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Abstract

The main results of this thesis are the establishment of the super-renormalizability
by power counting and of the summability of an infinite number of (classically
conserved) higher currents for the sine-Gordon model in the framework of pertur-
bative Algebraic Quantum Field Theory (pAQFT). In order to achieve this, we first
consider the classical theory. Combining the notion of Bicklund transformations
with Noether’s Theorem, we obtain recursive formulas for the components of the
higher currents and also characterize them introducing a suitable notion of degree.
We then move to the pAQFT setting and, by means of some technical results, we
compute explicit formulas for the unrenormalized interacting components of the
currents. In the context of the Epstein and Glaser approach to renormalization,
we prove a uniform bound on the scaling degree of the interacting components
given by the notion of degree introduced previously, which directly implies super-
renormalizability. Subsequently, we describe the concrete renormalization of the
interacting components by a procedure which we call piecewise renormalization.
Finally, we show that the formal power series arising as expectation values of the
renormalized interacting components in a generic Gaussian state are, under suit-
able conditions, summable.
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Introduction

Considered as a whole, the thesis presented here could be viewed as a further step
in the direction of the realization of a project which, in our opinion, is quite am-
bitious. The project we are referring to aims in the first place at further exploring
the remarkable properties of the two-dimensional massless sine-Gordon model in
the context of perturbative Algebraic Quantum Field Theory, pAQFT for short,
in relation to its nature as a (classical) integrable system. On a larger scale and
future work, the goal is to identify the relevant structures encoding integrability
(possibly also with a look at a more general level than the specific case of the
sine-Gordon model) and to investigate to what extent these structures, and their
quantization, can be understood in the framework of pAQFT.

The sine-Gordon model can be formulated as a classical relativistic non-linear
scalar field theory (see [22]) on two-dimensional Minkowski spacetime Ml,. The
Lagrangian is given by:

1
L(p) = Lo(p) + Lin(p) = §n“”8us08us0 + cos(ayp), ¢ € C™(My),

where Lo = %n“”@ugo(?y(p is the free massless scalar Lagrangian in two dimen-
sions, Liy 1s the interaction Lagrangian characteristic of the sine-Gordon model,
and @ > 0 is a real parameter called coupling constant. The corresponding equa-
tion of motion is the so-called sine-Gordon equation:

—0Op — asin(ap) = 0.

During its very long history, dating back to the 1860’s, the sine-Gordon model has
been keeping exhibiting a great richness of properties. Since early times it was
generally known to be an example of a so-called integrable system and as such
it has been approached by a multitude of methods and points of view. Among
the variety of features that were discovered in time, the ones we will be mostly
concerned with are: the existence of an infinite number of solutions to the sine-
Gordon equation, related to each other by the so-called Bécklund transformations
(see [26] for an overview), and the existence of an infinite number of conserved
currents, which form an involutive Poisson algebra with respect to the Peierls
bracket (see [9]).

X1



xii INTRODUCTION

The Bicklund transformations are defined in an implicit way: take a solution
of the sine-Gordon equation ¢ € C*°(Mj,), then we say that ¢’ € C*(Mjy) is
obtained from ¢ by a Bicklund transformation of parameter o € R if it satisfies
the following parametric system of first order PDE’s

%(s@’ + @) = ésin [g(w’ — )]
%( '~ ), = asin [g(w’ +9)],

where (7, ) denote the so-called light-cone coordinates on M, and the subscripts
- and ¢ denote partial derivatives. It can be shown that ¢’ is then automatically a
solution of the sine-Gordon equation.

Particularly relevant for our purposes is the approach, proposed in [28] and
[29] for the sine-Gordon model (without coupling constant a), where Béacklund
transformations are combined with Noether’s Theorem in order to obtain an infi-
nite number of conservation laws. More concretely, the outcome of the construc-
tion presented in [29] are 1-forms, called currents, on M,

M) = (= sY(@))dr + (s3' () dE VN €N,

that satisfy a null-divergence equation (conservation law)

(s1°(9) + (52'(9)), =0,

whenever ¢ € C'°(M)) is a solution of the sine-Gordon equation (“on-shell con-
servation law”). We remark that the first current s° is in fact the stress-energy ten-
sor of the sine-Gordon model. By convention, as a whole, the currents (s™)yen
are generically referred to as the higher currents.

As a quantum physical system, that is, after a proper quantization procedure,
the sine-Gordon model is known to admit a non-trivial scattering theory. More
recently, it has revealed remarkable features also in the context of pAQFT. Gen-
erally speaking, the approach to quantization advocated by pAQFT does not rely
on the choice of a representation space for some algebra of observables (for ex-
ample, Fock space), but instead is based on the deformation quantization of such
an algebra, whose representation theory may be studied at a later stage (see [10],
[24]). In its perturbative spirit, pAQFT distinctly separates the linear part of a
theory, which yields (formal) power series in the (formal) parameter /i as ob-
servables (first deformation, or “quantization”), from the interaction part (i.e. a
possibly nonlinear term in the equation of motion), which yields an additional
formal power series expansion in a coupling constant  (second deformation, or
“perturbation theory”).
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Specifically, in [ 1], [2], the perturbative quantum scattering matrix of the two-
dimensional massless sine-Gordon model in Minkowski signature was explicitly
constructed in the pAQFT framework as a formal power series, and its renormal-
izability and summability proved, building partially on older results in Euclidean
signature (e.g. [17]).

In relation to the overall view mentioned at the beginning, the further steps that
we take in this work involve the extension of the renormalizability and summa-
bility results to the pAQFT-quantized higher currents coming from the classical
sine-Gordon theory. In particular, we are interested in studying the interacting
pAQFT-quantized higher currents. Indeed, the notion of interacting observables
in pAQFT represents the quantum equivalent of the classical restriction on-shell,
1.e. of classical observables evaluated only on solutions of the classical equation
of motion.

Concretely, we regard the components s, s) of the higher currents of the
sine-Gordon model as elements of the space of fields 2'(M,; F,), i.e. as dis-
tributions with values in a certain space of functionals F,.. In the perturbative
spirit of pAQFT, the framework yields the unrenormalized interacting compo-
nents (é%)im with respect to the interaction Lagrangian xL;, (here x is called
“bookkeeping” coupling constant and is simply a tool to account for the order of
perturbation). These are given by certain formal power series in x and i with
coefficients in the space of fields F,,. and we denote them by:

(o.9] ,L{,"
(gjy)int = Z mRn(ngL7 S;V)v Jg=12,
n=0

where R, (L37, sYy) € 2/(My*H; Fue)[h] is the so-called unrenormalized re-

int »

tarded product (see formula (2.16)) and
M5t = { (z1,...,2p41) EMET |2 £2; VI<i<j<n+1}

is the (n + 1)-fold product of M, without the “big” diagonal.

In the framework of Epstein and Glaser, which we adopt, the renormaliza-
tion problem is the problem of extending the retarded product 12, (L, s7,) to
a well-defined distribution on the whole space M by an ingenious application
of techniques from microlocal analysis. The freedom in the solution of this prob-
lem is determined by the so-called scaling degree of the retarded product and in
general one has the following situation (see Chapter 2 for the details).

Definition 2.5.2 Fix fields k' € Z'(My; kF,) and G € Z'(My; F.). Con-
sider the unrenormalized interacting field (&), ., given by:

oo n

K.
(G).p = mRn(F@)", G).
n=0
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Let N(F,G,-): N — R be the function defined in the following way:
for n =0, N(F,G,0) = max {0, sd(G) — d},
and forn > 1
N(F,G,n) =max {0, sd (R,(F®",G)) — (n+1)d — N(F,G,n—1)},

where sd indicates the scaling degree of the corresponding distributions. We say
that the unrenormalized interacting field (G), . is:

(a) renormalizable by power counting if n — N(F, G, n) is bounded;

(b) super-renormalizable by power counting if N(F, G, n) is non-zero only
for a finite number of n € N.

We remark that super-renormalizability means that the ambiguity of the renor-
malization process is harmless. This is particularly relevant not only from the
purely theoretical point of view, but also from the point of view of the empiri-
cal implications of physical theories. Roughly speaking, super-renormalizability
means that it is in principle sufficient to perform a finite number of experiments
to completely determine the theory.

Coming back to the sine-Gordon model, as a first main result, we prove in
Chapter 4 the following theorem.

Theorem 4.1.1 Let us consider the unrenormalized interacting components of
the higher currents of the sine-Gordon model:

[ee) o0 n

%Rn (z&r, s, SR (LED SY),

int » n' int 7
n=0 n=0

where R, (LEy, i), R, (LE7, sY) € 2'(MyH; Fuo)[R]. Then the scaling de-
gree of the retarded products is uniformly bounded by the degree of the compo-
nents. Specifically, for every n > 1 it holds:

sd (R, (LE7, sY)) = deg(sy) = 2N,

int

sd (R, (LEr, s3')) = deg(sy) = 2(N +1).

int ) S

As a direct consequence, according to the previous definition, the inter-
acting components of the higher currents of the sine-Gordon model are super-
renormalizable by power counting.

We remark that, compared to other approaches, where partially analogous re-
sults were obtained considering super-symmetric formulations or Fock space rep-
resentations (see for example [13]), our setting has the advantage that we can
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avoid the issues related to the nonexistence of the massless Wightman field in two
dimensions, see also Remark 5.0.2 about this.

We also point out that our argument on the renormalizability of the interacting
currents follows from well-known results on scaling-degree-preserving extensions
of distributions ([7], [10], [20], [27]) and on a notion of degree that we introduce
based on the concrete expressions of the classical higher currents, which allows to
obtain the crucial upper bound on the scaling degree of the distributions that are
to be renormalized. Contrary to other renormalization techniques, these estimates
do not require the explicit computation of so-called counterterms.

Another consequence of the fact that, in the perturbative spirit of pAQFT,
interacting fields are described by formal power series in x and A is that no notion
of convergence is a priori considered for these objects — and in fact, no physical
theory with summable such objects in dimension d = 4 is known. However,
summability of at least certain observables can be expected for integrable systems
in d = 2 dimensions, inasmuch as it has long been established using different
quantization frameworks.

Remarkably the sine-Gordon model meets these expectations and indeed, in
analogy with the analysis carried out in [ 1] for the scattering matrix, we are able
to prove that the formal power series that arise as expectation values of the renor-
malized interacting components (sjl\f?)im in a generic Gaussian state are in fact
summable. This follows directly from the second main result of our work, proved
in Chapter 5.

Theorem 5.1.1 Let § = % and let v > 1 be such that v < 1. Let g €
P (M) be a cut-off function for the interaction Lagrangian Ly, and denote f =
g%t € P(MyHY). Consider the expectation values wy i (Ro(Ling, 575)(f)) of
the retarded products R, ( Ly, 3?{2) in the state w, g, with H as in formula (3.2).
Then, choosing the support of g small enough, there exist two pairs of constants

K2 anns Gy and K2, oy, C32) such that for all n > 1 the following estimates
hold:

(n + 1702 (02"
(31"
2]n(c

i@)”
(131"

9

R (Lins, sV )] < K3y

Ra(Lints )| < K

|3

where [g} denotes the integer part of 3.

To the best of our knowledge, Theorem 4.1.1 and Theorem 5.1.1 are the first
complete results on renormalizability and summability of all the higher currents
of the sine-Gordon model.
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For a recent discussion of the renormalizability, summability, conservation and
other properties of the first of the higher conserved currents of the sine-Gordon
model, that is, its stress-energy tensor, in a framework related to pAQFT, where
the counterterms are explicitly computed, we refer to [15] and [16].

Besides extending the list of remarkable properties of the sine-Gordon model
in pAQFT, we believe that, as a byproduct of the analysis, the notation and tech-
nical results that we introduce along the way might represent a good foundation
for the subsequent investigation of the conservation and involutivity properties
of the interacting components, using tools which are independent of any a priori
representation on e.g. Fock space. For more comments about these interesting
questions, see the Outlook.

The material of the thesis is organized as follows.

Chapter 1 deals briefly with the classical theory of the sine-Gordon model. In
view of our later purposes, we extend the construction presented in [29] to the case
of the sine-Gordon model with coupling constant (so that the setting considered
in [29] is recovered as a particular case for the value a = 1). After recalling the
basic notions, we introduce the notion of Biacklund transformations and we derive
explicit recursive formulas for the solution of the extended Bécklund transforma-
tions. We then give a brief account of the concepts entering in Noether’s Theorem
and use it in combination with the extended Bicklund transformations to finally
obtain the higher conserved currents. Again, we give explicit expressions for the
components of the higher conserved currents. Along the way, we also introduce a
notion of degree that reveals to be crucial in the discussion of the renormalization
of the currents in pAQFT.

Chapter 2 opens the discussion of the quantum theory. It is a summary of
the fundamentals of perturbative Algebraic Quantum Field Theory on Minkowski
spacetime in arbitrary dimension.

Chapter 3 starts adapting the notions introduced in Chapter 2 to the case of
the sine-Gordon theory. The final goal is to compute the explicit expressions of

the unrenormalized retarded products R, (L®” sf{z). This is achieved by first

int ’
proving and then applying some technical results on the time-ordered products
and on the star products of fields with specific properties, inspired by those of the
components of the higher currents.

In Chapter 4 we show the super-renormalizability by power counting of the
unrenormalized interacting components (511\/ 5 )int- This result is obtained as a corol-
lary of Theorem 4.1.1 presented above. Subsequently, we describe in detail the
concrete renormalization of the retarded product 12, (LgY, sy »). We outline a pro-
cedure which we call piecewise renormalization. It consists of three steps: first,
expansion the unrenormalized expressions of the retarded components to their
very elementary parts, then scaling-degree-preserving extension of the elementary

parts separately and finally proof that reassembling the piecewise renormalized
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parts all together gives a well-defined renormalized version of the initial object.

Chapter 5 is completely devoted to the proof of the summability properties
of the renormalized interacting components of the higher currents. After briefly
recalling the setting, in the spirit of [!], and introducing the convenient notation,
the quite involved steps of the proof are worked out in full detail.

Finally, Appendices A, B and C collect useful notions and well-known results
about the concepts of wavefront set of distributions and of scaling degree and
about the most relevant properties of the Feynman and anti-Feynman propagators.

The main results of Chapters 1, 3 and 4 have been published in a recent
preprint [30].






Chapter 1

Conserved currents in the classical
theory

In this chapter we explain how the higher conserved currents for the classical
sine-Gordon model can be obtained combining the so-called extended Bédcklund
transformations with Noether’s Theorem.

Remark 1.0.1. We point out that our exposition is far from being a complete
account of all the techniques developed in the study of the sine-Gordon model
as an integrable system. The literature in this respect is extremely extensive and
varied. We decided to build on a specific construction because it seemed to us
to be the best suited to highlight the crucial properties of the conserved currents,
in view of their subsequent quantization in the framework of pAQFT. For this
purpose, the most relevant result of this chapter are the recursive formulas given
in Proposition 1.4.1.

Conceptually we follow the same passages as in [29]. However, we extend all
the definitions and results (given there only for the standard sine-Gordon model)
to the more general case of the sine-Gordon model with coupling constant (in
the following referred to as the general sine-Gordon model or simply as the sine-
Gordon model). In addition to this and in view of the subsequent discussion of
the renormalization properties of the conserved currents in the quantum theory,
we also derive explicit recursive formulas for the quantities involved.

We start introducing some notation. The sine-Gordon model is a massless
relativistic non-linear scalar field theory. The role of spacetime is played by the
2-dimensional Minkowski space M, (see also Section 2.1). The configuration
bundle of the theory is the trivial bundle M, x R — M. Configurations are
sections of this bundle, that is, functions ¢ € C®(M,) := &(M,). Adopting
cartesian coordinates (z° =: t,2' =: ) on M, with Minkowski metric =

1
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diag(1, —1), the Lagrangian of the sine-Gordon model is written as:
1
L(p)dt AdZ = (Lo + Lin) dt A d7 = (in“’jﬁugo@l,cp + COS(ago)) dt A d7,

where n*¥ is the “inverse” of the Minkowski metric and the parameter a > 0 is
called coupling constant. The corresponding Euler-Lagrange equation, also called
sine-Gordon equation, is:

—O¢ — asin(ap) = —07p + d2p — asin(ayp) = 0.

As it often happens in the study of partial differential equations, the choice
of independent variables with respect to which the equations are written is of
crucial importance. In the sequel we will always work with the so-called light-
cone coordinates (7, &), which turn out to be very efficient in the description of
the conservation laws of the sine-Gordon model. The relation between cartesian
and light-cone coordinates is given by:

{T:

The sine-Gordon Lagrangian in light-cone coordinates becomes

B
_I_
~

O = 5(0r — O)
0z = 3(0r + ).

NI N =
—~
81
~

7%
Il

|
L(g) dr Ade = (Lo + Lin) dr A dé = ( — Swcr + cos(ago)) dr A de,

and the sine-Gordon equation is
er — asin(ay) =0, (1.1)

where we adopted the convention that the . and ¢ indicate partial derivation with
respect to the corresponding coordinate.

Remark 1.0.2. The so-called standard sine-Gordon model, which is more often
treated in the literature, for example also in [29], is the special case for a = 1.

1.1 Backlund transformations

In [29], Bicklund transformations are defined for the standard sine-Gordon model.
We claim that a slight modification of the formulas presented there, namely the
insertion of a dependence on the coupling constant a > 0, yields the correct
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expressions of the Bicklund transformations for the sine-Gordon model with cou-
pling constant. More specifically, we consider the following parametric system of
first order partial differential equations:

Lo L

5@+ p)e = —sin [3(¢ — )] (1.2
1

5@ =) = asin [5(¢ + ¢)], (1.2b)

where ', p € &(M,), ¢ is given, ¢ is unknown and o € R.

Confirming that our definition is sensible, we have that a necessary and suffi-
cient condition for the Bicklund transformations above to be integrable is that ¢
is a solution of the sine-Gordon equation. In other words, this means that if on
M, we define the 1-form 6 (also called Pfaffian 1-form) as

2+ ar+ (- 5o+~ sin [0~ )] ),

1
0:<§g07—|—asin[2 5

then @ is a closed form if and only if ¢ is a solution of the sine-Gordon equation.

This can be seen by the following elementary computations. The differential of
the form 6 is given by:

do — [_ (%% + asin [g(go' + SO)D&

+ <— —pe + —Sln [2(<P/—€0)])J dr N\ d¢§
1

— [ 5Pre — ?(s@ + )¢ cos [2(<P'+%0)]
1
_ 59076 + %(@’ — ), COS [g(gp' — gp)ﬂ dr A d€.

Substituting equations (1.2a) and (1.2b), changing the sign of one of the argu-
ments, and using the addition formula for sine, we then obtain:

df = (— ©re — asin [g(w' — )] cos [%(90/ +¢)]
+ asin [g(go’ + )] cos %(90/ - 90)]) dr A d€
= (— Pre + a sin [g(gp — gp/ } CcOos [g(@l + QO)]

(o' + go)]) dr A de

g(go' + gO)D dr A dé

|

+ acos [%(gp — )] sin

/

+

~— 1 ~— T

. a
(—sngJrasm [§(s0—<p

— Qe ta Siﬂ(@gp)) dr NdE.
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The condition on the Pfaffian 1-form 6 of being closed or, equivalently, of
equations (1.2a) and (1.2b) of being integrable ensures the existence of a unique
(local) solution ¢’ to the Bicklund transformations (for a proof of this statement,
see for example [21, Proposition 19.28, p.510]).

As a consequence, ¢’ is in turn automatically a solution of the sine-Gordon
equation. Indeed, if we take the derivative with respect to 7 of the first equation
(1.2a) and the derivative with respect to £ of the second one (1.2b)

1 1 a a
e+ 5re = 5 (¢ = @)rcos [5(¢ = )]
1 1 ac a
e — 5P = 5 (@' + plecos [S(¢ + )]
substitute again equations (1.2a) and (1.2b)
1 1 . ra a
5Pre + 5ome = asin [S(¢' + 9)] cos [Z(¢' — )]
1 1 . ora a
5P = 5ore = asin [5(¢" = @)] cos [S(¢' + )],

and sum up the two equations, we finally get
a a
2 2

Hence, as expected, Biacklund transformations relate solutions ', ¢ of the sine-
Gordon equation, and we write ' = B, .

ore = asin S (¢ + @) + 5 (¢ — )] = asin(ay’).

1.2 Extended Backlund transformations

As noted in [29], Béacklund transformations are not suited to be combined with
Noether’s Theorem because they are transformations acting only on the space of
solutions of the sine-Gordon equation. On the contrary, we seek for transforma-
tions acting on generic configurations.

It turns out that the correct way to implement this necessity, without at the
same time completely forgetting about the relations between solutions encoded
in the Béicklund transformations, is simply to drop one of the equations (1.2a) or
(1.2b). The choice does not influence the subsequent discussion, which can be
repeated in either case.

