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1. Definition of the theory and its canonical formulation

With the aim of obtaining simultaneously perturbative renormalizability and unitar-
ity, Hofava' has introduced a gravitational theory with higher orders only in spatial
derivatives, breaking the symmetry of general diffeomorphisms over the spacetime.
Indeed, the very concept of spacetime is substituted by the one of foliation of space-
like hypersurfaces along an absolute line of time. The theory is defined in terms of
the ADM (Arnowitt-Deser-Misner) variables N, N; and g;;. They are understood
as tensors over the spacelike hypersurfaces that evolve in time. The gauge symme-
try is given by the FDiff (diffeomorphisms that preserve the foliation), defined on
the ADM varaibles. The Lagrangian has a kinetic terms that is of second order in
time derivatives,

EK — \/ENGijleinkl , Gijkl = (gikgjl =+ gilgjk) o )\gijgkl , (1)

and Kj; is the extrinsic curvature of the hypersurfaces. This kinetic term is FD-
iff covariant for any value of the dimensionless coupling constant A. Our concern
in this paper is a particular formulation of the Hotava theory, which we call the
kinetic-conformal theory, given by a critical value of A. For spatial hypersurfaces of
dimension 3, the critical value for A we refer to is A = 1/3. This value defines a dy-
namically different formulation of the Horava theory, in the sense that the structure
of constraints is discontinuous to the generic formulation with A # 1/3. That is,
the constraints of the kinetic-conformal theory cannot be obtained by continuously
varying A\. At A = 1/3 the hypermatrix G*/* becomes degenerated and this leads
to the raising of the primary constraint 7 = g;;7% = 0, where 7% is the canonically
conjugate of g;;. There is an additional secondary constraint that emerges when
the time preservation of m is imposed. As a consequence, the kinetic-conformal

DO | =

theory propagates less physical degrees of freedom than the generic formulation of
the nonprojectable Hofava theory with A # 1/3. It propagates two physical modes,
the same number of General Relativity. The so-called extra mode of the generic
formulation theory is absent in the kinetic-conformal formulation. We consider this
an interesting feature that deserves to be explored. Furthermore, at A = 1/3 the
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kinetic term (1) gets an anisotropic conformal symmetry defined by the anisotropic
Weyl transformations’®

9ij = Qgij N=0N, N; = Q*N;, (2)

where Q = Q(t,Z). This motivates the name kinetic-conformal. The full theory is
not conformally invariant since the potential is not, unles it is defined with specific
conformal terms.

In Ref. 2 several versions of the Hotava theory were associated to the algebra
of the Newton-Cartan geometry. In summary, depending of the connection used in
the gauging and the central extension on the side of the Newton-Cartan algebra,
the correspondence is

e Torsionless connection: projectable Hotava theory.
e Twistless-torsional connection: nonprojectable Hotava theory.
e Central Bargmann extension: U(1) extension of the Hofava theory.

Thus, the kinetic-conformal formulation can be found in the twistless-torsional-
gauging case, by fixing the values of some coupling constants on the side of the
Newton-Cartan dynamics. The extrinsic curvature arises via the covariant deriva-
tives of the inverse vielbein denoted by v* in Ref. 2. Then the kinetic term (1)
emerges from the terms that are quadratic in derivatives of v#,

sV, Vou” + eV, o'V " = ¢y (Kinij - C—SKQ) . (3)
Cq
Thus, the kinetic-conformal theory is achieved by adjusting c3 and ¢4 according to
C3 1
5 4
o3 (4)

The action of the nonprojectable Hoiava theory is!-
S = /dtd3:z:\/§N (G"M KKy — V), ()

where to define the kinetic-conformal theory we consider that the value A = 1/3 has
been fixed. The potential V should include all the inequivalent terms that are FDiff
covariant and up to sixth order in spatial derivatives (z = 3 terms), as required for
the power-counting renormalizability '. Among them, the terms that contribute to
the action of second order in perturbations, hence contributing to the propagator,

are4

—VE=Y = BR + aa;a’, (6)

V=2 = 0 RV a’ + auVia;Via? + 1Ry RV + B R?, (7)

—VE=) = 3 V2RV,a' + 0y V2a;V2a' + B3V R, V' R* + 8,V,RV'R, (8)
where a; = 9;In N.

In order to determine the dynamical consistency of the theory we have performed
its Hamiltonian formulation®. The phase space is spanned by the conjugate pairs



The Fifteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by 2a02:8108:50bf:e6b8:e07h:caba:68bd:296 on 01/12/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

727

(gij,©) and (N, Py). The Hamiltonian, with the primary constraints added, is
given by

N . )
H = /de <ﬁﬂ'”mj + VNV + NyH" + pm + chN> , (9)
and the full set of constraints is

H) = —2V,77 + PyO'N =0. (10)

PN = 0, ™= 0, (11)
1 1 .. 2N .

77‘[5 —leﬂij—ﬂR+20év —aaialzo, (12)
g
1 3 . V2N _

EC = 2—7'('”7(-7;]‘ + §R - 20 N + %aial =0. (13)

H? is a first-class constraint whereas the four constraints Py, 7, H and C are of
second class. In the Hamiltonian formulation the shift vector IN; plays the role
of Lagrange multiplier (as in GR), as well as u and 0. When applying Dirac’s
programme for extracting the constraints, the time preservation of the second-class
constraints leads to equations for p and o. Considering the complete potential V,
it can be shown® that these are elliptic (sixth-order) equations, hence they can
be consistently solved with appropiated boundary conditions. This ends Dirac’s
programme, the set of constraints is closed. The constraints H and C can also be
casted as elliptic equations if the appropiated field variables are chosen to solve
them, see®. This analysis shows that the Hamiltonian formulation of the theory is
consistent. Considering the second-class nature of Py, 7w, H and C, it results that
the theory propagates two physical modes, coinciding with the number of modes of
GR.

