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1. Definition of the theory and its canonical formulation

With the aim of obtaining simultaneously perturbative renormalizability and unitar-

ity, Hořava1 has introduced a gravitational theory with higher orders only in spatial

derivatives, breaking the symmetry of general diffeomorphisms over the spacetime.

Indeed, the very concept of spacetime is substituted by the one of foliation of space-

like hypersurfaces along an absolute line of time. The theory is defined in terms of

the ADM (Arnowitt-Deser-Misner) variables N , Ni and gij . They are understood

as tensors over the spacelike hypersurfaces that evolve in time. The gauge symme-

try is given by the FDiff (diffeomorphisms that preserve the foliation), defined on

the ADM varaibles. The Lagrangian has a kinetic terms that is of second order in

time derivatives,

LK =
√
gNGijklKijKkl , Gijkl ≡ 1

2
(gikgjl + gilgjk)− λgijgkl , (1)

and Kij is the extrinsic curvature of the hypersurfaces. This kinetic term is FD-

iff covariant for any value of the dimensionless coupling constant λ. Our concern

in this paper is a particular formulation of the Hořava theory, which we call the

kinetic-conformal theory, given by a critical value of λ. For spatial hypersurfaces of

dimension 3, the critical value for λ we refer to is λ = 1/3. This value defines a dy-

namically different formulation of the Horava theory, in the sense that the structure

of constraints is discontinuous to the generic formulation with λ �= 1/3. That is,

the constraints of the kinetic-conformal theory cannot be obtained by continuously

varying λ. At λ = 1/3 the hypermatrix Gijkl becomes degenerated and this leads

to the raising of the primary constraint π ≡ gijπij = 0, where πij is the canonically

conjugate of gij . There is an additional secondary constraint that emerges when

the time preservation of π is imposed. As a consequence, the kinetic-conformal

theory propagates less physical degrees of freedom than the generic formulation of

the nonprojectable Hořava theory with λ �= 1/3. It propagates two physical modes,

the same number of General Relativity. The so-called extra mode of the generic

formulation theory is absent in the kinetic-conformal formulation. We consider this

an interesting feature that deserves to be explored. Furthermore, at λ = 1/3 the
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kinetic term (1) gets an anisotropic conformal symmetry defined by the anisotropic

Weyl transformations1

g̃ij = Ω2gij , Ñ = Ω3N , Ñi = Ω2Ni , (2)

where Ω = Ω(t, �x). This motivates the name kinetic-conformal. The full theory is

not conformally invariant since the potential is not, unles it is defined with specific

conformal terms.

In Ref. 2 several versions of the Hořava theory were associated to the algebra

of the Newton-Cartan geometry. In summary, depending of the connection used in

the gauging and the central extension on the side of the Newton-Cartan algebra,

the correspondence is

• Torsionless connection: projectable Hořava theory.

• Twistless-torsional connection: nonprojectable Hořava theory.

• Central Bargmann extension: U(1) extension of the Hořava theory.

Thus, the kinetic-conformal formulation can be found in the twistless-torsional-

gauging case, by fixing the values of some coupling constants on the side of the

Newton-Cartan dynamics. The extrinsic curvature arises via the covariant deriva-

tives of the inverse vielbein denoted by vμ in Ref. 2. Then the kinetic term (1)

emerges from the terms that are quadratic in derivatives of vμ,

c3∇μvμ∇νvν + c4∇νvμ∇μvν = c4

(
KijK

ij − c3
c4
K2

)
. (3)

Thus, the kinetic-conformal theory is achieved by adjusting c3 and c4 according to

c3
c4

=
1

3
. (4)

The action of the nonprojectable Hořava theory is1,3

S =

∫
dtd3x

√
gN

(
GijklKijKkl − V

)
, (5)

where to define the kinetic-conformal theory we consider that the value λ = 1/3 has

been fixed. The potential V should include all the inequivalent terms that are FDiff

covariant and up to sixth order in spatial derivatives (z = 3 terms), as required for

the power-counting renormalizability1. Among them, the terms that contribute to

the action of second order in perturbations, hence contributing to the propagator,

are4

−V(z=1) = βR+ αaia
i , (6)

−V(z=2) = α1R∇iai + α2∇iaj∇iaj + β1RijR
ij + β2R

2 , (7)

−V(z=3) = α3∇2R∇iai + α4∇2ai∇2ai + β3∇iRjk∇iRjk + β4∇iR∇iR , (8)

where ai = ∂i lnN .

