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Abstract

Linear coupling in storage rings mixes horizontal and
vertical beam motion. This is similar to the mixing of states
in an atomic two-level system by a resonant laser interac-
tion or the mixing of the two states of any spin-'% particle
in static and dynamic external magnetic fields like, for ex-
ample, in nuclear magnetic resonance, NMR, measure-
ments. These coupled two-level systems are usually de-
scribed by the Bloch equation [1] which is a set of coupled,
first-order differential equations connecting the population
of the states with some other parameters which contain, in
addition to the strength of the coupling and the detuning,
some sort of phase information of the involved states. In
linearly coupled storage rings horizontal and vertical emit-
tance can be viewed as the population of ground and ex-
cited level and it will be shown that the Bloch equations
can also model the time-dependent evolution of the trans-
verse emittances of an ensemble of circulating particles.
This is especially useful in cases where the emittance is ex-
changed by crossing the coupling resonance or where the
coupling strength itself is a function of time.

INTRODUCTION

Many features of the transverse emittances under linear
coupling in storage rings have a striking similarity to the
behavior of other two-level systems in many areas of phys-
ics. Well known is the inversion of a system of many atoms
with all atoms in the excited state after applying a so-called
n-pulse, which requires a certain area for the strength and
the duration of the pulsed laser interaction. For extended
interaction with the laser and as long as the system (laser
and atoms) keeps its coherence, the population will oscil-
late between the ground and excited state with the so-called
Rabi-frequency. The equivalent effect in storage ring phys-
ics is the exchange of horizontal to vertical beam momen-
tum following a horizontal kick with an exchange fre-
quency given by the strength of the coupling and the de-
tuning from the coupling resonance or in other words, the
exchange of energy between two coupled harmonic oscil-
lators. There are slightly more subtle effects like the anti-
crossing of levels in atomic systems and the repelling of
the mode frequencies (tunes) as the coupling resonance is
crossed in the ring or the exchange of horizontal and verti-
cal emittance if the crossing is fast compared to the trans-
verse damping rates — in atomic or molecular systems de-
scribed by the Landau-Zener formula [2]. In the steady-
state situation, after a long interaction time and the disap-
pearance of coherence, solutions of the Bloch equation
agree with the results of simple rate equations [3, 4] if the
exchange rate is chosen properly.
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BLOCH EQUATION

Initially, the phenomenological Bloch equations [1]
were developed in connection with NMR experiments.
Later this description proved useful in many two-level sys-
tems and the interaction of fields capable of mixing the two
states. A similar situation is encountered in terms of hori-
zontal and vertical emittance in electron storage rings with
linear coupling mixing the two transverse planes. The three
coupled differential equations for the components of the
Bloch-vector, u(t), v(t), w(t), as given below in the rotat-
ing coordinate frame, and as will be demonstrated, also
govern the linear coupling in storage rings:

u(t)

===~ bo(t) ()
1;:-@+Aw(t)-u(t)—9(t)'w(t) M
) w(t) — wy
W= ———— 4 t) - v(t)
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with the equilibrium inversion, wy=+1, without coupling,
and with £(#)=0 all particles in the “ground state”. The
Bloch equation can be viewed as three harmonic oscillators
which are coupled through the parameters, Aw, and 2. All
terms in these coupled equations have counterparts ex-
pressed as storage ring lattice and ensemble parameters.
The relationships will be worked out in the following part.

Ring Parameters Related to the Bloch Equation

The dimensionless inversion, w(t), is composed
asw (t) = (&,(t)—&,(t))/&o, and we assume that the sum of
the emittance is constant, &,(t) + &,(t) = &, which is true
for moderate coupling strength and close to the difference
coupling resonance. The emittances can be written as com-
binations of second-order moments of the particle distribu-
tion and according to the definition of the geometric or ap-
parent emittance one can use:

1w
& = Vx <XZX> +a, < xx' > +py %, nd
_ ., <yy> / <y'y'>
gy =Yy =5 +tay<yy > 4B, T

Also, the scalars v and u in the Bloch equation obviously
will be linear combinations of the elements of the X-matrix
which mix both planes: <xy>, <xy’>, <yx’>, and <x’y’>.
The coefficients of the linear combinations can be found
by a direct comparison of solutions of the Bloch equation
and the moment mapping approach.

