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Quantum dot spin qubits are a promising platform for realizing quantum information tech-

nologies, which can theoretically perform calculations such as factoring large integers that are

otherwise intractable using classical computing methods. However, quantum dot qubit technol-

ogy is still in its developmental phases, with current experimental devices capable of holding only

a few (less than 10) noisy qubits. Even with only a small number of quantum dots, interesting ex-

periments can be performed, simulating physical systems and observing many-body phenomena

which are otherwise difficult to study or numerically simulate classically.

In the first part of this thesis, we analytically examine valley states in Silicon, which is one

obstacle which can potentially lead to information loss in Silicon qubits. Using a perturbative

method, we calculate the dynamics of two exchange-coupled quantum dots in which there is a

valley degree of freedom. We find that the spin states can become entangled with the valley states

of the system if the electrons are not initialized to the correct valley states, which can adversely

affect quantum computations performed on these systems. In the second part of this thesis, we



detail how quantum dot plaquettes can simulate the Hubbard model and give many analytic results

for different magnetic phenomena that arise under this model. These results include examples of

Nagaoka ferromagnetism, violations of Hund’s rule, and situations where flatband ferromagnetic

ground states are necessarily degenerate with nonferromagnetic states. These phenomena all

require only a few quantum dots, and are observable with current experimental technologies.
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Chapter 1: Introduction

Initially discovered in the early 1980s [1, 2], quantum dots are nanoparticles with size on

the order of tens of Angstroms. Quantum dots have many similar features to atoms, most notably

their spacial localization and discretized electronic states, and hence quantum dots are often in-

formally referred to as “artificial atoms.” Since their discovery, a great deal of experimental

and theoretical work has been done in developing nanoparticle technology, and a wide range of

applications for quantum dots exist [3, 4].

Of particular interest for this thesis is the development of semiconductor quantum dot

qubits. It has been demonstrated that the information necessary for implementing quantum algo-

rithms can potentially be held and processed using the spins of electrons trapped within quantum

dots [5]. Electron spins are particularly useful for this purpose due to their long coherence times.

There is a large ongoing effort to fabricate quantum dot devices robust enough to implement

such algorithms. While there have been recent advances in other quantum information platforms

such as superconducting transmon qubits [6], quantum dot qubits provide several key long-term

advantages such as their small size, long coherence times, potential for scalability, and integra-

tion within the current semiconductor industry. However, industrial-level quantum information

technologies using quantum dots are still many years away, as current experiments have only

achieved on the order of 4 to 9 noisy quantum dots [7, 8, 9, 10, 11].
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In this thesis, we investigate one of the potential obstacles to realizing quantum information

technologies with quantum dots, as well as some of the potential applications of current exper-

imental technology. In the remainder of this chapter, we review the background of proposed

quantum information technologies, the progress of implementing these with quantum dots, and

their applications in modeling many-body physics. In chapter 2, we investigate the valley degen-

eracy of Silicon, which is the standard material used in current quantum dot qubit experiments,

detailing its potential adverse effects to qubit coherence, as well as the ability for these effects

to go unnoticed in simple experiments. In the remaining chapters, we discuss the applications

of small quantum dot qubit arrays in studying many-body physics by simulating the Hubbard

model. Specifically, we give in-depth models of arrangements of several quantum dots, showing

that interesting many-body phenomena exist such as Nagaoka ferromagnetism, flatband ferro-

magnetism, and counterexamples to Hund’s rule, and crucially these phenomena require on the

order of 4-9 sites on a plaquette, and thus their observation can reasonably be attempted with

current quantum dot technologies.

1.1 Background of Quantum Information Technology

A Turing machine [12] is a minimal mathematical model which, as asserted by the so-called

Church-Turing thesis [13, 14], is capable of simulating any classical computational algorithm. In

1980, Paul Benioff proposed a quantum mechanical model of a Turing machine, showing that

computations are possible using Hamiltonian dynamics [15, 16]. Such a computational system

has additional benefits beyond implementing classical algorithms. In 1981, Richard Feynman

argued that many molecular systems are too complex to efficiently model classically; however,

2



he proposed that by using a computer which is quantum mechanical by nature, many otherwise

difficult quantum problems could be solved [17]. Indeed, in chapter 4 of this thesis, we find

that solving the Hubbard model via exact diagonalization cannot be done for more than 16 sites

without requiring extensive classical computational resources, due to the exponential growth of

the size of the Hilbert space as a function of the number of sites. These works by Feynman and

Benioff, along with the Russian paper “Computable and Uncomputable” by Manin [18], were the

first steps towards imagining a quantum computer. Several years later, David Deutsch extended

the Church-Turing thesis to define the notion of a universal quantum computer as a device capable

of performing any quantum algorithm, thus forming the basis of universal quantum computing

theory [19].

The power of quantum computation was shown to be particularly useful with the develop-

ment of Shor’s algorithm [20, 21]. Shor was able to show that using the principle of quantum

superposition, one could compute the order of a numerical group element in polynomial time,

which would allow one to efficiently solve problems such as integer factorization and the discrete

log problem, which are foundational to many modern public key cryptography protocols [22].

Because there are no known classical polynomial-time algorithms for either problem, Shor’s al-

gorithm provides a new disruptive computational ability, and has been a strong motivation for the

ongoing development of quantum hardware. Other quantum algorithms such as Grover’s search

algorithm [23] offer a similar, though less drastic, speedup over their classical counterparts. An-

other application of quantum information technologies is quantum public key distribution [24],

which allows for verifiably secure information exchange which is fundamentally unbreakable,

due to the no-cloning theorem [25]. A long-term physics application for quantum computing is

in areas with hard quantum problems such as solving the Hubbard model and quantum chromo-

3



dynamics.

The biggest obstacle to implementing quantum information technologies is the presence

of noise. Noise can be addressed at both a hardware and software level. At the hardware level,

coherent errors can potentially be corrected by using dynamical decoupling schemes [26, 27,

28, 29, 30, 31, 32, 33, 34, 35]. These protocols use complicated field pulses to drive qubit

operations in such a way that the effects of static noise cancel to leading order in a manner similar

to the Hahn spin-echo effect. Incoherent errors can be addressed at the software-level by using

error-correcting codes. Theorems exist which prove the feasibility of a quantum error-correcting

threshold, which allows for fault-tolerant quantum computation if error rates are reduced below

this threshold. Kitaev proposed that anyons on a toric lattice could be used to encode qubits,

and that quantum operations could be performed by braiding these anyons around each other

[36]. It has been shown that by using this method, quantum algorithms can be implemented to

arbitrary precision in a fault-tolerant manner using noisy gates so long as the error rate is below

the threshold which has been calculated at around 0.6% to 0.8% [37, 38, 39]. These codes,

however, require thousands of physical qubits for each logical qubit realized.

1.2 Quantum Dot Qubits

Quantum dots were proposed as a potential quantum information platform in 1998 [5]. In

this proposal, qubits are encoded on electron spins which are trapped inside quantum dots, and

operations are applied on the qubits by means of magnetic field pulses and electrically tuning

barrier gate voltages between quantum dots. Because controlling spins via magnetic field pulses

can be somewhat difficult, alternate qubit schemes have been proposed which do not require a
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time-dependent magnetic field. In a singlet-triplet qubit [40], a single qubit is stored in the com-

posite spin state of two electrons each trapped in one of two adjacent quantum dots. The logical

qubit states |0〉 and |1〉 are encoded by the singlet state |↑↓〉− |↓↑〉 and triplet state |↑↓〉+ |↓↑〉. A

constant magnetic field gradient is applied across the two quantum dots, and time evolution un-

der this gradient produces a logical σX rotation. Controlling the strength of the barrier potential

between the two dots by electrically adjusting the voltage of the barrier gates allows control of

the strength of the exchange interaction between the two electrons. Because the difference be-

tween the singlet and triplet state energies is determined by the exchange interaction, this allows

time-dependent logical σZ rotations to be performed. These two rotations, along with two-qubit

interactions which can be achieved via capacitive or exchange coupling, form a set of univer-

sal quantum gates. Significant experimental progress in achieving singlet-triplet qubits has been

demonstrated. Other similar qubit encoding schemes exist, such as the 3-QD exchange-only qubit

[41, 42], which does not require any magnetic field whatsoever, and the 2-dot 3-electron “hybrid”

qubit [43, 44].

There has been significant experimental progress towards realizing quantum dot qubits.

Singlet-triplet qubits have been created in GaAs [45], and two-qubit entangling gates have been

performed between them with 90% fidelity [7]. While initial quantum dot qubits were imple-

mented using GaAs systems, currently Silicon-based devices show particular promise due to

their long coherence times [46, 47], although some experimental work is also done in Germa-

nium [48, 49, 8]. Currently single qubit gates have been performed in Si with fidelities up to

99.9% [50, 51], and two qubit gates with fidelities up to 95% [52, 53]. These fidelities, however,

are still short of the requisite 99% threshhold for fault-tolerant quantum computing. Continued

progress in experimental work indicates that the necessary threshold will soon be reached with
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quantum dot qubits. The potential for scalability in Si devices has also been demonstrated with

the fabrication of a nine-qubit linear array [10].

1.3 Physical Structure of Quantum Dots

It was first noticed in 1981 that CuCl microcrystals exhibited an optical blueshift in the

exciton absorption spectra [1]. This blueshift was dependent on the radius of the crystal and be-

came most pronounced for crystals with radii on the order of 20Å, at which size quantum effects

become relevant. This effect was explained shortly after by modeling the crystal as a spherical

potential well with infinite walls. Due to their small size, electronic states within quantum dots

are quantized, which leads to a widening of the gap between the conduction and valence bands

by the zero-point energy of the confinement potential, which in turn produces the blueshift in

the exciton absorption spectra [2]. This is the beginning of quantum dots being used as artificial

atoms.

Six years later, it was shown that quantum dots could be formed by applying lithographic

electrostatic confinement potentials to a two-dimensional electron gas [54]. In this experiment,

a thin 2D InGaAs sheet was grown and embedded between two AlGaAs insulating barriers. A

2D approximate harmonic potential is then applied via metallic gates, which in combination with

the AlGaAs barriers, confines electrons in all three dimensions. A schematic of this technique,

which is still used in current experiments with varying materials, is shown in Fig. 1.1. Electrons

are trapped within the circular cavity by Coulombic repulsion from the electrostatic barrier gates,

and the electrons are confined in the vertical direction by the insulating barriers.

In the vertical direction, an electron trapped in a quantum dot can be modeled as a particle in
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Figure 1.1: Schematic of a 2DEG quantum dot. Insulating barriers are placed around an electron
gas, confining electrons to two dimensions. Then an electrostatic confinement potential is created
by adjusting the voltage of metallic gates on the surface of the device. This traps electrons within
a finite region, creating a quantum dot.

a square potential well. The resulting energy difference between the ground state and first excited

state is well known, given by 3π2~2/(2mL2), where m is the effective mass of the electron, and

L is the width of the electron gas layer. Because L is much smaller than the 2D radial size of the

quantum dot, this energy difference is large enough that it plays very little role in the dynamics of

the system, and thus the quantum dot can be treated as a purely 2D system. The lowest quantum

level in this system forms a spin qubit by using the spin up and spin down states of an electron

which occupies it.

The microscopic Hamiltonian within the 2D plane of the electron gas is not precisely
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known, and in fact it may vary among devices depending on the exact arrangement of the elec-

trostatic gates. It is often modeled as a harmonic potential; however, due to screening within the

electron gas, it may in actuality be much flatter of a curve, closer to a rectangular barrier within

the circular radius. Whatever the case, the ground state will be similar in features to a bell curve,

where the majority of the wave function lies within the quantum dot, but where an exponentially

decreasing tail extends outwards from the edge of the dot. If the tail of the wavefunction extends

into the space of a neighboring quantum dot, quantum mechanical tunneling can occur between

the two dots. The tunneling coefficient tij between dots i and j is defined by:

− tij = 〈ψi|H|ψj〉 (1.1)

where H is the Hamiltonian, and ψi and ψj are the ground states of each respective dot. If

ψi and ψj are defined to have the same phase (and thus are translationally equivalent), then the

sign of the matrix element 〈ψi|H|ψj〉 will be negative, because tunneling is driven by the kinetic

term of the Hamiltonian− ~2

2m
∂2

∂x2 , which produces a minus sign when acting on the exponentially

decaying tail. In this thesis, we choose to define tij to be the absolute value of the tunneling

coefficient, and include the minus sign explicitly in our equations. The strength of the tunneling

coefficient for a constant potential barrier tends as exp(−
√

2mV ), where V is the height of the

potential barrier between the two dots. Because V is determined by the voltage of the electro-

static gates which can be changed arbitrarily over the course of the experiment, the value of the

tunneling coefficient tij can be freely controlled. While some applications such as dynamical

decoupling require a precise knowledge of the microscopic Hamiltonian, for many applications

it suffices to simply measure and work with the tunneling coefficient tij itself. Because the gates
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are controlled electrostaticly, they are very fast, operating on the order of nanoseconds, which is

one compelling advantage of using quantum dot qubits.

1.4 Valley Degrees of Freedom in Silicon

Silicon has become the current standard material for developing quantum dot qubit devices;

however, Silicon has one potentially troublesome property that other materials such as GaAs do

not have, the valley degree of freedom. This arises when considering the Fermi surface of Silicon,

that is, the momentum space boundary of the set of occupied electronic states at zero temperature.

In many cases, the Fermi surface of a metal approximates a sphere centered at zero momentum,

corresponding to the simple dispersion relation E = k2/2m. Here because the energy E does

not depend on the direction of the momentum ~k, but only on its magnitude, electrons at zero

temperature will fill the states near ~k = ~0 first, occupying higher-momentum states only once the

lower-momentum states are filled. However, as the Fermi surface approaches the Brillouin zone,

its shape generally becomes much more irregular, in many cases changing quite drastically. This

is the case with electron-doped Silicon, whose Fermi surface splits into six identical disconnected

electron pockets as illustrated in Fig. 1.2. This is detrimental to creating silicon spin qubits, where

it is necessary to keep electrons confined to a single orbital state, as here electrons can fill any one

of six degenerate states. The situation can be remedied somewhat by applying tensile strain to

the sample, which can energetically separate two of the valleys from the others. These two valley

states remain degenerate up to a small energy splitting arising from microscopic imperfections in

the interface between materials [55, 56]. This valley splitting is difficult to control and measure,

and varies from dot to dot on the same device. While the valley splitting can be enough to
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limit electrons to a single state, valley effects continue to be an issue in Silicon quantum dot

experiments [57].

 

 

Figure 1.2: Illustration of the Fermi surface of isotropic silicon (left) and silicon under tensile
strain (right).

1.5 The Hubbard Model

Although the effects of the excited states may be necessary to track for calculating the

precise numeric interqubit coupling, the overall physics of the system is often sufficiently en-

capsulated in models involving just the ground states of each dot, and in fact, qubits are often

operated in single-level occupation in each dot. In addition to tunneling between dots, it is im-

portant to consider electron-electron interactions whenever more than one electron is present

in a system. Electron-electron interactions arise due to Coulombic repulsion between particles,

and although the Coulomb force is long-range in vacuum, due to screening in semiconductors,

Coulombic interactions are often become short range. The simplest model involves a so-called

zero-range interaction, where the interaction range is smaller than the distance between quantum
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dots, and thus the electrons only interact when they are within the same dot. In chapter 3 of this

thesis, we investigate in detail the effects of longer-range electron-electron interactions; however,

the physics of quantum dot systems are often determined qualitatively by the zero-range model.

A second quantized Hamiltonian which includes a zero-range electron-electron interaction

and tunneling coefficients between dots can be written as follows:

H =
∑
i,j

∑
s∈{↑,↓}

−tijc†iscjs +
∑
i

U

2
ni(ni − 1) (1.2)

where cis is the annihilation operator for an electron with spin state s in the ground state

of quantum dot i, and ni = c†i↑ci↑ + c†i↓ci↓ is the number operator which encodes the number

of electrons present in dot i. Here U is the strength of the zero-range interaction; specifically,

if two electrons occupy the same dot, then the resulting state will have additional energy U to

account for the potential energy of two identical fermions in close proximity to one another. This

interaction term does not affect particles in different dots.

Eq. (1.2) is the well-known Hubbard model, which was first proposed in 1963 with the

hope of explaining the emergence of ferromagnetism in transition metals starting from a micro-

scopic model [58]. In this case (as with many cases where this model is used), each site repre-

sents an atomic orbital in the conduction band of a metal rather than quantum dot bound states.

The connection between the Hubbard model and quantum dots was first noted in 1994 when it

was proposed that the Hubbard model could potentially be simulated using arrays of quantum

dots [59, 60, 61]. This goal was only recently realized in an experiment at Delft [9] wherein a

distinct many-body phenomenon which arises from the Hubbard model, namely Nagaoka ferro-

magnetism, was observed in a small plaquette of four quantum dots.
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Despite the simplicity of the Hubbard model, numerous many-body phenomenon emerge

from it. For example, the emergence of the exchange interaction is straightforward when con-

sidering two electrons trapped within a pair of quantum dots – this is equivalent to the Hubbard

model mapped onto the Heisenberg model, which is often used as a minimal quantum computing

model. If the electrons form a spin triplet, then tunneling between the dots cannot occur because

the Pauli exclusion principle forbids two electrons with the same spin from occupying the same

orbital state. In this case, each electron will occupy its own dot, and the total energy of the state

will simply be the sum of the ground state energies of the two dots, which we shall set to 0

without any loss of generality.

In comparison, there are three allowed orbital states when the electrons form a singlet: the

(1, 1) configuration where each electron inhabits its own dot, and the states where both electrons

share a single dot, namely the (0, 2) and (2, 0) configurations. Here the states are notated by how

many electrons occupy the first and second dot respectively. The (1, 1) state has energy 0, but

the (0, 2) and (2, 0) states each have energy U because they possess a doubly-occupied dot. The

(1, 1) state is connected to both of the other states via tunneling, as 〈1, 1|H|0, 2〉 = −
√

2t. Then

the full singlet Hamiltonian is given by:

HS =


U −

√
2t 0

−
√

2t 0 −
√

2t

0 −
√

2t U

 (1.3)

If U � t, as is generally the case because hopping is exponentially weak, then the ground

state of this matrix has energy J = −4t2/U . Thus, the (1, 1) state can lower its energy by
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slightly mixing with the higher energy states. This difference between the singlet and triplet en-

ergies gives rise to the exchange interaction J , under which electrons in neighboring quantum

dots will slowly exchange spins with one another. This interaction is essential to singlet-triplet

qubits, as discussed above. Because the exchange interaction gives a lower energy to spin sin-

glets, multi-electron states under the Hubbard model generally tend to prefer antiferromagnetic

configurations. However, this is not always the case, as it has been shown that the Hubbard model

will have ferromagnetic ground states under certain specific circumstances, which have come to

be known as Nagaoka ferromagnetism [62] and flatband ferromagnetism [63]. The details for

how this occurs are the topics of chapters 3 and 4 of this thesis.
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Chapter 2: The Valley Problem in Silicon Quantum Dots

2.1 Introduction

Silicon quantum dots have shown to be a promising candidate system for realizing quantum

information technologies due to their long coherence times, fast gate times, potential for scala-

bility, and integration within the current semiconductor industry. Significant progress has been

made in the study of Si-based quantum-dot type qubits either using Si-MOS or Si-Ge devices

including these representative (but by no means exhaustive) recent experimental publications

[10, 11, 52, 53, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. An eventual large-scale quantum

computer will solve problems which no classical digital computers can. One such problem, which

ushered in the modern era of quantum computing, is the Shor algorithm for prime factorization

[21]. This is a problem of great technological interest as it is used in all modern cryptography.

Trying to factorize a 1000-digit number, which classical computers cannot do since the compu-

tation cost is exponential in the number of digits, one may need roughly a million logical qubits.

Since quantum error correction is essential for quantum computing to actually work, each logical

qubit may easily require several thousand physical qubits for its realization, so in the end a hypo-

thetical quantum CPU trying to decisively beat classical computers in doing prime factorization

may require ∼ 1010 physical qubits. Although this sounds like a huge number of qubits, an ordi-

nary CPU chip today may host 1010 transistors or bits. Each of these transistors or classical bits
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is made of silicon, giving Si a huge materials and technological advantage in building a quantum

computer. In this context, it is understandable why there are multiple large groups all over the

world (e.g. INTEL, Princeton, Wisconsin, Sandia, Delft, Sydney, Hefei...) involved in develop-

ing Si-based qubits although in terms of the number of working qubits today, the Si system is

well behind ion trap or superconducting transmon qubits. So far, only 1-4 Si qubits have been

successfully demonstrated in the laboratory.

The physical property being used to create the Si qubit is the electron spin localized within

an effective Si quantum dot near a Si surface or interface with another material, such as Si-SiO2

MOS system or Si-Ge 2D electron system. Since electron spin is by definition a quantum two-

level system, an isolated localized electron spin, if it can be manipulated without much decoher-

ence, is an ideal qubit. Silicon has enormous advantage because electron spins in Si are relatively

long-lived with long spin coherence times even for natural Si, which can be enhanced greatly by

isotopic purification [76]. In addition, two-qubit gates can be implemented by exchange coupling

neighboring localized spins by electrically controlling the tunnel coupling between neighboring

quantum dots, allowing very fast gate operations. Thus, long spin coherence time, fast electro-

static gating, and the existing Si chip technology allowing scaling up in principle make Si-based

quantum information processing extremely attractive. There is however one serious fundamental

problem: valley. Bulk Si has six equivalent conduction band minima, with the ground state of

Si quantum dots having two valleys which are energetically degenerate in the ideal limit. Thus,

ground state Si quantum dot electron spin can in principle be any of the four degenerate spin-

valley states. Typically, there is always some valley splitting associated with the surface/interface

[55, 56], but the magnitude of this valley splitting is uncontrollable and it varies randomly from

dot to dot in essentially a random manner. The valley problem in silicon quantum dots, which has
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received little attention in the literature so far although most researchers in the field recognize its

importance [55, 56, 76, 77, 78, 79, 80, 81], is the topic of the theoretical work in this chapter.

The Si valley problem has mostly been considered in the context of the valley splitting in

the quantum dot qubit being large compared with the qubit temperature (∼ 25-100 mK) so that

the thermal occupancy of the higher valley states remains negligible, enabling a valid two-level

quantum description of the system in terms of only the electron spin states. This is indeed a

serious potential problem as the qubit can no longer be defined if higher valley states are occu-

pied. Therefore, much work has gone into producing Si qubits with large valley splittings through

materials development and improved fabrication as well as on characterizing valley splittings in

individual quantum dots [82, 83, 84, 85, 86, 87, 88, 89] But, this may not be the only problem

when two-qubit gate operations are carried out using inter-qubit exchange coupling. We find that

the relative value of the valley splitting with respect to the exchange coupling becomes an impor-

tant limiting factor even at T = 0 when any valley splitting is by definition much larger than the

temperature. In particular, we find that the valley splitting must be much larger than the inter-

qubit exchange coupling to avoid leakage (i.e. quantum decoherence) for the Si system to operate

as a multi-qubit quantum computing platform, and we also find that even when the valley split-

ting is large, the initialization of the valley states becomes a crucial consideration in multiqubit

gate operations. This problem of valley splitting in the context of multiqubit gate operations as

determined by the exchange coupling between quantum dots has not attracted attention yet in the

literature perhaps because of two reasons: (1) There are very few reports of two-qubit exchange

gate operations in Si quantum dot qubits; (2) the currently achieved values for the exchange cou-

pling are very small so that the condition of a valley splitting being larger than the exchange

energy is automatically satisfied when the valley splitting is larger than temperature. Since the

16



speed of the two-qubit gate operations is determined by the exchange coupling strength, higher

exchange coupling strength is desirable in the future for progress in Si-based quantum comput-

ing, and we want to alert the community that the valley splitting issue is fundamental to two-qubit

gate operations as a totally distinct problem from the one involving thermal occupancies of higher

valley states.

The problem with having multiple valley states is that their presence can lead to leakage

out of the computational space if the valley degeneracy is not adequately broken. Of the six

valley states present in bulk Silicon, four of these decouple when strain is applied to the sample,

but the degeneracy of the final two valley states is broken only by a small valley splitting term

that is dependent on the microscopics of the system[57]. We emphasize that there is no known

way to control this valley splitting in specific qubits, and in fact, one can figure out the size of

the valley splitting only aposteriori. There is no existing in situ sample diagnostics providing the

valley splitting information for the working qubits beforehand. In the current work, we analyze

the effect of valleys on the coupled qubit dynamics, finding that valleys are a much bigger prob-

lem for coupled qubits than has been realized so far, and the valley problem worsens radically as

the number of qubits goes beyond two. In fact, we believe that the Si quantum computing com-

munity should worry about the valley problem now before building circuits with tens of coupled

quantum dots and finding out that they do not work because of the valley problem. The problem

of principle we have uncovered here can be ‘fixed’ by having small exchange coupling (� valley

splitting), but this means that the two-qubit gate operations will remain bounded by the valley

splitting energies.

In this chapter, we use a Hubbard model to determine the dynamics of a system of two

exchange-coupled quantum dots. We show that spin-valley entanglement can easily arise from

17



time evolution of the system, which is detrimental to the use of the system for quantum infor-

mation applications. This can be avoided if the valley splitting is large and electrons can be

initialized to valley eigenstates, and in fact we show that under these conditions the system main-

tains coherence and is unaffected to leading order by the valley degree of freedom. If any electron

begins in a superposition of valley states then spin-valley entanglement will result, but if the val-

ley splitting is sufficiently large, electrons can be properly initialized to the valley ground state

avoiding this situation. However, if the valley splitting is small compared to the exchange inter-

action strength, then an undesirable spin-valley entanglement is more difficult to avoid, as it will

be present unless all electrons are initialized to the same valley state, which is generally difficult

to achieve without a large valley splitting.

Additionally, we show that when the valley splitting is small, the measurement probabil-

ities of a two-qubit system are unaffected and are identical to the corresponding measurement

probabilities in an ideal system without valley degrees of freedom. However, this is not the case

in systems with more than two qubits, and we give examples of gate sequences which give dif-

ferent measurement probabilities in a system with valley states than in an ideal system. Because

valley degeneracy affects larger systems but not two-qubit systems, two-qubit gate fidelities mea-

sured in two-qubit systems may not accurately account for the effects of valley states, as these

effects are only observable in larger system sizes containing more than just two qubits. This last

property we discover has not been mentioned in the literature at all, and there has been a feeling

that if the two-qubit gates work, the valley degeneracy problem is irrelevant. We show that this

is false– one could have perfectly working two-qubit gates, but the system will lose quantum

information through spin-valley entanglement as one scales up to more qubits. This is a very se-

rious issue requiring a resolution before more qubits are added to the circuit. We work at T = 0
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throughout so that the well-understood problem of the thermal occupancy of higher valley states

is a non-issue. We consider the valley degeneracy question only in the context of gate operations

driven by the inter-dot exchange coupling. Just to avoid any misunderstanding, our definition

of ‘large’ and ‘small’ valley splitting is as compared with the inter-dot exchange coupling, and

not compared with temperature as we are at T = 0. Thus, the valley splitting could be large (or

small) for our two-qubit considerations even if it is considered to be small (or large) for thermal

occupancies relevant for single qubit operations. For example, when the exchange coupling is

large, as necessary for fast two-qubit gate operations, the valley splitting for our consideration is

small independent of temperature.

This chapter is organized as follows: in Sec. 2.2, we present our model and give the

Hamiltonian that we use. In Sec. 2.3, we diagonalize the Hamiltonian for a system of two

electrons in two quantum dots, for both triplet and singlet spin configurations. In Sec. 2.4,

we discuss the dynamics of the two-qubit system, first for the case where the valley splitting is

large, then also for the case of small or zero valley splitting. In Sec. 2.5, we give examples of

gate sequences in four-qubit systems where valley effects are observable even when they are not

detectable in the two-qubit situation, and we give our conclusions in Sec. 2.6. The contents of

this chapter have been published in Ref. [90].

