Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012)

Prototype Shared Memory, ROOT based online monitoring

frontend for DAQs

Raman Sehgal*, P. K. Netrakanti, L. M. Pant, and R. G. Thomas
Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA
*email: sc.ramansehgal@gmail.com

Introduction

The monitoring of any Data Acquisition (DAQ)
system requires filling and presenting a large
number of histograms and graphs. A prototype of
shared memory based online monitoring system
based on ROOT framework has been developed
for this task. The system is designed in such a
way that it can act as a super module which will
provide GUI to access the data fetched from any
Data Acquisition system, provided that an
appropriate interface with the Data Acquisition
stream is available that will store the data in a
defined format.

Online vs. Offline analyis

Data handling in High Energy Physics activities
are categorized as Online and Offline. The
Online attribute is given to all components active
during the transfer between the front-end
electronics (detector(s), triggers, sensors) and the
Permanent Data Storage (hard disk, tape, CD).
The Offline activities cover the libraries,
algorithms and simulation sessions used before
and after the data collecting process. This work
present an Object-Oriented front-end developed
to provide an online data monitoring for DAQs.
This is easy to understand tool which can be
plugged in with any DAQ which can pack the
acquired data in desired ROOT tree format and
store it in shared memory.

The ROOT system

The ROOT [1] system provides a C++ based
complete Object Oriented framework with all

the functionalities needed to handle and analyze
large amounts of data.

The backbone of the ROOT architecture is a
layered class hierarchy where most of the classes
inherit from a common base class TObject,
which implements the common behavior for
ROOT classes. All ROOT objects can be

uniformly stored using a proprietary file format.
To achieve higher performances and to have
complete syntax checking of the code, compiled
C++ code can also be used in the ROOT
framework.

Architecture

The system is designed to provide a common
tool to start the data acquisition and
visualization. To achieve this a multithreaded
application is developed that provides very
simple GUI to start the DAQ and Visualization
in two different threads. The architecture is
based on shared memory based producer-
consumer model where the producer thread
fetched the data from DAQ and put it in shared
memory buffer, in addition to this it also writes
the data to ROOT file, which can be used later
for offline analysis.

The second thread named as consumer thread
fetches the data from shared memory buffer and
displays the statistics in real time in the form of
ROOT histograms. The application provides full
control over these two threads, i.e. one thread
can be started and stopped independently of
other. These two threads are created in Qt
framework[2]. Figure 1 below shows the Main-
window that will create these two threads.

MainWindow - (=] >

EStart DAG] |Start O nline Monitoringl

[step paa] |

I 2

Fig 1: Main window of the application

Stop Monitoring I

The schematic presented in figure 2 below shows
the architecture of the application

926

Available online at www.sympnp.org/proceedings

User Interface Module to start PRODUCER and

CONSUMER
il f:OI:;UCER start CONSUMER
rod thread
ROOT Objects
L 2T ki :
Data Acquisition JI S— A
Software ‘*S—hm—d—- S
(PRO[:tJCER] Memory S
Area
Raw Data
¥
Data Acquistion Online Data Monitor
Hardware and Display e
(CONSUMER)

Fig 2 : Schematic of the architecture using
producer consumer model

Implementation Details

The tool is written using ROOT Object-Oriented
framework. It provide some classes to create the
GUI to select the crate number and channel
number within the crate, other classes are there
that will do the actual work of displaying real
time histograms. It needs one configuration file
that describes the DAQ system configuration,
based on which it creates the GUI. It is having
only two threads, out of which one thread will
start the Data acquisition application and the
other thread start the real time visualization of
data as dynamic ROOT histograms. This tool can
show the data corresponds to multiple channel as
different histograms simultaneously, but with the
current limitation of only one dynamic
histogram. Later on we will provided the
functionality that enables it to show multiple
dynamic histogram simultaneously.

Dummy Data used for testing

The dummy data used for testing is random data
which is packed into the data structure which
corresponds to data structure generated by VME-
DAQ setup at RPC-lab, NPD , BARC. The data
generated by the setup consist of ROOT trees.
The ROOT tree is having one branch for each
channel. The data for each event consist of
variable size vector i.e. for each event the size of
vector corresponds to the number of hits in
particular channel. Once the data vector is ready,
it is filled in the ROOT tree. And after every “n”

Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012)

number of events which can be decided by user,
the data is written by this producer program to
shared memory and also to the persistent storage
in ROOT file format. The consumer program
fetches the data from this shared memory
location and display it as dynamic ROOT
histograms. So once the DAQ system is switched
on, there is no need to wait till the end of run to
see the statistics, it can be seen online, once the
producer starts filling the shared memory area.
Figure 3 below shows the histogram window as
displayed by this tool.

TDC 1: Channel O - o x
F h
1200 " Entries 3255
ool Mean 0.003448
C RMS 0.9942
a0l
eu:—
40:—
20:—
RIS i VRN AN ANINA T A A L
R 1 2 3

Traw| stop| Close

Fig 3 : Histogram window for one of the TDC
channel

Conclusion

In this work we have presented a ROOT based
online monitoring front-end tool for visualization
of data acquired by DAQ system in real time.
This tool is easy to integrate with any existing
DAQ system just by casting the data into the
data structure it accepts and put them in shared
memory buffer.

References

[1] R.Brun and F.Rademakers, "ROOT — An
Object Oriented Data Analysis Framework",
Nucl. Inst. Method Phys. Res ., vol.A389, pp.
81-86, 1997

[2] Qt 3.1 Tutorial and Reference, Troll Tech
AS, http://www.trolltech.com/

927

Awailable online at www.sympnp.org/proceedings