Definition 1.2.1. We say that the configuration ¢’ € &(My) is obtained from a
given configuration ¢ € &(My) by an extended Bicklund transformation B, of
parameter « € R, in notation ¢’ = B, if (¢’ satisfies the parametric PDE:

1 a

1, ,
5(# +¢)e = —sin 5

5 (¢" = )] (1.3)
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The next conceptual step, following once more [29], may seem cumbersome
at a first glance. It consists in assuming that ¢’ admits a power series expansion in
the parameter ov. We denote the above mentioned expansion by:

¢ = Bap =Y _ Aa, pla”, (1.4)
v=0

where the coefficients A, depend on both the coupling constant a and the initial
configuration . Now we can substitute (1.4) in equation (1.3) and use the power
series expansion of the sine function. Omitting the dependence of the coefficients
A, on a and ¢, we get:

s 2SN (1 oy (5
Apga = —pe+ =3 ot (O (Y A=) L )
; ¢ s a;(2u+1)!(2) ; 4

Requiring that the value for o = 0 of the right hand side is well-defined amounts
to the equation:

b —1)* gy 2utl Spt1 a
2;%(§> (Ao — o) = 2sin [E(Ao—go)]:().

This equation implies Ay = ¢ + 2’“—” k € Z, from which we select the particular

case Ay = . Implementing this condltion in formula (1.5) we obtain:

> ot = e 22 gy (5) (S ava) o
v=0

Now we start comparing the coefficients from the left hand side and the right
hand side of equation (1.6) order by order:

e Atorder 0, we have: Age=—pe+2-54; — A= %%.

e Atorder I, weget: Ay¢=2-54; — A= f—zsﬁgg-

For the higher coefficients A,, studying more in detail the structure of equation
(1.6), we can prove the following result.

Proposition 1.2.1. For v > 2 the following formula holds:
1
AV+1 = _AV §+

Z

S O > A A5
— no! . 1’

T Ny—2-94-

no+e+n, o 2= =28+3
lni+-+v—2-28)n,_o_og=r—2-243

1.7

where [5] denotes the integer part of §.
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Proof. We rearrange the summation on the right hand side of equation (1.6) in the
following way:

> (=1~ a\2etl > N\ 261
(2u+1)! (5) “ “(ZA"“O‘ )
©=0 v=0
00 no Np
_ N (L 2)”‘“( M) pton
= ZO( 1) (2 Z>O nol---nt )
s p= n0,--NpZ

no+--+np,=2u+1
Lni+-+pnp=p

We rewrite the double summation using indices v := p + 2u and 3 := p, this
gives the expression:

[5]

0 no Ny—28
Zau< (—1)° <E>2f8+1 Z Af "'Ay25+1>
’I’L()!"'TL,,_QB! ’
v=0 £=0 n0,.--,My—23>0
no+-+ny,_25=28+1
Lng+-+w=28)n, _2s=v—28

where [%] is the integer part of 5. We now observe that we can decompose the

coefficient of & in two parts, one corresponding to 5 > 1 and the other for
B = 0, respectively:

no ny—2p
et s A
... |
B=0 nQ,...;Ny—25>0 1os Ty -26°
no+-+n,_25=206+1
lni4-+(v—28)n,_op=r—208

(—1)° (9)%1 > A A

2 ng! - ny,_op!
B=1 MOseenstty— 2520 0 v=2p
TL0+~~~+TLU725=2,3+1
1ni+-+(v—28)n,_25=r—20
no n
3 nol---my,!
nQ,...,ny >0 v
no+-+ny=1

1Ini+-4vn,=v

In particular the last term reduces to §A,,;. Comparing the coefficients of the
power o, for v > 2, from equation (1.6), we get:

(5] no ny_28

o 2641 A A

Ane =2 (=1)° (3) 3 o
B=1

no! cee nV_QB!

n07---7n1)—2[320
no+-+n, _2p=26+1
lni+-+w—28)n,_op=r—208

+ QAV+1.
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Extracting A, and rescaling the summation over /3, we conclude. q.ed.

The computation of the first coefficients using formula (1.7) gives:
2 1
A = Secc + 3%

2 2
Ay = g@zlg + 9905%055-

(1.8)

Remark 1.2.1. We observe that from formula (1.7) it follows that the coefficients
A, are all polynomials in the derivatives of the configuration ¢ with respect only
to the light-cone coordinate &.

Remark 1.2.2. As a consistency check, the expressions for the coefficients A,
presented in [29] are recovered from our expressions setting a = 1.

Proposition 1.2.2. The extended Bdcklund transformations enjoy the following
properties

(a) For a =, By is the identity;
(b) Invertibility: B;' = B_,;
(c) Commutativity: Eal o EOQ = EQQ o Eal.

Remark 1.2.3. Despite these nice properties, Biacklund transformations do not
form a group, i.e. the composition B,, o B,, is not in general again a Bicklund
transformation B,,,, for some a3 € R.

We introduce now a notion that will turn out to be crucial for the subsequent
discussion of the renormalization properties of the higher currents in pAQFT.

Definition 1.2.2. Consider a configuration ¢ € &(M,). We assign a degree to its
k-th derivative with respect to the light-cone coordinate &, by:

deg(gpkg) = l{, Vk € N.
We extend this definition to monomials in the derivatives of ¢ by additivity:

deg(Pr,enoe - - - Prye) = ki + ko + -+ k.

We say that a polynomial in the derivatives of ¢ is homogeneous of degree d if all
its monomial terms have degree d.

Proposition 1.2.3. For every v > 0, the coefficient A, is homogeneous of degree
equal to v.
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Proof. The claim is trivial for Ay = ¢, A; = %cpg and Ay = 5—2%5. For v > 3 we
proceed by induction. For v = 3, using formulas (1.8), we have

2 1
deg(A3) = deg(ﬁ%s + 3—a¢§’> =3

Now suppose the claim is true for v < N. The coefficient Ay, is given by
formula (1.7). The first term is %AN,g which, due to the additional derivative
with respect to the coordinate £, has degree /N + 1. The other terms are given by
products

A A,
with the following conditions on the indices ny, ..., ny_2-23 € N:
no+ - +ny_o-25 =26+3
1n1—|—+(N—2—25)nN_2_25:N—2—25
From these conditions and additivity of the degree, it follows that
deg (A7 - A0 =1-no+---+ (N —=1-28) - ny_s_ap
=ng+ni+---+ny_2_23
—|—7”L1+"'—|—(N—2—26)'71N,2,213
=20+3+N—-2-258
=N+1

1.3 Noether’s Theorem

Before entering in the details of the relation between Noether’s Theorem and the
higher conserved currents of the sine-Gordon model, in this section we briefly
recall the main features of the former in broad generality. The following review is
based on [12].

A k-th order Lagrangian field theory is given by a fiber bundle 7: £ — M,
called configuration bundle, over a d-dimensional manifold M, which plays the
role of spacetime, and a Lagrangian function L

JEE Lo Qdpg
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where J*E is the k-th order jet prolongation of the fiber bundle F, 7% is the natural
projection on £, and QM is the bundle of differential d-forms on M.

Definition 1.3.1. We say that a fiber bundle automorphism (¥, ) of £

E E
M M
is a symmetry of the Lagrangian L if

("W, )L =L,

v
—_—

P
e

where j*(W,) is the prolongation to the jet of order k of the automorphism

(U, ), i.e.

(W, ) is also called a Lagrangian symmetry.

Definition 1.3.2. Let G C Aut(E) be a subgroup of automorphisms of the fiber
bundle £. A Lagrangian of order k is G-covariant if any automorphism (W, ) €
G is a Lagrangian symmetry.

Consider now a 1-parameter subgroup (V, 1)5) of Lagrangian symmetries and
denote by = its infinitesimal generator. Then = € X,,,j(F) is a projectable vector
field on E which projects onto a vector field £ € X(M).

Theorem 1.3.1 (Noether’s Theorem). Let (7: E — M, L) be a k-th order La-
grangian field theory and = be the infinitesimal generator of a 1-parameter group
of Lagrangian symmetries. With this data it is possible to determine a (d — 1)-
form E(L,Z), defined on j**~1E, such that for every section of the configuration
bundle p: M — E which is also a solution of the Euler-Lagrange equations it
holds

d((7*'p)E(L,Z)) = 0, (1.9)

The (d — 1)-form E(L, Z) is called a Noether current and equation (1.9) is called
an on-shell conservation law.
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In some cases (for example, in the sine-Gordon model, as we will see in the
sequel of this section) it turns out that it is necessary to have a wider definition
of symmetries. Hints about the correct generalization come from the following
two observations. On the one hand, the determination of the Noether current from
the infinitesimal generator of the symmetries involves the computation of the Lie
derivative of the Lagrangian with respect to the infinitesimal generator. But, Lie
derivatives can also be computed with respect to generalized vector fields (roughly
speaking, vector fields defined on the infinity jet .J°° E, for a detailed definition see
[12]). On the other hand, since the final result of Noether’s Theorem is to produce
a (d — 1)-form which is closed on-shell, we always have the freedom to add some
exact form. These remarks lead to the following definition and theorem.

Definition 1.3.3. An infinitesimal generator of generalized symmetries for a La-
grangian field theory (7: E — M, L) of order k is a generalized projectable
vector field X such that

fX((WgO)*L) = dp,

for some (d — 1)-form /3 defined on some finite order jet prolongation of E.

Theorem 1.3.2 (Generalized Noether’s Theorem). Suppose X is an infinitesi-
mal generator of generalized symmetries for the Lagrangian L. It is possible to
determine a Noether current £(L, X) such that an on-shell conservation law of
the form (1.9) holds.

1.4 Conserved currents via Noether’s Theorem

Coming back to the sine-Gordon model, and following the analysis in [29], we ob-
serve that extended Bécklund transformations act on the sine-Gordon Lagrangian
changing it by an exact form. In other words, given an arbitrary configuration
¢ € &(Msy), it holds:

(L(Bap) — Llp)) dr Adg = dp'>® = (= pit® +p5s") dr ndg,  (1.10)

where pl®9 is a horizontal 1-form pl*? = pl*%dr + pl*%d¢, with components

« 2 » 1 3

= cos[5 (B + )] = gor(Bap = 9)
(e 2 8 1 :

P50 =~ cos [5 (Bayp — ¢)] — 50e(Bap — 9).

ao 2 2

To show this, we first check that for any pair of configurations ¢’, p € & (My) it
holds

L(¢") = L(¢) =040+ + 0_¢04 » + 2sin(aoy ) sin(ao_), (1.11)
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where o := (¢’ £ ¢). Indeed:

04 ¢0_r+0_¢o4+ 2sin(ao,)sin(ao_)

1 1

= ;1(90’590’7 — Qe + Qe — pepr) + Z(@’gso; + Oeor — Qe — Pepr)
. a . a

+ 2sin (5(4,0' + go)) sin (§(<p’ — gp))

/ /

ap' a a a !
=2 [sinicos—go—l—cosisin—go} . [sin%cos%—cos%sin%}

2 2 2 2 ‘P 5 S
+ 190’ 0, — 190 @
2 EXT 2 E¥T
1 1 / /
- 590/590/7 T 5 Pepr +2 {Sin2 % cos? ? — cos? % sin? ?1
le’gol—lgzﬂp + 1_C082a_<,0’ 0082%— 1—sin2a—¢ sinQ%
27T 2T 2 2 2 2
/ /
+ {sin2 %(1 — sin? %) — cos? %(1 — cos? %)]
- lgpl SO/ - 180 Y2 + |:COS2 % - Sin2 %i| -+ Sin2 a—SO/ — COSQ a_SOI
g rErT g 2 5 5 5

1 1
— (gt = conlag)) = (oser — eostar) ).

Remark 1.4.1. Our formula (1.11) slightly differs from its analogue in [29]. More
precisely, we do not refer to the presence of the coupling constant a, which is a
consequence of the more general situation we are working in, but to the plus sign
ino,¢o_,+0o_co,,(wWhichiso,¢o_; —0_¢0o in[29] instead). We believe
that this might be a misprint in the paper.

~

When ¢’ is related to ¢ by a Bicklund transformation ¢’ = B, , we moreover
have that the right hand sides of equations (1.10) and (1.11) actually coincide. In
fact, if we expand the first one we obtain:

— i s
. . R 1 R 1 .
= a(Bap + ¢), sin [g(Baw + w)] + 50re(Bap = ¢) + 50 (Bay — ¢),
| : - 1 . 1 -
+ = (Bag = ¢), sin [g(Baw - s@)} = 5#re(Ba = 9) = 59e(Bav — ) -

Using equation (1.3) to rewrite the terms (Bay + ¢) ¢ and sin [L(Bap — ¢)], we
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finally get

o . Cra s Cra, - 1 A
_p[l’g ] _‘_p[277_0] — 92sin |:§ (Bagp — 90):| Sin |:§ (Ba(p + SO)i| + 5@7(3(190)5

~

1. . 1
+ 5 (Bag +¢)(Baw = ¢), = 5¢¢(Ba)s

= 2sin [g (an — go)] sin [g (BaSO + 90)}

45 (Bap+ ) (B = 9), + (Bup = 9) (Ba + ¢)..
which is exactly formula (1.11) in the special case where ¢’ = BQQO.

The last computations seem to suggest that extended Bicklund transforma-
tions could be regarded as generalized Lagrangian symmetries (see Definition
(1.3.3)) for the sine-Gordon Lagrangian. However the situation is more compli-
cated. A serious objection to this picture is represented by Remark 1.2.3, namely
by the fact that extended Béacklund transformations do not form a group. The way
this difficulty is overcome in [29] is by introducing the so-called infinitesimal
Biécklund transformations

Bla, €] :== Baye 0 B_q, a,e € R. (1.12)

Since they are defined as compositions of extended Bicklund transformations,
it is of course still true that infinitesimal Backlund transformations act on the sine-
Gordon Lagrangian changing it by an exact form. More precisely, we can write:

L(B[Oé, 6}90) - L(SD) = L(Ea+5B—a90) - L(B—a@) + L(B—agp) - L(‘P)
—= dp[Oé-f—E,—Oé] _.I_ dp[_avo]
= d(p[Oé-‘re,—Oé} + p[_a70])’

[ [ate,—a]

where the two horizontal 1-forms plete—al = (p! teelgr 4 D5 d¢) and
plmet = (p*%gr 4+ plr*%4¢) have components:

wro—a] 20ate)  ra . - ;
p[l +e,—a] :(T) CcoS [5 (Ba—&-eB—OzSD + B—oc(,o)i| —
1 . . . A
B o BB B,
] 2 BB oo b
[o+e—a] _ 4 [— B,..B - B ]_
5 (a n 6) COS 9 ( at+eD—_aPp _O‘SO)

A

(B—Oc‘P)S(BOH-EB—a%O - B—agp)a

N =
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and
a —2a a 1 5
p[l 0l = u COS [_ (B_oé(,p + (10):| - —QOT(B_QSO B (70)’
a 2 2
[—a,0] _ _ |:g E — ] — 1 B —
P2 (—aa) o 2( = ¢) 280£< ~a$ = #):

As a consequence of Proposition 1.2.2, we have immediately that for e = 0
Bla, 0] = id.

In [29], the set of infinitesimal Bicklund transformations { B[« €] }.cr for a fixed
a € R is treated as a 1-parameter group of generalized Lagrangian symmetries
and its infinitesimal generator is used to obtain the higher conserved currents via
generalized Noether’s Theorem.

Remark 1.4.2. Although the final results of this procedure are correct, it should
be noted that the starting assumption of the whole construction is affected by a
problem. In fact, due to Remark 1.2.3, neither the set { B, €| }.cr for fixed a,
nor the set of infinitesimal Bécklund transformations in general form a group.

Nevertheless there might be an interesting way to solve this difficulty. Indeed,
we observe that infinitesimal Bicklund transformations satisfy the following par-
tial composition rule:

B[a + €1, 52] © B[O‘7 51] = Ba+61+ezé—a—€1 Ba+61B—a
= BaJrelJrezBfa
= Bla, e + €).

In other words, the set of infinitesimal Bicklund transformations { B[« €] }q ccr
has the structure of a groupoid with source map s: Bl«, €] — « and target map
t: Bla,e] — a+e.

The further investigation of this peculiar feature, which we defer to future
research work, could provide new insights on the rdle of groupoids of symmetries
in the determination of the conservation laws of integrable systems.

Despite the technical problems discussed in Remark 1.4.2, we can still limit
ourselves to consider only the final result of the construction in [29]. Adapting
the expressions in a natural way to the more general case of the sine-Gordon
with coupling constant, we find that the one-parameter family of 1-forms s(® =

—s\dr + s\ d¢, with components

s\ = cos [%(g& + f)’,atp)] + cos [g(ap + Baw)] (1.13a)
s = % {2 — cos [g(gp — E’_agp)} — cos [g(gp — Bago)] } , (1.13b)
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produces a family of on-shell conservation laws. In other words, Vo € R and for
any solution ¢ € & (M) of the sine-Gordon equation:

d((72¢)*sY) = ((79)* (Oes\™ + 0,557)) dr A de = 0, (1.14)

where 7°°¢ just means that the prolongation of the section ¢ to some unspecified
jet order has to be considered for the pull-back to be well-defined.

Using formula (1.4) to write Bmgp and the power series expansion of cosine,
we can expand also sga) and sga) as power series in «. Since formulas (1.13a) and
(1.13b) are symmetric in «, only even powers will appear. We denote the results

of the power series expansions by:

oo
(a) E:SN 2N séa) _ } :SéVQQN.
For every order in « a conserved current is obtained, which we denote by

sN = —sNdr + sh d¢.

For the later purposes of studying the renormalization and summability proper-
ties of the conservation laws of the sine-Gordon model, we now derive explicit
formulas for the conserved currents from the construction of [29]. To the best of
our knowledge, although the literature on integrable systems in general and on the
sine-Gordon model in particular is extremely extensive, such explicit expression
were not available.

Proposition 1.4.1. The components sY and s of the conserved currents have the
following form:

N
A™M .. AN

sV = cos(ayp) |2 E ( ) E %
p=1 mpmayz0 RN

nitetnon=24
1-ni+--+2N-ngny=2N

N—-1
28+1 AM ... AN
)5+ 1 2N

+ sin(ayp) 2; ( ) Z il e

ni,...,na2n >0
ni+-+ngn=28+1
1n1++2NTL2N:2N
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where the coefficient of sin(ayp) is defined only for N > 1, and

N no N2(N—p)
N o (_1)H<g>2(u+1) Z Al "'A2(N7u)+1'
2 2 710! s No(N— !
n=0 10, N (N —p) >0 (N=p)
no+-+ng(n—py=2(u+1)
Lo 2(N =) ng(n— ) =2(N —p)
(1.16)

Proof. First we introduce some notation. We define:

A - Af =20
+ Bop =: Ata”,  where 0
ot Bap = 3O A {A -

=—-A, Yv > 1.

We use the power series expansion of cosine and substitute equations above to get
the following expressions for the components of the conserved currents:

o

1\3%/\
L
I
|
|»—~
=
||M8
L
—~I|7
2o ||
= | =
S— | ~—
- =
N
|

e )

We remark that both formulas above are symmetric in «, so only even powers will
appear. We further manipulate the two components separately.

Starting with s\*, we expand ( 320 AFa”) * and (>0, Aj(—a)”)2“, col-
lect the coefficients of the even powers o>’ and obtain:

0 e +\no ... A+ n2p
(@) _ 2 a2 (Ag) ( 2p)
N ST 5 3 ) M D e
p=0 p=0 no,...;n2p>0 P

no+-+ngp=2p
1'n1+~~~+2p~n2p:2p

We now concentrate on the coefficient of the power o?, we call it s/:

[e o]

+\no . .. + \n2p
=2 (—1)“@)2” 3 W)™ = (Ae)™ 4y
=0

nolng'
u 0

ng,...,n2p>0
no+--+n2p=2u
1-ni+-+2pn2p=2p
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Specifically, we want to extract the dependence of the powers of Aj on . Intro-
ducing the index [ to account for the possible values of the exponent ng, we can
rewrite formula (1.17) in the following manner:

(A7 (Af)" (A
2 - . e
;)g ( ) 2/,L — ﬁ)' Tll,---,;QpZO n1! . Tlgp!

n1+"'+n2p:ﬂ
1ni+-+2p-n2,=2p

Then we distinguish the cases when [ is even or odd. The terms for even [ can
be collected in the expression:

(Ag )2 (Af)™ - (Ag,)"2
2 0— s .
Bz%uz;ﬁ ( ) (2(n = 5))! m,.%;po nule !

ni ++n2p:25
101 +--+2pn,=2p

Renaming the index (u — ) — u, we recognize the power series expansion of
cos (3aAy) = cos(ay). Hence for even 3 we obtain the coefficient:

(A (A7)

cos(ay) 2i(-1)6<g>2ﬁ Z lnll... [

Noy,-
B=0 nl,...,nngO 2p

1’L1+~~~+1’L2p:25
1~n1+~~~+2p~n2p:2,0

On the other hand, assuming p > 1, the terms for odd [ are

o0 an 2% +)2u—28—1 Ay (A )
25 > () y

2 2u—20 —1)! npl- - ng)!

ni,...,n2,>0
ny+-+ngp=20+1
1-ni+-+2pn2p=2p

Rescaling the summation over p, we recognize the power series expansion of
sin (3aA7) = sin(ayp). Hence for odd 3 we obtain the coefficient:

p—1 28+1 (A+)n1(A+ )nzp

1)%+! 1 2p

sin(agp) 25 ( ) E nyl - ng
8=0 n1yeeyn2p >0 P

n1+-+ngp=28+1
1-ni+-+2p-n2p=2p

Using the fact that AT = A, for v > 1, and changing the name of the upper index
p to N, we finally obtain the expected result for the explicit expression of s%.
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Concerning sga), we use the fact that A; = 0 to extract a power o?*, then we
divide by o and finally rewrite the sums rescaling the indices, thus obtaining:

(@ :i (—1)~ (g>2(u+1)a2u
’ FESAY
00 2(p+1) o 2(p+1)
' <ZAV_+104V> + (ZA;Jrl(—a)V)
v=0 v=0

Expanding (07 A;Ha”)Q(MH) and (Y07 A, (—oz)”)g(“H) we see that only
the even powers of « survive and they give:

0 ° (_1)u an 2(p+1) 2
e arma) e

pu=0

2 Z o Z (2<’u+ 1>>!! (A7)™ . (Agpp)™

no++nop=2(ut+1)
1-ny+-+2pn2,=2p

Collecting the powers of «, rewriting the sum using indices N := p + p and p,
and recalling that A, = —A, for v > 1, we finally obtain that the coefficient of
o can be written as:

s = 2i<—1)ﬂ(§)2“‘“) 3

no+“‘+n2(N7u):2(p’+1)
Lng+-+2(N—p) non— ) =2(N—p)

no . A™2(N-p)
Al AQ(N—,U,)—‘,—I

n()! te ng(N,u)!

g.ed.