Usually, the particle distribution after one revolution
time, Ty, is obtained by using the mapping equation for the
symmetric 4x4-2-matrix, 2; ; =< z;2; >, where the brac-
kets denote the average over all particles of the ensemble
and their coordinates z;=x,x’,y,y’. The damping time, T, in
the horizontal and vertical plane are assumed to be equal.
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The X-matrix at the observation point, sy, and after one turn
is given by multiplication with the damped 4x4-one-turn
matrix, R4, and its transpose, Rg . These matrices depend on
5o and can also depend on the time, t:

3(so,t + Tp) = Ry(So,t)-2(spt) R (S0, t) + D(5p,1). (2)

Damping, R;(So,t), and diffusion, D(sy,?), due to syn-
chrotron radiation are modeled according to Hirata and
Ruggiero [5]. This simplification leads to R; = [+ R, with
Il =1-Ty/7. Under the assumption, that even with cou-
pling only the horizontal emittance, &, is excited signifi-
cantly, the simplified 4x4-diffusion matrix, D(sg, 1)), is
time-independent, and has non-zero elements in the upper
left corner only:

—Bx(s0) ax(se) 0 0
D(SO) — (1 _ 12) ‘& ax(sg) _gx(so) 8 8
0 0 0 0

After one turn each element of the new X-matrix contains
contributions from all ten second-order moments at the
previous turn.

The coupled one-turn matrix, R, is calculated with a sin-
gle skew quadrupole magnet with an integrated and nor-
malized strength given by:

S\Q/(t) = % @®)- qu\/ ,Bxl ' ﬁyl/Bp-

Ly is the length of the magnet, and B, ,,, are the beta func-
tions at the location of skew quadrupole, s;. The parameters
@y, y, have no impact on the results in the thin lens approx-
imation. The phase advance between the observation point,
50, and the location of the skew quadrupole magnet is
Hx,y, (51). The consideration of only one skew quadrupole
magnet is not restricting the generality of the derivation. In
the lowest order, any distribution of coupling errors can be
replaced by a single skew quadrupole with the appropriate
strength, SQ, and phase advance, Au. The complex coupling
strength for the difference resonance [6] is defined here by
omitting a factor 1/2mw as:

1 9By

C(SO) = @dsﬂ ax

) - VBB ) - e (1),

which one can write as: € = k - [cos(Au) + i - sin (Au)]. The
cos(Aw) and the sin(Ap) factors will show up in the defini-
tions for the u- and v-components of the Bloch vector. It is
straightforward to calculate the resulting phase difference
for an equivalent single skew magnet with strength SQ
which produces the same coupling factor as a distribution
of linear coupling elements.

The parameters Q, and Aw are found from a comparison
with the results and consequences of betatron coupling [7].
Accordingly, the exchange frequency, //7, of horizontal
and vertical emittance following a transverse kick is given

11 a2 Z wi :
by: == ™ /A% + |C|?, with C the coupling strength of the
linear coupling difference resonance, and A= AQ, — AQ,,

with the non-integer parts of the transverse tunes, AQx.,. By
closer inspection of the differential equations, it becomes
obvious that 2 = |C|/T,, and Aw = 2mA/T,.
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We are looking for a solution close to the difference
coupling resonance which should include parameters
only in the lowest, linear order. Parameters assumed to
be small are the detuning AQ so that: AQx=AQx+A4Q/2
and AQy=A4Qy-AQ/2, the strength of the skew quadru-
pole magnet, SQ(t), the damping decrement, T,/ 7, and
the diffusion, (1 —1?)-&,. All parameters are at hand to
make a comparison of both solutions and to find the u- and
v-component in terms of the mixed second-order moments.

The tune must be chosen close, but not on the coupling
resonance and the initial emittance is purely horizontal.
This is the situation without coupling and before the skew
quadrupole magnet is turned on. Thus, the initial condi-
tions at t=0 are: w = +1,u = v = 0, and for the mapping:
< xx >= By, <xx' >= —a,&yand < x'x' >=y,¢,.
All other elements of the X-matrix are zero. Now the cou-
pling is turned on and during the following turns the u- and
v-component as well as the mixed second-order moments
will start to vary. After each turn the new moments, if com-
bined correctly, should give the new u- and v-component.
After enough turns, this can be used to determine the coef-
ficients of the linear combinations as a function of the lat-
tice parameters at the observation point, s, and the location
of the skew quadrupole magnet in terms of the relative
phase difference, Ap. For the v-component one gets:

v(t) g = [(1 + a,ay)sin(Au) — (ax—ay)cos (Au)] <xy>/ BBy
+[cos(Ap) + a,sin (Ap)] < xy' > \/M
—[cos(Au) —aysin (Au)] <x'y>,B:/By
+sin(Ap) <x'y' > /BBy, 4

and for the u-component:

u(t) - & = [(1 + azay)cos(Ap) + (a,—ay) sin(Aw)] < xy >/ BB,
+[a, cos(Aw) — sin (Aw)] < xy’ > /By /Bx
+[a, cos(Ap) +sin (Aw)] < x'y > \/ﬁxTﬁy
+cos(Au) <x'y' > \/m %)

Only the Twiss parameters of the uncoupled lattice, £,
a, B, and a, show up in these formulas and the coupling
enters via parts of the coupling constant: C = k - [cos(Ap) +
i -sin(Ap)]. The other parameters in the Bloch equation,
Aw(t) = 2m(AQ,(t) — AQy(t))/T,, and £X(t) are given by:

At) = 50(6) = Z2() - Log/Bp - Ber By, /To = 1C(DI/To.

It should be noted that all second-order moments in addi-
tion to Aw(t), £(t) could be time-dependent.

The decay rate of the inversion, 1/77, is the sum of the
transverse decay rates: 1/T; = 1/7, + 1/7,, . Both decay
rates must be identical: z=7~=7. The Bloch-equations are
only exact for equal transverse damping times, and it de-
pends on the application if a violation can be ignored. Usu-
ally, 1/T> is the decay rate of the internal coherence and can
be larger than 1/77.

Analytical solutions for the Bloch equations are known
[8] if the parameters, Q, and Aw, are time-independent or
have special forms, for example the hyperbolic secant

WEPA: Wednesday Poster Session: WEPA

MC5.D11: Code Developments and Simulation Techniques




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA071

2818

MC5.D11: Code Developments and Simulation Techniques

WEPA071

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

pulse for £2(?). For the general case, analytical solutions are
not available in the literature and the set of differential
equations must be solved numerically, however, searching
for analytical solutions is an area of active research due to
the importance of the NMR technique.

SOME RESULTS

The steady-state solution of the Bloch equation is found
by setting all time derivatives to zero and solving the re-
sulting set of equations. It is assumed that 2 and Aw are
constant and do not depend on time and that 7;=T,=72.
Under these assumptions, the equilibrium values are:

U . =w Aw-Q
© 7 70 4/ 24 NP+ P
_ 20/t
Voo = ~Wo 4/ 2+ A0 + P’ (6)
4/ +Aw?
Wy, =

0 4/ 2+ AP+ P

Horizontal and vertical emittance can be calculated con-
sidering that &+&,= &. This results in a modification of the
denominator of Guignard’s formula [6]:

&y _ P2
&0 - 4/1'2+Aa)2+[)2'

The formula shows that a certain coupling strength is re-
quired to overcome the diffusion from synchrotron radia-
tion expressed in terms of the damping time, t. The steady-
state solution of the Bloch equation is in excellent agree-
ment with the u- and v-components calculated with Eq. (4)
and Eq. (5) based on the moments obtained with Ohmi’s
envelope calculation [9]. This is shown in Fig. 1.
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Figure 1: Comparison of the Bloch vector components
(shown as colored lines) with the results obtained by cal-
culating them with the second-order moments determined
by the envelope method (symbols) for 3 different pairs of
skew quadrupole magnets which matters for strong cou-
pling only. The Q.-Q,-resonance line shape is shown for
strong, moderate, and weak coupling (from left to right).

The strength of the Bloch equation is the possibility to
include time-dependent detuning and coupling. Similar to
Fig. 1, the “resonance line shape” or the inversion is pre-
sented in Fig. 2 (left) for different crossing speeds. In prin-
ciple, this could also be calculated with Eq. (2) by applying
one-turn matrices, R(?), with tunes changing from turn to
turn, however, one would need the X-matrix at time zero.
The initial vector components of the Bloch-equation are
given by the analytical steady-state solution in Eq. (6). For
faster resonance crossing this leads to an exchange of hor-
izontal and vertical emittance. Right in Fig. 2, predictions
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of the rate equation [4] are shown in comparison to the an-
alytical solution of the Bloch equation [8].

