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ABSTRACT OF THE DISSERTATION

Efficient representation and learning of quantum many-body states

by

Hongye Hu

Doctor of Philosophy in Physics

University of California San Diego, 2022

Professor Yi-Zhuang You, Chair

Quantum mechanics is one of the most successful and striking theories in physics. It
predicts atomic particles can have exotic properties, such as quantum entanglement, that any
classical local theory cannot describe. This phenomenon dramatically increases the complexity
of nature, and it indicates there is no classical algorithm that can universally simulate all quantum
many-body states. On the other hand, as opposed to classical systems, we never observe quantum
properties directly since the measurement for the quantum systems is destructive. People can
only determine the quantum black box by the statistics of classical readouts. The complexity of
quantum objects implies exponentially many measurements and classical data to figure out the

quantum states fully. It is underlying those challenges to find an efficient classical representation

XX



of quantum many-body states. An efficient (classical) representation will require fewer classical
data of quantum states and learn many of its properties. And an efficient representation can also
be served as a classical simulation algorithm for the quantum states. The is no universal, efficient
representation for all the quantum states, and it usually depends on the learning properties or
underlying quantum states. This thesis will give two efficient representations: the classical shadow
representation of quantum states and the hierarchical representation of quantum states. We will
see that those efficient representations will help us learn and simulate quantum many-body states
and lead to many critical applications in quantum information technology, condensed matter

physics, and quantum field theory.
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Part I

Introduction



Chapter 1

Background and introduction

Quantum mechanics is one of the most successful, striking, and controversial theories in
physics. It predicts atomic particles can have exotic properties, such as quantum entanglement, a
quantum correlation that does not have any classical analog [EPR35, Sch35, Sch36]. Einstein
suspected that quantum mechanics was an incomplete description of reality and the troublesome
fundamental probabilities of quantum mechanics may be originated from the ignorance of some
hidden degrees of freedom. Therefore, he hoped to construct some classical stochastic theory,
like statistical mechanics, within the framework of classical mechanics, which he dubbed “’local
hidden variable theory”. However, this dream was shattered by John Bell in 1964 [Bel64a].
Incredibly, he shows that any local hidden variable theory is incompatible with quantum mechan-
ics, and quantum mechanical probabilities cannot arise from the ignorance of pre-existing local
variables. Otherwise, superluminal communication is possible. Nowadays, people know quantum
entanglement is an essential property that gives rise to the Bell’s inequality. This phenomenon
dramatically increases the complexity of nature. And the complexity poses two difficulties in
understanding quantum many-body states: 1) it is really hard to fully characterize what is the
quantum state in the black box by experimental measurements, and 2) it is really hard to find

algorithms to simulate quantum states on a classical computer.



In classical mechanics, a system containing N particles only needs 6N or, in general,
Poly(N) parameters to fully characterize the system’s state. In contrast, a quantum system
composed of N qubits (quantum two-level systems) requires approximately 2V complex numbers
to represent its state fully. On top of the exponential scaling of parameters, quantum measurements
are destructive. The quantum state will collapse to one of the eigenstates of the observable each
time after measurement. Combining those factors, people find it hard to unveil the secret of
quantum states. More rigorously, people prove that the number of measurements needed to
characterize quantum states fully grows exponentially with system size. And this process of
figuring out quantum states by experiments is called quantum state tomography. Quantum state
tomography is essential in many quantum technology applications, such as quantum device
benchmarking and discrimination of quantum states. While reconstructing the full classical
representation, the density matrix, becomes unfeasible with increasing system size, predicting a
collection of (possibly exponentially many) properties of quantum states with only a polynomial
number of state copies and measurements is still possible. Therefore, we would like to find a
representation of quantum states such that it only requires a polynomial number of classical data
for us to learn (possibly exponentially) many properties of quantum states. Those representations
are efficient. There is no universal, efficient representation for all quantum states. Usually, that
depends on the assumption of underlying states, such as low entanglement states, stabilizer states,
or depends on the collection of properties that we want to learn, such as low-rank observables,
local observables. Some efficient representations based on quantum state assumptions include
matrix product state tomography [CPF"10b, LMH"17a, WHW*17], reduced density matrix
tomography [LPWO02, LW02, CJZZ12, XLC" 19] and machine learning tomography [CTMA19,
TM18, TTv" 19]. And more recently, a new efficient representation called shadow tomography
has attracted much attention [HKP20]. Based on statistical learning theory, this new scheme does
not rely on assumptions of underlying quantum states, and its efficiency depends on the collection

of observables.



When studying physical states beyond the exactly solvable limit, physicists use computers
to simulate their behavior to get a better understanding. However, this approach breaks down
when the system of interest is quantum mechanical. As we have seen, the general quantum
states require exponentially many complex numbers to be characterized. Only saving those data
on a classical computer can be troublesome. An efficient representation of quantum states can
also be served as a good ansatz for numerical simulation, which does not require exponential
many computational resources. For example, matrix product state is efficient representation for
low-entanglement states [Vid07a, Vid08a], and stabilizer formalism is efficient representation for
stabilizer states [AG04, Got98a], which can be created with Clifford circuits on product all-zero
states.

As we can see, finding efficient representations of quantum many-body states is an
essential task in modern physics. It can help physicists not only learn properties of underlying
states from very few experimental measurements but also serve as an efficient ansatz for numerical
simulations. Motivated by this overarching question, I will introduce two important efficient
representations: the classical shadow representation of quantum states and the hierarchical
representation of quantum states. In Chapter 2 to Chapter 4, 1 will review the background
knowledge in quantum mechanics, random unitary designs, and machine learning. Chapter
5 and 6 form part I of the thesis, where I will introduce classical shadow tomography with
chaotic dynamics [HY?22, HCY21]. Especially, I solve the reconstruction map of classical shadow
representation under arbitrary locally scrambled unitary dynamics. The new solution explicitly
shows how the entanglement created in quantum dynamics can help with quantum measurements.
And this new proposal of classical shadow tomography is the first one that does not rely on the
group structure of random measurements. Chapter 7 and 8 form the second part of the thesis,
where hierarchical representation of quantum states is discussed. The hierarchical representation
is very closely related to holographic duality and renormalization group. Especially in chapter 7,

I will introduce the spectrum bifurcation renormalization group and its application to simulation



of strongly disordered quantum systems [DHY *21]. In chapter 8, I will introduce the machine
learning renormalization group and show the relation between this invertible renormalization
group and exact holographic mapping [HLWY?20]. And I will also illustrate some applications of
this machine learning holographic mapping, such as efficient simulation of critical field theory

and finding holographic dual theory.



Chapter 2

Quantum mechanics

2.1 Closed quantum systems

2.1.1 Axioms of quantum mechanics

Quantum mechanics is a mathematical model for the physical world. It successfully
describes many aspects of fundamental particles that no classical theory can achieve. The theory
of a closed quantum system is based on five axioms for 1) quantum states, 2) physical observables,
3) measurement, 4) quantum evolution, and 5) composition of systems. In this section, we review
the basics of axioms for closed quantum systems. More discussions can be found in [Pre18a].

Axiom 1: Quantum states. A state is the complete description of the physical system,
and it is described by a ray in the Hilbert space.

First, a Hilbert space is a linear vector space on complex numbers C with an inner product.
The vectors in the Hilbert space can be written as |y) using the Dirac notation. The inner product
(y|d) is the map that takes two vectors |y) and |0) to a complex number C, which has the

following properties:

1. (y|y) > 0 for any non-zero vectors.



2. (yl(alo) +bl9)) = alwy|o) +b{y|e).

3. (wl0) = (0lw)"!

Not all different vectors in the Hilbert space describe different physical states. If two vectors
differ by a non-zero complex number, i.e., [y) = a|¢) where o € C, then they are in the same
ray. So a ray is the equivalent class for vectors that only differ by a non-zero complex number.
Usually, we choose the representation of a ray to be normalized, such that (y|y) = 1. The
representation vector |y) is the description of a physical system. And one should also notice that
the normalization condition doesn’t fix the phase of vector, so [y) and !|y) describe the same
physical system. This is also called gauge redundancy.

Axiom 2: Physical observables. Physical observables are quantities that can be measured,
and they are described by self-adjoint operators.

Operators are linear maps in the Hilbert space O : |y) — O|y), and self-adjoint operators
satisfy O = 0. Self-adjoint operators can be diagonalized or have spectral representation, such

that

0= a,E,, (2.1
n

where E,, are orthogonal projectors, and a, are eigenvalues. And eigenvalues a, are possible
readouts for measuring physical observable O.

Axiom 3: Measurements. A measurement is the process of getting information of the
physical system through a observable O. After the measurement, the observer get a classical read-
out that is one of the eigenvalues a, of observable O, and the state collapse to the corresponding
eigenstate. The probability of getting readout a,, is p(a,) = (y|E,|y). So the expectation value

of the observable O is

(0) = Zanp(an) = Zan<W|Enm’> = (y|O]y) (2.2)

Here, asterisk means the complex conjugate.



Axiom 4: Dynamics. The evolution of a closed quantum system is governed by unitary
evolution: |[y(¢')) = U(¢',¢)|w(r)). The infinitesimal evolution is generated by a self-adjoint
operator H (), which is called the Hamiltonian of the system. In particular, U(t +dt,t) =
I —iH(t)dt. And we can also write down the partial differential equation for the dynamics of

quantum states, which is the Shrodinger equation:

Aly(0))
ot

= H(1)[w(1)). (2.3)

Axiom 5: Composition of systems. Suppose there are two systems: A and B with
corresponding Hilbert spaces #4 and #g. Then the Hilbert space of the composite system A + B
will be the tensor product #4 ® Hp. Those five axioms conclude the mathematical foundation
of quantum theory for a closed quantum system. And such a model already comprises a lot of

interesting phenomena that cannot be captured by classical models, such as entanglement.

2.1.2 Schmidt decomposition

Before I introduce open quantum states, let me review a beneficial standard form for pure
bipartite quantum states, called Schmidt form or Schmidt decomposition. Suppose we have a
bipartite system composed of A and B. According to the fifth axiom, the total Hilbert space is

Hy ® Hp, and any quantum state can be written as

W) = Y Waila), @ i), (2.4)

where {|a),} and {|i)z} are orthonormal basis in Hilbert space #4 and #p respectively. We can

view the coefficients y, ; as a matrix, which is not necessarily square. Any matrix will have a



singular value decomposition (SVD), so that

\anp - UanAnXprxp, (2'5)

where U and V are unitary matrices, i.e. UU T=1,vvi =1, and Vax p 1s a diagonal matrix. If we

plug the SVD decomposition into Eq.(2.4), then we have

= Z Ua,(xx(x,(xviikoc‘au ®|i)g
i,a,0

(2.6)

A @) g,

where we use U and V to define new basis as |0t), = }¥4[a)4Ug,0 and |0) g = ¥ |i) gV} Or in

matrix form, the state in new basis is

N 0 0 0) [0

o . 0 0

\% (|0>A )4 ) 0 0 Ay O o)

0 0 O

The above equation is the Schmidt form of a pure quantum state, and it exists for any pure bipartite
quantum state. However, in general, one cannot write two states |y),z and |{) .z in Schmidt
form simultaneously. The basis can be different. One should also notice the ambiguity in the
Schmidt form. If there is degeneracy in the singular values A;, then one can apply any unitary
transformation O in the degenerate subspace to rotate the basis, such that U — UO and V — VO.
This simultaneous transformation changes the basis {|i)}, and {|i)z} for A and B but leaves |y)

unchanged.



2.2 Tensor diagram: a Lego for understanding quantum me-
chanics

Before we further discuss open quantum systems, [ would like to introduce a handy tool
which is called tensor diagram. In the literature, people also call it tensor networks [BB17, Orul4],
or graphical calculus [WBC15, MPM17]. It will help us understand concepts like the Feynman
diagram for quantum field theory. And we will find it very helpful in the following discussions.
First, let me clarify some notations. For Hilbert spaces, instead of using Hy,#y, I will use X,
for simplification. And L(X,9) is the space of bounded linear operators: A : X — 9. Tensors
are the basic objects we will be dealing with. They are multi-dimensional arrays of complex
numbers with a fixed standard basis. For example, scalars are rank-0 tensors, and vectors are
rank-1 tensors with one index, v; = (i|v), and matrices are rank-2 tensors with two indexes,
A=Y, ;Aijli){j|, where A; ; = (i|A|j). If the distinct index can be thought of as legs, then we

can represent elementary tensors as graphs as shown in Fig. 2.1.

(a) Scalar : A € C  (b) Vector : |v) € ®;&; (¢) Dual vector : (v| € ®i)(; (d) Linear operator : A € L(®;X;)

S D € =

Figure 2.1: Tensor diagrams for elementary tensors.
As we see in Fig. 2.1, to avoid confusion, we should read the whole diagram from left

to right. And opening legs pointing to the left indict vectors in basis |i), while the opening
legs pointing to the right indict vectors in the dual-basis (i|. In the next chapter, I will also
introduce another convention with arrows on the legs. Now let me introduce the color summation

convection. If elementary objects share the same color, they will be summed over the shared

10



basis. For example, the following diagram is the same as I = }; |i) (i|:

== Pt-—

And the (unnormalized) Bell state |®7) = ¥;|i) ®|i) and its dual-state (®F| =Y, (i| @ (i| are

very useful:

)= } _ :; 29)
e

With these basic definition, we can already get some interesting results:

_C = (2.11)

— A
) = ) (2.12)
AT
A
T(4) = ( > (2.13)

Another important concept is vectorization, which reshapes a m X n matrix into a mn vector.

There is a freedom to choose the order of reshaping in reshaping elements. Typically, there are
row-first and column-first orders. For row(column)-first ordering, we stack rows (columns) of the

matrix on top of each other. In literature [WBC11], they are sometimes called row-vector and

11



column vector respectively. I will choose the following convention in defining them:

D - :> : j: :> | (2.14)

Or in mathematics, it means

A), = A 1)@V, |4), = (104)e) 2.15)

Following the definition, we also have the following identity,

[@F) = 1), =1T), (2.16)

r

In general, we can the vectorization procedure with respect to an arbitrary basis for L(X,9).
Suppose X = Cdx, D= C%, and 2= CP, where D = dydy. We choose an arbitrary orthonormal
operator basis {Gy : 0 =0,---,D—1} and TI‘(GZ;GB) = 8 p- Then vectorization with respect to

this basis for L(X,9) is given by

G—vec:L(X,7) = Z2:A— |A), (2.17)
and
D-1
A)o =Y Tr(cjA)|o) (2.18)
o=0

So for row(col)-vector, the orthonormal basis are elementary matrix basis {E; ; = |i)|j)} and
making assignment to & = di + j for row-vector, & = i 4 d j for col-vector. Given two choices of

orthonormal basis {Gq} and {®q} for L(X,9"), we can define a basis transformation operator

12



that transforms vectorized operators from G-vec to w—vec:

Tosoo: 2= 2 A)g — |A) - (2.19)
The transformation is given by
Too = Y, |0a) (0 =} |0} {(@0lo- (2.20)
o o

We can check the two definition in Eq.(2.20) are equal and
Ts0lA)g Z 150 (01 %Tr(ch) B

—Z(ZTr jou)TH(ol) ) B

(2.21)

In the derivation, we have used Y, Tr((ogca) Tr(chA) = Tr(O)EA). Especially, the transformation

between row-vector and col-vector is the SWAP transformation:

T..., =T, = SWAP. (2.22)

13



We can prove this by the following diagrams:

4
Tr—)c ) —

(2.23)

4

2.3 Open quantum systems

2.3.1 Density matrix: a complete representation of quantum states

In the previous section, I have introduced the five axioms of quantum theory for a closed
quantum system. The states are a ray of vectors in the Hilbert space. And the quantum dynamics
are unitary, meaning there is no loss of information. However, it is very rare to have a closed
quantum system that does not interact with the environment. If that is the case, people usually call
the system is open. For an open quantum system, the axioms do not hold in general. The states
are not rays anymore, and the dynamics are not unitary. Let me first review how to characterize a
quantum state in the open quantum system.

