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Abstract
We derive a theory-independent version of the momentum constraint equation
for use in cosmology, as a part of the parameterised post-Newtonian cosmol-
ogy framework. Our equations are constructed by adapting the corresponding
quantities from formalisms constructed for testing and constraining gravity in
isolated astrophysical systems, thereby extending the domain of applicability
of these approaches up to cosmological scales. Our parameterised equations
include both scalar and divergenceless-vector gravitational potentials, and can
be applied to both conservative and non-conservative theories of gravity. They
can also be used to describe the gravitational fields of both non-linear struc-
tures and super-horizon perturbations. We apply the parameterised equations
we propose to quintessence models of dark energy, as well as scalar-tensor and
vector-tensor theories of gravity. We find them to work well in each case. Our
equations are highly compact, and are intended to be useful for constraining
gravity in a theory-independent fashion in cosmology.
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1. Introduction

General relativity (GR) is being tested to ever higher precision in a variety of astrophysical
and cosmological settings. Cosmological surveys allow gravity to be tested on large scales
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in the Universe [1], gravitational wave observations are directly probing the strong-field [2],
and Solar System observations are probing the gravitational field within our own vicinity [3, 4].
Motivation for this work comes from specific perceived shortcomings of GR, such as its appar-
ent need for dark energy in order to account for cosmological observations, and the ultimate
need to construct a viable quantum theory of gravity, as well as from the scientific requirement
for us to experimentally test our hypotheses.

One can, of course, pick specific theories of gravity and calculate predictions for the gravi-
tational phenomena that should result. These can then be compared to observations, and infer-
ences made regarding the viability (or otherwise) of the particular theory in question. While
straightforward, this approach to model testing can only ever tell us about the goodness-of-fit
of the predictions of any specific theory to the data, and may not always allow us to explore
the infinite-dimensional theory space of possibilities. A more useful approach in this regard is
to construct theory-independent frameworks that can be used to interpret observational data.
The idea behind such approaches is to explore all (or at least some) of the possible deviations
from Einstein’s theory, without having to specify a particular alternative theory in mind.

Theory-independentapproaches serve as a useful halfway house between observational data
and specific theories. They provide observers with a set of parameters that can be constrained
by their data, and they provide theorists with a set of constraints on possible deviations from
GR. This allows the viability of newly proposed theories to be readily evaluated, and indeed
provides theoretical physicists with a set of guidelines as to the types of generalisations of
Einstein’s theory that might profitably be considered. It also gives all of us some concrete idea
about the phenomenological consequences of particular types of deviations from Einstein’s
theory, by establishing which sets of observations can probe which specific types of deviations
from GR.

The parameterised post-Newtonian (PPN) formalism is the most successful of these theory-
independent frameworks [5]. Within the Solar System, and in extrasolar systems, this formal-
ism has been used to interpret a wide array of gravitational phenomena [6–9], and has been
used to placed strong constraints on possible deviations from GR. Some of the reasons for
this success are the simplicity of the PPN formalism, as well as its relative insensitivity to the
finer details of the gravitational theories: it expresses the entire phenomenology of relativistic
gravity in terms of a small set of measurable parameters, constraints on which apply to a wide
array of possible deviations from GR. It assumes only basic properties of gravity in order to
do this, in particular the Einstein equivalence principle and the conservation of stress–energy.

In this paper, we continue the development of a framework which imports this highly suc-
cessful approach to understanding gravitational phenomena into a cosmological context. We
call the resulting formalism ‘parameterised post-Newtonian cosmology’ (PPNC) [10–12]. This
is a bottom-up approach to cosmology that explicitly allows for the presence of non-linear,
inhomogeneously distributed matter, while carefully discarding the assumptions of asymptot-
ically flat spacetime and negligible time-variation of the cosmological background that exist
within the classical PPN formalism [3]. Our approach generalises the concept of the ‘slip’
and ‘effective Newton’s constant’ from previous attempts at creating a parameterized post-
Friedmannian framework for testing gravity in cosmology [13–18], and links these quantities,
together with the background and time-dependent parts of the linear-order gravitational field,
to parameters familiar from the classical PPN approach. Here we develop this formalism by
constructing a parameterised momentum constraint equation.

To begin our study of a theory-independentmomentum constraint equation, let us consider a
congruence of timelike curves with tangent vector uμ. We can now project the Ricci identities,
2∇[ μ∇ν ]uρ = Rρ

μνσuσ , and manipulate the result to obtain [19]
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Dνσμν −
2
3

DμΘ+ gμση
σνρ

[
Dνωρ + 2aνωρ

]
= Gνρu

νhρ
μ, (1)

where hμν = gμν + uμuν projects in the directions orthogonal to uμ, ησνρ is the volume form on
the orthogonal hypersurfaces, D is the spatial projection of ∇, and Gμν = Rμν − 1

2 gμνR is the
Einstein tensor. The kinematic quantities Θ, σμν , ωμν and aμ are respectively the expansion,
shear, vorticity and acceleration associated with uμ, which can be seen to be related to the
momentum density in equation (1) through the term involving Gμν , once a set of field equations
has been specified [19]. This constraint must be satisfied in order for the theory to have a
complete set of initial data, and is the relativistic generalization of the Newtonian requirement
that the curl of the gradient of three-velocities must vanish.

Equation (1) is the momentum constraint written in a theory-independent form, for any
metric theory of gravity, and requires only a relationship between Gμν and the stress–energy
tensor Tμν in order to be fully specified. In the context of Friedmann cosmology, we can choose
coordinates such that uμ =

(
u0, 0, 0, 0

)
, in which case equation (1) takes the more familiar form

−1
a

[
2

(
H′ −H2

)
B̂i +

1
2
∇̂2B̂i + 2

(
Ψ̂′ +HΦ̂

)
,i

]
= G0ρu0hρ

i , (2)

where we have chosen to write this equation in conformal time, and in longitudinal gauge. We
have also assumed that the Robertson–Walker geometry is spatially flat. The scalars Φ̂ and
Ψ̂ are respectively the perturbations to the time-time and spatial parts of the metric, and B̂i

is the divergenceless vector perturbation to the time-space components (see below for proper
definitions of these quantities). The quantity H = a′/a is the conformal Hubble rate. Our goal
in this paper is to find versions of the scalar and divergenceless vector parts of this equation
that can be written in terms of the PPNC parameters (to be explained in more detail below).

The plan of the paper is as follows: in section 2 we present a review of the required approx-
imation schemes used in gravitational theory, as well as the PPN and PPNC constructions. The
PPNC framework is then extended to include vector perturbations in section 3, and the small-
scale (�100h−1 Mpc) limit of the parameterised momentum constraint equation is derived. In
section 4, we consider very large scales in cosmology, and consider what this means for the
parameterised momentum constraint. Our equations are then exemplified with a variety of test
theories in section 5, before we conclude in section 6.

We use greek letters to denote spacetime indices, and latin letters for spatial indices. We set
c = G = 1 throughout. Commas represent partial derivatives, semicolons represent covariant
derivatives, and dots and primes denote partial derivatives with respect to time and conformal
time respectively. We will also use the convention that spatial indices on perturbed quantities
are raised and lowered with a Kronecker delta, such that e.g. Bi,i = Bi

i, = δi jBi, j.

2. Parameterised post-Newtonian cosmology

In this section we will introduce the formalism in which our framework is constructed, which is
a combination of post-Newtonian gravitational physics and cosmological perturbation theory.
We will start by considering the essential features of both of these expansions, before moving
on to describe the PPN formalism. We will then describe how the PPN formalism has been
extended for use in cosmology, and recap some relevant results from previous papers.
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2.1. Weak-field expansions in cosmology

All of the expansions that we will use in this paper are ‘weak field’, in the sense that there exist
coordinate systems in which the metric can be written as

gμν = g(0)
μν + hμν , where g(0)

μν ∼ 1 and hμν � 1. (3)

The components g(0)
μν will be referred to as the metric of the ‘background’, which will be taken

to correspond to either a Minkowski or Robertson–Walker geometry, and hμν , which we will
refer to as a ‘perturbation’.