The concrete expressions of the components of the first conserved currents,
computed from formulas (1.15) and (1.16), are:

0 = 2 cos(ag), st — —? cos(ap) — 2 sin(ag),
0_ 2 1_1 4., 2 1.9
So = Pgs Sy = 3P T 2PePece T 2 Pee-

Remark 1.4.3. Considering formulas (1.15) and (1.16) in view of Remark 1.2.1,
it follows that the coefficients of cos(ay) and of sin(ap) in the expression of
s, and the second components s3’ are all polynomials in the derivatives of the
configuration ¢ with respect to the coordinate &.
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Remark 1.4.4. Again, as a consistency check, we have that the concrete expres-
sions for the components of the conserved currents given in [29] are recovered
from our expressions setting a = 1.

To conclude this section, we study the properties of the degree of the compo-
nents of the higher conserved currents.

Proposition 1.4.2. Assign by convention degree 0 to cos(ayp) and sin(ap). Then
we have that:

o The component s of the conserved current sV is homogeneous of degree
equal to 2N.

e The component s of the conserved current sV is homogeneous of degree
equal to 2(N + 1).

Proof. The first claim follows because the coefficients of cos(a¢p) and sin(agp), in
formula (1.15), are given by sums of products of the form

A?l RN AngN 7
with the condition nq + - - - + 2N - nony = 2N. All these products have degree
deg(A" ... AZN) =1 1+ - + 2N - ngy = 2N.

As for the second claim, from formula (1.16) we have that s’ is given by a
finite sum of products of the form

no .. A™2(N-p)
Al A2(N—p,)+1’

with the conditions
no+ - Fnon_p = 2(n+1)
L-ng+ ... 2(N —p) - nonvepy = 2(N — p).
The degree of each one of these products is
deg@4?x..A§gﬁ$%4)::no+~--+(2UV-u)+])nﬂN,m
:no—i‘nl—i‘"'—i‘ng(]v_u)
+n+---+ 2(N — /,L)nQ(N_H)

=2(u+1) + 2(N — p)
= 2(N +1).



Chapter 2

Basic notions of pAQFT on
Minkowski spacetime

In this chapter we review the general construction of perturbative Algebraic Quan-
tum Field Theory models on Minkowski spacetime. For more extensive treatments
of the subject, we refer to [ 1] and [10], on which our exposition is mainly based.

The philosophy of the perturbative approach to Algebraic Quantum and Clas-
sical Field Theory can be encoded in the following diagram:

free classical fields| = |Interacting classical fields
A Alx]

I

h 12

Y

free quantum fields| . |interacting quantum fields

AlR] Alr, h]

As suggested by the name, we deal with algebras of fields, which represent the
observables that can be measured on our physical model. In particular, the starting
point is the algebra of free classical fields .A. From this, the passage to quantum
fields and the passage to interacting fields are realized as two different algebra
deformations. More concretely:

* the deformation with parameter h represents the quantization of the algebra
of classical free fields A, for i = 0, to the algebra A[A] of formal power
series in A with coefficients in A, for i > 0;

* the deformation with parameter x, called coupling constant, represents the
passage from the algebra of free classical fields A (or free quantum fields
A[R]), for k = 0, to the algebra of interacting classical fields A[x] (or
interacting quantum fields A[x, &, i.e. formal power series in x and 7 with
coefficients in A), for k # 0.

19
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For what concerns a direct way to quantize the algebra of interacting classical
fields, a general solution is still not known.

We also remark that the whole framework was developed in order to provide
a mathematically rigorous formulation of (perturbative) Algebraic Quantum Field
Theory on curved spacetimes, so it should not be surprising that all the structures
that will be introduced in the rest of this chapter are naturally suited to be extended
to any globally hyperbolic spacetime (see [7], [19], [24]).

2.1 Minkowski space and configurations

Let M, be the d-dimensional Minkowski spacetime, i.e. R¢ with flat diagonal
metric = diag(1, —1, ..., —1) in cartesian coordinates = := (z*),—0, ..
our convention on the Minkowski metric, the forward and backward light cones
are defined respectively by:

Vi={zeMy|(z);>0,2">0},
Vo={zeMy|(z)>02"<0},

2
n

symmetry groups of Minkwski space are £, which is the proper orthochronous
Lorentz group, and 771, which is the pertinent Poincaré group.

Configurations represent the physical fields of interest. They are in general
smooth sections of some fiber bundle. But since the sine-Gordon model is a scalar
field theory, we restrict our definition of the space of configurations to the follow-
ing one (see also [24]).

where ()2 = n(x,z) and V, and V_ are the closures of these open sets. The

Definition 2.1.1. Let &(M,) = C*(Mjy, R) be the space of smooth real-valued
functions on M. Equivalently, configurations ¢ € & (M) can be seen as sections
of the trivial bundle My x R — M. The space &(M,) is endowed with the
Fréchet topology generated by the family of seminorms:

Prm(p) = sup [0%p(x)],
HE

where o € N is a multiindex, m € N and K C M, is a compact subset.

In other words, the above topology is the topology of uniform convergence of
all the derivatives on compact subsets. We also introduce a topology on the space
of test functions, which makes it a locally convex topological vecor space, but not
a Fréchet space.
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Definition 2.1.2. Let 2(M,;) = C°(My; R) denote the space of test functions.
The fundamental system of seminorms on (M) is given by:

Pim} {c} (@) = sup ‘81|1>p 10%p(x)|/e0,
o <m,,

where o € N is a multiindex, {m, },en C Nis an increasing sequence of positive
numbers going to +oo and {€, },en C R is a decreasing sequence tending to 0.

2.2 The space of fields

One of the main advantages of the functional approach to algebraic field theory is
that the fields, namely the physical observables, of both the classical and the quan-
tum theory are defined in terms of the same space of functionals. Classical and
quantum theories then differ only by the algebraic structures that are introduced
on this space.

In general, fields are a certain class of smooth functionals on the space of
configurations F': &(M,;) — C. Here smoothness is intended in the sense of
Bastiani calculus on locally convex topological vector spaces (for more details
see [4] or [18]). We adapt the definition to the case of our interest, where the
topological vector space under consideration is & (My).

Definition 2.2.1. Consider a functional F': &(M,;) — C. The derivative of F' at
¢ € &(My) in the direction of ¢ € & (M) is defined as

(FO[g], ) = lim Fle+ty) — F(p)

t—0 t

whenever the limit exists. The functional F' is called differentiable at ¢ if the
quantity (F(M[p] | 1) exists for all 1) € &(My). It is continuously differentiable,
in notation C", if the map F"): &(My) x &(My) — C: (¢,¢) — (FWM[p], 1)
is jointly continuous. Higher derivatives are defined by

k

(FO[], 1h @ -+ @ 1) = ot 0L

F(QD + thvz)l + e + tkdjk) |t1:~~':tk:07
where @, 1, ..., 1, € &(My) and ), @ - - ® 9y, € &(ME) is the tensor product
of smooth functions, namely (¢1 ® - -+ @ Vg ) (21, . .., xx) = V1 (x1) - - - Vi)
The functional F is said to be of class C* if Vj < k the derivatives F'): & (M) x
&(My)? — C are jointly continuous maps. Finally, F' is Bastiani smooth if it is

of class C* for all k € N. We denote the space of Bastiani smooth functionals by
C>*(&(My),C).
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Proposition 2.2.1. Let F': &M,;) — C be a Bastiani smooth functional and
v € &My). Then for any k > 1:

(a) F®[p] is a linear continuous map from &(My)* to C.

(b) F® [¢] factors through a continuous map from the completed projective
tensor product &(My)®* = &(M¥) 1o C.

Remark 2.2.1. In view of Proposition 2.2.1, we can naturally identify deriva-
tives of fields with field-valued distributions with compact support on copies of
the spacetime M. More precisely, given a smooth field ' € C*(&(My),C)
and a configuration ¢ € &(My), then for every k£ > 1 the k-th functional deriva-
tive of F' evaluated at ¢ defines a compactly supported distribution F®[p] €
&'(ME). On the other hand (F®)[] | 1; @ --- ® 1) is again a smooth field for

any 77Z)1) B 7¢/€ € éa(Md)
Notation. Regarding the derivatives of fields, we introduce also some other

notation which we will come in handy in the sequel. In analogy with the usual
notation for derivatives of functions depending on a finite number of variables, we

write: 5F
i —(FM
(3leh ) = (e v)
and correspondingly
where as above ¢, ¢, ..., € &(My). Sometimes, in order to highlight the
distributional character of the derivatives of fields, we will use the notation

0" F[y]
0 (1) - 6 (wy)

and express the pairing of derivative with tensor product of configurations by the
formal integral notation:

5k
<5Tf;:[90]7¢1 ®"'®¢k>

0" Flp]
= l‘ .. x dx e d:c .

According to the principle of locality at the core of the algebraic formulation
of field theory, it is important to be able to identify observables, i.e. fields, that
belong to a given region of spacetime. This can be achieved by introducing the
notion of spacetime support of fields.

(2.1)
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Definition 2.2.2. Consider the (non necessarily smooth) map F': &(M,) — C.
The spacetime support of F'is defined by

supp(F) = {x € M| Vneighborhood U of z, Jp, ¢ € &(My),
with supp(v)) € U, s.t. Flp + ] # Fly]}.

It is now possible to characterize important subclasses of fields by imposing
restrictions on the regularity and the support of the distributions arising as their
derivatives. The most restrictive condition defines the following class.

Definition 2.2.3. A field FF € C>(&(M,),C) is called regular if for all ¢ €
&(My) and k € N, the wavefront set of F'®)[] is empty, i.e. F®)[p] € 2(MF).
The space of regular fields is denoted by Fe.

The following class of fields encompasses most (if not all) of the physical
quantities that can be considered in general and in particular, for what concerns
our specific case, all the quantities that will appear in the study of the sine-Gordon
model.

Definition 2.2.4. A field F' € C(&(My),C) is called local if for each ¢, €
& (M) there exists an open neighborhood V' 5 ¢y in &(M,) and k& € N such that
for all ¢ € V, it holds

Flg] = /Mda(jﬁsOL

where j* is the k-th jet prolongation of ¢ and « is a density-valued function on
the k-th order jet bundle. The space of local functionals is denoted by Fiq.

Remark 2.2.2. If F is local, then F®[p] € &'(MF) is a distribution supported
on the thin diagonal

Ak:{(xl,...,:ck)eMZ|x1:---:xk}.

Moreover, the wavefront set of F(*)[¢] is conormal to T'A, the tangent bundle
of the thin diagonal. In particular, F("[¢] has empty wavefront set and so it is
smooth for each fixed ¢ € &(M,).

Definition 2.2.5. Consider the space of local functionals F,,. endowed with the
following operations:

* the commutative pointwise product

M JT:]OC X fioc — Coo(g(Md)7 C)

(F,G) = ulFeG) =FG 22)

where (F G)[p] = F[p]|G[y], for all ¢ € &(My).
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* the involution operator

*: ‘EOC —> ‘EOC

2.3
F— F* 2.3)

defined by complex conjugation, F*[p] = F[p], for all p € &(M,).

The algebraic closure of F,. with respect to the operations above yields a com-
mutative x-algebra called algebra of multilocal fields.

In view of the operations involved in the construction of pAQFT models (see
sections below), it turns out that the class of multilocal fields is still too small.
Hence it is necessary to consider a bigger class of fields.

Definition 2.2.6. A functional /' € C*(& (M), C) is called a microcausal field
if it has compact spacetime support and if moreover its derivatives satisfy the so-
called microlocal condition:

WE(F™[g]) cE,, VneN, Vyoe&My), (2.4)
where =,, is an open conic subset of the cotangent space 1M} defined as
Z, = T MG\ { (1, k155 @ ka) | (B k) € (VE UV )y en T
The space of microcausal fields is denoted by F,..

Remark 2.2.3. The commutative pointwise product x, the involution *, formulas
(2.2) and (2.3), trivially extend to operations defined on the space of microcausal
fields.

2.3 Star product of fields

In view of the diagram on the philosophy of the perturbative approach to algebraic
field theory outlined at the beginning of this chapter, we are now ready to describe
the construction of the algebra of free quantum fields. We start introducing some
definitions.

Definition 2.3.1. A generalized Lagrangian on M is a map L: 2(My) — Fioc
that satisfies the following conditions:

(i) Additivity: L(f+g+h) = L(f+9)— L(g) + L(g+ h), forany f,g,h €
2 (M) with supp(f) Nsupp(h) = 0.

(ii) Support: supp(L(f)) C supp(f), Vf € Z(My).
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Remark 2.3.1. Definition 2.3.1 formalizes the idea that a generalized Lagrangian
associates to a test function f € 2(M,) the local functional obtained by integrat-
ing f with the Lagrangian density .2 (x)[] that depends locally on the configura-
tion ¢ € &(M,). The cutoff function f is necessary to ensure the convergence of
the integral.

Example. The free Lagrangian Lq on (Mg, n) is defined as

1

Lo(f)le] = B /M (UW L0, — m2g02)f dz.

Remark 2.3.2. The free Lagrangian just described is more than a special case,
it plays a fundamental role in general. In fact, the Lagrangian of any pAQFT
model is always given as L = Ly + KLy, where L;,; encodes the nature of the
interactions described by the model and is treated perturbatively. The parameter
k € R is called the “bookkeeping” coupling constant and in this case it is just a
tool to account for the order of perturbation. In the sequel we will always denote
generalized Lagrangians by F'(z) € 2'(My; Fioc), omitting the dependence on
the test function, and simply treat them as “point-dependent” local fields.

The cutoff function of a generalized Lagrangian should be understood as an
auxiliary mathematical tool, without physical meaning. Therefore the crucial
structures of the theory should not depend on the choice of f. This is achieved by
means of the following definition.

Definition 2.3.2. The Euler-Lagrange derivative of a generalized Lagrangian L is
the smooth map S : &(M,) — 2'(M,) defined by:

(S1(0), k) = (LD ()] ),
where f,h € 2(M,) and f is choosen in such a way that f = 1 on supp(h).

Remark 2.3.3. Since by definition L(f) is a local functional, S does not depend
on the choice of f.

Definition 2.3.3. The equation of motion induced by the generalized Lagrangian
Lis
S/L(SO) =0,
understood as a condition on ¢ € &(My).
The starting point in the construction of the algebra of free quantum fields of

any pAQFT model is the differential operator associated to the equation of motion
of the free Lagrangian L.
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Definition 2.3.4. Consider the second derivative of the free Lagrangian L:

(L& (Nl @ ha) = / (7" 0uh1 0y hy — m*haho) £ d,

My

where f = 1 on supp(hy) U supp(hs). This operator extends naturally to an
operator, called wave operator:

P: g(Md) — @,(Md)
o Po=—(0+m)p=—(0%—0% — - =% +mp,

where ¢ here plays the role equivalently of h; or hy from the previous formula,
which acts on test functions h € (M) as:

(P, h) = / (Pop— Prp— e — OPurip + M) d.
M

The crucial assumption of pAQFT is that the wave operator P is normally
hyperbolic. Hence there exist unique retarded and advanced Green’s functions.

Definition 2.3.5. The retarded and advanced propagators AZ A4 ¢ @'(M,)
respectively, are the unique fundamental solutions of the wave operator P, i.e.

PARA — _(O+ m2)AnR,L’A =0,
that moreover satisfy the following conditions on their support:
supp(AZ) C V., supp(A)) CV_.

The difference of the retarded and advanced propagators A, = AZ — A4 js
called causal propagator.

Remark 2.3.4. The causal propagator has the obvious properties PA,,, = 0 and
supp(4A,,) € (VU V_). More importantly, it can be shown that its wavefront
set is given by:

x = (k) for some A € R, k° # 0},

where 1*: T*My — TM, is the natural isomorphism induced by the Minkowski
metric 7 and, due to the triviality of the bundles 7" My = M, x M3, TMy = M X
ML, it descends to an isomorphism n*: M3 — M and (k)2 = n (n*(k), n*(k)).

n=
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Definition 2.3.6 ([23]). There exist distributions, W € 2'(M,) called two-point
function, and H € 2'(M,) called Hadamard parametrix, such that the following
decomposition of the causal propagator holds:

%Am =W —H, (2.5)
where the two-point function W has the following properties:
(i) The wavefront set of IV is
WF(W) = {(x, k) € T*My | x)f? 0, (/’f)f7 =0,

(
x = An(k) for some A € R, k% > 0}.
(2.6)

(ii) The imaginary part of W is the causal propagator, i.e. 2Jm(W) = A,,..
(ii1)) W is a distributional solution of the wave operator, i.e. PIW = 0.

(iv) W is positive, meaning that { f, W % f) > 0, where f is the complex con-
jugate of f € Z(M,) and W % f denotes the convolution of a distribution
with a test function.

Remark 2.3.5. The decomposition (2.5) is in general not unique, depending on
the choice of the Hadamard parametrix H. The difference between two choices
of Hadamard parametrices H — H' is always a smooth function.

In particular, the condition on the wavefront set of the two-point function W
allows us to introduce the following non-commutative product on the space of
microcausal fields.

Definition 2.3.7. For a given choice of two-point function W and of Hadamard
parametrix /1, the star product of microcausal fields F, G € F, is the microcausal
field F' xy G € F,.[h] defined as:

oo

(Fxn Q) = 3 (PO () 5 GOy . @)

n=0

The star product xy is extended by linearity to a map g : Fy[h] X Fu[h] —
Fuclh].

Remark 2.3.6. In formula (2.7), the symbol * denotes the convolution of distri-
butions, while the bracket (-,-) indicates a special pairing between distributions
with specified wavefront sets (see [5] and [6] for all the details). The wavefront set
properties of microcausal fields and of the two-point function are precisely chosen
in such a way that this pairing is always well-defined.
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Remark 2.3.7. Formula (2.7) can equivalently be written in a very compact and
useful exponential form as follows:

Fyy G=poe(F®q),

where 1 is the commutative pointwise product of fields (2.2) and Dyy is the oper-
ator defined by

Dw(F®G)=(FO Wx«GV),  VFGeF,.

Remark 2.3.8. It can be proved (see for example [10]) that for two different
choices of Hadamard parametrices H and H’, the corresponding star products
*r and x g are intertwined by an isomorphism ay_pr: F[h] — F,c[h] in the
sense of formal power series, namely

F*H/ G = Oé]:rl_H/<CYH_H/(F) *H OzH_H/(G)),

where ay_pg = e3P and, in terms of formal integral kernels, the operator
Dy _p acts on fields as
62

Dy mFlp]: = (H — H, 5_902> Flp] =

- /M2 (Hw=y) =~ Hw=y) 590(2371;5[?(3/)

Remark 2.3.9. We also remark that the algebraic structure described above looks
formally the same for arbitrary dimension d, but the concrete expressions of W,
H and A,, are different in each case.

dx dy.

We finally have all the ingredients to spell out the following definition.

Definition 2.3.8. The space of microcausal fields F,,.[%], endowed with the star
product %z, with the involution operation (2.3) and with the commutator [, |,
with respect to the star product, forms a Poisson x-algebra called the algebra of
free quantum fields and denoted by (Fc[A], *m,"*, [, Ly )-

2.4 The interaction picture

The physical concept of evolution is encoded in the notion of interacting fields.
Roughly speaking, considering interacting fields represents the quantum equiva-
lent of the classical restriction to on-shell fields, namely observables associated to
configurations that are solutions of the equation of motion (see Definition 2.3.3).
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The formulation of the interaction picture in pAQFT is inspired by analogy
with the interaction picture in quantum mechanics. We recall it briefly and for the
details we refer to [14].

If xHin(t) and 1)(t) are respectively the interaction Hamiltonian and the wave
function at time ¢, then the time evolution operator U(t,ty) can be introduced,
relating the wave functions at different times (Schrodinger picture) by:

w<t) - U(t, tg)l/)(to), vt,to € R, Vw

This equation is equivalent (Heisenberg picture) to the evolution equation:

Zh%U(t, to) = RHint(ﬂU(t, to).