Suppose {|a) , } and {|b) 5} are orthonomal basis for Hilbert space 4 and Hp respectively.

Then a quantum state in the total system is

W) =Y Wapla), @ |b)g. (2.24)
a,b

An observable only acting on subsystem A will be M4 ® Ip. Suppose we want to get the expectation

14



value of M4, what we have is

(Ma) = (y|Mp ® Ip| W)

= Z <a/|AMA|a>A‘~VZ’,b‘|fa,b (2.25)
a,a,b
= Tr(paMa),
where
pa=Tra([W) (W) = Y W yWapla)s(d],- (2.26)
a,a,b

We see if an observer only can prove the information in the subsystem A, then the subsystem
is fully described by ps = Trp(|w)(w|), which is called (reduced) density matrix. The density
matrix is the general description of a quantum system, and any properties of subsystem A can be
predicted with p4. From the definition of the density matrix in Eq.(2.26), we can infer the density

matrix p has the following properties:
1. Self-adjoint: p" =p
2. Positivity: for any |0), (9|p|¢) = ¥, | LaWas(@la)* >0,
3. Tr(p) = 1.

If the state is pure, p = |y)(y|, then the density matrix is a projector to the one-dimensional
subspace expanded by |y). And Tr(p?) = Tr(p) = 1. And if this is not the case, we say the state

is mixed. Since p is self-adjoint, it can be diagonalized or has a spectral decomposition:

p =) pala)(al, (2.27)

where 0 < p, < 1 and Y, p, = 1. We can interpret p, as the classical probability of finding the

system in a pure state |a)(a|. This is also called the ensemble interpretation of the mixed state.
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This interpretation also gives us a protocol for preparing p. Suppose Alice has a random number
generator that can generate samples a according to probability p,, and a machine to prepare
any pure state in {|a) }. Suppose Bob wants to measure the expectation value of M. Every time,
Alice prepares a pure state |a) with probability p, and hands it to Bob for the measurement. The

expectation for M will be
(M) =) palalM|a) = Tr(pM) (2.28)

So Bob cannot distinguish this probabilistic preparation procedure with another direct preparation

of p if it exists.

2.3.2 Ensemble interpretation is not unique

A fascinating consequence of the ensemble interpretation is that the ensemble is not
unique. According to Eq.(2.27), one may think the ensemble interpretation is only the probabilistic
combination of |a) determined by spectral decomposition. However, this is not true. The tricky
part is that any convex combination of the density matrix is a valid density matrix. Suppose pi
and p; are density matrices, then p(A) = Ap; + (1 —A)p2 with 0 <A < 1 is also a valid density
matrix. It is straightforward to check it is self-adjoint, non-negative, and normalized. Therefore,

all the possible density matrices form a convex set as denoted in Fig.2.2.

¢ Pure State

Mixed State

Figure 2.2: The convex set of density matrix. The extremal points of the set are pure states.
And all the other points are mixed states.
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Pure states are special cases. It cannot be expressed as a convex combination of two other
states. In order to prove this statement, suppose we have a pure state p = |y)(y| and a orthogonal
state |y ) such that (y|y, ) = 0. If the pure state can be expressed as a convex combination of

two other states, then

p=Ap1+(1—A)p2, A#O. (2.29)

0= (yilplwi)=Mw_lpi|yi)+ (1 =A)(wilp2|wi) (2.30)

Therefore, we conclude (y [p;|w,) =0and (v |p2|w,) =0. Since |y, ) can be any orthogonal
states, p = p1 = p2. The pure states are unique. They are the extremal points in the convex set,
which are denoted as black points in Fig.2.2.

Now we can ask whether the ensemble interpretation of a density matrix is unique.
Mathematically, the question is how many ways can we write p as a convex combination of
pure states. In fact, the answer is there are infinitely many ways to write a mixed state as a
convex combination of pure states. Without proving this statement, let’s state spin-% system as an

example. Any quantum state can be written as

p(P) = - (I+P3). 2.31)

If |P| = 1, the state is pure; and if |P| < 1, then the state is mixed. This is also called the Bloch
sphere representation of a qubit. Suppose 7] and 7, are two vectors on the Bloch shpere, then p(#;)
and p(i,) are pure states. If P = Aji; 4 (1 — A)ii,, then we have p(P) = Ap(7i;) + (1 — A)p(72).
As a consequence, if point P lies on the line segment connecting 7| and 7, then it is a valid
ensemble interpretation. We immediately see there are infinitely many plausible interpretations.

Therefore, one should always be careful to interpret p, in p =Y, ps|a){a| as a classical

probability. And we should remember there are infinitely many such ensemble interpretations for
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the same mixed state. The ambiguity of the ensemble interpretation is quite fascinating since we
will never see this fact in the classical probabilistic system. In the classical world, if an object can
be interpreted as 20% A and 80% B, there is no other ensemble interpretation. One may think the
classical world only has one probabilistic interpretation, while the quantum world can be viewed

from many aspects. Each aspect has its ensemble interpretation, and they are equally right.

2.3.3 Generalized measurements

In the previous section, we have seen that the complete representation of a quantum
state is the density matrix. And in this section, we will see that the general measurements are
not orthogonal projections. Here, I will follow a simple argument or model of generalized
measurement envisioned by von Neumann. And more detailed discussion can be found in
Ref.[NCI10].

To see how generalized measurements are not orthogonal, let’s first take a look at a qubit
system A, that is described by «|0), + B|1),. The generalized measurements can be achieved
with an ancilla system B, which can be viewed as a model of the instrument. As a simple example,
we also assume the instrument is modeled by a two-level quantum system, with orthonormal basis
{10)5,|1) g }. Without loss of generality, we assume the instrument is initially in the state |0) 5. In
order to probe the system A, the instrument couples ancilla system B with A, and evolve the total

system with a simple unitary dynamics:

U (0f0)4 +Bl1)s) ©]0)5 = 01]0) 4 ©[0)5 +B[1) 4 @ [1) - (2.32)

And the instrument measure the ancilla qubit to give the readout. If the instrument measures
spin-z of B, then it equivalently measures the spin-z information of A. And it is still an orthogonal
measurement. However, this is not always the case. Suppose the instrument measures |+) ; and

|—) - If the instrument has readout £1, then the state of A changes to a|0), =3|1), after the
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measurement. And the post-measurement states are not orthogonal in general.

This idea can be generalized to ancilla system has N orthonormal states:

{10); -+, [N = 1)p}.

And the instrument couples the system A with ancilla B by a unitary dynamics:
U:|w)a®0)5 = Y Maly)y @ la)p, (2.33)
a

where M, is usually called Kraus operators. Since unitary dynamics preserves the norm of vector,

we have a constraints on the Kraus operators:

1=Y (W MMy |) 4 (alb) g = (Wi, Y MIMa|w),. (2.34)
a,b a

Since |y) , is arbitrary, we require ), MJM, = I. An orthogonal measurements on ancilla system

is described by I ® |a) (a|z. Therefore, the probability of getting readout a is

p(a) = (WIAMiMal) 4 = [|Ma|y) 4]*. (2.35)

And after the measurement, the state changes to

‘W>A N Ma ’W)A )
V WLMEML)

(2.36)

One should notice that if M, M}, # 6, ,M,, then two consecutive measurements can give different
readout, which is in contrast to orthogonal measurements. In the literature, people usually define
F, = MM, as the generalized measurement operator, and dubbed it the positive operator-valued

measure (POVM). By definition, it satisfies the following properties:
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1. Self-adjoint: F,| = F,,
2. Positivity: for any state |y), (W|F,|y) >0,
3. Completeness: ), F, =1.

So the POVM operators F, give us the probability of getting the readout a but do not provide
information on the post-measurement state. Since any M, = U,+/F, with unitary operator U, can
be the corresponding Kraus operator. And we can design any Kraus operator we want to evolve
the total system. By doing projective measurements on the ancilla system, the corresponding

POVM general measurement can be achieved.

2.3.4 Quantum Channels

For open quantum system, the dynamics is not unitary in general. In Eq.(2.33), we have

introduced Kraus operators {M,} and seen the formal general evolution of the total system:
U: )y ®10)5 = L Mal¥)y @ la)p, (2.37)
a

If we don’t have any knowledge about environment B, then for open quantum system A, the

general evolution is

E:pa— Y MapaMy, (2.38)

Hewb=—mH » H i (239)

Such a linear map ‘E(p) is also call quantum channel. And the Kraus operators must satisfy the
completeness condition Y., MM, = I. Similar to the ambiguity in ensemble interpretation for

density matrix, the Kraus operator representation for a quantum channel ‘£ is also not unique.

20



The root of this phenomenon is also from the fact that there are more than one way to look at the
quantum system. Suppose we perform a basis transformation on ancilla system B with unitary V:

la)g = Y.; i) gVi a- Therefore Eq.(2.33) can be rewritten as

a,i i

U:y),®[0) — ZMaW)A ®Viali)g = Z(ZVi,aMa)hl’)A ® i) p- (2.40)

If we do a partial trace on ancilla system with the new basis {|i);}, the same quantum channel is

represented as
E:pa— Y MapaM, (2.41)
a

where the new Kraus operators are M, = Yi VaiM;. In mathematics, people also call the map of
the quantum channel the Complete Positive Trace Preserving map or CPTP map for short. Using
the Kraus representation of quantum channels, we can easily verify a quantum channel is: 1)
positive and 2) trace-preserving. Physically, it guarantees the quantum channel maps quantum
states to states. Complete positivity is a stronger requirement. If a map E acting on #, is positive,
and for any composite system #, ® Hpg, the composite map ‘E ® 1 is also positive, then we say
E is completely positive. With Kraus representation, we can easily verify M @ 1 is completely
positive. The physical intuition behind these strong constraints is that even the system is part of

the big world, the quantum channel should still be a valid dynamic.

2.4 Other representations of quantum channel

In the previous section, we have seen that the quantum channel is a CPTP map and the
Kraus representation of a quantum channel. And there are other representations of quantum
channels, which can be useful. In this section, without proof, I will briefly review some other

representations: 1) Louiville representation, 2) Choi matrix representation, and 3) process matrix
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representation. A detailed discussion on different representations can be found in [WBC15].

2.4.1 Louiville representation

The Louiville representation is based on the vectorization of density matrix p — |p))

with respect to some orthonormal basis {Gg, =0, - d? — 1}. Then the quantum channel can

be defined as a superoperator S, which maps operators to operators:

S: XX =Y :phs = |E(P))s-

(2.42)

In the following, I will choose col-vector ordering and drop the subscript. Otherwise, I will

mention the ordering of vectorization. The pictorial description of the quantum channel can be

viewed as:

> s [ [

and, for col-vector, the mathematical description is

Z:(p>mn = ZSmn,v,up,uV-

1V

In the previous section, we have introduced the basis transformation operator:

To—o: |A)g = |A) o

with

Io—o = Z o) (0o = Z Ga) (0t
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(2.46)



The graphical representation of the equation is below:

TIEIE -

Since most of the time we use col-vector convention, I also give the tensor diagram of transforma-

tion T, in Fig. 2.3.

(a) (b)
—Tc—>o_: —Taﬁc_: ¢
—] - ( o = _ —  _B >

Figure 2.3: The tensor diagram of basis transformation between col-order and arbitrary G-order.

Then we can transform superoperator S to other basis by
So =T 6ST, o (2.48)

2.4.2 Choi matrix representation

Another representation of quantum channel is called Choi matrix[Cho75]. It is an ap-
plication of the Choi-Jamiolkowski isomorphism, which bijectively map linear maps to linear

operators[Jam72]. For X = C4, there are two conventions of the definition of Choi matrix:

d—1
A= L DUIO B = (T D@ (@],
ij=

- (2.49)
Ar=), (D (D@ )] = (E® 1)|@T)(@7],
i,j=0
where {|i},i =0,---,d} is the orthonormal basis for X. In the following, I will use the column-

vector convention and drop the subscript. The diagrammatic representation of A, with Kraus

23



operators is

A = ) ( = . (2.50)
— L - M Mt

The evolution of the density matrix in terms of Choi-matrix is given by

E(p) = Trx[(p" @ 1) A], (2.51)

which can be represented as

Q C : D : (2.52)

- A

A diagrammatic proof of the evolution equation Eq.(2.51) is:

C/o <
: (2.53)

— = M H P H M~

— M M~

Unlike the Kraus representation, once we fixed the orthonormal basis {|i) ,,i =0, ---d, — 1} for
the system, the Choi representation of a quantum channel is fixed. In Kraus representation, we
have seen the ambiguity even for the system with a fixed basis. This ambiguity is rooted in the

ambiguous choice for the environmental basis.
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2.4.3 Process matrix representation

Another representation for the quantum channel is called process matrix representation. It
is related to the Choi representation through the change of basis for L(X, .X). Suppose the Hilbert
space X = C¢, and let D = d°. If one choose a basis {Gy : 00 =0,...,D — 1}, then the quantum

channel can be represented as

D—1
()= Y, XopSaPOp, (2.54)
o,p=0

where 4 is the process matrix with respect to orthonormal basis {Gq : 0t = 0,...,D — 1}.
And the Choi matrix is related to general process matrix by a basis transformation. In other
word, the Choi matrix can be viewed as the process matrix in the column order basis where

{0 = [i){j| : =i+ jd}. Mathematically, it is

X =Teso AT 5

(2.55)
A=Y Xoploa).(opl,-
oB
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This relation can be simply proved by the diagrammatic approach:

o -CED
-C

7] X Toso
P

¢

2.4.4 Relation among representations

(2.56)

Kraus operator

Spectral
decomposition Vectorization

<+——» ( Superoperator
Reshuflling

Figure 2.4: Relations between different representations of a quantum channel.

