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Abstract 
Linear coupling in storage rings mixes horizontal and 

vertical beam motion. This is similar to the mixing of states 
in an atomic two-level system by a resonant laser interac-
tion or the mixing of the two states of any spin-½ particle 
in static and dynamic external magnetic fields like, for ex-
ample, in nuclear magnetic resonance, NMR, measure-
ments. These coupled two-level systems are usually de-
scribed by the Bloch equation [1] which is a set of coupled, 
first-order differential equations connecting the population 
of the states with some other parameters which contain, in 
addition to the strength of the coupling and the detuning, 
some sort of phase information of the involved states. In 
linearly coupled storage rings horizontal and vertical emit-
tance can be viewed as the population of ground and ex-
cited level and it will be shown that the Bloch equations 
can also model the time-dependent evolution of the trans-
verse emittances of an ensemble of circulating particles. 
This is especially useful in cases where the emittance is ex-
changed by crossing the coupling resonance or where the 
coupling strength itself is a function of time.  

INTRODUCTION 
Many features of the transverse emittances under linear 

coupling in storage rings have a striking similarity to the 
behavior of other two-level systems in many areas of phys-
ics. Well known is the inversion of a system of many atoms 
with all atoms in the excited state after applying a so-called 
π-pulse, which requires a certain area for the strength and 
the duration of the pulsed laser interaction. For extended 
interaction with the laser and as long as the system (laser 
and atoms) keeps its coherence, the population will oscil-
late between the ground and excited state with the so-called 
Rabi-frequency. The equivalent effect in storage ring phys-
ics is the exchange of horizontal to vertical beam momen-
tum following a horizontal kick with an exchange fre-
quency given by the strength of the coupling and the de-
tuning from the coupling resonance or in other words, the 
exchange of energy between two coupled harmonic oscil-
lators. There are slightly more subtle effects like the anti-
crossing of levels in atomic systems and the repelling of 
the mode frequencies (tunes) as the coupling resonance is 
crossed in the ring or the exchange of horizontal and verti-
cal emittance if the crossing is fast compared to the trans-
verse damping rates – in atomic or molecular systems de-
scribed by the Landau-Zener formula [2]. In the steady-
state situation, after a long interaction time and the disap-
pearance of coherence, solutions of the Bloch equation 
agree with the results of simple rate equations [3, 4] if the 
exchange rate is chosen properly. 

 

BLOCH EQUATION 
Initially, the phenomenological Bloch equations [1] 

were developed in connection with NMR experiments. 
Later this description proved useful in many two-level sys-
tems and the interaction of fields capable of mixing the two 
states. A similar situation is encountered in terms of hori-
zontal and vertical emittance in electron storage rings with 
linear coupling mixing the two transverse planes. The three 
coupled differential equations for the components of the 
Bloch-vector, 𝑢𝑢(𝑡𝑡), 𝑣𝑣(𝑡𝑡),𝑤𝑤(𝑡𝑡), as given below in the rotat-
ing coordinate frame, and as will be demonstrated, also 
govern the linear coupling in storage rings: 

 

                       𝑢̇𝑢 = −𝑢𝑢(𝑡𝑡)
𝑇𝑇2

− ∆𝜔𝜔(𝑡𝑡) ∙ 𝑣𝑣(𝑡𝑡) 

                       𝑣̇𝑣 = −𝑣𝑣(𝑡𝑡)
𝑇𝑇2

+ ∆𝜔𝜔(𝑡𝑡) ∙ 𝑢𝑢(𝑡𝑡) −Ω(𝑡𝑡) ∙ 𝑤𝑤(𝑡𝑡)            (1) 

                      𝑤̇𝑤 = −
𝑤𝑤(𝑡𝑡) − 𝑤𝑤0

𝑇𝑇1
+ Ω(𝑡𝑡) ∙ 𝑣𝑣(𝑡𝑡) 

 

with the equilibrium inversion, w0=+1, without coupling, 
and with Ω(t)=0 all particles in the “ground state”. The 
Bloch equation can be viewed as three harmonic oscillators 
which are coupled through the parameters, ∆ω, and Ω. All 
terms in these coupled equations have counterparts ex-
pressed as storage ring lattice and ensemble parameters. 
The relationships will be worked out in the following part. 