The weak-field treatment is common to both cosmological perturbation theory and post-
Newtonian expansions, and is justified by the leading-order part of the gravitational fields of all
astrophysical objects except black holes and neutron stars being U � 1 (in geometrised units).
On the other hand, cosmological perturbation theory and post-Newtonian expansions differ in
the geometry of the assumed background, and in their treatment of the size of three-velocities,
v, of matter fields. In the former case the background is taken to be a Robertson–Walker
geometry, and three-velocities are taken to be of similar size in the perturbative expansion to
gravitational potentials U ∼ v. However, in the latter case the background is most commonly
taken to be Minkowski space, and the leading-order part of the gravitational field is taken to
be of the size U ∼ v2. These subtle differences have profound consequences, as we will now
discuss.

2.1.1. Cosmological perturbation theory. On large scales in the Universe, the simplest and
most useful approach to model weak gravitational fields is to use cosmological perturbation
theory [20–22]. In this approach the metric can be written

ds2 = a(τ̂ )2
[
−(1 − 2Φ̂)dτ̂ 2 +

(
(1 + 2Ψ̂)δi j + ĥi j

)
dx̂i dx̂ j + 2B̂i dτ̂ dx̂i

]
, (4)

where a(τ̂) is the scale factor, and where Φ̂, Ψ̂, B̂i and ĥi j are all perturbations. This line-element
is written in conformal time τ̂ , and we are free to choose a gauge such that B̂i is divergenceless
and ĥi j is transverse and tracefree.

The perturbative order-of-smallness of all fields in this approach are taken to be similar,
including the fluctuations in the density contrast, δ, and the three-velocities of matter fields, vi,
such that

Φ̂ ∼ Ψ̂ ∼ B̂i ∼ ĥi j ∼ δ ∼ vi � 1. (5)

The field equations of any theory of gravity can then be used to find the equations for the
constraint and evolution equations for the background quantities, and subsequently those of all
first and higher-order perturbations. This approach is highly flexible, and results in equations
that are easy to solve and valid on a wide range of spatial and temporal scales. It does, however,
have some drawbacks.

The principal among these is the fact the density contrast is required to be perturbatively
small, and that the three-velocity of matter fields is expected to remain as small as the amplitude
of gravitational potentials. Neither of these things is true when we consider scales �100 Mpc in
the real Universe, where we can observe density contrasts δ ∼ 1 or greater on scales �10 Mpc,
and where we typically have v2 ∼ Φ̂. This failure means that we cannot use cosmological per-
turbation theory to reliably model the gravitational interaction on scales �10 Mpc, and that we
consequently face a challenge if we wish to try and use it to relate any parameterised framework
for gravity in cosmology to results that we might obtain, for example, from experiments in the
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Solar System. This, together with the reliance on a set of field equations in which to perform the
required perturbation theory, makes it very hard to conceive of a theory-independent parame-
terised framework for constraining gravity on all scales using cosmological perturbation theory
alone.

2.1.2. Post-Newtonian theory. In contrast to cosmological perturbation theory, post-
Newtonian expansions do not assume that fluctuations in the mass density are small. This extra
freedom is allowed as post-Newtonian theory assumes that gravity is not only weak-field, but
also changing slowly with time, such that the time derivative of any quantity associated with
matter or gravitational fields is small compared to the corresponding spatial derivatives of that
quantity, i.e. such that

∂
∂t
∂
∂x

∼ |v| � 1. (6)

The slow-motion requirement is problematic for cosmology, as the Hubble flow increases in
proportion to distance, and approaches ∼1 on the scale of the horizon. It is probably for this
reason that post-Newtonian expansions are usually specified using perturbations of Minkowski
space:

ds2 = −(1 − 2Φ)dt2 + (1 + 2Ψ)δi j dxi dx j + 2Bi dt dxi, (7)

where in this expression we have Φ ∼ Ψ ∼ v2 and |Bi| ∼ v3, such that the vector gravitational
potentials are smaller in magnitude than their scalar counterparts (the transverse and tracefree
tensor perturbations are smaller still, so have been neglected).

While the line-element given in equation (7) cannot be used to directly describe an entire
cosmology, it can be safely applied within a region of space-time that is small compared to the
cosmological horizon, so long as the Hubble flow velocity within that region is of order v � 1
(if this is not the case, then the slow motion requirement is violated). By considering many
such regions next to each other, one can then construct a viable cosmological model [10, 11].
This requires applying appropriate boundary conditions between each of the regions, which
themselves allow the large-scale cosmological dynamics to emerge from the post-Newtonian-
expanded gravitational fields. This is a construction known as ‘post-Newtonian cosmology’,
and has been investigated thoroughly in the context of Einstein’s equations [10, 23].

2.1.3. Post-Newtonian cosmology. The link between the cosmological space-time that
emerges in post-Newtonian cosmological modelling, and the perturbed Minkowski space in
equation (7), can be made explicit by the following coordinate transformations:

t = t̂ +
a2H

2
r̂2 + T (̂t, x̂) +O(v5) (8)

xi = a x̂i

[
1 +

a2H2

4
r̂2

]
+O(v4), (9)

where T is an as-yet-unspecified gauge function of order v3, H ≡ ȧ/a is the Hubble parameter
of the scale factor a(̂t), and r̂2 ≡ δi jx̂i x̂ j. Under such a transformation, the line-element (7) can
be directly transformed into the form of the perturbed Robertson–Walker geometry (4), as long
as we take

Φ = Φ̂ +
äa
2

r̂2 (10)
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Ψ = Ψ̂− ȧ2

4
r̂2 (11)

Bi = B̂i − 2ȧx̂ jδi j

(
Φ̂ + Ψ̂

)
− aȧär̂2 x̂ jδi j +

1
a

T,i, (12)

and ĥi j = 0, and subsequently transform to conformal time.
This demonstrates a direct isometry between the perturbed Minkowski space in which post-

Newtonian gravity is usually formulated, and the perturbed Robertson–Walker geometries that
are better suited to cosmology. As long as the coordinate patches of neighbouring regions over-
lap, which can be arranged by a suitable choice of a(̂t), we can then consider this coordinate
system to span the entire cosmology, and therefore to act as our ‘background’. This formu-
lation of post-Newtonian gravity allows the gravitational fields of highly non-linear density
contrasts to be consistently modelled, and simultaneously allows the Friedmann equations of
the ‘background’ to be extracted from them. It is therefore ideal for creating a unified frame-
work for testing gravity in both isolated astrophysical systems, and in cosmology on the very
largest scales.

2.2. Parameterised post-Newtonian formalism

The PPN formalism is a method of constraining gravity using experimental and observational
data without specifying a particular set of field equations or fundamental action for the under-
lying theory. This approach is based on the post-Newtonian expansion outlined above, and has
proven itself to be extremely successful at providing a framework within which to understand
gravity in a theory-independent fashion. Here we will spell out some of the crucial features of
this approach, as relevant for our study.