In order to determine the dynamical consistency of the theory we have performed

its Hamiltonian formulation5. The phase space is spanned by the conjugate pairs
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(gij , π
ij) and (N,PN ). The Hamiltonian, with the primary constraints added, is

given by

H =

∫
d3x

(
N√
g
πijπij +

√
gNV +NiHi + μπ + σPN

)
, (9)

and the full set of constraints is

Hj ≡ −2∇iπij + PN∂
jN = 0 . (10)

PN = 0 , π = 0 , (11)

1√
g
H ≡ 1

g
πijπij − βR + 2α

∇2N

N
− αaiai = 0 , (12)

1√
g
C ≡ 3

2g
πijπij +

β

2
R− 2β

∇2N

N
+
α

2
aia

i = 0 . (13)

Hi is a first-class constraint whereas the four constraints PN , π, H and C are of

second class. In the Hamiltonian formulation the shift vector Ni plays the role

of Lagrange multiplier (as in GR), as well as μ and σ. When applying Dirac’s

programme for extracting the constraints, the time preservation of the second-class

constraints leads to equations for μ and σ. Considering the complete potential V ,

it can be shown5 that these are elliptic (sixth-order) equations, hence they can

be consistently solved with appropiated boundary conditions. This ends Dirac’s

programme, the set of constraints is closed. The constraints H and C can also be

casted as elliptic equations if the appropiated field variables are chosen to solve

them, see6. This analysis shows that the Hamiltonian formulation of the theory is

consistent. Considering the second-class nature of PN , π, H and C, it results that

the theory propagates two physical modes, coinciding with the number of modes of

GR.

The presence of the π = 0 constraint is intriguing, since it generates the Weyl

scalings on gij and πij , but this theory is not conformally invariant. This is in

agreement with the fact that π is of second-class, hence it is not the generator

of gauge symmetries. Contrasting with an exactly anisotropic conformal Horava

theory, which is given by a conformal potential, we have that π = 0 can be combined

with the PN = 0 constraint to form the full generator of the anisotropic conformal

transformations (2), which is

	 = π +
3

2
NPN . (14)

In the anisotropic conformal theory this is a first-class constraint. It is preserved

without further conditions, hence no furhter constraints are generated. Therefore,

in the exact anisotropic conformal case there is a symmetry more than in the kinetic-

conformal formulation, the anisotropic Weyl scalings, but a second-class constraint

less (the C constraint). Hence the number of physical degrees of freedom is the same

in both cases (at least in the sense of classical field theories, since there is evidence7

for a conformal anomaly in the anistropic conformal theory), and it is the same of
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GR. Further developments in the relationship bewteen the kinetic-conformal theory

and the exact anisotropic conformal formulation can be found in8.

2. Quantization: propagators and the superficial

degree of divergence

A perturbative analysis considering all the terms (6) - (8) allows to check explicitly

the consistency of the Hamiltonian formulation of the theory and to obtain the

propagators of the physical modes. We work on the transverse gauge ∂ihij = 0,

where hij represents the perturbative metric around the flat background. The

momentum constraint eliminates the longitudinal sector of the canonical momentum

at first order in perturbations. Constraints H and C are consistently solved for hkk
and the pertubative version of the lapse function, n, fixing these variables to zero at

first order in perturbations (with asymptotically flat conditions). Constraint π = 0

elminates the trace of the canonical momentum. There remains the transverse-

traceless sector (hTTij , p
TT
ij ) as the independent propagating physical modes. The

corresponding propagators are6

〈
hTTij h

TT
kl

〉
=

PTTijkl

ω2 − β�k 2 + β1�k 4 + β3�k 6
, (15)

where PTTijkl is the transverse-traceless projector.