2.2 Model and Hamiltonian

The Fermi surface of Silicon contains six electron pockets, leading to a six-fold degeneracy

in the band structure minima. By applying tensile strain to the sample, two of these valleys are

energetically separated from the other four, but remain nearly degenerate to each other. There-
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fore, in addition to its spin, an electron in a Silicon quantum dot will contain a valley quantum

number denoting whether it fills the |+z〉 or |−z〉 valley state. Microscopic features of the sys-

tem introduce a small position-dependent valley splitting. We consider a double quantum dot in

Silicon, which yields the following effective Hubbard Hamiltonian [57, 91, 92]:

H =
∑

s∈{↑,↓}

2∑
j=1

(
∆̃jc

†
j,+z,scj,−z,s + ∆̃∗jc

†
j,−z,scj,+z,s

)
+
ε

2
(n1 − n2) + tc

∑
s∈{↑,↓}

∑
v=±z

(
c†1,v,sc2,v,s + c†2,v,sc1,v,s

)

+
2∑
j=1

U

2
nj(nj − 1) (2.1)

where cj,v,s is the second quantized annihilation operator for dot j, valley state v, and

spin s, and where nj = nj,+z,↑ + nj,+z,↓ + nj,−z,↑ + nj,−z,↓. Here ε is the detuning between

the two quantum dots, tc is the tunneling constant between the two dots, and ∆̃j determines

the valley splitting of dot j. We define U to be the Coulomb energy difference between a dot

occupied by two electrons, and a state with one electron occupying each dot. Thus we use a short-

range Coulomb interaction term which is independent of valley states (including an explicit valley

dependence in the interaction complicates the calculation, but does not affect our conclusion). Let

∆̃j = ∆je
−iφj , where ∆j = |∆̃j|. Define |j±〉 = (|j,+z〉 ± eiφj |j,−z〉)/

√
2. Here |j±〉 are the

eigenstates of a single electron in a single dot j. Then for a single electron in a double-quantum-
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dot, transforming H into the basis {|1+〉 , |1−〉 , |2+〉 , |2−〉} gives the following:

H =



ε/2 + ∆1 0 t+ t−

0 ε/2−∆1 t− t+

t∗+ t∗− −ε/2 + ∆2 0

t∗− t∗+ 0 −ε/2−∆2


(2.2)

where t± = (1 ± eiδφ)tc/2, and δφ = φ2 − φ1. By this definition, t+ is the tunneling

coefficient between the valley ground states of both dots (|1+〉 to |2+〉), or between the valley

excited states of both dots (|1−〉 to |2−〉). t− is the tunneling coefficient between the valley

ground state of one dot and the valley excited state of the other (|1+〉 to |2−〉, or |1−〉 to |2+〉).

Note that while the |−z〉 state can be redefined for a single dot to eliminate the corresponding

φj , the phase difference between two dots δφ is a well-defined quantity. Eq. (2.2) is equivalent

to the two-dot Hamiltonian given in Ref. [57] up to a constant energy shift. We emphasize that

this Hubbard model Hamiltonian describes quantum dot qubit coupling in reasonably realistic

situations [91, 92, 59].

2.3 Diagonalization of Hamiltonian

In order to determine the effects of valley degeneracy and splitting on the exchange cou-

pling between two dots, we consider two electrons in this two-dot system, diagonalizing the

resulting Hamiltonian. We do this separately for the case when the electrons form a spin triplet

and when they form a spin singlet.
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2.3.1 Triplet Spin Configuration

Consider two electrons with a triplet spin configuration. Then due to the Pauli exclusion

principle, the electrons must occupy different orbital or valley states. We will assume that U �

tc,∆j, ε, as the short-range Coulomb interaction energy is the largest energy scale in the system.

Then there are four low energy states: |1+2+〉, |1+2−〉, |1−2+〉, and |1−2−〉 (note that because

we are working entirely within the triplet subspace, we denote states only by their orbital and

valley parts with the understanding that the spin part forms a triplet; explicit definitions of these

states are given in Appendix A). These states couple via tunneling to the two high energy states

|1+1−〉 and |2+2−〉, where the electrons occupy both valley states in a single dot. Perturbation

theory to first order in U−1 gives the following Hamiltonian for the four lowest-energy states after

including the effects of coupling to the two high energy states:

HT =



∆1 + ∆2 − 2|t−|2
U

t−t∗+−t+t∗−
U

t+t∗−−t−t∗+
U

2|t−|2
U

t+t∗−−t−t∗+
U

∆1 −∆2 − 2|t+|2
U

2|t+|2
U

t−t∗+−t+t∗−
U

t−t∗+−t+t∗−
U

2|t+|2
U

−∆1 + ∆2 − 2|t+|2
U

t+t∗−−t−t∗+
U

2|t−|2
U

t+t∗−−t−t∗+
U

t−t∗+−t+t∗−
U

−∆1 −∆2 − 2|t−|2
U


(2.3)

The details of the derivation of Eq. (2.3) are given in Appendix A. Note that to leading

order in ε/U , the four low energy states are independent of ε. This is because ε only affects the

energies of states where both electrons occupy the same dot, and these are already energetically

separated from the other states by the large onsite Coulomb interaction strength U and hence do

not contribute in the leading order. If ε is allowed to be of the same scale as U , as is done in some

experiments to control the exchange interaction, then these results must be adjusted accordingly.
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Specifically where U appears in the denominator of terms in Eq. (2.3) it must be replaced with

U ± ε depending on the which state introduces each term. However for the purpose of this work

we will focus on the situation where ε � U , as is the case in experiments which use barrier

control of the exchange interaction. In order to further study the system dynamics, Eq. (2.3)

must be fully diagonalized. Since this cannot be easily analytically done for arbitrary ∆j and tc,

we instead consider two different limits for small and large ∆j . In the limit where ∆j � t2c/U ,

the matrix in eq. (2.3) is already diagonalized to leading order in t2c/U∆j , and the energies are

given by its diagonal entries. In the limit where ∆j � t2c/U , diagonalizing Eq. (2.3) yields the

following energies:

E1 = −4t2c
U

E2 = −|∆̃1 + ∆̃2|

E3 = 0

E4 = |∆̃1 + ∆̃2| =
√

∆2
1 + ∆2

2 + 2∆1∆2 cos δφ (2.4)

The corresponding eigenstates are given by:

|ψ1〉 =
1√
2tc

(
t− |1+2+〉 − t+ |1+2−〉+ t+ |1−2+〉 − t− |1−2−〉

)
|ψ2〉 =

[ (∆2 + ∆1)t+

2tc|∆̃1 + ∆̃2|
(
|1+2+〉+ |1−2−〉

)
+

(∆2 −∆1)t−

2tc|∆̃1 + ∆̃2|
(
|1+2−〉+ |1−2+〉

)
− 1

2tc

(
t+ |1+2+〉 − t− |1+2−〉+ t− |1−2+〉 − t+ |1−2−〉

)]
|ψ3〉 =

1√
2tc|∆̃1 + ∆̃2|

[
(∆2 −∆1)t−

(
|1+2+〉+ |1−2−〉

)
+ (∆2 + ∆1)t+

(
|1+2−〉+ |1−2+〉

)]
|ψ4〉 =

[ (∆2 + ∆1)t+

2tc|∆̃1 + ∆̃2|
(
|1+2+〉+ |1−2−〉

)
+

(∆2 −∆1)t−

2tc|∆̃1 + ∆̃2|
(
|1+2−〉+ |1−2+〉

)
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+
1

2tc

(
t+ |1+2+〉 − t− |1+2−〉+ t− |1−2+〉 − t+ |1−2−〉

)]
(2.5)

2.3.2 Singlet Spin Configuration

We now repeat the same calculation for a pair of electrons in a singlet spin configuration.

In this case, the same six orbital states as in the triplet case are present, with the addition of

four doubly occupied states |1+��〉, |1−��〉, |2+��〉, and |2−��〉, since both electrons can occupy the

same valley and orbital state. Like above, we apply perturbation theory in U−1, and calculate the

Hamiltonian for the four lowest energy states, yielding:

HS =



∆1 + ∆2 − 2|t−|2+4|t+|2
U −2t−t∗+

U −2t+t∗−
U −2|t−|2

U

−2t+t∗−
U ∆1 −∆2 − 2|t+|2+4|t−|2

U −2|t+|2
U −2t−t∗+

U

−2t−t∗+
U −2|t+|2

U −∆1 + ∆2 − 2|t+|2+4|t−|2
U −2t+t∗−

U

−2|t−|2
U −2t+t∗−

U −2t−t∗+
U −∆1 −∆2 − 2|t−|2+4|t+|2

U


(2.6)

The details of the derivation of Eq. (2.6) are again given in Appendix A. Diagonalizing this

matrix in the limit where ∆j � t2c/U gives the following energies:

E1 = 0

E2 = −4t2c
U
− |∆̃1 + ∆̃2|

E3 = −4t2c
U

E4 = −4t2c
U

+ |∆̃1 + ∆̃2| (2.7)
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The corresponding singlet case eigenstates are precisely the same as for the triplet case

given by Eq. (2.5). Note that E2, E3, and E4 are less than the corresponding triplet energies;

however, E1 is greater than the corresponding triplet energy. In each case, the difference is ±J0,

where J0 = 4t2c/U is the strength of the exchange interaction in an ideal system which does not

have any valley degeneracy.

2.4 System Dynamics

We now investigate the dynamics of a system prepared in a specific initial state and allowed

to evolve under the Hamiltonian for some time t. This is the coupled qubit dynamics under

gate operation, which controls quantum computation. We show that when the initial state is not

prepared with each electron in the same valley state, leakage between valley states will introduce

error. If the valley splitting ∆j is small, this error can occur even if all electrons are initialized

in the valley ground states |j−〉 if the phases φj differ from one another. We first examine the

large valley-splitting limit where ∆j � J0, followed by the small valley-splitting limit where

∆j � J0.

2.4.1 Large Valley Splitting

When ∆j � t2c/U , the system dynamics is determined to leading order by the diagonal

entries of Eqs. (2.3) & (2.6). The off-diagonal elements only affect the energies to order J2
0/∆j .

If the system is prepared in one of the valley eigenstates, there will be an effective exchange inter-

action J+ = 4|t+|2/U for valley states |1+2+〉 and |1−2−〉; and an effective exchange interaction

J− = 4|t−|2/U for valley states |1+2−〉 and |1−2+〉. Thus to leading order in J0/∆j , the presence
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of energetically separated valley states does not affect the dynamics of the system as long as the

initial state is a valley eigenstate.

Since valley eigenstates have trivial dynamics in this regime, we consider a system not

initialized to a valley eigenstate, representing a situation where some valley error has occurred

during initialization. In such a scenario, the time evolution of the system can give rise to spin-

valley entanglement, which will propagate the error to the spin state of the system. Consider,

for example, an initial state where qubit 1 starts in the |1+↑〉 state, but qubit 2 starts in the state

(|2+↓〉+ |2−↓〉)/
√

2. Then after some time t, the system will evolve to:

|Ψ(t)〉 =
1

2
|1+2+〉

(
|T0〉+ eiJ+t |S〉

)
+

1

2
eit(2∆2+

J+−J−
2

) |1+2−〉
(
|T0〉+ eiJ−t |S〉

)
(2.8)

where |T0〉 and |S〉 are the triplet and singlet spin states respectively. Suppose for simplicity

that φ1 = φ2, and thus J− = 0 and J+ = J0. Then the system reaches a maximally entangled

state when J0t = (2k + 1)π for integer k:

|Ψ
((2k + 1)π

J0

)
〉 =

1√
2
|1+2+〉 |↓↑〉

+
1√
2
e

(2k+1)πi
(

2∆2
J0

+ 1
2

cos2 δφ
2

)
|1+2−〉 |↑↓〉 (2.9)

Because the electron in dot 1 was initialized in a valley eigenstate in this example, it remains

in that state throughout the evolution of the system. Thus, the state at any particular point in time

corresponds a point on each of two Bloch spheres which represent the combined spin state (singlet

or triplet) and the valley state of the second electron. This is not a one-to-one correspondence,
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as different entangled states can correspond to the same set of points; nevertheless, it is useful

for visualizing the information stored in the spin and valley states and the entanglement between

them.

In Fig. 2.1, we plot the path |Ψ(t)〉 traces on the two Bloch spheres. The path begins on

the surface of both Bloch spheres, indicating that initial state is separable. As time evolves to

t = π/J0, the path spirals toward the center of both Bloch spheres, indicating maximal spin-

valley entanglement. In general, spin-valley entanglement is detrimental to quantum information

applications, since measuring the spin state without the ability to measure the corresponding

valley state can result in a complete loss of qubit information. Thus it is imperative to initialize

the system in valley eigenstates – otherwise, information will leak out unwittingly through spin-

valley entanglement during the coupled qubit dynamical evolution.

2.4.2 Small Valley Splitting

We now consider a situation where the valley splitting is small compared to the exchange

interaction strength. In this regime the dynamics is dictated by the states and energies in Eqs.

(2.3), (2.5), and (2.6). Because the singlet and triplet spin configurations share the same valley

eigenstates, there is an effective exchange interaction ±J0 depending on the specific valley states

occupied. We show that unless the system is initialized with all electrons occupying the same

valley state, that the time evolution of the coupled system will result in spin-valley entanglement.

Initializing the system in this way is difficult due to the near-degeneracy of the valley states.

Additionally, if the phase difference δφ between dots is nonzero, as is often the case, spin-valley

entanglement will occur even if all electrons are initialized to their individual ground valley states.
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|T0〉

|S〉

|↑↓〉|↓↑〉

|T0〉+i|S〉

|T0〉-i|S〉

|2+〉

|2-〉

|2+〉+|2-〉|2+〉-|2-〉

|2+〉+i|2-〉

|2+〉-i|2-〉

|T0〉+i|S〉

|T0〉-i|S〉

|↑↓〉|↓↑〉 |2+〉+|2-〉|2+〉-|2-〉

|2+〉+i|2-〉

|2+〉-i|2-〉

Figure 2.1: Top: Bloch sphere representation of the spin qubit in the singlet-triplet basis and
valley qubit of the second dot (the first dot will always be in the valley state |1+〉). Bottom: Time
evolution of a state given by eq. (2.8) for t ranging from 0 to π/J0, with ∆2 = 5J0 and φ1 = φ2.
The xy cross-sections of the Bloch spheres are plotted since the state stays entirely within the xy
planes.

In fact, we are not aware of any experimental control capable of tuning the inter-valley phase

difference δφ, which we see as a potential problem requiring a resolution for Si spin qubits to

work in a large circuit with many operational qubits.

To demonstrate the presence of spin-valley entanglement which can arise, consider an ini-

tial state |1+↑2+↓〉. For simplicity, suppose ∆1 = ∆2 = ∆, and suppose there is a nonzero phase
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difference δφ. Then after some time t, the state will evolve to:

|Ψ(t)〉 =
t∗−
2tc
|ψ1〉

(
eiJ0t |T0〉+ |S〉

)
+

t∗+

2
√

2tc

[( tc
|t+|
− 1
)
ei

2|t+|
tc

∆t |ψ2〉

+
( tc
|t+|

+ 1
)
e−i

2|t+|
tc

∆t |ψ4〉
](
|T0〉+ eiJ0t |S〉

)
(2.10)

By definition, 2|t+|/tc = 2 |cos δφ
2
|, which equals |∆̃1 +∆̃2|/∆ when ∆1 = ∆2. In Fig. 2.2

we plot the path on the Bloch sphere drawn out by total spin of |Ψ(t)〉. This path is independent

of the value of ∆, and forms an ellipse confined to the xy-plane. The path given by the valley

states, shown in Fig. 2.3, forms a rose curve which lies in the plane defined by x+ y tan δφ = 1.

Its projection into the xy-plane is a chord of the unit circle, the angle of which is independent

of ∆ and determined solely by δφ. The exact shape of the rose curve is given by the quantity

∆ cos(δφ/2)/J0.

|T0〉+i|S〉

|T0〉-i|S〉

|↑↓〉|↓↑〉

δϕ = 0
δϕ = π/3
δϕ = π/2
δϕ = 2π/3
δϕ = π

Figure 2.2: Time evolution of the spin state given by Eq. (2.10) for t ranging from 0 to 2π/J0

plotted for different values of δφ. The xy cross-section of the Bloch sphere is shown since the
path stays entirely within the xy plane. These paths are independent of ∆.

29



|1+〉|1-〉

|1+〉-i|1-〉

|1+〉+i|1-〉

xy-plane
δϕ = π/3
δϕ = π/2
δϕ = 2π/3
δϕ = π

Δ

J0

cos
δϕ

2
= 0.05

|1+〉
xy-
plane

+z↑

-z↓

Δ

J0

cos
δϕ

2
= 0.1

|1+〉
xy-
plane

+z↑

-z↓

Δ

J0

cos
δϕ

2
= 0.15

|1+〉
xy-
plane

+z↑

-z↓

Figure 2.3: Top Left: Bloch sphere representation of the time evolution of the valley state of dot
1 in Eq. (2.10). The path forms a rose curve which lies within the plane given by x+y tan δφ = 1.
Top Right: Projection of this path into the xy-plane, plotted for different values of δφ. The plot
for the valley state of dot 2 is identical, but reflected vertically. Bottom: Sample rose curves
plotted for values of the quantity ∆ cos(δφ/2)/J0 equal to 0.05, 0.1, and 0.15. The horizontal
axis is the chord plotted in the top right figure, and the dashed circle is the intersection of the
Bloch sphere with the plane x+ y tan δφ = 1.

In general, |Ψ(t)〉 is an entangled state with two exceptions. |Ψ(t)〉 is separable if φ1 = φ2,

as this makes t− = 0 causing the first term in Eq. (2.10) to vanish. |Ψ(t)〉 also becomes separable

when t = kπ/J0 (with integer k), as this causes the spin states in both terms of Eq. (2.10) to

become identical. Conversely, |Ψ(t)〉 becomes a maximally entangled state when δφ = π and

J0t = (2k + 1)π/2, which causes Eq. (2.10) to simplify to the following:

1

2
√

2

(
|1+2+〉 − |1−2−〉

)(
i2k+1 |T0〉+ |S〉

)
+

1

2
√

2

(
|1+2+〉+ |1−2−〉

)(
|T0〉+ i2k+1 |S〉

)
(2.11)
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It is instructive to consider the probability of recovering the initial spin state |↑↓〉 when

measuring the spin of |Ψ(t)〉 after some time (leaving the valley state unmeasured). From Eq.

(2.10), this probability is found to be given by:

P
(
|1+↑2+↓〉 → |↑↓〉

)
=

1

2

(
1 + cos J0t

)
(2.12)

This is precisely the same measurement probability as would result from time evolution in

an “ideal” one-valley system. Differences occur when measuring in a different basis; for example

the probability of obtaining the state (|↑↓〉+ i |↓↑〉)/
√

2 is given by:

P
(
|1+↑2+↓〉 →

|↑↓〉+ i |↓↑〉√
2

)
=

1

2
− 1

2
cos2 δφ

2
sin J0t (2.13)

If φ1 = φ2, meaning the two electrons start in the same valley states, then Eq. (2.13) reduces

to (1 − sin J0t)/2, which is the same result as would be given by an ideal system. However if

δφ = π, then the two electrons start in opposite valley states, and Eq. (2.13) reduces to P = 1/2,

independent of time. In this case when J0t = (2k+ 1)π/2, the probability outcome of measuring

the spin in any basis gives 1/2, as the spin state is maximally entangled with the valley state.

Despite the difference between Eq. (2.13) and the ideal case, spin-valley entanglement is

difficult to observe in a system of two quantum dots. This is because it is difficult to directly mea-

sure in the basis containing the state (|↑↓〉+ i |↓↑〉)/
√

2. Generally, if a quantum algorithm would

require such a measurement, the measurement would be performed by applying a
√
SWAP gate

and then measuring in the z basis, which in an ideal system would produce the same result.

However,
√
SWAP gates are performed via the exchange interaction, which can disentangle a
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spin-valley entangled state. In fact, for two qubits, as long as states are initialized and measured

in the z-basis, valley splitting will not affect the measurement probability to first order in ∆/J0.

This is because the eigenstates given by Eq. (2.5) simultaneously diagonalize both the triplet and

singlet Hamiltonians, Eqs. (2.3) and (2.6). Additionally, the energy difference between the cor-

responding triplet and singlet energies, Eqs. (2.4) and (2.7), is ±J0 for every eigenstate. Simply

measuring in the z-basis cannot distinguish between rotations by +J0 or −J0.

One possible way to make such a distinction between rotations is the following. Start with

a state |ψ1〉, and perform a partial rotation (perhaps 2π/3) via the exchange interaction J0. Then

allow |ψ1〉 through some method to be transformed to any of the other states |ψ2〉 through |ψ4〉.

One way in which this might happen is to let the system precess under the valley splitting, but

with no exchange interaction present (note that in this case ∆ � J0 does not hold). Finally,

complete the initial rotation from the first step. In an ideal one-valley case, the system will have

undergone one complete rotation. However, in a system with valley splitting, the last part of

the rotation will be in the opposite direction as the first part, and thus will not form a complete

rotation. This will affect the measurement probabilities in the z-basis. However, it is not possible

to complete the second step (rotating |ψ1〉 into |ψ2〉) in a system of two qubits while keeping

∆� J0 without adding additional terms to the Hamiltonian.

2.5 Observing Valley Effects in 4-Qubit Systems

In the previous discussion, we demonstrated that despite the spin-valley entanglement that

occurs, the measurement probabilities in the {↑, ↓} basis would be unaffected by the presence of

valley states in a two-dot system. However, we now show that in a 4-dot system this is no longer
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the case. We do this by giving two examples of sequences of operations which will result in a

different measurement probability in a two-valley system than the same operations would in an

ideal one-valley system.

Consider the fully degenerate case where ∆1 = ∆2 = 0 (exactly the same sequences apply

when ∆j are nonzero, but we consider the degenerate case for the sake of simplicity). Time

evolution of the exchange interaction can be used to perform
√
SWAP gates which swap both

the spin and valley states of two electrons in adjacent dots. Consider an array of four quantum

dots prepared in the initial state |↑−↓+↑+↓−〉 (this state is equivalent to |↑+↓+↑+↓+〉 where the

phases φ1 = φ4 = π). Because the phases of ∆j are not easy to control, the phases φj and initial

valley states of each electron are relatively random, and thus there is no way to ensure that the

system begins in the correct valley states. Thus, initial states like what we consider are likely

to occur, and as we shall show, will lead to errors in the computation. In this example we only

consider states with one electron confined to each dot, and therefore omit the dot numbers in

our notation for the sake of notational brevity. Now perform the following operations to obtain

|Ψvalley〉:

|Ψvalley〉 =
√
SWAP23

√
SWAP12

√
SWAP34

×
√
SWAP23 |↑−↓+↑+↓−〉 (2.14)

This sequence of gates is depicted in Fig. 2.4. Then |Ψvalley〉 can be explicitly obtained, and

is given by:

|Ψvalley〉 =
1

4

[
|↑+↑−↓+↓−〉 − i |↑+↑−↓−↓+〉

33



+ 2i |↑−↑+↓+↓−〉+ |↑−↑+↓−↓+〉 − |↑+↓−↑−↓+〉

− i |↑+↓+↑−↓−〉 − i |↑−↓−↑+↓+〉+ |↓+↑−↓−↑+〉

− i |↓+↓−↑−↑+〉+ |↑−↓−↓+↑+〉+ i |↑−↓+↓−↑+〉

+ i |↓+↑−↑+↓−〉+ |↓+↑+↑−↓−〉
]

(2.15)

From this state, we calculate the measurement probability of the second dot being measured

to be spin up, obtaining P (2↑) = 5/8. Now consider the ideal one-valley case, where the same

set of operations are performed on a system of four spins in the same initial spin configuration.

Then the resulting state |Ψideal〉 will be given by:

|Ψideal〉 =
1

4

[
(2 + i) |↑↑↓↓〉 − (1 + 2i) |↑↓↑↓〉+ |↓↑↓↑〉

− i |↓↓↑↑〉+ (1 + i) |↑↓↓↑〉+ (1 + i) |↓↑↑↓〉
]

(2.16)

In the ideal case, the probability of measuring the second spin to be up is P (2↑) = 1/2,

which is different from the case above where two valley states are present. This discrepancy arises

from the fact that in the presence of valley states, there is a distinction between certain states

that would be considered identical in the ideal case (e.g. |↑+↑−↓+↓−〉 and |↑−↑+↓−↓+〉). This

distinction prevents constructive or destructive interference between the states, which influences

the final measurement probabilities (in the ideal case both states are |↑↑↓↓〉 so their amplitudes

should add together). This may have important implications for Si qubits. In order to perform

correct calculations, all dots must be initialized to the same valley state, and the opposite valley

state should be considered a leakage state. The presence of a phase difference between dots
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δφ (leading to a t− term) also introduces leakage into the system. However, the leakage states

behave almost like the ideal states for small systems, and in fact they are indistinguishable for

systems of only two dots, as we have shown in the previous section. This makes errors resulting

from leakage difficult to detect in small systems and small gate sequences. Thus fidelities of

two-qubit gates measured in two-qubit systems may be measured as higher than their true value

in multiqubit circuits, because these measurements cannot account for leakage into other valley

states without applying a larger sequence of gates such as that of Eq. (2.14) to a larger number of

dots.

The sequence of gates given in Eq. (2.14) is a short sequence of gates which yields a

different measurement outcome in an ideal system than in a system with multiple valley states.

This effect is present for any initial state where the electrons with the same spin do not all have the

same valley state. Note that the initial state is dependent on the values of φj , and the only way to

control them is by controlling the valley phase. In Fig. 2.5 we plot the measurement probability

of |2↑〉 versus the value of φ4, with φ1 = φ2 = φ3 = 0. When φ4 also equals 0, the initial valley

states of all electrons are the same, and the measurement probability is the same as in the ideal

case. As φ4 varies away from 0, the measurement probability increases. This sequence of gates

can be used to demonstrate the presence of valley-induced error, as if the state |2↑〉 is measured

with probability greater than 1/2, this is a result of valley-induced error. However this sequence

of gates cannot be used to show the converse in noisy systems, because if |2↑〉 is measured with

probability 1/2, the result is indistinguishable from noise-induced decoherence.

We now give a different sequence of gates which has a measurement probability of 1 in

the ideal case, and thus can be used to demonstrate initialization of electrons in the same valley

state. Consider a ring of 4 quantum dots with the initial state |↑−↓+↑+↓−〉. Perform the following
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Figure 2.4: Quantum circuit depicting the sequence of gates in Eq. 2.14 (top) and Eq. 2.17
(bottom).

sequence of
√
SWAP gates:

|Ψvalley〉 =
√
SWAP23

√
SWAP14

√
SWAP13

×
√
SWAP24

√
SWAP12

√
SWAP34 |↑−↓+↑+↓−〉 (2.17)

For this sequence of gates, |Ψvalley〉 is given by:

|Ψvalley〉 =
1

4

[
|↑+↑−↓−↓+〉 − |↑−↑+↓+↓−〉
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Figure 2.5: Probability that dot 2 will be measured in spin state ↑ after a sequence of gates is
applied to the initial state |↑+↓+↑+↓+〉, with φ1 = φ2 = φ3 = 0. Top Left: The gate sequence
is given by Eq. (2.14) and ∆ = 0. Top Right: The gate sequence is given by Eq. (2.14) and
φ4 = π/2. Bottom Left: The gate sequence is given by Eq. (2.17) and ∆ = 0. Bottom Right:
The gate sequence is given by Eq. (2.17) and φ4 = π/2.

