a circular buffer for each of
these data sets to store locally theN most recent updates,N
being approximately inversely proportional to the refresh
rate. The whole circular buffer, containing the last N key/
value couples for the data set, is then written at each refresh
to the DOC instead of just the last one. In case of failure of
a primary server, even if the time needed for switching to
the back-up server takes longer than the refresh period, the
client will find in the new location, not just the last update
but also the previous N-1 ones, including the update(s) that
might have been lost during the switching operation.

Scalability and availability of the metadata server will
be implemented by following a similar strategy. A number
of Tomcat servers are used as distributed and scalable MDS
access points. A service running on a minimal http server
assigns them as primary or secondaries to each control unit
at the startup. It can be a simple PHP script that replies to
the CU request with a list of ordered IP addresses of
correspondent MDS access points (the first IP is the pri-
mary MDS for that CU, and so on). The list can be created
at each request by using a simple round-robin assignment
that equally distributes Tomcat nodes as primary MDS
servers of the CUs.

The Tomcat front end implements also the abstraction
layer for the relational database underneath. They receive
queries formulated in the !CHAOS query language and
translate them into commands for the relational database
management system (RDBM). Moreover, scalability and
availability are built-in features of many RDBM distribu-
tions (e.g. [12]).

H. User interface toolkit

Client access to !CHAOS services will be uniquely al-
lowed by means of the APIs provided by the user interface
(UI) toolkit, the set of API aiming to abstract and simplify
the access of client applications to the !CHAOS service.

Figure 5 shows the logical structure of the UI toolkit
layers with the blocks of API to client application and the
substrate of API for the abstraction of the !CHAOS services.

Also introduced in the figure is the concept of UI data
cache we are currently developing to achieve further im-
provement of the UI toolkit performance.

It practically consists of an internal caching system for
data and metadata where UI toolkit APIs store and share
both frequently used metadata, produced by queries to
MDS, and live data read from the distributed object cache.
Similarly to distributed live data caching, we are consid-
ering a solution based on a key/value object caching to

store this information locally. Caching of live data will take
into account the refresh rate of the particular device data
set for setting its expiration time.

I. Programming languages and interfaces to
other applications

While most of the !CHAOS code is written in C, C++,
and Java, development of both client applications and
device management modules should include a larger se-
lection of programming languages.
Since at INFN-LNF and INFN-Roma Tor Vergata there

is a long tradition in developing control and data acquis-
ition systems with National Instruments LabVIEW, we
already started remodeling existing front-end software to
adapt it to !CHAOS DMM requirements.
On the client side, UI toolkit will provide APIs for most

common measurement and analysis software like Matlab
and the before mentioned LabVIEW.

III. TESTING !CHAOS COMPONENTS

Scalability of distributed object caching systems should,
in principle, safely prevent limitation in the speed and rate
of data transfer between components in !CHAOS provided
the number of servers in the DOC cluster is sized to fit
requirements.
Nevertheless, an evaluation of performance is needed if, in

the design phase especially, a user is willing to guess the best
data transfer speed and throughput achievable for a certain
configuration of the system and for a given set of working
conditions. For MEMCACHED in particular, due to the large
community of users and the number of internet services
based on this software, quite a vast collection of reports on
performance tests is available. The tests, carried out in differ-
ent conditions and with a different selection of hardware,

FIG. 5. The user interface toolkit components.

INTRODUCING A NEW PARADIGM FOR ACCELERATORS . . . Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-7



provide results confirming excellent performance, showing a
very high throughput in both reading and writing data, or
objects, of different size.

Actually, as required from its application in high-
performance internet web services, those tests mainly fo-
cus on measuring the ability of MEMCACHED distributed
servers of managing the increasing number of client con-
nections while preserving the same speed in completing
users’ requests or comparing its performance against
benchmarks for equipollent internet technologies.

Since our use of MEMCACHED is a bit unconventional
these tests, although important for confirming some of its
relevant functioning, are not sufficient to fully exploit the
performance we consider to be critical for its application in
!CHAOS. The most relevant is the speed in data writing
and reading such that any data set generated at a CU level
can be written on MEMCACHED and, afterwords, asynchro-
nously read and delivered to a client application in a few
milliseconds. This figure should be reproducible and re-
main constant in all the operation conditions to guarantee a
nominal refresh rate of 50 Hz for all standard data sets,
which means excluding very large ones like, for instance,
full size digital images. Different conditions include simul-
taneous reading of the same data set from a different
number of multiple clients or, more generally, different
server load and/or network traffic.