R

1
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Figure 2: Left — Crossing the coupling resonance for the
best emittance exchange (circles represent mapping re-
sults), center — with different sweep times or speeds. The
most appropriate extraction time is shown as a yellow line
and corresponds to a m-pulse. Right — comparison of simu-
lations with rate- and Bloch-equation for different coupling
strength (shown as lines). The coupling has been turned on
at time zero and the inversion on-resonance as a function
of time shows damped oscillations of the inversion (or
emittance) with the Rabi-frequency.

The Bloch equation as given in Eq. (1) can be used with
time-dependent, oscillating skew quadrupole fields like:
SQ(t) = SQy(t) - cos (2mQexct). At least the component
w(t) can be calculated in agreement with the results of mo-
ment mapping, if we use £2(t) = SQ,(t)/2, and Aw(t) =
2m(AQx — AQy — Qexc)/To. Both terms are slowly vary-
ing functions. Due to the approximations which lead to Eq.
(1), the resulting u(t) and v(t) will also vary slowly as a
function of time, however, the mixed second-order mo-
ments are oscillating with ~Qex/T.

The realization of such an oscillating coupling term
would allow for a resonant excitation of the coupling reso-
nance in the form of a m-pulse which would lead to an emit-
tance exchange. Also sweeping the frequency over the res-
onance condition would have a similar result. If, in addition
to such an AC skew quadrupole magnet, suitable beam size
monitors are available which have to be capable of resolv-
ing fast beam size changes, and ideally, the different mo-
ments, then many NMR-type experiments could be per-
formed in electron storage rings.

Finally, it should be pointed out that the components of
the Bloch vector, u, v, and w, are global parameters which
do depend only on the coupling constant and not on the
actual distribution of coupling elements or the observation
point. Without damping, within the limits of the model, and
as expected, the numerical analysis indicates the invariant:

u?(t) + v2(t) + wi(t) = 1.

CONCLUSION

It has been shown that the Bloch equation can be used
for the description of many effects related to linear cou-
pling in storage rings.

ACKNOWLEDGEMENTS

The author thanks Andreas Jankowiak for his ongoing
support.

WEPAO071
2819

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA071

MC5.D11: Code Developments and Simulation Techniques

2819

WEPA: Wednesday Poster Session: WEPA

WEPA071

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy JACoW Publishing

ISBN: 978-3-95450-231-8 ISSN: 2673-5490

REFERENCES

[1] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460—
474, 1946.

[2] C. Zener, “Nonadiabatic crossing of energy levels”, Proc. R.
Soc. London, vol. A137, p. 696, 1932.

[3] L. Allen, J.H. Eberly, “Optical Resonance & Two-Level At-
oms”, Wiley-Interscience Publication, John Wiley & Sons,
New York, 1975.

[4] S.Y. Lee, “Accelerator Physics”, 2" edition, World Scientific
Publ. Co. Pte. Ltd., 2004.

[5] K. Hirata, F. Ruggiero, “Treatment of Radiation for Multipar-

ticle Tracking in Electron Storage Rings”, Part. Acc., vol.
28, pp. 137-142, 1990.

[6] G. Guignard, “Betatron coupling and related impact of radia-
tion”, Phys. Rev. E, vol. 51, p. 6104, 1995.

[7] PJ. Bryant, “A simple theory for betatron coupling”, CERN,
Geneve, Switzerland, Rep.CERN ISR-MA/75-28, 1975.

[8] E. R. Johnston, “Solution to the Bloch Equations including
Relaxation”, Concepts Magn. Reson. Part A., vol. 2020,
2020.

[9] K. Ohmi et al., in “From the Beam-Envelope Matrix to Syn-
chrotron-Radiation Integrals”, Phys. Rev. E, vol. 49, p. 751,
1994.

WEPAO071
2820

doi: 10.18429/JACoW-IPAC2023-WEPA071

WEPA: Wednesday Poster Session: WEPA

MC5.D11: Code Developments and Simulation Techniques




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA071

2820

MC5.D11: Code Developments and Simulation Techniques

WEPA071

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


	introduction
	Bloch equation
	Ring Parameters Related to the Bloch Equation

	Some Results
	CONCLUSION
	Acknowledgements
	References