+ |↓+↓−↑−↑+〉 − |↓−↓+↑+↑−〉+ |↑+↓−↓+↑−〉

− |↑−↓+↓−↑+〉 − |↓+↑−↑+↓−〉+ |↓−↑+↑−↓+〉

+ 2 |↓+↑+↓−↑−〉+ 2 |↓−↑−↓+↑+〉
]

(2.18)

The corresponding ideal state |Ψideal〉 is simply:

|Ψideal〉 = |↓↑↓↑〉 (2.19)
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With this sequence of gates, the ideal single-valley case will have measurement probabili-

ties of 100%, but the corresponding two-valley case will only have corresponding measurement

probabilities of 75%, simulating an unknown apparent decoherence although it arises simply from

the inevitable spin-valley entanglement which is omnipresent in the multi-valley qubits. In Fig.

2.5 we again plot the measurement probability of |2↑〉 versus the value of φ4 for this new gate

sequence. When φ4 = 0, the measurement probability is 100% matching the ideal case, but for

nonzero φ4 the measurement probability decreases, allowing the adverse effects of spin-valley

entanglement to be detected. We also plot the measurement probability as a function of ∆, show-

ing that the effective decoherence increases as ∆ increases, provided that ∆ still stays within the

regime ∆� J0.

2.6 Conclusion

We used an effective Hubbard model to investigate the effects of valley states in Silicon

quantum dots in the context of exchange gate operations in multiqubit systems at zero tempera-

ture. We first considered a system of two exchange-coupled quantum dots, and determined the

eigenstates and energies for both the singlet and triplet spin configurations to leading order in

t2c/U . We considered the limits where ∆� J0 and ∆� J0, and found that in both cases the sin-

glet and triplet spin configurations share the same eigenstates, though their energies differ. When

the valley splitting is large, any state not initialized to valley eigenstates will lead to spin-valley

entanglement as the system evolves. However, as long as the valley splitting is large and the

system is initialized to the valley ground state, the evolution of the system will not be affected

to leading order in ∆/J0. Thus valley degrees of freedom are not problematic for exchange gate
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operations as long as the valley splitting ∆ is sufficiently large. For small valley splitting or com-

pletely degenerate valley states, spin-valley entanglement will arise any time the electrons are

not initialized to the same valley state. Without the ability to perform valley state measurements,

spin-valley entanglement will obfuscate any information stored in the electron spin states, mak-

ing it impossible to perform quantum computations in such a state. For a two qubit system with

∆� J0, if all spins are initialized in z-eigenstates and measured in the z-basis, then the resulting

measurement probabilities will be the same as an ideal single-valley system. However, this does

not extend to systems with more qubits, as spin-valley entanglement can introduce errors despite

states being initialized and measured in the z-basis. This means that two-qubit gate fidelities

measured by performing a single gate in a two-qubit system will give deceptively high fidelity

results, because the presence of valley states does not affect the fidelity measurement even though

it can affect operations in systems with more qubits. To demonstrate robustness to spin-valley

entanglement without the ability to measure valley states themselves requires a longer series of

gates in a system with more qubits. We emphasize that our use of the Hubbard model is not

an approximation here since the coupled spin qubit system is indeed equivalent to the Hubbard

model where the Hubbard interaction U is simply related to the exchange coupling J0 between

the dots through U = t2c/J0, where tc is the inter-dot hopping energy from wavefunction over-

lap. Our fundamental finding of an apparent quantum leakage (or effective decoherence) due to

spin-valley entanglement is also independent of additional complications arising from varying

exchange couplings and/or inter-dot hopping through the circuit– all they do is to complicate the

expressions for the leakage, but the basic physics of spin-valley entanglement remains the same.

We note that our considerations on spin-valley entanglement apply equally well to all-

exchange gate operations considered in Ref. [41]– anytime the inter-dot exchange coupling is
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used to carry out gate operations, the valley-spin entanglement (and potential decoherence to

valley states) studied in this work becomes relevant. Right now, the Si qubit platforms have

rather small exchange coupling, and the problem discussed in this work is most likely not crucial

to the current generation of few qubit systems with rather small exchange coupling values. But

faster gate operations in multiqubit circuits will necessitate larger exchange coupling strength in

the future, making our dynamical consideration relevant as one must ensure that not only is the

valley splitting much larger than the electron temperature in the qubits, it is also much larger than

the inter-dot exchange coupling used in the gate operations.

We now critically discuss some aspects and approximations of our theory. First and fore-

most, the subtle physics of valley splitting on two-qubit operations we point out in this work is

completely independent of the already well-known problem associated with valley occupancy in

Si qubits which already necessitates having large valley splittings compared with temperature T .

For our physics, the valley splitting must be much larger than the inter-qubit exchange coupling

J0. Since the current experimentally relevant values of J for existing Si qubits are rather small,

often comparable to (or even smaller than) T itself (although T and J are completely independent

parameters and have nothing to do with each other), it may seem that our theory is not partic-

ularly germane to the current experimental Si qubit activity since the condition for the valley

splitting ∆ being larger than J appears to be automatically satisfied in current devices by having

splitting larger than temperature. This conclusion, however, may be misleading for two reasons.

First, the functional dependence of ‘errors’ introduced by valley spitting in the two situations

are very different: temperature enters exponentially through the thermal occupancy factor e−∆/T

adversely affecting single qubit operations whereas, by contrast, as we show in the current work,

the two-qubit fidelity is adversely affected algebraically by J0/∆. Thus, the same value of ∆ in
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a device may suffice to satisfy the condition e−∆/T � 1 but completely fail to satisfy J0/∆� 1.

This means that for a given set of values of ∆, T , and J0 for a device, it is possible for the val-

ley splitting to be large for high-fidelity single qubit operations (i.e. exponentially low thermal

occupancy) and low fidelity two-qubit operations (as described in our current work) because of

not-so-small values of J0/∆. Considering a device with T = 25 mK, ∆ = 300 mK, J0 = 10 mK,

which are typical numbers, we get e−∆/T ∼ 6 ∗ 10−6 and J0/∆ ∼ 3 ∗ 10−2, implying that while

valley splitting induced single qubit thermal occupancy errors are well below the quantum error

correction threshold, the corresponding two-qubit errors discussed in the current work are not

small enough., being 4 orders of magnitude larger than the one qubit error. The second reason

is that in a many-qubit device, it is always possible to have a particular qubit with a valley split-

ting which is not very large (particularly since there is no automatic way of guaranteeing large

valley splitting in a device), which, as we establish in the current work, will lead to two-qubit

errors which will not directly show up in two-qubit operations. Thus, there is simply no way

to ensure that the problem we describe in the current work is not lurking in a multiqubit device

without going through the full multiqubit characterization as we discuss in this chapter. We also

emphasize that the eventual Si quantum computer will have millions of qubits, and the problem

we have discovered may become crucial in such a large device. It is much better to be aware of

this problem now so that the condition ∆� J0 is satisfied everywhere in order to avoid unknown

two-qubit errors.

The second issue we discuss is our use of the Hubbard model in Eq. (2.1), which may ap-

pear to be a drastic approximation since real Si qubits do not obey the Hubbard model precisely

quantitatively – the applicability or not of the Hubbard model for Si qubits has been discussed

in Ref. [91]. This is, however, not a limitation of the theory at all since the only aspect of the

41



Hubbard model relevant for our theory is the fact that it leads to an inter-dot exchange coupling

(J0 = 4t2c/U ), and in the end, J0 is the parameter to be compared with the valley splitting ∆

to decide whether one is in the large (∆ � J0) or small valley splitting regime. The Hubbard

model allows a straightforward transformation between electrons in the quantum dots and local-

ized Heisenberg spins as 2-level qubit systems, and it enables a full analytical treatment of the

problem. The fully analytical nature of our theory is a particularly attractive feature since it makes

the theory universally applicable to all Si devices in different laboratories– all one needs to do is

to carry out numerical simulations for the specific Si structure to obtain the inter-qubit exchange

coupling. Thus, the Hubbard model description makes our theory universal, and specific devices

can be adapted to the theory by calculating the exchange coupling realistically which must be

done individually for each device.

The most obvious mitigation of the valley degeneracy induced exchange operation prob-

lem described in this work is to have the valley splitting being much larger than the exchange

coupling and initialization of all dots in the lower energy ground valleys, which is guaranteed

if the exchange coupling strength is very small. But for faster exchange gate operations with

larger exchange coupling, other mitigation measures may be necessary. One possibility is car-

rying out measurements as a function of different values of J , enabling a characterization of

whether two-qubit exchange operations are problematic or not because of small valley splitting.

Spin-valley entanglement could be directly observed in a two-qubit system if sufficient control

over the exchange interaction is available such that a time dependent pulse J(t) can be performed

where some part of the pulse J(t) is much smaller than the valley splitting. Another possibility is

measurements using different basis states which may be carried out under some type of random

benchmarking protocols. Adding other terms to the Hamiltonian such as a magnetic field gradi-
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ent may also allow potential spin-valley entanglement to be observed in a two-qubit system with

large and constant J [93]. It may be that carefully crafted gate operations can avoid the entan-

glement problem altogether. Additionally, it may be possible to derive qubit encodings which are

robust to valley effect. These are interesting directions and questions to address in future work.

Our main purpose of this chapter is to alert the community that although it is absolutely necessary

for valley splitting to be much larger than temperature in order to make sure that thermal occu-

pancy of higher valley states does not compromise the qubit fidelity, this by itself is not sufficient

as one must also worry about the relative magnitude of valley splitting and exchange coupling in

order to ensure high-fidelity exchange gate operations even at zero temperature.

In this context it is encouraging that recent experimental work has had considerable success

in consistently achieving large valley splittings [94, 95] although in a many qubit circuit whether

each qubit has large splittings or not still must be determined individually, which makes it a

challenge to scale up to a large qubit system, which is considered one of the key advantages of

Si spin qubits. We conclude by emphasizing that although our work may not be of immediate

relevance to the existing experimental Si qubit circuits mainly because of the few-qubit (1-4)

nature of the current devices and their rather low values of exchange coupling, future Si circuits,

which would hopefully compete with the many-qubit superconducting transmon circuits some

day in the future, would have to incorporate the potential problem we have discovered.
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Chapter 3: Nagaoka Ferromagnetism

3.1 Introduction

John Hubbard introduced the celebrated Hubbard model [58] as a minimal model to study

ferromagnetism in narrow band itinerant electron systems such as Fe, Ni, and Co. The hope was

that the minimal Hubbard model, with just one dimensionless interaction parameter U/t where

U is the on-site interaction (arising from Coulomb repulsion) between two electrons with unlike

spins and t is the nearest-neighbor tunneling associated with kinetic energy, would make the

difficult problem of itinerant electron metallic ferromagnetism tractable and perhaps even exactly

solvable. This early hope of the Hubbard model leading perhaps to an understanding of narrow

band metallic ferromagnetism was echoed in other early publications also [96, 97]. After almost

60 years of extensive research, we still do not have a general solution to the Hubbard model

(except under very restricted conditions, e.g., one dimensional, 1D, systems) and the Hubbard

model has become the archetype underlying the whole subject of strongly correlated materials.

In fact, large teams of computational physicists work on large computers with the single goal

of trying to understand numerically the implications of the Hubbard model in various situations,

and no clear signatures for ferromagnetic ground states in the Hubbard model have emerged from

these extensive numerical calculations [98]. Perhaps the most ironic aspect of the Hubbard model

is that it is now universally accepted to be an excellent model to study antiferromagnetism, local

44



moment formation, and Mott metal-insulator transition in narrow band lattice systems rather than

as a model for metallic ferromagnetism as Hubbard originally dreamed of. Any ferromagnetism

arising within the Hubbard model is fragile and is certainly limited to very narrow parameter

ranges (i.e. band filling and the interaction strength U/t), and it is entirely possible that generic

2D and 3D ferromagnetic systems cannot be described by the Hubbard model at all.

One important early result in this context is the concept of Nagaoka ferromagnetism [62]

which arises naturally in the 2D Hubbard model on square (and other bipartite) lattices under

rather nongeneric and highly restrictive conditions (see, e.g. Refs. [63, 99, 100], and references

therein). This is an exact result which asserts that the 2D Hubbard model doped by precisely

one hole (i.e. one missing electron) away from the half-filling has full ferromagnetism of the

whole system in the thermodynamic limit provided U is infinite. Since the half-filled 2D Hubbard

model is surely not a ferromagnet at any interaction strength, the Nagaoka theorem appears pretty

amazing in the sense that removing just one electron from the system drives the whole ground

state completely ferromagnetic. The theorem derives from the kinetic constraint on the motion

of a hole in the half-filled system in the infinite U limit, leading to the lowest energy state being

the state of all the electrons becoming spin-polarized in order to minimize the kinetic energy

in the strongly interacting limit (where double occupancy is not allowed). As an exact result

Nagaoka ferromagnetism is valid only for U truly infinite. In practice, ferromagnetism still exists

for U larger than some threshold value, and while this value threshold is reasonably small for

small systems (as we show in our results), in the thermodynamic limit, this threshold becomes

so large that Nagaoka’s theorem will not actually apply to physical systems, which have a finite

U . While Nagaoka ferromagnetism is of some theoretical significance because it is an exact

result, it is of no consequence for any experimental situation since creating precisely one hole in
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a thermodynamic system is obviously an impossible constraint (and the infinite interaction limit

is unphysical as well). The very fragile nature of the proof underlying this theorem does not allow

its generalization to a dilute density of holes around half-filling, and Nagaoka ferromagnetism in

its original form [62] is unlikely to be observable experimentally in spite of its theoretical validity.

The question we address in the current work is the relevance of Nagaoka ferromagnetism in

small finite 2D systems, which can be constructed by using semiconductor quantum dots with a

few electrons in it. In such a system, withN electrons inM dots, the effective finite-size Nagaoka

situation is easily achieved by tuning the system to having N = M − 1, assuming each dot to

have one effective orbital energy level with two spin states. Such a scenario was recently achieved

experimentally in Ref. [9], and signatures for ferromagnetism were observed. Our goal in the cur-

rent work is to ask a general theoretical question on the existence or not of ferromagnetic ground

states in small 2D plaquettes made of tunable semiconductor quantum dots: What experimentally

accessible arrangements of a few coupled quantum dots (∼4) with a few electrons would manifest

stable ferromagnetic ground states? It turns out that this question can be answered analytically

for several interesting quantum dot structures which are currently experimentally viable because

of recent advances in control, engineering, and fabrication of coupled semiconductor quantum

dots in the context of developing spin qubits [9, 11, 101, 102, 103, 104, 105, 106, 107].

It was pointed out 25 years ago [59, 60, 61] that semiconductor quantum dot arrays may be

capable of simulating the Hubbard model in finite solid state systems searching for Mott transition

and related strong correlation phenomena. Advances in materials growth and nanofabrication

techniques finally made this idea practical in laboratory settings only in 2017 when Mott physics

in the form of the predicted collective Coulomb blockade [59] was observed in a small linear

array of coupled GaAs quantum dots emulating the Hubbard model [101]. There has been rapid
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recent development in controlling small coupled quantum dot arrays in several laboratories [9, 11,

101, 102, 103, 104], and experimentalists can now study up to 4-9 dots with variable numbers of

electrons per dot along with precise control of coherent electron tunneling between the dots. Our

work, although purely theoretical, is inspired by these developments in the precise experimental

control over small systems of coupled quantum dots. In particular, the recent experimental work

from Delft [9] reporting the observation of Nagaoka ferromagnetism in a 2D square array of

quantum dots has directly motivated our work although our emphasis is on the generality of the

possible emergence of Nagaoka-type ferromagnetism in quantum dot arrays, not describing the

observations in Ref. [9] which require a detailed numerical approach [108].

Electrons in quantum dots interact via the long-range Coulomb interaction, and hence our

model is a generalized or extended Hubbard model which includes both on-site and inter-site

Coulomb interaction. In addition, electrons in quantum dots could, in general, have distant neigh-

bor hopping, not just nearest-neighbor hopping as in the minimal Hubbard model. We therefore

include both nearest-neighbor and next-nearest-neighbor hopping in the theory. One other possi-

ble practical complication, which may be relevant to the experimental quantum dot arrays, is that

each dot may have more than one relevant orbital level, making the system akin to an SU(2n)

Hubbard model where n is the number of orbitals (“quantum dot energy levels”) playing a role in

each dot [109]. In such a situation, the inter-site hopping process could involve inter-orbital hop-

ping also. We neglect this complication and consider a purely SU(2) system with each dot having

just two spin states, assuming the higher orbital levels in each dot to be reasonably high in energy.

This is not an essential approximation, and is done to enable us to carry out our work completely

analytically. In any case, the neglect of higher orbital levels is a well-defined and well-controlled

theoretical approximation since this can always be achieved experimentally by making each dot
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confinement potential sufficiently deep (and keeping the temperature sufficiently low) so that

only the lowest orbital state in each dot is operational in the physics of the system. The finite size

Hubbard model we consider is therefore a generalization of the minimal Hubbard model, and

includes both distant neighbor hopping and inter-site Coulomb interaction, but no higher orbital

physics.

We also should mention here that although the quantum ferromagnetism discussed in our

work is adiabatically connected to the Nagaoka ferromagnetism in the half-filled infinite-U Hub-

bard model with one hole, there are important differences to keep in mind in order to avoid

confusion and misunderstanding. First, our system is a finite 2D plaquette (Fig. 3.1) with 4

dots and 3-5 electrons whereas Nagaoka ferromagnetism is obviously a thermodynamic result.

Second, in our system the interaction could be large, but never infinite, since the infinite-U limit

is unphysical for actual quantum dots. Third, our model being semi-realistic includes distant

neighbor hopping and interaction, so we are considering a generalized and extended Hubbard

model. Fourth, our inter-site tunneling (i.e. the hopping parameter t) matrix element is negative,

not positive as in the original work of Nagaoka. Fifth, because of the small size of our system,

one missing electron (i.e. a hole) corresponds to a finite hole density in contrast to the Nagaoka

situation where the hole density is by definition zero (e.g. 3 electrons in a 2D square with 4 dots

at the corners correspond to one hole in the system, but the hole density is 25%). Thus, the ferro-

magnetism we consider should perhaps be better called “Nagaoka-type ferromagnetism” rather

than just Nagaoka ferromagnetism. The important point is, however, the fact that the quantum

ferromagnetism we predict can be observed experimentally in already existing semiconductor

quantum dot arrays.

The rest of this chapter is organized as follows. In sec. 3.2, we investigate Nagaoka-type
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ferromagnetism by finding the ground states of three electrons in 4-dot plaquettes of various

geometries. In sec. 3.3, we repeat the calculations for a half-filled band (4 electrons) for the same

geometries. In sec. 3.4, we look at the case of one hole in a 5-dot ring, and we summarize our

results in sec. 3.5. The contents of this chapter have been published in Ref. [110].

3.2 Three Electrons in Four Dots

3.2.1 General Model And Method

3.2.1.1 Hamiltonian

We consider a single-band Hubbard model with four sites labeled 1 - 4. We define U0 to be

the onsite interaction energy, Vij to be the Coulomb interaction energy between electrons at sites

i and j, tij to be the hopping term between sites i and j. Because we are considering a single

band model, we are assuming that the difference in orbital levels is much larger than the other

relevant energy levels, namely U0, an assumption that may or may not be true in practice. Then

the Hamiltonian is given by:

H =
∑
i 6=j,α

tij c
†
i,αcj,α +

∑
i

U0 ni↑ni↓ +
∑
i 6=j

Vij
2
ninj (3.1)

where ci,α is the annihilation operator at site i with spin α. Nagaoka’s theorem predicts

ferromagnetism in systems with one hole in a half-filled band with certain geometries where

Nagaoka’s condition holds. The simplest of these systems are a triangle or square plaquette

of three or four sites. However, of particular importance is the sign of the product of hopping

elements around loops t12t23t31. In order for the Nagaoka condition to hold, quantities of this
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form must be positive; however, in reality, this sign is determined by the number of sites in the

loop, and is negative for an odd number of sites. Thus a triangular plaquette with two electrons

does not satisfy the Nagaoka condition, as must be the case since it is well known that the ground

state of two electrons in any potential must necessarily be a singlet. Thus the addition of next

nearest neighbor hopping terms (the dashed lines in fig. 3.1) break the Nagaoka condition and

can potentially destroy ferromagnetism if strong enough. It is interesting to derive a condition

on the relative strengths of the hopping terms that determines whether ferromagnetism exists.

The fact that our hopping parameter is negative compared with the positive hopping used in

the study of the traditional Nagaoka theorem may have implications which should be further

investigated in future works. In fact, Nagaoka’s original proof demands the positivity of the

hopping parameter whereas our work shows that, at least for small system sizes, the theorem

remains valid independent of the sign of hopping. In actual experimental systems, the sign of the

hopping may not be known, but any theoretical modeling of the laboratory system would have

definite signs of the hopping parameter, and our work is in some sense a generalization of the

Nagaoka theorem to negative hopping.

We consider four different geometries with 4 quantum dots: a square, a rectangle, a linear

array, and Y-shaped plaquette, all with and without diagonal hopping terms where applicable.

We note that only the first two satisfy the Nagaoka condition, and only in the absence of the

diagonal hopping, as discussed above. We define a to be the distance between nearest neighbors,

along with b > a in the case of the rectangle, and we define d to be the distance between next

nearest neighbors in each respective geometry. We define Vr to be the Coulomb interaction energy

between electrons separated by a distance r, and tr be the magnitude of the hopping strength

between dots separated by a distance r. U0 will be the onsite interaction energy as defined above.

50



 

a 

a 
d 

4 

3 

1 

2 

a 

b 

d 
4 

3 

1 

2 

a a a 
1 2 3 4 

a 

a a 

d 
1 

2 

4 3 

1, 2:  3, 4: 

5: 
6, 7: 

Figure 3.1: A depiction of the different 4-dot geometries studied in this work, numbered in bold
according to the subsection numbers in which they are discussed. Solid lines depict nearest-
neighbor hopping terms, and dashed lines next nearest neighbor hopping terms, which we con-
sider in some cases. In all cases long-range Coulomb interactions are included.

The bare parameters Vr and U0 are not important by themselves, but rather their differences are

what affect the dynamics of the system, as a uniform shift in all these values will simply cause

a constant shift in total energy, since the number of particles is conserved. Thus we will define

new parameters U and V corresponding to the relevant energy differences, which vary for each

geometry. We will also shift the total energy of the Hamiltonian by a constant such that the lowest

energy configuration of electrons in the absence of tunneling is 0.
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3.2.1.2 Spin 3/2 States

A system of three electrons can have either spin 1/2 or 3/2. To investigate the spin 3/2

states, we merely consider the case where all electrons are spin up, as all other states in the spin

3/2 quartet will be identical, aside from the value of Sz. We define the notation |d1d2d3d4〉 to be

the state where the electron filling of dot i is given by di, where di ∈ {0, ↑, ↓, ��}. Since the Pauli

exclusion principle forbids two spin up electrons from occupying the same orbital state, there are

four possible spin 3/2 states for each value of Sz. For Sz = 3/2, these are:

|↑ ↑ ↑ 0〉 , |↑ ↑ 0 ↑〉 , |↑ 0 ↑ ↑〉 , |0 ↑ ↑ ↑〉 (3.2)

The Hamiltonian is then constructed in this basis and diagonalized to find the eigenstates

and energies. The lowest energy spin 3/2 state is compared to the lowest energy spin 1/2 state to

determine whether the ground state is ferromagnetic. Additionally, for comparison, we calculate

the spin gap ∆, defined to be the energy difference between the two lowest energy spin 3/2 states.

3.2.1.3 Spin 1/2 States

For the spin 1/2 state, we consider the case where two electrons are spin up and one is spin

down. For configurations with at most one electron per site, this gives three states, one of which

is part of the spin 3/2 quartet, and the other two of which have spin 1/2, as follows:

|ψ3/2〉 =
1√
3

(
|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉

)
|ψ+

1/2〉 =
1√
3

(
e

2πi
3 |↑↑↓〉+ |↑↓↑〉+ e

−2πi
3 |↓↑↑〉

)
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|ψ−1/2〉 =
1√
3

(
e
−2πi

3 |↑↑↓〉+ |↑↓↑〉+ e
2πi
3 |↓↑↑〉

)
(3.3)

Define a matrix M such that

|ψ+
1/2〉

|ψ−1/2〉

 = M


|↑↑↓〉

|↑↓↑〉

|↓↑↑〉

 (3.4)

which can be obtained simply by reading off the coefficients of eq. (3.3). Then we have a

total of 8 low-energy spin 1/2 states with Sz = 1/2:

|ψ+
1 ψ

+
2 ψ

+
3 0〉 , |ψ+

1 ψ
+
2 0ψ+

3 〉 , |ψ+
1 0ψ+

2 ψ
+
3 〉 , |0ψ+

1 ψ
+
2 ψ

+
3 〉 ,

|ψ−1 ψ−2 ψ−3 0〉 , |ψ−1 ψ−2 0ψ−3 〉 , |ψ−1 0ψ−2 ψ
−
3 〉 , |0ψ−1 ψ−2 ψ−3 〉

(3.5)

Here ψij refers to the state of the jth spin of |ψi1/2〉 defined as in eq. (3.3). For example, the

state |ψ+
1 0ψ+

2 ψ
+
3 〉 = 1√

3
(e

2πi
3 c†1↑c

†
3↑c
†
4↓ + c†1↑c

†
3↓c
†
4↑ + e

−2πi
3 c†1↓c

†
3↑c
†
4↑) |0〉. There are also 12 high

energy states, corresponding to all permutations of |��↑ 0 0〉. These states only affect the energies

to order t2/U . Since Nagaoka’s theorem applies only in the infinite U limit, we will initially

consider only the low energy states, and afterward calculate corrections to order t2/U .

Nagaoka ferromagnetism occurs because as a hole tunnels around a loop, it causes the other

electron spins in the loop to be cyclically shifted one position. In the ferromagnetic state, all spins

point in the same direction, and thus cycling them does not change the spin configuration. At a

lower total spin, however, there is a mixture of up and down spins, and thus cycling them will
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have some effect such as rotating one spin configuration into another or adding a phase, which can

potentially increase the energy of the state with lower total spin. In our calculation, we see this

effect when calculating the matrix elements ofH between states where one electron has tunneled.

If the two dots where the tunneling occurred are in consecutive order, then the spins remain in

the same order, and the matrix element is given by the corresponding term in the Hamiltonian, as

in the following example:

〈s1s2s30|H |s′1s′20s′3〉 = −tδs1s′1δs2s′2δs3s′3 (3.6)

and thus matrix elements between ψi can be found via:

〈ψi1ψi2ψi30|H |ψj1ψ
j
20ψj3〉 =

(
M∗(−t)MT

)
ij

= −tδij (3.7)

and similarly for all other states of this form. However, if the dots are not in consecutive

order, such as for example hopping between dots 1 and 4, then the spins can potentially be

rearranged:

〈s1s2s30|H |0s′1s′2s′3〉 = −tδs2s′1δs3s′2δs1s′3 (3.8)

and therefore:

〈ψi1ψi2ψi30|H |0ψj1ψ
j
2ψ

j
3〉 = −t

[
M∗


0 1 0

0 0 1

1 0 0

MT

]
ij
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=

−te
−2πi

3 0

0 −te 2πi
3


ij

(3.9)

3.2.1.4 Finite U Corrections

For several of the geometries, we also determine the leading order corrections to E1/2 for

U � t but not infinite. This is done using perturbation theory, but is complicated by the fact

that the spin 1/2 states are often degenerate. We determine the matrix elements of H between

the lowest energy spin 1/2 states, which we denote |Ψi
1/2〉 and the high energy (2, 1, 0, 0) states,

which we denote |Φi〉 and order as follows:

|�� 0 ↑ 0〉 , |0 �� 0 ↑〉 , |↑ 0 �� 0〉 , |0 ↑ 0 ��〉 ,

|��↑ 0 0〉 , |�� 0 0 ↑〉 , |0 ��↑ 0〉 , |↑�� 0 0〉 ,

|0 0 ��↑〉 , |0 ↑�� 0〉 , |↑ 0 0 ��〉 , |0 0 ↑��〉 ,

(3.10)

We define the matrices T and Λ as follows:

Tij = 〈Φi|H |Ψj
1/2〉 (3.11)

Λij = 〈Φi|H |Φj〉 (3.12)

Note that Λ is diagonal to leading order in t/U , and is given simply by the energies of |Φi〉.