In the previous sections, I have introduced the Kraus representation, Choi matrix (Y —matrix)

representation, and superoperator representation of a quantum channel. The relation among them
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is summarized in Fig. 2.4. Here, I present the transformation between different representations

and the proof using tensor diagrams. This section is largely inspired by [WBC15].

Relations between Choi matrix and superoperator: reshuffling

The Choi matrix A and superoperator S can be transformed back and forth with a reshuf-

fling of the indexes:

Amn,,uv = Svn,,um> Smn,,uv = Avn,,um-

or diagrammatically it can be represented as:

:A:::
xX=5

:5:::
X=D

(2.57)

(2.58)

I will prove the first equation with tensor diagrams, and the second equality can be proved in a

similar way:

G P
X=—=>

X

Kraus operator to superoperator: vectorization

/]

X
A == -

(2.59)

Once the Kraus representation of a given quantum channel is given by {My,}, the superop-
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erator representation is constructed via vectorization:
S = ZMSL@M“’ (2.60)
o

where M is the hermitian conjugate.
Choi matrix to Kraus operators: spectral decomposition
Since the Choi matrix describes a CPTP-map, it is hermitian and positive. So it always

has a spectral decomposition form:
A=Y holVa)(Val, (2.61)
o

with Ay > 0. |Vy) is the eigenvector and there is a unique operator Ky, satisfies |Kq), = |Vu). Ko

can be find by reordering elements of |V, ). Then the Kraus operator can be defined as

Mo = \/ Ao Ko, (2.62)

2.5 Hidden variable models

As discussed, quantum mechanics is a mathematical model that describes the physical
world based on axioms. And certainly, the axiom about measurement dynamics and quantum
state dynamics seems not very satisfying. Einstein suspected that quantum mechanics is an
incomplete description of the physical world [EPR35]. And some of the uncertainty in the
measurements are probably rooted in some unknown hidden degree of freedom. Since people
never “observe” a quantum state directly, we never witness magic properties, like entanglement,
predicted by quantum mechanics. People can only infer what is in the black box through the
classical measurement data. All the gems are hidden in the statistics of the readouts. Having

introduced quantum mechanics, now let me introduce what is not quantum mechanics. Especially,
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I will focus on the (local) hidden variable model.

The hidden variable model is a classical stochastic model. First, it assumes that every
quantum state or quantum black box labelled by |y) is described by a probability distribution of
hidden variable A: P (A). For every physical observable O, the probability of getting readout
y; is given by a conditional probability: P(y;|A,O). So the total probability of having readout y;

from observing O is
P(yi|0) =Y P(yi|A,0) Py (A). (2.63)
A

Suppose we have a qubit system |y) = % (|0) 4 |1)). From quantum mechanics, we know
if one measures spin-z operator G, then half of the chance we get +1 and the other half we get
—1. And if one measures spin-x operator Gy, then we get 41 all the time. This phenomenon can
also be described by a hidden variable model. Suppose there is a hidden variable that we don’t

know, and it can take four values 0,0,,0,1,, 1.0y, 1,1,. The measurement probability is defined as

P(+1/|0.0y,0;) =1, P(+1]0,0,,0,) =1
P(""I‘Ozlmcz) =1, P(_Hozlmcx) =1

(2.64)
P(_1|110x76z> =1, P(+1|1zoxacx) =1

P(=1|1,1y,0;) =1, P(=1|1,1,,0,) = 1

Then, the above measurement scheme can be reproduced with a hidden variable system that
Py (0,0,) = 0.5, and P, (1;0y) = 0.5. There is nothing that goes beyond classical hidden
variable theory about one qubit. So what properties are purely quantum mechanical? In the
following, I will introduce two aspects of quantum mechanical systems that cannot be described

by any local hidden variable theory: quantum non-locality and quantum contextuality.
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2.5.1 Bell’s inequality

When we have a composite system, magical things can happen. One of the most exciting
properties in quantum mechanics is called quantum entanglement. Quantum entanglement is a
quantum version of correlation that goes beyond classical correlation. Suppose we have a pure
state |y) for a bipartite system A ® B. With Schmidt decomposition, any pure bipartite state has

the Schmidt form:
) =Y Aol @), (2.65)
o

where {|a),} and {|a)} are orthonormal basis for 4 and Hp respectively. Then the reduced

density matrices are

pa=Trz(p) = Y Ag|o) 4 (0t
¢ (2.66)
ps = Tra(p) = Y Ag|o) 5 {al .

There are many definitions of entanglement entropy, such as von Neumann entropy and Renyi
entropy. Here, I will introduce the von Neumann entropy: S = —Tr(plog(p)). As we can see
the entanglement between A and B depends on the spectral of Schmidt decomposition, and
S = —Y A2 log(AZ). Another important property of entanglement entropy is that it does not rely
on the choice of basis for subsystems.

Now let me generalize the previous example to a two-qubit state: |y) = %OOO) +111)),
which is also called Einstein—Podolsky—Rosen (EPR) state. One can check that the entanglement
entropy for part A and part B are one bit. Therefore, part A and part B are entangled and not
separable. Moreover, if one calculates the mutual information, we see the EPR state can share
two bits of mutual information between A and B. This phenomenon is quite interesting because

the perfectly correlated two classical bits cannot share mutual information that exceeds one

30



bit. This indicates the EPR state has some correlation beyond classical correlations. In the
previous discussion, we have seen that the classical hidden variable model can perfectly fit the
data produced by one qubit. Now let me prove this will not be true for two qubits EPR state.
Suppose we have a EPR state |[EPR) that described by a hidden variable theory Pgpr ().
After state preparation, we send one qubit to Alice, and the other qubit to Bob. We assume there
is no superluminal communication, so Alice and Bob have the same hidden variable distributions,
Pgpr(M). This is also called local hidden variable theory. And we assume Alice and Bob have a
instrument that can measure at least three quantities: 7] - G, 7> - G, and 73 - 3. Suppose there is
a hidden variable theory with hidden variable A that can take value A = £1,,, £1,, £1,,. And
if one measures 7; - G, the probability of readout is p(£1|---+1,,---,7;-6) = 1. For example
p(+1+ 1, — 1y, + 1y, 71-6) =1, p(—= 1|+ 1y, — 1y, + 155,72 -6) = 1, and p(+1|+1,, — 1, +
1,73 -6) = 1. If such a hidden variable theory exists, there must be a preassigned probability

distribution Pgpr (A), which is illustrated in Table.2.1.

Table 2.1: The hidden variable theory for EPR state. If such a theory exists, then there is a
preassigned probability distribution.

Alice Bob PEPRO\‘)
+1n1 + 17!2 + 1}13 +1n1 + 1112 + 1113 pl
+1n1 + 1n2 - 1n3 ‘Jl‘lnl + 1n2 - 1n3 P2
+1n1 _1n2+1n3 +1n1 _1n2+1n3 p3
+1n1 - lnz - 1n3 +1n1 - lnz - 1n3 P4
_1n1 + lnz + 1n3 _1n1 + 1n2 + 1n3 ps
_1n1 + 1n2 - 1}13 _1n1 + 1112 - 11’l3 Pe6
_1n1 - 1n2 + 1n3 _1n1 - 1n2 + 1n3 P71
_1n1 _ln2_1n3 _1n1 _1n2_1n3 143

Suppose Alice measures 7i; and Bob measures 7i;, the probability they have the same

readout is p(#| - G4 = Hy - Gp) = p1 + p2 + p7 + ps. With the same logic, we can write down

p(it1 G4 =ity - Gp) + p(iiz -G =1i3-Op) + p(7i3-8a =71 -8p) = 1+ 2p; +2pg > 1. (2.67)
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If we use the quantum mechanical model to calculate the same probability, we will get:

p(ii) - G4 =1y - Gp) + p(iia-Ga =iz - Op) + p(7i3- G4 =71 - Op)
_1—|—ﬁ1-ﬁ2 1+ 13 1 +73-1y
- 2 2 2

(2.68)

If the classical hidden variable model is compatible with quantum mechanical model, and be able
to explain everything, then we will have

1+ﬁ1-ﬁ2+1—|—ﬁ2-ﬁ3 1 +n3-1;

2.69
2 2 2 - (269

This is a simple version of the Bell’s inequality[Bel64b]. Especially, if we choose 7i; ,ii; and 73 to
be vectors that lie in the same plane and has angle 21t/3 with each other, then 7 -7y =iy - 73 =
i3 -i = —1/2. And we see the Bell’s inequality is violated:

I+ -y 147dp-siz  1+n3-7
L 213 311

<1 2.70
2 2 2 - (&70)

1w

If we can test the violation of Bell’s inequality in experiments, then it will confirm quantum
mechanics cannot be described by any classical hidden variable model, and quantum entanglement

is beyond classical correlations. Currently, there are several experiments that confirm the violation

of Bell’s inequality[ADR82, GMS18, CLZ"18].

2.5.2 Quantum contextuality

As we have seen, the Bell’s inequality rules out the possibility of classical local hidden
variable theory. It shows us quantum entanglement and non-locality is a pure quantum effect.
We should also notice that the Bell’s inequality is a statement that depends on the quantum state.
Besides quantum non-locality, there is another interesting quantum property called quantum

contextuality that is independent of the underlying quantum state. Quantum contextuality focuses
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on the non-commuting nature of the measurements in quantum mechanics, and shows this
non-commuting property or quantum uncertainty principle is intrinsic in quantum mechanics.
Formally, the Kochen—Specker theorem[SK68] is a ‘no go’ result for noncontextual hidden
variable theories. The theorem states that the observables of a quantum system can’t have definite,
non-contextual, pre-existing values before they are measured, not even for certain finite sets of
observables. Here, I will use a game, called Mermin magic square[Mer90, Mer94], to prove a

simpler version of Kochen-Specker theorem.

(a)

IZVZIyZ22) I

XQI I X XoX) I

XRZ|Z XY oY) -1

Figure 2.5: (a) A square with 9 entries. Each entry can be assigned with number 1 or a
probability p(+£1) in general. (b) An example of the assignment. (c) A quantum magic square.
Each entry is assigned with an operator. The value of entry will be obtained after measurements
on some quantum state.

Suppose we have a 3 x 3 square as shown in Fig. 2.5 (a). Each of the entry c¢;; can be
assigned with 1. Fig. 2.5 (b) is an example of one assignment. Let us consider the assignment
of numbers are generated from a quantum mechanical process. Each element of the square is
assigned with a two qubit Pauli operator, whose eigenvalues are 1. For example, we assign
0, X0, or X ®Z to c31. We can check the operators in each row and column commute with
each other. Remember the commuting operators can be measured simultaneously. Therefore,
we call each row and column a context, a concept from natural languages. Regardless of the
underlying quantum state, we ask whether can we pre-assign probability p(+1) to each operator.

If such a goal can be achieved, then we say there exist a non-contextual hidden variable theory.
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Otherwise, there is no pre-existing probability that can be assigned to the readout of those quantum
observables. And the value of each operator depends on the context that we are measuring.

Like the Bell’s inequality, we define a statistical quantity,

C = (ci1c12€13) + (C21022023) — {€31€32€33)
@2.71)

+ {(c11¢21631) + (c1ac22032) + (€13¢23€33),

where (-) means the statistical average. It is easy to check that for quantum model, C = 1. For
non-contextual hidden variable model, it is also easy to check that by assigning &1 to ¢;;, the
largest C value one can get is C = 4. Therefore, any non-contextual hidden variable model will
have C < 4. The experimental verification of C value indicates the non-communing nature of
physical observables indicates the contextual property of quantum mechanics[GMS18, DRLB20].
In recent years, people have shown that quantum contextuality can be a potential resources for
quantum advantage in various computational tasksfGAW*21]. It is interesting to see art and
science are often intertwined. Last but not the least, I would like to use a famous art piece by
Escher to illustrate the contextuality. Just as shown in Fig. 2.6, local agreement will not guarantee

the global agreement.
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Figure 2.6: Escher’s Waterfall. It shows local agreement will not guarantee the global agreement.
It can be viewed as an art illustration of quantum contextuality.
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Chapter 3

Complexity and unitary designs

3.1 Measure of Haar

In mathematics, a measure can be thought of as a ruler that tells you how things are
distributed or concentrated in a mathematical set or space. For example, if we want to calculate
the volume of a sphere, we can choose to use Cartesian coordinate (x,y,z) and do integral over
dx-dy-dz. Or we can choose the spherical coordinate (r,0,¢) and do integral over 2 sin(8)dr -
d®-d¢d. The extra rsin() can be viewed as the measure. Here, I am not going to define Haar
measure rigorously. The intuitive picture for Haar measure of the unitary group can be viewed as
a uniform distribution over the unitary group. It is the unique probability measure on the unitary

group U (N) that is both left-invariant and right-invariant:

dUu =1
Haar (3'1)

FVU)U = / FUV)U = / F(U)dU,

Haar Haar Haar

for all V € U(N), where f is an arbitrary function. So Haar random unitaries are extremely
random, and they are distributed evenly for the unitary group. In this section, I will review some

mathematics that we will use for Haar integral, and some parts are largely inspired by [RY17].

36



3.2 Schur-Weyl duality

Theorem 1 Let L(H®¥) be the space for all linear maps A : H* — HEK, Let U(H) be the
unitary group on H. An operator A € L(H®*) commute with all V=* with V € U(#H) if and only

if A is a linear combination of permutation operators W

AV =0,WV e U(H) <= A=Y cx-Wr, (3.2)
TESk
where Sy, is the permutation group for k element. A permutation operator Wy with permutation

n=mn(1)n(2)---w(k) is defined as

Wrlar,az, -, ax) = |ag(1y, an(1)s > e - (3-3)

The Pauli string is the tensor product of Pauli operators without any global phase. For example, a
Pauli string for four qubits can be 6129 = X ® Y ® I ® Z. The Pauli operators provide a basis for
L(#H), the space of linear operators acting on Hilbert space #. Since Tr(Pij) =29;;, we can

expand any operator A as

1
A=Y ajPj, aj=;Ti(PjA). (3.4)
J

One interesting example is the cyclic permutation operator Wey. for k copies of qubit system. We

can easily find the Pauli decomposition as

1 +
Woe=z— Y, PQP® P 1®(PPP), (3.5)

k—1
2 Py,...P._€P
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where the sum is over kK — 1 copies of P. In particular, we see the SWAP operator has the

decomposition:

1 1
SWAP = - ZP®P*:§(H®H+X®X+Y®Y+Z®Z). (3.6)
pPep

Using tensor diagrams, we can express the above equation as

. = X (3.7)
P

Here, I introduce the arrows on the line as a "new” ingredient for the tensor diagram. The inward
and outward arrows are a good indication of the left and right basis for matrices. With this
notation, we can freely move tensors around without causing confusion. In contrast, the tensor
diagram introduced in Sec.2.2 is strictly read from left to right. As an example, we can convert

the above diagram to the following without confusion:

@Al e

A natural application of (3.8) tells us the average Pauli channel is the identity channel:

1
3 Y PTAP=1Tr(A). (3.9)
pPe®P
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3.3 Haar integral

When we are dealing with random unitary channels, we usually need to integrate the

unitary matrices uniformly from unitary group,

/H (U @ U qU. (3.10)
aar

Here I will introduce a diagrammatic approach to calculate the Haar integral above. First, let me

define the k-fold channel of an operator A € L(H*) as

o

Haar

(A) == / (UM TAUkqU. (3.11)
Haar
By using the right-invariance of the Haar measure, we can show

(V®k)TCI)(k)

Haar

@AV = [ fuv)du =¥ (A), (3.12)

Haar

and by using the left-invariance of the Haar measure, we can show

Cbgzar ((V®k)TAV®k> = /Haarf(VU)dU = cpggar(A), (3.13)

where V is any unitary matrix defined in #. From the (3.12) and (3.12), we can see ol (A)

Haar

commute with all operators V®*. Utilizing Schur-Weyl theorem, we can write CIDg?lar (A) as a

linear combination of permutation operators,

Dl (A) = Y Wa-un(A). (3.14)

TeSy
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ur(A) is a linear function of A and depending on the permutation . So we can write it as

ur(A) = Tr(CrA). (3.15)

Using (3.13) again, we can find

Tr(Cr (VI TAVER) = Tr(VERCR(VERYTA) = Tr(CrA). (3.16)

Therefore, [Cr, V®K] = 0 for VV. By using Schur-Weyl theorem again, we can write

Cr= Z crn,oWs- (3.17)
CESy
And we have
k
O (A) = Y cxoWaTr(WoA). (3.18)
T,0ES)

The coefficient cg ¢ depends on two permutation indexes, and it is called the Weingarten matrix.