This differential equation can be solved perturbatively by the Dyson formula:

Ult ty) =1d+ Y (—’l? / Hi(t) -+ Hua(81)dt . .. .
n=1 h to<t1 <<t <t

The scattering matrix, called S-matrix, is then interpreted as the double limit:

S = lim U(t,s).
t—o0
S——00
In pAQFT the dynamics is determined by a generalized Lagrangian, always of
the form L. = Lg+kx L,. Heuristically then the formulation of the S-matrix can be
translated in the pAQFT language by introducing suitable operators, called time-

ordered products, that realize the time-ordering of the interaction Lagrangians:

o (iR)"
S=1+ Zl i ) T (Ling (1) ® -+ @ Ling(ay))dy .. dw,  (2.8)
n= d

where the time-ordered product of n factors 7, is given by

Tn (Lint(x1> K- ® Lint<xn)) - Lint<x7r(1)) *XH o kH Lint(£7r(n)) (29)
whenever 5‘?2(1) >0 > q:?r(n), for some 7 € 5,,, the symmetric group of order n.

Remark 2.4.1. The time-ordered products and the scattering matrix are the math-
ematical tools that account for the perturbative formulation of the interaction pic-
ture in pAQFT. As pointed out in Remark 2.3.2, the interaction is always modelled
by a generalized Lagrangian, which we can think of as a point-dependent local
field. For the moment instead, we restrict ourselves to consider interactions which
are only regular fields.
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Definition 2.4.1. (Basic axioms) The n-th order time-ordered product is a map
Tn: D' (My; Freg)®" — D' (M) ; Freg)[F]
which satisfies
(i) Linearity: 7, is linear;
(ii) Initial condition: T} (F(z)) = F(x) for any F' € 2'(My; Freg);
(iii)) Symmetry: 7}, is symmetric in all its arguments, i.e.
T (Fry(@r1)) @+ @ Frgn) (@) = Tn(Fi(z1) ® -+ @ Fp(zn));
VF,...,F, € 2'(My; Freg) and Vr € S,

(iv) Causality: For any Fy,....F, € 2'(My;F.g), 1, satisfies the causal
factorization relation
T (Fi(21) @ -+ @ Fu(n)) = Te(Fray(@r) ® -+ @ Frgy (Tar))
*i Tt (Frort) @r(ia1) @ - @ Frin) (Tr(y)

whenever { 2,1y, ..., Zr(r) }O({ Zrht1)s - - - Trny J+V-) = 0 for some
permutation m € .S,,.

Definition 2.4.2. (Renormalization conditions) The only additional axioms for
the time-ordered product that we will impose read as:

(v) Field independence: it ensures that field derivatives and time-ordered prod-
ucts can be interchanged, i.e.

) )
5—¢Tn(F1(ZE1) K- ® Fn<xn)) =Tn (%Fl(xl) Q- ® Fn(xn)) +..
s+ T, (Fl(asl) ® - ® %Fn(xn)) :

VEy, ... Fy € D' (My; Freg).

(vi) Translation invariance: it is a special case of the principle of Poincaré
covariance, and it simply means that the time-ordered products should be
translation invariant distributions with values in microlocal fields, i.e.

Tn(Fl(xl —0)® - ® Fy(x, — v)) = Tn(Fl(ml) R ® Fn(xn)),

Vv € My and forall Fy,..., F, € Z'(My; Freg)-
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We can now give a precise definition for the scattering matrix.

Definition 2.4.3. The S-matrix is a map
S: D' (Ma; hiTreg) = Z' (Mg ; Freg) [5] ()

from the space of regular generalized Lagrangians, multiplied by a coupling con-
stant © € R, to the space of formal power series in the coupling constant x, Lau-
rent series in f, with coefficients in distributions on any finite number of copies of
spacetime with values in regular fields. Concretely, the S-matrix is defined as the
generating functional of the time-ordered products:

S(kF) =1+ ni; % (%)n T, (F®"),

where the field F' € 2'(M, ; kFeg) is interpreted as the interaction Lagrangian of
the theory under consideration.

Remark 2.4.2. The causality axiom for the time-ordered product can be equiva-
lently expressed in terms of the S-matrix by the condition:

S(H+G+F)=SH+G)xg S(G)*" 1 xy S(G+ F)

whenever supp(H) N (supp(F) + V_) = (), where the notation *#~! denotes the
inverse with respect to the star product xg. From this relation, setting G = 0,
we obtain the equivalent of the causal factorization relation for the time-ordered
product:

S(H+ F) = S(H) %y S(F), if supp(H)N (supp(F)+V_)=0.

Using the S-matrix we can finally describe the interacting quantum fields men-
tioned in the diagram, at the beginning of the chapter, illustrating the general phi-
losophy of the perturbative approach to field theory.

Definition 2.4.4. Given k' € ' (My; kFreg) and G € Z'(My ; Freg), the inter-
acting field (G),r € Z'(MY ; Freg) [k, h] with respect to the field xF is defined
by the Bogoliubov formula:

hd

= K"

. Pyt F+ — R, (F®" 2.10
(Gwr = 5| _ S(kF) 1 S(kF + )\G) = ;H,R ,G), (2.10)
where *#~! indicates that we are considering the inverse with respect to the star
product xprand Ry,: D' (My; Freg)®" X D' (My; Freg) — 2'(MIT s Froe)[7] are
separately linear maps called retarded products. It is customary in this situation to
interpret xF' as the interaction Lagrangian and G as the generic observable.
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Proposition 2.4.1. Substituting the definition of the S-matrix in formula (2.10), it
is possible to show that the retarded product R,,(F®",G), F,G € 2'(My; Freg),
admits the following expression:

R (F¥",G) = () ; <?)(—1)"1Tnl(F®(””) « T (F @ G), 2.11)

where the maps Ty,: D' (Mg ; Freg)®¥ — Z'(ME ; Free) 1] are called antichrono-
logical products and are defined as the coefficients of the inverse (in the sense of
formal power series) of the scattering matrix

S(Fy* 1 =1+ i (

_i)kf ®k
LRk F (F )

Remark 2.4.3. At a first glance, the presence of the negative powers of 7 in for-
mula (2.11) may seem in contradiction with Definition 2.4.4, where we said that
the retarded product R,, takes values in formal power series in /A with coefficients
in 2'(M;™"; Free). The situation is explained by the following fact (see [10]).
The retarded product R,, admits another formula:

Rn(Fl(xl) Q- ® Fn<xn)a G($n+1))
= Z 9($2+1 - x?r(n))e(x?r(n) - x?r(n—l)) - '9(9@2(2) - 332(1))

ﬂ'ESTL

1
Z._n |:F7r(1) ('rw(l)>7 |:F7r(2) (xw(2)>7 ceey [Fﬂ(n) (xﬂ(n)>7 G<xn+1)} *xg ] :| )
*H

*H
where 6 is the Heaviside step function. This formula is valid for any regular fields
Fi,...,F,,G € 2'(My; Fieg), but limitedly on the subset

MZJrl ::{(l'l,,_.,xn+1)€MZ+1‘371'7{.1']' V1§Z<‘7§n+1}

As it can be seen from formula (2.7) for the star product, each commutator gives
at least one factor h. Hence the retarded product R, is at least of order A".

Remark 2.4.4. The antichronological products satisfy a causal factorization rela-
tion, which is analogous to the one for the time-ordered products, but with inverted
order, namely for every Fi, ..., Fj, € Z'(My; Freg):

Ti(Fi(z1) © -+ @ Fr(@r)) = Thej (Frian) (Trign) © -+ @ Frry (Try))
i T (Fr) (1) @ - -+ @ ey (T2())

whenever { zx1), ..., %) } 0 ({ Zrg41), -, Taey } + V) = 0 for some per-
mutation 7 € Sy. This “anticausal” factorization follows by taking the xg-inverse
of the causality relation for the S-matrix, i.e.

S(H+F)*~ ! = S(F)y* Yy S(H)* 1 if supp(H)N(supp(F)+V_) = 0.
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2.5 The renormalization problem

Considering only interactions which are regular functionals is too restrictive. Usu-
ally physical interactions are modelled by generalized Lagrangians and consider-
ing that the algebra of free quantum fields is composed by microcausal fields, it
would be ideal to be able to include also those in the interaction picture.

The renormalization problem is precisely the problem of extending the do-
main of definition of time-ordered products, scattering matrix, antichronological
products and retarded products to encompass also microcausal fields.

It turns out that already the definition of the time-ordered products and of
the antichronological products for regular fields imposes crucial constraints to
the solution of the problem. In fact, the axioms initial condition and causality
are very strong requirements and they suffice to determine 7, (F1 (1) ® -+ ®
Fn(xn)), forany Fy,..., F, € 2'(My; Freg), uniquely on M7 \ A,,, where A,, =
{(z1,...,2,) EMY) | 2y =--- =x, = x } is the small diagonal. In particular,
the following holds (see [10]).

Lemma 2.5.1 (Consequences of initial condition and causality axioms). /n M,
consider the subset:

Then the following characterizations of time-ordered and antichronological prod-
ucts hold:

(a) On M’C} the time-ordered product '[,, agrees with the n-fold product xar,
where xar is defined by replacing the two-point function W in formula
(2.7) with the Feynman propagator A* :

Tn(F1<£L'1) KR Fn(l'n)) = F1($1> KAF kA F Fn(:vn), (212)
forall Fy, ... F, € 2'(My; Freg)-

(b) On M, the antichronological product T, agrees with the n-fold product
*aar, Where xpar is defined by replacing the two-point function W in for-
mula (2.7) with the anti-Feynman propagator A4F :

Tn(F1<:B1) Q- ® Fn(xn)) = Fl(xl) KAAF - KAAF Fn($n)> (2.13)
forall Fy, ... F, € 2'(My; Freg)-

Remark 2.5.1. The Feynman and anti-Feynman propagators A”, A4F ¢ ¢'(M,)
are particular fundamental solutions of the wave operator P, with peculiar wave-
front set properties (see Appendix C for more details). Their appearance in the
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formulation of the interaction picture in pAQFT is not a coincidence. In the foun-
dational works [7], [23], [19], they were identified as the proper mathematical
objects to encode the physical content of the theory and to provide the correct
results in the calculation of the physically relevant quantities, such as correlation
functions, expectation values etc. ..

We now take Lemma 2.5.1 as the starting point to introduce the following
notation.
Notation. (cf. [10], Section 3.3) The following facts can be proved.

(i) The unrenormalized time-ordered product is a map
Tt P'(Ma; Fue)®™ = 2' (Mg \ An; Fue)[7]
defined, on Mg, by:
TW(Fi®- ®F,) = Fy*ar - *ar F, (2.14)

for all Fi,...,F, € 2'(My; F,.), which satisfies the same basic axioms
and renormalization axioms as the time-ordered product for regular fields.

(i) Analogously, the unrenormalized antichronological product is a map
To: 7' (Ma; o)™ — 2 (MG \ Aus Foo) [H]
defined, on Mg, by:
T, (R ®- @ F,) = F xpar - 4par B, (2.15)
forall Fy,.... F, € 2'(My; Fuc)-
(i11) Finally, the unrenormalized retarded product is a map
Ry ' (Ma; Fue)® x D'(My; Fue) = 2/ (MG Ay Fouo) [,

defined, on M2 *!, by:

Aur,6) = (3)" 2 ()0 TP ) T (5 0.),
=0

(2.16)
F.G € 2'(My;F,.), and consequently the unrenormalized interacting
field (G), . is defined as

3 %Rn (F®",G) € 2' (M ; Foo) [, 1] (2.17)
n=0
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Remark 2.5.2. In [10] and [24] it is proved that the unrenormalized time-ordered
and antichronological products can be written in a compact and useful exponential
form, analogous to the one introduced in Remark 2.3.7 for the star product *, as
follows:

Tn(Fl R ® Fn) =po eﬁ21gi<j§nDiz(F1 R R Fn)’

where y is the commutative pointwise product of fields (2.2) and the operators
Dy 2'(My; Fuo)®" — 2/ (M7 ; F e )®" are defined by:

In the same way we can write:

Tn(Fl PSR Fn) = o ehzl§i<j§an4jF(F1 Q- --®F,),

where y is the commutative pointwise product of fields (2.2) and the operators
DYy 2'(My; Fuo)®" — ' (MY ; Fo)®" are defined by:

D%F(F1®”'®Fn):<F1®"'®Fi(1)®"'®(AAF*F}(I)>®”'®FYL>-

Remark 2.5.3. The reason why the definitions of time-ordered and antichrono-
logical products for microcausal fields cannot be given directly on the whole space
M are the so-called UV-divergences of perturbative QFT. These amount to the
fact that the star products (2.14) and (2.15) contain powers of Feynman and anti-
Feynman propagators. In view of formula (C.2) for the wavefront set of A¥ and of
Hormander’s sufficient criterion (Theorem A.0.3), the existence of powers (AF)*
can be discussed as follows:

« The wavefront set of A’ restricted to My \ 0 is given by the first set of the
union appearing in formula (C.2). This implies:

WE((A",00)?) = WF (A" [u00) & WEF (A" ig00) = WEF (A 00).
and, by induction,

WE (A ,00)F) = WF (A |w00), k> 2.

e But for z = 0, WF(AF) = {0} x (R?\ 0), hence Hérmander’s sufficient
criterion is not satisfied.

As a consequence, for example, powers AF (x; — xj)k’, k > 2, exist on Mfl, but
they cannot be defined using Hormander’s sufficient criterion for coinciding points
x; = x; (on the other hand, Hormander’s criterion is a sufficient, but not necessary
criterion). This does not happen for regular fields, because by definition the field
derivatives of regular fields are smooth compactly supported functions.
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Definition 2.5.1. The renormalization problem in pAQFT, according to the ap-
proach proposed by Epstein and Glaser (see [!1]), is the problem of extending
the unrenormalized retarded product R,, for microcausal fields to a well-defined
Fc[h]-valued distributions on the whole M.

For the practical computations of the extensions, several techniques have been
introduced: differential renormalization, analytic regularization and regularization
of the Feynman propagator among others. Following [7], we adopt the approach
that combines the form of the wavefront sets of Af and A with the notion
of Steinmann scaling degree (see Appendix B and [27]). The renormalization
problem is solved by analyzing the scaling degree of the unrenormalized retarded
product and then performing a scaling-degree-preserving extension of it according
to the fundamental result of Theorem B.0.1.

Remark 2.5.4. As pointed out in Theorem B.0.1, depending on the scaling degree
of the unrenormalized retarded products, the extensions may fail to be unique.
Part of the indeterminacy in the extension process is usually restricted by impos-
ing further renormalization conditions, like in Definition 2.4.2, which may encode
special symmetries of the model. In general, though, the indeterminacy in the ex-
tension process cannot be completely eliminated. Nevertheless it can be described
using the concept of renormalization group flow, see [10].

Definition 2.5.2. Fix fields kF' € 2'(My;kF,.) and G € Z'(My; F,.). Con-
sider the unrenormalized interacting field (&), ., given by:

Lo

Let N(F,G,-): N — R be the function defined in the following way:
for n =0, N(F,G,0) = max {0, sd(G) — d},
and forn > 1
N(F,G,n) =max {0, sd (R,(F®",G)) — (n+1)d — N(F,G,n— 1)},

where sd indicates the scaling degree of the corresponding distributions (see Ap-
pendix B). We say that the unrenormalized interacting field (G), . is:

(a) renormalizable by power counting if N(F, G, -) is bounded;

(b) super-renormalizable by power counting if the number of non-vanishing
values of N(F, G, -) is finite.
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Remark 2.5.5. In most cases of physical interest, and also in the case of the sine-
Gordon model, the field <, which plays the role of the interaction, and the field
G, which plays the rdle of generic observable, are taken to be local fields, namely
kF € ' (My;kFioc) and G € 2'(My; Floe). In this situation, it is possible to
show that N(F, G, -) takes values in N.






Chapter 3
The sine-Gordon model in pAQFT

In this chapter we consider in detail the formulation of the 2-dimensional massless
sine-Gordon model in the framework of pAQFT. The first fundamental ingredient
is the Lagrangian.

Definition 3.0.1. In pAQFT we regard the Lagrangian of the sine-Gordon model
as a generalized Lagrangian L € 2'(Ms; F,.) according to Definition 2.3.1.
Given a test function f € (M) and a configuration ¢ € & (M), we have:

Lol = (ot L) (D6l = [ (G0t + costap)) 1

where Ly = 11"0,00,¢ € 2'(My; Foc) is the massless free Lagrangian and the
interaction Lagrangian is Ly, = cos(ag) € 2'(My ; Fioc).

Next, we introduce one of the fundamental players in the interaction picture
of the sine-Gordon model.

Definition 3.0.2. The vertex operators are fields V, = ¢%® € 9'(My ; F,.), with
a € R, that act on a generic test function f € Z(M;) and on a generic configura-
tion ¢ € &(My) as:

Va(f)le] = /M ¢ f d.

Using vertex operators, we can rewrite the interaction Lagrangian of the sine-
Gordon model as:

Lint = %(V;z + Vfa) € 9/<M2 ;«F‘loc)-

Remark 3.0.1. A characteristic property of vertex operators, which turns out to be
extremely useful when considering renormalization and summability issues (see

39
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Chapters 4 and 5 below), is that field derivatives of vertex operators have the form:

<5575;€Va(f)[90]7¢1 X ® ¢k> = (ia)kva(fd]l e @Z)k)[sp]a (31)

forany f € Z(My) and ¢, 11, ..., € &(My). Thus field derivatives of vertex
operators are again vertex operators, modulo constant coefficients.

We now look at propagators. According to Definition 2.3.4 the wave operator
associated to the massless free Lagrangian L of the sine-Gordon model takes the

form:
P=-.

As a consequence, all the propagators will not depend on the mass parameter. It
is possible to show (cf. [1]) that the explicit expressions of the propagators in
cartesian coordinates = = (t,Z) € M, are the following:

* the retarded and advanced propagators are respectively
1 1
AR(z) = —S0(t = 7)), A%(x) = —50(—t — |]) € 7'(M);

* the commutator function is given by

A(z) = AR(x) — A% 2) = %( —0(t — |Z]) + 0(—t — |7])) € Z'(Ma);

here 6 is as always the Heaviside step function. Finally, in [1] it is shown that

sensible choices for the Hadamard parametrix  and the corresponding two-point
function I as in formula (2.5) are:

H(z) = 41 (Inft + 7| + Injt — 7]) = —%ln((x)%) cPM,) (32

™

and
‘ X | ,
W= %A(z) FH(@) =~ In (= (@) +i0) € 7' (0M). (33

Notation. From now on, we will always consider the Hadamard parametrix
and the two-point function in the form (3.2) and (3.3). Having fixed these choices
once and for all, when dealing with the star product in the sequel we will omit the
subscript H and indicate it simply by .

Remark 3.0.2. A detailed proof of the formula for the two-point function W
can be found in [25]. As we will see, this choice of Hadamard parametrix and
consequently of the two-point function is particularly suited to study the renor-
malization and summability properties of the interacting higher currents of the
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sine-Gordon model. However, it presents some disadvantages already when con-
sidering representations of the algebra of free fields on some Hilbert space. In
fact, it is shown in [2] and in particular, in [25], that, in order to obtain so-called
quasifree states on the algebra of free fields, the Hadamard parametrix has to be
modified.

It remains to consider the fundamental propagators of the interacting picture,
the Feynman and anti-Feynman propagators. In view of the previous choices for
the Hadamard parametrix and the two-point function, and using formulas (C.1)
and (C.4), it can be proved that the Feynman propagator takes the form

l

S (A(2) + A (2)) + H(z) = L (@) —ie) e 7)., G4)

AF(2) pym

while the anti-Feynman propagator is given by

A (1) = —%(AR(x)vLAA(x))—i—H(a:) = —i In ((z)}+ic) € Z'(My), (3.5)
for proofs of these formulas see [1].

Notation. From now on, we will consider the components s’ and s’ of the
higher currents of the sine-Gordon model, given by formulas (1.15) and (1.16),
as local fields sy, s) € 2/(My; Fioc). As an example, the second component
s9 = gbg of the conserved current of order 0 will be intended as a local field acting
on a generic test function f € (M) and on a generic configuration ¢ € & (M)

as:

el = /M 2 fdy.

where x = (7, €) indicates light-cone coordinates on M.

We have now all the necessary ingredients to develop the theory. The rest of
this chapter is devoted to work out explicit expressions for the unrenormalized
interacting components (51),z. . and (8)),r, ., which we will simply denote by
(5V)ine and (5) )iy In the exposition, we follow closely [30].

3.1 Some technical results

Before entering the details of the calculations of the unrenormalized interacting
components of the higher currents of the sine-Gordon model, we introduce some
useful technical results which hold in greater generality for time-ordered products
and star products of microcausal fields with particular properties (inspired by the
properties of the components of our currents).
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Proposition 3.1.1. Consider an unrenormalized time-ordered product of the form:

T‘l+1(A®l®BC)7 A787069/<Md;FMC>[[h]]7

5‘2; C = 0 whenever i > c, while A
and B can possibly admit non-zero field derivatives of arbitrary order. Then the
following equation holds:

Ti+1(A® ® BC)
RS hi . it &t Py O
— Z jl!...jl!<n“(6¢ﬁA® ®5¢ A@B),(A ) *5¢j0>.