Ring Parameters Related to the Bloch Equation 
The dimensionless inversion, w(t), is composed 

as 𝑤𝑤 (𝑡𝑡) = (𝜀𝜀𝑥𝑥(𝑡𝑡)−𝜀𝜀𝑦𝑦(𝑡𝑡))/𝜀𝜀0, and we assume that the sum of 
the emittance is constant, ε𝑥𝑥(𝑡𝑡) + ε𝑦𝑦(𝑡𝑡) = ε0, which is true 
for moderate coupling strength and close to the difference 
coupling resonance. The emittances can be written as com-
binations of second-order moments of the particle distribu-
tion and according to the definition of the geometric or ap-
parent emittance one can use: 

       𝜀𝜀𝑥𝑥 = 𝛾𝛾𝑥𝑥
<𝑥𝑥𝑥𝑥>
2

+ 𝛼𝛼𝑥𝑥 < 𝑥𝑥𝑥𝑥′ > +𝛽𝛽𝑥𝑥
<𝑥𝑥′𝑥𝑥′>

2
, and  

                 𝜀𝜀𝑦𝑦 = 𝛾𝛾𝑦𝑦
<𝑦𝑦𝑦𝑦>
2

+ 𝛼𝛼𝑦𝑦 < 𝑦𝑦𝑦𝑦′ > +𝛽𝛽𝑦𝑦
<𝑦𝑦′𝑦𝑦′>

2
. 

Also, the scalars 𝑣𝑣 and 𝑢𝑢 in the Bloch equation obviously 
will be linear combinations of the elements of the Σ-matrix 
which mix both planes: <xy>, <xy’>, <yx’>, and <x’y’>. 
The coefficients of the linear combinations can be found 
by a direct comparison of solutions of the Bloch equation 
and the moment mapping approach.  

Usually, the particle distribution after one revolution 
time, T0, is obtained by using the mapping equation for the 
symmetric 4x4-Σ-matrix, Σ𝑖𝑖,𝑗𝑗 =< 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗 >, where the brac-
kets denote the average over all particles of the ensemble 
and their coordinates zi=x,x’,y,y’. The damping time, τ, in 
the horizontal and vertical plane are assumed to be equal. 

 ___________________________________________  
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The Σ-matrix at the observation point, s0, and after one turn 
is given by multiplication with the damped 4x4-one-turn 
matrix, Rd, and its transpose, 𝑅𝑅𝑑𝑑𝑇𝑇 . These matrices depend on 
s0 and can also depend on the time, t: 
 

Σ(𝑠𝑠0, 𝑡𝑡 + 𝑇𝑇0) = 𝑅𝑅𝑑𝑑(𝑠𝑠0, 𝑡𝑡)⋅Σ(𝑠𝑠0,𝑡𝑡)⋅𝑅𝑅𝑑𝑑𝑇𝑇(𝑠𝑠0, 𝑡𝑡) + 𝐷𝐷(𝑠𝑠0, 𝑡𝑡). (2) 
 

Damping, 𝑅𝑅𝑑𝑑(𝑠𝑠0, 𝑡𝑡), and diffusion, D(s0,t), due to syn-
chrotron radiation are modeled according to Hirata and 
Ruggiero [5]. This simplification leads to 𝑅𝑅𝑑𝑑 = 𝑙𝑙 ∙ 𝑅𝑅, with 
𝑙𝑙 = 1 − 𝑇𝑇0 𝜏𝜏⁄ . Under the assumption, that even with cou-
pling only the horizontal emittance, 𝜀𝜀0, is excited signifi-
cantly, the simplified 4x4-diffusion matrix, 𝐷𝐷(𝑠𝑠0, 𝑖𝑖, 𝑗𝑗), is 
time-independent, and has non-zero elements in the upper 
left corner only: 

𝐷𝐷(𝑠𝑠0) = (1 − 𝑙𝑙2) ∙ 𝜀𝜀0 �

−𝛽𝛽𝑥𝑥(𝑠𝑠0)  𝛼𝛼𝑥𝑥(𝑠𝑠0)
 𝛼𝛼𝑥𝑥(𝑠𝑠0) −𝛾𝛾𝑥𝑥(𝑠𝑠0)

0 0
0 0

0     0
0     0

0 0
0 0

�. 