To find the Weingarten matrix, we can use the fact that ol (Wy) = Wy,

Haar

W)\. = Z CTC,GWTC Tr(Wgwx)

7,6

(3.19)
— Z Cm(;Wnd#CyCleS(GM
T,0
Therefore, we have a linear equation for the Weingarten matrix,
8ea= Y, croQon, (3.20)

cES)
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with Qg ) = d*eyeles(G}) - Ag we can see, the Weingarten matrix is the inverse matrix of the cycle

counting matrix Q, which is symmetric. So the k—fold channel solution is

) (A)= ¥ (0 NeoWaTr(Wed) = Y Wglm, o] We Tr(WoA)

T,6€8) T,0ES)

(3.21)
- Z Wg[TEGil]Wn TI'(WGA),
T,0ES)
where I have introduced the Weingarten function Wg[,6] = (0~ 1) 5. And in some literature,
it also has been written as Wg[r,6] = Wg[rno~!]. It will be more useful and intuitive to write
down Haar integral as tensor diagrams and give a diagrammatic rule for Haar integral. Like the
Feynman diagram, this will help people calculate Haar integral easier. First, I can express Haar

integral as a tensor diagram:

Haar

—See>— —elie> (3.22)
—F —>-ee>— el e>
— =U : :

—Sele>— —S>elUie

The inward(outward) arrows in the tensor diagram indicate the left(right) indexes of a matrix.
The inward nodes of U are labeled by one color, red, as an example. And the outward node of U

is labeled by another color, such as green. The coloring rules for U are the opposite. And the
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Haar integral result can be represented diagrammatically in the following:

—>ee>— —D-ee>—
E, —>eU— —>—eU'e—>—
ol e— —H>olUie>—
—&

— Z Wglor1] E
o, TESE .
+.

(3.23)

—— o
W e,
—— e

=

The red dots are connected with red dots with some permutation operator Ws where ¢ € S, and
the green dots are connected with green dots with some other permutation operator Wy where
T € S;. We need to sum ¢ and 7T over all the permutations in permutation group Sy and each term

is weighted by Weingarten function Wg[ot1].

3.4 Haar random states

Similarly, we can define the k—fold average of Haar random states. If |y) = U|0), and
U is a Haar random unitary, then |y) is the Haar random state or Page state. Now let’s use the

diagrammatic approach to calculate the k—fold average of Haar random states,

[ ()t = g, (v vl (324
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| twwnetay
Haar

—>-0 U o5>—(0)(0|—>—o Ut o—>—
— g, —>oU>—(0)(0>-eUTe>—

—>-oU e>—|0) (0|5~ UTe—>—

(3.25)

= CZWG

In the second equal sign, I have used the fact that no matter what is the permuation connec-
tion for the green dots, it will always result in one. In addition, for a fixed permutation o,
Yoes, We[ot™!] = Yycs, Wg[A]. In the last equal sign, I define ¢ = Y5, Wg[A]. If we take a

trace of (3.25). We see

1 1
© T Yocs A9~ KIC(k+d — 1K)’ (3.26)
(k+d—1)!, L , ‘
where C(k+d —1,k) = TSNS =) is the binomial coefficient. As a byproduct, we also derived
the following equality,
N Yoes, dteyeles(s)  kIC(k+d —1,k) .
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3.5 Unitary design and frame potential

As we have discussed, a Haar random matrix ensemble can be viewed as a uniform
distribution of random unitary matrices. Considering an arbitrary ensemble of unitary ‘£ =
{Ui|p(U;) = pi}, unitary design is a quantitative measure of how random the ensemble is. We
call an ensemble unitary ¢-design if and only if the ensemble cannot be distinguished with Haar

random ensemble up to rth moment. That is the #-fold channel with respect to £,
) (4) = Y p; (U7 AU, (3.28)
J

is the same as Haar random ¢-fold channel up to ¢, i.e. CID(ZZ) (A) = @ggar (A). Since Pauli strings

are basis for operators A, an ensemble is 7-design if and only if CID%) (P)= o) (P),VP € (P)*".

— *Haar

Therefore, we have another useful criteria,

E is t-design <= CID(Zt) (P) is a linear combination of Wy, for VP € (P)®". (3.29)

The definition of unitary 7-design does not tell people how to check whether an ensemble is
t-design efficiently, since the Pauli group P! has exponentially many elements. Now let me
introduce frame potential as a single quantity for characterizing unitary ¢-design.

Considering an ensemble of unitaries ‘£, the tth frame potential is defined as

I
FY = — Y |Tutv)), (3.30)
|E| UVEE

where |‘E| is the cardinality of E.

Theorem 2 For any ensemble ‘E of unitaries,

(3.31)



The equal sign is satisfied if and only if ‘E is t-design.

A simple and insightful proof is given by [RY17, Sco08]. Considering S = [ (UT)*' @ U*'dU —

fHaar(UT)(g)t ® U®th, we have

0<Tr(s"s) = /
UeEJVEE

+ / / dUdv|Te(UTV)|*.
U&cHaar JV €Haar

By utilizing the invariance of Haar measure,

dUdV|Tr(UTV)|* — 2/

/ dUdV|Te(UTV)|*
UeE JVeHaar

(3.32)

2 / / dUdV|Te(UTV) ¥
UeE JVecHaar

=2 / / / dAWdW'dUadv | Te(UTWTvw™)|*
UeE JVeHaar J W W/cHaar

_> / / / AWAW'dUdv | Te(WTU W) [ (3.33)
UeE JVeHaar JW,W/cHaar

=2 / / dWdV | Te(WTV)[*
V eHaar J W €Haar

— 2R

Haar

Therefore, we have

LEO _p0) g

0< TI‘(STS) = Fg) - ZF(Z) Haar E Haar

Haar

(3.34)

In particular, using tensor diagram, we can easily calculate Flga)ar =t!. So the frame potential can

be a character for the complexity of an unitary ensemble E.
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Chapter 4

Machine learning

4.1 Basic concepts

Artificial intelligence is not a new concept. After the birth of computers and computer
programs, people are interested in whether a machine can achieve human performance in some
tasks, such as chess playing and recognition of objects. The traditional methods mainly focus
on designing algorithms or computer programs that can be carried out by machines in order
to achieve some tasks. However, this path is not very successful, even for solving tasks that
seem to be easy for a human, such as recognizing objects in pictures. In the meantime, there is
another school that advocates artificial intelligence can be built with units emulating the function
of neurons in the brain [CHhHO02, KSH17b, LBBH98, LBD ™89, LBD"90]. With millions of
artificial neurons connected together, complicated behaviors of the (artificial) neural network can
emerge. This philosophy is really similar to that in modern condensed matter physics, where
emergence is an important topic [And72]. A simple neural network is shown in Fig. 4.1, where
each colored nodes are the artificial neuron, and the arrows indicate the connectivity between
neurons. Now let me explain what I mean by artificial neurons and their connectivity.

In neuroscience, it is widely believed that information is carried by the electrical signal
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Figure 4.1: A cartoon of feedforward neural network. Each colored node represents a neuron,
and its state can be labeled by a real number x; € R, /#; € R, and y; € R. The arrows indicate
connectivity between neurons, and they can be representated using real matrices w),

or action potential of neurons. Each neuron receives the signal from other neurons through its
dendrites and processes the signal. Then it will pass information to other neurons via synapses.
A simple mathematical model for the neural is the linear-nonlinear model. The state of each
neuron is specified by a real number y € R. First, it will receive a signal from its parent neurons.
For example, the neuron /; in Fig. 4.1 has three parents: x;, xo and x3. They pass their state

information to A; through a linear channel:

hy = Wl(ll)xl + Wl(zl)XQ + Wl(;))@ + bgl). 4.1)

Each coefficient can be viewed as connectivity between neurons. If the coefficient is positive and

large, it means they have a strong bond. Then the neuron will process the received signal via a

1
nonlinear activation function f (A1), such as sigmoid function f, 5(h1) = ool B If we list
o—alhi—

the state of neurons as a column vector, the hidden layer neurons will have states

h= fo(WMz4+50), 4.2)
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and the output neurons will have states,

5= Fo®) = fo (WO (foW Wz +51))) +52), (4.3)

where 0 denotes some parameters in the activation function, and ® is all parameters, including W
and b in general. As we can imagine, if we have more and more units in the system, the behavior
of Fg(X) is more and more complicated. And it is amazing that people prove the universal
approximation theorem for a single hidden layer feed-forward neural network, whose architecture
is shown in Fig. 4.1. The theorem states that with enough hidden neurons in the middle, Fg(X)
can approximate any continuous function on compact space of the input space R”. This universal
approximation theorem lies the foundation of modern machine learning. The neural network
Fo(X) can approximate any continuous functions with nice properties don’t tell people how to
find the parameters ®. Before we discuss this problem in the next section, let me first define some
common classes of machine learning models.

The classes of machine learning models are defined based on the tasks. And the three
common machine learning models are: supervised machine learning models, unsupervised
machine learning models, and reinforcement learning models.

In supervised machine learning, the dataset constitutes pairs of data {X;,y;}, and the
learning task is to predict new y given input X that is not in the dataset. People usually assume
there is a pattern between X and y, and loosely speaking there is a map y = f(X). So mathematically,
machine learning of this pattern from the data is equivalent to finding the parameters © of the
neural network such that Fg(-) approximate f(-). It is called supervised machine learning
because the machine has access to correct {¥;} in the dataset, which serves as a supervisor. For
example, pattern recognition in computer vision is supervised machine learning. {X;} can be
the input images, and {y;} are the category of object in the images, such as car, cat or dog. In

condensed matter physics, the classification of phases of matter is an important task. Here we
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could assign system configurations as input {X;} and the output {y;} is the phase label of the
system [CM17b, KDK 21, HG20, CCMK17, DSDD19].

As the name suggested, in unsupervised machine learning, the dataset is pure {X;}. We
assume all the data are independently sampled from identical hidden distribution P(X). So the
learning task for the machine is to find the best parameters ® for neural network ansatz Pg(X), such
that Pg(-) approximates P(-). For example, in computer vision, people have billions of human
face images, and those images form an empirical distribution of human faces. Computer scientists
want the neural network ansatz Pg(+) to approximate the empirical distribution, such that they can
use Pg(+) to generate new human faces that look really real. And it is also called the generative
model. In physics, usually the distribution of field configurations is determined by the Hamiltonian
of the system, P(X) = e BH () / Z. However, sampling field configurations from this distribution
can be hard. Especially when the system is critical and possesses (quasi-) long-range correlations,
the Monte Carlo simulation can suffer from the critical slowing down. So physicists have use
neural network models Pg(X) to learn the true distribution and propose efficient sampling scheme
with unsupervised machine learning [LW18, HLWY20, AKS19, KAB"20, AKR"21, HHA"21].

In reinforcement learning, usually, there is no dataset beforehand. What we have is an
environment, and we want the agent to achieve some tasks in the environment. For example,
we want the agent to drive the car safely. The neural network usually constitutes a policy
ne(a|s), which tells the agent what the action a to take if the current environment is in state s.
Usually there is reward function r(s,a) for the agent based on the current environment s and
the action chosen by the agent a. The agent learns optimal policy by setting parameters ® in
the neural network through the interactions with the environment. For example, game playing
is a perfect task for reinforcement learning. And it is amazing to see a trained machine with
no human knowledge can beat the world champion in the game of Go. In physics, there are
various control problems, such as how to find the best quantum control to mitigate quantum

errors and decoherence. Those type of questions are suitable for reinforcement learning models
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[AN17, WMD21, KPR20, SQC*21, KHMZ*20].

4.2 Differential programming

In the previous section, I have introduced basic concepts of neural networks and different
machine learning models. In all of them, we can view the neural network as a parameterized
function Fg(-). The learning tasks usually define an objective function £(®) that we want to
minimize. And the learning of neural networks is to find the best parameters ®* such that £(®*)
is minimized. There are three engines in modern machine learning: 1) big data, 2) efficient
hardware, and 3) differential programming platform. The first two are easy to understand. Big
data make the empirical loss function more accurate. And in order to handle big data faster, we
need efficient hardware, such as GPU and TPU. But what is differential programming? In order
to answer this, we need to understand how to find optimal parameters ® in the neural network.

All the fancy methods used in neural network optimization today have the root from
gradient descent. In order to find the (sub-)optimal ®, we can update each parameter according

to its gradient,

oL
— ©; — o= 4.4
0, — 6, ocaG)i “4.4)

AL ] L since a
A®; T 00,

neural network usually contains millions of parameters. In addition, the finite difference method

However, it would be very slow if one chose to use finite difference method

also introduces errors in the estimation of gradients. If we don’t want to run the program a million
times to get the gradient of all the parameters, what should we do? The answer is differential
programming.

Differential programming is a new paradigm of computing. By utilizing the differen-

tiable nature of elementary operations with chain rule in calculus, the computer program can

50



n — 03;2 = (91'2
01 = T9—= Qo = To—0
1 €2 96, 2 T3 90,
B _ Oxa _ Oxs  _ Z(’)E
T1 =Tog—— To=17"T3— Tz=L—
Y00 TP P 0x, P T Omg

Figure 4.2: A cartoon of computation graph. Every computer program can be represented as a
direct acyclic graph, which is called computation graph. The nodes are variables or parameters
in the computation. The black arrows define the operations in the forward pass. And the red
arrows define the gradient flow in the backward pass.

automatically construct an adjoint program that calculates the exact gradient with respect to any

parameters in the program. The meaning of this definition will be more clear with an example.