J15e00i 20
it =g

(3.6)

Proof. We start by writing the time-ordered product using the exponential form
introduced in Remark 2.5.2:

Ti1 (A% @ BC) = po e Trsicisin PR (A% @ BO).

We now split the exponential operators, isolating the ones that act on the product
B C, as follows:

Ti41 (A% @ BO)
= po " Tisicici DF o oM Timt DF (A¥ @ BC).

We concentrate on the second exponential, whose action on the fields is:

ehTict DF (A®l ® BC)

. h_ - i * ®l F ®k*i (37)

k=0

—(BO).

Then we proceed studying separately the derivatives of the product 5 ¢
+1

Applying the Leibniz rule, we have:

< e A A ¢
-B C
Z 6¢l+1 Z Z ( ) 5¢l+1 6¢l+1

k=0 j=

We can rewrite the sums using indices j and © = k — j. Recalling also that by
hypothesis the field C' admit non-zero derivatives only up to order ¢ and using the
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notation (2.2) for the commutative pointwise product, we arrive at:

L N (i + j) 5 &7
BC) = . — B —C
. 5¢k ( ) Z (Z ( J 5¢;+1 ) 5¢{+1

I+1 j=0 \i=0

(i j) o &7
: <ZZ ( J 0P 5¢g+1

j=0 i=0

Omitting the operator 4 from the last formula, which can be absorbed in the other
operator /4 appearing in the exponential formula for the time-ordered product, and
substituting in equation (3.7) using the new indices ¢ and j for the sums, we obtain:

T PET (A% @ B C)

B c o Fiti Z+] S 5 i+J [
e (i+j)!< j )<(57>1+"'+67n> (4%).

A A B> AFY@i —(C >
<< S S ®<( A )

5¢;+1 5¢g+1

J
We can expand the operators (i + -+ 5%) using the multinomial formula:

where the product of field derivatives is intended as a tensor product. Substituting
in the formula above, we get:

€h i1 Df'?Hl (A®l ® B C)

[

[y 5 5\ /[ o &7
_ N S A®---0 A
2 j1!---jz!;i!<(5¢1+ +5¢z) (&éﬁ Y )

Jj=0
J15ee01 20
Jittn=g

(@heip) e (a9 2—c)).
0Pi11 Lo
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It is now clear that the sum over the index ¢ in the last formula corresponds to the
definition of the exponential notation of Remark 2.5.2. Hence we can write:

C

SESDFT (AN @ BO) = Y "

2o Gl
J15-55120
it ta=)
i J1 pl , J
hio D 5,A®---®LA®B L (AT)®I 4 " o).
S St 5.,

D

Applying the remaining operators ;o " 21<i<i<t P we finally arrive at:

C

o e Xi<icj< D} o eh22:1 Dytt (A®l ® B C’) = Z L
=0 VILRRRN 1
et >0
it ta=)
i i J1 Ji
M(<6h21§i<j§lD1g o eﬁzj:l DFZ-H (5(;)]114 R ® %A ® B) ,

(A7)«

')
0071

AN LA " 4o B). (Ao
= 2 g\l Ao e gmAe B (07550,

g.ed.

The next technical result, concerning the star product of fields, reads as fol-
lows.

Proposition 3.1.2. Consider the product of fields A, B,C € 2'(My; F,c)[R]
A *H (B C),
where C'is such that ¢ € N for which %C’ = 0 whenever i > ¢, while A and

B can possibly admit non-zero field derivatives of arbitrary order. Then the star
product can be written in the form:

N L on OF
Axy (BC) =) T <(57§]€A> *g B, (W)%F « 57%0> . (3.9
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Proof. The claim is obtained by explicit calculation in a similar manner as in the
previous proof. First we use the exponential notation introduced in Remark 2.3.7
for the star product:

Axg (BO) = poe™v(A® BO).

Then we expand the exponential operator and obtain:

Ny A 5"
PW(AQBC) =) — <WA, (W)®" « 5o —(B c>>
n=0 :

Applying the Leibniz rule and writing the commutative pointwise product using
the operator ;1 we get:

" SNOAN Ll o
M)n(BC’) (; (k) 5¢nk3®5¢k0>.

We can substitute this formula in the previous one, omitting the operator f:

ehDW(A ® BC)

S () e (o ) (- 5)).

We can rewrite the double sum over indices k£ and © = n — k and, recalling that
by hypothesis the field C' admits non-zero field derivatives only up to order ¢, we
arrive at:

f’DW(A ® BC)
h > ; 5k+z ; 5i 5k:

In the sum over the index 7 we recognise the expression of the exponential operator
e"Pw hence we can write:

~ K 5 5"
"PW(A@BC) =Y (" A@B |, (W)® s —
eV (A® BC) 27 <e ((5q§k ® ) (W)®" 5¢k0>
Finally, applying the operator 1 we arrive at:

D ¢ hE 5k ok 5k

g.ed.
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3.2 Unrenormalized interacting components

We now apply the technical results just proved to compute the unrenormalized
interacting components of the higher currents. According to formula (2.17) they
are given by:

o0 n

B R (LR 1),
n=0 v

where L, is the interaction Lagrangian of the sine-Gordon model. We recall
that, unlike a, which represents the truly physical coupling constant, « is called
the “bookkeeping” coupling constant and in this case it is just a tool to account
for the order of perturbation.

Our goal for the rest of this section is then to work out explicit expressions for
the retarded products of the interaction Lagrangian and components of the higher

currents.

We start by considering the first components s¥. We know from formula
(1.15) that the components s are given by the sum of a homogeneous part of
degree 2N multiplied by cos(a¢) and another homogeneous part of degree 2N
multiplied by sin(a¢). We rename the two homogeneous parts ¢J and r}’ respec-

tively, and write:

s = cos(ag)q + sin(ag)ry . (3.9)

Hence by linearity of the retarded product, we have:

R, (Lt sy) = Ry (Ll cos(ag)qy ) + R (Lir, sin(ag)ry). (3.10)

mnt nt nt

The two terms on the right hand side are completely analogous, so we restrict
ourselves to consider only the second one. By formula (2.16), we can expand the
retarded product as:

R, (Lg sin(ag)ry)

nt

() () 0 T+ Ti (15 @ st

(3.11)

First we consider the unrenormalized retarded product 7}, (Lmt @ sin(ag)ry )
We can directly apply Proposition 3.1.1, in the special case where A = Ly, B =
sin(a¢) and C = r¥¥. In fact, from Remark 1.4.3 and as a direct consequence of

Proposition 1.4.2, we know that field derivatives of 7"1 of order greater than 2N
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are all zero. Hence, we obtain:

2N

. ‘ B
T (L?;f@ sm(agb)riv) = Z FRIN]
—o  Jurae
G1eii20
Jitta=i
. o 5 ) P& kY N
<Tl+1 <5¢7Lim ®- - ® WLM Q 8111(@(;5))  (AT)®7 % 575],1“1 > .

Now we substitute this equation in formula (3.11) and we get:

N 2N _1\n=Dgi .
Ro (25 sin(ag)rd) = () 2(7) § W ey

— — Jat--- !
Jeit20
it =g
. 5 5 . ey Y N
* <E+1 (WLM Q- WLint (9 Sln(a¢)) R (A ) 7 x er >
Since ¥ and a fortiori %T{V admit non-zero field derivatives only up to order

2N, we can apply Proposition 3.1.2 to each one of the star products appearing in
the last formula. Explicitly, we get:

Tn—l (L®(n_l))

nt

. Xl o . F\®j Sy
*{ 114 %Lint K- & wLint ®sin(ag) |, (A7) Wﬁ

2]\[_‘7 hk 5k ~ ®(7’L*l) . 5]1 ]l .
= e E<WTnl (Lint ) *ﬂ+1 (6¢]_1 Lint R ® WLim X Sln(a¢>) ,
((W)®k ® (AF)@)]‘) . §Itk N
Stk L)

Then we plug this expression in equation (3.11) and obtain:

; o, 2N (=05 2NT
R sneort) = (3)' 2 () X SEEY 4

~ = nbeal =
Ji,-5120
Jitta=i (3.12)
LA . . 5 S ] .
<W n—l(Lﬁt( l)) * T (WLim K- WLint ® sm(agb)) ;

5j+k

(W)*F @ (AF)®7) « 5¢j+k7ﬂ{v>'
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Rewriting the interaction Lagrangian and the sine in terms of vertex operators, we
finally arrive at:

. Lopiyis () X e
R (Lierit 7Sln<a¢)7ﬁiv) = Z’2n+1 <ﬁ> Z (l> Z f k=0 k'

— =0 gl !
Jis-0120
P
<5¢k Vet V=) 7)
. o YL
i (S Vot Vo) 90 LV Vo) (V= Vo) ).
Rk F\®j 5j+k N
(W) & (AT)) » 2] >

(3.13)

A completely analogous expression occurs for the term R, (Lfﬁt” , cos(agb)q{v ) in

equation (3.10), with cos(ag) in place of sin(a¢) and ¢2¥ in place of r.
We now pass to consider the components s). Again our goal is to give an

explicit formula for the unrenormalized retarded product

Fa(Lgtsd) = (5)°32 <7>(—1)("—”T (L") * T (L @ 5)).
1=0

(3.14)
As pointed out in Remark 1.4.3, the components s’ are polynomials in the deriva-
tives of the configuration ¢. Moreover, as a consequence of Proposition 1.4.2, we
know that they admit non-zero field derivatives only up to order 2(N + 1). We
can then apply Proposition 3.1.1 in the special case where A = L;,,, B = 1 and
C = sY'. The result is:

Tl+1 (L?;t ® 1 Sév)
2(N+1) , , , ,
B 3 S 5t e O
jz:; ]1']l' <T‘l+1 <5¢j1Lint®“‘®—5¢jZLint®1)7(A ) *W‘SQ

J155120
Nt tn=g

In view of formula (2.14) for the unrenormalized time-ordered product, it is im-
mediate to see that:
Ji

T, 5le Lin®1 o 5le
1+1 W int®"'®6¢ int & (5¢J 1nt®"'®W int |

(for a proof of this equality using the causality axiom for the time-ordered prod-
uct, see [10]). Using the axiom field independence to collect the field derivatives
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outside of the time-ordered product, we then get:

Tl+1 (L% ® 1 55)
2(N+1)

B hH A RYL s & N
= 3 g (e ) (0 5
L I=
jf:-ﬁ;%—%
2(N+1) . .
- Z Ti (L), (AF)®T % —s) >
w 607

Substituting this formula in (3.14) we obtain:

n 2(N+1)

. i\n n (—1)(nOp
R ) = (0 (1) X G
h L) “4 J:
=0 7=0
& Y
n—I|

o (") o (5T (20 (A7)« 5 )
Since s and a fortiori 6 dﬂ 32 admit non-zero field derivatives only up to order

2(N+1), we can apply Proposition 3.1.2 to each one of the star products appearing
in the last formula. Explicitly, we get:

- & (n—1) 57 i 2(N+1)—j Bk
" — T F N Z
T (Llnt ) x <5¢jﬂ (Lmt) 7<A )®J * (5¢J <59 > = a E

5k - . YA . §itk
<6Tb'an_z(L§f RS> (Lﬁf)7(<W>®k®(AF>®])*5¢j+k3év>

Substituting in the previous formula, we finally arrive at:

2(N+1) 2(N+1)— (n— l)h]+k

mzd) = ()2 (1) X y e

o &(n—1) o7 ®l ®k F\®j 7y
<WT (Lmt ) 5¢ T (Lmt> ) ((W> ® (A ) ) * 5¢j+k S9 > .
(3.15)
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Finally, using vertex operators to write the interaction Lagrangian, we get:
2(N+1) 2(N+1)—j (n—1) -+

R (L' 2 ):<22h>;<)2 Z lkl

5k - 5
<5¢k (Vat V)20 0) w5 T (Vi Vi) ™) (3.16)

((W)®k ® (AF)®j) * o sN>
Stk 2 [




Chapter 4

Renormalization of the interacting
higher currents

In this chapter we prove that, according to Definition 2.5.2, the unrenormalized
interacting components (53 )iy, (52 )in of the higher currents of the sine-Gordon
model are super-renormalizable by power counting.

Before proving our main result, we introduce some useful notation. Since the
concrete classical expressions of the components were obtained using light-cone
coordinates, we need to work coherently in that coordinate system. We denote
then by y = (7,€) the set of light-cone coordinates on M, and accordingly by
(X153 Xn) = (71,&1, - .., T, &) the set of light-cone coordinates on M.

Based on [ 1], we then introduce the following formulas:

(i) On the subset
M5 = { (1, oximn) EMET | i £ xg, V1<i<j<I+1},

the unrenormalized time-ordered product of vertex operators can be written

in the form:
Ti-&-l (‘/(11 (Xl) - ® ‘/;ll+1 (Xl-i—l))
— eilard(xa)++a16(x+1)) H e—ai“jﬁAF(Xi_Xj)7 4.1
1<i<j<I+1

where the symbol H1 <i<j<i+1 indicates that the distributional product of
exponentials of Feynman propagators is defined only on Ml;'l.

(i1)) Analogously, on the subset
Mgil:{(XFQa“'aXnJrl) EMgil } XZ#X])VZ+2§Z<.7SH+1}7

51
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the unrenormalized antichronological product of vertex operators can be
written in the form:

Tn_l<‘/@l+2 (XH-?) DR Van+1 (Xn+1))
— eilat100as2)++ant16(xn+1)) H e—aiajﬁAAF(xvz—Xj)' 4.2)

142<i<j<n+1

These formulas follow immediately from the exponential notation introduced in
Remark 2.5.2 and from the fact that the field derivatives of vertex operators are
again vertex operators, see equation (3.1).

Finally, combining formulas (4.1) and (4.2) with the exponential notation for
the star product of fields from Remark 2.3.7, we get that also the star product
of the unrenormalized time-ordered product of vertex operators with the unrenor-
malized antichronological product of vertex operators admits a similar exponential
formula. More precisely, on the subset

MnJrl {(Xl,...,XnJrl)EMghLl}XZ'#XJ', \V/1§Z<j§n+1},
we have that:

Tn—l (V¢ll+2 (Xl+2) K& Van+1 (Xn+1>> * Tl+1 (‘/lll (Xl) K- V:lz-‘-l (XH—I))
_ oi@d0a)+tans16(em+1) H p-aiashAF (xi=x;)

1<i<j<l+1
H e*aiajhAAF(Xi*Xj) H e @aihW(Xi=x3)
142<i<j<n+1 1+2<i<n+1
1<j<i+1

(4.3)

4.1 The main theorem

We have now the elements to prove the main result of this chapter.

Theorem 4.1.1. Let us consider the unrenormalized interacting components of
the higher currents of the sine-Gordon model:

(V) = D S Ra(L0 oY), (53 = Y R (L)),
n=0 n=0

where R, (L, sY), R, (L, sY) € 2'(My™; Foo)[R]. Then, the scaling de-

int » int ?

gree of the retarded products is uniformly bounded by the degree of the compo-
nents. Specifically, for every n > 1 it holds:

sd (R, (L2, s))) = deg(s)) = 2N,

int

sd (R, (L27, s3')) = deg(sy) = 2(N + 1).

int
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Proof. We show the detailed steps only for the unrenormalized interacting first
component (s )i,. The same arguments apply also to the unrenormalized inter-
acting second component (s’ )iy, which in fact is a special case of the former.

We start by recalling formula (3.10):
R, (Lor, N) R, (Lor ,cos(agzﬁ)q{v) + R, (Lo, sm(aqb)r{v).
The two terms are completely analogous, so we consider only the second one.

From the previous chapter, formula (3.13), we know the explicit form of the un-

renormalized retarded product R, (L', sin(a¢)ry) on Mj*':

1 finie= (n)  en (=1)Dp T bk
Ry (Lt sin(ag)ry') = = (ﬁ) 2_: (z) ; Sf—w 25
)
o* T ®(n—1)
<W nfl(<va +V_,) )
. 5 YL
*Tiyq (W(Va‘i_‘/a)@" S —(Va+ Vo, ® (V;—Va))>
®k F\® ot
(<W) ® (A7) ]) 5¢j+kr1 >
(4.4)
We extract the generic term of this sum and write it as:
5 - . 671 5j
<5T¢anl(Val+2 - ® Van+1) * T (MTVM Q- 5¢] — Vo ® %l+1> )
((W>®k ® (AF)@)]') " ﬂrjv>
Stk 1
(4.5)

Our goal is to estimate the scaling degree of the distributional part of this generic
term. Using formula (4.2), we can immediately compute:

5 >
T ( aj42 (Xl+2) K- V:anrl (Xn-l-l))

Yol
( et(arr29(xit2)+- +an+1¢(Xn+1))) H e_aiajhAAF(Xi_Xj).

H+2<i<j<n+1
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Using formula (4.1), we obtain:

. 5 YL
Tias (Vi () 8448 3 () © Vi ()

(5j1 6‘” . o -
= ooy 2 ) ilare(xa) e tarpid(xa) —aia;RAF (xi—x;)
= (<5¢j1® ®5¢jz)€( I+1 z+1)) H e Xi=X;)

1<i<j<i+1

We now adopt the integral kernel notation (2.1) to make more explicit the distri-
butional character of the field derivatives appearing in the last two expressions.
For the antichronological product, we obtain:

(Sk
0¢p(an) - - - dp(ay)

: k : kn
. Z /{!(Zal+2) +2... (Zan+1) +1 ei(az+2¢(xz+2)+"'+an+1¢(xn+1))
Fial - Fopp!

ei(al+2¢(><l+2)+"'+an+1¢(Xn+1))

kito,....kny120
kiyot-+kni1=k

d(a1 — Xi42) - - '5(O‘kz+2 — Xi+2) - '5(04k—kn+1+1 — Xnt1) - 0(Qh — Xnt1),
understood as a distribution on M¥. Similarly, for the field derivatives appearing
in the time-ordered product, we obtain:
o Y
0p(fr) -+~ 00(8;,) 0p(Bj—ji+1) - 60(5;)
= (ial)jl - (ial)jl eiaro(xa)+-Farr16(xi+1))

5(51 - Xl) T 5<6j1 - Xl) T 5(ﬁj—jz+1 - Xl) o '5(ﬁj - Xl)7

in this case understood as a distribution on Mg. It remains to consider the field
derivatives of r{v . From Remark 1.4.3 and Proposition 1.4.2, we know that r{v
is a polynomial in the derivatives of the configuration up to order 2N and with
homogeneous degree. Hence its field derivatives can be expressed in the form:

) etlaro(x1)++ar16(xi+1))

§i+k N
dp(o1) -+ 0p(ok)op(p1) - - .5¢(pj)T1 (X1+1)
= ajJrkT{V
— Z 0s ¢ -+ O cOPpie -+ - Oy e (X141)

815058k T1 500,75 20
sit-tsptrite+r;<2N

6(or = xiq1) - '82115(% - Xl+1)5g,1+15(01 = Xi+1) 8;115(%' — Xi+1)
(4.6)

o

&1

understood as a distribution on M§+k. We can then put together all the pieces.
Omitting the field part, that is, the exponentials of configurations, we obtain that
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the distributional pairing of equation (4.5) reduces to:

El(iaq )t -+« (iag) (iap2)F2 -+« (i )

2 2 Kol kg

kiyo,...kny120 815058k, T1 50,75 20
kipot+-+kny1=k S1+~~~+Sk+'r1+~~+7‘j§2N

<5(Oél — Xit2) 5(akl+2 — Xig2) - 5(04k—kn+1+1 = Xnt1) - 0(Qr — Xnt1)

0(Br—x1) - 0(Bj —x1) -+ 0(Bj—jiar — xa) - 0(B; — xa)
W(on —o1) - W(ay — or) A" (B — p1) - - AT(B; — pj)

o;!

i1

3o = ) -0, 0l — s, D~ vasn) 05, 005 — i)

The pairing of the two-point functions and of the Feynman propagators with the
derivatives of Dirac deltas is the reason why the former inherit the derivatives.
The final result is the following sum of distributions defined on M+

kl(iay) - - (i) (iag40)"+2 - - - (i@pq )t

2 2 Kol k!

kiio,..kny120 815058k, T1 50,75 20
kiyot+-+knt1=k s1+-+sp+ri+-+r;<2N

O¢! W(Xl+2 - Xz+1) T aSRMW(XZH - Xl+1>

§i+1 i1

Si_ S
a." kn+1+1W(Xn+1 = Xi+1) - O W Xn1 — Xit1)

§i+1 §i+1

' AT (X1 — xie1) a;jilAF(Xl — X1+1)

i1

B AT (i = xin) - 0L AT O = xan)-
4.7)

Using this last formula, omitting all the sums, the numerical coefficients and the
exponentials of configurations, we finally have that the distributional part of the
generic term of (4.5), and hence of R, (L, sin(a¢)ry’), is given, on M3, by:

—a:a;ih F N r 7
[[ e amadan AFGa = xim) -0 AT (a = xis)

&1
1<i<y<l+1
H e—aia]‘ﬁAAF(Xi_Xj) H e~ MW (xi—x;) 4.8)
1+2<i<j<n+1 1+2<i<n—+1

1<5<i+1

0" Wixira = Xie1) - 02 W (Xng1 — Xi41)-

§i+1 §i+1
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This product of distributions is well-defined according to Hoérmander’s criterion
on M;‘H. Hence, we can apply the properties of the scaling degree with respect
to the product of distributions. In particular, the fact (see Proposition B.0.1) that
the scaling degree of the product is bounded by the sum of the scaling degrees of
the factors. Thus, from the condition

81+"'+8k+7’1+"'+7’j SQN,
which holds for all the generic terms of (4.5), we immediately obtain:

sd (R, (L&, sin(ag)ry’)) < 2N.

mnt

Moreover, the maximum value 2N of the scaling degree is actually always at-
tained. In fact, from formula (1.15), the classical expression of the component
rIV always contains a term of the form A?" which in turn, as we know from Sec-
tion 1.2, is just a multiple of gbe . This means that at least for j + &£ = 2N and

§y = =8, =1 =---=r; = | the scaling degree of R, (Ler, sin(ag)ry) is

exactly 2/V. g.e.d.