Then the corrections to the singlet state energies to order t2/U are given by the eigenvalues of

the matrix −T †Λ−1T .
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3.2.2 Ground State Calculations

3.2.2.1 Square with no Diagonal Hopping

We initially consider a system of four dots in a square, where tij and Vij are given as

follows:

tij =


−ta if i− j = ±1 mod 4

0 otherwise

(3.13)

Vij =


Va if i− j = ±1 mod 4

Vd if i− j = 2 mod 4

(3.14)

Up to symmetry, three different electron configurations are possible:

(1, 1, 1, 0) with energy: 2Va + Vd

(2, 0, 1, 0) with energy: U0 + 2Vd

(2, 1, 0, 0) with energy: U0 + 2Va (3.15)

We shift the total energy of the Hamiltonian by a constant amount 2Va + Vd, and define U

and V as:

U ≡ U0 − 2Va + Vd

V ≡ Va − Vd (3.16)

so that the energies of the three electron configurations in eq. (3.15) become 0, U , and
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U + 2V respectively. Then the spin 3/2 Hamiltonian in the basis given by eq. (3.2) is:

H3/2 = −ta



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


(3.17)

which has ground state Ψ3/2 = 1
2
(1 1 1 1)T and energy E3/2 = −2ta. The first excited spin

3/2 state has energy 0, so the spin gap is ∆ = 2ta.

We now find the spin 1/2 Hamiltonian. From eq. (3.9), a phase is introduced when tunnel-

ing the hole around the loop. Thus the spin 1/2 Hamiltonian is given by a block diagonal matrix

consisting of two blocks, corresponding to ψ±1/2 as defined in eq. (3.3):

H±1/2 = −ta



0 1 0 e∓
2πi
3

1 0 1 0

0 1 0 1

e±
2πi
3 0 1 0


(3.18)

which has ground states given by:

Ψ±1/2 =
1

2

[
|ψ±1 ψ±2 ψ±3 0〉+ e±

πi
6 |ψ±1 ψ±2 0ψ±3 〉

+ e±
πi
3 |ψ±1 0ψ±2 ψ

±
3 〉 ± i |0ψ±1 ψ±2 ψ±3 〉

]
(3.19)

with energy E±1/2 = −
√

3ta. Thus in the infinite U limit, the system exhibits ferromag-
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netism, since the spin 3/2 state has lower energy.

0.5 1.0 1.5 2.0
Va/ta

19.0

19.5

20.0

20.5

U0
crit/ta

Figure 3.2: U crit
0 versus Va for three electrons in a four-dot square configuration. Here Vd =

Va/
√

2.

We also determine the finite U corrections to E1/2. Since there are two degenerate spin 1/2

states, −T †Λ−1T is a 2× 2 matrix, given by:

− T †Λ−1T =
[
− 3

t2a
U
− 2

t2a
U + 2V

]1 0

0 1

 (3.20)

Hence we find that the Ψ±1/2 degeneracy remains unbroken, and the spin 1/2 ground state

energy is given by:

E1/2 = −
√

3ta − 3
t2a
U
− 2

t2a
U + 2V

+O
( t3a
U2

)
(3.21)

Then for V → 0, we recover a correction of −5t2a/U , agreeing with the result given in
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10 15 20 25 30
U0/ta

-2.2
-2.1
-2.0
-1.9
-1.8
E/ta

E3/2

E1/2 (Va=0)

E1/2 (Va=2ta)

E1/2 (Va=5ta)

Figure 3.3: E3/2 and E1/2 versus U0 for different values of Va for three electrons in a four-dot
square configuration. The point where E3/2 and E1/2 cross is U crit

0 . Here Vd = Va/
√

2.

Ref. [9]. Using this result, we can derive the value Ucrit (to first order in ta/U ) which marks the

transition between the ferromagnetic and antiferromagnetic phases:

Ucrit =
1

2(2−
√

3)

[
− 2(2−

√
3)V + 5ta+

√
(2(2−

√
3)V − 5ta)2 + 24(2−

√
3)V ta

]
(3.22)

For V → 0, this gives Ucrit = 5ta/(2−
√

3) ≈ 18.7ta. From this point we use eq. (3.16) to

find the raw parameter value U crit
0 as a function of Va and Vd, plotting the result in fig. 3.2, with

Vd = Va/
√

2. In fig. 3.3 we also plot the energies E3/2 and E1/2 at different values of Va as a

function of U0. These figures demonstrate that the value of U0 which marks the transition between

ferromagnetism and antiferromagnetism increases as the strength of the long-range Coulomb

interaction Va increases. This is because increasing Va decreases the effective value of U defined
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by eq. (3.16), which in tun increases the magnitude of the second order corrections in eq. (3.21).

This means that the transition to an antiferromagnetic ground state will occur at a higher value of

U0.

3.2.2.2 Square with Diagonal Hopping

We now investigate how diagonal hopping terms effect the system. We use the same square

configuration of four dots, but now add extra hopping terms t13 = t31 = t42 = t24 = −td. We

again define U and V as in equation (3.16). The analysis for the spin 3/2 states is similar to

above, except there are now extra matrix elements corresponding to td. These will be positive

rather than negative as an extra minus sign is introduced due to Fermi statistics, since diagonal

tunneling essentially exchanges two electrons. We emphasize that this sign difference originates

from multi-electron effects. The single-particle hopping matrix elements have the same sign:

〈0| c2|H|c†1 |0〉 = −ta and 〈0| c3|H|c†1 |0〉 = −td. Thus there is no physical difference between

nearest neighbor and next-nearest neighbor hopping. The sign difference arises as a result of the

anticommutativity of the creation and annihilation operators when considering the multi-electron

wavefunctions: 〈0| c4c3c2|H|c†1c
†
3c
†
4 |0〉 = −ta but 〈0| c4c3c2|H|c†1c

†
2c
†
4 |0〉 = +td. Then the spin

3/2 Hamiltonian is given as follows:

H3/2 =



0 −ta td −ta

−ta 0 −ta td

td −ta 0 −ta

−ta td −ta 0


(3.23)
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which has ground state Ψ3/2 = 1
2
(1 1 1 1)T and energy E3/2 = −2ta + td. The first excited

state has energy −td, so the spin gap is ∆ = 2ta − 2td.

The analysis for the spin 1/2 states is also similar to the square model, with again the only

difference in the infinite U limit being the diagonal hopping terms td. Then a calculation similar

to eq. (3.9) yields:

〈ψi1ψi2ψi30|H |ψj10ψj2ψ
j
3〉 =

 0 tde
−2πi

3

tde
2πi
3 0


ij

〈ψi1ψi20ψi3|H |0ψ
j
1ψ

j
2ψ

j
3〉 =

 0 tde
2πi
3

tde
−2πi

3 0


ij

(3.24)

Thus diagonal hopping rotates |ψ+
1/2〉 into |ψ−1/2〉 and vice versa. Then H1/2 is no longer

block-diagonal, and is given by:

H1/2 =



0 −ta 0 −tae
−2πi

3 0 0 tde
−2πi

3 0

−ta 0 −ta 0 0 0 0 tde
2πi
3

0 −ta 0 −ta tde
−2πi

3 0 0 0

−tae
2πi
3 0 −ta 0 0 tde

2πi
3 0 0

0 0 tde
2πi
3 0 0 −ta 0 −tae

2πi
3

0 0 0 tde
−2πi

3 −ta 0 −ta 0

tde
2πi
3 0 0 0 0 −ta 0 −ta

0 tde
−2πi

3 0 0 −tae
−2πi

3 0 −ta 0



(3.25)

which has two degenerate ground states with energy E1/2 = −
√

3t2a + t2d. Thus, in the
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infinite U limit, E3/2 < E1/2 as long as td < ta/4, and thus ferromagnetism only exists for

td < ta/4, as demonstrated in fig. 3.4. This crossover point must exist somewhere, as the limiting

cases are a square with no diagonal hopping which exhibits ferromagnetism under Nagaoka’s

theroem, and a complete graph, which exhibits antiferromagnetism.

0.1 0.2 0.3 0.4 0.5
td/ta

-2.0

-1.5

-1.0

-0.5

E/ta

E3/2

E1/2

Figure 3.4: Plot of E3/2 and E1/2 versus td/ta for three electrons in a four-dot square configu-
ration with diagonal hopping in the infinite U limit. We see that ground state ferromagnetism is
only possible for td < ta/4.
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3.2.2.3 Rectangle with no Diagonal Hopping

We now model a rectangular configuration of four dots. This will be similar to the square

model, except tij and Vij are given by:

tij =



−ta if {i, j} = {1, 2} or {3, 4}

−tb if {i, j} = {2, 3} or {1, 4}

0 otherwise

(3.26)

Vij =



Va if {i, j} = {1, 2} or {3, 4}

Vb if {i, j} = {2, 3} or {1, 4}

Vd if i− j = ±2

(3.27)

Without loss of generality, we will assume b > a, and thus ta > tb and Va > Vb. We note

that up to symmetry the following four electron configurations are possible:

(1, 1, 1, 0) with energy: Va + Vb + Vd

(2, 0, 1, 0) with energy: U0 + 2Vd

(2, 0, 0, 1) with energy: U0 + 2Vb

(2, 1, 0, 0) with energy: U0 + 2Va (3.28)
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We shift the total energy by Va + Vb + Vd, and define U , V , and W as:

U ≡ U0 − Va − Vb + Vd

V ≡ Va − Vd

W ≡ Vb − Vd (3.29)

so that the energies of the electron configurations in eq. (3.28) become 0, U , U + 2W ,

U + 2V respectively. The analysis for the spin 3/2 states is identical to the square model, except

that care must be taken to distinguish between ta and tb. Thus we construct the Hamiltonian:

H3/2 =



0 −ta 0 −tb

−ta 0 −tb 0

0 −tb 0 −ta

−tb 0 −ta 0


(3.30)

which has ground state Ψ3/2 = 1
2
(1 1 1 1)T and energy E3/2 = −ta − tb. The first excited

state has energy −ta + tb, so the spin gap is ∆ = 2tb.

The analysis for the spin 1/2 states is also similar to the square model, with again the only

difference in the infinite U limit being the the second hopping strength tb. Then the spin 1/2
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Figure 3.5: Plot of E3/2 and E1/2 versus tb/ta for three electrons in a four-dot rectangular config-
uration with no diagonal hopping in the infinite U limit.

Hamiltonian is given by:

H±1/2 =



0 −ta 0 −tbe∓
2πi
3

−ta 0 −tb 0

0 −tb 0 −ta

−tbe±
2πi
3 0 −ta 0


(3.31)

which has energy E±1/2 = −
√
t2a + tatb + t2b , and ground state given by:

Ψ±1/2 =
1

2

[
|ψ±1 ψ±2 ψ±3 0〉+ e±iϕ |ψ±1 ψ±2 0ψ±3 〉

+ e±i
π
3 |ψ±1 0ψ±2 ψ

±
3 〉+ e±i(ϕ+π

3
) |0ψ±1 ψ±2 ψ±3 〉

]
(3.32)

where ϕ ≡ arctan
√

3tb
2ta+tb

. Thus, three electrons in four dots arranged in a rectangular
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configuration will exhibit ferromagnetism for large U , regardless of the ratio of ta and tb, as

shown in fig. 3.5. This is assuming that there is no diagonal hopping, an assumption that may

break down for extreme ratios of ta to tb.

0.0 0.2 0.4 0.6 0.8 1.0
tb/ta

20

40

60

80

Ucrit/ta

Figure 3.6: Plot of Ucrit versus tb/ta for three electrons in a four-dot rectangular configuration
with V = W = 0.

The procedure for calculating the finite U corrections to E±1/2 is also similar to the square

model. We calculate −T †Λ−1T like before, obtaining:

− T †Λ−1T

=
−t2a − tatb − t2b

U

 1 e
−iπ

3
−iϕ cos 3ϕ

e
iπ
3

+iϕ cos 3ϕ 1


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Figure 3.7: Plot of E3/2, E1/2, and the nearly-degenerate excited state energy Eex
1/2 versus U for

three electrons in a four-dot rectangular configuration with no diagonal hopping with tb/ta = .8
(Top) and tb/ta = .2 (Bottom). Here V = W = 0.

− t2a
U + 2W

 1 e
−iπ

3
−iϕ cosϕ

e
iπ
3

+iϕ cosϕ 1



− t2b
U + 2V

 1 −e−iπ3 −iϕ cos(ϕ− π
3
)

−e iπ3 +iϕ cos(ϕ− π
3
) 1


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(3.33)

The off-diagonal terms break the |Ψ+
1/2〉 , |Ψ

−
1/2〉 degeneracy, with the lower energy state

given by:

|Ψ1/2〉 =
1√
2

[
|Ψ+

1/2〉+ e
iπ
3

+iϕ |Ψ−1/2〉
]

(3.34)

and thus, the energy of the lowest energy state is:

E1/2 = −
√
t2a + tatb + t2b −

t2a + tatb + t2b
U

(1 + cos 3ϕ)

− t2a
U + 2W

(1 + cosϕ)− t2b
U + 2V

(1− cos(ϕ− π

3
)) (3.35)

In fig. 3.6, we plot the cutoff value of U such that ground state ferromagnetism is present

Ucrit against the ratio of tb to ta. For small tb, we find that the required onsite interaction energy

grows very large, and thus while ground state ferromagnetism is present for any size rectangle in

the infinite U limit, there will be some practical limit to the size of the rectangle in experimental

systems where U will be finite. This effect is demonstrated in fig. 3.7, where the crossover point

between E1/2 and E3/2 moves far to the right for smaller tb due to how close the energies become

in the infinite U limit.

3.2.2.4 Rectangle with Diagonal Hopping

We now address the case of diagonal hopping in a rectangular system. We define ta and

tb as in eq. (3.26), and let the diagonal hopping term be given by td. We assume ta > tb > td.

We shift the total energy by Va + Vb + Vd, as in the rectangular case, and define U , V , W as in
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equation (3.29).

The analysis for the spin 3/2 states is similar to above. Thus we construct the Hamiltonian:

H3/2 =



0 −ta td −tb

−ta 0 −tb td

td −tb 0 −ta

−tb td −ta 0


(3.36)

which has ground state Ψ3/2 = 1
2
(1 1 1 1)T and energy E3/2 = −ta − tb + td. The first

excited state has energy −ta + tb − td, so the spin gap is ∆ = 2tb − 2td.

The analysis for the spin 1/2 states is also similar to above. Then H1/2 is given by:

H1/2 =



0 −ta 0 −tbe
−2πi

3 0 0 tde
−2πi

3 0

−ta 0 −tb 0 0 0 0 tde
2πi
3

0 −tb 0 −ta tde
−2πi

3 0 0 0

−tbe
2πi
3 0 −ta 0 0 tde

2πi
3 0 0

0 0 tde
2πi
3 0 0 −ta 0 −tbe

2πi
3

0 0 0 tde
−2πi

3 −ta 0 −tb 0

tde
2πi
3 0 0 0 0 −tb 0 −ta

0 tde
−2πi

3 0 0 −tbe
−2πi

3 0 −ta 0



(3.37)

which has a nondegenerate ground state with energyE1/2 = −
√
t2a + t2b + t2d + tatb + tatd − tbtd.

From this, it is easy to show that in the infiniteU limit,E3/2 < E1/2 as long as td < tatb/(3ta+tb).
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3.2.2.5 Linear Array of Four Dots

We also model a linear array of four dots. This will be similar to the square model, except

t14 = t41 = 0, and Vij is given by:

Vij =



Va if i− j = ±1

V2a if i− j = ±2

V3a if i− j = ±3

(3.38)

We note that up to symmetry, the following electron configurations are possible:

(1, 1, 0, 1) with energy: Va + V2a + V3a

(1, 1, 1, 0) with energy: 2Va + V2a

(2, 0, 0, 1) with energy: U0 + 2V3a

(2, 0, 1, 0) with energy: U0 + 2V2a

(2, 1, 0, 0) with energy: U0 + 2Va (3.39)

We shift the total energy by Va + V2a + V3a, and define U , V , and W as:

U ≡ U0 − Va − V2a + V3a

V ≡ Va − V3a

W ≡ V2a − V3a (3.40)
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so that the energies of the electron configurations in eq. (3.39) become 0, V , U , U + 2W ,

U + 2V respectively. The analysis for the spin 3/2 states is identical to the square model, except

that some states have an extra energy V , and no hopping is permitted between dots 1 and 4. Thus

we construct the Hamiltonian:

H3/2 =



V −ta 0 0

−ta 0 −ta 0

0 −ta 0 −ta

0 0 −ta V


(3.41)

which has a nondegenerate ground state with energy:

E3/2 = (V − ta −
√

(V + ta)2 + 4t2a)/2 (3.42)

and ground state given by:

Ψ3/2 =
1

√
2
√

1 +
(V−E3/2)2

t2a



1

(V − E3/2)/ta

(V − E3/2)/ta

1


(3.43)

For convenience, we define A(V, t) and B(V, t) from eq. (3.43) above such that Ψ3/2 =

(A B B A)T . The first excited state has energy (V + ta −
√

(V − ta)2 + 4t2a)/2, and so the spin

gap is given by the difference of this energy and E3/2.

In the square model without diagonal hopping, the only difference between the spin 3/2
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and spin 1/2 subspaces in the infinite U limit is in the hopping term between dots 1 and 4. Since

this term no longer exists in the linear model, we find that the spin 1/2 Hamiltonian is simply

two exact copies of the spin 3/2 Hamiltonian, H±1/2 = H3/2, and thus the ground state energy

E±1/2 = E3/2, as well. Thus for finite U , the system cannot exhibit ferromagnetism, since the

finite U corrections will lower the energy of the spin 1/2 states, as shown in fig. 3.8.

20 40 60 80 100
U/ta

-2.0

-1.5

-1.0

-0.5

E/ta

E3/2

E1/2

E1/2
ex
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U/ta

-2.0

-1.5

-1.0

-0.5

E/ta

E3/2

E1/2

E1/2
ex

Figure 3.8: Plot of E3/2, E1/2 and Eex
1/2 versus U for three electrons in a four-dot linear array for

V = 0 (Top) and V = 5ta (Bottom). Here W = V/4.
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We repeat the procedure discussed above to calculate the finite U corrections to E±1/2. Then

−T †Λ−1T is given by:

− T †Λ−1T

=

[
−B2t2a
U

− ((A+B)2 + A2)t2a
U + 2W

− 2A2t2a
U + 2V

]2 1

1 2


(3.44)

The off-diagonal terms break the |Ψ+
1/2〉 , |Ψ

−
1/2〉 degeneracy, with the lower energy state

given by:

|Ψ1/2〉 =
1√
2

[
|Ψ+

1/2〉+ |Ψ−1/2〉
]

(3.45)

which corresponds to the spin configuration:

1√
6

[
− |↑↑↓〉+ 2 |↑↓↑〉 − |↓↑↑〉

]
(3.46)

This spin configuration is the spin 1/2 state which maximizes overlap with the alternating

spin configuration |↑↓↑〉, and so the ground state of 3 electrons in a linear array of 4 dots is an

antiferromagnet. The ground state energy is given by:

E1/2 =
V − ta −

√
(V + ta)2 + 4t2a
2

− 3t2a

[
B2

U
+

((A+B)2 + A2)

U + 2W
+

2A2

U + 2V

]
(3.47)
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3.2.2.6 Y-Shaped Configuration

We now model a Y-shaped configuration of four dots. We will let dots 2 through 4 be

positioned at the corners of an equilateral triangle, and dot 1 be at the center, with hopping terms

only between a corner dot and the center dot. Then tij and Vij are given by:

tij =


−ta if i or j = 1

0 otherwise

(3.48)

Vij =


Va if i or j = 1

Vd otherwise

(3.49)

Then up to symmetry, the following electron configurations are possible:

(0, 1, 1, 1) with energy: 3Vd

(1, 1, 1, 0) with energy: 2Va + Vd

(0, 2, 1, 0) with energy: U0 + 2Vd

(2, 1, 0, 0) with energy: U0 + 2Va

(1, 2, 0, 0) with energy: U0 + 2Va (3.50)

We shift the total energy by 3Vd, and define U and V as:

U ≡ U0 − Vd
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V ≡ Va − Vd (3.51)

so that the energies of the electron configurations in eq. (3.50) become 0, 2V , U , U + 2V ,

U + 2V respectively. Using the same methods as above, we construct the spin 3/2 Hamiltonian:

H3/2 =



2V 0 0 −ta

0 2V 0 ta

0 0 2V −ta

−ta ta −ta 0


(3.52)

which has a nondegenerate ground state with energy:

E3/2 = V −
√
V 2 + 3t2a (3.53)

given by:

Ψ3/2 =
1√

3 + 9t2a
E2

3/2



1

−1

1

3ta/(−E3/2)


(3.54)

The first excited state has energy 2V , and so the spin gap is given by the difference 2V −

E3/2.

For the spin 1/2 case, in the infiniteU limit, the Hamiltonian separates into a block-diagonal
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matrix with two blocks, where the basis for each block is given by:

|ψ±1 ψ±2 ψ±3 0〉 , |ψ∓1 ψ∓2 0ψ∓3 〉 , |ψ±1 0ψ±2 ψ
±
3 〉 , |0ψ±1 ψ±2 ψ±3 〉 (3.55)

In this basis, the two blocks of the spin 1/2 Hamiltonian H±1/2 are given by:

H±1/2 =



2V 0 0 −tae∓
2πi
3

0 2V 0 tae
∓ 2πi

3

0 0 2V −ta

−tae±
2πi
3 tae

± 2πi
3 −ta 0


(3.56)

which is identical to H3/2 up to a phase redefinition of some of the states. Therefore in the

infinite U limit, E±1/2 = E3/2, and thus for finite U , the system cannot exhibit ferromagnetism,

since the finite U corrections will lower the energy of the spin 1/2 states.

3.2.2.7 Y-Shaped Configuration With N.N.N. Hopping

We now add a next nearest neighbor hopping term td between the outer corners of the

Y-shaped configuration. Then tij is given by:

tij =


−ta if i or j = 1

−td otherwise

(3.57)

The same electron configurations as in eq. (3.50) above are possible. We again shift the

total energy by 3V2, and define U and V as in eq. (3.51). Using the same methods as above, we
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construct the Hamiltonian:

H3/2 =



2V −td td −ta

−td 2V −td ta

td −td 2V −ta

−ta ta −ta 0


(3.58)

which has a nondegenerate ground state with energy:

E3/2 = V + td −
√

(V + td)2 + 3t2a (3.59)

The first excited state has energy 2V − td.

We construct the spin 1/2 Hamiltonian in the basis given by eq. (3.5) as follows:

H1/2 =



2V −td 0 −tae
−2πi

3 0 0 tde
−2πi

3 0

−td 2V −td 0 0 0 0 tae
2πi
3

0 −td 2V −ta tde
−2πi

3 0 0 0

−tae
2πi
3 0 −ta 0 0 tae

2πi
3 0 0

0 0 tde
2πi
3 0 2V −td 0 −tae

2πi
3

0 0 0 tae
−2πi

3 −td 2V −td 0

tde
2πi
3 0 0 0 0 −td 2V −ta

0 tae
−2πi

3 0 0 −tae
−2πi

3 0 −ta 0



(3.60)

This matrix has two degenerate ground states with energy given by the smallest root of a
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cubic polynomial P (E1/2) = 0, where P (E) is given by:

P (E) = E3 − 4V E2 + (−3t2a − t2d + 4V 2)E + 6t2aV

(3.61)

To compare E1/2 with E3/2, one can show that P (E3/2) > 0 for 0 < td < ta. This implies

that there must be a root of P (E) which lies to the left of E3/2, and thus E1/2 < E3/2. Therefore

the ground state is not ferromagnetic.

3.2.3 Summary

Sec. dot n.n.n. E3/2 E1/2 Spin Ferro-
num. config. hopping for U →∞ gap magnetism?

1 square no −2ta −
√

3ta 2ta yes
2 square yes −2ta + td −

√
3t2a + t2d 2ta − 2td if td < ta/4

3 rectangle no −ta − tb −
√
t2a + tatb + t2b 2tb yes

4 rectangle yes −ta − tb + td −

√
t2a + t2b + t2d

+tatb + tatd − tbtd
2tb − 2td if td < tatb

3ta+tb

5 linear no 1
2

(
V − ta

−
√

(V + ta)2 + 4t2a

)
1
2

(
V − ta

−
√

(V + ta)2 + 4t2a

)
∆lin no

6 Y-shaped no V −
√
V 2 + 3t2a V −

√
V 2 + 3t2a 2V − E3/2 no

7 Y-shaped yes
V + td
−
√

(V + td)2 + 3t2a
given by P (E1/2) = 0

2V − td
−E3/2

no

Table 3.1: A summary of the analytical results obtained for three electrons in four-dot plaquettes
of various geometries. Here V is given by V = Va − V3a in sec. 5, and V = Va − Vd for sec. 6
and 7. ∆lin and P (E1/2) are given by: ∆lin = ta + 1

2

(√
(V + ta)2 + 4t2a −

√
(V − ta)2 + 4t2a

)
,

P (E1/2) = E3
1/2 − 4V E2

1/2 + (−3t2a − t2d + 4V 2)E1/2 + 6t2aV

We have explored many different plaquette geometries in the presence of long-range Coulomb

interactions, with and without next nearest neighbor hopping. We have found that in these sys-

tems, Nagaoka ferromagnetism is robust to the presence of long-range Coulomb interactions,

78



and is present even if the plaquette is rectangular rather than square. We argued that next nearest

neighbor hopping can destroy Nagaoka ferromagnetism, and derived conditions for the value of

td where this transition occurs for both the square and rectangular geometries. for complete-

ness, we showed that other geometries such as a linear array and Y-shaped configuration have an

antiferrromagnetic ground state. We present these findings in table 3.1.

3.3 Four Electrons In Four Dots

3.3.1 General Method

We now consider a half-filled band consisting of four electrons and four dots in an arbitrary

configuration, for large U0. It is well-known that for large systems, the ground state of a half-

filled band is antiferromagnetic; however, we show that a four dot plaquette can have a partially

ferromagnetic spin-1 ground state for certain geometries.

The lowest energy states will be in the (1, 1, 1, 1) configuration, and we will shift the energy

of our Hamiltonian to account for the Coulomb interaction energy in this configuration. Thus,

by definition, the spin 2 states, which are not affected by tunneling, have energy E2 = 0, and in

the infinite U limit, the spin 0 and 1 states have 0 energy as well. We will define Ui(j) to be the

Coulomb interaction energy of the (2, 1, 1, 0) configuration states with two electrons in dot i and

no electrons in dot j, again offset by the energy of the (1, 1, 1, 1) state. We ignore the (2, 2, 0, 0)

states, as they are not connected to the (1, 1, 1, 1) states by a single tunneling operation, and thus

will have no effect on the ground state energies to order t2/U .

Our strategy is the same as when finding the finite U corrections in the previous section. We

list all low energy states with a given spin. Since these will all be in the (1, 1, 1, 1) configuration,
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they will be degenerate to leading order. We then list the relevant high energy states, and let Λ be

the diagonal matrix with entries given by the energies of the high energy states, and let the entries

of T be given by the matrix elements of H between a low and a high energy state. Then the first

order corrections in t2/U to the energies of the low energy states are given by diagonalizing the

matrix −T †Λ−1T . This will potentially also break the degeneracy, as long as −T †Λ−1T is not

proportional to the identity matrix.