A number of tests have been performed to obtain mea-
surements of data transfer speed in simulated working
conditions. We used a 2.66 GHz quad-core server with
16 GB RAM running MEMCACHED v1.4.5 and simulated
a number of CU with concurrent processes writing data
sets of different size with different refresh rates. We
changed data set size from 0.1 to 100 KB, concurrent
writing and reading processes from 20 to 80 independently
and refresh rate from 10 to 100 Hz. In all the conditions
we verified that data received by the client application

were not older than the expected value for the set refresh
rate.
The most significant result is shown in Fig. 6. Dots in the

graph on the left side show a representative sample of a
measurement of the time difference between the data set
time stamp, written by the process simulating the CU, and
the time at which the data set was received by the client
application, both processes running asynchronously at
50 Hz.
With the data set size set to 100 KB, 20 writing pro-

cesses practically saturated the 1 Gb Ethernet interface of
the MEMCACHED server (100 MB=s of payload plus
Ethernet headers ffi 1 Gb=s). Despite this heavy load, the
four cores of the CPU were running almost free, showing
occupancy not exceeding an average value of 9%. In these
operating conditions, as shown by the histogram on the
right side, the measured data transfer times produced an
almost uniform distribution in the range 0–20 ms, thus
demonstrating the possibility to achieve the expected re-
fresh rate even in these extreme conditions.
Looking at the histogram more carefully, one can notice

that values actually span from about 2ms to around 25ms. It
can be easily concluded that the lower value represents the
minimum time needed for transferring data from CU to
client application including, besides the network time trans-
fer, the time elapsed for serializing the data set at the source
and the deserialization at destination. Similarly, the mea-
surements exceeding 20 ms give a hint on the maximum
transfer time estimated, for the specified measurement con-
ditions, equal to approximately 5 ms.
It is worth emphasizing that, in our case, performance

surely benefits from the constant size of data sets. In fact,
once a given key/value pair has been allocated in the server
memory it will remain constant in size and location be-
cause, different from web objects, it does not change its
data types and consequently the size but changes only its

FIG. 6. Measured transfer time of data sets between a front-end CU and a client application via DOC.

L. CATANI et al. Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-8



values thus preventing MEMCACHED from wasting time
with memory chunks resizing and reshuffling.

Figure 7 shows the results of another set of measure-
ments we performed to study the CU-client transfer time in
the case where a number of clients were reading the same
data set while the CU was continuously updating it. In this
test we stressed the MEMCACHED ability in handling con-
current read/write operations from/to the same key/value
pair. In particular, we wanted to verify if during a write
operation of a key/value pair, i.e., a refresh of a data set, the
resulting lock of the correspondent memory block would
effect the performance of one or more clients reading the
same key.

Using the same hardware setup of the previous measure-
ments, we ran a CU simulator configured to refresh a given
key/value, having a size of 100 Bytes, at a frequency of
1 kHz. On the other side a number of independent clients
were simultaneously and asynchronously reading the same
key/value at a frequency of 100 Hz. The four plots, similar
to Fig. 6, show the distribution of the trip time between
front-end CU and the client applications for a different
number of simultaneous clients from 5 (top) to 40 (bottom).

By comparing the four histograms, we can conclude that
performance does not significantly depend on the number
of simultaneous clients. In turn that means the memory
lock operated by MEMCACHED during the write procedure
does not affect the read performance appreciably.
Nevertheless, some little differences can be evidence at

the tails of the distribution (shaded areas). At the lower
end, the 0-1 bin decreases its population when the number
of clients rises meaning that the number of short trip time,
i.e.� 1 ms or less, diminishes. At the other end, the tail of
the distribution gradually populate bins � 12 ms, which
means relatively long trip time, i.e. � 3 ms or higher, are
more frequent as the number of clients increases.
We conclude mentioning that, after the convincing re-

sults obtained with these tests, the control groups of Dafne
[13] and SPARC [14] accelerators at INFN-LNF decided to
introduce the MEMCACHED-based communication in their
control systems, initially limited to selected subsets of
components. These installations offered a great opportu-
nity for testing in the field this crucial service of the
!CHAOS framework and provided very important infor-
mation confirming its performance and reliability.