Corollary 4.1.1. The unrenormalized interacting components of the higher cur-
rents of the sine-Gordon model:

(53Dt = D~ R (L0 57, M Ra(L ).

int ? n' int 7
n=0 n=0

are super-renormalizable by power counting according to Definition 2.5.2.

Proof. The interaction Lagrangian of the sine-Gordon model and the components
of the higher currents are local fields, more precisely Lmt, sh. 'y € D' (My; Froe).
Hence, according to Remark 2.5.5, the function N ( Ly, sV 25 ) of Definition 2.5.2
takes values in N. The uniform bound on the scaling degree of the retarded prod-
ucts given by Theorem 4.1.1 directly implies:

N(Ling, 87, n) = sd (Ro (L, s7Y)) — 2(n + 1) — N(Ligg, 57,0 — 1)

=2N —2(n+1) — N(Lin, 5 ,n — 1)
< 2N —2(n+1),

and

N(Ling, 53, m) = sd (Rn(LE, s3)) — 2(n + 1) — N (L, s ;7 — 1)
=2(N+1)—2(n+1) — N(Lip, 55 ,n — 1)
<2(N+1)—-2(n+1).

This means that for n big enough, respectively n > N — 1 and n > N, the

functions N (Lin, sV, n) and N(Lsy, s5, n) are constantly 0. g.ed.
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Remark 4.1.1. For a proof, in a slightly different quantization framework, of the
renormalizability properties of the first of the higher interacting currents, that is,
the stress-energy tensor of the sine-Gordon model, where the counterterms are
explicitly computed, we refer to [16] and [15].

4.2 Piecewise renormalization

We now describe the concrete renormalization of the unrenormalized retarded
products R, (L®” s{\fz) for the components of the higher currents. Specifically,

nt

we carry out the detailed analysis only for the term R, (L', sin(ag)riY), recall-
ing that the other term in equation (3.10) can be treated in a completely analogous

way, while R, (L2, s2') is a special case without the sine.

We adopt an approach which we call piecewise renormalization. It consists
of three steps: expansion of the expression to be renormalized in its elementary
parts, scaling-degree-preserving extension of each one of the elementary parts
separately and finally showing that reassembling the extended elementary parts
all together gives a well-defined result.

The rest of this section is organized as follows: in Subsection 4.2.1 we con-
sider the time-ordered product of vertex operators and the derivatives of Feynman
propagators; in Subsection 4.2.2 we consider the antichronological product of ver-
tex operators; finally, in Subsection 4.2.3, we reassemble the extended elementary
parts all together and show, by a careful study of the wavefront set of all the ele-
ments involved, that the result is in fact well-defined. In our exposition we closely
follow [30].

4.2.1 Time-ordered product of vertex operators and deriva-
tives of Feynman propagators

In all the subsequent discussion we refer to the distributional part of the generic
term of 12, (L27, sin(ag)rY), described by formula (4.8). From the first line of
(4.8), we consider the distributional part of the unrenormalized time-ordered prod-
uct of vertex operators multiplied with derivatives of Feynman propagators as a

distribution defined on M5

H e_“"“jhAF(Xi_Xf)@gl AT (1 = xig1) - 324;“AF(X1 —Xi+1). (49

+1
1<i<j<I+1
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Using formula (4.7) we can further expand this as:

H efaiajhAF(Xi*Xj)agl:—lAF<X1 —Xe1) -0 AT (1 — Xi41)

&1
1<i<j<l+1

O AT (i — xu1) 07 AT (i — xim)-

§i41 €141
Then we consider the product of exponentials of Feynman propagators and expand
it as a single formal power series in h. The coefficient of the power A is given by:

Z (_1)P(a1a2)p1,2 C. (alaH_l)Pz,zﬂ

p172! e 'pl,l-i-l!

{pi,; 20, 1<i<j<I+1
s.L. > i Pij=P}

(AF)PL2(yg = xa) - (AT (3 = X)),

Substituting this expression in the previous formula, we obtain that the coefficient
of AP of the unrenormalized time-ordered product of vertex operators multiplied
with derivatives of Feynman propagators is given by:

Z (_1)p(a1a2)p1,2 .. (alal+1>pl’l+l

|... |
(P20, 1i<j<I+1 P12 Pri+1-

st >3, ; Pij=p}
(AF)pll’j(Xl —X2) (Af.)pl’”;()(l — Xi+1) (4.10)
Ol A (a1 = Xa1) - 01 AT (= Xa)

aTF”HAF(XZ - Xl+1) 0y AF(Xl - Xz+1)-

&1 &1

We now consider each one of the factors separately, as a distribution defined on
M, \ { 0 }, and denote them by:

Dy = (AT)Pr2 )

Dl,lJrl = (AF>p1,z+1 (8gzl+1AF) ... (arjl AF), c @/(M2 \ {O}) (4.11)

&1

Dl,l+1 _ (AF)pl«l“(a;];jHlAF) .. (ar]‘ AF) )

&1

Using the fact, see Proposition B.0.1, that each derivative of a distribution possibly
increases its scaling degree by 1, the fact that the scaling degree of the product of
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distributions is bounded by the sum of the scaling degrees of the factors and the
fact that the scaling degree of the Feynman propagator on My is 0, we immediately
obtain the following values for the scaling degrees of the distributions appearing
in formula (4.11) above:

sd (D, ) =0, V1<i<jg<l, (4.12)
while
sd (Dygg1) =71+ + 1y
: (4.13)
sd (Dl,H—l) =Tj—j+1 + -+ Tj.
by the conditions on the indices ry,...,r; in formula (4.7). We can now apply

Theorem B.0.1 and perform the scaling-degree-preserving extension of each one
of the distributions (4.11) to the whole M,. We denote the results by:

[D12] = [(AT)P2], )

[Diin] = [(AF)ee (@5t AF) - (9 AT, 3 e Z'(My).  (4.14)

&1

[Drisa] = (AT (B AT - (0, AT
Remark 4.2.1. As consequences of Theorem B.0.1 and of the estimates (4.12),
(4.13), we have that powers of Feynman propagators admit unique extensions,
whereas for products of derivatives of Feynman propagators, when the respective
sum of indices r;’s is > 2, the extensions are not unique.

Remark 4.2.2. In view of formula (C.2) for the wavefront set of the Feynman
propagator and as a consequence of the extension process, the wavefront set of
each element of (4.14) is contained in the set:

I'p={(z,k) € T"M, | (x)%:(),x#o,x:/\nﬁ(k;),k>0}

« (4.15)
U{(0,k)eT"My | k#0}.
We have thus completed the extension of the elementary parts of the distribu-
tional part of the unrenormalized time-ordered product of vertex operators multi-
plied with derivatives of Feynman propagators.
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4.2.2 Antichronological product of vertex operators

We now consider the distributional part of the unrenormalized antichronological
product of vertex operators, that is, the product of exponentials of anti-Feynman
propagators appearing in formula (4.8), as a distribution defined on M5~

| | (4.16)
+2<i<j<n+1
Analogously to what we did for the distributional part of the unrenormalized time-
ordered product of vertex operators, we expand the product of exponentials of
anti-Feynman propagators as a single formal power series in A. The coefficient of
h? is given by:
Z (—1)q(al+2al+3)ql+2’l+3 e (anan+1)qn’"+1

Q142! - !

{4i.; 20, 142<i<j<n+1 " nn1t
S22 5 9i.5=4
(AAF)qHQ’HS(XlH = Xi+3) " (AAF)Q"’”“(Xn — Xn+1)-
4.17)
We regard each one the factors in this formula as distributions defined on M\{ 0 }
and denote them as:

El+2,l+3 — (AAF)QZ+2,Z+3
€ 2" My \{0}).
En,nJrl = (AAF)anhq

The scaling degree of the anti-Feynman propagator, and consequently of any of its
powers, 1s equal to 0 on M. Hence by Theorem B.0.1 each on of the distributions
above admits a unique scaling-degree-preserving extension to the whole Ml,. We
denote them by:

[Diyars] = [(AAF)a2145]
: € 7'(My). 4.18)
[En,n-i-l} = [(AAF)%’"H]

Remark 4.2.3. In view of formula (C.5) for the wavefront set of the anti-Feynman
propagator and as a consequence of the extension process, we have that the wave-
front set of each element of (4.18) is contained in the set:

Lar={(z,k) € T"M; | (x)?,:(),xyéo,x:)\nﬁ(k),)\<0} U
U{(0,k)eT*My | k#0}.

We have thus completed the extension of the elementary parts of the distribu-
tional part of the unrenormalized antichronological product of vertex operators.

(4.19)
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4.2.3 Discussion of well-posedness

We proceed now with the last step of the piecewise renormalization process, as
explained at the beginning of Section 4.2. In particular, we first show that the
piecewise renormalized versions of (4.10) and of (4.17) are well-defined distribu-
tions on the whole spaces M5 and M3}, respectively. Then, by summing up
the coefficients for every order in h, we directly obtain that the piecewise renor-
malized versions of formulas (4.9) and (4.16) are also well defined on Mljl and
Mg’l, respectively. Finally, we show the well-posedness of the product of the
piecewise renormalized versions with the exponentials of two-point functions and
their derivatives, hence obtaining that the piecewise renormalized version of for-
mula (4.8) is well defined on M. This in the end implies that the piecewise
renormalized version, obtained in the way just described, of the generic term (4.5)
of R, (L, sin(ag)rl) is a well-defined microcausal field in 2/ (M5 ; F,..)[1],

nt ?
as desired.

Remark 4.2.4. Before proceeding with the proofs of our claims, we point out that
all the arguments presented involve only the study of the wavefront sets of certain
distributions. The wavefront set is a geometric object, independent of the choice
of coordinate system employed to describe it. As a consequence, despite the fact
that in the previous formulas the distributions under consideration were defined
using light-cone coordinates, we are in fact free to consider also their expressions
in cartesian coordinates.

Proposition 4.2.1. The piecewise renormalized version of (4.10), that is, of the
coefficient of h? of the distributional part of the unrenormalized time-ordered
product of vertex operators multiplied with derivatives of Feynman propagators,
given by the following expression:

Z (_1)P(a1a2)p1,2 . (alal+1)pl’l+1
.. I
{pi;>0,1<i<j<I+1 A
S.1. Zi,j Pi,j=p}

(AT 2) (1 = wa) - (AT (1 — ) - (AT (0my = 22)
[(AT)Pree (g, AT) -+ (9, AT (w1 — w14)

141 §i+1

[(ATyre (9 T AT) - (9 AT (@ = w4a),

141 &i+1

(4.20)

is a well-defined distribution on M5,

Notation. We recall here a graph notation, introduced in [8] to describe the
wavefront set of products of Feynman propagators in the context of algebraic
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quantum field theory on curved spacetimes. Following the terminology of [7]
and adapting it to our spacetime M, we have:

* denote by G, the set of oriented graphs with vertices V ={1,...,n }, and
by E¢ the set of edges of a given graph G € G,. For any edge e € E¢
between vertices ¢ < j, we set source o(e) = ¢ and target 7(¢) = j;

* an immersion of the graph G € G, into M is pair of maps (X, K) such
that:

- X:V — M, maps vertices ¢ of G to points z; € My, with the
condition that if the vertices ¢ < j are connected by an edge, then
(w — 23)7 = n(x; — x5, 2 — 15) = 0;

- K: E¢ — T*M, with the condition that, if the vertices i < j are
connected by the edge e € E°, then the covector K(e) = k, is:

k. = )\ZJT]b(ZEZ — Ij) for some /\ij > 0, if z; 7é Zj,
keeM;\{O}, if €T, = Ty,

where 7),: TMy — T*M, is the natural isomorphism induced by the
Minkowski metric 7 and due to the triviality of the bundles TM, =
My x My, T*M, = My x M it descends to an isomorphism 7, : My —
M. By convention, the covector k. is said to be outgoing for the point
x; and incoming for the point x;.

Proof of Proposition 4.2.1. We start introducing the following tensor product:

Z (_1)P<a1a2)p1,2 . (alal+1)pz,l+1

TOF?
p1,2! e 'pl,l+1!

+1 =
{pi,;20,1<i<j<I+1
s> i Pi, =P}

(AT 2)(wr2) @ - @ [(AT)PH](wig) @ - @ [(AT)P ] (wi-1y)
@ (AT (0 AT) - (0 AN (W) @ -+

1+1 &1

@ [(AT)P (@ AT - (0 AT (W),

I+1 i1

(4.21)

as a distribution in 2'(ML), with K = (lzl). We point out that the notation
in the last formula is meant to indicate that we are considering the distributions
[(AT)Pii] or [(AF)”““(OSLAF) -+ (9, AT, originally defined using light-

Si1
cone coordinates, in cartesian coordinates w; ; on M.
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The crucial observation is that we can regard (4.20) (considered in cartesian
coordinates) as the result of the pull-back of (4.21) via the map:

st M — ME

4.22)
(Z‘l, s Jlerl) = (wl,] =T; — x])?

for 1 <i < j <[+ 1. The question about the well-posedness of (4.20) is then

rephrased in terms of the well-posedness of the pull-back s*(TOF}, ;). In other
words, according to Theorem A.0.1, we can consider the set
Ay = WF (S*(TOFﬁl)) - (s’)t(WF(TOFfH)),
and we have to verify whether the condition:
AN (Myx {0}) ™ = (4.23)

is satisfied. Using the graph notation introduced above, we have that A;,; can be
described as:

A1 = {(951, ki,... 21, ki) € TP'MLT™ | 3G € Gy and

3 animmersion (X,K) of G such that

k=Y k=Y kf}.
ecEC feEC
o(e)=i T(f)=1i
Analyzing in detail the implications of this notation, we can show that the answer
to the question whether condition (4.23) holds is indeed affirmative:

Consider first immersed graphs in My with no loops, that is, suppose that the
immersion map X is injective. In this case the claim follows from the following
argument. For every immersed vertex x;, the corresponding covector k; is given
by a sum of covectors which are coparallel to the directions of connection of
the vertex to its adjacent vertices in the immersed graph. The directions of the
connections always lie on the boundary of the light-cone.

This means that, in order to have all covectors k; equal to zero, every vertex
x; of the immersed graph has to be connected to its adjacent vertices in opposite
symmetric directions. But this can never be the case. In fact, each connected
component of every immersed graph has a finite number of vertices and if we
consider for example, in a connected component, the vertex ¥ with maximum
time coordinate, then this vertex will be connected to its adjacent vertices only in
past-directed directions. Hence the covectors over  cannot sum up to zero.

Suppose now that the immersed graph contains loops, that is, that the immer-
sion X’ maps vertices I = {iy,...,in} C {1,..., I+ 1}, m <[+ 1, to the same
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point z; € M. Let us denote by E¥ the set of loops, that is, E¥ is the subset of
edges e € £ such that o(e) € I and 7(e) € I.

Then the conditions that the covectors &, . .., k;_ over the points z;, = -+ - =
x; = xy are all equal to zero can be written as:

ki = ZeEEG\EIG ke — ZfGEG\EIG kg + > ecE¢ ke =22 feE¢ kf=0
o(e)=i1 7(f)=i1 o(e)=i1 7(f)=i1

ki, = ZeeEG\EIG ke — ZfeEG\E,G kf + Z ecE¢ ke — Z feEf kf = 0.

o(e)=im 7(f)=tm o(e)=im 7(f)=im

From these equations we see that each one of the covectors k. associated to
an edge e € EY appears twice, with opposite signs. If we sum up the equations
above, we are then left with the condition:

kr=khi 4tk = > ke— > kp=0.

e€EC\EE fEEC\E¢
o(e)el T(f)el

This corresponds to the condition that we get if we look at the immersed graph
G, without considering the loops. We are then reduced to the situation discussed
above and we can apply the same argument to conclude. g.e.d.

Completing the characterization of the piecewise renormalized coefficient of 7” of
the distributional part of the time-ordered product of vertex operators multiplied
with derivatives of Feynman propagators, formula (4.20), we have the following
result.

Proposition 4.2.2. The wavefront set Nj1 of (4.20), that is, of the piecewise
renormalized version of the coefficient of h? of the distributional part of the un-
renormalized time-ordered product of vertex operators multiplied with derivatives
of Feynman propagators, satisfies the microlocal condition (2.4), that is,:

Al+1 N ((Mg X V_)lJrl

U (M x V7)) =0,

Proof. For each connected component of each immersed graph, we have a vertex
Z, with maximum time coordinate and another vertex z_ with minimum time
coordinate. This means that 7, is connected to its adjacent vertices only by past-
directed directions, and hence the covector over Z is past-directed. Conversely
the vertex _ is connected to its adjacent vertices only by future-directed direc-
tions, and hence the covector over Z _ is future-directed. This is sufficient to obtain
the statement.
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This situation is not affected by the presence of loops at the vertices z, or
Z_. In fact, suppose that . is the image via the immersion map X of the ver-
tices I := {i1,...,im} C {1,...,01+ 1}, m < [+ 1. Then, similarly as in the
proof of Proposition 4.2.1, we have that the covectors over the immersed vertices
Ziys - .., T;, can be summed up to give:

by =i+t ki, = Y ke— Yk,
e€EC\E¢ fEEC\EE
o(e)el T(f)el
which is precisely the expression that we get if we look at the immersed graph G,
without considering the loops.

If we now assume that all covectors belong to V., then also k. € V. But
this is a contradiction, because from the first argument we know that for immersed
graphs without loops the covector k. over Z, must belong to V _.

If we assume, on the contrary, that all covectors belong to V_ and repeat the
previous reasoning for Z_, we get a contradiction since we know that for immersed
graphs without loops the covector over Z_ must belong to V.. g.ed.

Corollary 4.2.1. The piecewise renormalized version of the distributional part
of the unrenormalized time-ordered product of vertex operators multiplied with
derivatives of Feynman propagators (compare with formula (4.9)), which we de-
note, dropping the” symbol, by:

H e—aiajﬁAF(Zi_xj)aTl AF<1’1 _ Il—i—l) Ce aglj_,_lAF(xl _ xH—l)? (424)

§i+1
1<i<j<i4+1
is a well-defined distribution on IMIZQ+1 with wavefront set given by \; 1.

Proof. The result follows directly from summing up the piecewise renormalized
coefficients (4.20) for every order p in h. Concerning the statement about the
wavefront set, this follows immediately from point (a) of Proposition A.0.2 com-
bined with the fact that the wavefront set of the coefficients (4.20) for every order
pis always A;, 1. g.e.d.

Proposition 4.2.3. The piecewise renormalized version of the coefficient of h?
(compare with formula (4.17)) of the distributional part of the unrenormalized
antichronological product of vertex operators, given by the following expression:

Z (_1)Q(al+2al+3)‘ﬂ+2,l+3 e (anan+1)QH,n+1
I... !
{q:,;20, 142<i<j<n+1 R
S.1. Ei,j qi,j=4q }
[(AAFYB2043] (240 — mp43) - - - [(AM) It (2, — 2040).

(4.25)

is a well-defined distribution on M3 ™",
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Proof. We repeat the same steps as in the proof of Proposition 4.2.1, with the
proper modifications. We start introducing the tensor product

ACV! = Z (=1)9(ar12a143)1+213 - - (A Qg ) ot
Q2,043 !

{i,;>0, 1+2<i<j<n+1 Ittt

s.t. Zv’,,j qi,5=4 }
(A )24 (w4 9045) @ - - @ [(ANF) T (wp )
(4.26)

as a distribution defined on Mf , K= ("2_ l). Again, we stress that we are adopting
the same convention on the use of cartesian coordinates as in the proof of Propo-
sition 4.2.1. Then we can regard (4.25) as the result of the pull-back of (4.26) via
the map:
5: My ME
(142, - o Tpr) > (Wi = @3 — x5),

forl +2 <7 < j < n+ 1. The question about the well-posedness of (4.25) is
then rephrased in terms of the well-posedness of the pull-back §* (ACV?_,). In
other words, according to Theorem A.0.1, we can consider the set

R = WE (5 (ACVE_)) = (3) (WE(ACVY.)
and we have to verify the condition:
AN (My x {0})" = 0. 4.27)

The set A,,_; can be described by slightly adapting the graph notation introduced
before. Considering the form of the wavefront set of the anti-Feynman propaga-
tor, formula (C.5), we simply have to change the prescription in the definition of
immersion (X, K) of a graph by a sign:
];e = —)\U?]b(fﬂl — l’j) for some )\ij > 0, if x; 7& Zj,
ke € Mo\ {0}, if z;=u.
We have then:
A= {($z+27 kita, - Tng1, k1) € T'MG ™| 3G € Gy and
3 animmersion (X,K) of G such that
b= k- Y k)
e€E% feEC
o(e)=i T(f)=i

This modification does not affect the validity of the arguments in the proof of
Proposition 4.2.1, whose steps can be repeated to obtain the desired result. g.e.d.
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Also the steps in the proofs of Proposition 4.2.2 and of Corollary 4.2.1 can be
straightforwardly repeated to obtain the following results.