3.3.1.1 Spin 0 States

There are two states with total spin 0 for electrons in the (1, 1, 1, 1) configuration:

|Ψ±0 〉 =
1√
6

[
e±

2πi
3 |↑↑↓↓〉+ |↑↓↑↓〉+ e∓

2πi
3 |↑↓↓↑〉

+ e∓
2πi
3 |↓↑↑↓〉+ |↓↑↓↑〉+ e±

2πi
3 |↓↓↑↑〉

]
(3.62)

There are 24 high energy states connected to |Ψ±0 〉 by a single tunneling operation, cor-

responding to all permutations of | ��↑ ↓ 0〉. However, due to conservation of spin, only states

where the two single electrons form a spin singlet will contribute, and thus we need only con-

sider 12 states. We calculating matrix elements between these states and |Ψ±0 〉, we obtain the

matrix −T †Λ−1T :

− T †Λ−1T = −
∑
i 6=j

t2ij
Ui(j)

 1 e−iϕij

eiϕij 1

 (3.63)
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where ϕij is given by:

ϕij =



π
3

if {i, j} = {1, 2} or {3, 4}

π if {i, j} = {1, 3} or {2, 4}

5π
3

if {i, j} = {1, 4} or {2, 3}

(3.64)

Thus, to order t2/U , the total energy of the spin 0 ground state is:

E0 = −
∑
i 6=j

t2ij
Ui(j)

−

∣∣∣∣∣∑
i 6=j

t2ij
Ui(j)

eiϕij

∣∣∣∣∣ (3.65)

3.3.1.2 Spin 1 States

To investigate the spin 1 states, we consider the subspace where Sz = 1. There are three

states with total spin 1 for electrons in the (1, 1, 1, 1) configuration:

|Ψ1
1〉 =

1

2

[
|↑↑↑↓〉+ |↑↑↓↑〉 − |↑↓↑↑〉 − |↓↑↑↑〉

]
|Ψ2

1〉 =
1

2

[
|↑↑↑↓〉 − |↑↑↓↑〉+ |↑↓↑↑〉 − |↓↑↑↑〉

]
|Ψ3

1〉 =
1

2

[
|↑↑↑↓〉 − |↑↑↓↑〉 − |↑↓↑↑〉+ |↓↑↑↑〉

]
(3.66)

There are 12 high energy states connected to |Ψi
1〉, given by all permutations of |��↑↑ 0〉.

Calculating matrix elements between these states and |Ψi
1〉, we find that −T †Λ−1T is given by:

−T †Λ−1T = −
∑
i 6=j

t2ij
Ui(j)

1+
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
A12 + A34 A23 − A14 A13 − A24

A23 − A14 A13 + A24 A12 − A34

A13 − A24 A12 − A34 A14 + A23

 (3.67)

where Aij is given by:

Aij = t2ij

(
1

Ui(j)
+

1

Uj(i)

)
(3.68)

3.3.2 Ground State Calculations

3.3.2.1 Square with no Diagonal Hopping

For four dots in a square, with no diagonal hopping, we have for spin 0,

(−T †Λ−1T )0 = −t
2
a

U

8 4

4 8

 (3.69)

where U ≡ U0 − Va. The off-diagonal terms break the degeneracy, and the ground state

and energy is given by:

|Ψ0〉 =
1

2
√

3

[
− |↑↑↓↓〉+ 2 |↑↓↑↓〉 − |↑↓↓↑〉

− |↓↑↑↓〉+ 2 |↓↑↓↑〉 − |↓↓↑↑〉
]

(3.70)

E0 = −12
t2a
U

(3.71)

We note that as expected, this is the spin 0 state which maximizes overlap with the antifer-
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romagnetic configurations |↑↓↑↓〉 and |↓↑↓↑〉. For spin 1, we have

(−T †Λ−1T )1 = −t
2
a

U


4 0 0

0 8 0

0 0 4

 (3.72)

E1 = −8
t2a
U

(3.73)

Here the degeneracy is also broken, and the ground state is given by |Ψ2
1〉 as defined in eq.

(3.66).

3.3.2.2 Square With Diagonal Hopping

For four dots in a square, with diagonal hopping, we have

(−T †Λ−1T )0 = −t
2
a

U

8 4

4 8

− t2d
U + V

 4 −4

−4 4

 (3.74)

E0 = −12
t2a
U

(3.75)

where U ≡ U0 − Va and V ≡ Va − Vd. For spin 1,

(−T †Λ−1T )1 = −t
2
a

U


4 0 0

0 8 0

0 0 4

−
t2d

U + V


4 0 0

0 0 0

0 0 4

 (3.76)

E1 = −8
t2a
U

(3.77)
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Interestingly, diagonal hopping for a square does not affect the ground state energies E0

or E1, and only serves to decrease the energy of the excited states. This can be understood by

noticing that in each of the ground states, spins at opposite corners of the square (dots 1 and 3 or

dots 2 and 4) only occur in a triplet configuration. This is necessary to allow adjacent spins to

anti-align as much as possible.

3.3.2.3 Rectangle

For four dots in a rectangle, with no diagonal hopping, we have

(−T †Λ−1T )0 =

− 4

 t2a
U

+
t2b

U+V
t2a
U
e
−πi

3 +
t2b

U+V
e
πi
3

t2a
U
e
πi
3 +

t2b
U+V

e
−πi

3
t2a
U

+
t2b

U+V

 (3.78)

E0 = −4

[
t2a
U

+
t2b

U+V
+

√
t4a
U2

+
t4b

(U+V )2
− t2at

2
b

U(U+V )

]
(3.79)

where U ≡ U0 − Va, and V ≡ Va − Vb. For spin 1,

(−T †Λ−1T )1 = −4

[
t2a
U

+
t2b

U + V

]
1 + 4


t2a
U

0 0

0 0 0

0 0
t2b

U+V

 (3.80)

E1 = −4

[
t2a
U

+
t2b

U + V

]
(3.81)

We note that the spin 1 ground state remains the same as in the square case, while the spin

0 ground state rotates, essentially in such a way as to include a greater weight to singlets across
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the shorter edge of the rectangle than the longer edge. This must be the case, as when tb → 0, the

ground state must become two spin singlets.

3.3.2.4 Rectangle With Diagonal Hopping

For four dots in a rectangle, with diagonal hopping, we have

(−T †Λ−1T )0 =

− 4

 t2a
U

+
t2b

U+V
+

t2d
U+W

t2a
U
e
−πi

3 +
t2b

U+V
e
πi
3 − t2d

U+W

t2a
U
e
πi
3 +

t2b
U+V

e
−πi

3 − t2d
U+W

t2a
U

+
t2b

U+V
+

t2d
U+W

 (3.82)

E0 = −4

[
t2a
U

+
t2b

U+V
+

t2d
U+W

+

(
t4a
U2

+
t4b

(U+V )2
+

t4d
(U+W )2

− t2at
2
b

U(U+V )
− t2at

2
d

U(U+W )
− t2bt

2
d

(U+V )(U+W )

)1/2
]

(3.83)

where U ≡ U0 − Va, V ≡ Va − Vb, and W = Va − Vd. For spin 1,

(−T †Λ−1T )1 =

− 4

[
t2a
U

+
t2b

U + V
+

t2d
U +W

]
1 + 4


t2a
U

0 0

0
t2d

U+W
0

0 0
t2b

U+V

 (3.84)

E1 = −4

[
t2a
U

+
t2b

U + V

]
(3.85)

Again the the spin 1 ground state is unaffected by the presence of diagonal hopping, for
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the same reason discussed above. However, the diagonal hopping terms do affect the spin 0 state,

since the imbalance between ta and tb causes opposite spins to no longer only appear in triplets.

3.3.2.5 Linear Array

For four dots in a line, we have

(−T †Λ−1T )0 =

− 2t2a

 1
U

+ 1
U+2V

+ 1
U+V

( 1
U

+ 1
U+2V

)e
−πi

3 + e
πi
3

U+V

( 1
U

+ 1
U+2V

)e
πi
3 + e

−πi
3

U+V
1
U

+ 1
U+2V

+ 1
U+V

 (3.86)

E0 = −2t2a

[
1

U
+

1

U+2V
+

1

U+V

+

√( 1

U
+

1

U+2V

)2
+

1

(U+V )2
− 1

U+V

( 1

U
+

1

U+2V

)]
(3.87)

where U ≡ U0 − 2Va + V3a, and V ≡ Va − V3a. For spin 1,

(−T †Λ−1T )1 = −2t2a

[ 1

U
+

1

U + 2V
+

1

U + V

]
1

+ 2t2a


1
U

+ 1
U+2V

1
U+V

0

1
U+V

0 0

0 0 1
U+V

 (3.88)

E1 =
−t2a
U
− t2a
U + 2V

− 2t2a
U + V

− t2a

√( 1

U
+

1

U + 2V

)2
+

4

(U + V )2
(3.89)

In the limit where V → 0, this reduces to E0 = −(6 + 2
√

3)t2a/U and E1 = −(4 +
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2
√

2)t2a/U .

3.3.2.6 Y-Shaped Configuration

For four dots in a Y-shaped configuration, we have

(−T †Λ−1T )0 = −
(t2a
U

+
t2a

U + 4V

)3 0

0 3

 (3.90)

E0 = −3
(t2a
U

+
t2a

U + 4V

)
(3.91)

where U ≡ U0−3Va+2Vd and V ≡ Va−Vd. Thus, the |Ψ±0 〉 degeneracy remains unbroken,

due to the three-fold rotational symmetry of the system. For spin 1,

(−T †Λ−1T )1 =
(t2a
U

+
t2a

U + 4V

)

−2 −1 1

−1 −2 1

1 1 −2

 (3.92)

E1 = −4
(t2a
U

+
t2a

U + 4V

)
(3.93)

Interestingly, the ground state is the spin 1 state rather than the spin 0 state. This state is

given by:

|Ψ1〉 =
1

2
√

3

[
|↑↑↑↓〉+ |↑↑↓↑〉+ |↑↓↑↑〉 − 3 |↓↑↑↑〉

]
(3.94)

which is the state maximizes the weight of the spin configuration where the center electron

has opposite spin as the three corner electrons. Thus, the ground state can be thought of as

antiferromagnetic in the sense that adjacent spins are anti-aligned; however, since there is an
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imbalance in the number of sites in the odd and even sublattices, assigning alternating spins to

these sites causes a total spin of 1 rather than 0.

3.3.2.7 Y-Shaped Configuration with N.N.N. Hopping

For four dots in a Y-shaped configuration, with next nearest neighbor hopping (that is hop-

ping between the outer corners), we have

(−T †Λ−1T )0 = −
(t2a
U

+
t2a

U + 4V
+

2t2d
U + 3V

)3 0

0 3

 (3.95)

E0 = −3
(t2a
U

+
t2a

U + 4V
+

2t2d
U + 3V

)
(3.96)

where U ≡ U0 − 3Va + 2Vd and V ≡ Va − Vd. For spin 1,

(−T †Λ−1T )1 = −2
(t2a
U

+
t2a

U + 4V
+

2t2d
U + 3V

)
1

+
(t2a
U

+
t2a

U + 4V
− 2t2d
U + 3V

)


0 −1 1

−1 0 1

1 1 0

 (3.97)

E1 = −4
(t2a
U

+
t2a

U + 4V

)
(3.98)

Here the presence of next nearest neighbor hopping reduces the energy of the spin 0 states,

while still maintaining the |Ψ±0 〉 degeneracy, as the three-fold symmetry of the system remains un-

broken. The next nearest neighbor hopping terms do not affect the spin 1 ground state, however,

as the spins in any of the two corners only appear in triplet configurations. Thus, as td is increased
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there exists a crossover point between E0 and E1. E1 < E0 as long as 6t2d
U+3V

< t2a
U

+ t2a
U+4V

.

3.3.3 Summary

We have calculated the energies of the lowest energy spin 0 and spin 1 state for half-filled

band in several different four-dot geometries to first order in t2/U . In each case, the ground

state is antiferromagnetic; however, with the Y-shaped configuration, alternating spins on each

cite causes a total spin of 1 rather than 0, because there are 3 corner dots and only 1 center dot.

Adding next nearest neighbor interactions reduces the energy difference between the two states,

up to a critical strength at which point the spin 0 state becomes the ground state. We summarize

these findings in table 3.2.

Sec. dot nnn. E0 E1 E2 E1 < E0?
num. config. hop. to order t2/U to order t2/U

1 square no −12t2a/U −8t2a/U 0 no
2 square yes −12t2a/U −8t2a/U 0 no

3 rectangle no

−4t2a
U
− 4t2b
U+V

−4

√
t4a
U2 +

t4
b

(U+V )2
− t2at

2
b

U(U+V )

−4t2a
U
− 4t2b
U+V

0 no

4 rectangle yes

−4t2a
U
− 4t2b
U+V

− 4t2d
U+W

−4

 t4a
U2 +

t4b
(U+V )2

+
t4d

(U+W )2

− t2at
2
b

U(U+V )
− t2at

2
d

U(U+W )
− t2bt

2
d

(U+V )(U+W )


1
2 −4t2a

U
− 4t2b
U+V

0 no

5 linear no

−2t2a
U
− 2t2a
U+2V

− 2t2a
U+V

−2t2a

((
1
U

+ 1
U+2V

)2
+ 1

(U+V )2

− 1
U+V

(
1
U

+ 1
U+2V

) )1/2
−t2a
U
− t2a
U+2V

− 2t2a
U+V

−t2a
√(

1
U

+ 1
U+2V

)2
+ 4

(U+V )2

0 no

6 Y-shaped no −3
(
t2a
U

+
t2a

U+4V

)
−4
(
t2a
U

+
t2a

U+4V

)
0 yes

7 Y-shaped yes −3
(
t2a
U

+
t2a

U+4V
+

2t2d
U+3V

)
−4
(
t2a
U

+
t2a

U+4V

)
0

if 6t2d
U+3V

<
t2a
U

+
t2a

U+4V

Table 3.2: A summary of the analytical results obtained for four electrons in four-dot plaquettes
of various geometries. Here U is given by U = U0 − Va in sec. 1-4, U = U0 − 2Va + V3a in sec.
5, and U = U0 − 3Va + 2Vd in sec. 6 and 7. Additionally V is given by V = Va − Vb in sec. 3
and 4, V = Va − V3a in sec. 5, and Va − Vd in sec. 6 and 7. Finally, W = Va − Vd.
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3.4 Four Electrons in Five Dots

3.4.1 Model

 

d 

a 
1 

2 

3 4 

5 

Figure 3.9: A depiction of a ring of 5 dots. Solid lines depict nearest-neighbor hopping terms and
Coulomb interactions, and dashed lines long-range Coulomb interactions.

We now consider a ring of five dots with four electrons, as depicted in fig. 3.9. This does not

satisfy the Nagaoka condition, and thus we do not predict the ground state to be ferromagnetic.

The Hamiltonian is given by eq. (3.1), with tij and Vij given as follows:

tij =


−ta if i− j = ±1 mod 5

0 otherwise

(3.99)

Vij =


Va if i− j = ±1 mod 5

Vd if i− j = ±2 mod 5

(3.100)

Up to symmetry, only one low energy electron configuration is possible. There are also
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three high energy configurations that are connected to the low energy states by a single tunneling

operation. These are:

(1, 1, 1, 1, 0) with energy: 3Va + 3Vd

(2, 0, 1, 1, 0) with energy: U0 + Va + 4Vd

(2, 1, 0, 1, 0) with energy: U0 + 2Va + 3Vd

(2, 1, 1, 0, 0) with energy: U0 + 3Va + 2Vd (3.101)

We shift the total energy of the Hamiltonian by 3Va + 3Vd, and define U and V as:

U ≡ U0 − 2Va + Vd

V ≡ Va − Vd (3.102)

so that the energies of the electrons configurations in eq. (3.101) become 0, U , U+V , and U+2V

respectively.

3.4.2 Ground State Calculation

3.4.2.1 Spin 2

We proceed in a similar fashion as above. For spin 2, there are five states for each value of

Sz corresponding to the position of the hole, since there is only one spin configuration for a given
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value of Sz that has spin 2. For Sz = 2, these states are:

|↑ ↑ ↑ ↑ 0〉 , |↑ ↑ ↑ 0 ↑〉 , |↑ ↑ 0 ↑ ↑〉 , |↑ 0 ↑ ↑ ↑〉 , |0 ↑ ↑ ↑ ↑〉 (3.103)

In this basis, the spin 2 Hamiltonian is given as follows:

H2 = −ta



0 1 0 0 −1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

−1 0 0 1 0


(3.104)

Here the sign in the (1,5) elements is due to Fermi exchange statistics. There are two

degenerate ground states to this Hamiltonian given by:

|Ψ±2 〉 =
1√
5

(
1 e±

πi
5 e±

2πi
5 e±

3πi
5 e±

4πi
5

)T
(3.105)

with energy:

E2 = −1 +
√

5

2
ta (3.106)

3.4.2.2 Spin 1

We now consider the spin 1 subspace. We define the following spin configurations:

|ψj1〉 =
1

2

[
|↑↑↑↓〉+ ej

πi
2 |↑↑↓↑〉
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+ e2j πi
2 |↑↓↑↑〉+ e3j πi

2 |↓↑↑↑〉
]

(3.107)

for j between 1 and 3. We see that cycling the spins will return the same state with an extra

phase ej
πi
2 . The orbital part will be similar to the spin 2 case discussed above, and thus the spin

1 Hamiltonian will be given by a block-diagonal matrix, with blocks given as follows:

Hj
1 = −ta



0 1 0 0 −ej πi2

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

−e−j πi2 0 0 1 0


(3.108)

This has a nondegenerate ground state with energy E1 = −2ta. The ground state has spin

configuration given by |ψ2
1〉, and orbital part 1√

5
(1 1 1 1 1)T .

3.4.2.3 Spin 0

Finally, we examine the spin 0 subspace. There are two spin configurations, which we

define as follows:

|ψ0
0〉 =

1

2
√

3

[
− |↑↑↓↓〉+ 2 |↑↓↑↓〉 − |↑↓↓↑〉

− |↓↑↑↓〉+ 2 |↓↑↓↑〉 − |↓↓↑↑〉
]

(3.109)

|ψ1
0〉 =

1

2

[
|↑↑↓↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↓↑↑〉

]
(3.110)
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We note that cycling the spins of |ψj0〉 returns the same state with an additional phase

(−1)j |ψj0〉. The the spin 0 Hamiltonian will be a block-diagonal matrix with blocks:

Hj
0 = −ta



0 1 0 0 (−1)j+1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

(−1)j+1 0 0 1 0


(3.111)

This also has a nondegenerate ground state with energy E0 = −2ta. This state has spin

configuration given by |ψ1
0〉, and orbital part 1√

5
(1 1 1 1 1)T .

3.4.2.4 Finite U Corrections

As before, the spin 2 energy is exact for finite U , since the Pauli exclusion principle forbids

any other states than the five examined. Additionally, since neither the spin 1 nor spin 0 ground

states are degenerate with other states of the same spin, we simply use nondegenerate perturbation

theory to calculate the leading order correction to the energy. We find that to order t2/U , the

energy of the lowest energy spin 1 state is given by:

E1 = −2ta − 4
t2a
U
− 2

t2a
U + V

− 2
t2a

U + 2V
+O

( t3a
U2

)
(3.112)

and the energy of the lowest energy spin 0 state is given by:

E0 = −2ta − 2
t2a
U
− t2a
U + V

− t2a
U + 2V

+O
( t3a
U2

)
(3.113)
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Thus, for finite U , the ground state of the system is the spin 1 state. This means the ground

state is partially ferromagnetic.

3.5 Conclusion

We have theoretically considered 4-dot quantum arrays in several different geometries in-

vestigating analytically within a simple, but semi-realistic, model the existence or not of Nagaoka-

type ferromagnetic ground states. Our work includes distant-neighbor hopping and distant-

neighbor Coulomb coupling within a one orbital (with two spins) per dot model. Although the

interaction is always finite in our system we find several situations where Nagaoka-type ferromag-

netism should emerge provided the kinetic and potential energies obey certain constraints (which

we derive). We calculate the spin gap for our system, and obtain the energy difference between

the lowest-energy ferromagnetic state and lowest-energy nonferromagnetic state. We also provide

results for a 5-dot ring with 4 electrons, finding a partially ferromagnetic ground state. We be-

lieve that our predictions are experimentally testable in currently available quantum dot arrays as

long as there is sufficient control over the system (i.e. hopping matrix elements, number of elec-

trons in the system) and the temperature is low. In principle, one can try to numerically calculate

the hopping and the interaction matrix elements for a given system of coupled dots to make the

prediction quantitative. We, however, do not believe that such an endeavor, which would be nu-

merically very demanding involving large configuration interaction calculations [111, 112, 113]

for the coupled dot system, is particularly useful since the necessary information for the quantum

confinement in each dot is unknown and therefore, the results would be numerically unreliable.

Since all the matrix elements of hopping and interaction entering the model are likely to be ex-
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ponentially sensitive to the unknown dot confinement potential, our phenomenological approach

using model parameters based on a delta function confinement model is likely to have reason-

able qualitative accuracy. In particular, our specific predictions on which geometry would lead

to ferromagnetism and which would not and the conditions necessary for obtaining full or par-

tial ferromagetism in the ground states of different arrays should motivate experiments in current

semiconductor dot based qubit structures where the observation of different types of nontrivial

magnetic ground states could be construed as quantum emulation of interacting Hamiltonians

in small systems. We think that the experimental control already achieved in the laboratory for

semiconductor qubit systems should enable the community to see various magnetic ground states

in quantum dot plaquettes as predicted in our theory.
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Chapter 4: Flatband Ferromagnetism

The Hubbard model [58] was originally formulated with the goal of explaining the exis-

tence of ferromagnetism in common transition metals. The tight-binding Hamiltonian simplis-

tically describes screened electron-electron interactions in a narrow-band metal with the use of

only two parameters: the tunneling constant between lattice sites tij , and the onsite Coulomb

repulsion energy U , as seen in Eq. (4.1):

H =
∑
i,j

∑
s∈{↑,↓}

−tijc†iscjs +
∑
i

U

2
ni(ni − 1) (4.1)

where i, j are summed over the lattice sites. Despite the simplicity of the Hubbard model,

no general solution is known, and while some progress has been made, a complete description of

ferromagnetism using this model has not been found after 60 years. However, ferromagnetism

has been rigorously proven to occur in the Hubbard model in two very specific instances, namely

Nagaoka ferromagnetism and flatband ferromagnetism.

One specific situation where the Hubbard model can be proven to exhibit ferromagnetism

is when one electron is added to a half-filled band. This result, proven by Nagaoka, requires that

U � tij , tij ≥ 0, and that the lattice be sufficiently connected [62]. Nagaoka ferromagnetism

is a somewhat surprising result when considering that for an exactly half-filled band, the Hub-

bard model reduces to the Heisenberg model, which generally exhibits antiferromagnetism; yet
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the addition of a single electron is proven to completely change the magnetic phase. This exact

finding of Nagaoka suggests that the Hubbard model, in spite of its apparent simplicity and its

seeming dependence on a single effective dimensionless interaction parameter U/t, is extremely

rich and subtle, since just adding one particle to the half-filled state changes the ground state

from being an antiferromagnetic insulator to a ferromagnetic metal. The model is considered to

be the paradigmatic model of strong correlations in many body interacting systems, and is foun-

dational in theoretical studies of many phenomena such as Mott transition, ferromagnetism and

antiferromagnetism, narrow band systems, high-Tc cuprate superconductivity, spin liquids, etc.

Recently, Nagaoka ferromagnetism has been experimentally observed in a small plaquette of four

quantum dots which simulates the Hubbard model [9]. In an earlier work, we studied Nagaoka

ferromagnetism in small quantum dot plaquettes theoretically [110], connecting with this recent

experiment [9] and establishing the continued validity of Nagaoka-type ferromagnetism in the

Hubbard model even when some of the stringent conditions of the original work [62] are relaxed.

The idea that the Hubbard model can be simulated by quantum dot plaquettes has been proposed

decades ago [59, 60, 61], but current technologies [9, 11, 114] are capable of realizing these ex-

periments now or in the near future. In fact, the laboratory emulation of the Hubbard model and

the associated Mott transition reflected in the observation of the collective Coulomb blockade

in a recent experiment on a few quantum dots establish the exquisite control and measurement

capability achieved in solid state nanostructures inspired by experimental advances in the semi-

conductor spin qubit quantum computing platforms [101]. Such experiments should enable direct

laboratory simulations of the Hubbard model in small lattices of a few electrons. Although our

work is entirely theoretical and quite mathematical in nature, we have been inspired by the rapid

recent experimental advance in semiconductor spin qubit platforms consisting of quantum dot ar-
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rays, which should enable an experimental verification of our exact (and counter-intuitive) results

for the Hubbard model.

In specific cases, the Hubbard model can also exhibit a different type of ferromagnetism

(i.e. distinct from Nagaoka ferromagnetism) known as flat-band ferromagnetism [63]. This in

principle can occur when there is degeneracy in the lowest or highest-energy single particle states;

however, due to the Perron-Frobenius theorem, for positive tij the lowest-energy state of a con-

nected lattice is always nondegenerate. Thus flat-band ferromagnetism can occur only when there

are degenerate high-energy states. Because flat-band ferromagnetism involves holes filling in an

otherwise filled band, it is convenient to use the particle-hole transformation c̃is = c†is, where c̃is

is the hole annihilation operator. Under this transformation, Eq. (4.1) becomes as follows, up to

a constant energy shift:

H =
∑
i,j

∑
s∈{↑,↓}

tij c̃
†
isc̃js +

∑
i

U

2
ñi(ñi − 1) (4.2)

The weak flatband ferromagnetism theorem is as follows:

Consider the Hubbard model Eq. (4.2) such that the single-hole ground state is k-fold

degenerate. Then for h holes, with h ≤ k, the ferromagnetic ground state energy will be less than

or equal to the energy of any nonferromagnetic state.

The proof of this statement [63] follows a similar line of reasoning as Hund’s rule. The

ferromagnetic ground state consists of the holes filling h of the k degenerate states, and the

ground energy corresponds to h times the energy of these states. Because of the Pauli exclusion

principle, there will be no doubly-occupied lattice sites, and thus there will be no contribution

from the onsite interaction term. Nonferromagnetic states can at best match the same energy,
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but the onsite interaction term could potentially increase the energy of the states, since doubly-

occupied lattice sites are no longer forbidden by the Pauli exclusion principle.

This theorem does not by itself guarantee ferromagnetism, since the inequality between the

ferromagnetic ground state energy and the nonferromagnetic energies is not a strict inequality.

There have been many works showing that the inequality is strict in certain classes of lattice

geometries [63, 115, 116, 117]; however, it is not known in general for which cases or under

what prescribed conditions there will be a unique ferromagnetic ground state.

In this chapter we present two results. In Sec. 4.1, we give a mathematical theorem which

prescribes certain conditions under which there will be ferromagnetic and antiferromagnetic de-

generacy. This theorem is only applicable for a small number of holes, but is independent of

geometry, relying only on the number of lattice sites, holes, and flatband single-particle states.

In Sec. 4.2, we give an example of a 6-dot configuration where the ground state is ferromag-

netic despite not having any degenerate flatband single-particle states. This is, therefore, an

example in which ferromagnetism in the Hubbard model can exist without having any band in-

duced single-particle degeneracy. Additionally, the lowest-energy antiferromagnetic state does

not doubly-occupy the single-particle ground state as one might expect, instead doubly occupy-

ing a higher energy state. Finally, in Sec. 4.3, we give our conclusions, briefly noting in particular

that the examples we present are experimentally accessible with current quantum dot technolo-

gies, each requiring only a few quantum dots. The contents of this chapter have been submitted

for publication, and are available as a preprint in Ref. [118].
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4.1 Flat Band Ferromagnetic and Nonferromagnetic Degeneracy

Although it is not known in general which lattice geometries and filling factors are strictly

ferromagnetic, it is interesting to ask the converse: are there cases where it is known with cer-

tainty that the ferromagnetic ground state is degenerate with nonferromagnetic ground states?