 

After one turn each element of the new Σ-matrix contains 
contributions from all ten second-order moments at the 
previous turn.  

The coupled one-turn matrix, R, is calculated with a sin-
gle skew quadrupole magnet with an integrated and nor-
malized strength given by: 

 

𝑆𝑆𝑆𝑆� (𝑡𝑡) = 𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝜕𝜕

(𝑡𝑡) ∙ 𝐿𝐿𝑠𝑠𝑠𝑠�𝛽𝛽𝑥𝑥1 ∙ 𝛽𝛽𝑦𝑦1/𝐵𝐵𝐵𝐵. 
 

Lsq is the length of the magnet, and 𝛽𝛽𝑥𝑥1,𝑦𝑦1  are the beta func-
tions at the location of skew quadrupole, s1. The parameters 
𝛼𝛼𝑥𝑥1,𝑦𝑦1 have no impact on the results in the thin lens approx-
imation. The phase advance between the observation point, 
s0, and the location of the skew quadrupole magnet is 
𝜇𝜇𝑥𝑥1,𝑦𝑦1(𝑠𝑠1). The consideration of only one skew quadrupole 
magnet is not restricting the generality of the derivation. In 
the lowest order, any distribution of coupling errors can be 
replaced by a single skew quadrupole with the appropriate 
strength, 𝑆𝑆𝑆𝑆� , and phase advance, ∆𝜇𝜇. The complex coupling 
strength for the difference resonance [6] is defined here by 
omitting a factor 1/2π as: 

 

𝐶𝐶(𝑠𝑠0) = ∮𝑑𝑑𝑑𝑑 1
𝐵𝐵𝐵𝐵

𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝜕𝜕

(𝑠𝑠) ∙ �𝛽𝛽𝑥𝑥(𝑠𝑠)𝛽𝛽𝑦𝑦(𝑠𝑠) ∙ 𝑒𝑒𝑖𝑖�𝜇𝜇𝑥𝑥(𝑠𝑠)−𝜇𝜇𝑦𝑦(𝑠𝑠)�, 
 

which one can write as: 𝐶𝐶 = 𝑘𝑘 ∙ [cos(∆𝜇𝜇) + 𝑖𝑖 ∙ sin (∆𝜇𝜇)]. The 
cos(∆µ) and the sin(∆µ) factors will show up in the defini-
tions for the 𝑢𝑢- and 𝑣𝑣-components of the Bloch vector. It is 
straightforward to calculate the resulting phase difference 
for an equivalent single skew magnet with strength 𝑆𝑆𝑆𝑆�  
which produces the same coupling factor as a distribution 
of linear coupling elements.  

The parameters Ω, and ∆ω are found from a comparison 
with the results and consequences of betatron coupling [7]. 
Accordingly, the exchange frequency, 1/T, of horizontal 
and vertical emittance following a transverse kick is given 
by:  1

𝑇𝑇
= 1

𝑇𝑇0
�∆2 + |𝐶𝐶|2, with C the coupling strength of the 

linear coupling difference resonance, and ∆= ∆𝑄𝑄𝑥𝑥 − ∆𝑄𝑄𝑦𝑦, 
with the non-integer parts of the transverse tunes, ∆Qx,y. By 
closer inspection of the differential equations, it becomes 
obvious that Ω = |𝐶𝐶|/𝑇𝑇0, and ∆𝜔𝜔 = 2𝜋𝜋∆/𝑇𝑇0.  