Proposition 4.2.4. The wavefront set \,_; of (4.25), that is, of the piecewise
renormalized version of the coefficient of h? of the distributional part of the un-
renormalized antichronological product of vertex operators, satisfies the microlo-
cal condition (2.4), that is,:

Rt (M x V)"0 (M x V)" ) =0,

Corollary 4.2.2. The piecewise renormalized version of the distributional part of
the unrenormalized antichronological product of vertex operators (compare with
formula (4.16)), which we denote, dropping the ~symbol, by:

H e—cwjhAAF(o&i—ﬂcj)7 (4.28)

+2<i<j<n+1
is a well-defined distribution on M3~ with wavefront set given by O

It remains now to consider the exponentials of two-point functions and their
derivatives appearing in formula (4.8). Adopting again the convention of using
cartesian coordinates for distributions originally defined using light-cone coordi-
nates, we write them as:

| | —aja; AW (z;—x; S1
e J J (aEH—l [/[/ ) (:Cl+2 — :L'l+1) <8§l+1 LL ) (l’n+1 — xl+1)-
+2<i<n+1
1< <i+1

(4.29)

We point out that, due to the form of the wavefront set of the two-point function,
formula (2.6), these distributional products are always well-defined according to
Hormander’s criterion. Hence no renormalization is needed. We can omit the
symbol over the product and consider (4.29) directly as a distribution on M.

In order to prove that the product of (4.29) with (4.24) and (4.28) is well-
defined, we want to estimate its wavefront set. Once more, we can do this by
means of the graph notation introduced above. In view of formula (2.6) for the
wavefront set of 1/, it suffices to modify the definition of an immersion of a graph
in the following way: for vertices 1 < j < ¢ < n + 1 connected by an edge e,
we set source o(e) = i and target 7(e¢) = j, and define an immersion (X, K) by
setting

l%e = )\Zj’f]b(l'z — Ij), /\ij €R st (l%e>% = (0 and iﬁg >0, if uz 7é M
(k.)2=0and £ >0, if z;=ux;.
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We then obtain the following description for the wavefront set €2, of (4.29):
Qny1 = {(Ib ki, .. Tni1, k1) € T'MET [ 3G € Gryy and

3 animmersion (X,K) of G such that

k= > k= Y .

ecEC feEC

o(e)=i T(f)=i
Remark 4.2.5. Considering how the coordinates (z1,...,x,.1) are distributed
in formula (4.29), we see immediately that the vertices { z;12,..., 2,41 } only
have outgoing edges. Conversely the vertices { z1, ..., x;11 } only have incoming
edges. This means that the wavefront set 2,1 of (4.29) is actually contained in
the following set:

Qn+1 C {(xh ki,... y LI41, kz+17 Ti42, kl+2; <oy Tt kn+1) € T*MQH
o o (4.30)
St ke ki €V_ and Kpa,. .. ke € v+}.

We have thus collected all the elements necessary to finally prove the follow-
ing result.

Proposition 4.2.5. The piecewise renormalized version of the distributional part
of the unrenormalized generic term of R, (L?Et” ,sin(ag)rd ) (compare with for-
mula (4.8)), which we denote, dropping all the symbols and using cartesian co-

ordinates, by:

H e—aiajh,(AF)(a:i—xj)am AF(x1 . lerl) . angAF(xl _ $l+1)

S141
1<i<j<i+1
H efaiajhAAF(ziij) H efaiath(mif:pj) 4.31)
4+2<i<j<n+1 I4+2<i<n+1
1<j<i+1
S1 Sk
ngW(ﬂClH — Tp41) gl+1W(5€n+1 — T141),

is a well-defined distribution on My ** and its wavefront set satisfies the microlocal
condition.

Proof. We regard formula (4.31) as the product of the distribution

< H efaiajh(AF)(xr:rj)agHAF(xl o «'El+1) . 8;]_HAF<II i xl+1)>

1<i<j<i+1

® ( H e—(liajﬁAAF(LBi—(E]‘)> ,

I+2<i<j<n+1

(4.32)
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seen as a distribution on Mg“, with the distribution

H efaiath(miij)asl W(xl+2 _ xl+1) N a‘glilW(xn+1 — xl+1)7 (4.33)

&141
1+2<i<n+1
1<j<i+1

also seen as a distribution on M5!, From formula (4.30), we already know an
explicit estimate on the wavefront set of (4.33). By the properties of the wavefront
set with respect to the tensor product of distributions, see Theorem A.0.2, the
wavefront set of (4.32) is contained in the set:

b= (v ) 0 )
. <(M2 x {0})" x ]\,H)-

Moreover, Proposition 4.2.2 and Proposition 4.2.4 imply:

Aprp— 0 (((MQ X V_)Hl U (M, x V+)l+1>
(4.34)
(Mo x V)"0 (Mo m’”)) 0.

According to Hormander’s sufficent criterion, the distributional product of (4.32)
and (4.33) is well-defined if the set

Nt + Qg = {(3317171 1y Tty Pt + Gny1) € T*MET|
(1,P1,- - Tpg1, Pns1) € Ny,

and (1,41, T, Gnr1) € Qo1 }

does not contain the null covector. Comparing formulas (4.30) and (4.34), we get
immediately that this can never be the case, that is:

n+1
(Al—l—l,n—l + Qn+1) N (MQ X {0 }) - = (Z)
Hence Hormander’s sufficient criterion is satisfied and consequently A; q,—; +

Q.41 1s the wavefront set of (4.31). Finally, using again formulas (4.30) and
(4.34), we obtain also the microlocal condition:

(Al+1,n—l + Qn—H) N ((Mg X V_)nJrl U (M2 % V+)n+1> _ @
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Corollary 4.2.3. The piecewise renormalized version of the unrenormalized re-
tarded product R, (L®” sin(ag)rd ), which we denote, dropping the ~symbol, by:

int

R, (Lgy sin(agb)r{v),

int

is a microcausal field 9'(My ™" ; F,..)[h] according to Definition 2.2.6.

Proof. The claim follows straightforwardly applying Proposition 4.2.5 to all the
generic terms of the form (4.8) and then summing their piecewise renormalized
versions up altogether. g.e.d.

Remark 4.2.6. This concludes the discussion of the piecewise renormalization
of the unrenormalized interacting components of the higher currents of the sine-
Gordon model. In the sequel we will always consider the piecewise renormalized
expressions, referring to them simply as the interacting components and denoting
them, omitting the “symbols, by:

n

x

(Ve =D _ T Ra(Li57) € /(MG Fo)lw 1, (435)
n=0 ’
o0 K;n . .

(59 Jint = Z mRn(L§?7 Sév) €9 (MZH s Fuc) s, A (4.36)

i
o



Chapter 5

Summability of the renormalized
interacting currents

In this chapter we establish the summability of the interacting components (s )iy
and (52 )iy of the higher currents of the sine-Gordon model. We proceed analo-
gously to the discussion of the summability of the S-matrix developed in [1]. We
start by recalling the setting for the latter result.

Definition 5.0.1. Fix a configuration ¢ € &(M;). A Gaussian state w,, 7, with
covariance given by the Hadamard parametrix H, is a map:
Wi+ Fuclk, B] = C[k, A]
F o= wyu(F)=Fly.
The choice ¢ = 0 is distinguished by the fact that wy y is then the expectation

value in the state whose two point function is given by W = %A + H, according
to formula (2.5).

Next, we slightly adapt the notation from [1] and write the renormalized .S-
matrix of the sine-Gordon model in the form:

S(kLint) = i ;l @;)” (%)"Tn((va V)%
i %(‘) (;)n n (Z)Tn(‘a@’“@v?;("—k)), CRY
=0 k=0

[

-~

Sn(Lint)

With this notions at hand, we can then formulate Proposition 6 from [1] in the
following way.

71
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Proposition 5.0.1 (Proposition 6 in [1]). Let 5 = ’%2 < 1. Let v > 1 such that
By < 1. Let g € P (My) be a function cutting off the interaction Lagrangian Liy,
and denote [ = g™ € P(MY). Consider the expectation value of the n-th order
contribution to the S-matrix of the sine-Gordon theory in the state w,, g with H as
in formula (3.2). Choosing the support of g small enough, there exists a constant

C = C(p, g) such that for all n,

—, (5.2)

where Sy, (L) is given by (5.1).

As a direct corollary of this estimate, under the same conditions as above,
the expectation value of the S-matrix S(kLiy) in the state w,, p, for every ¢ €
& (M,), is summable.

Remark 5.0.1. We remark that the “bookkeeping” coupling constant x does not
play a rdle in establishing the summability properties of the S-matrix and also it
will not play a r6le in the subsequent discussion of the summability properties of
the interacting components inasmuch as it is just a tool to account for the order of
perturbation, without any real physical meaning.

Following this approach, we will consider the interacting components (s )iy
and (s )i of the higher currents of the sine-Gordon model and write them, using
formulas (4.35) and (4.36), as:

- n 1 n
(Si\,[Q)int = nZ:; K ﬂTRn(LEt ) S{YQ)/' (53)

Rn(LinhS{YQ)

We will show that, under the same conditions as in Proposition 5.0.1, analogous
estimates as (5.2) hold for the expectation values

ot (Ru(Lins s25)(F)) = — Ro(LER ) ()]

"l
Again, as a direct corollary, the expectation values w, g ((s{v 2)im) of the interact-
ing components in the state w,, i, for every ¢ € &(My), are summable.

Remark 5.0.2. We observe that the convergence issues concerning the so-called
infrared problem for massless scalar fields in 2-dimensional Minkowski spacetime
are avoided in the case of the interacting components (s )iy and (52 )i due to the
fact that they only contain derivatives of order at least one of the field ¢ (for more
details, see [1]).
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5.1 The main theorem
This section is entirely devoted to the proof of the following Theorem.

Theorem 5.1.1. Let = and let v > 1 such that 5y < 1. Let g € (M) be

a cut-off function for the mteracnon Lagrangian Ly, and denote [ = ¢®"+1) ¢

2(My*Y). Consider the expectation values wy, i (Ry(Ling, s75)(f)) of the re-

tarded products Rn(Lint,s%) in the state w, g, with H as in formula (3.2).

Then, choosing the support of g small enough, there exist two pairs of constants

thfyllé anny Colg and K22 1y, G2 such that for all n > 1 the following estimates
0

[Ro e s8] € Ky e ()

(51D
e,
)"

[5]n
J!

)

Ro(Lin 53) (DIl € K32y

N3
4\'—‘ m

where [g} denotes the integer part of 5.
Proof. Once more, we can restrict ourselves to consider only the retarded product
Ry (Line, sin(ag)ry ), (5.4)

from formula (3.10). Indeed, the other term R, (Lim, cos(agb)q{v ) from the same
formula can be treated in a completely analogous way, while the retarded product
R, (Lmt, 55 ) can be seen as a special case where no sine or cosine appears.

We start by combining the piecewise renormalized version of formula (4.4)
with formula (5.3) to write:

, 1 fintis [0 ex (=)D 2k
R (Lin, sin(ag)ry’) = m<ﬁ> <l) Z — Z o

Lo Gl

=0 k=0
J1y0120
St ta=g
ok )
<5¢Ml(<v+v> )
5 YL
*E-‘rl ((5¢ (V "‘V ) W(%"’V—a)@(%_v_a)))

itk
(W)*F @ (AF)®7) « WT{V>
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Using the properties of the field derivatives of vertex operators, equation (3.1),
and the linearity of the time-ordered and antichronological products, we arrive at:

n n—l 1 2N 2N—j 1 I\"
Ron (Lin, sin(agp)ry) = Z Z jon+1 <ﬁ>
=0 r=0 s=0 Jj=0 k=0

J1yeens1>0 Kiyekn 120
Jiteta=i kit tkn_1=k

(= 1) TR (i)t (—jq) st (g ) ke (g )Rt
rlsliin — 1 —r)l(l — s)lgp! - gkl !
<Tn_l (Va)® @ (V)20 1-1)
* [E-H ((%)@(S-‘rl) ® (V_a)®(l—s)) _ T’l—f—l ((‘/a)@)s ® (V_a)®(l_s+1))] :

((W)®k ® (AF)®3) % 5j+k ,,,N>
5¢j+k 1/

Now we use the piecewise renormalized versions of formulas (4.1), (4.2) and (4.3)
to write the time-ordered product of vertex operators, the antichronological prod-
uct of vertex operators and their star product in exponential form. Moreover, we
use (4.6) and (4.8) to expand the field derivatives of ¥ and the whole distribu-
tional pairing. In the end the result is the following expression:

n n—=l 1 2N 2N—j 1 i\n
R (Line, sin(aqb)r{v) = Z Z Z jon+l (ﬁ)
=0 r=0 s=0  j=0 k=

0
]17 7]l>0 kl? 7k7L l>0
Jite =g kitetkn 1=k

(_1)n—lhj+k(l'a/)j1+'“+js(_ia)js+1+ “+ (ZCL)kH_ +ky (_Za)kr+1+"'+k’n—l
rlslin — 1 —r)l(l = s)lp !tk - !
ela(e0ata)t+o(xitr+1)) p=ia(d(xitri2)++6(xn+1)) H e—apathAF(Xp—Xq)

+2<p<q<n+1
<eia(¢(x1)+~--+¢(xs+1))€—ia(¢(xs+2)+-~~+¢(Xz+1)) [[ e oo
1<p<g<i+1
— EHB0ar o0 gia@bi b +otas) T e—apaqﬁAF(xp—xq)>X

1<p<g<i+1
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_ _ Ity (Xi41)
X e apaghW (xp—xq) 1 +
H Z 8¢u1£ .. 'a¢uk§a¢v1§ .. a¢vj§

+2<p<n+1 UL yeey U,V 5000505 20
1<g<i+1 ur+-+v; <2N

8gzl+1AF(X1 = Xi41) 32’5;1AF(X1 — Xi+1)

3311W(Xz+2 = Xit1) " ~3§j’11W(Xn+1 - Xl+1)) .
(5.5)
We pass now to estimate the expectation value of R, (Lim, sin(ag)r ) in the
state w,, ;7 for a generic configuration ¢ € &(M,). This amounts to evaluating the

field-valued distribution (5.5) on the test function f = ¢®"*) ¢ 2(M5*!) and
on the given configuration . Explicitly, we get:

n n—l 1 2N 2N—j -
Ro(Lasine) )N < S Y | (3)
=0 r=0 s=0 7=0 k=0

J1yeJ120 k1,....kn—1>0
ntta=g kit tkn =k

(= 1) Rt ()t is (—jq )dstrt b (g YRt ke (g )Rtk

rlslin — 1L —r)l(l = s)lgp! - gtk - !

ela(e(xiv2)++e(atrt1)) p=ialp(Xitri2) ++e(xn+1)) H e—apathAF(Xp—Xq)
+2<p<qg<n+1
<eia(so(m)+"~+90(xs+1))e—ia(w(xs+2)+~~+<p(><z+1)) [[ e reetd o
1<p<¢<i+1
— gl tpbe) gialelutebun) T e—apaqﬁAF(Xp—Xq)>
1<p<q<i+1

H e~ gV (xp—xa) < Z Y (xie1)

I4+2<p<ntl Ut oo U V1 05 >0 OPuyg -+ OPuyeOpug - - Opuse
1<g<i+1 ur+-+v; <2N

agzlﬂAF(Xl = Xi41) 35;;1AF(XZ — Xi+1)

Oe! W (X2 — Xis1) -+ 3;’11W(Xn+1 — Xl+1)> ; f>‘

We can immediately see that the imaginary units ¢ and the “—” signs disappear
when considering the absolute value as well as all the complex exponentials of
the configuration ¢. Moreover we can also split the big product of distributions in
formula (5.5) using the general fact that the product of distributions with specified
wavefront set is hypocontinuous (see [6] and [5]). After all these steps, we obtain
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the following expression:

n n—l 1 2N 2N—j 1
R (Linssin(ag)r) ()lg]] < DD DD D e
=0 r=0 s=0 =0 k=0

J1s--J120 ki,...kp—1>0
Jitetii=g kit tkn =k

Ritkqitk
Plsl(t — L= )l (L= s)lj - glky e - ey

< H e*apathAF(Xp*Xq) H e*apath(Xp*Xq)

I+2<p<q<n+1 1+2<p<n+1
1<g<I+1
( | | e*apathF(xp*qu) _ H e“pathF(prxq)) , f>‘
1<p<q<i+1 1<p<q<i+1

‘< Z O or (xi)

UL,yeees U VT 5e00,U5 >0 890“15 o a@ukg‘a‘,@vl{ o 890Ujg
uy+--+v; <2N

agl:»IAF(Xl = Xi+1) -0 AF(XI — Xit1)

&1

%ilW(Xuz - Xl+1) s 3§li1W(Xn+1 - Xl+1), f> ‘
(5.6)

We remark that in the fourth line of equation (5.6), the two products of exponen-
tials of Feynman propagators are not the same! The difference, as can be seen in
the formula immediately before, is that for the first one a,,; = +a, while for the
second product a5 = —a.

We now fix all the indices [, r, s, 7, j;, k and k;, and take into account only the
first one of the terms appearing in formula (5.6), the one where a1 = +a (the
other one, where a1 = —a can be treated in exactly the same way).

The second pairing of the distribution with the test function f depends on the
indices 7, 7;, k and k;. We denote its absolute value by:

crw B ‘< Z Y ()
g,j,jhk‘,k‘i,N a(pu1£ o e a¢Uk£a(pv1£ o .. a(pvjé

UL yeens U, V1 5000,V >0
uy+--+v; <2N

agllJrlAF(Xl = Xi41) 85;1AF(>@ — Xi+1)
%ilW(XHQ — Xi41) -OZLW(XW — Xit1), f> ‘
(5.7)

We now come to the crucial part of our proof: the detailed study the first factor on
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the right hand side of (5.6), which we recall here for convenience

‘< H e_apathAF(Xp—Xq) H e—apaqﬁW(Xp—Xq)

+2<p<q<n+1 1+2<p<n+1
1<q<i+1 (5.8)
—apaghAF (xp—z
H e %raq (zp q)’f>‘.
1<p<g<i+1

To begin with, we express the pairing in formula (5.8) with the usual formal inte-
gral notation. Then, moving the absolute value inside the integral symbol (for the
legitimacy of this step, see [1]), we get a first estimate:

U/Pt 1
MLt

H e—apathAF(Xp—Xq) H e—apathF(Xp—Xq)

+2<p<q<n+1 1<p<q<i+1
(5.9)
H e~ aqhW (xp—xq) |g®(n+1) ’d”“x.
+2<p<n+1
1<g<i+1

From formulas (3.3), (3.4) and (3.5) we know explicit expressions for the two-
point function W, for the Feynman propagator A" and for the anti-Feynman
propagator A" on M,. These explicit expressions of W, AF and A4F imply
that when we consider the absolute value of their exponentials, as in formula (5.9)
above, the result is always the same:

‘e_apath(Xp_Xq) _apathAF(Xp_Xq)

— ‘ e_apathF(Xp_Xq)

= ’e
apagh

4m

= ‘(Xp - Xq)%‘

Substituting these equations in (5.9) and adopting the notation 7,, = 7, — 7,
Cpg = &p — &g» We can rewrite (5.9) as:

apagh apagh
H ‘72 _ 2} pTs H ‘72 _ 2| FTs
pq Pq pq Pq

+2<p<q<n+1 1<p<g<i+1

apagh
2 2 an | ®(n+1)’ n-+1
II 17— Gal ™ [0y
I+2<p<n+1
1<g<i+1

(5.10)

We now show that the singular parts of these products can be recast in exactly the
same form as in the proof of Proposition 6 in [1]. In order to see this, we con-
sider the products separately. For the first one, coming from the antichronological
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product of vertex operators, comparing also with formula (5.5), we have:

aqh

a
| | e }%W _
Pq Pq -

+2<p<q<n+1
2_2‘5 H |2_2‘*5 H }2_2,6’
H ‘qu Cpq Tpq Cpq Tpq Cpq ’
1+2<p<q<i+r+1 +2<p<i+r+1 I+r+2<p<q<n+1
I+r+2<g<n+1
(5.11)

where § = %. Analogously, for the second product in formula (5.10), coming
from the time-ordered product of vertex operators, we have:

apagh
|72 _ 2 ‘ v
l l pg — Spg

1<p<q<i+1

_ 2_2|5 H |2_2‘*5 H ’2_2|6

- H ‘qu Cpq Tpq Cpq Tpq Cpq )
1<p<q<s+1 1<p<s+1 s+2<p<q<i+1

s+2<q<l+1

(5.12)