FIG. 7. Measured transfer time between front-end CU and a client application via DOC for a different number of concurrent clients
reading the same key/value being continuously updated by the CU.

INTRODUCING A NEW PARADIGM FOR ACCELERATORS . . . Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-9



Moreover, in the case of SPARC, this solution is now
planned as a systemwide replacement of the former client-
server communication protocol and progressively extended
to the remaining components of the control system.

IV. CONCLUSION

!CHAOS is a scalable control system framework provid-
ing all the services needed for communication, data archiv-
ing, timing, etc., in a control system for a particle
accelerator and/or any other large apparatus. Front-end
controllers, GUI, measurement applications, etc., can be
seen either as clients that access its services or as compo-
nents that expand its functionalities.

The innovative communication framework is based on a
distributed object caching service while continuous archiv-
ing of data is implemented by means of a nonrelational
distributed key/value database.

The use of the before mentioned software technologies
introduces a new paradigm of control system in which the
two layers representing the front end and the clients level
are complemented by a third intermediate layer that coor-
dinates the whole system by collecting and distributing
data, commands, events, etc.

This intermediate layer is implemented by the !CHAOS
framework. It provides a general class of clients with all
functionalities needed for implementing a control system.
For this reason we define it as the ‘‘control server.’’

Serialization of the information and a high level of
abstraction of services and components allow extending
the boundaries of the !CHAOS framework in such a way to
reduce the complexity and the amount of software develop-
ment required to users.

The !CHAOS collaboration groups at INFN-LNF
and INFN-Roma Tor Vergata are committed to finalizing

the development of this conceptual design, validating
its functionalities and performance, and candidate
!CHAOS as the control system for future INFN particle
accelerators.

[1] M. Giorgi et al., Report No. SuperB-CDR2 INFN-LNF-
11/9(P), 2011.

[2] http://chaos.infn.it.
[3] G. Mazzitelli et al., in Proceedings of IPAC2011, San

Sebastian, Spain (EPS-AG, Spain, 2011), pp. 2322–2324

[http://www.JACoW.org].
[4] L. Catani et al., in Proceedings of ICALEPCS 2011,

Grenoble, France, pp. 856–859, ISSN 2226-0358 [http://

www.JACoW.org].
[5] M. E. Thuot and L. R. Dalesio, in Proceedings of the

Particle Accelerator Conference, Washington, DC, 1993

(IEEE, New York, 1993), p. 1806.
[6] http://msgpack.org.
[7] http://www.ohwr.org/projects/white-rabbit.
[8] Luciano Catani, Extending LabVIEW Aptitude for

Distributed Controls and Data Acquisition, LabVIEW—
Practical Applications and Solutions, edited by Folea
Silviu, ISBN: 978-953-307-650-8 [http://www.intechopen

.com/articles/show/title/extending-labview-aptitude-for-
distributed-controls-and-data-acquisition].

[9] http://bsonspec.org.
[10] http://memcached.org.
[11] http://www.mongodb.org.
[12] http://www.mysql.com/products/cluster/.
[13] G. Di Pirro, C. Milardi, A. Stecchi, and L. Trasatti, Nucl.

Instrum. Methods Phys. Res., Sect. A 352, 455 (1994).
[14] F. Anelli et al., in Proceedings of ICALEPCS 2009, Kobe,

Japan (2009), pp. 747–749, ISBN 978-4-9905391-0-8
[http:// www.JACoW.org].

L. CATANI et al. Phys. Rev. ST Accel. Beams 15, 112804 (2012)

112804-10

http://chaos.infn.it
http://www.JACoW.org
http://www.JACoW.org
http://www.JACoW.org
http://msgpack.org
http://www.ohwr.org/projects/white-rabbit
http://www.intechopen.com/articles/show/title/extending-labview-aptitude-for-distributed-controls-and-data-acquisition
http://www.intechopen.com/articles/show/title/extending-labview-aptitude-for-distributed-controls-and-data-acquisition
http://www.intechopen.com/articles/show/title/extending-labview-aptitude-for-distributed-controls-and-data-acquisition
http://bsonspec.org
http://memcached.org
http://www.mongodb.org
http://www.mysql.com/products/cluster/
http://dx.doi.org/10.1016/0168-9002(94)91568-7
http://dx.doi.org/10.1016/0168-9002(94)91568-7
http:// www.JACoW.org