Suppose we want to write a computer program that calculates

L= (x%el + 92)2, 4.5)

where 0 and 0, are parameters to be optimized, and L is the minimization objective function.
In order to do gradient descent, we need dL/d0; and dL/d8;. As we said before, the finite
difference estimation is not satisfied because we need to do finite-difference O(N) times for N
parameters, and it introduces finite difference errors. If we have learned calculus, then we can

calculate the gradient analytically,

0L

g = 2<X%61 +92) '.X%,

3 Ll (4.6)
[ 2

aez 2()6191 +92)

In deriving (4.6), we have implicitly used the chain rules. When the number of parameters 0;
is small and the program is easy, we can perform this analysis manually. However, in modern

neural networks, there are millions or billions of parameters, and the structure of the program
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is complicated. Therefore, differential programming utilizes the calculus chain rule and helps
us calculate those gradients in a systematic way. In differential programming, the computer
will represent the program as a direct acyclic graph (DAG), where each node stores the value
of the parameters or variables, and the black arrows are elementary differentiable operations,
such as sin(-), and (-)2. For example, the computer graph of (4.5) is shown in Fig. 4.2. The black
arrows are elementary differentiable operators. For example, the computer transform (4.5) into
the following steps: (1) xp = x%el, 2)x3=x24+06,and (3) L = x%.

After the computer compiles the computation graph, it will construct the adjoint computa-
tion graph indicated by the red arrows. The adjoint variable is defined as the gradient ¥ = dL/dx,
and the output adjoint variable is defined as one, i.e. £ =0dL/dL = 1. The computer will

construct the adjoint computation graph backward, and

=) y‘i%, 4.7)
yi€{parent(x)}

For any node, the its parent nodes {parent(x)} can be found via computation graph, and the differ-
ential programming platform already encodes the gradient of every elementary computations, for
example d(x?) /dx = 2x. So dy;/dx is carried out automatically by the differential programming
platform. Therefore, after we write the computer program, it will be compiled into a forward
computation graph and a backward adjoint computation graph. Each time when we run the
forward graph with input x1, 01, 0;, intermediate results like x;, and x3 will be stored. And it
will only run the backward graph once to get all the gradient dL/00;. This new paradigm of
computing solves two important issues: 1) gradients with respect to many parameters will be
calculated with just one run, and 2) the gradients are accurate without finite-difference errors.
In modern days, with the help of differential programming platforms, like PyTorch [PGM™19],
TensorFlow [AAB™'15b], Jax [BFH' 18], people only need to program the forward operations

like what they used to do, and the backward computation graph is automatically constructed. And
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this new paradigm of computing will influence many aspects of physics, such as optimization,

variational inference, and optimal control.

4.3 Backpropagating through continuous and discrete samples

As we have seen in the previous section, the main engine of modern deep learning is the

gradient chain rule. And if the neural network is simply a parameterized continuous function

dFp(¥)
00

is usually the case for supervised machine learning, where the dataset usually contains pairs

Fo(X), then it is straightforward to calculate the gradients with auto-differentiation. This

{(Xi,yi)}. The y; are supervised signals, and it is usually assumed there is a underlying relation
between inputs and signals, i.e. F(X;,y;). The goal of supervised machine learning is to use neural
network as a variational ansatz Fg(X) and choose the parameters ® such that Fg ~ F. However,
not all neural networks are deterministic. The idea of machine learning is more interesting and
powerful when it involves stochastic process and sampling, which is often the case in unsupervised
machine learning, generative modeling, and reinforcement learning. In those cases, we may
need to backpropagate the gradient through samples from a parameterized distribution. More

specifically, we want to minimize an expected loss

L(9,¢)— x~p¢ [fe( )] (48)

In order to optimize this loss function with gradient descent, we will need an efficient method to

calculate
1. VoL(8,0) = Evpy()[Vofo(x)],

2. VoL(8,0) = [, Vopo(x) fo(x)dx

We see the first type of gradients is easier because we can use Monte Carlo simulation to

estimate Vg £(0,9). So the only two requirements are: 1. fg(x) is a differentiable function with
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respect to x and 2. we can get samples from py(x) efficiently. The second type of gradients
is not straightforward to calculate, since it does not form an expectation value. Therefore, we
cannot use Monte Carlo sampling to get it. In the following, I am going to briefly review three
techniques to tackle the gradient of the second type: 1. Score function estimator (REINFORCE),

2. Reparameterization trick and 3. Gumbel-softmax trick.

REINFORCE [Wil92]: The score function estimator is also called REINFORCE because it is
a trick that usually appears in the reinforcement learning. By utilizing the property, Vypo(x) =

Po(x)Volog py(x), we can rewrite the gradient as

VoL(8.0) = [ folt)Vopa(x)dx
= [ $o)Valog(po()po()d “9)

= |Ex~p¢ [fe (x)vcb log Po (x)} .
With the above trick, we can again use Monte Carlo to estimate the gradient. The above equation
can be incorporated with the auto-differentiation (auto-diff) platform. In the forward calculation,
we want to sample x from pg(x) and estimate Ey-p,[fo(x)]. And in the backward calculation, we

want the auto-diff platform automatically calculate Ey~p, [ fo(x)Vglog py(x)]. To achieve this,

we define

ro(x) =log py(x) + (1 —log py(x)).detach, (4.10)

where (A).detach creates a flag such that A is detached from the backpropgation graph. REIN-
FORCE method sometimes can have large variance. To mitigate this effect, one can substract a

baseline from it,
VoL(0,0) = Exvp, [(fe (x) =b(x)) Vg logp¢(x)] + Exnpy [D(X)]- 4.11)
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Reparameterization trick [KW14]: Sometime, the random variable x can be reparameterized
as a deterministic function g that takes ¢ and a random variable € that does not depend on ¢ as
input, i.e. x = g(¢,€). One famous example is the Gaussian random variable x ~ A (u(0),6%(9))
can be rewritten as x = u(0) +02(¢) x €, and € ~ A((0, 1). With reparameterization trick, we can

rewrite the gradient as

V¢L(9,¢) = V¢[E8~p(8) [fe(g(¢78))]

:[Eswp(e) fé(g(¢,e))V¢g(¢,€) :

(4.12)

One should notice, the requirement for reparameterization trick is fp(x) must be differentiable

with respect to x, and g(0,€) must exist and be differentiable with respect to ¢.

Gumbel-softmax [JGP17]: This method can be viewed as a reparameterization trick for
the discrete samples. Let discrete random variable x ~ Cat(ny,...,m) follow a categorical
distribution, where 7; is the probability of x in category i. One way of sampling this discrete
variable is utilizing the accumulated distribution. Let 1 ~ Uniform[0, 1], and x = {max i|m; +m +
-+« +m;—1 <n}. With the reparameterization trick, a categorical random variable with distribution
Cat(my,...,m) can also be reparameterized as a deterministic function acting on probability
values m; and a random variable €; ~ Gumbel|0, 1| following the Gumbell distribution. The
Gumbell random variable can be obtained via €; ~ —log(—1log(n;)), where 1; ~ Uniform[0, 1].

Then it can be shown that the random variable

x := g(7t,€) = argmax; (log Ty + &), (4.13)

with &, ~ Gumbel[0, 1] will follow the correct categorical distribution Cat(7t). The reparameteri-
zation trick has successfully separate the effect of randomness and parameter of distributions. And

it is usually referred as Gumbell-max trick. However, the argmax function is not differentiable.

55



To make it differentiable, people use softmax function to approximate it. More precisely, one can

define a Gumbell-softmax random variable,

exp ((logm, + &) /7)
Yexp((logme +€4)/T)

x; = Softmax ((logm +€)/7) = (4.14)
In above, we introduce a hyper-parameter T called temperature, since it resembles the temperature
of Fermi-Dirac distribution. When T — 0, one can see random variable x; will become a one-hot
vector that follows the categorical distribution Cat(7t). And when T — oo, it will become a uniform
distribution. In practice, people usually choose T ~ 1/N, where N is the number of categories.
With Gumbell-max and softmax, now the gradient can be backpropagate through the discrete

samples. As a summary, I list the comparison of different tricks in the Table.4.1.

Table 4.1: Summary of different methods to backpropagate gradient through samples.

| Method | Continuous or Discrete | Exact p(x) | V.fo(x) must exist
REINFORCE Both Yes No
Reparameterization Continuous Yes Yes
Gumbell-softmax Discrete No Yes
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Part 11

Classical shadow representation of

quantum states
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Chapter 5

Hamiltonian-driven shadow tomography of

quantum states

5.1 Introduction

Quantum state tomography [VR&9, JKMWO01, CFS02, PR04, RLR ™04, CW20] is an
essential quantum technology underlying the characterization of quantum devices and the discrim-
ination of quantum states. It aims to reconstruct the density matrix from repeated measurements
of identically prepared copies of a quantum system. While the complexity of exact tomog-
raphy of the full density matrix scales exponentially with the system size due to the curse
of dimensionality[HHJ " 17a], approximate tomography with polynomial complexity has been
developed with assumptions of the underlying quantum state, including matrix product state
tomography[CPF 10a, LMH"17b, WHW ' 17], reduced density matrix tomography[LPW02,
LWO02, CIR*12, CJZZ12, XLC™ 19, Di4], and machine learning tomography[TMC™18b, TM18,
CTMAI18, XX18, QFK18, TTv"19, CLP"19, CGW 120, NFJ*20].

Among various tomography schemes, shadow tomography[BKL"17, Aarl7, AR19,
HKP20, ZRM20, EG20a, EKH*20, CYZF20a, ZZ1.20, SZK*21, GZJ21] has recently attracted
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much research attention. Given a copy of a N-qubit quantum system described by the density
matrix p, the shadow tomography protocol first performs a random unitary transformation U
on the state p — p’ = UpU, then measures the transformed state p’ in the computational basis
(i.e. simultaneously measuring the Pauli-Z operator on every qubit), as illustrated in Fig. 6.1. After
the measurement, the system collapses to a pure state |b) labeled by the bit-string b € {0, 1}V
of measurement outcomes. Classical snapshots & = U |b) (b|U of the quantum system can be
collected through repeated measurements. Given the knowledge about the random ensemble of
the unitary transformation U, the density matrix p can be reconstructed as a particular linear
combination of the ensemble average of classical snapshots &, where the linear channel only

depends on properties of the unitary ensemble.

+—

=
S g Unitary channel %
+ O %
S+ . 55
g % U(t) = o Ht z
c (this work) é,)

Figure 5.1: Shadow tomography protocol. Specially in this work, the unitary channel is
considered to be a time evolution generated by a random Hamiltonian H for time ¢.

The unitary transformation U plays an important role in the protocol to scramble the
quantum information, such that the computational basis measurement on the scrambled state p’ is
effectively a simultaneous measurement of a random set of N commuting operators {U'Z;U }f’: 1
on the original state p. In this way, each measurement returns measurement outcomes for 2V
observables (as products of arbitrary subsets of the commuting operators, e.g. U'(Z;Z iU,
which provides an efficient way to extract information from the quantum system. The shadow
tomography saturates the fundamental lower bound on the minimal number of independent
samples required for tomography,[HHJ*17a, HKP20] achieving the maximal efficiency. In
particular, when the unitary ensemble is Haar random (or any unitary 2-design such as random

Clifford circuits), the scrambling is strongest to enable estimating rank-1 observables (such as
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quantum fidelity) with a constant number of samples that does not scale with the system size N.

However, insufficient scrambling power of the unitary channel will affect the efficiency of
shadow tomography. To investigate the effect of scrambling power on the tomography efficiency,
we consider the random unitary channel U(¢) = e~'#* to be the time evolution generated by a
chaotic Hamiltonian H, which enables us to tune the scrambling power of the unitary channel by
the evolution time 7. Such a tomography scheme will be called the Hamiltonian-driven shadow
tomography. When ¢t = 0, the unitary channel is an identity that has no scrambling power, then
the shadow tomography is only able to reconstruct the diagonal part of the density matrix p (in
the computational basis). As the quantum system evolves for some time, the computational basis
measurement will be able to probe the off-diagonal part of p more efficiently, but it also becomes
less efficient to infer the diagonal part of p as the diagonal information starts to get scrambled
with the off-diagonal information. In the long-time limit, the unitary ensemble approaches the
Haar limit, and the efficiency for both diagonal and off-diagonal parts converges to the same
limit. In this work, we derive the reconstruction channel for the Hamiltonian-driven shadow
tomography and analyze its efficiency as a function of the evolution time ¢ and the total Hilbert
space dimension D = 2. We find that, given observables are Pauli operators, there exists an
intermediate time range 1 <7 < D'/°, in which the Hamiltonian-driven shadow tomography
only need ~ Tr(03)/D samples to estimate a diagonal observable Oy, and ~ Tr(02) samples to
estimate an off-diagonal observable O,, which is superior to the shadow tomography based on
2-design random unitaries. Our result may find applications in shadow tomography with shallow
quantum circuits, which are feasible in the noisy intermediate-scale quantum (NISQ)[Pre18b]

era.
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5.2 Brief Review of Shadow Tomography

Consider a N-qubit system described by an unknown density matrix p which can be
prepared repeatedly. The goal of the quantum state tomography is to infer p from repeated
measurements on independent copies of the state. In each experiment, the state p is first evolved
by a unitary operator U drawn from the distribution P(U) and then measured in the computational
basis. The measurement will prepare a classical snapshot of the quantum system 6 = U™ |b) (b|U
with b € {0,1}" labeling the measurement outcome. After M repeated experiments, we will
collect M classical snapshots {G1,---,6}. We can view the average mapping from the quantum

state p to its classical snapshots as a measure-and-prepare quantum channel M,
M(p) =ES6 =E [U*|b><b|U], (5.1)

where the averaging is taken over both the unitary ensemble P(U) and the possible measurement
outcomes following the probability distribution P(b|U) = (b|UpUT|b).
The quantum state p can be reconstructed by applying the inverse channel M ! (i.e. the

reconstruction channel)

p=M 1(ES) =EM ' (6) = Ep, (5.2)

where p = M ~1(6) = M~ (UT|b)(b|U) is called the classical shadow of the original quantum
state p. The reconstruction channel M ~! does not admit physical implementation, as it is not com-
pletely positive in general. Nevertheless, given the distribution P(U) of the unitary ensemble, the
reconstruction channel M ~! can be calculated and applied to the classical snapshots {&1,-- -, 6y}
by classical post-processing[HKP20] to obtain the set of classical shadows {py,---, P}, which
can then be used to estimate both linear and nonlinear functions of the underlying quantum state

p. For example, the expectation value o = Tr(Op) of a physical observable O is a linear function
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of p, which can be estimated as
R 1 .
o =Tr(0p) = E[Tr(0p)] ~ MZTr(Op,-). (5.3)
i
Nonlinear functions, such as Tr(Op ® p), can also be estimated similarly,

Tr(Op @ p) = Tr(OE[p] @ E[p])

1 o (5.4)
~ s L THOP @),

MM~—1) 7
given the fact that p; and g are statistically independent. When number of experiments M is large

enough, the statistical averages over classical shadows in Eq. (5.3) and Eq. (5.4) will converge to

their corresponding expectation values without bias.