We are looking for a solution close to the difference 
coupling resonance which should include parameters 
only in the lowest, linear order. Parameters assumed to 
be small are the detuning ∆Q so that: ∆Qx=∆Qx+∆Q/2 
and ∆Qy=∆Qy-∆Q/2, the strength of the skew quadru-
pole magnet, 𝑆𝑆𝑆𝑆� (𝑡𝑡), the damping decrement, 𝑇𝑇0 τ⁄ , and 
the diffusion, (1 − 𝑙𝑙2) ∙ 𝜀𝜀0. All parameters are at hand to 
make a comparison of both solutions and to find the 𝑢𝑢- and 
𝑣𝑣-component in terms of the mixed second-order moments.  

The tune must be chosen close, but not on the coupling 
resonance and the initial emittance is purely horizontal. 
This is the situation without coupling and before the skew 
quadrupole magnet is turned on. Thus, the initial condi-
tions at t=0 are: 𝑤𝑤 = +1,𝑢𝑢 = 𝑣𝑣 = 0, and for the mapping: 
< 𝑥𝑥𝑥𝑥 >= 𝛽𝛽𝑥𝑥𝜀𝜀0, < 𝑥𝑥𝑥𝑥′ >= −𝛼𝛼𝑥𝑥𝜀𝜀0, and < 𝑥𝑥′𝑥𝑥′ >= 𝛾𝛾𝑥𝑥𝜀𝜀0. 
All other elements of the Σ-matrix are zero. Now the cou-
pling is turned on and during the following turns the 𝑢𝑢- and 
𝑣𝑣-component as well as the mixed second-order moments 
will start to vary. After each turn the new moments, if com-
bined correctly, should give the new 𝑢𝑢- and 𝑣𝑣-component. 
After enough turns, this can be used to determine the coef-
ficients of the linear combinations as a function of the lat-
tice parameters at the observation point, s0, and the location 
of the skew quadrupole magnet in terms of the relative 
phase difference, ∆µ. For the 𝑣𝑣-component one gets: 

 

𝑣𝑣(𝑡𝑡) ∙ 𝜀𝜀0 = �(1 + 𝛼𝛼𝑥𝑥𝛼𝛼𝑦𝑦)sin(∆𝜇𝜇)− �𝛼𝛼𝑥𝑥−𝛼𝛼𝑦𝑦�cos (∆𝜇𝜇)�< 𝑥𝑥𝑥𝑥 > �𝛽𝛽𝑥𝑥𝛽𝛽𝑦𝑦�  

                        +[cos(∆𝜇𝜇) + 𝛼𝛼𝑥𝑥sin (∆𝜇𝜇)] < 𝑥𝑥𝑦𝑦′ > �𝛽𝛽𝑦𝑦 𝛽𝛽𝑥𝑥⁄                   
                          −�cos(∆𝜇𝜇) −𝛼𝛼𝑦𝑦sin (∆𝜇𝜇)� < 𝑥𝑥′𝑦𝑦 > �𝛽𝛽𝑥𝑥 𝛽𝛽𝑦𝑦⁄   

                    + sin(∆𝜇𝜇) < 𝑥𝑥′𝑦𝑦′ > �𝛽𝛽𝑥𝑥𝛽𝛽𝑦𝑦,                                           (4) 
 

and for the 𝑢𝑢-component: 
 

𝑢𝑢(𝑡𝑡) ∙ ε0 = ��1 + 𝛼𝛼𝑥𝑥𝛼𝛼𝑦𝑦�cos(∆𝜇𝜇) + �𝛼𝛼𝑥𝑥−𝛼𝛼𝑦𝑦� sin(∆𝜇𝜇)�< 𝑥𝑥𝑥𝑥 > �𝛽𝛽𝑥𝑥𝛽𝛽𝑦𝑦�  

 +[𝛼𝛼𝑥𝑥 cos(∆𝜇𝜇) − sin (∆𝜇𝜇)] < 𝑥𝑥𝑦𝑦′ > �𝛽𝛽𝑦𝑦 𝛽𝛽𝑥𝑥⁄  

+�𝛼𝛼𝑦𝑦 cos(∆𝜇𝜇) + sin (∆𝜇𝜇)� < 𝑥𝑥′𝑦𝑦 > �𝛽𝛽𝑥𝑥 𝛽𝛽𝑦𝑦⁄  

       + cos(∆𝜇𝜇) < 𝑥𝑥′𝑦𝑦′ > �𝛽𝛽𝑦𝑦𝛽𝛽𝑥𝑥.                                           (5) 
 