The crucial first step in the classic PPN approach is to specify the perturbations to the metric
(7) in terms of matter fields and coupling parameters. This is typically done as follows [3]:

∇2Φ = −4παρ, ∇2Ψ = −4πγρ (13)

and

∇2Bi = 8π

[
α+ γ +

1
4
α1

]
ρvi − [α+ α2 − ζ1 + 2ξ] U̇,i +∇2ϕPF

i (14)

where the Newtonian gravitational potential is defined implicitly by ∇2U ≡ −4πρ, and where
the ‘preferred frame potential’ is such that

∇2ϕPF
i = 2πα1wiρ+ 2α2w

jU,i j, (15)

where w j is the velocity of the PPN system with respect to the preferred frame of the the-
ory, if one exists (to be explained in more detail later). There are six parameters appearing in
these expressions: {α, γ,α1,α2, ζ1, ξ}. The value of each of these should be understood to vary
from theory to theory, but they can also be understood simply as coupling parameters for the
gravitational potentials.

There are a number of comments that one could make about the parameterisation described
above. Of most immediate relevance for our study is that the appearance of these parameters as
coupling strengths for the gravitational potentials is due to the structure of the post-Newtonian
expansion itself, which means that the equations we will need to solve in any theory of gravity
will take the form of Poisson-like equations. The simple form of the operators in such equations
makes a specification in terms of a limited number of source terms possible, with the unknown
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Table 1. The coupling parameters that appear at leading-order in the PPNC test metric,
adapted for cosmology. An observational constraint on the derivative of a parameter p
refers to the constraint on dp/dln a.

Physical effect Observational constraint Constraint on derivative

Effective Newton’s constant α 1 0 ± 0.01 [25]
Spatial curvature parameter γ 1 + (2.1 ± 2.3) × 10−5 [6] 0 ± 0.1 [26]
Preferred location parameter ξ 0 ± 3.9 × 10−9 [27] —
Conservation of momentum ζ1 0 ± 2 × 10−2 [5] —

Preferred frame parameters
α1 (−0.7 ± 1.8) × 10−4 [28] —
α2 (1.8 ± 5.0) × 10−5 [28] —

Cosmological parameters
αc (2.07 ± 0.03) H2

0 [29] (0.12 ± 0.25) H2
0 [29]

γc (−1.04 ± 0.02) H2
0 [29] (−0.06 ± 0.12) H2

0 [29]

parameters simply inserted as constants of proportionality. It is these equations that replace
and remove the need for field equations of a particular gravitational theory, and that therefore
allow a theory-independent interpretation of gravitational phenomena.

The appearance of {α, γ,α1,α2, ζ1, ξ} in the particular combinations in which they appear
in equation (14) is so that they appear in global conservation laws in a simple way [3], and
hence so that they can be associated with particular degrees of freedom in the space of theories
of gravity (as outlined in table 1). We note that in ‘fully conservative’ theories of gravity,
in which there are no violations of momentum or angular momentum conservation, and no
preferred frame effects, we should have α1 = α2 = ζ1 = 0. Finally, we note that equation (14)
are written in ‘post-Newtonian gauge’, which at the level of perturbations we are considering
corresponds to a choice of gauge in which hi j is diagonal.

2.3. Parameterised post-Newtonian cosmology

Let us now discuss how the PPN approach must be modified for application in cosmology, and
what it looks like after the transformations (8) and (9).

To begin this, let us first note that the pressure of matter fields need not be neglected at lead-
ing order when considering the cosmological context, but that on the spatial scales on which
post-Newtonian expansions can be applied (i.e. �100 Mpc) it must be effectively spatially
constant [24]. This is of particular importance for the inclusion of dark energy. Furthermore,
we also note that the coupling parameters in equation (14) must be taken to be functions of
cosmological time, in order to produce a consistent parameterized cosmological model [11],
i.e.

{α, γ,α1,α2, ζ1, ξ}→ {α(̂t), γ (̂t),α1(̂t),α2(̂t), ζ1(̂t), ξ(̂t)}. (16)

The reason for this is that gravitational couplings in alternative theories of gravity, in general,
are allowed to be functions of additional background degrees of freedom, which themselves
can change over cosmological time scales.

Taking these points properly into account, and performing the transformations (8) and (9)
so that our space-time metric takes the form of a perturbed FRW metric, one finds that the
appropriate Friedmann equations are given by the following set [23]:

H2 =
8πγ

3
ρ̄a2 − 2γca2

3
(17)
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H′ = −4πα
3

ρ̄a2 +
αca2

3
, (18)

where H = a′/a, ρ̄ is the average energy density of matter in the Universe, and where primes
denote differentiation with respect to conformal time, τ̂ . The reader will note two extra parame-
ters in these equations that do not appear in the classic PPN parameterisation:αc and γc. These
two terms must be added linearly to the right-hand side of the two equations in (14) in order to
be able to consistently include dark energy and the gravitational effects of the time variation
of any extra degrees of freedom in a theory. They must satisfy the integrability condition

4πρ̄

(
α− γ +

dγ
d ln a

)
=

(
αc + 2γc +

dγc

d ln a

)
, (19)

and must in general also be functions of cosmological time, such thatαc = αc (̂t) and γc = γc (̂t).
Equations (17) and (18) constitute the background contributions to the Hamiltonian constraint
and Raychuadhuri equations, respectively.

The leading-order perturbations to these equations have been investigated in reference [12],
where it was shown that they could be written as

1
3
∇̂2Ψ̂−H2Φ̂−HΨ̂′ = −4π

3
μδρa2 (20)

1
3
∇̂2Φ̂ + 2H′Φ̂ +HΦ̂′ + Ψ̂′′ +HΨ̂′ = −4π

3
νδρa2, (21)

where δρ = ρ− ρ̄ is the perturbation to the energy density, and where μ and ν are in general
functions of cosmological time and spatial scale. By comparing to the direct transformation of
the classic PPN equations under equations (8) and (9), we find that on scales �100 Mpc we
should expect [12]

lim
k→∞

μ = γ and lim
k→∞

ν = α. (22)

These equations are required for the theory to be correctly described by the classic PPN
approach on small spatial scales. On the other hand, by employing the separate Universe
approach [22], we find that the super-horizon limit of adiabatic perturbations should be
described by [12]

lim
k→0

μ = γ − 1
3

dγ
d ln a

+
1

12πρ̄
dγc

d ln a
(23)

lim
k→0

ν = α− 1
3

dα
d ln a

+
1

12πρ̄
dαc

d ln a
. (24)

This behaviour is required for consistency with the effective Friedmann equations (17) and
(18). The limiting behaviour given in equations (22)–(24) shows that the parameters μ and ν
must approach a predictable scale-invariant form on both small and large spatial scales, and
that in general we should expect the values of these to be different in these two limits. In all
cases, however, the limiting behaviour ofμ and ν must be a function of the set of extended-PPN
parameters {α, γ,αc, γc}.

It is the purpose of the present paper to extend the set of equations outlined above, to include
not only the Hamiltonian constraint and the Raychaudhuri equation, but also the momen-
tum constraint equation. The momentum constraint in cosmology is usually throughout of as
being comprised of two parts; a scalar equation that adds a constraint to the set described
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above, and a divergenceless vector equation that contains the ‘frame-dragging’ potential B̂i.
We will investigate both parts of the momentum constraint equation, on both small spatial
scales (where a post-Newtonian expansion can be performed), and on very large scales (where
the parameterised Friedmann equations can be applied).

3. The momentum constraint equation on small scales

In this section we will use the transformations from equations (8) and (9) to derive the momen-
tum constraint equation for parameterised post-Newtonian perturbations around a Friedmann
background, as they occur in the metric (4). As the post-Newtonian expansion on which
these equations are based is expected to be valid on scales �100 Mpc, this will give us the
‘small scale’ limit of the general parameterised momentum constraint equation. We will start
by considering this equation in conservative theories of gravity. These are theories in which
global energy, momentum and angular momentum are conserved to post-Newtonian order in
asymptotically flat spacetime [3]. In terms of PPN parameters, they correspond to the values
α1 = α2 = ζ1 = 0. We will then generalise to non-conservative theories.