5.3 Hamiltonian-Driven Shadow Tomography.

The shadow tomography approach crucially relies on the realization of the unitary channel
with sufficient scrambling power. Tomography schemes using global Haar/Clifford unitary
ensemble have been proposed in Ref. [HKP20]. In practice, it remains challenging to realize
these unitary ensembles on NISQ devices. We propose to generate the scrambling unitary channel
by some quantum chaotic Hamiltonian H through time-evolution U (t) = e HH! 'With this setup,
the quantum dynamics also enter the discussion, as it becomes meaningful to discuss how the
reconstruction channel M ~! and the tomography efficiency depends on the evolution time .

To analyze the problem, we model the chaotic Hamiltonian generally by a random
Hermitian operator H drawn from the Gaussian unitary ensemble (GUE) in D = 2" dimensional
Hilbert space, following the probability distribution P(H) < exp(—% TrH?). The energy scale
is such normalized that the spectral density of H approaches the Wigner semicircle law p(E) =

ﬁ 4 — E? of the spectral radius 2 as D — . The unitary time-evolution generated by H admits
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the following eigen decomposition
Ut)=e T =VA@)VT. (5.5)

where V is the matrix diagonalizing H and A(¢) is the diagonal matrix A, () = e £'§,,, with
E, being the eigen energies of H. For the GUE random matrix H, the unitary V is Haar random.
Substitute the eigen decomposition of U in Eq. (5.5) to Eq. (5.1), the quantum channel M

can be expanded as

Mp)=E Y VAOWVIL)GBVALVT
V’Abe{O,I}N (5.6)

(B|VA)V VA VT|b).

Using the results of Haar measure integral[Wei78, CS06] and the spectral form factor of GUE

matrices| CHLY 17], to the leading order of D, the quantum channel simplifies to

M(p) = M(1/D+po+pa)
_ 1 po pd

D op(t) PBplr)

(5.7)

where 1 stands for the identity matrix, p, is the off-diagonal part of p, and py, is the traceless

diagonal part of p. The coefficients o (), and Bp(z) are defined as

aplt) = (55 —ho(0)
1 ~1
Bo(t) = (57 +Dho(r)) (5:8)
(D (1) +r(20))> — 4 (2)
o) =——p 3=

and r(t) = J;(2t) /t with J; being the Bessel function of the first kind (which captures the leading-

D behavior of spectral form factors). See Appendix A.1 for detail derivations.
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In the short time limit ¢ — 0, the quantum channel becomes

1
M(p) —>B+pd. (5.9)

As expected, only the diagonal part of the density matrix will be transmitted through this quantum
channel. Because in the absence of time-evolution, the computational basis measurement can
only extract the diagonal information of the density matrix, and the off-diagonal information is
completely lost. As the measurement is not tomographically complete, the channel M is not
invertible at t = 0. However, after a finite time-evolution, a finite fraction of the off-diagonal
information will be scrambled to the diagonal part of the density matrix and become accessible to
the measurement, then the channel M will be invertible (as long as ¢ # 0). In the long-time limit
t — +oo, the quantum channel converges to the known result{ GKKT18] for shadow tomography
with unitary 2-design

Pd Po

1
MP) = 5+ T ot

(5.10)

The diagonal and off-diagonal parts converge to the same channel transmission rate in this limit,
indicating that the quantum information has been fully scrambled.
Since 1/D, p,, and p are all orthogonal to each other, the inverse channel of Eq. (5.7) is

simply obtained by inverting the coefficient of each term,
A Ay ] A .
p=M"(6) :5+OCD(I)00+BD(I)Gd, (5.11)

where 6, and 6, are respectively the off-diagonal and the traceless diagonal part of the classical
snapshot 6 = U (t)|b) (b|U(t). Coefficients ap(t) and Bp(t) were defined in Eq. (5.8). Given
the reconstruction channel ¢ ! for the Hamiltonian-driven shadow tomography, we can use
classical shadows p = M ~!(&) to reconstruct the density matrix p = Ep and to estimate physical

properties of the quantum system following Eq. (5.3) and Eq. (5.4).

64



5.4 Tomography Efficiency Analysis.

We now analyze the efficiency of the Hamiltonian-driven shadow tomography, i.e. how
many independent copies of p are typically needed to predict functions of p to a suitable precision.
We will mainly focus on the efficiency of predicting linear functions, but our result can be
generalized to nonlinear function predictions systematically.

According to Eq. (5.3), the linear function 0 = Tr(Op) can be estimated from the classical
shadow p via o = E[Tr(Op)] = Ed, where 6 = Tr(Op) can be viewed as a random variable derived
from the classical shadow. In practice, we conduct M experiments to collect classical shadows p;,

and estimate o using
1

M
Oavg = M;é" = A—/IiZITr(Oﬁ,-). (5.12)

Based on Chebyshev’s inequality, the probability of the estimation 0,y to deviate from its
expectation value o is bounded by its variance Var(0ayg) as Pr(|0avg — 0| > 8) < Var(oayg) /8. To
control the deviation probability within a desired statistical accuracy €, we require Var(0ayg) /8% =
Var(6)/(M&?) < &, where & bounds the additive error in 04y and M is the number of identity
copies of p used. In other words, the number of experiments needed to achieved the desired
tomography accuracy is given by

M > Var(6) /e&*. (5.13)

Therefore the problem boils down to analyzing the variance Var(o) of the single-shot random
variable 6 = Tr(Op). We will assume the physical observable O to be traceless (Tr O = 0), since
adding O by c1 only shifts 6 by a constant ¢ (given Tr(p) = 1), which does not affect its variance.

We can further bound the variance by

Var(0) = E[6%] — E[0]* < E[6%], (5.14)

By decomposing the observable O = O, + O to its off-diagonal part O, and traceless diagonal
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part O 4, we can evaluate [E[6%], which takes the form of

E[6°] = V[0®?] = V[0;?]|+ V[07?] + V[0, ® Od), (5.15)

where V[0%?] is a linear function of the double-operator 02, whose explicit form is given in
Appendix A.2. More explicitly, we can express V[052] = Tr(02)F,(t) and V[05?] = Tr(02) Fy(t)

with the dynamic form factors given by

T 2 T 2
Flt) = 5i0)+ 20) o + (1) oo,
5 ? (5.16)
Tr(O;p)

Fy(t) = fa(t) + f5(t) H(03)

where the time-dependent functions fi 34 5 are given in (A.13) of Appendix A.2. Combining
the results in Eq. (5.13), Eq. (5.14) and Eq. (5.15), we arrive at the following theorems regarding

the efficiency of Hamiltonian-driven shadow tomography, which are central results of this work.

Theorem 3 Given an off-diagonal operator O,, the Hamiltonian-driven shadow tomography with
an evolution time t uses O(# Tr(02)F,(t)) independent copies of p to estimate the expectation

value o, of the observable O, to the precision that Pr(|o, — Tr(O,p)| > ) < &.

Theorem 4 Given a traceless diagonal operator Oy, the Hamiltonian-driven shadow tomogra-
phy with an evolution time t uses O(# Tr(O3)Fy(t)) independent copies of p to estimate the

expectation value o4 of the observable Oy to the precision that Pr(log —Tr(Ogp)| > 3) < &.

In the long-time limit (¢ — o),

2
(0%p) 5 (5.17)

(o) = Fyles) = 1 425 o <

There is no difference between diagonal and off-diagonal observables in terms of tomography

efficiency. The required number of samples (i.e. copies of p) scales as M ~ Tr(0?)/(8?) which
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agrees with the result for shadow tomography using Haar/Clifford random unitaries.[HKP20]
For rank-1 observables, such as quantum fidelity, Tr(0?) is independent of the system size N,
then the shadow tomography only needs a constant number of experiments to achieve the desired
accuracy.

We dubbed F,(t) and F;(t) as sample form factors since they can be interpreted as the
ratio of the required number of samples in the Hamiltonian-driven shadow tomography to that
in the random-unitary-based shadow tomography (with 2-design unitary channels). A sample
form factor less (or greater) than its long-time limit indicates the Hamiltonian-driven shadow
tomography is more (or less) efficient than the random-unitary-based shadow tomography. With
these understandings, we investigate the early time behavior of F,(7) and Fy(z).

At early time, the behavior of sample form factors can be rather complicated. However,
we found that for Pauli observables (i.e. O is a Pauli operator), they take particularly simple forms

(to the leading order in D)

1 1

F,(t) = =Tt Fy(t) = wsEInt (5.18)

Recall that r(¢) = J;(2¢)/t, the time-dependence of F,(t) and F,(r) for Pauli observables are
plotted in Fig. 5.2. In the following, we will mainly focus on the Pauli observables. The general
cases are discussed in Appendix A.2 and A.4.

For off-diagonal observables, the sample form factor F, () diverges as r — 0, as it is
impossible to infer the off-diagonal information from computational basis measurement in the
absence of information scrambling. As time evolves, the off-diagonal information gets scrambled
to the diagonal part, then F,(¢) decays with ¢ as t~2, as shown in Fig.5.2(a). F,(t) quickly
approaches 1 after a characteristic time 7, ~ 1 set by the inverse energy scale of the Hamiltonian
H, which was identified as the scrambling time of the system in Ref.[YG18]. Thus in the

Hamiltonian-driven shadow tomography, one just needs to wait for the scrambling time to achieve
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Figure 5.2: Time-dependence of the sample form factor: (a) F,(¢) for off-diagonal observables
and (b) F;(¢) for diagonal observables. The time scales in unit of the inverse energy scale of the
chaotic Hamiltonian H.

effectively the same efficiency as random-unitary-based shadow tomography in terms of off-
diagonal observable. Moreover, the scrambling time 7, is independent of D (or the system size N)
in our model, given the non-local nature of the GUE random Hamiltonian.

For diagonal observables, the sample form factor Fy(t) is of the order Fy(t) ~D~! =27V
at = 0, which is exponentially small in system size N. Without any unitary scrambling, the
computational basis measurement is directly measuring the diagonal information of the density
matrix, therefore it requires much fewer samples to infer diagonal observables as compared to that
of the general-purpose random-unitary-based shadow tomography. As time evolves, the diagonal
information is scrambled away, hence more samples are required to achieve the accuracy goal.
So the tomography efficiency decreases with time for diagonal observables, in contrast to the

increasing efficiency for off-diagonal observables.

Interestingly, Fy(t) peaks to its maximal value periodically before it saturates to its
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long-time limit, as shown in Fig. 5.2(b). At these peaks, the diagonal information is maximally
scrambled, therefore we name this phenomenon as scrambling beats, which was first reported in
Ref. [YG18]. The peaks occur at times #; = x; /2, where x; is the kth zero of the Bessel function
Ji1(x). Under coherent Hamiltonian evolution, the scrambled information can partially bounce
back in a finite-size system, leading to the beat behavior of F;(z). But how long scrambling beats
will last depends on the system size. The characteristic time for scrambling beats to die off is of
the order 75 ~ D'/ = 2N/® when Dr*(14) ~ 1. Before this time scale, there exist time windows
between peaks, as yellow-shaded regions in Fig. 5.2(b), when the sample form factor maintains at
alow level of Fy(t) ~ D~

For a large enough system, the time scales #; ~ DY andt, ~ 1 are well-separated, which
admits an intermediate time range ¢, <t < f; where the Hamiltonian-driven shadow tomography
can simultaneously achieve exponentially higher efficiency for diagonal observables and the
same efficiency for off-diagonal observables, as compared to the random-unitary-base shadow

tomography. Such behavior could potentially be advantageous when the diagonal observables are

of more interest in certain tomography tasks.

5.5 Efficiency for Nonlinear Functions.

Our result can be generalized to analyze the tomography efficiency of predicting nonlinear
functions of the density matrix p. For nonlinear function involving k copies of p, which generally

takes the form of Tr(Op®¥), the variance of the shadow estimation can be bounded by

Var(Tr(0p™)) < E[Tr(0p™*)?]

(5.19)
< ;Tr(Oocfocémoc%Oaf(xg-"af) I(JF(XZ‘ (1),
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where & = (a, -+, o) has k-component, and each
a; = (o, 0) € {(0,0),(d,d), (1,0),(0,0),(1,d),(d,I),(0,d),(d,0)}

is a pair of labels where Ocl-L/ R labels the i-th tensor leg of left/right O operator. The summation is
over all combinations of a. The details are discussed in Appendix A.5. Plugging the variance into

Eq. (5.13), the number of required experiments can be bounded as well for nonlinear functions.

5.6 Summary and Discussions.

We propose to use Hamiltonian generated unitary evolution to scramble the quantum
information for shadow tomography. We provide an unbiased estimator of the density matrix for
all ranges of evolution time. We investigated the efficiency of the Hamiltonian-driven shadow
tomography. In particular, for Pauli observables, we showed that it can be superior to the shadow
tomography based on 2-design random unitaries within an intermediate time window. Although
our analysis is based on the GUE random Hamiltonian, we expect that the result could be
generalized to other types of quantum chaotic Hamiltonians[CSM 21, CMH"21]. In addition,
we expect quantum dynamics generated by generic chaotic Hamiltonians are more feasible to
existing quantum devices, such as nuclear spin systems and cold atom quantum simulators, than
deep quantum circuits. In experiments, the Sachdev-Ye-Kiteav model which exhibits the same
level statistics as GUE Hamiltonians has been successfully simulated on those quantum platforms
recently [LYL"19, WS21]. In a follow-up work [HCY21], we demonstrate that approximate
shadow tomography can be performed using a simple spin chain Hamiltonian modeled after
programmable trapped ions or Rydberg atom array systems, implying that our method is hardware
efficient for existing quantum devices [Saf16a, MCD"21]. Another interesting possibility is
to consider Hamiltonians consist of random Pauli strings with random coefficients. In the

strong disorder regime, such Hamiltonians can be asymptotically diagonalized by Clifford
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unitaries using the spectrum bifurcation renormalization group approach[YQX16], which enables
efficient classical post-processing of the classical shadow data and makes the Hamiltonian-driven
shadow tomography computationally feasible. Machine learning techniques may also find useful
application in the classical post-processing phase to construct unbiased reconstruction channels
based on data statistics, which helps to mitigate the influence of noises and imperfections of
NISQ devices. Finally, we would like to mention that our current analysis is limited to non-local
Hamiltonians. How to include locality into the discussion will be a challenging problem for future

research.
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Chapter 6

Classical shadow tomography with locally

scrambled quantum dynamics

6.1 Introduction

Quantum state tomography[VR89, JIKMWO01, CFS02] is an essential task in many quan-
tum technology applications. It seeks to reconstruct a quantum state from experimental data of
repeated measurements. While reconstructing the full density matrix of a many-body system
quickly becomes unfeasible with increasing system size due to the curse of dimensionality[OW 16,
HHJ*17b], predicting a collection of (possibly exponentially many) properties of the quan-
tum system can still be efficiently achieved with an only polynomial number of state copies,
which was the idea of shadow tomography proposed by Aaronson[Aarl7, AR19]. The idea
is further improved by the recent work[HKP20] to propose the classical shadow tomography,
which significantly reduces the demand on the quantum hardware and enables efficient classical
post-processing.