Only the Twiss parameters of the uncoupled lattice, βx, 
αx, βy, and αy, show up in these formulas and the coupling 
enters via parts of the coupling constant: 𝐶𝐶 = 𝑘𝑘 ∙ [cos(∆𝜇𝜇) +
𝑖𝑖 ∙ sin(∆𝜇𝜇)]. The other parameters in the Bloch equation, 
∆𝜔𝜔(𝑡𝑡) = 2𝜋𝜋(∆𝑄𝑄𝑥𝑥(𝑡𝑡) − ∆𝑄𝑄𝑦𝑦(𝑡𝑡))/𝑇𝑇0, and Ω(𝑡𝑡) are given by: 
 

Ω(𝑡𝑡) = 𝑆𝑆𝑆𝑆� (𝑡𝑡) = 𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝜕𝜕

(𝑡𝑡) ∙ 𝐿𝐿𝑠𝑠𝑠𝑠 𝐵𝐵𝐵𝐵� ∙ �𝛽𝛽𝑥𝑥1𝛽𝛽𝑦𝑦1  /T0 = |𝐶𝐶(𝑡𝑡)|/𝑇𝑇0.   
 

It should be noted that all second-order moments in addi-
tion to ∆𝜔𝜔(𝑡𝑡), Ω(𝑡𝑡) could be time-dependent.  

The decay rate of the inversion, 1/T1, is the sum of the 
transverse decay rates:  1/𝑇𝑇1  = 1/τ𝑥𝑥  + 1/𝜏𝜏𝑦𝑦 . Both decay 
rates must be identical: τx=τy=τ. The Bloch-equations are 
only exact for equal transverse damping times, and it de-
pends on the application if a violation can be ignored. Usu-
ally, 1/T2 is the decay rate of the internal coherence and can 
be larger than 1/T1.    

Analytical solutions for the Bloch equations are known 
[8] if the parameters, Ω, and ∆ω, are time-independent or 
have special forms, for example the hyperbolic secant 
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pulse for Ω(t). For the general case, analytical solutions are 
not available in the literature and the set of differential 
equations must be solved numerically, however, searching 
for analytical solutions is an area of active research due to 
the importance of the NMR technique.  

SOME RESULTS 
The steady-state solution of the Bloch equation is found 

by setting all time derivatives to zero and solving the re-
sulting set of equations. It is assumed that Ω and ∆ω are 
constant and do not depend on time and that T1=T2=τ/2. 
Under these assumptions, the equilibrium values are: 

 

𝑢𝑢∞ = 𝑤𝑤0
∆𝜔𝜔∙Ω

4/τ2+∆ω2+Ω2
, 

   𝑣𝑣∞ = −𝑤𝑤0
2Ω/τ

4/τ2+∆ω2+Ω2
,                      (6) 

𝑤𝑤∞ = 𝑤𝑤0
4/τ2+∆𝜔𝜔2

4/τ2+∆ω2+Ω2
. 

 

Horizontal and vertical emittance can be calculated con-
sidering that εx+εy= ε0. This results in a modification of the 
denominator of Guignard’s formula [6]: 
 

ε𝑦𝑦
ε0

= Ω2/2
4/τ2+∆ω2+Ω2

. 