3.1. Conservative theories

Let us first use the relationships between perturbations to Minkowski and Robertson–Walker
geometries, specified by equations (10)–(12), to derive the constraint equation satisfied by the
cosmological vector perturbation B̂i. Assuming we want our cosmological perturbations to be
in longitudinal gauge [30], we must have that B̂i,i = 0, where the derivative is taken with respect
to the x̂i coordinates. Using equation (12), we find that this condition is satisfied if and only if
the gauge function in equation (8) satisfies

∇̂2T = a2Bi,i + 6aȧ
(
Φ̂ + Ψ̂

)
+ 2aȧ

(
Φ̂ + Ψ̂

)
,i
x̂i + 5a2ȧä r̂2. (25)

In this equation, and henceforth, we will use the convention that spatial derivatives on a quantity
are with respect to the set of coordinates with which that quantity is defined (i.e. so derivatives
of hatted quantities are taken with respect to x̂i, and unhatted quantities are differentiated with
respect to xi).

We now wish to operate on equation (12) with the Laplacian ∇̂2, and substitute in the
expression above for T , in order to find the following expression for the left-hand side of the
momentum constraint on small scales:

1
2a

∇̂2B̂i + 2
(
˙̂
Ψ + HΦ̂

)
,i
=

1
2

a
(
∇2Bi − B j, ji

)
+ Hx̂i∇̂2

(
Φ̂ + Ψ̂

)

− Hx̂ j
(
Φ̂ + Ψ̂

)
,i j
+ 2 ˙̂

Ψ,i − 2HΨ̂,i. (26)

To go further we now need an expression for Bi, which we take from solving equation (14)
with α1 = α2 = ζ1 = 0 to obtain

Bi = −2(α+ γ)Vi +

(
1
2
α+ ξ

)
χ̇,i + Bextra

i , (27)

where ∇2Vi ≡ −4πρvi and ∇2χ ≡ −2U implicitly define the vector potential Vi and the
super-potential χ, and where we have added the extra term Bextra

i to account for any extra con-
tributions that may need to be added to the right-hand side of equation (14) in order to make it
suitable for use in cosmology.

9
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Taking the required derivatives of Bi, and substituting back into equation (26), gives us

1
2a

∇̂2B̂i + 2
(
˙̂
Ψ + HΦ̂

)
,i
= 4πa(α+ γ)ρvi + a(α+ γ)V j, ji + Hx̂i∇̂2(Φ̂ + Ψ̂)

− Hx̂ j(Φ̂ + Ψ̂),i j + 2 ˙̂
Ψ,i − 2HΨ̂,i

+
1
2

a
(
∇2Bextra

i − Bextra
j, ji

)
. (28)

To proceed further it is useful to re-write the term containing the factor V j, ji. We do this by
splitting the velocity vi into a background part (due to the Hubble flow) and a peculiar velocity,
such that vi = Hxi + δvi. This then allows us to split Vi into components due to the background
and peculiar velocities, such that Vi = V̄ i + δVi, where

∇2V̄ i ≡ −4πρHxi and ∇2δVi ≡ −4πρ δvi. (29)

The former of these implicit definitions allows for the solution V̄ i = HxiU + Hχ,i, where the
derivative should be understood to be with respect to the xi coordinates.

Making a similar split of the Newtonian potential U into contributions from the cosmolog-
ical background and perturbation, i.e. taking ρ = ρ̄+ δρ, allows us to write

∇2U = −4πρ = −4πρ̄− 4πδρ ≡ ∇2Ū +∇2δU, (30)

where the last equality provides implicit definitions for Ū and δU. We note that these allow us to
write down the solution for the background part of the Newtonian potential as Ū = −2πρ̄r2/3,
and the cosmological perturbations to the Robertson–Walker geometry as Φ̂ = αδU and
Ψ̂ = γδU. These expressions, together with the continuity equation ρ̇+ (ρvi),i = 0, allow us
to derive the useful identities

α
∂

∂xi
δVi = − ˙̂

Φ− HΦ̂ +
α̇

α
Φ̂ and γ

∂

∂xi
δVi = − ˙̂

Ψ− HΨ̂ +
γ̇

γ
Ψ̂,

which can be compared with the identity Vi,i = −U̇ that frequently occurs in the classic
approach to post-Newtonian gravity [3].

Using all of these results in equation (28), it follows that we can write the momentum
constraint in the cosmological geometry as

1
2a

∇̂2B̂i + 2
(
˙̂
Ψ + HΦ̂

)
,i
= 4π (α+ γ) ρδvia −

[ (
˙̂
Φ− ˙̂

Ψ
)
− H

(
Φ̂− Ψ̂

)

− α̇

α
Φ̂− γ̇

γ
Ψ̂

]
,i

+
1
2

a
[
∇2Bextra

i − Bextra
j, ji

]
. (31)

This can be straightforwardly split into a scalar part

2Ψ̂′
,i + 2HΦ̂,i = 4π (α+ γ) [ρv̂i]

Sa2 −
[(

Φ̂− Ψ̂
)′

− H
(
Φ̂− Ψ̂

)
− α′

α
Φ̂− γ ′

γ
Ψ̂

]
,i

,

(32)

and a divergenceless vector part

∇̂2B̂i = 8π (α+ γ) [ρv̂i]
Va2 + ∇̂2B̂extra

i , (33)

10
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where ∇̂2B̂extra
i ≡ a2(∇2Bextra

i − Bextra
j, ji ) is manifestly a divergence-free vector, and where v̂i =

dx̂i/dτ̂ = δvi. In each of these two expressions we have used the superscripts S and V on
parentheses to indicate that the we intend this to correspond to the scalar or divergenceless-
vector part of the object within. We have also converted all time derivatives in these expressions
into conformal time, so that they appear in the most familiar form for use in cosmology. The
reader may note that although the PPN parameter ξ is allowed to be non-zero in this class of
theories, it appears in neither the scalar nor the vector part of our parameterised momentum
constraint equation.

This is our first step towards the momentum constraint on small cosmological scales. Let
us now consider how these expressions are generalised in non-conservative theories of gravity,
which can exhibit violation of global conservation laws at post-Newtonian order, and which
can display preferred-frame effects.

3.2. Non-conservative theories

In non-conservative theories of gravity the PPN parameters {α1,α2, ζ1} are allowed to be
non-zero. This can be accounted for by using equation (14) without setting any of the PPN
parameters to zero. Following a similar process to the one used above, this results in

∇̂2B̂i = 8π
(
α+ γ +

α1

4

)
[ρv̂i]

Va2 + 2πα1a2H
[
ρ x̂i

]V
+ ∇̂2B̂extra

i , (34)

where we have again allowed for extra terms to be added by including ∇̂2B̂extra
i , and where we

have assumed that we are in the preferred frame (if one exists), such that ϕPF
i = 0. The reader

may note that only α1 is retained in the cosmological version of this equation, with α2 and ζ1

both being removed by the imposition that B̂i is divergenceless.
The reader may also note that there is a highly anomalous term on the right-hand side of this

equations: 2πα1a2Hρ x̂i. This term appears problematic as it depends linearly on the distance
from the origin of coordinates. As we have not specified a particular configuration of matter,
or any symmetries beyond those of the background, it is hard to see how such a term could
possibly be permitted, even in theories with preferred frames. We will therefore remove it by
altering equation (14) so that it takes the new form

∇2Bi = 8π(α+ γ)ρvi + 2πα1ρδvi − (α+ α2 − ζ1 + 2ξ)U̇,i +∇2Bextra
i ,

where δvi = vi − Hxi, and where we are again temporarily taking ϕPF
i = 0. This adjustment

corresponds to allowing only the peculiar component of the three-velocity vi to source the part
of the equation that couples with α1, and results in

∇̂2B̂i = 8π
(
α+ γ +

α1

4

)
[ρv̂i]

Va2 + ∇̂2B̂extra
i . (35)

It is conceivable that similar changes may need to be made for the term that couples with
α2, as this is also a preferred-frame parameter, but as this parameter does not appear in the
cosmological equations at the order we are studying we will not concern ourselves with it
here.