Given a copy of an unknown quantum state p of N qubits, the classical shadow tomography

protocol (see Fig. 6.1) first transforms the state p — p’ = UpU" by a unitary U, which is randomly
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sampled (independently each time) from some probability distribution P(U ), then measures the
transformed state p’ in the computational basis, p’ — |b)(b|, which collapses the system to a
product state |b) labeled by a bit-string b € {0,1}*" of measurement outcomes b = (by, -+ ,by)
with the probability P(b|p’) = (b|p’|b). Based on the observed bit-string b and the classical
description of the unitary U, a classical snapshot 8y , = U |b) (b|U can be constructed in principle,
which essentially encodes the measurement outcomes together with their basis choice (pulled
back through the unitary evolution). Repeating such measurements on independent and identical
copies of p for a few times, a collection of classical snapshots £, = {6y} can be obtained
(which correlates with p). Ref. [ONE13] showed that as long as the unitary ensemble is expressive
enough (i.e. tomographically complete), there exist a linear reconstruction map M ~! such that

the density matrix p can be formally recovered as p = Egez, M1 [6]. This also enables the

I
prediction of many properties of p, like the expectation value of any physical observable O as:

=1Ir = Eger r 1 0O]). e construction of classical snapshots Gy, and the
0) = Tr(0p EG‘pTOMIA Th ion of classical snapshots 6y and th

computation of their associated properties are performed on a classical computer.

Unitary channe

————

s===> 011010
————— 110011
—————

Classical
postprocessing

Measurement

local & finite—depth (this work)

Figure 6.1: Illustration of classical shadow tomography protocol. This work focuses on the case
when the unitary channel is of finite depth and respects locality.

However, the existing methods[Aar17, AR19, HKP20, HY21] have limitations in applying
to near-term quantum devices. First, depending on the type of observables O that we are interested
in, one needs to employ different strategies to design the unitary circuit U. Two limiting cases

have been analyzed in Ref. [HKP20]: (1) if the observable is low-rank (such as many-body overlap
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fidelity), it is most efficient to adopt deep circuits, such that U effectively forms a global Haar
random ensemble; (ii) if the observable is high-rank and quasi-local, it would be more efficient
to adopt shallow circuits (e.g. the on-site Haar random). Otherwise the sample complexity will
be high. However, the flexibility to interpolate between these two limits has not been available
yet, such that the tomography protocol can not adjust to the target observables in a more adaptive
manner. Second, more importantly, in existing quantum simulation platforms, applying random
unitary circuits is very challenging, because it requires high degrees of sophisticated quantum
controls. In particular, for programmable quantum simulators of large systems based on trapped
ions or Rydberg atom systems,[EWL 20, SSW*20, ZPH"17] a certain set of entangling unitary
evolution is much more favorable to implement than typical random unitaries that require fine-
tuned control. Therefore, it is desirable to develop a method applicable for systems with limited
controls.

In this work, we address these challenges by generalizing the classical shadow tomogra-
phy methods to a broad class of unitary ensembles. In our approach, the specific details of the
unitary ensemble is not important as long as the ensemble generates locally scrambled quan-
tum dynamics[KAAY20]. Rigorously speaking, the probability distribution P(U) of evolution
unitaries is invariant under local basis transformations, i.e. YV € U(2)N : P(UV) = P(U) where
V =11, V; is a product of local unitary operator V; on each qubit. This basically means that the
unitary evolution U is efficient in scrambling local quantum information, such that the initial local
basis choice is quickly “forgotten” under the quantum dynamics. Examples of locally scrambled
quantum dynamics includes random unitary circuits (including random Clifford circuit at the
3-design level)[NRVH17, ZN18, NVH18, CBQA19, BCA19, FVVY20] and quantum Brownian
dynamics[LSH"13, XS18, GHST18, ZC19, CZ19]. As the unitary ensemble does not care about
local basis choice, the only information that matters will be the quantum entanglement that the
unitary dynamics can create in the quantum system. Therefore, for locally scrambled quantum

dynamics, the reconstruction map only depends on the entanglement property of the classical
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snapshots. The density matrix p can be reconstructed as a linear superposition of the classical
snapshot 6 reduced in different subsystems. The combination coefficient can be calculated
from the entanglement feature[YYQ18b, YG18] of the classical snapshots, which is simply the
collection of average purities of classical snapshots in all possible subregions.

Since our method is applicable to a broad class of quantum dynamics, it is natural to
consider an ensemble of realistic Hamiltonian evolutions that are readily available in near-term
quantum devices. To this end, we introduce an approximate classical shadow tomography (with a
non-vanishing but small bias) applicable to an ensemble of time-dependent Hamiltonian evolution
that generates approximately locally scrambled dynamics. We numerically demonstrate this idea
by using a simple spin chain Hamiltonian modeled after programmable trapped ions or Rydberg
atom array systems. We introduce the local frame potential to characterize the bias and we show
the bias decreases rapidly for the initial short period of time, and reaches a vanishingly small
plateau value for the proposed Hamiltonian. Surprisingly, we find even a single instance from an
ensemble of Hamiltonian evolution suffices to perform an approximate tomography, implying
that our method is hardware efficient for existing quantum devices[Saf16b, MCD"21].

In the following, we will first establish the general theoretical framework to calculate
the reconstruction map in Sec. 6.2.1 and to bound the sample complexity in Sec. 6.2.2. We also
provide a two-qudit toy model to analytically demonstrate our construction in Sec.6.2.3. We
comment on how to carry out the computation efficiently in Sec.6.2.4. Then we apply our
construction for local unitary circuits and numerically demonstrates its accuracy in quantum
fidelity and Pauli observable estimation tasks in Sec.6.3.1, as well as their scaling of sample
complexity in Sec. 6.3.2. Finally, we show in Sec. 6.3.3 that our approach can be extended to
broader classes of unitary ensembles that are approximately locally scrambled. We propose a
frame potential to characterize the level of approximation, which serves as a powerful indicator to
design nearly-locally-scrambled unitary ensembles that are available for existing analog quantum

simulators[Saf16b, MCD*21]. We summarize our classical post-processing protocol and outline
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a few interesting future applications in Sec. 6.4

6.2 Theoretical Framework

6.2.1 Reconstruction Map from Entanglement Features

To be general, we consider a quantum system consists of N qudits, where each qudit has
the Hilbert space dimension d (where d = 2 corresponds to the qubit system). The protocol of
classical shadow tomography describes a process that first measures the unknown quantum state p
in a random basis specified by the unitary transformation U and then prepare the classical snapshot
&y, = U'|b)(b|U based on the measurement outcome b. The randomness involved in the process
includes (i) sampling U from the distribution P(U) and (ii) obtaining the measurement outcome b
conditioned on the evolved state p’ = UpU with the probability P(b|p’) = (b|p’|b) = Tr(6y ,p).
As pointed out by Ref. [ASS21], the ensemble of classical snapshots forms a positive operator

valued measure (POVM), defined as

Esip = {6u b | P(6u p|p) = Tr(6u sp)P(U)}- (6.1)

We will call Z), the posterior POVM, as it is conditioned on the observation of p. The posterior

POVM reduces to the prior POVM

Lo ={6u | P(6us) =d NP(U)}, (6.2)

when there is no knowledge contained in p, i.e. p = d V1. For the prior distribution P(6y ), the
outcome b is uniformly drawn from all possible outcomes in {0, 1,---,d — 1}*V (independent of

U,p). The prior POVM ‘£ only depends on the unitary ensemble Ey = {U|P(U)}.
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With the notation introduced above, the expected classical snapshot ¢ can be expressed as
6= E 6= E 6Tr(6p)d" = Mp)], (6.3)
o

which is related to the original state p by a quantum channel M, called the measurement channel.
It is easy to check that the measurement channel M is trace-preserving, completely positive and
self-adjoint. It is generally difficult to obtain an explicit expression of M for generic unitary
ensemble Zy (or for generic prior POVM %Z;). Results of M are known for global and on-
site 2-design unitaries]ONE13, GKKT18, EVRZ19] (possibly with noise[EG20b, CYZF20b]),
fermionic Gaussian unitaries[ZRM20], and many-body Gaussian unitaries[HY21].

We can make progress in computing the measurement channel M (and its inverse) for yet
another class of unitary ensemble, namely the locally scrambled unitaries| KAAY20], for which

P(U) obeys the (right-)local-basis invariance condition'
YW e U(d)N : P(U)=P(UV), (6.4)

where U(d)" is the group of all on-site unitary operators. This condition is sufficient to ensure

the prior ensemble Eg of snapshot states & to be invariant under 6 — V6V,
VYW e U(d)V : P(6) = P(VT6V). (6.5)

In this case, we say that Eg is a locally scrambled POVM. In fact, our following derivation only
requires the weaker condition Eq. (6.5) at the state level, instead of Eq. (6.4) at the channel level,
though it will be practically more straight forward to design unitary circuits that satisfies Eq. (6.4)

by assembling locally scrambled unitary gates.

IStrictly speaking, the locally scrambled condition originally introduced in Ref. [KAAY20] requires both the
left- and the right-invariance, i.e. P(VU) = P(UV) = P(U). However, for the purpose of this work, we only require
a weaker condition that the distribution only need to be invariant under the right-multiplication of the local basis
transformation V.
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Nevertheless, as long as the states & are locally scrambled (even if the unitaries U may or
may not be locally scrambled), we will be able to insert local basis transformations V in Eq. (6.3),

and average V over any ensemble of our choice,

o= E E V'6VTr(VieVp)a". (6.6)
VeU(d)N 6€Es

We can choose the ensemble of V =[], V; to be such that every V; is independently a local 2-design
unitary. With this choice, the ensemble average of V can be evaluated by averaging every V; over
the Haar unitary measure following Ref. [Wei78, CS06], and the result can be written as (see

Appendix B.1 for derivation)

o= T oW

£o.C 6.7)
B,CE2N

with B, C summing over all possible subregions of the N qudit system, where each subregion is
labeled by a subset of Qy = {1,---,N} (as an element in the power set 2*). |B| denotes the
size (cardinality) of the region B. pg = (Trzp) ® (15/d/Bl) is the reduced density matrix of p in
region B embedded back into the total Hilbert space. B denotes the complement of region B. Note
that B and B do not need to be consecutive regions in the space, and they can intertwine with each
other in general. Wgp ¢ = (d? — 1)V (—1/d)/B<Cl is the Weingarten function of regions B and

C, where B©S C denotes the subregions that belong to either B or C but not both.

W= E Tie(Tre6)?= E o5 © (6.8)
’ 6€Es 6€Ls

is the 2nd entanglement feature[YYQ18b, YG18] of the prior POVM s, where S\ (&) denotes

the 2nd Rényi entanglement entropy of the state 6 in region C. The entanglement feature Wg,)c

is merely a property of the unitary ensemble £y (which determines %s). It describes how the

unitary channel entangles a product state in general. It depends on neither the underlying state p
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to be reconstructed nor any particular snapshot state 6 collected in the tomography process.
Given the entanglement feature ngc, Eq. (6.7) spells out how the expected classical
snapshot G is written as a linear combination of reduced density matrices pp in all regions,
which explicitly specifies the measurement channel M as a linear map 6 = M [p| from p to
o. Therefore, any reduced classical snapshot 64 must also be a linear combination of reduced
density matrices pp, which implies that the measurement channel can be represented as a matrix
Myp such that 64 = Y 5 Mappp. Suppose the map M is invertible (i.e. the unitary ensemble is
tomographically complete), the inverse map M ~! (the reconstruction map) must also be a linear
map that combines all reduced classical snapshots 64 to reconstruct pg = ¥4 (M ~1)ps64. In
particular, we are most interested to reconstruct the full density matrix p (because all reduced
density matrices follows from its partial trace), which must also be a linear combination of G4

with some coefficients r4 € R,

p=M""[o]=d" Y racy, (6.9)
A€2CN

where 64 = (Tr;0) ® (15/d I41) follows the same definition as the reduced density matrix. The
reconstruction map M ~! is not a physical channel, because the reconstruction coefficients r4
may not be positive definite in general. Nevertheless, M ! is still trace-preserving and self-
adjoint. Since M ~! is linear, we have p = M ! [Esetry, 6] = Esery, M ~1[6], which enables us
to reconstruct the underlying state p from the ensemble of classical snapshots. The collection of
p = M~1[8] is also called the classical shadow[HKP20] of p, which can then be used to predict

many properties of p efficiently.
Now the key problem is to compute r4 from Wg,),C' For a system of N qudits, there will

be 2V many reconstruction coefficients 4. To determine them, we substitute Eq. (6.7) to Eq. (6.9)

and find

p= Z fA,B,C”APBWéaca (6.10)
A,B,Ce2%N
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with the fusion coefficient fj p ¢ given by

_ 2N+|A|—|B|+]AND
fapc=Y. Spanpd*NTAIZIBIHANDIwg ) -
De2N

d3 \N D 1\ IceD|
(@) L st P(-g)

De2N

6.11)

which is universally determined by the qudit dimension d. Here 84 g denotes the Kronecker delta
of two regions A and B, s.t. 84 g = 1 (or 0) if A = B (or A # B). Eq. (6.10) will hold for any choice
of p if and only if

2
Y, mafascWele=3say. (6.12)
A,Ce2%N

where Qy = {1,--- N} is the full set that labels the full system of N qudits. By solving this linear
equation, we can determine the reconstruction coefficients r4 in terms of of the entanglement
feature Wf(:i),c’ such that the reconstruction map M ~! can be constructed according to Eq. (6.9).

In conclusion, we provide a general framework to compute the reconstruction map for
the classical shadow tomography with locally scrambled quantum dynamics. The protocol is

summarized as:
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1. Given the prior POVM <%, first calculate its entanglement feature by

2. Solve for the reconstruction coefficient r4 by

(2)
Y rafaBcWe, c =00y
A,Ce2N

3. Then the reconstruction map is given by

p= M_][G] :dN Z rpa04.

AE29N

All computations are supposed to be carried out on a classical computer in the post-
processing procedure. Although solving for r4 may be computationally demanding for large
systems, it only needed to be done once and its result can be applied to process all classical

snapshots collected from all possible states p to be learned.