The presence of the m = 0 constraint is intriguing, since it generates the Weyl
scalings on g;; and 7%, but this theory is not conformally invariant. This is in
agreement with the fact that = is of second-class, hence it is not the generator
of gauge symmetries. Contrasting with an exactly anisotropic conformal Horava
theory, which is given by a conformal potential, we have that 7 = 0 can be combined
with the Py = 0 constraint to form the full generator of the anisotropic conformal
transformations (2), which is

3
w:7r+§NPN. (14)

In the anisotropic conformal theory this is a first-class constraint. It is preserved
without further conditions, hence no furhter constraints are generated. Therefore,
in the exact anisotropic conformal case there is a symmetry more than in the kinetic-
conformal formulation, the anisotropic Weyl scalings, but a second-class constraint
less (the C constraint). Hence the number of physical degrees of freedom is the same
in both cases (at least in the sense of classical field theories, since there is evidence”

for a conformal anomaly in the anistropic conformal theory), and it is the same of
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GR. Further developments in the relationship bewteen the kinetic-conformal theory
and the exact anisotropic conformal formulation can be found in®.

2. Quantization: propagators and the superficial
degree of divergence

A perturbative analysis considering all the terms (6) - (8) allows to check explicitly
the consistency of the Hamiltonian formulation of the theory and to obtain the
propagators of the physical modes. We work on the transverse gauge 0;h;; = 0,
where h;; represents the perturbative metric around the flat background. The
momentum constraint eliminates the longitudinal sector of the canonical momentum
at first order in perturbations. Constraints H and C are consistently solved for hyy
and the pertubative version of the lapse function, n, fixing these variables to zero at
first order in perturbations (with asymptotically flat conditions). Constraint 7 =0
elminates the trace of the canonical momentum. There remains the transverse-
TT ,TT

traceless sector (h;;",p;;" ) as the independent propagating physical modes. The
6

corresponding propagators are

Pk
O P R 1)
w? — Bk? + 1k * + B3k ©

where Pg,g is the transverse-traceless projector.

Another important issue of the perturbative quantization is the distribution of
Fourier momentum in Feynmann diagrams. We recall that this is a theory with
second-class constraints, hence standard techniques of gauge field theories which
only have first-class constraints do not apply. One plausible scheme of quantizaton
is to solve the second-class constraints perturbatively. It can be shown that the
perturbative field variables used to solve the constraints end with a balance of
zero Fourier momentum®. Therefore when the solutions are substituted in the
Lagrangian they do not alter the order in momentum of the interacting terms, the
weight in Fourier momentum of the vertices is the same of the off-shell theory.
These results allow to evaluate the superficial degree of divergence of Feynman
diagrams, since the badly divergent diagrams are those with vertices corresponding
to the terms of the Lagrangian of highest order, which is the sixth order. The
internal lines scale also with sixth order according to the propagator (15). With
these considerations we may show® that the superficial degree of divergence of
the badly divergent diagrams is given by the order 6. This implies that counter-
terms of 6th order in spatial derivatives must be added to the bare Lagrangian,
but this is precisely the order of the bare Lagrangian designed for power-counting
renormalizability. Thus, the theory passes the criterium given by the superficial
degree of divergence needed for the renormalization of the theory.
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3. Gravitational waves and observational bounds

The coincidence in the number physical degrees of freedom between the kinetic-
conformal Hotava theory and GR raises interest on the behavior of the gravita-
tional waves in this theory. This was analyzed in® using the equivalence of the
large-distance effective action with the Einstein-aether theory!?. The Einstein-
aether theory implements the breaking of the Lorentz invariance keeping the gauge
symmetry of general diffeomorphisms over spacetime by using a dynamic unit time-
like vector (the aether). The analysis of gravitational waves in the kinetic-conformal
Hotava theory done in?
field in the construction of the gauge invariants. The first main result is that the
transverse-traceless sector is propagated with a wave equation, /3 being the speed
of the gravitational waves.

For the case of an isolated source, the dominant mode of its gravitational radi-
ation in the far zone can be deduced by applying the same techniques of GR. The
considerations on the source are the standard ones for a weak source: small mass,

was achieved in a gauge-invariant way, involving the aether

slow velocity and negligible self-gravity. If I;; is the quadrupole moment given by
the 00 component of the energy-momentum tensor, then it is found? that the lead-
ing contribution for the generation of gravitational waves has the same structure of
Einstein’s quadrupole formula of GR,

77 Pt —r/V/B)

7T _  Fm
M = Lepr D dt? ’

(16)

where ky is the coupling constant arising in front of the Hofava action (which we set
equal to one in Eq. (5), since that is a vacuum action). To get an exact matching
with the quadrupole formula of GR, we must set the coupling constants ky and
equal to their GR values, ky = 87Gy and g = 1.

We may apply the analysis of the parameterized-post-Newtonian (PPN) expan-
sion for solar-system tests to the kinetic-conformal theory. It turns out that the
theory reproduces the same values of the PPN parameters of GR, except for the

N and o5"N, whose deviations from the zero value indicate Lorentz-

parameters aj"
symmetry violation. For the kinetic-conformal Hofava theory these two constants

are given by*

1 e}
ay™N =N =0-1——. 17
fY = ol = -1 (1)
The current observational bounds!? on these parameters are |a}™¥| < 10~* and
|abPN| < 1079, Relation (17) demands that the strong bound, which is the one on

a5™, must be satisfied by both parameters. This condition is met if

a=28-1)+96, (18)

where 0 represents the narrow observational window for the a5 parameter,

i.e 0] <1077
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