We discuss cases where this is true and present a general combinatorics-based theoretical result

which is completely geometry-independent, although to apply it to specific physical situations

requires rather strict conditions on the number of states and holes present in the system.

One simple case where flatband ferromagnetic states can be shown to be degenerate with

nonferromagnetic states is when the degenerate flatband states are local. In this case, multiple

nonoverlapping local states can be filled with any spin configuration without having any doubly

occupied dots. Then the interaction term of the Hamiltonian will not contribute to ground state

energy, and thus there will be degenerate ferrommagnetic and nonferromagnetic ground states.

For example, in the Kagome lattice, single-hole ground states localize, occupying only six sites

comprising one hexagon of the lattice. These local states can be filled with holes without overlap

if the filling factor νh ≤ 1/18, and thus there will be degenerate ferromagnetic and nonferromag-

netic ground states for these filling factors (note that Mielke proved a stronger statement [116]

for νh ≤ 1/6, but this proof relies strictly on the fact that the Kagome lattice is a line graph,

and is not extendable to other lattices). Another example is a small plaquette of dots forming a

complete graph (tij = t for any i 6= j). Here the single-hole ground states localize to just two

dots, and there is ferromagnetic and nonferromagnetic degeneracy for any νh ≤ 1/4.

While having localized states often contributes to ground state degeneracy, there is a way

that even completely nonlocal states can still lead to degeneracy. Holes can fill the degenerate
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flat-band states in a number of ways, each leading to doubly occupied terms c̃†i↑c̃
†
i↓ in the full

multiparticle many-body state. However, because there are many different ways these states can

be filled, it is often possible to form linear combinations in which all doubly occupied terms

cancel out. If this is possible, then there will be ferromagnetic and nonferromagnetic ground

state degeneracy. In particular, if the number of distinct ways the flatband states can be filled Nf

is greater than the number of possible doubly occupied terms Nd, then there will always exist a

linear combination of flatband states that cancel out all doubly occupied terms. For a system with

n lattice sites, k flatband states, h holes, and for a given total spin s, the quantities Nf and Nd are

given as follows:

Nf =

(
k

h
2

+ s

)(
k

h
2
− s

)
−
(

k
h
2

+ s+ 1

)(
k

h
2
− s− 1

)
Nd =

(
n

h
2

+ s

)(
n

h
2
− s

)
−
(

n
h
2

+ s+ 1

)(
n

h
2
− s− 1

)
−
(

n
h
2

+ s

)(
n− h

2
− s

h
2
− s

)
+

(
n

h
2

+ s+ 1

)(
n− h

2
− s− 1

h
2
− s− 1

)
(4.3)

Then we have the following theorem:

Consider the Hubbard model Eq. (4.2) with n lattice sites such that the single-hole ground

state is k-fold degenerate. Then for h holes and some total spin s, with 2s ≤ h ≤ k, if the

quantities given in eq. (4.3) satisfy Nf > Nd, then there will exist a spin s ground state that is

degenerate with the ferromagnetic ground state.

While this theorem is completely general and geometry-independent, in practice the condi-

tion Nf > Nd is somewhat difficult to satisfy, and thus the situations where it applies are some-

what limited. However, this theorem simplifies dramatically for the special case where there are
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only two holes in the system, becoming as follows:

For 2 holes in the Hubbard model given by Eq. (4.2) with n lattice sites and k degenerate

single-particle ground states, if k(k + 1)/2 > n, then there will exist a spin 0 ground state that is

degenerate with the spin 1 ground state.

There are several small configurations of sites which satisfy this condition, including a 4-

site complete graph (tetrahedron), the 9-site (2, 3)-Hamming graph, and a 13-site FCC-sublattice

centered around a single site, among other configurations. In Appendix B, we calculate using

exact diagonalization the lowest-energy states for each spin for these (and many other) plaquettes,

illustrating that they do indeed satisfy the theorem we presented.

It is interesting to see how this theorem scales in the limit where the number of lattice

sites n is very large. We will assume in this limit that the number of flatband states k scales

proportionally with n. For s = 0, we use Sterling’s approximation to simplify the expressions in

Eq. 4.3, and find the following asymptotic behaviors of Nf and Nd:

Nf ≈
(k + 1)

h
2

+1k
h
2
−1

(h
2

+ 1)!(h
2
)!
∼ kh

Nd ≈
(n+ 1)

h
2

+1n
h
2
−1 − nh

2 (n− h
2
)
h
2

(h
2

+ 1)!(h
2
)!

∼ nh−1 (4.4)

Then in the large n limit, the condition Nf > Nd is met for h < log n/ log(n/k), and thus

the maximum number of holes for which this theorem applies scales as log of the system size.

Thus while this theorem is useful for studying small systems of quantum dot plaquettes with just

a few sites (since log n is still comparable in magnitude with n in small systems), as the system

size increases the number of holes for which it is valid drops off quickly compared to the total

system size. In fact, this serves as an important reminder of the fact that small systems that can
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be numerically or experimentally simulated cannot always be extrapolated to the thermodynamic

limit, as there are effects that are quite strong for small systems which become negligible as the

system size increases (in fact, Nagaoka ferromagnetism iself is a dramatic example of this effect

also, obviously a filling with one electron or one hole away from half-filling makes no physical

sense for a large system although it is a meaningful concept for a small system [110]). Other

examples of this include the finite-size effect at the edges of a small lattice, but we have given

an example which depends only on the number of states and lattice sites, which stems from the

difference between log n and n.

1 2 3 4 5 6
n

-2

-1

1

2

3
En/t

Figure 4.1: Left: 6-dot plaquette which exhibits unusual properties when filled with 3 holes.
Right: Single-particle energy levels of the plaquette to the left ordered from lowest to highest
energy. Note these energies include the effect of the particle-hole transformation, thus corre-
sponding to Eq. (4.2).

4.2 Example of Holes Filling Higher Energy States

The basic intuition behind Hund’s rule is that particles / holes will fill the lowest-energy

single-particle states available first, and in the case of degeneracies will form a ferromagnetic

spin configuration to avoid energy penalties from double-occupancy of sites. However, in the

Hubbard model when U � t, there are cases where the system breaks this general rule, pre-

104



ferring to fill higher energy single-particle states than necessary in order to eliminate the onsite

interaction energy from doubly occupied sites. Thus, strong correlation effects in the Hubbard

model explicitly violate Hund’s rule leading to counter-intuitive ground states. We give one such

example below.

Consider the plaquette of six lattice sites shown in Fig. 4.1, with uniform tunneling con-

stant t between nearest neighbors, and U � t. The single particle-energies for this system are

nondegenerate and at a glance are somewhat evenly spaced, as shown in Fig. 4.1, although of

course there is some anharmonicity. A simple application of Hund’s rule would suggest that the

ground state should be antiferromagnetic, as holes should attempt to fill the lowest energy state

first before beginning to fill the higher energy states, and this is indeed the case when U is small

compared to t. However when U becomes large, the antiferromagnetic ground state must include

some contribution from higher-energy hole configurations, which in some cases can even exceed

the energy benefit from doubly occupying the lowest-energy state. This is the case for three

holes filling the six-site plaquette discussed above. Exact diagonalization yields a ferromagnetic

ground state energy of E3/2 = −4.146t, whereas the lowest energy antiferromagnetic state has

an energy given by:

E1/2 = −3.949t− 1.704t2/U +O(t3/U2) (4.5)

Thus in the large U limit, the system exhibits a type of “psuedo-flatband ferromagnetism”

(and not antiferromagnetism) despite the single-particle states being nondegenerate.

This result becomes even more striking when considering the wavefunction of the lowest-

energy antiferromagnetic state |Ψ1/2〉. Specifically, we consider the product states of single par-

ticle eigenstates. These product states, which we denote by |φi〉 are not necessarily eigenstates
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-4 -2 2 4 6
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10-1

10-2

10-3

10-4

0

〈ϕi|Ψ1/2〉
2

|1↑1↓2↑〉

|1↑2↑2↓〉

Figure 4.2: For each product state |φi〉 of single-particle states, the energy of the state is plotted
against the wavefunction overlap of |φi〉 with the lowest-energy spin 1/2 state |Ψ1/2〉. States at
the bottom of the plot have overlap of exactly 0 because they are protected by symmetry.

themselves, and in general the eigenstates of the system will be linear combinations of the |φi〉.

However, it is often assumed (for example, in Hund’s rule) that the ground state is simply the

lowest-energy of these product states, and that electrons fill the single-particle states one at a

time in order of increasing energy, with perhaps some small correction from interaction effects.

However, for this specific configuration, this assumption breaks down entirely. In Fig. 4.2, we

plot the energy of each of the product states |φi〉 versus their overlap with Ψ1/2. We find that

|Ψ1/2〉 has an overlap of exactly 0 with the lowest energy product state |1↑1↓2↑〉 (here we have

notated the single-hole eigenstates from 1 to 6 in order of increasing energy). Instead, the lowest-

energy antiferromagnetic state has a large overlap with the ‘excited’ state |1↑2↑2↓〉 as follows,
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with the rest of the wavefunction being comprised of higher energy states:

∣∣∣〈Ψ1/2|1↑2↑2↓〉
∣∣∣2 = 0.573 (4.6)

The fact that the overlap with |1↑1↓2↑〉 is exactly 0 is due to the K4 symmetry of the Hamil-

tonian (H is unchanged by π rotations about the x, y, and z axes). The states |1↑1↓2↑〉 and |1↑2↑2↓〉

fall under different symmetry classes, and thus eigenstates of H will not mix these two states.

What is surprising is that the system prefers the higher energy of these two states |1↑2↑2↓〉, as this

completely contradicts the naive assumption that the system will attempt to fill the lowest-energy

single particle states first, only mixing with higher-energy states to eliminate terms corresponding

to doubly occupied lattice sites. In this case, the system actually prefers to start with a slightly

higher-energy state because it makes the cancellation of doubly-occupied lattice site terms easier.

Again, this is a subtle and highly nontrivial correlation effect which cannot be captured in terms

of any simple general rules based on single particle physics.

4.3 Conclusion

We give examples of two interesting and exact theoretical phenomena in the Hubbard

model which require only a few (4-6) lattice sites. The first is a general geometry-independent

theorem which has limited applicability (particularly, in the thermodynamic limit) but is mathe-

matically exact. This theorem outlines certain cases of flatband ferromagnetism which necessar-

ily have a nonferromagnetic state that is degenerate with the ferromagnetic ground state, relying

only on the number of holes, lattice sites, and degenerate flatband states. The second example

is a particular geometric arrangement of six sites which exhibits the unusual behavior where the
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lowest-energy antiferromagnetic state has no overlap with the product state of the lowest-energy

single-particle states, and the many-body ground state is ferromagmmetic rather than antiferro-

magnetic as implied by Hund’s rule. Since these phenomena rely only on a small number of sites,

these are good candidates to be observed in quantum dot experiments using current technologies.

In particular, we believe both can be studied on existing quantum dot arrays associated with spin

qubit platforms, directly experimentally establishing nontrivial many-body correlation effects in

the Hubbard model ground states.
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Chapter 5: Conclusion

Quantum Dot qubits have significant potential for the development of quantum informa-

tion technologies due to their long coherence times, small size, and their integration with current

semiconductor technologies. If fully realized, this technology could allow new topics of study to

be opened by allowing computations to be performed which would take an exponential amount

of time and resources to approach using classical computational techniques [17, 20, 21, 23].

Progress in creating and controlling quantum dot qubits still lags behind other current qubit

schemes [6] due to the presence of noise in the systems. However, researchers have still been

able to use quantum dot plaquettes to perform interesting and useful experiments [9].

Out of the various materials used to fabricate quantum dots, silicon-based devices have

shown particular promise [10, 73]. However, the presence of valley degeneracy remains one sig-

nificant obstacle to further progress in Si quantum dots. We provide an in-depth study of the

dynamics of exchange-coupled quantum dots which have valley degrees of freedom. By using

a perturbative approach which is completely analytical, we show that spin-valley entanglement

can easily arise if the valley states are not carefully accounted for, and that this entanglement can

hamper quantum information applications. Specifically, in the case where the valley splitting is

large, quantum information stored in the spin states of electrons can become entangled with the

valley states that the electron inhabits whenever electrons are not initialized to a valley eigenstate.
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When the valley splitting is large, this is not particularly hard to circumvent, as it is straightfor-

ward to initialize electrons to the ground state, which is a valley eigenstate. Things become much

more troublesome when the valley splitting is small, because it becomes difficult to control the

initial valley states. In this case, spin-valley entanglement can arise whenever electrons are not

initialized to the same valley state. However, this spin-valley entanglement cannot be detected in

two-qubit systems with simply the exchange interaction and measurement along the initialization

axis, but it will adversely affect systems with more qubits. Thus it may be possible for initial

two-qubit experiments to miss the effects of spin-valley entanglement if not designed carefully.

Despite the slower progress compared to other qubit platforms, quantum dots are particu-

larly useful in simulating condensed matter systems. Specifically, the Hamiltonian of quantum

dot plaquettes approximates the Hubbard model, and such plaquettes can be arranged in order to

test various geometric arrangements that might be difficult to fabricate otherwise. Many inter-

esting theoretical phenomena are predicted to arise from the Hubbard model, including Nagaoka

and flatband ferromagnetism [62, 63], and in fact Nagaoka ferromagnetism has been observed

in quantum dot plaquettes [9]. We give a thorough theoretical analysis of a wide variety of ge-

ometric arrangements of quantum dots, and determine for which arrangements a ferromagnetic

ground state can be expected. We examine the effects of long-range Coulomb interactions and

long-range hopping on Nagaoka ferromagnetic ground states, both of which do not satisfy the

conditions of Nagaoka’s original theorem. We find that ferromagnetism is robust to the addition

of long-range Coulomb interactions, but that long-range hopping destroys the ferromagnetism

after passing a certain threshold, and we specifically calculate this threshold for a specific geo-

metric arrangement of dots. We present a general, geometry-independent result detailing certain

situations where flatband ferromagnetic ground states necessarily have degenerate nonferromag-
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netic states, and we give an example of a specific geometric arrangement that seems to violate

Hund’s rule, where a configuration of higher-energy single-particle states has a lower total energy

than the configuration of lowest-energy single-particle states. We also find other ferromagnetic

and partially ferromagnetic states not explained by Nagaoka or flatband ferromagnetism. All

of these phenomena require only a few quantum dots, and are potentially observable by current

quantum dot experiments.
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Appendix A: Derivation of Eqs. (2.3) & (2.6)

In this section we give the detailed derivation of Eqs. (2.3) & (2.6) beginning from the

Hamiltonian H given by Eq. (2.1).

The Hubbard Hamiltonian H acts on a vector space of 8 single particle states, correspond-

ing to every combination of choices for dot j = |1〉 or |2〉, valley state v = |+〉 or |−〉, and spin

s = |↑〉 or |↓〉. We consider 2 electrons in this system, corresponding to
(

8
2

)
= 28 two-particle

states. Because H commutes with the spin operators S2 and Sz, spin is conserved, and H can be

divided into the following four noninteracting blocks corresponding to the total spin of the sys-

tem: the singlet subspace, which consists of 10 states; and three triplet subspaces with Sz = −1,

0, or 1, each of which consisting of 6 states. The three triplet subspaces are identical up to the

value of Sz, so we focus only on one of them (where Sz = 0). The six triplet states are as follows:

|1+1−〉 =
c†1,+,↑c

†
1,−,↓ + c†1,+,↓c

†
1,−,↑√

2
|0〉

|1+2+〉 =
c†1,+,↑c

†
2,+,↓ + c†1,+,↓c

†
2,+,↑√

2
|0〉

|1+2−〉 =
c†1,+,↑c

†
2,−,↓ + c†1,+,↓c

†
2,−,↑√

2
|0〉

|1−2+〉 =
c†1,−,↑c

†
2,+,↓ + c†1,−,↓c

†
2,+,↑√

2
|0〉

|1−2−〉 =
c†1,−,↑c

†
2,−,↓ + c†1,−,↓c

†
2,−,↑√

2
|0〉
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|2+2−〉 =
c†2,+,↑c

†
2,−,↓ + c†2,+,↓c

†
2,−,↑√

2
|0〉 (A.1)

where |0〉 is the “vacuum” state corresponding to the system with no electrons in either dot.

Writing the Hamiltonian H in the basis given by Eq. (A.1) yields the following:

HT =



U + ε t− t+ −t+ −t− 0

t∗− ∆1 + ∆2 0 0 0 −t−

t∗+ 0 ∆1 −∆2 0 0 t+

−t∗+ 0 0 −∆1 + ∆2 0 −t+

−t∗− 0 0 0 −∆1 −∆2 t−

0 −t∗− t∗+ −t∗+ t∗− U − ε



(A.2)

Note that matrix elements corresponding to an electron moving from one valley state to the

other in the same dot are 0, since the Hamiltonian is written in terms of the valley eigenstates |+〉

and |−〉. Some tunneling matrix elements such as |1+1−〉 → |1−2−〉 contain an additional minus

sign due to Fermi statistics since the particle which does not tunnel (in this case 1−) switches

from the second position to the first position in the state definition (compare this to the matrix

element |1+1−〉 → |1+2+〉, where 1+ is in the first position in both states). Switching the position

corresponds to commuting two creation operators, which produces a minus sign.

The |1+1−〉 and |2+2−〉 states contain 2 electrons in a single dot, which cause the states to

have a much higher energy due to the onsite Coulomb interaction energy U . Thus these states

will not directly affect the system dynamics; however, there will still be an indirect perturbative

effect on the lower energy states and energies. To determine this effect we perform a routine
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perturbation theory calculation with the unperturbed Hamiltonian H0 = diag(U, 0, 0, 0, 0, U),

and the perturbation H ′ consisting of the rest of the matrix elements in Eq. (A.2). Assuming

U � tc,∆j, ε, the first order correction in U−1 to the Hamiltonian is given by:

HT =



∆1 + ∆2 − 2|t−|2
U

t−t∗+−t+t∗−
U

t+t∗−−t−t∗+
U

2|t−|2
U

t+t∗−−t−t∗+
U

∆1 −∆2 − 2|t+|2
U

2|t+|2
U

t−t∗+−t+t∗−
U

t−t∗+−t+t∗−
U

2|t+|2
U

−∆1 + ∆2 − 2|t+|2
U

t+t∗−−t−t∗+
U

2|t−|2
U

t+t∗−−t−t∗+
U

t−t∗+−t+t∗−
U

−∆1 −∆2 − 2|t−|2
U


(A.3)

where only the four low energy states are shown.

A similar process is carried out for the singlet space, where there are 10 total states:

|1+1−〉 =
c†1,+,↑c

†
1,−,↓ − c

†
1,+,↓c

†
1,−,↑√

2
|0〉

|1+2+〉 =
c†1,+,↑c

†
2,+,↓ − c

†
1,+,↓c

†
2,+,↑√

2
|0〉

|1+2−〉 =
c†1,+,↑c

†
2,−,↓ − c

†
1,+,↓c

†
2,−,↑√

2
|0〉

|1−2+〉 =
c†1,−,↑c

†
2,+,↓ − c

†
1,−,↓c

†
2,+,↑√

2
|0〉

|1−2−〉 =
c†1,−,↑c

†
2,−,↓ − c

†
1,−,↓c

†
2,−,↑√

2
|0〉

|2+2−〉 =
c†2,+,↑c

†
2,−,↓ − c

†
2,+,↓c

†
2,−,↑√

2
|0〉

|1+��〉 = c†1,+,↑c
†
1,+,↓ |0〉

|1−��〉 = c†1,−,↑c
†
1,−,↓ |0〉

|2+��〉 = c†2,+,↑c
†
2,+,↓ |0〉

|2−��〉 = c†2,−,↑c
†
2,−,↓ |0〉 (A.4)
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Writing H in this basis yields:

HS =

U + ε t− t+ t+ t− 0 0 0 0 0

t∗− ∆1 + ∆2 0 0 0 t−
√

2t∗+ 0
√

2t+ 0

t∗+ 0 ∆1 −∆2 0 0 t+
√

2t∗− 0 0
√

2t−

t∗+ 0 0 −∆1 + ∆2 0 t+ 0
√

2t∗−
√

2t− 0

t∗− 0 0 0 −∆1 −∆2 t− 0
√

2t∗+ 0
√

2t+

0 t∗− t∗+ t∗+ t∗− U − ε 0 0 0 0

0
√

2t+
√

2t− 0 0 0 U + ε+ 2∆1 0 0 0

0 0 0
√

2t−
√

2t+ 0 0 U + ε− 2∆1 0 0

0
√

2t∗+ 0
√

2t∗− 0 0 0 0 U − ε+ 2∆2 0

0 0
√

2t∗− 0
√

2t∗+ 0 0 0 0 U − ε− 2∆2


(A.5)

Here the minus sign due to Fermi statistics is canceled by a second minus sign arising

from swapping the spins of a singlet state, making all tunneling matrix elements positive. Again

performing a perturbation theory expansion produces the following Hamiltonian:

HS =



∆1 + ∆2 − 2|t−|2+4|t+|2
U

−2t−t∗+
U

−2t+t∗−
U

−2|t−|2
U

−2t+t∗−
U

∆1 −∆2 − 2|t+|2+4|t−|2
U

−2|t+|2
U

−2t−t∗+
U

−2t−t∗+
U

−2|t+|2
U

−∆1 + ∆2 − 2|t+|2+4|t−|2
U

−2t+t∗−
U

−2|t−|2
U

−2t+t∗−
U

−2t−t∗+
U

−∆1 −∆2 − 2|t−|2+4|t+|2
U


(A.6)
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Appendix B: Tables of Ground States for Various Plaquette Geometries

Below we give the ground state energies for many different plaquette geometries. These

energies are found via exact diagonalization of the Hamiltonian under the expansion where U �

t. The energies are given to order t2/U for most plaquettes less than 10 dots, and to leading

order t for greater than 10 dots. Here we define J = 4t2/U . Each table corresponds to a

particular dot geometry, and each row corresponds to a different number of electrons occupying

the plaquette. For each possible value of the total spin, the lowest-energy state with that spin

is given, with the ground state across all spin values shown in bold. Thus a bold value in the

rightmost column represents ferromagnetism. We color the values in the tables which correspond

to cases of Nagaoka ferromagnetism green, cases of Mielke flatband ferromagnetism purple, and

other cases of flatband ferromagnetism not covered by Mielke’s original theorem blue.

B.1 Geometries with Fewer Dots

3 dot ring
Spin

# of el. 0, 1/2 1, 3/2
4 -t -0.5J -2t
3 -1.5J 0
2 -2t -2J -t
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Figure B.1: Illustration of various plaquette geometries. Top Left: 6 dot ring. Top Right: 7
dots: hexagon with center. Bottom Left: 8 dots: 2x4 array. Bottom Right: 8 dot zigzag.

4 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2
4 -3J -2J 0

3, 5 -1.732t -1.25J -2t
2, 6 -2.828t -J -2t

5 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2
8 -2.618t -0.362J -3.236t
7 -3.165t -1.047J -2.618t
6 -2t -3J -1.902t -0.952J -2t
5 -3.118J -1.809J 0
4 -2t -J -2t -2J -1.618t
3 -2.956t -0.937J -3.236t
2 -3.236t -0.553J -2.618t

6 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
6 -4.303J -3.618J -2J 0

5, 7 -2t -2J -1.956t -0.679J -2t
4, 8 -3.464t -0.833J -3.464t -1.667J -3t
3, 9 -3.759t -0.672J -4t

2, 10 -3.464t -0.333J -3t
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7 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2
12 -3.247t -0.175J -3.604t
11 -4.444t -0.513J -4.049t
10 -4.494t -1.952J -4.381t -0.625J -4.494t
9 -3.589t -0.783J -3.589t -1.607J -3.247t
8 -2t -3J -2t -3.618J -1.978t -0.496J -2t
7 -4.605J -3.556J -1.901J 0
6 -2t -4.303J -2t -J -2t -2J -1.802t
5 -3.604t -1.785J -3.546t -0.605J -3.604t
4 -4.494t -0.651J -4.494t -1.301J -4.049t
3 -4.294t -0.482J -4.494t
2 -3.604t -0.215J -3.247t

8 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4
8 -5.651J -5.128J -3.802J -2J 0

7, 9 -2t -2.5J -2t -3J -1.987t -0.375J -2t
6, 10 -3.696t -3.988J -3.696t -0.927J -3.696t -1.854J -3.414t
5, 11 -4.828t -1.5J -4.769t -0.509J -4.828t
4, 12 -5.226t -0.5J -5.226t -J -4.828t
3, 13 -4.664t -0.351J -4.828t
2, 14 -3.696t -0.146J -3.414t

9 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2
16 -3.532t -0.092J -3.759t
15 -5.03t -0.272J -4.759t
14 -5.759t -1.156J -5.671t -0.375J -5.759t
13 -5.745t -0.54J -5.745t -1.108J -5.411t
12 -5.064t -2.449J -5.064t -2.954J -5.03t -0.405J -5.064t
11 -3.754t -3.332J -3.754t -2.245J -3.754t -1.8J -3.532t
10 -2t -5.651J -2t -3J -2t -3.802J -1.992t -0.292J -2t
9 -6.047J -5.186J -3.735J -1.94J 0
8 -2t -4.7J -2t -5.128J -2t -2J -2t -2J -1.879t
7 -3.759t -2.37J -3.759t -2.844J -3.74t -0.355J -3.759t
6 -5.064t -3.513J -5.064t -0.816J -5.064t -1.633J -4.759t
5 -5.759t -1.229J -5.703t -0.418J -5.759t
4 -5.759t -0.385J -5.759t -0.771J -5.411t
3 -4.928t -0.261J -5.064t
2 -3.759t -0.104J -3.532t
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10 dot ring
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
10 -7.015J -6.592J -5.476J -3.879J -2J 0

9, 11 -2t -4.732J -2t -4.127J -2t -3.414J -1.995t -0.234J -2t
8, 12 -3.804t -4.52J -3.804t -4.933J -3.804t -1.924J -3.804t -1.924J -3.618t
7, 13 -5.236t -2.155J -5.236t -2.585J -5.215t -0.323J -5.236t
6, 14 -6.155t -3.012J -6.155t -0.7J -6.155t -1.4J -5.854t
5, 15 -6.472t -J -6.421t -0.341J -6.472t
4, 16 -6.155t -0.3J -6.155t -0.6J -5.854t
3, 17 -5.122t -0.199J -5.236t
2, 18 -3.804t -0.076J -3.618t

6 dots: pentagon with center
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
10 -2.724t -0.215J -3.236t
9 -4.029t -0.532J -4.686t
8 -3.953t -1.311J -4.426t -1.115J -4.068t
7 -3.044t -1.993J -3.217t -1.226J -3.449t
6 -5.118J -4.309J -3J 0
5 -2.794t -4.9J -2.502t -3.563J -1.618t
4 -4.176t -4.339J -4.653t -3.954J -3.236t
3 -5.17t -2.91J -4.686t
2 -5.464t -2.183J -4.068t