Finally, for the third product in formula (5.10), coming from the star product of
antichronological and time-ordered products of vertex operators, we have:

h
H ’72_ 2|aiff _ H ‘7_2 B 2{5 H ‘72 . 2|—ﬁ
pq Pq - pq Pq Pq Pq

+2<p<n+1 +2<p<l+r+1 I+r+2<p<n+1
1<q<l+1 1<q<s+1 1<q¢<s+1
2 2 {—6 H | 2 2 ‘[3
H ‘qu g Tpq pql -
+2<p<i+r+1 I+r+2<p<n+1
s+2<q<i+1 s+2<¢<i+1

(5.13)

Since what we are interested in estimating is the absolute value of a pairing of a
distribution with a test function, the labels of the variables appearing in the in-
tegral notation (5.9) for this pairing do not matter. In particular, we can rename
them freely. Let us denote the subsets 17, I¥, IF J4F of the set of variables
appearing in formula (5.9) by distinguishing whether they belong to antichrono-
logical products or time-ordered products and whether to vertex operators of the
type V, or vertex operators of the type V_,. We have:

n+1
(,Tl, vy L1, Lga2y e oo s Lpa 1, X742y o o o s Lldpa 1y Llgr 42y - - - ,I‘n_i_l) € M2 .
- 7\ -~ -~ - -’

P P AF AF
IF I IEy A

We choose to rename them in the way that corresponds to reordering the subsets
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just introduced in the sequence: (I, I 17 TAF). In other words, after chang-
ing the labels of the variables, we end up with the following set of coordinates:

n+1
(‘Tl, co oy L1y Ls42y - vy Lgprt1y Lgdp+2y - ooy Lldpt+1y Llgr42, - - - ,$n+1> € M2 .
TV 7\ TV 7\ TV 7\ TV -

I_I: IfF IF JAF

It is now immediate to check that, using these coordinates, the product of the right
hand sides of formulas (5.11), (5.12) and (5.13) can be written all at once as:

][ 2_2‘6 H |2_2‘—ﬂ H ’2_2‘6
‘qu g Tpq g Tpq pql °
1<p<g<s+r+1 1<p<s+r+1 s+r+2<p<g<n+l
s+r4+2<qg<n+1

(5.14)
This last formula is precisely the starting point of the proof of Proposition 6 in [1].
Hence, we can repeat the same arguments to obtain the following estimate for the
term in formula (5.8):

'< H e~ aghAM (xp—xq) H e~ apaa"W (Xxp—Xq)

+2<p<q<n+1 I+2<p<n+1
1<q<i+1

H efapaqﬁAF(l“p*Iq), f>' (515)

1<p<q<i+1
1
n n+1—(r+s+1) !
<(c, )" oy .
_( '779) <<n+1—2(r+s+1))(r+s+ ))

We recall that here we are assuming that r + s 4+ 1 < [”T“} (as pointed out in
[1], this is without loss of generality because the case r + s + 1 > ["T“} can be
treated in the same way, just renaming the coordinates properly). We also point
out that the difference between the term just discussed and the second term in
formula (5.6), the one with “—"" sign, is that while for the first one there is always
at least one a; = +a, in the second one there is always at least one a; = —a. But
according to the last observation, counting the number of +a’s or of —a’s gives
the same result. Hence the two terms of formula (5.6) are completely equivalent
and can be estimated by the same expression.

We now make two important observations. The first one involves the sums
over indices j, j;, k and k;. First, the constants (5.7), which depend only on the
indices j, j;, k and k;, can be estimated all at once by setting:

FW __ FW
Con = max Cojipr,N- (5.16)

j17"'7jl
k1yeooskn i
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Having a bound on the constants (5.7), we can now estimate the remaining sums

2N Fith itk

Z Z Z Z Gl ) (k! )

.] =0 .]17 7]l>0 k=0 kl: 7’n 120
Jit+a=j ki+-+kn_1=k

We can use the multinomial formula to compute the sums over indices j; and k;,
thus obtaining:

2N—j Btk itk

Z Z Z Z (g (kal e k)

Jj=0 Jj1,-.5120 k=0 ki,. ky,_;>0

Jit++g=J ki+-+kn_1=k

2N 2N—j

Z Z hj+ka3+kl7 (n — l)
- i) :

j=0 k=0 IR

Then we can rewrite the sums over j and k using indices m = j + k and j in the
following manner:

Z it IR — Dt _ i (0 — D)™
j=0 k=0 JH: m=0 =0
2N o 2N R
— Z(ah)m—! <) (ah)™n™ < Copyn.
m=0 m=0

Combining (5.16) with the last formulas and denoting KXV gah N = C’ N C’ah N, We
have thus obtained that the sums over indices j, j;, k and k; can be estimated
overall by:

Ko Y (5.17)

g7a

The second important observation is that formula (5.15) tells us that the estimate
on the term (5.8) depends on the indices [, r and s, only via the sum r + s. This
implies that, if we rearrange the sums over the indices /, r and s using the new
index v = r + s and the indices s and [, then we can directly compute the sums
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over s and [ in formula (5.5). More concretely, what we get is:

n n—lI i 1
it rlsl(n — 1 — )l —s)!
B n in—zv—l-s 1
N sllo=s)(l—3s)!(n—1—v+s)!
v=0 s=0 I[=s ( ) ( ) ( ) (518)
= sl(v —s)! (n — v)!
SN & 1
= —_ *2”
(n—v)!ov! ZU'(TL—U)'
v=0 v=0

Finally, we can go back to formula (5.5). We substitute formulas (5.17) and
(5.18) and use the appropriate form of (5.15) distinguishing the case when n is
even or odd. For even n, the following estimate holds:

R (Lin sin(ag)r) (65 V)] <
(5] 1
wr g 1 n+1l—v g
KFW C n+1M 2 |
st (Cro) 2hn | = ol(n — o) \\n+1-2v !
[5]-1 L
1 n+1—(v+1) g
2 S 1)!
+ ; v!(n—v)!((n+1—2(v+l)>(v+ )> ]’
(5.19)
while for odd n, we have
R (i sin(ag)r) (4 ]| <
(5] 1
2N 2 1 n _'_ 1 — ol
KFW C n+1M 2 |
sanx (Cro) 2hr | = ol(n — o)l \\n+1-2v !

+ Qi]o m < (:j11__2((vv111))> W 1)!) } '
(5.20)

2=
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The first type of sums can be further simplified as follows:

(3] (5] 1
1 n+l-v) 1 (n+1—v)lw! \
—_ v!
—ol(n—o)I\\n+1-2v “vl(n —v)I\ (n+1—2v)l!
1
n—uv)!

2=

(n+1-uyt =3 20

o
—~

[51-1 1
< 1 n+1—(v+1) g
— v!(n—v)!((n—i—l—2(U+1)><U+1)!)
I ( (n— v)l(v +1)! )i
N — vl(n —v)! (n—|—1—2(v—1—1))!(v+1)!
B S SR R ()

!

S (=) (DT (B

2=

o120 n) )

:Zv!ml—u)!(( A )

n+1—2(v+1)(v+1)!

2=

In conclusion, we obtain the following estimate:

(n+ 102N (C1)"

1—1
niy v
([3]")
1 _ FW r1 _ Crg
where 7! ;v = 2K, ;5 vCy g and C7! ) = =2 g.ed.

Ro (L sin(a)r") (9 D)l < K7y

Y
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With this result at hand, it is immediate to check the summability of the formal
power series defining the expectation values of the interacting components of the
higher currents. In other words, we directly get the following corollary.

Corollary 5.1.1. Under the same hypothesis of Theorem 5.1.1, the expectation
values of the interacting components (sY )in; and (85 )it of the higher currents of
the sine-Gordon model in the state w,, fr are summable.

Remark 5.1.1. For a proof, in a slightly different quantization framework, of the
summability properties of the first of the higher interacting currents, that is, the
stress-energy tensor of the sine-Gordon model, we refer to [16] and [15].






Outlook

Concerning the line of research dealing with the formulation of the conserva-
tion laws of the sine-Gordon model in the framework of pAQFT, the first natural
continuation is represented by the study of the conservation properties of the in-
teracting components of the higher currents. In other words, we would like to
address the question whether the ambiguities in the renormalization process of
the interacting components can be fixed in such a way as to guarantee that even
after quantization the corresponding conservation laws are preserved. From our
point of view, some recent results, in particular, [3], where the authors considered
distributions defined on R" \ { 0 } satisfying a certain set of partial differential
equations and provided criteria for the existence of extensions of these distribu-
tions to the whole R™ that satisfy the same set of partial differential equations,
seem to be particularly relevant. For the first of the higher currents, that is, the
stress-energy tensor of the sine-Gordon model, conservation was shown explicitly
in a slightly different renormalization framework.

A second natural research direction, related to the quantized higher currents
of the sine-Gordon model, concerns their involutivity properties. As mentioned
in the introduction, the classical higher currents are in involution with respect
to the Peierls bracket. In the framework of pAQFT quantization, the Peierls
bracket is deformed to the commutator product with respect to the star product
of fields, which is typically a noncommutative product. Hence it is a sensible
question whether, even after quantization, the interacting higher currents of the
sine-Gordon model maintain the property of being in involution with respect to
the commutator product. In general, as it happens for many physical models, one
cannot expect this to be the case and this corresponds, in the physics parlance, to
the appearance of so-called quantum anomalies.

Finally, a further research direction which we pursue’ concerns the classical
theory of the sine-Gordon model. Based on the observation made in Remark 1.4.2,
we plan to investigate what could be the role of groupoids in the formulation of
Bicklund transformations and in the determination of the corresponding conser-
vation laws.

1

!Ongoing research project with Antonio Michele Miti.
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Appendix A

Wavefront set of distributions

The wavefront set is a central tool of microlocal analysis. Rougly speaking, the
wavefront set of a distribution represents a refined notion of its singular support,
in which also the “directions of propagation” of the singularities are taken into
account. The possibility to extend a number of operations on distributions by
means of a control on the wavefront sent lies at the very core of the algebraic
formulation of field theories, as first noted by Radzikowski [23].

The starting point is given by the following remark.

Remark A.0.1. Consider v € &”(R?), that is, a distribution on R? with compact
support. We can decide whether v is in Z(R?) by examining the behaviour of its

Fourier transform v at oco. In fact, it can be shown (see [20, Theorem 7.3.1.]) that
if v € 2(R?), then

() < Cy(1+ )N,  VN=1,2,..., VEeR (A.1)

and conversely if (A.1) is satisfied, then v € 2(R?) by Fourier’s inversion for-
mula.

Recall the definition of singular support of a distribution.

Definition A.0.1. If u € Z'(R), then the singular support of u, denoted by the
sing supp(u), is the set of points in R? having no open neighborhood to which the
restriction of w is a smooth function.

Similarly we can introduce the set ¥(v) of directions € R?\ { 0 } having no
conic neighborhood V' such that (A.1) is valid when £ € V. It follows immediately
that X3(v) is a closed cone in R4\ { 0 } and that X (v) = 0 if and only if v € Z(R?).

Now, on the one hand sing supp(v) describes only the location of the singu-
larities of v and on the other hand ¥:(v) describes only the directions of non-rapid
decay causing them. The two types of information can be combined by means of
the following intermediate lemma.
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Lemma A.0.1. If ¢ € 2(RY) and v € &' (R?), then
E(¢v) € Z(v).

Consider X an open subset of R? and u € 2'(X). We set forz € X

S(u)e =[)2(¢n), o€ D(X) st éx)#0.
@

From Lemma A.0.1 it follows that

N(gu) = Xy(u), if ¢ € D(X), ¢(x) #0 and  supp(¢) = {z}.

In particular this means that ¥,(u) # 0 if and only if ¢u is smooth for some
¢ € 2(X) with ¢(x) # 0, that is, = ¢ sing supp(u).

Definition A.0.2. If u € 2'(X), then the closed conic subset of X x (R%\ {0 })
defined by

WF(u) = { (2,€) € X x (R*\{0}) | § € ¥u(u) }
is called the wavefront set of w.
An immediate consequence of the definition of wavefront set of a distribution
u is that the projection of WF(u) on X is sing supp(u). Another natural result
of the construction of the wavefront set is the fact that the information about the

non-rapid decay directions is recovered in the following sense.

Proposition A.0.1. [fu € &'(R?), then the projection of WF(u) to the second
variable is > (u).

The following basic properties of the wavefront set follow directly from the
definition.

Proposition A.0.2. Fort,s € 9'(R?) and g € C*(R?):
(a) WE(t +s) C WE(t) UWE(s),
(b) WF(gt) C (supp(g) x (R*\ 0)) N WF(1),

(c) Let P(z) = >, ga(x)0" be a differential operator, where g, € C>(R?)
and the sum over a is finite. Then WF (Pt) C WF(¢).
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As noted at the beginning, the more refined control on the singularities of
distributions provided by the wavefront set allows one to extend many operations
on distributions. These extensions are always done by continuity from the smooth
case, so a first issue to discuss is in which sense the notion of continuity is meant
for spaces of distributions with a given bound on their wavefront set.

Let X be an open subset of R? and let I" be a closed cone in X x (R%\ {0 }).
We introduce the space

Zp(X) ={ue 2'(X) | WF(u) CT'}.

Lemma A.0.2. A distribution v € 2'(X) is in 2{.(X) if and only if for every
¢ € P(X) and every closed cone V- C R with

['N (supp(¢) x V) =10 (A.2)
the following holds:

sup[¢]gu(€)] <oo, N =12...

With this result, we can now formulate a precise notion of convergence of
sequences.

Definition A.0.3. We say that a sequence u; € Z[.(X) converges to u € Z.(X)
if

* ui(¢) »u(¢),  Voe 2R,
 supy [§]V[0u(§) — duy(§)] =0, j o0,
for N =1,2,... and ¢ € 2(R?) and V a closed cone such that (A.2) is satisfied.

We are now ready to discuss the extensions of the operations on distributions
which are more relevant for our purposes.

Theorem A.0.1. Let X and Y be open subsets of R™ and R", respectively, and
let f: X — 'Y be a smooth map. Denote the set of normals of the map by

(f'(x)'n=0 } :

Then the pull-back f*u can be defined uniquely for all uw € Z'(Y') with

Ny ={ (f@),m) €Y xR"

N; A WF(u) = 0, (A3)
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in such a way that f*u = uo f when u € C*(Y). For any closed conic subset
I'eY x (R"\ 0) withT N Ny = 0, the pull-back f* extends to a continuous (in
the sequential sense described above) map f*: Ip(Y) — Z.p(X),

1T ={ (@ (f'@)'n) € X xR" | (f(z).m) €T }.
In particular, for every u € 2'(Y') satisfying (A.3)
WF(f*u) C f*WF(u).
The second operation on distributions that we consider is the tensor product.

Theorem A.0.2. I[fuc Z'(X),ve 2'(Y), X e R"andY € R", then

WF(u®v) € (WF(u) x WF(v)) U ((supp(u) x {0}) x WF(v)) U
U (WF(u) x (supp(v) x {0})).

Combining these results, it is possible to define the product of distributions
even in some cases where they have overlapping singularities. The basic idea
comes from the observation that for smooth functions u,v on X, the product
u(z)v(z) can be regarded as the restriction to the diagonal of the tensor product
u(z)v(y) defined for (z,y) € X x X.

Theorem A.0.3 (Hormander’s sufficient criterion). If u,v € 2'(X) then the
product uv can be defined as the pull-back of the tensor product v @ v by the
diagonal map 6: X — X x X unless (z,§) € WF(u) and (x,—&) € WF(v) for
some (x,&) € T*X. When the product is defined we have

WF(uv) C { (z,&+n) | (z,€) € WF(u) or £ =0, (z,m7) € WF(v) orn=101}.
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Scaling degree of distributions

Roughly speaking, Steinmann’s scaling degree of a distribution is a measure of
the strength of the singularity of the distribution at the origin. More precisely, it
is given by the following definition.

Definition B.0.1. The scaling degree, with respect to the origin, of a distribution
te 2'(RY),ort € 2/ (R4\ {0}),is given by:

sd(t) :inf{r eR

limp"t(px) =0 ¢,
im p"t(p) }
with the conventions that inf ) = oo and inf R = —oo0.

Example B.0.1. Consider 4§, the Dirac delta supported at the origin of R?, and a
multiindex ¢ € N, then

sd(0%0) = d + |a|, since 9%(pz) = p~ 1P (x).

Remark B.0.1. If t € 2'(R?) with 0 ¢ supp(t), then sd(t) = —oo, because for
each g € Z(R?) there exists a p, > 0 such that supp(t(p-)) N supp(g) = 0 for
all 0 < p < p,. Fort € 2'(R?), the relation sd(t) < oo always holds. But for
t € 2'(R4\ {0}), the value sd(t) = oo is possible. A one-dimensional example
is t(z) = O(x)e'/®, since
lim p" dz et*h(z
o [ (@)
diverges Vr € R and for a suitable choice of h € Z(R\ { 0 }) (see [10, p. 116]).
From the definition of scaling degree, it follows immediately that any exten-
siont € Z'(RY) of a given ty € Z'(R?\ { 0 }) satisfies sd(t) > sd(to).
In particular we look for extensions which do not increase the scaling degree.

The following fundamental result combines techniques developed by Epstein and
Glaser and Hormander (see [ 1] and [20] respectively).
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Theorem B.0.1. Letty € 2'(R%\ {0 }), then:

(a) Ifsd(ty) < d, there is a unique extensiont € 2'(R?) fulfilling the condition
sd(t) = sd(tp).

(b) If d < sd(ty) < oo, there are several extensions t € 2'(R%) fulfilling
the condition sd(t) = sd(ty). Given a particular extension t, the general
extension t is of the form

t=1+ Z C.,0%, C, € C.

la|<sd(to)—d

In case (b), the addition of a term ), C,09 is also called a “finite renormal-
ization” (for the proof of the Theorem see [ 10]).

The following properties of the scaling degree of distributions are a precise
formulation of the heuristical statements that in general differentiation increases
the strength of the singularities at 0, while multiplication with x* makes the dis-
tribution less singular at 0.

Proposition B.0.1. Consider distributions t,t,,t, € 2'(R?), orin 2'(R4\{ 0 }),
and a generic multiindex a € N9 then:

(a) sd(0%) <sd(t) + |a

>

(b) sd(zt) <sd(t) — |a

)

(c) sd(ty ®t2) = sd(t1) +sd(t2), where ® denotes the tensor product of distri-
butions;

(d) if sd(t1),sd(t2) < oo and their product is well-defined according to Hor-
mander’s sufficient criterion, then sd(t1ts) < sd(t1) + sd(tz).



Appendix C

Properties of Feynman and
anti-Feynman propagators

Definition C.0.1. The Feynman propagator A" € 2'(M,) is defined in terms of
the two-point function W (see formula (2.5)), by:

AF(z) = 0(2")W (z) + 0(—2" )W (—1). (C.1)

It can be shown (cf. [10]) that formula (C.1) is equivalent to:

AT = S(AR+ A} +H,
where %(Aﬁ + A2 is the so-called the Dirac propagator and H is the Hadamard
parametrix corresponding to W (cf. formula (2.5)).
Another equivalent characterization of the Feynman propagator uses the in-
verse Fourier transform for distributions and is given, in integral notation, by the
following expression:

. —ikx
AF(z) = Z/ ¢ dk
() @)y, B2 —m?+i0 "

where m is the mass and (k)2 = n (9*(k), n*(k)), n*: T*My — TMj is the natural
isomorphism induced by the Minkowski metric 7 which, due to the triviality of
the bundles 7T"M,; = M, x M}, TM,; = M, x My, descends to an isomorphism
Uﬁ: MZ — Md.

From all these equivalent formulations it is possible to show the following
properties.

Proposition C.0.1. The Feynman propagator A has the following properties:
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(a) it is a symmetric distribution, that is,
AT (a) = AF (a);
(b) it is a fundamental solution of the wave operator (see Definition 2.3.4)

(O +mHAF (z) = —id(x)

(c) it can be equivalently expressed using the retarded propagator A% and the
two-point function W as

A (w) = iy (2) + W(—2);

(d) the wavefront set of the Feynman propagator is given by
WEF(A") = {(0,k) € T"M, | k #0}
U{ (z,k) € T"My| (x)2 =0,  #0, (k); =0, (C2)
x = M (k), for some A > 0 };

(e) Steinmann’s scaling degree of the Feynman propagator is (d — 2), that is,

P 2AY (px) = AT (), VpeR,. (C.3)

Definition C.0.2. The anti-Feynman propagator A4 € 2'(M,) is defined as the
complex conjugate of the Feynman propagator:

A = AF, (C.4)

All the properties mentioned above for the Feynman propagator hold also for
the anti-Feynman propagator, after taking their complex conjugate. We only spell
out explicitly the one concerning an equivalent formulation of the anti-Feynman
propagator and the one concerning its wavefront set.

Proposition C.0.2. The anti-Feynman propagator A*Y € 9'(My) admits the
following equivalent expression:
AAF — —%(Aﬁ +A2)+ H,
and its wavefront set is given by
WEF(AY) = {(0,k) € T*"My | k #0}
U{ (2, k) € T"My| (z); =0, z # 0, (k)7 =0, (C.5)
x = M (k), for some A < 0 }.
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