We will now turn our attention to the form this equation takes if we transform away
from the preferred frame, so that our coordinate system is in motion with respect to it. We
will generate the new form of this equation by performing a Lorentz boost in the perturbed
Minkowski description of the space-time. The corresponding perturbed Robertson–Walker
descriptions, before and after the boost, can then be determined by using the transforma-
tions from equations (8) and (9). This process is displayed schematically in figure 1, where

11
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Figure 1. A schematic of the transformations between perturbed Minkowski and per-
turbed Robertson–Walker geometries, and transformations between the preferred frame
and general frames. Lorentz transformations are labelled L, and E denotes transforma-
tions between non-expanding and expanding backgrounds.

the transformation from perturbed Robertson–Walker geometry in the preferred frame to the
general frame is indicated by the black arrow from the top-right corner to the bottom-right cor-
ner, and which is equivalent to the three transformations around the other sides of the square,
collectively denoted by the blue arrow.

We have already discussed the transformations between expanding and static backgrounds,
corresponding to the top and bottom of the square in figure 1, in previous sections. The Lorentz
boost between two different coordinate systems covering Minkowski space, corresponding to
the left side of the square, are given by the standard expressions:

t → t

(
1 +

1
2
w2 +

3
8
w4

)
+

(
1 +

1
2
w2

)
xiwi + O(v5) × t (36)

xi → xi +

(
1 +

1
2
w2

)
t wi +

1
2

x jw jw
i + O(v4) × xi. (37)

The effects of these on the perturbations to Minkowski space are

Φ→ Φ, Ψ→Ψ, and Bi → Bi − 2wi(Φ+Ψ). (38)

Transforming back to expanding coordinates after performing this boost, and ensuring the
gauge function T is chosen to maintain longitudinal gauge, we find that

∇̂2B̂i = 8π (α+ γ) [ρv̂i]
Va2 + 2πα1[ρ (v̂i + ŵi)]

Va2 + ∇̂2B̂extra
i , (39)

where ŵi is the coordinate velocity relative to the preferred frame in the perturbed Robert-
son–Walker description of the space-time. This is the general form of the vector part of the
parameterised momentum constraint equation, written in a form suitable for cosmology. The
reader may note that ŵi does not enter into the terms that couple with α and γ, which is a direct
consequence of these terms having no preferred frame, as per their usual interpretation in the
classic PPN formalism. They may also note that in order to avoid the presence of another prob-
lematic term, which would be linear in x̂i, we have had to adjust the preferred frame potential
ϕPF

i so that it too depends only on the velocity relative to the Hubble flow, δwi = wi − Hxi.

12
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4. The momentum constraint on the largest scales

We now focus on extending our parameterised equations up to super-horizon scales. Much of
this will rely on a separate Universe approach, as pioneered in a theory-independent way by
Bertschinger [22]. This approach has allowed the Raychaudhuri and Hamiltonian constraint
equations for super-horizon perturbations to be obtained within the PPNC formalism [12], and
we now consider how it can be applied to the momentum constraint equation on those scales.

4.1. Boosts, and the scalar momentum constraint equation

Let us start by considering the effect of a boost in the coordinates of the expanding Robert-
son–Walker space, such that we transform to new coordinates

τ̂ ∗ = γ(v̂) [τ̂ − v̂ x̂] = τ̂ − v̂ x̂ +
v̂2

2
τ̂ + · · · (40)

x̂∗ = γ(v̂) [x̂ − v̂τ̂ ] = x̂ − v̂τ̂ +
v̂2

2
x̂ + · · · , (41)

and ŷ∗ = ŷ and ẑ∗ = ẑ, where v̂ is the velocity of the boost in the x̂-direction. The conformal
part of the metric is unchanged by this transformation, while the scale factor becomes

a2(τ̂ ∗) 
 a2(τ̂ ) [1 − 2v̂Hx̂] . (42)

Hence, the line-element for our geometry becomes

ds2 = a2(τ̂ )
[
− (1 − 2Hθ) dτ̂ 2 + (1 − 2Hθ)

{
dx̂2 + dŷ2 + dẑ2

}]
, (43)

where θ = v̂ x̂ is the scalar velocity potential. This is equivalent to the following pair of scalar
perturbations:

Φ̂ = Hθ and Ψ̂ = −Hθ. (44)

Constructing the left-hand side of the momentum constraint equation therefore gives that on
super-horizon scales we must have

2Ψ̂′ + 2HΦ̂ = 2
(
H2 −H′) θ, (45)

which can equivalently be expressed as

2Ψ̂′
,i + 2HΦ̂,i =

8π
3

(α+ 2γ)ρ̄v̂S
i a2 − 2

3
(αc + 2γc)v̂

S
i a2, (46)

where we have used the parameterised Friedmann equations (17) and (18), and generalised this
expression to an arbitrary direction by taking θ,i = v̂S

i , where v̂S
i is the scalar part of the matter

peculiar velocity field v̂i. This result can be seen to be consistent with the scalar Hamiltonian
constraint and Raychaudhuri equations, derived using Bertschinger’s separate Universe treat-
ment, and the large-scale momentum conservation equation, which we take as evidence of the
validity of our approach.

We find that equation (46) and the results from section 3 can be written together in a single
equation as

Ψ̂′
,i +HΦ̂,i = 4πμ[ρv̂i]

Sa2 + GHΨ̂,i, (47)

13
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where G = G (τ̂ , k) is assumed to be a smooth function with limits

lim
k→∞

G =
d ln γ

d ln a
+

α− γ

γ
and lim

k→0
G = 0, (48)

and where μ is given by equations (23) and (24). In order to derive this result, we have made
use of equation (32) and the post-Newtonian-expanded matter continuity equation (valid on
small scales), as well as equations (17), (19) and (45) for the super-horizon limit. It is intended
that in the super-horizon limit the combination ρv̂i should be understood as approaching ρ̄v̂i,
as in this limit the density contrast is assumed to be perturbatively small. We note that the
function G vanishes on all scales for the case of GR with a cosmological constant, in which
caseα = γ = 1. This will not be the case in general though, and for modified theories of gravity
it is expected that G �= 0 on small scales.

4.2. Rotations, and the vector momentum constraint equation

In order to construct a divergenceless vector version of the momentum constraint equation for
super-horizon scales, let us now consider the case where we rotate our spatial coordinates,
rather than boosting them. This will produce an apparent vortical motion in the fluid that fills
the space-time, as illustrated in figure 2.

In order to induce this perturbation we rotate coordinates by the angle Ω = Ω(τ̂ ), such that

x̂∗ = x̂ cos Ω+ ŷ sin Ω (49)

ŷ∗ = ŷ cos Ω− x̂ sin Ω, (50)

with ẑ∗ = ẑ and τ̂ ∗ = τ̂ . Putting this into the line-element of a spatially flat Robertson–Walker
geometry gives us

ds2 = a2(τ̂ )
[
−dτ̂ 2 + dx̂2 + dŷ2 + dẑ2

]
+ 2a2(τ̂ )

dΩ
dτ̂

(ŷ dx̂ − x̂ dŷ) dτ̂ , (51)

where we have taken Ω = Ω(τ̂ ) and expanded to leading order in dΩ/dτ̂ . Comparing this to a
linearly-perturbed Robertson–Walker geometry allows us to identify that the rotating coordi-
nates are in longitudinal gauge, and that we have induced a divergenceless-vector perturbation

B̂i =
dΩ
dτ̂

(ŷ,−x̂, 0) = −v̂i, (52)

where v̂i is the divergenceless vector part of the fluid’s three-velocity in the rotating coordi-
nates. Clearly there is nothing special about the direction of the axis of rotation in this example,
so we expect the result B̂i = −v̂i to be valid in general.