7 dots: hexagon with center
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2
12 -3.476t -0.33J -3.646t
11 -4.926t -0.45J -4.646t
10 -4.903t -1.155J -5.233t -0.733J -5.646t
9 -4.722t -1.05J -4.941t -1.725J -4.646t
8 -3.369t -2.419J -3.391t -1.992J -3.5t -1.128J -3.646t
7 -6.118J -5J -3.5J 0
6 -3.058t -6.477J -2.968t -5.865J -2.778t -4.087J -2t
5 -4.817t -5.26J -4.503t -4.005J -3.646t
4 -5.662t -4.207J -6.151t -3.93J -4.646t
3 -6.151t -2.823J -5.646t
2 -5.912t -2.162J -4.646t
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8 dots: septagon with center
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4
14 -3.289t -0.285J -3.63t
13 -4.919t -0.286J -5.432t
12 -5.732t -0.904J -6.108t -0.619J -5.877t
11 -5.983t -2.072J -6.041t -0.716J -6.322t
10 -4.925t -3.51J -5.06t -1.058J -5.256t -1.705J -5.075t
9 -3.626t -2.515J -3.658t -1.953J -3.731t -1.073J -3.828t
8 -7.105J -6.556J -5.401J -4J 0
7 -3.171t -7.169J -3.049t -6.076J -2.745t -4.103J -1.828t
6 -5.157t -6.773J -4.932t -5.191J -4.971t -4.583J -3.63t
5 -6.475t -5.236J -6.173t -4.11J -5.432t
4 -6.845t -4.028J -7.288t -3.764J -5.877t
3 -6.889t -2.799J -6.322t
2 -6.28t -2.242J -5.075t

6 dots: 2x3 array
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
6 -4.879J -4.06J -2.5J 0

5, 7 -2.31t -1.258J -2.363t -0.627J -2.414t
4, 8 -3.647t -2.082J -3.666t -1.709J -3.414t
3, 9 -4.257t -1.367J -3.828t

2, 10 -3.925t -0.841J -3.414t
8 dots: 2x4 array

Spin
# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4

8 -6.793J -6.023J -4.707J -2.707J 0
7, 9 -2.54t -1.346J -2.574t -0.806J -2.597t -0.377J -2.618t

6, 10 -4.347t -1.371J -4.338t -1.323J -4.317t -1.223J -4.236t
5, 11 -5.265t -2.671J -5.29t -1.724J -4.854t
4, 12 -5.993t -2.167J -5.507t -1.421J -5.236t
3, 13 -5.542t -1.271J -4.854t
2, 14 -4.546t -0.626J -4.236t

9 dots: 3x3 array
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2
9 -7.749J -6.759J -5.108J -3J 0

8, 10 -2.687t -1.721J -2.703t -1.498J -2.748t -1.024J -2.787t -0.584J -2.828t
7, 11 -4.469t -1.964J -4.493t -1.502J -4.527t -2.302J -4.243t
6, 12 -5.919t -3.6J -5.804t -2.787J -5.706t -1.971J -5.657t
5, 13 -6.491t -2.585J -6.391t -1.838J -5.657t
4, 14 -6.307t -1.895J -6.664t -1.718J -5.657t
3, 15 -5.888t -1.095J -5.657t
2, 16 -4.939t -0.75J -4.243t
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4 dot zigzag
Spin

# of el. 0, 1/2 1, 3/2 2
6 -2.372t -0.423J -2.562t
5 -2.303t -0.973J -2.562t
4 -3J -2J 0
3 -2.303t -2.721J -1.562t
2 -3.372t -2.077J -2.562t

5 dot zigzag
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2
8 -2.669t -0.296J -3.091t
7 -3.45t -0.652J -3.553t
6 -2.588t -1.865J -2.804t -0.893J -2.935t
5 -3.707J -2.5J 0
4 -2.588t -3.857J -2.476t -3.2J -1.618t
3 -3.923t -2.925J -3.091t
2 -4.311t -2.016J -3.553t

6 dot zigzag
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
10 -3.127t -0.253J -3.39t
9 -4.013t -0.664J -3.984t
8 -4.26t -1.087J -4.333t -0.606J -4.429t
7 -2.994t -1.561J -3.106t -0.698J -3.182t
6 -4.959J -4.255J -2.671J 0
5 -2.719t -4.475J -2.588t -3.455J -1.802t
4 -4.562t -4.509J -4.11t -3.13J -3.39t
3 -5.219t -3.073J -3.984t
2 -5.013t -1.774J -4.429t

7 dot zigzag
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2
12 -3.275t -0.216J -3.609t
11 -4.557t -0.483J -4.609t
10 -4.996t -0.835J -5.028t -0.493J -5.086t
9 -4.926t -0.99J -5.008t -0.497J -5.086t
8 -3.143t -2.011J -3.24t -1.227J -3.306t -0.567J -3.354t
7 -5.621J -4.657J -2.757J 0
6 -2.842t -5.551J -2.797t -4.921J -2.665t -3.635J -1.877t
5 -4.852t -5.348J -4.311t -3.101J -3.609t
4 -6.135t -4.812J -5.573t -3.446J -4.609t
3 -6.262t -2.971J -5.086t
2 -5.539t -1.514J -5.086t
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8 dot zigzag
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4
14 -3.509t -0.179J -3.786t
13 -4.827t -0.49J -4.786t
12 -5.74t -0.776J -5.747t -0.453J -5.786t
11 -5.931t -0.693J -5.989t -0.34J -6.04t
10 -5.407t -1.359J -5.471t -0.872J -5.534t -0.419J -5.592t
9 -3.346t -1.574J -3.403t -0.991J -3.445t -0.469J -3.477t
8 -6.932J -6.223J -5.039J -2.866J 0
7 -2.907t -6.155J -2.849t -5.237J -2.716t -3.732J -1.925t
6 -5.164t -6.539J -5.028t -5.959J -4.463t -3.375J -3.786t
5 -6.586t -5.739J -5.895t -3.582J -4.786t
4 -7.418t -4.845J -6.841t -3.46J -5.786t
3 -7.096t -2.785J -6.04t
2 -5.944t -1.269J -5.592t

Figure B.2: Illustration of various plaquette geometries. Top Left: 8 dots: 2 adjacent pentagons.
Top Right: 6 dots: octahedron. Bottom Left: 6 dots: triangular prism. Bottom Right: 8 dots:
cube.

122



8 dots: 2 adjacent pentagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4
14 -3.499t -0.14J -3.814t
13 -5.063t -0.261J -5.228t
12 -5.612t -1.089J -5.547t -1.025J -5.228t
11 -5.153t -1.969J -5.066t -1.366J -4.757t
10 -4.023t -4.398J -3.945t -2.85J -3.878t -1.57J -3.757t
9 -2.299t -4.87J -2.329t -2.826J -2.327t -0.373J -2.343t
8 -5.798J -5.34J -3.941J -2.366J 0
7 -2.325t -2.913J -2.328t -3.858J -2.267t -2.265J -2t
6 -4.033t -1.829J -4.024t -1.941J -4.006t -2.065J -3.814t
5 -5.095t -0.999J -5.16t -0.445J -5.228t
4 -5.418t -1.327J -5.436t -1.014J -5.228t
3 -5.102t -0.76J -4.757t
2 -4.093t -0.455J -3.757t

6 dots: octahedron
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
10 -3.236t -0.724J -4t
9 -4.509t -1.088J -4t
8 -5.123t -1.894J -4.503t -1.102J -4t
7 -3t -2.55J -3.449t -1.638J -4t
6 -6J -5J -3J 0
5 -3t -5.75J -3t -4.25J -2t
4 -4.275t -4.947J -4.302t -3.867J -4t
3 -5.413t -3.573J -4t
2 -6.472t -2.894J -4t

6 dots: triangular prism
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
10 -3.323t -0.556J -4t
9 -4.39t -1.305J -4t
8 -4.614t -2.138J -4.459t -1.207J -4t
7 -2.562t -1.852J -2.791t -1.173J -3t
6 -5.303J -4.281J -2.5J 0
5 -2.732t -3.684J -2.618t -3.171J -2t
4 -4.152t -4.126J -4.07t -2.284J -4t
3 -4.766t -2.509J -4t
2 -4.962t -1.306J -4t

8 dots: cube
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4
8 -7.82J -7J -5.414J -3J 0

7, 9 -2.625t -3.573J -2.714t -1.636J -2.858t -1.124J -3t
6, 10 -4.788t -1.811J -4.673t -2.032J -4.51t -1.092J -4t
5, 11 -5.546t -3.056J -5.984t -2.47J -5t
4, 12 -5.962t -2.157J -5.951t -1.717J -6t
3, 13 -5.658t -1.329J -5t
2, 14 -5.292t -0.857J -4t
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Figure B.3: Illustration of various plaquette geometries. Top Left: 10 dot diamond lattice. Top
Right: 10 dot bcc lattice. Bottom Left: 10 dot bcc: 2x5 criss cross. Bottom Right: 10 dot fcc
lattice.

10 dots: 3 adjacent pentagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
18 -3.756t -0.071J -3.966t
17 -5.548t -0.198J -5.845t
16 -6.511t -0.694J -6.741t -0.488J -6.845t
15 -7.171t -1.351J -7.117t -1.248J -6.498t
14 -6.816t -3.309J -6.783t -2.695J -6.457t -1.387J -6.15t
13 -5.888t -4.544J -5.746t -2.606J -5.733t -1.609J -5.578t
12 -4.429t -6.17J -4.352t -4.664J -4.318t -3.134J -4.268t -1.723J -4.046t
11 -2.466t -3.621J -2.472t -3.203J -2.488t -2.048J -2.496t -0.432J -2.514t
10 -7.404J -7.034J -6.264J -4.353J -2.5J 0
9 -2.48t -4.452J -2.481t -5.462J -2.451t -4.053J -2.342t -2.299J -2.086t
8 -4.424t -3.277J -4.421t -3.056J -4.41t -2.823J -4.396t -2.416J -3.966t
7 -5.798t -1.422J -5.827t -1.247J -5.841t -0.881J -5.845t
6 -6.63t -2.368J -6.657t -1.445J -6.762t -0.538J -6.845t
5 -6.984t -1.645J -6.861t -0.699J -6.498t
4 -6.434t -1.157J -6.72t -1.053J -6.15t
3 -5.698t -0.637J -5.578t
2 -4.535t -0.403J -4.046t
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10 dot diamond lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
10 -6.883J -7.726J -6.59J -4.732J -2.5J 0

9, 11 -2.396t -4.353J -2.403t -4.307J -2.414t -1.898J -2.417t -0.614J -2.449t
8, 12 -4.388t -5.578J -4.375t -4.304J -4.317t -2.458J -4.237t -1.827J -3.864t
7, 13 -5.97t -3.057J -5.921t -2.891J -5.812t -2.248J -5.278t
6, 14 -6.74t -1.307J -6.684t -1.32J -6.653t -0.781J -6.692t
5, 15 -6.724t -1.472J -6.941t -1.672J -6.692t
4, 16 -6.29t -0.745J -6.573t -0.605J -6.692t
3, 17 -5.594t -0.448J -5.278t
2, 18 -4.52t -0.294J -3.864t

10 dots: 2 adjacent hexagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
10 -7.52J -7.017J -5.967J -4.305J -2.43J 0

9, 11 -2.293t -4.268J -2.293t -1.995J -2.298t -1.894J -2.297t -0.241J -2.303t
8, 12 -4.093t -4.875J -4.082t -4.067J -4.043t -3.057J -4.016t -2.006J -3.921t
7, 13 -5.579t -2.558J -5.585t -3.33J -5.487t -1.745J -5.224t
6, 14 -6.513t -1.485J -6.504t -1.59J -6.489t -1.714J -6.224t
5, 15 -6.726t -0.665J -6.782t -0.291J -6.842t
4, 16 -6.366t -0.886J -6.369t -0.612J -6.224t
3, 17 -5.517t -0.471J -5.224t
2, 18 -4.16t -0.29J -3.921t

10 dot bcc lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
10 -8.984J -9.799J -8.405J -6.361J -3.618J 0

9, 11 -3.196t -3.189J -3.282t -2.256J -3.362t -1.386J -3.413t -0.734J -3.464t
8, 12 -5.098t -2.441J -5.072t -2.729J -5.123t -2.928J -5.125t -2.391J -4.878t
7, 13 -6.49t -3.393J -6.5t -2.79J -6.571t -2.417J -6.293t
6, 14 -7.618t -3.534J -7.463t -3.174J -7.29t -2.366J -6.293t
5, 15 -7.786t -3.072J -7.673t -2.348J -6.293t
4, 16 -7.509t -2.391J -7.857t -2.264J -6.293t
3, 17 -7.027t -1.654J -6.293t
2, 18 -6.08t -1.228J -4.878t

10 dots: 2x5 bcc criss-cross
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
10 -9.284J -9.83J -8.405J -6.374J -3.618J 0

9, 11 -3.268t -2.157J -3.334t -1.582J -3.387t -1.021J -3.428t -0.489J -3.464t
8, 12 -5.358t -1.963J -5.353t -1.999J -5.34t -2.074J -5.393t -0.404J -5.464t
7, 13 -6.216t -3.62J -6.389t -2.574J -6.247t -2.192J -5.464t
6, 14 -7.441t -3.203J -7.247t -3.069J -6.752t -1.888J -5.464t
5, 15 -7.879t -3.096J -7.128t -2.129J -5.464t
4, 16 -8.363t -3.072J -7.337t -2.036J -5.464t
3, 17 -7.471t -2.032J -5.464t
2, 18 -6.098t -1.164J -5.464t
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10 dot fcc lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
18 -4.364t -0.272J -4.65t
17 -6.3t -0.43J -6.569t
16 -7.749t -1.162J -7.618t -0.859J -7.569t
15 -8.606t -1.68J -8.566t -J -8.569t
14 -8.888t -2.802J -8.617t -2.15J -8.853t -1.532J -8.868t
13 -8.588t -3.606J -8.522t -2.684J -8.46t -1.553J -8.454t
12 -7.066t -3.088J -7.181t -2.453J -7.265t -1.711J -7.365t -0.924J -7.454t
11 -4.602t -4.002J -4.786t -3.163J -4.957t -2.093J -5.094t -1.037J -5.218t
10 -11.472J -10.746J -9.267J -7.371J -4.281J 0
9 -3.538t -10.12J -3.549t -9.538J -3.455t -7.972J -3.18t -5.079J -2.414t
8 -6.506t -11.143J -6.415t -10.363J -6.179t -8.361J -5.933t -6.143J -4.65t
7 -8.246t -9.861J -8.166t -8.761J -7.732t -6.303J -6.569t
6 -9.823t -9.276J -9.762t -8.453J -9.25t -6.114J -7.569t
5 -10.933t -7.723J -10.311t -5.714J -8.569t
4 -11.326t -6.351J -10.824t -5.253J -8.868t
3 -10.697t -4.257J -8.454t
2 -9.177t -2.941J -7.454t

6 dots: square between triangles
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3
10 -3.115t -0.514J -3.414t
9 -3.949t -0.426J -4.146t
8 -4.374t -1.222J -4.322t -1.006J -4.146t
7 -2.586t -1.576J -2.666t -0.644J -2.732t
6 -4.532J -4.121J -2.5J 0
5 -2.653t -3.883J -2.454t -2.063J -2t
4 -4.256t -3.931J -3.705t -2.525J -3.414t
3 -4.742t -2.329J -4.146t
2 -4.537t -0.923J -4.146t
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B.2 Geometries with Many Dots
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Figure B.4: Illustration of plaquette geometry (Left) and single particle energies (Right) for 9
dots: (2,3)-Hamming graph

9 dots: (2,3)-Hamming graph
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4
16 -4t -4t
15 -5.5857t -6t
14 -7.1945t -7.1315t -8t
13 -7.4647t -7.7421t -7t
12 -7.7014t -7.2919t -6.8076t -6t
11 -5.9511t -5.9366t -5.8503t -5t
10 -3.1623t -3.3456t -3.5616t -3.7762t -4t
9 0 0 0 0 0
8 -3.4142t -3.3162t -3.1009t -2.7321t -2t
7 -5.5185t -5.534t -5.063t -4t
6 -6.7831t -6.9136t -7.4357t -6t
5 -7.507t -7.9138t -8t
4 -7.5146t -7.8541t -7t
3 -7.4774t -6t
2 -7.1231t -5t
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Figure B.5: Illustration of plaquette geometry (Left) and single particle energies (Right) for 10
dots: Petersen graph

10 dots: Petersen graph
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2
18 -3.9173t -4t
17 -5.7459t -6t
16 -6.8988t -7.2802t -8t
15 -7.8383t -7.9503t -7t
14 -7.7187t -7.6523t -6.9835t -6t
13 -6.708t -6.2825t -5.8116t -5t
12 -5.1579t -4.8585t -4.8241t -4.5823t -4t
11 -2.6981t -2.7244t -2.8192t -2.8951t -3t
10 0 0 0 0 0
9 -2.8097t -2.7863t -2.6564t -2.4142t -2t
8 -4.9536t -4.9468t -4.9152t -4.5866t -4t
7 -6.5726t -6.5144t -6.8102t -6t
6 -7.3782t -7.309t -7.614t -8t
5 -7.0921t -7.3878t -7t
4 -6.7057t -6.7932t -6t
3 -6.0931t -5t
2 -5.4641t -4t
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Figure B.6: Illustration of plaquette geometry (Left) and single particle energies (Right) for 11
dots: Kagome lattice

11 dots: Kagome lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5
20 -3.9028t -4t
19 -5.5437t -5.618t
18 -6.8951t -6.779t -6.7329t
17 -7.6334t -7.6422t -7.351t
16 -7.744t -7.8192t -7.8956t -7.969t
15 -7.304t -7.3657t -7.367t -7.351t
14 -6.3466t -6.35t -6.3582t -6.1877t -6.0969t
13 -4.7628t -4.7668t -4.771t -4.7107t -4.4788t
12 -2.8445t -2.8493t -2.8493t -2.8548t -2.8564t -2.8608t
11 0 0 0 0 0 0
10 -2.8375t -2.8375t -2.8373t -2.8371t -2.578t -2t
9 -4.7518t -4.7107t -4.6642t -4.5937t -4t
8 -6.3655t -6.3373t -6.1913t -6.1535t -5.618t
7 -7.4895t -7.5335t -7.1921t -6.7329t
6 -8.2293t -8.213t -8.172t -7.351t
5 -7.9642t -8.0416t -7.969t
4 -7.4423t -7.4568t -7.351t
3 -6.4196t -6.0969t
2 -4.9689t -4.4788t
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Figure B.7: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: 3x4 square lattice

12 dots: 3x4 square lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
11, 13 -2.9176t -2.9489t -2.9751t -2.9961t -3.0149t -3.0322t
10, 14 -5.1784t -5.1749t -5.1673t -5.1545t -5.1328t -5.0645t
9, 15 -6.7036t -6.7102t -6.6797t -6.6691t -6.6825t
8, 16 -7.9639t -8.0024t -7.8733t -7.7534t -7.4787t
7, 17 -8.753t -8.7704t -8.4928t -8.0967t
6, 18 -9.249t -9.1326t -8.9408t -8.3006t
5, 19 -9.0554t -8.6366t -8.0967t
4, 20 -8.2599t -8.2524t -7.4787t
3, 21 -7.0889t -6.6825t
2, 22 -5.5t -5.0645t
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Figure B.8: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: triangle lattice

12 dots: triangle lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
22 -4.0901t -4.416t
21 -6.0743t -5.9525t
20 -7.7223t -7.4786t -7.489t
19 -8.664t -8.7639t -8.8613t
18 -9.0987t -9.3905t -9.6533t -9.8613t
17 -9.5499t -9.7413t -9.8213t -9.8613t
16 -9.6144t -9.6149t -9.6259t -9.6043t -9.4885t
15 -8.6899t -8.771t -8.8835t -9.0017t -9.1156t
14 -6.9326t -6.9212t -6.9081t -6.8908t -6.8406t -6.744t
13 -4.1043t -4.1644t -4.2238t -4.2725t -4.3234t -4.3723t
12 0 0 0 0 0 0
11 -3.4469t -3.4049t -3.3249t -3.2117t -3.0355t -2.208t
10 -6.1048t -6.0723t -6.013t -5.6787t -5.1205t -4.416t
9 -8.3091t -8.2684t -7.8417t -7.1366t -5.9525t
8 -9.8348t -9.999t -9.502t -9.0703t -7.489t
7 -11.1618t -10.7841t -10.3275t -8.8613t
6 -12.1777t -11.3801t -10.9679t -9.8613t
5 -11.8013t -11.0846t -9.8613t
4 -10.7776t -11.141t -9.4885t
3 -9.5882t -9.1156t
2 -7.8072t -6.744t
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Figure B.9: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: 4 adjacent pentagons

12 dots: 4 adjacent pentagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
22 -3.9693t -4.1149t
21 -5.9239t -6.1149t
20 -7.4645t -7.594t -7.7329t
19 -8.3466t -8.362t -8.351t
18 -8.7285t -8.7119t -8.6377t -8.0969t
17 -8.4649t -8.4168t -8.0788t -7.7149t
16 -7.7016t -7.6604t -7.5074t -7.2633t -7.0969t
15 -6.4056t -6.2942t -6.2205t -6.2093t -6.0969t
14 -4.6774t -4.6668t -4.629t -4.6165t -4.6019t -4.4788t
13 -2.5629t -2.5744t -2.5851t -2.5981t -2.6078t -2.618t
12 0 0 0 0 0 0
11 -2.5706t -2.5699t -2.5571t -2.5202t -2.3996t -2.1149t
10 -4.7029t -4.6957t -4.6949t -4.6881t -4.5666t -4.1149t
9 -6.3047t -6.3257t -6.3346t -6.341t -6.1149t
8 -7.5825t -7.619t -7.6594t -7.6986t -7.7329t
7 -8.2239t -8.2711t -8.3296t -8.351t
6 -8.5705t -8.502t -8.4079t -8.0969t
5 -8.3087t -8.2013t -7.7149t
4 -7.5317t -7.5333t -7.0969t
3 -6.3387t -6.0969t
2 -4.8299t -4.4788t
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Figure B.10: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: icosahedron

12 dots: icosahedron
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
22 -4.0943t -4.4721t
21 -6.145t -6.7082t
20 -7.6862t -8.0527t -7.7082t
19 -9.4379t -9.0898t -8.7082t
18 -10.8708t -10.4651t -10.08t -9.7082t
17 -10.5737t -10.7619t -10.8116t -10.7082t
16 -10.1516t -10.3966t -10.7331t -11.2211t -11.7082t
15 -9.4187t -9.5558t -9.628t -9.7674t -9.4721t
14 -7.991t -7.9108t -7.8183t -7.76t -7.4707t -7.2361t
13 -4.2367t -4.3665t -4.5315t -4.6867t -4.8473t -5t
12 0 0 0 0 0 0
11 -3.4806t -3.4472t -3.3804t -3.2519t -2.913t -2.2361t
10 -6.3265t -6.3291t -6.1957t -5.9724t -5.7174t -4.4721t
9 -9.1212t -8.7907t -8.13t -7.3353t -6.7082t
8 -11.8779t -11.0131t -10.0811t -8.9171t -7.7082t
7 -12.7168t -11.6355t -10.4343t -8.7082t
6 -12.7096t -13.1905t -11.9313t -9.7082t
5 -12.6537t -13.4443t -10.7082t
4 -11.6497t -12.1895t -11.7082t
3 -10.7494t -9.4721t
2 -9.2279t -7.2361t
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Figure B.11: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: cuboctahedron

12 dots: cuboctahedron
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
22 -4t -4t
21 -5.9153t -6t
20 -7.7375t -7.7468t -8t
19 -9.2002t -9.451t -10t
18 -10.3255t -10.1679t -10.2674t -10t
17 -10.2328t -10.3376t -10.3892t -10t
16 -9.9934t -9.9072t -9.7962t -9.7505t -10t
15 -8.3886t -8.471t -8.4547t -8.4338t -8t
14 -6.6394t -6.5918t -6.534t -6.5102t -6.4667t -6t
13 -3.5224t -3.6096t -3.7088t -3.809t -3.9058t -4t
12 0 0 0 0 0 0
11 -3.4943t -3.4683t -3.2978t -3.0755t -2.7913t -2t
10 -6.0941t -6.0754t -6.0063t -5.5833t -5.0187t -4t
9 -8.2176t -8.1762t -7.9333t -7.1942t -6t
8 -10.1759t -9.6179t -9.3573t -9.3707t -8t
7 -10.9403t -10.5902t -10.2t -10t
6 -11.2782t -11.3335t -10.8622t -10t
5 -10.9465t -11.4593t -10t
4 -10.0423t -10.2462t -10t
3 -8.8681t -8t
2 -7.4186t -6t
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Figure B.12: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: 2 adjacent septagons

12 dots: 2 adjacent septagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
22 -3.8071t -4.0613t
21 -5.7109t -5.7934t
20 -7.0429t -7.0052t -6.7934t
19 -7.7759t -7.7187t -7.498t
18 -8.08t -7.9946t -7.9265t -7.8091t
17 -7.7668t -7.8153t -7.784t -7.8091t
16 -7.0321t -7.0292t -7.0233t -7.011t -6.8091t
15 -5.7855t -5.7861t -5.7824t -5.7179t -5.4917t
14 -4.1526t -4.1505t -4.1477t -4.1084t -4.0779t -4.0105t
13 -2.2727t -2.2741t -2.2743t -2.2762t -2.2758t -2.2784t
12 0 0 0 0 0 0
11 -2.2735t -2.2742t -2.2749t -2.2756t -2.2501t -2.1701t
10 -4.1584t -4.1573t -4.155t -4.151t -4.1417t -4.0613t
9 -5.7881t -5.7865t -5.793t -5.7823t -5.7934t
8 -7.0028t -6.9923t -6.9406t -6.9139t -6.7934t
7 -7.8016t -7.8069t -7.7162t -7.498t
6 -8.0829t -8.0746t -8.0609t -7.8091t
5 -7.7148t -7.7608t -7.8091t
4 -6.9162t -6.9077t -6.8091t
3 -5.7455t -5.4917t
2 -4.1909t -4.0105t
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Figure B.13: Illustration of plaquette geometry (Left) and single particle energies (Right) for 12
dots: truncated tetrahedron

12 dots: truncated tetrahedron
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2
22 -3.8548t -4t
21 -5.6857t -6t
20 -7.153t -7.2512t -7t
19 -8.3469t -8.2954t -8t
18 -8.7881t -8.7349t -8.8291t -9t
17 -8.8369t -8.9243t -8.9382t -9t
16 -8.8694t -8.8901t -8.9231t -8.9577t -9t
15 -7.4721t -7.449t -7.4153t -7.3155t -7t
14 -5.4205t -5.4078t -5.4017t -5.3955t -5.357t -5t
13 -2.8938t -2.9119t -2.933t -2.957t -2.9703t -3t
12 0 0 0 0 0 0
11 -2.8371t -2.8342t -2.786t -2.6996t -2.5529t -2t
10 -5.3058t -5.2842t -5.0965t -4.9502t -4.5529t -4t
9 -7.4439t -7.1779t -6.6392t -6.2305t -6t
8 -9.1522t -8.5611t -8.147t -7.5606t -7t
7 -9.6447t -9.2777t -8.9411t -8t
6 -9.6705t -9.8117t -9.3906t -9t
5 -9.3822t -9.7702t -9t
4 -8.8079t -8.9459t -9t
3 -7.339t -7t
2 -5.6519t -5t
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Figure B.14: Illustration of plaquette geometry (Left) and single particle energies (Right) for 13
dots: FCC lattice (cuboctahedron with center)