Another important issue of the perturbative quantization is the distribution of

Fourier momentum in Feynmann diagrams. We recall that this is a theory with

second-class constraints, hence standard techniques of gauge field theories which

only have first-class constraints do not apply. One plausible scheme of quantizaton

is to solve the second-class constraints perturbatively. It can be shown that the

perturbative field variables used to solve the constraints end with a balance of

zero Fourier momentum6. Therefore when the solutions are substituted in the

Lagrangian they do not alter the order in momentum of the interacting terms, the

weight in Fourier momentum of the vertices is the same of the off-shell theory.

These results allow to evaluate the superficial degree of divergence of Feynman

diagrams, since the badly divergent diagrams are those with vertices corresponding

to the terms of the Lagrangian of highest order, which is the sixth order. The

internal lines scale also with sixth order according to the propagator (15). With

these considerations we may show6 that the superficial degree of divergence of

the badly divergent diagrams is given by the order 6. This implies that counter-

terms of 6th order in spatial derivatives must be added to the bare Lagrangian,

but this is precisely the order of the bare Lagrangian designed for power-counting

renormalizability. Thus, the theory passes the criterium given by the superficial

degree of divergence needed for the renormalization of the theory.
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3. Gravitational waves and observational bounds

The coincidence in the number physical degrees of freedom between the kinetic-

conformal Hořava theory and GR raises interest on the behavior of the gravita-

tional waves in this theory. This was analyzed in9 using the equivalence of the

large-distance effective action with the Einstein-aether theory10. The Einstein-

aether theory implements the breaking of the Lorentz invariance keeping the gauge

symmetry of general diffeomorphisms over spacetime by using a dynamic unit time-

like vector (the aether). The analysis of gravitational waves in the kinetic-conformal

Hořava theory done in9 was achieved in a gauge-invariant way, involving the aether

field in the construction of the gauge invariants. The first main result is that the

transverse-traceless sector is propagated with a wave equation,
√
β being the speed

of the gravitational waves.

For the case of an isolated source, the dominant mode of its gravitational radi-

ation in the far zone can be deduced by applying the same techniques of GR. The

considerations on the source are the standard ones for a weak source: small mass,

slow velocity and negligible self-gravity. If Iij is the quadrupole moment given by

the 00 component of the energy-momentum tensor, then it is found9 that the lead-

ing contribution for the generation of gravitational waves has the same structure of

Einstein’s quadrupole formula of GR,

hTTij =
κH

4πβr
PTTijkl

d2Ikl(t− r/
√
β)

dt2
, (16)

where κH is the coupling constant arising in front of the Hořava action (which we set

equal to one in Eq. (5), since that is a vacuum action). To get an exact matching

with the quadrupole formula of GR, we must set the coupling constants κH and β

equal to their GR values, κH = 8πGN and β = 1.

We may apply the analysis of the parameterized-post-Newtonian (PPN) expan-

sion for solar-system tests to the kinetic-conformal theory. It turns out that the

theory reproduces the same values of the PPN parameters of GR, except for the

parameters αPPN
1 and αPPN

2 , whose deviations from the zero value indicate Lorentz-

symmetry violation. For the kinetic-conformal Hořava theory these two constants

are given by9

αPPN

2 =
1

8
αPPN

1 = β − 1− α

2
. (17)

The current observational bounds12 on these parameters are |αPPN
1 | < 10−4 and

|αPPN
2 | < 10−9. Relation (17) demands that the strong bound, which is the one on

αPPN
2 , must be satisfied by both parameters. This condition is met if

α = 2(β − 1) + δ , (18)

where δ represents the narrow observational window for the αPPN
2 parameter,

i. e. |δ| < 10−9.
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