Combining our result with the relevant prefactor allows us to write down a straightfor-
ward equation for the divergenceless vector part of the super-horizon momentum constraint
equation:

2
(
H′ −H2

)
B̂i = −2

(
H′ −H2

)
v̂i, (53)

or, equivalently, using equations (17) and (18), as

2
(
H′ −H2

)
B̂i =

8π
3

(α+ 2γ)ρ̄ v̂i a2 − 2
3

(αc + 2γc)v̂ia
2. (54)

This is of exactly the same form as the scalar part of the super-horizon momentum constraint
equation (46), which gives us confidence in its validity.
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Figure 2. Rotating coordinates by a time-dependent angle Ω induces the divergenceless
vector perturbation vi in the fluid. Depicted here are space-like hypersurfaces of constant
τ̂ .

We can now see that it is possible to write equation (54) together with the divergenceless
vector equation from section 3 in the unified form

2
(
H′ −H2

)
B̂i +

1
2
∇̂2B̂i = 8π(μ+Q)[ρv̂i]

Va2 + α1π[ρŵi]
Va2, (55)

where μ is again given by equations (23) and (24), and the coupling function Q has the limits

lim
k→∞

Q =
α− γ

2
+

α1

8
and lim

k→0
Q = 0. (56)

In deriving these equations we have made use of equations (39) and (53), as well the back-
ground equations (17) and (18), and the integrability condition (19). Again, the quantities ρv̂i

should be understood to reduce to ρ̄v̂i on large scales, when the density contrast becomes
perturbatively small. The new function Q vanishes identically in GR, when α = γ = 1 and
α1 = 0, but is not expected to be zero on small scales in generic modified theories of gravity.
The reader may also note that we have set B̂extra

i = 0, as we find it not to be required for the
theories of gravity below.

Equations (47) and (55) are the central results of this paper. In what follows, we will
demonstrate their applicability using some specific example theories.

5. Example theories

Having derived our parameterised momentum constraint equations, we will now show how they
work for some example theories of modified gravity and dark energy. This requires determining
the PPNC parameters for each theory, and then demonstrating that inputting these into our
equations results in the correct small and large-scale limits of their weak-field theory.

Before we proceed with the worked examples, it will prove useful to collect together some
general results. For this, we note that for adiabatic perturbations the gauge-invariant entropy
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perturbation SXY between two scalars X and Y vanishes:

SXY :=H
(
δX
X̄′ −

δY
Ȳ ′

)
= 0. (57)

We also note that the conservation equation ∇νT0ν = 0 implies that on super-horizon scales
we have

ρ̄′ + 3Hρ̄ = 0 and δρ′ + 3Hδρ+ 3ρ̄Ψ̂′ = 0, (58)

which imply that

δρ

ρ̄′
=

Ψ̂

H , and therefore
δX
X̄′ =

Ψ̂

H , (59)

for scalars X that appear in the theory. It will also be useful to note the scalar part of ∇νTiν = 0
on large scales:

θ′ +Hθ − Φ̂ = 0, which implies Ψ̂ = −Hθ. (60)

Let us now consider our example theories, in increasing order of mathematical complexity.

5.1. Quintessence

Let us start with quintessence, which is a scalar field, φ, that minimally couples to gravity. The
full action of these theories is

I =
1

16π

∫
d4x

√
−g

[
R − 1

2
gαβ∇αφ∇βφ− V(φ)

]
+ Im

(
ψ, gμν

)
, (61)

where ψ denotes matter fields. The field equations are

Gμν = 8πTμν + 8π

(
gμν

[
−1

2
gαβ∇αφ∇βφ− V(φ)

]
+∇μφ∇νφ

)
, (62)

and �φ = dV/dφ. Performing a post-Newtonian expansion about Minkowski space gives the
following PPNC parameters:

α = γ = 1, γc = −4π

((
φ̄′)2

2a2
+ V(φ̄)

)
, αc = −8π

((
φ̄′)2

a2
− V(φ̄)

)
,

(63)

where φ̄ is the time-dependent background value of φ, and α1 = α2 = ξ = ζ1 = 0. Let us now
investigate the form of the perturbation equations in these theories.

Small scales: applying these parameter values above to equations (47) and (55), we find

1
2
∇̂2B̂i + 2

[
Ψ̂ +HΦ̂

]
,i
= 8πρv̂ia

2. (64)

It now remains to show that this is the same equation one would obtain from performing a
direct post-Newtonian expansion of equation (62). For this, we can note that �φ = dV/dφ can
be expanded to give

1
a2

(
φ̄′′ + 3Hφ̄′) = −dV(φ̄)

dφ
and ∇̂2δφ = 0, (65)
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where we have separated out the leading-order part of this equation into its background and
inhomogeneous parts, using φ = φ̄+ δφ and taking δφ ∼ v2. As the inhomogeneous equation
has no source terms, this implies that the leading-order part of the quintessence field in the
post-Newtonian expansion must be homogeneous, which in turn means that all contributions
to leading-order part of the 0i-field equation from the scalar field must vanish on small scales1.
We are therefore led to an equation that is identical to (64), from our direct analysis of the field
equation (62), which verifies our parameterised equation for this example.

Large scales: for super-horizon scales, the parameterised scalar equation (47) becomes

Ψ̂′ +HΦ̂ = 4πρ̄a2θ + 4πφ̄′2θ, (66)

where v̂i = θ,i. This can be compared to the equation for scalar super-horizon perturbations,
derived directly from the field equation (62):

Ψ̂′ +HΦ̂ = 4πρ̄a2θ − 4πφ̄′δφ. (67)

It can be seen that these two equations are identical provided that δφ = −θφ̄′, which can be
obtained from the adiabatic condition (59) and the Euler equation (60). The parameterised
scalar momentum constraint on super-horizon scales is therefore identical to what is obtained
from directly expanding the field equation (62).

The divergenceless vector part is even simpler: the super-horizon limit of our general result
(55) follows immediately from the field equations. We therefore have that our parameterised
momentum constraint equations correctly reproduces all of the results that one would obtain
from directly dealing with the quintessence model of dark energy, in both the scalar and diver-
genceless vector sectors of the theory, and on both large and small limits. We therefore have
our first explicit verification of its validity.

5.2. Brans–Dicke theory

Let us now consider Brans–Dicke theory, which is a scalar-tensor theory specified by the action

I =
1

16π

∫
d4x

√
−g

[
ϕR − ω

ϕ
∇μϕ∇μϕ

]
+ Im

(
ψ, gμν

)
. (68)

The field equations of this theory are

Gμν +
gμν

ϕ

[
�ϕ+

ω

2ϕ
∇αϕ∇αϕ

]
− 1

ϕ
∇μ∇νϕ− ω

ϕ2
∇μϕ∇νϕ =

8π
ϕ

Tμν ,

(69)

and

�ϕ =
8π

3 + 2ω
T. (70)

The PPN parameters of this theory are

α =
4 + 2ω
3 + 2ω

1
ϕ̄

, γ =
2 + 2ω
3 + 2ω

1
ϕ̄

, and α1 = α2 = ξ = ζ1 = 0, (71)

1 See reference [24] for a more detailed discussion of this phenomenon.
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with cosmological parameters

αc =
1
a2

[
− ϕ̄′′

ϕ̄
+H ϕ̄′

ϕ̄
− ω

(
ϕ̄′

ϕ̄

)2
]

, γc = − 1
2a2

[
ϕ̄′′

ϕ̄
−H ϕ̄′

ϕ̄
+

ω

2

(
ϕ̄′

ϕ̄

)2
]
.

