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I give an overview of the third-order calculations for the heavy-quarkonium parameters in the

nonrelativistic effective theory framework and its application to the phenomenology of top

quark threshold production. The focus is on the ultrasoft contribution 1.

1 Introduction

The theoretical study of nonrelativistic heavy quark-antiquark systems is among the earliest
applications of perturbative quantum chromodynamics (QCD) 2 and entirely relies on the first
principles. The nonperturbative effects are well under control and the reliable theoretical pre-
dictions can be obtained within the perturbation theory. This makes the heavy quark-antiquark
systems an ideal laboratory to determine fundamental parameters of QCD, such as the strong
coupling constant αs and the heavy-quark mass mq.

The binding energy of the heavy-quarkonium state and the value of its wave function at the
origin are among the characteristics of the heavy quarkonium system that are of primary phe-
nomenological interest. The former determines the mass of the bound state resonance, while the
latter controls its production and annihilation rates. The heavy-quarkonium ground state energy
has been computed through O(α5

smq) including the third order correction to the Coulomb ap-
proximation in Refs.3,4,5 This result has been extended to the excited states in Refs.19,20 For the
wave function at the origin however a complete result is only available through O(α2

s).
6,7,8,9,10,11,12

The second order correction is huge and for a reliable perturbative prediction one has to to gain
full control over the next order. In this order the complete result is available only for logarith-
mically enhanced terms which include the double logarithmic O(α3

s ln2 αs) contribution 13 and



the single logarithmic O(α3
s lnαs) contribution 14,15 (see also Refs.16,17,18). The calculation of

the most difficult non-logarithmic term has been started in Refs.19,20, where the contribution to
the wave function at the origin from the loop corrections to the Coulomb potential have been
evaluated. In Ref.21 the contributions from the non-Coulomb potentials have been obtained.
The last breakthrough is the calculation of the contribution due to the emission and absorption
of an ultrasoft gluon by the quarkonium bound state,1 which completes the analysis of the non-
relativistic quarkonium bound-state dynamics in the third order. The full third-order correction
to the wave function at the origin is now expressed in terms of a few yet unknown matching
coefficients, which can be obtained by standard fixed-order loop calculations. In this paper I
outline the effective theory approach to the theory of heavy quarkonium and present the rsult
for the ultrasoft contribution to the top quark-antiquark resonance cross section. The ultrasoft
correction is of special interest, because it constitutes a qualitatively new effect, which shows up
for the first time in the third order. No other such effects are expected in higher orders of the
perturbative expansion.

2 Nonrelativistic effective theory

Near the threshold, the heavy quarks are nonrelativistic, so that one may consider the quark
velocity v (or inverse quark mass) as a small parameter. An expansion in v may be performed
directly in the QCD Lagrangian by using the framework of effective field theory, 22,23,24 or
diagrammatically with the threshold expansion.25 The relevant momentum regions are the hard
region (energy k0 and momentum k of order m), the soft region (k0,k ∼ mv), the potential
region (k0 ∼ mv2, k ∼ mv), and the ultrasoft region (k0,k ∼ mv2). By integrating out the
hard modes of QCD, one arrives at the effective theory of nonrelativistic QCD (NRQCD).23 If
one also integrates out the soft modes and the potential gluons, one obtains the effective theory
of potential NRQCD (pNRQCD), which contains potential heavy quarks and ultrasoft gluons
as dynamical particles.24 The propagation of the quark-antiquark pair in pNRQCD is described
by the Green function of the Schrödinger equation

(H−E)G(r, r′, E) = δ(3)(r − r
′) , (1)

where H is the nonrelativistic effective Hamiltonian of the following form

H = −
∂2
r

mq

+ VC(r) + . . . , (2)

with r = |r|. The ellipses stand for the higher order terms in αs and v. For the color singlet
state the leading order Coulomb potential is attractive, VC(r) = −CFαs/r, where CF = (N2

c −
1)/(2Nc), Nc = 3. As a consequence the color singlet Green function gets a contribution from
an infinite number of approximately Colombic bound states of the following form:

G(r, r′, E) =
∞
∑

n=1

ψ∗

n(r)ψn(r′)

En −E − iε
+ . . . , (3)

where En and ψn are the energy and the wave function of a bound states, respectively, n is
the principal quantum number, the spin and orbital quantum numbers are suppressed and the
ellipsis stands for the contribution of the spectral continuum. The leading order approximation
of the quarkonium bound state is given by the Coulomb solution of Eq. (1), e.g. the leading
order binding energy is EC

n = −C2
Fα

2
smq/(2n)2. The corrections due to the high order terms in

the nonrelativistic Hamiltonian can be systematically computed by means of the time ordered
quantum mechanical perturbation theory. In addition, the Green function gets the correction
due to the multipole interaction of the quark-antiquark pair to the ultrasoft gluons. The lead-
ing ultrasoft effect is due to the chromoelectric dipole interaction, which results in a NNNLO
correction.26,27 The PNRQCD diagram representing this correction is shown in Fig. 1.



Figure 1: The ultrasoft correction as a PNRQCD Feynman diagram. The bold and the double lines stand
for the singlet and octet Coulomb Green functions, respectively, the curly line represents the propagator
of the ultrasoft gluon, and the black circles represent the chromoelectric dipole interaction gsrE.

3 Ultrasoft contribution to top-quark production near threshold

For top quarks the nonperturbative effects are negligible and its decay width Γt ≈ 1.4 CeV
smears out the Coulomb resonances below the threshold.28 The NNLO analysis of the cross
section 29 shows that only the ground-state pole gives rise to a prominent resonance. Although
the calculation of the normalized cross section R = σ(e+e− → tt̄X)/σ(e+e− → µ+µ−) requires
the full Green function the height of the resonance can be estimated from the wave function at
the origin of the would-be toponium ground state. In the leading-order approximation RLO

1 ≈
6πNce

2
t |ψ

C
1 (0)|2/

(

m2
t Γt

)

, where |ψC
n (0)|2 = (mtαsCF )3/(8πn3) is the value of the Coulomb wave

function at the origin. The ultrasoft correction to the wave function results in the following
variation of the resonance cross section 1

δusR1 = α3
s

{

− 18.71 ln2 αs + 52.03 lnαs + 112.38

+
[

23.52 lnαs − 30.98
]

ln
µ

m
− 6.55 ln2 µ

m

}

RLO
1 . (4)

The scale of the coupling αs is most naturally of order of the inverse Bohr radius mtαsCF in two
of the three powers of the overall factor α3

s, and of order of the ultrasoft scale mtα
2
s in the third.

However, any other scale choice is formally equivalent at this order. In the following we evaluate
αs at µB = mtCFαs(µB), wherever it appears. The scale µ in the ln (µ/mt) terms is related
to scale-dependent potentials and hard matching coefficients. We vary µ/mt between αsCF

(corresponding to the scale µB) and 1 (hard scale). Adopting αs = 0.14, which corresponds to
µB ≈ 32.5GeV, we obtain δusR1/R1 ≈ 0.31 from the nonlogarithmic correction alone. Including
an estimate of the logarithmic terms we find

δusR1 ≈
[

(−0.17) − (+0.13)
]

RLO
1 . (5)

It therefore appears that the large nonlogarithmic term leads to a large enhancement of the
width. Whether or not perturbation theory is out of control (as may be suggested by the upper
limit of the given range) can be decided only after combining all third-order terms.

4 Summary

The problem of evaluating the total O(α3
s) corrections to the top quark threshold production

is reduced to the fixed-order loop calculation of of a few yet unknown matching coefficients in
dimensional regularization. The nonlogarithmic ultrasoft contribution is large and significantly
increases the production rate. It might limit the accuracy of the perturbative analysis of the
quarkonium even for top quarks. We should however emphasize that a definite conclusion can
only be drawn once the full NNNLO result is available. In this respect the sizable negative
third-order correction from the perturbation potentials 19,20,21 should be mentioned.
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