 

The formula shows that a certain coupling strength is re-
quired to overcome the diffusion from synchrotron radia-
tion expressed in terms of the damping time, τ. The steady-
state solution of the Bloch equation is in excellent agree-
ment with the 𝑢𝑢- and 𝑣𝑣-components calculated with Eq. (4) 
and Eq. (5) based on the moments obtained with Ohmi’s 
envelope calculation [9]. This is shown in Fig. 1. 

 
 

 

 

 

 

 
Figure 1: Comparison of the Bloch vector components 
(shown as colored lines) with the results obtained by cal-
culating them with the second-order moments determined 
by the envelope method (symbols) for 3 different pairs of 
skew quadrupole magnets which matters for strong cou-
pling only. The Qx-Qy-resonance line shape is shown for 
strong, moderate, and weak coupling (from left to right). 

 

The strength of the Bloch equation is the possibility to 
include time-dependent detuning and coupling. Similar to 
Fig. 1, the “resonance line shape” or the inversion is pre-
sented in Fig. 2 (left) for different crossing speeds. In prin-
ciple, this could also be calculated with Eq. (2) by applying 
one-turn matrices, R(t), with tunes changing from turn to 
turn, however, one would need the Σ-matrix at time zero. 
The initial vector components of the Bloch-equation are 
given by the analytical steady-state solution in Eq. (6). For 
faster resonance crossing this leads to an exchange of hor-
izontal and vertical emittance. Right in Fig. 2, predictions 

of the rate equation [4] are shown in comparison to the an-
alytical solution of the Bloch equation [8].  

 
 

   

Figure 2: Left – Crossing the coupling resonance for the 
best emittance exchange (circles represent mapping re-
sults), center – with different sweep times or speeds. The 
most appropriate extraction time is shown as a yellow line 
and corresponds to a π-pulse. Right – comparison of simu-
lations with rate- and Bloch-equation for different coupling 
strength (shown as lines). The coupling has been turned on 
at time zero and the inversion on-resonance as a function 
of time shows damped oscillations of the inversion (or 
emittance) with the Rabi-frequency. 
 

The Bloch equation as given in Eq. (1) can be used with 
time-dependent, oscillating skew quadrupole fields like: 
𝑆𝑆𝑆𝑆� (𝑡𝑡) = 𝑆𝑆𝑆𝑆0� (𝑡𝑡) ∙ cos (2𝜋𝜋𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡). At least the component 
w(t) can be calculated in agreement with the results of mo-
ment mapping, if we use Ω(𝑡𝑡) = 𝑆𝑆𝑆𝑆0� (𝑡𝑡)/2, and ∆𝜔𝜔(𝑡𝑡) =
2𝜋𝜋(∆𝑄𝑄𝑥𝑥 − ∆𝑄𝑄𝑦𝑦 − 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒)/𝑇𝑇0. Both terms are slowly vary-
ing functions. Due to the approximations which lead to Eq. 
(1), the resulting 𝑢𝑢(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) will also vary slowly as a 
function of time, however, the mixed second-order mo-
ments are oscillating with ~Qexc/T0.  

The realization of such an oscillating coupling term 
would allow for a resonant excitation of the coupling reso-
nance in the form of a π-pulse which would lead to an emit-
tance exchange. Also sweeping the frequency over the res-
onance condition would have a similar result. If, in addition 
to such an AC skew quadrupole magnet, suitable beam size 
monitors are available which have to be capable of resolv-
ing fast beam size changes, and ideally, the different mo-
ments, then many NMR-type experiments could be per-
formed in electron storage rings.  

Finally, it should be pointed out that the components of 
the Bloch vector, 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤, are global parameters which 
do depend only on the coupling constant and not on the 
actual distribution of coupling elements or the observation 
point. Without damping, within the limits of the model, and 
as expected, the numerical analysis indicates the invariant: 

 

𝑢𝑢2(𝑡𝑡) + 𝑣𝑣2(𝑡𝑡) + 𝑤𝑤2(𝑡𝑡) = 1. 

CONCLUSION 
It has been shown that the Bloch equation can be used 

for the description of many effects related to linear cou-
pling in storage rings.  
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