(72)

Here we have expanded the scalar field as ϕ
(
τ̂ , x̂

)
= ϕ̄ (τ̂ ) + δϕ

(
τ̂ , x̂

)
. The FRW equations

can be obtained by applying these PPNC parameter values to equations (17) and (18). Let us
now consider the momentum constraint for this theory.

Small scales: we can immediately write down the scalar part of the momentum constraint
(47) on small scales as

2
[
Ψ̂ +HΦ̂

]
,i
=

8π
ϕ̄

[ρv̂i]
Sa2 − Ψ̂′

,i

1 + ω
+

HΨ̂,i

1 + ω
− ϕ̄′

ϕ̄
Φ̂,i −

ϕ̄′

ϕ̄
Ψ̂,i, (73)

and the divergenceless vector part (55) as

∇̂2B̂i =
16πa2

ϕ̄
[ρv̂i]

V. (74)

Let us now show that a direct post-Newtonian expansion of the 0i-field equation (69) generates
the same results.

Focusing on the scalar part of equation (69) gives

2
[
Ψ̂′ +HΦ̂

]
,i
=

8π
ϕ̄

[ρv̂i]
Sa2 +

1
ϕ̄

[
Hδϕ− Φ̂ϕ̄′ − δϕ′

]
,i
− ωϕ̄′

ϕ̄2
δϕ,i. (75)

To deal with the terms involving δϕ, let us note that a post-Newtonian expansion of the scalar
field equation (70) tells us that

∇̂2δϕ = − 8π
3 + 2ω

δρ a2, which implies δϕ =
ϕ̄

1 + ω
Ψ̂. (76)

Using this result, it can be seen that equation (75) readily reduces to equation (73), which ver-
ifies our parameterised equation (47) in this case. We have also verified that the divergenceless
vector part of equation (69) correctly reproduces (74), which follows straightforwardly as there
are no direct contributions from the scalar field to the divergenceless vector part of the 0i-field
equation: it enters only through the combination α+ γ = 2/ϕ̄.

Large scales: on super-horizon scales, the parameterised scalar equation (47) can be written

2
[
Ψ̂′ +HΦ̂

]
=

8πρ̄a2

ϕ̄
θ +

[
−2H ϕ̄′

ϕ̄
+

ϕ̄′′

ϕ̄
+ ω

(
ϕ̄′

ϕ̄

)2
]
θ, (77)

where we have made use of the background equation for the scalar field (70), which reads

ϕ̄′′ + 2Hϕ̄ =
8πρ̄a2

3 + 2ω
. (78)

For adiabatic perturbations, equations (59) and (60) give

δϕ

ϕ̄′ = −θ, and
ϕ̄′′

ϕ̄
θ = −δϕ′

ϕ̄
. (79)
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Substituting these results into equation (77), we get

2
[
Ψ̂′ +HΦ̂

]
=

8πρ̄a2

ϕ̄
θ +

1
ϕ̄

[
Hδϕ− Φ̂ϕ̄′ − δϕ′

]
− ωϕ̄′

ϕ̄2
δϕ, (80)

which is precisely what is obtained by directly expanding the scalar part of the 0i-field
equation (69). The divergenceless vector part again agrees immediately with equation (55),
which verifies that our parameterised equations reproduce the results of Brans–Dicke theory
exactly on both small and large scales, and in both the scalar and divergenceless-vector sectors
of the theory.

5.3. Vector-tensor theory

Let us now show our parameterised momentum constraint also works in theories that contain a
time-like vector field, Aμ, as well as the metric. The gravitational action for such theories may
be written as [3]

I =
∫

d4x
√−g
16π

[(
1 + ωAμAμ

)
R − 2ωAμAνRμν + τAμ;νAμ;ν

]
, (81)

whereω and τ are the coupling constants, and we have chosen to consider a simplified subclass
of vector-tensor theories that nevertheless displays all the gravitational effects of interest in this
paper. The field equations for these theories are

Gμν + τΘ(τ )
μν + ωΘ(ω)

μν − 2ωΘ(η)
μν = 8πTμν , (82)

where

Θ(τ )
μν = Aμ;σA;σ

ν + Aσ;μAσ
;ν −

gμν

2
Aσ;ρA

σ;ρ

+
[
AσA(μ;ν) − Aσ

;( μAν ) − A( μA;σ
ν )

]
;σ

(83)

Θ(ω)
μν = RAμAν + AρA

ρGμν −
(
AρA

ρ
)

;μν
+ gμν�

(
AρAρ

)
(84)

Θ(η)
μν = 2AρA( μRν )ρ −

gμν

2
AρAσRρσ −

[
AρA( μ

]
;ν )ρ

+
1
2
�

(
AμAν

)
+

gμν

2
(AρAσ);ρσ, (85)

with the corresponding field equation for the vector being given by

2ωAνGμν + τ�Aμ = 0. (86)

The PPN parameters for this theory are

α =
2

[
τ + ωĀ2 (8ω − τ )

]
τ

[
2 + Ā2 (τ − 4ω) − ωĀ4 (τ − 10ω)

] , γ =
2

(
1 − ωĀ2

)
2 + Ā2 (τ − 4ω) − ωĀ4 (τ − 10ω)

,

(87)
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α1 =
16τ

2τ + Ā2
(
2τ (τ + ω) − (τ + 2ω)2

) − 16τ − 2ωĀ2 (τ − 4ω)
2τ + τ Ā2 (τ − 4ω) − ωτ Ā4 (τ − 10ω)

,

(88)

and ζ1 = ξ = 0, and the cosmological parameters are

αc =
1
a2

[(
α− 2

2 − Ā2 (τ − 2ω)

)
τ

(
2 − Ā2 (τ − 2ω)

) (
Ā′′ + 2HĀ′)

Ā2 (τ − 2ω)

−
(
α+

6
2 − Ā2 (τ − 2ω)

)
τ Ā′ 2

4
+

6HĀĀ′ (τ − 2ω)
2 − (τ − 2ω) Ā2

]
, (89)

γc =
1
a2

[(
γ − 2

2 − Ā2 (τ − 2ω)

)
τ

(
2 − Ā2 (τ − 2ω)

) (
Ā′′ + 2HĀ′)

4Ā2 (τ − 2ω)
− γτ Ā′ 2

4

]
,

(90)

where Ā is the background value of A0, and where time derivatives are with respect to the FRW
conformal coordinate τ̂ .

Small scales: let us focus first on the post-Newtonian regime. In this case we can write

Aμ =
(

Ā + δA(2)
0 , δA(1)

i + δA(3)
i

)
,

where Ā ∼ O(1), and superscripts indicate the perturbative order in v. It can immediately be
noted that the vector field equation of motion gives ∇̂2δA(1)

i = 0, which with suitable boundary
conditions implies δA(1)

i = δA(1)
i (τ̂ ). As δA(1)

i is spatially constant, it must necessarily be the
derivative of a scalar, i.e. δA(1)

i = δA(1) S
i .

We can now recognise that these theories have a preferred frame, which is picked out by
the direction of the timelike vector field Aμ. To complete the full set of ingredients required to
compute the momentum constraint on small scales in the PPNC framework, we need to add
to the PPNC parameters the velocity ŵi of expansion-comoving observers with respect to the
preferred frame, and the cosmological divergenceless vector B̂extra

i . We will now find those in
turn.