13 dots: FCC lattice (cuboctahedron with center)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6
24 -4t -4t
23 -6t -6t
22 -7.7403t -7.871t -8t
21 -9.5552t -9.6625t -10t
20 -10.8105t -11.0213t -11.3645t -12t
19 -12.0246t -11.988t -12.1859t -12t
18 -11.7258t -11.9205t -12.1634t -12.2829t -12t
17 -11.5713t -11.5946t -11.6016t -11.6503t -12t
16 -9.7317t -9.9794t -10.1818t -10.2407t -10.3303t -10t
15 -8.0492t -8.135t -8.2188t -8.3152t -8.3707t -8t
14 -5.3755t -5.3902t -5.4543t -5.5604t -5.6951t -5.8436t -6t
13 0 0 0 0 0 0 0
12 -3.7243t -3.7077t -3.646t -3.5509t -3.3313t -2.9438t -2t
11 -7.1654t -7.1024t -6.7447t -6.2969t -5.6731t -4t
10 -9.6813t -9.637t -9.535t -8.9292t -8.1277t -6t
9 -11.7707t -11.701t -11.395t -10.4625t -8t
8 -13.7166t -13.0744t -12.7837t -12.8213t -10t
7 -14.3472t -13.9839t -13.5181t -12t
6 -14.546t -14.6431t -14.1514t -12t
5 -14.2217t -14.748t -12t
4 -13.2602t -13.4679t -12t
3 -12.0947t -10t
2 -10.6671t -8t
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Figure B.15: Illustration of plaquette geometry (Left) and single particle energies (Right) for 13
dots: 3 adjacent hexagons

13 dots: 3 adjacent hexagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6
12, 14 -2.4283t -2.4299t -2.4355t -2.4364t -2.4422t -2.4434t -2.4495t
11, 15 -4.4122t -4.4067t -4.3793t -4.3515t -4.33t -4.1815t
10, 16 -6.1311t -6.1271t -6.1235t -6.0445t -6.0155t -5.9136t
9, 17 -7.515t -7.5121t -7.4809t -7.256t -6.9136t
8, 18 -8.4948t -8.4917t -8.4796t -8.4616t -7.9136t
7, 19 -8.8459t -8.8752t -8.897t -8.9136t
6, 20 -8.7807t -8.7935t -8.8623t -8.9136t
5, 21 -8.341t -8.2314t -7.9136t
4, 22 -7.2468t -7.4316t -6.9136t
3, 23 -6.0194t -5.9136t
2, 24 -4.5183t -4.1815t
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Figure B.16: Illustration of plaquette geometry (Left) and single particle energies (Right) for 13
dots: 3 septagons sharing 2 edges

13 dots: 3 septagons sharing 2 edges
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6
24 -4.0848t -4.1686t
23 -6.0113t -6.2301t
22 -7.4479t -7.4657t -7.2301t
21 -8.4065t -8.3499t -8.0178t
20 -8.9493t -8.8306t -8.6t -8.4141t
19 -8.8941t -8.8126t -8.7883t -8.8105t
18 -8.335t -8.4004t -8.3907t -8.3383t -8.1167t
17 -7.5004t -7.4929t -7.5051t -7.4228t -7.4228t
16 -6.2019t -6.2079t -6.1976t -6.1925t -6.1195t -5.8967t
15 -4.4245t -4.4211t -4.4093t -4.3739t -4.3367t -4.1327t
14 -2.3468t -2.3505t -2.3516t -2.3524t -2.3583t -2.3593t -2.3686t
13 0 0 0 0 0 0 0
12 -2.3519t -2.3512t -2.3494t -2.3478t -2.3422t -2.2755t -2.1071t
11 -4.4177t -4.4098t -4.4029t -4.3968t -4.3954t -4.1686t
10 -6.1988t -6.1978t -6.1945t -6.2079t -6.2106t -6.2301t
9 -7.5236t -7.5149t -7.446t -7.3828t -7.2301t
8 -8.4437t -8.4183t -8.3828t -8.2726t -8.0178t
7 -8.9113t -8.8698t -8.8437t -8.4141t
6 -8.7691t -8.7845t -8.8059t -8.8105t
5 -8.3081t -8.359t -8.1167t
4 -7.181t -7.4344t -7.4228t
3 -6.025t -5.8967t
2 -4.492t -4.1327t
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Figure B.17: Illustration of plaquette geometry (Left) and single particle energies (Right) for 13
dots: Paley-13 graph (triangle lattice with PBC)

13 dots: Paley-13 graph (triangle lattice with PBC)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6
24 -4.6056t -4.6056t
23 -6.9083t -6.9083t
22 -8.7177t -8.9812t -9.2111t
21 -10.7043t -10.9538t -11.5139t
20 -11.79t -12.1959t -12.7335t -13.8167t
19 -12.8266t -12.9854t -13.4368t -12.5139t
18 -12.6951t -12.8908t -13.0302t -12.1777t -11.2111t
17 -12.3798t -12.1954t -11.618t -10.8536t -9.9083t
16 -10.784t -10.7897t -10.5095t -10.1266t -9.4571t -8.6056t
15 -8.3931t -8.3615t -8.3062t -8.2131t -7.9285t -7.3028t
14 -4.4142t -4.629t -4.9018t -5.1824t -5.4527t -5.7152t -6t
13 0 0 0 0 0 0 0
12 -4.1205t -4.1019t -3.9503t -3.8287t -3.5009t -3.2361t -2.3028t
11 -7.5209t -7.4412t -7.0293t -6.5704t -5.8856t -4.6056t
10 -9.8407t -9.9917t -9.9107t -9.2735t -8.6215t -6.9083t
9 -11.498t -11.7485t -12.0227t -11.2606t -9.2111t
8 -12.6485t -12.819t -13.2218t -13.9952t -11.5139t
7 -13.2178t -13.6182t -14.034t -13.8167t
6 -13.3629t -13.3112t -13.8504t -12.5139t
5 -13.0425t -13.233t -11.2111t
4 -12.5132t -12.5738t -9.9083t
3 -11.773t -8.6056t
2 -11.0828t -7.3028t
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Figure B.18: Illustration of plaquette geometry (Left) and single particle energies (Right) for 14
dots: diamond lattice

14 dots: diamond lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2
13, 15 -2.593t -2.599t -2.6119t -2.6253t -2.6339t -2.6444t -2.6554t
12, 16 -4.7895t -4.7838t -4.7671t -4.7492t -4.7385t -4.6294t -4.5216t
11, 17 -6.7058t -6.7155t -6.642t -6.5838t -6.567t -6.1397t
10, 18 -8.3493t -8.3128t -8.2818t -8.1885t -8.0084t -7.7577t
9, 19 -9.2748t -9.244t -9.2344t -9.0984t -8.9685t
8, 20 -9.9614t -9.9571t -9.9493t -9.9453t -9.5865t
7, 21 -9.9891t -10.0439t -10.1117t -10.2045t
6, 22 -9.7506t -9.7754t -9.7284t -9.5865t
5, 23 -8.975t -9.165t -8.9685t
4, 24 -7.847t -7.9151t -7.7577t
3, 25 -6.6649t -6.1397t
2, 26 -4.9985t -4.5216t
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Figure B.19: Illustration of plaquette geometry (Left) and single particle energies (Right) for 14
dots: FCC lattice

14 dots: FCC lattice (cube corners and faces)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2
26 -4t -4t
25 -6t -6t
24 -7.8209t -7.9202t -8t
23 -9.6257t -9.792t -10t
22 -11.3397t -11.3635t -11.5867t -12t
21 -11.6194t -11.6732t -12.066t -12t
20 -11.6194t -11.5904t -11.8483t -12.0059t -12t
19 -11.2739t -11.5348t -11.7206t -11.8831t -12t
18 -10.6634t -11.1579t -11.3907t -11.6087t -11.8118t -12t
17 -10.0182t -10.1039t -10.1845t -10.2276t -10.243t -10t
16 -8.7516t -8.7107t -8.6697t -8.6092t -8.5538t -8.2416t -8t
15 -5.2615t -5.4334t -5.5888t -5.6933t -5.7995t -5.8997t -6t
14 0 0 0 0 0 0 0
13 -3.7329t -3.7511t -3.7477t -3.6176t -3.3652t -3t -2t
12 -7.1039t -7.1603t -7.2741t -6.8335t -6.3276t -5.6818t -4t
11 -9.7551t -9.7789t -9.6215t -8.8961t -8.1484t -6t
10 -12.1207t -11.9871t -11.8019t -11.5098t -10.6477t -8t
9 -13.3752t -13.2952t -13.121t -12.9747t -10t
8 -14.5246t -14.3463t -14.0359t -13.5327t -12t
7 -14.6024t -14.2983t -13.8549t -12t
6 -14.2324t -14.5364t -14.1482t -12t
5 -13.9429t -14.3657t -12t
4 -12.9965t -13.2403t -12t
3 -12.0265t -10t
2 -10.7633t -8t
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Figure B.20: Illustration of plaquette geometry (Left) and single particle energies (Right) for 14
dots: Heawood graph (hexagons with PBC)

14 dots: Heawood graph (hexagons with PBC)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2
13, 15 -2.8389t -2.8083t -2.8259t -2.8618t -2.9148t -2.9477t -3t
12, 16 -5.2483t -5.2275t -5.1252t -5.0448t -4.9828t -4.8928t -4.4142t
11, 17 -7.3059t -7.2518t -7.1223t -6.9363t -6.5107t -5.8284t
10, 18 -9.0061t -8.9841t -8.9156t -8.5495t -8.0241t -7.2426t
9, 19 -10.0634t -10.0469t -10.0938t -9.5609t -8.6569t
8, 20 -10.8095t -10.7021t -10.7533t -11.1262t -10.0711t
7, 21 -10.7005t -10.836t -11.1354t -11.4853t
6, 22 -9.9128t -10.0607t -10.3206t -10.0711t
5, 23 -9.1832t -9.1906t -8.6569t
4, 24 -8.0058t -8.0358t -7.2426t
3, 25 -6.8259t -5.8284t
2, 26 -5.6569t -4.4142t

143



2 4 6 8 10 12 14
n

-3

-2

-1

1

2

En/t

Figure B.21: Illustration of plaquette geometry (Left) and single particle energies (Right) for 15
dots: 6 adjacent pentagons

15 dots: 6 adjacent pentagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7
28 -4.1656t -4.261t
27 -6.2104t -6.3859t
26 -8.041t -8.241t -8.2206t
25 -9.7301t -9.8536t -10.0553t
24 -10.5774t -10.6633t -10.7221t -10.3955t
23 -11.0792t -11.0193t -10.8981t -10.7357t
22 -11.1434t -11.0974t -10.9806t -10.8783t -10.298t
21 -10.7828t -10.722t -10.6327t -10.1435t -9.8604t
20 -10.0089t -9.921t -9.8132t -9.5486t -9.3563t -9.0077t
19 -8.6727t -8.5827t -8.4358t -8.3604t -8.2785t -8.155t
18 -6.9682t -6.9991t -6.9221t -6.8653t -6.8325t -6.8253t -6.7917t
17 -4.9952t -4.9896t -4.9808t -4.9726t -4.9694t -4.9027t -4.7766t
16 -2.6776t -2.6881t -2.701t -2.7135t -2.726t -2.7386t -2.7495t -2.7616t
15 0 0 0 0 0 0 0 0
14 -2.6851t -2.6818t -2.6765t -2.6681t -2.6388t -2.5725t -2.4528t -2.1305t
13 -5.0292t -5.0331t -5.0218t -5.0206t -4.9224t -4.7281t -4.261t
12 -6.9623t -6.9552t -6.9534t -6.956t -6.9545t -6.6837t -6.3859t
11 -8.542t -8.5681t -8.5977t -8.6152t -8.6389t -8.2206t
10 -9.8367t -9.853t -9.8985t -9.9529t -10.0067t -10.0553t
9 -10.5t -10.5615t -10.5803t -10.5673t -10.3955t
8 -10.9259t -10.8696t -10.8431t -10.8018t -10.7357t
7 -10.9384t -10.793t -10.7796t -10.298t
6 -10.6643t -10.4915t -10.2417t -9.8604t
5 -9.7389t -9.633t -9.0077t
4 -8.3722t -8.5969t -8.155t
3 -6.9472t -6.7917t
2 -5.2119t -4.7766t
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Figure B.22: Illustration of plaquette geometry (Left) and single particle energies (Right) for 15
dots: Kagome lattice

15 dots: Kagome lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7
28 -3.9277t -4t
27 -5.8787t -6t
26 -7.4213t -7.5991t -7.5764t
25 -8.9092t -9.0222t -9.1528t
24 -10.1696t -10.11t -10.1066t -9.9003t
23 -10.7478t -10.8128t -10.7663t -10.6478t
22 -10.9083t -11.0028t -11.0315t -11.0732t -11.129t
21 -10.8369t -10.9169t -10.9944t -11.0684t -11.129t
20 -10.0649t -10.0992t -10.1195t -10.1389t -10.1282t -9.9318t
19 -8.9526t -8.9717t -8.9863t -8.9146t -8.8603t -8.7347t
18 -7.5772t -7.5839t -7.5922t -7.5996t -7.5299t -7.4605t -7.4236t
17 -5.4241t -5.4286t -5.4323t -5.4351t -5.4267t -5.4108t -5.2968t
16 -3.1477t -3.1506t -3.1532t -3.1568t -3.159t -3.1628t -3.1657t -3.1701t
15 0 0 0 0 0 0 0 0
14 -3.1363t -3.1362t -3.1361t -3.136t -3.0327t -2.8955t -2.6492t -2t
13 -5.4285t -5.4336t -5.4327t -5.4302t -5.2029t -4.8018t -4t
12 -7.5739t -7.5375t -7.5017t -7.4698t -7.0525t -6.6443t -6t
11 -9.0721t -9.0462t -8.9431t -8.6048t -8.4393t -7.5764t
10 -10.3647t -10.3502t -10.3714t -9.8731t -9.514t -9.1528t
9 -11.3738t -11.3691t -11.0776t -10.5407t -9.9003t
8 -11.7808t -11.752t -11.7035t -11.4988t -10.6478t
7 -11.6469t -11.6703t -11.6974t -11.129t
6 -11.2495t -11.1487t -11.1253t -11.129t
5 -10.3727t -10.2133t -9.9318t
4 -9.023t -9.2046t -8.7347t
3 -7.6089t -7.4236t
2 -5.74t -5.2968t
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Figure B.23: Illustration of plaquette geometry (Left) and single particle energies (Right) for 15
dots: BCC lattice

15 dots: BCC lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7
14, 16 -4.0336t -4.046t -4.0881t -4.1553t -4.2367t -4.3111t -4.3906t -4.4721t
13, 17 -6.777t -6.7898t -6.8037t -6.8125t -6.7455t -6.6735t -6.4721t
12, 18 -8.6685t -8.6733t -8.7133t -8.7966t -8.8849t -8.9866t -8.4721t
11, 19 -10.3637t -10.4068t -10.4621t -10.4353t -10.4101t -10.4721t
10, 20 -11.7632t -11.65t -11.5352t -11.4778t -11.2915t -10.4721t
9, 21 -12.8176t -12.6034t -12.273t -11.67t -10.4721t
8, 22 -13.9409t -13.4546t -12.8161t -12.0214t -10.4721t
7, 23 -13.7813t -13.1347t -12.3597t -10.4721t
6, 24 -13.1295t -13.407t -12.6455t -10.4721t
5, 25 -12.5431t -12.9246t -10.4721t
4, 26 -11.1801t -11.4094t -10.4721t
3, 27 -9.8352t -8.4721t
2, 28 -8.2267t -6.4721t
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Figure B.24: Illustration of plaquette geometry (Left) and single particle energies (Right) for 15
dots: 4 septagons sharing 2 edges

15 dots: 4 septagons sharing 2 edges
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7
28 -4.3399t -4.3908t
27 -6.3644t -6.4917t
26 -7.9835t -8.0629t -8.0238t
25 -9.2471t -9.204t -8.8822t
24 -10.063t -10.0386t -9.7256t -9.4372t
23 -10.518t -10.2588t -10.1072t -9.9659t
22 -10.4976t -10.3735t -10.3333t -10.3014t -10.3132t
21 -10.007t -10.0489t -10.0361t -9.9644t -9.8944t
20 -9.2439t -9.2405t -9.2529t -9.2406t -9.1602t -9.0925t
19 -8.072t -8.0658t -8.0625t -8.0642t -7.9247t -7.8742t
18 -6.5261t -6.5255t -6.5214t -6.5167t -6.4794t -6.394t -6.1336t
17 -4.63t -4.6304t -4.6187t -4.6011t -4.5782t -4.5223t -4.3496t
16 -2.4408t -2.4399t -2.4432t -2.4477t -2.4498t -2.4579t -2.4615t -2.4702t
15 0 0 0 0 0 0 0 0
14 -2.4443t -2.4426t -2.443t -2.4413t -2.4401t -2.4372t -2.3614t -2.247t
13 -4.6236t -4.6202t -4.6152t -4.6099t -4.6006t -4.5853t -4.3908t
12 -6.5384t -6.5364t -6.5205t -6.5126t -6.5193t -6.5228t -6.4917t
11 -8.0919t -8.0656t -8.0635t -8.0286t -8.0213t -8.0238t
10 -9.2679t -9.262t -9.2369t -9.1958t -9.1132t -8.8822t
9 -10.0966t -10.0529t -9.9891t -9.8099t -9.4372t
8 -10.4911t -10.4441t -10.393t -10.3135t -9.9659t
7 -10.3582t -10.3516t -10.3317t -10.3132t
6 -9.9983t -9.986t -9.9727t -9.8944t
5 -9.1084t -9.194t -9.0925t
4 -7.7905t -7.8786t -7.8742t
3 -6.3278t -6.1336t
2 -4.7218t -4.3496t
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Figure B.25: Illustration of plaquette geometry (Left) and single particle energies (Right) for 16
dots: 4x4 square lattice

16 dots: 4x4 square lattice
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7, 15/2
15, 17 -3.118t -3.1396t -3.1578t -3.1769t -3.1933t -3.2093t -3.2227t -3.2361t
14, 18 -5.6674t -5.6632t -5.6567t -5.6462t -5.6354t -5.625t -5.626t -5.4721t
13, 19 -7.5776t -7.6t -7.624t -7.6462t -7.6692t -7.6874t -7.7082t
12, 20 -9.3304t -9.3214t -9.3018t -9.2592t -9.2073t -9.1191t -8.9443t
11, 21 -10.5029t -10.5014t -10.5143t -10.4234t -10.3663t -9.9443t
10, 22 -11.5156t -11.5237t -11.4496t -11.4001t -11.0648t -10.9443t
9, 23 -12.2549t -12.2524t -11.904t -11.6522t -10.9443t
8, 24 -12.6886t -12.5083t -12.2862t -11.821t -10.9443t
7, 25 -12.5453t -12.179t -12.0066t -10.9443t
6, 26 -12.1331t -11.7623t -11.4451t -10.9443t
5, 27 -11.0317t -10.7191t -9.9443t
4, 28 -9.6005t -9.7525t -8.9443t
3, 29 -7.9326t -7.7082t
2, 30 -6.0156t -5.4721t
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Figure B.26: Illustration of plaquette geometry (Left) and single particle energies (Right) for 16
dots: hypercube (4x4 square lattice with PBC)

16 dots: hypercube (4x4 square lattice with PBC)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7, 15/2
15, 17 -3.4549t -3.5186t -3.6035t -3.6911t -3.7689t -3.8484t -3.924t -4t
14, 18 -6.6775t -6.643t -6.6179t -6.5687t -6.5238t -6.4117t -6.2781t -6t
13, 19 -8.6365t -8.6968t -8.7426t -8.8205t -8.7575t -8.5486t -8t
12, 20 -10.6611t -10.6424t -10.6729t -10.6823t -10.7467t -10.8116t -10t
11, 21 -12.1808t -12.1425t -12.1591t -12.0006t -11.9082t -12t
10, 22 -13.7555t -13.3513t -13.202t -12.7418t -12.3871t -12t
9, 23 -14.1611t -13.7702t -13.3162t -12.7566t -12t
8, 24 -14.3475t -14.2234t -13.7099t -13.1416t -12t
7, 25 -13.8398t -14.0605t -13.4586t -12t
6, 26 -13.3011t -13.257t -13.8026t -12t
5, 27 -12.0779t -12.3427t -12t
4, 28 -10.814t -10.7913t -10t
3, 29 -9.1944t -8t
2, 30 -7.5696t -6t
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Figure B.27: Illustration of plaquette geometry (Left) and single particle energies (Right) for 16
dots: Mobius-Kantor graph (hexagons with PBC)

16 dots: Mobius-Kantor graph (hexagons with PBC)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7, 15/2
15, 17 -2.8396t -2.8379t -2.8544t -2.8799t -2.9059t -2.9396t -2.9652t -3t
14, 18 -5.3152t -5.3044t -5.2578t -5.2204t -5.186t -5.1218t -5.0402t -4.7321t
13, 19 -7.4952t -7.4692t -7.406t -7.3157t -7.2562t -6.9284t -6.4641t
12, 20 -9.3443t -9.3546t -9.3072t -9.1263t -8.884t -8.8116t -8.1962t
11, 21 -10.8322t -10.8302t -10.8063t -10.4843t -10.1118t -9.9282t
10, 22 -11.8867t -11.7957t -11.8724t -11.864t -11.3916t -10.9282t
9, 23 -12.2914t -12.3379t -12.4179t -12.6624t -11.9282t
8, 24 -12.6193t -12.5361t -12.5753t -12.6746t -12.9282t
7, 25 -11.9385t -12.0729t -12.1114t -11.9282t
6, 26 -11.1999t -11.2377t -11.5091t -10.9282t
5, 27 -10.0982t -10.1133t -9.9282t
4, 28 -8.6982t -8.6991t -8.1962t
3, 29 -7.2016t -6.4641t
2, 30 -5.7139t -4.7321t
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Figure B.28: Illustration of plaquette geometry (Left) and single particle energies (Right) for 16
dots: (8,8) complete bipartite graph (BCC with PBC)

16 dots: (8,8) complete bipartite graph (BCC with PBC)
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7, 15/2
15, 17 -4.899t -5.3589t -5.7854t -6.2426t -6.6695t -7.1231t -7.5498t -8t
14, 18 -8.9443t -8.8288t -8.8318t -8.7034t -8.7178t -8.5537t -8.6023t -8t
13, 19 -9.3979t -9.3312t -9.2945t -9.2085t -9.189t -9.0627t -8t
12, 20 -9.8995t -9.8995t -9.7932t -9.798t -9.6784t -9.6954t -8t
11, 21 -10.4004t -10.3609t -10.2956t -10.2666t -10.1831t -8t
10, 22 -10.9545t -10.8614t -10.8628t -10.7634t -10.7703t -8t
9, 23 -11.4153t -11.3627t -11.33t -11.2662t -8t
8, 24 -11.9164t -11.9164t -11.8295t -11.8322t -8t
7, 25 -12.417t -12.3828t -12.3311t -8t
6, 26 -12.9615t -12.8833t -12.8841t -8t
5, 27 -13.4276t -13.3842t -8t
4, 28 -13.9284t -13.9284t -8t
3, 29 -14.4289t -8t
2, 30 -14.9666t -8t
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Figure B.29: Illustration of plaquette geometry (Left) and single particle energies (Right) for 16
dots: 3 adjacent septagons

16 dots: 3 adjacent septagons
Spin

# of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7, 15/2
30 -4.1201t -4.2591t
29 -6.0736t -6.2154t
28 -7.6673t -7.7682t -7.8334t
27 -9.1737t -9.1402t -8.8334t
26 -10.1161t -10.0768t -9.9276t -9.8334t
25 -10.6977t -10.6014t -10.5778t -10.2476t
24 -10.9426t -10.8485t -10.8101t -10.6856t -10.4567t
23 -10.6471t -10.6764t -10.6567t -10.6436t -10.6657t
22 -10.0788t -10.0844t -10.0862t -10.0953t -10.0706t -10.0477t
21 -9.1672t -9.1642t -9.1591t -9.1514t -9.1385t -8.7449t
20 -7.8457t -7.8454t -7.8438t -7.8409t -7.819t -7.6521t -7.4067t
19 -6.2447t -6.2438t -6.2421t -6.2396t -6.1781t -6.1502t -6.0684t
18 -4.4433t -4.4427t -4.4411t -4.4393t -4.4043t -4.3777t -4.3485t -4.2413t
17 -2.4051t -2.4065t -2.4073t -2.409t -2.4095t -2.4116t -2.4119t -2.4142t
16 0 0 0 0 0 0 0 0
15 -2.4069t -2.4075t -2.408t -2.4085t -2.409t -2.3945t -2.3628t -2.3028t
14 -4.4455t -4.4449t -4.4437t -4.4422t -4.4396t -4.436t -4.4306t -4.2591t
13 -6.2397t -6.2398t -6.2369t -6.2363t -6.2363t -6.2264t -6.2154t
12 -7.8239t -7.8272t -7.8211t -7.8173t -7.8253t -7.8222t -7.8334t
11 -9.1331t -9.1293t -9.0954t -9.061t -9.0222t -8.8334t
10 -10.1053t -10.1001t -10.0977t -10.0106t -9.9866t -9.8334t
9 -10.7058t -10.7018t -10.6735t -10.4594t -10.2476t
8 -10.9247t -10.9218t -10.9129t -10.8988t -10.4567t
7 -10.5866t -10.6153t -10.6412t -10.6657t
6 -9.9647t -9.9713t -10.0164t -10.0477t
5 -9.0492t -8.9628t -8.7449t
4 -7.6562t -7.7809t -7.4067t
3 -6.1671t -6.0684t
2 -4.4983t -4.2413t
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S. Barraud, M. Vinet, M. Sanquer, and S. De Franceschi. A cmos silicon spin qubit. Nature

Communications, 7(1):13575, Nov 2016.

164



[67] M. A. Fogarty, K. W. Chan, B. Hensen, W. Huang, T. Tanttu, C. H. Yang, A. Laucht,

M. Veldhorst, F. E. Hudson, K. M. Itoh, D. Culcer, T. D. Ladd, A. Morello, and A. S.

Dzurak. Integrated silicon qubit platform with single-spin addressability, exchange control

and single-shot singlet-triplet readout. Nature Communications, 9(1):4370, Oct 2018.

[68] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst,

D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and

L. M. K. Vandersypen. A programmable two-qubit quantum processor in silicon. Nature,

555(7698):633–637, Mar 2018.

[69] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta.

Resonantly driven cnot gate for electron spins. Science, 359(6374):439–442, 2018.

[70] A. J. Sigillito, M. J. Gullans, L. F. Edge, M. Borselli, and J. R. Petta. Coherent transfer

of quantum information in a silicon double quantum dot using resonant swap gates. npj

Quantum Information, 5(1):110, Nov 2019.

[71] R. Zhao, T. Tanttu, K. Y. Tan, B. Hensen, K. W. Chan, J. C. C. Hwang, R. C. C. Leon,

C. H. Yang, W. Gilbert, F. E. Hudson, K. M. Itoh, A. A. Kiselev, T. D. Ladd, A. Morello,

A. Laucht, and A. S. Dzurak. Single-spin qubits in isotopically enriched silicon at low

magnetic field. Nature Communications, 10(1):5500, Dec 2019.

[72] F. Borjans, X. G. Croot, X. Mi, M. J. Gullans, and J. R. Petta. Resonant microwave-

mediated interactions between distant electron spins. Nature, 577(7789):195–198, Jan

2020.

165



[73] L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S.

Clarke, L. M. K. Vandersypen, and M. Veldhorst. Universal quantum logic in hot silicon

qubits. Nature, 580(7803):355–359, Apr 2020.

[74] Xiao Xue, Benjamin D’Anjou, Thomas F. Watson, Daniel R. Ward, Donald E. Savage,

Max G. Lagally, Mark Friesen, Susan N. Coppersmith, Mark A. Eriksson, William A.

Coish, and Lieven M. K. Vandersypen. Repetitive quantum nondemolition measurement

and soft decoding of a silicon spin qubit. Phys. Rev. X, 10:021006, Apr 2020.

[75] C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Cami-

rand Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro-

Ladrière, A. Laucht, and A. S. Dzurak. Operation of a silicon quantum processor unit cell

above one kelvin. Nature, 580(7803):350–354, Apr 2020.

[76] Wayne M. Witzel, Malcolm S. Carroll, Andrea Morello, Łukasz Cywiński, and
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