To determine the preferred-frame three-velocity ŵi that couples to α1, consider a local
Lorentz boost from the preferred frame, in which ŵi vanishes, to a generic frame, in which
it does not. The ‘preferred frame’ refers in the case of these vector-tensor theory to the frame
picked out by a preferred time direction that is aligned with the timelike vector field, i.e. a
frame constructed using the coordinates (τ ∗, x∗) in which δA(1)

i = 0.
We can now perform the Lorentz transformation to the generic frame (τ , x), which for ease

of calculation we present as the inverse transformation:

τ ∗ = γw
(
τ + ŵ jx

j
)

; (91)

x∗ j = γw
(
x j + ŵ jτ

)
. (92)

Computing the transformation of the vector field components in the usual way, we find that
δA(1)

i = ŵiĀ, and so the preferred-frame velocity ŵi is directly related to the local perturbation
to the vector field by
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ŵi =
δA(1)

i

Ā
, (93)

which we recall from section 3.2 has no divergenceless vector part.
To determine the ‘extra’ cosmological contribution to the local vector perturbation, as in

equation (39), we expand the vector part of the 0i-field equation about Minkowski spacetime,
allowing for the time evolution of Ā (which is negligible in the classic PPN formalism), and
look for the relevant additional term. This gives

∇̂2B̂extra
i = − 2τ

1 + (τ + ω) Ā2

[
Ā′′ + 2HĀ′] δA(1) V

i = 0, (94)

because δA(1)
i has no divergenceless vector part. With all ingredients obtained, we can substi-

tute back into the momentum constraint equations (32) and (39), which reconstitutes the full
momentum constraint for the small-scale metric perturbations in these theories.

Large scales: on super-horizon scales, we know from our earlier analysis that the parame-
terised momentum constraint must be given by

2
(
Ψ̂′ +HΦ̂

)
,i
− 2

(
H2 −H′) B̂i = 2

(
H2 −H′) v̂i. (95)

Using the parameter values from equations (87)–(90), and simplifying them using the equation
of motion for the vector field, we have that the coefficient of v̂i on the right-hand side is

2
(
H2 −H′) =

8πρ̄a2 + τ Ā′2 − 2HĀĀ′ (τ − 2ω)

1 − Ā2

2 (τ − 2ω)
. (96)

This allows us to explicitly reconstruct the momentum constraint on large scales, which the
reader may note is a vast simplification compared to a direct perturbation theory expansion of
the field equations of these theories.

6. Conclusions

We have extended the PPNC formalism, introduced in references [11, 12], by deriving a param-
eterised momentum constraint equation. This study has included gravitational potentials that
result from theories with preferred frame effects, and has resulted in a parameterised scalar
equation (47) and a parameterised divergenceless-vector equation (55).

Our parameterised equations are valid on scales where the density contrast is highly
non-linear, as well as on super-horizon scales where terms in the field equations with time
derivatives dominate. They require the introduction of only one new parameter: α1(τ̂ ), which
is expected to be non-zero in non-conservative theories of gravity only, and which at the
present time coincides with the PPN parameter of the same name. We find that the additional
PPN parameters α2, ζ1 and ξ, which are present in the PPN equation for vector gravita-
tional potentials, are not necessary for the cosmological version of the momentum constraint
equation.

Ultimately, we expect the principal utility of parameterised frameworks in cosmology to
come from their comparison to observational data. In this regard, the parameter α is likely to
best constrained by the leading-order behaviour of matter, which in cosmology could include
observations such as the growth rate of structure, and the matter power spectrum. This param-
eter is required to be precisely equal to one at the present time, by definition of units such that
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G = 1 at this time, but could have a time dependence that will likely be best constrained using
cosmological observations.

On the other hand, the parameter γ is likely to best constrained with observations that
depend on the paths of rays of light. In cosmology, this would include weak lensing and
CMB lensing. Beyond leading-order, the parameter α1 could potentially also be constrained
by such observations, as on scales where non-linear structures are present the vector poten-
tial B̂i will appear in the next-to-leading order equations, at only one order higher in v/c
[31, 32]. Both of these parameters are well constrained at the present time, but once again it
will likely be cosmological observations that will provide the tightest constraints on their time
dependence.

Beyond cosmological observations, there is also the possibility of constraining the time
dependence of our parameters using observations of gravitational waves emitted from com-
pact binary inspirals. These events can be detected from systems at high cosmological red-
shifts, which means they present (in principle) an environment in which the time-variation of
gravitational coupling constants could be constrained or detected. Indeed, it is expected that
gravitational wave signals should be sensitive to the preferred-frame PPN parameters α1 and
α2 [33]. It would be an exciting prospect to use these newly detected systems to complement
cosmological probes.

In future work we intend to complete the full system of equations required to describe
parametrized equations in cosmology. This will require developing an understanding of the
interpolation of the coupling functions μ, ν, G and Q between small and large scales [34], as
well as complementing the existing equations with a ‘slip equation’ (typically derived from the
shear evolution equation, in most theories). We hope it will also include developing equations
from the transverse-tracefree tensor sector of the parameterised frameworks, which are prob-
lematic to include in standard post-Newtonian expansions as they only couple to matter at
relatively high orders, as well as higher-order scalar potentials.

Finally, we also intend to extend our formalism to incorporate theories that exhibit non-
perturbative screening mechanisms [35–38] and Yukawa potentials [36, 39]. Such theories
have more complicated post-Newtonian limits that cannot be written purely in terms of the
standard set of PPN parameters [40], and so to include them in our system would require
extending the original PPN formalism. This seems like a worthwhile endeavour, however, as
these theories have provoked a lot of interest in the cosmology literature (indeed, they are often
the only theories considered in many studies).
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Appendix A. Separate Universe approach for spatially flat backgrounds

The approach used by Bertschinger [22] assumes that the initial Robertson–Walker geometry
has non-zero curvature, and that this can be written as a second Robertson–Walker geometry
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with a spatial curvature that is equal to the first up to a factor that is perturbatively close to
unity. Here we present a similar derivation, but instead under the assumption that the second
geometry is spatially flat, as relevant for our presentation.

For this, consider a Robertson–Walker space-time:

ds2 = a2(τ̂ )

[
−dτ̂ 2 +

dx̂2

1 + K
4 x̂2

]
. (A.1)

Now let us assume the spatial curvature is small such that K = δK � 1, and perturb the
coordinates such that τ −→ τ̂ = τ + A(τ ) and xi −→ x̂i = xi (1 + β(τ )), where A(τ ) � 1 and
β(τ ) � 1. We then obtain

ds2 = a2(τ )

[
−

(
1 + 2A′ + 2HA + 2

δK
a

∂a
∂K

)
dτ 2 + 2β′xidτdxi

+

(
1 + 2β + 2HA + 2

δK
a

∂a
∂K

− 1
4
δKx2

)
dx2

]
+ · · · . (A.2)

Comparing this to a spatially flat geometry with spatially-homogeneousscalar perturbations
in longitudinal gauge,

ds2 = a2(τ )
[
−(1 − 2Φ̂)dτ 2 + (1 + 2Ψ̂)dx2

]
, (A.3)

we see that we must require β ′ = δK = 0 (i.e. β = constant), and

Φ̂ = −A′ − HA and Ψ̂ = β +HA. (A.4)

The metric in (A.2) can therefore be thought of as a Robertson–Walker metric with the super-
horizon scalar perturbations Φ̂ and Ψ̂ given above. These exactly reproduce the expected
equations presented in (23) and (24), when taking the k → 0 limit of the relevant equations
from reference [12].
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