6.2.2 Variance Estimation and Sample Complexity

Given the ensemble g, of classical snapshots collected from measuring the unknown
state p, we can use the reconstruction map M ~! to predict properties of p. For example, let
O be a traceless Hermitian operator representing a physical observable. Its expectation value

(O) = Tr(Op) can be predicted via

(0)= E Te(0M'6]))= E Te(M~'[0]6), (6.13)

6€Z6|p (AFEZG“)
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where we have used the self-adjoint property of M ~! to transpose its action from & to O. We
can interpret 6(6) = Tr(M ~'[0]6) as the single-shot estimation of the observable (based on a

particular classical snapshot &), such that (O) = Eser,, 0(6).

The variance of the single-shot estimation is defined as

which can be bounded by (the first term in Var o)

A 2 _ A(&)2
Var o6 < HOch\p = 66[% 0(6)
olp

(6.14)

= E (TrM'[0)6)>Te(6p)d".
6€Es

The bound ||O|| 7, Can be considered as a generalized p-dependent notion of the (squared) shadow
norm[HKP20] of an operator O (whereas the shadow norm originally defined in Ref. [HKP20]
further maximizes over all possible underlying states p to remove the dependence on p). Assuming

FEs is locally scrambled, following the same approach of inserting and averaging local-basis

transformations as in Eq. (6.6), the bound in Eq. (6.14) becomes

2 2 (3)
IOllz,, = X 1Ol WeeiWs, (6.15)
g,hesy

where g, h are group elements in the S]3V (product of 3-fold permutation groups over N qudits),
Weg, , is the Weingarten function of permutations g and h. || OH& ¢ 18 a generalized operator norm

for O, which is defined as
0[5 o = @ Te((M 01> @ p)te), (6.16)

where ¥, is the representation of the SY permutation g in the 3-fold Hilbert space. W(3) is the
Xe p 3 P P Es.,h
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3rd entanglement feature of the ensemble £, defined as

Wy, = E Tr(6%%y). (6.17)
Note that the 2nd entanglement feature previously defined in Eq. (6.8) can be consistently cast
into the form of Eq. (6.17) in terms of permutation operators (see Ref. [YG18]).

In practice, the expectation value (O) is always estimated based on a finite collection
of the snapshot states. Let M be the number of samples of p measured in the data acquisition
stage (each sample results in a snapshot state 6;). The finite average estimation 0 = 1\% Z%z 10(6%)
will fluctuate around the true expectation value (O) with a variance that scales as (Vard)/M. By
the Chebyshev inequality, the probability for o to deviate from (O) by more than € amount is

bounded by
2
Varo ||0Hf5‘p
< < .

Pr(lo—(0)] = 8) < 3ot < —

(6.18)

Therefore, to control the failure probability within a threshold 9, i.e. Pr(|o — (O)| > €) < §,

sufficient number of samples is required

2
ol

r (6.19)

A larger (smaller) shadow norm ||0||zfc|p indicates that more (less) samples are needed.
However, the p-dependent shadow norm HOHZ%‘p is generally complicated to evaluate.
If we are not interested in the shadow norm for a specific state p, but rather the expectation
of the shadow norm over an ensemble of states {VpV 7} that are similar to p by local basis
transformations V € U(d)", we can actually define a p-independent shadow norm by averaging

overV,

o> = E 0| 6.20
101/, VGU(d)NH 1 (6.20)

o|vpv T '
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The expected shadow norm can be expressed purely in terms of the entanglement features of Eg

and Ep (see Appendix B.2 for derivation),

2 2 2
012, = ¥ vascoWe smncWer b 6.21)
A,B,C.DE2®N

where the coefficient v4 g ¢ p 1s given by

)N anomrere l) e (6.22)

VAB.C.D =TA rB( 7

d?>—1

and Ep = {VTOV|V € U(d)V} denotes the locally scrambled ensemble (or known as U(d)"-
twirling) associated with the observable O in question.
In conclusion, given a traceless Hermitian operator O, its expected shadow norm ||0||%G

provides a typical lower bound for the number of samples needed
lo]z,
Mz —= 6.23
S Tey (6.23)
in order to control the error of the prediction o given by the classical shadow tomography within
the probability bound Pr(|o — (O)| > €) < 8. Here we have only analyzed the sample complexity
for a single linear observable. For the analysis of multiple and/or non-linear observables, we refer

to the original paper of Ref. [HKP20]. Their result applies to our case simply by replacing the

shadow norm with our version.

6.2.3 A Toy Example of Two-Qudit System

To demonstrate our framework and to gain some analytical intuition, we present a toy
example to compute the reconstruction map in a two-qudit (N = 2) system. We assume that

the two-qudit system always evolves under a locally scrambled quantum dynamics, which
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can be modeled (for example) by a finite-time Brownian evolution® driven by random Hamil-
tonians. Every classical snapshot 6y, = UT|b)(b|U is generated by the reversed evolution

from the product state |b)(b|. In the long-time limit (Fig.6.2(a)), the entanglement feature

W(z)—(l 2d  2d

. = (L2 2 1) follows from that of Page states, where the subregion basis are arranged

in the order of {},{1},{2},{1,2}. This is because the evolution of entanglement feature under
any locally scrambled quantum dynamics always converges to the Page state, regardless of the
initial state, as proven in Ref. [KAAY?20]. In the short-time limit (Fig. 6.2(b)), 6 remains as a
product state, therefore the entanglement entropy vanishes for all regions, which translates to

Wg) = (1,1,1,1). In general, for any intermediate time, the entanglement feature should take

the form of
2
W = (1w, 1), (6.24)
with w varies between dgil (the long-time limit) and 1 (the short-time limit). The physical

meaning of w is the average single-qudit purity in the snapshot state G.

Given W, in Eq. (6.24), Eq. (6.12) reads

'1 d(d-w) d(d—w) d*d=2dw)] | T} 0
-1 d2-1 (@2—1)2
0 dw—1 0 M i1} 0
2 2—1 212
d (@1 =1 . (6.25)
0 0 dw—1 d(d*w—2d+w)
421 @-1) r{2} 0
0 0 0 d%—2dw+1
L (d2_1)2 _I"{Lz}_ _1_

2The Brownian unitary evolution is a product of a sequence of infinitesimal time-evolution U = [], e % but
the Hamiltonian H; at each time step is independent drawn from a random Hamiltonian ensemble (unlike the coherent
quantum dynamics, where the same Hamiltonian drives the dynamics though all time.)
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Figure 6.2: Two-qudit unitary channel in (a) the long-time (Page state) limit and (b) the short-
time (product state) limit. (c) Reconstruction coefficients r4 and (d) the shadow norm HOH%EG
v.s. the single-qudit purity w, for d = 2. w varying from 1 to 4/5 effectively models the circuit
depth (or evolution time) growing from 0 to oo,
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By solving this linear equation, the reconstruction coefficient r4 can be obtained

! [ w321 3dw—2w?+1 |
(dw—1)(d2=2dw+1)
1y —d*w+2d3 —2d+w
F= — d(dW*l)(dZ*ZdW‘Fl) (6 26)
—d*w2d3 —2d+w
r{2} d(dw—1)(d2—2dw+1)
(@>-1)
{12} d%(d2—2dw+1)

The behavior of r4 as a function of w is shown in Fig. 6.2(c), which continuously interpolates the
two limits.
In the short-time limit, w = 1 and Eq. (6.26) reduces to r4 = (1,—(d 4+ 1)/d,—(d +

1)/d,(d + 1)?/d?), corresponding to the reconstruction map

M o] = Q) (d+1)o;— 1)), (6.27)
=172

matching the result of on-site 2-design circuits| GKKT18, EVRZ19]. In the long-time limit, w =

2d
d2+1

and Eq. (6.26) reduces to 4 = (—1,0,0, (d?> + 1)/d?), corresponding to the reconstruction
map

M o] = (d*+1)6—1, (6.28)

matching the result of global 2-design circuits| GKKT18, EVRZ19]. The general result in
Eq. (6.26) provides the reconstruction map that interpolates these two limits, which allows
us to perform classical shadow tomography for intermediate unitary channels that are neither
on-site nor global 2-design.

To investigate the sample complexity of the tomography scheme in the two-qudit system,
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we consider a traceless Hermitian operator O (i.e. TrO = 0) and assume:

Triy (Trgpy 0)? = ky Tr O?
{13 Ur2y 629)
Tr{z} (Tl‘{l} 0)2 =k TI'02,

then the entanglement feature of the observable O can be arranged as the following vector
We) = (0,k1,k2, 1) Tr O, (6.30)

with the same choice of region basis as in Eq. (6.24). Given r, Wgo) and Wg), we have all the

information needed to calculate the shadow norm, according to Eq. (6.21)

2 _ 1 ko (dP=1)(d—ka) 2
10lz, = G (3 + s i) TrO7, (6.31)

where kit = k1 + k».

The operator locality crucially affects k. Consider modeling a local operator Oy, by a
random operator drawn from the Gaussian unitary ensemble (GUE) and acting on the first qudit
only, we have

W) =(0,d,0,1)Tr O}, (6.32)

loc

hence kioy = d. On the other hand, for a global operator Ogj, modeled by a global GUE random

operator acting on both qudits simultaneously, we have

2
w? = (0, %, 245, 1) Tr Oy, (6.33)
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hence kot = In these two cases, the shadow norm in Eq. (6.31) becomes

d2+1

||0100H2 Ty 1T 01 )
Es d(dw 1) oc (6.34)

2 P (d®—1)
||Oglb||£0_d2(d2+1)(d2 2dw— 1+dw 1)Tr0

Their dependence in w is plotted in Fig.6.2(d). In the short-time limit (w = 1), H01ocH2gG <
| Ogtb ||2TG, meaning that the shallow circuit is more efficient in predicting local observables. In

the long-time limit (w =

d2+1 = ||0g1b||£0 (14d~2)Tr0?, such that there is no
difference in predicting both local and global observables in terms of the sample efficiency,

because all operators are equally scrambled in this limit.

6.2.4 Additional Remarks on Computational Methods and Future Direc-

tions

Efficient numerical methods have been developed[FVVY20, AY20] to calculate the
(k)

evolution of entanglement feature Wy under locally scrambled quantum dynamics by solving the
corresponding entanglement dynamics equation (without simulating the quantum dynamics using
brute force). However, we will leave this approach for future exploration. In this work, we will
compute the entanglement feature beforehand based on the definition Eq. (6.8), by direct sampling
from the prior POVM ‘. For experimentally generated random unitaries whose distribution is a
priori unknown, it is also possible to estimate the entanglement feature efficiently from Rényi
entropy measurements|[EVD 118, VED' 18, BEJ™19] following the definition Eq. (6.8).

As shown in Ref. [AY20], for one-dimensional quantum systems, the entanglement feature

(k)

vector Wy admits efficient matrix product state (MPS) representation, even if snapshot states
in £s are volume-law entangled. Combining the MPS representation of Wgy) with the fact that
Jfa.p,c 1s factorizable to every qudit, one can develop efficient MPS-based numerical approach to

find the solution of r4 (also as a MPS). However, we will defer the development of this approach
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to future work. In the following numerical demonstrations, we will directly solve Eq. (6.12) for
small systems as a proof of concept.

and W(z)

Ty also enables us to calculate the shadow

The MPS representations for r, Wg;)
norm HOHZ% efficiently by a four-way MPS contraction. The ability to compute the shadow norm
efficiently will be particularly useful if we want to design optimal unitary channels to minimize the
sample complexity for a given set of designated observables. It possible to apply machine learning
approaches (such as deep reinforcement learning) to perform the circuit structure optimization.
Therefore, our construction provides the flexibility to allow the classical shadow tomography

to adapt to designated observables, which has not been possible before. We will also leave this

promising direction to future research.

6.3 Numerical Demonstrations

To demonstrate the effectiveness of our approach, we consider two types of unitary

ensembles for the unitary channel in the data acquisition protocol, as illustrated in Fig. 6.3.

(b)

e

¥)

et Hy
I

et Hy
I

et H3

WRIAIAIAIAD

Figure 6.3: Classical shadow tomography with (a) finite-depth random unitary circuits (of L
layers), (b) discrete-time Hamiltonian dynamics (of 7" steps).
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6.3.1 Classical Shadow Tomography with Shallow Random Unitary Cir-

cuits

We first consider using random unitary circuits (RUCs) [NRVH17] for the unitary channel.
As illustrated in Fig. 6.3(a), the unitary circuit consists of two-qubit local unitary gates arranged in
the brick-wall pattern with a periodic boundary condition. Each gate in the circuit is independently
drawn from the Haar random unitary ensemble. The depth L of the circuit can be adjusted.
Obviously, RUCs are locally scrambled, as any local-basis transformation (from both left and
right) can be absorbed by the Haar random unitary gates in the circuit. Therefore, we expect our

reconstruction map to work perfectly in this case for any choice of the circuit depth L.

) 1.2¢ u T . . . ' . ' -

LOE ~bpi- 4 - b -444- 444 - 444 4~ 44 o
= 8:2: $EF, N=6 ]
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1.Of

[en)
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1
==
i
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0.6:' &, 0.4F g ]
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04p = 0.2} i ¢ EF, 3-layer) ]

L 01t 1 ¢ GH, (co-layer)
0.2F 34567809 1
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Figure 6.4: (a) Fidelity estimation of GHZ state with RUC of different circuit depth L using
entanglement-feature-based reconstruction ME}l (denoted by EF) over different number N of
qubits. (b) Fidelity estimation of GHZ state using shallow RUC (3-layer, with ME_FI, denoted
by EF), random on-site (local Haar) gates (0-layer, with ML}{l, denoted by LH) and global
Haar unitary (eo-layer, with 57\’[5}} denoted by GH). The inset shows the variance Var F’ of the
predicted fidelity as a function of system size N. In both subfigures, the sample size is 5000.
Error bar indicates 3-standard-deviation estimated by the bootstrap method. Points are split
horizontally to avoid the overlap of markers.
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For illustration purpose, we start with a Greenberger-Horne-Zeilinger (GHZ) state p =
|W) (Y|, where |¥) = \/Li(|00- --0)+|11---1)). For every given circuit depth L, we first calculate
the entanglement feature Wz(:?,c to determine the reconstruction map M ~!. This calculation is
done for once and stored in the classical memory for future reference. In our numerical simulation
of the data acquisition process, we sample the RUC, apply it to the GHZ state |¥), and perform

the computational basis measurement. We generate a collection of classical snapshots £, = {6}

of size M by repeated measurements. We then estimate the fidelity F' of the reconstructed state by

F = % Y, (w|M-s]]Y). (6.35)

6€Lq)p

Following the philosophy of classical shadow tomography, one should view Eq.(6.35) as a
prediction task. If the shadow tomography is successful, then the estimated fidelity should
converge to F = 1. This estimation can be achieved accurately by a few measurements, even
though the full density matrix estimation avgscs, M ~![6] may still have large fluctuations. In
addition, when the reconstruction is biased, for example the experimental channel M doesn’t
match the theoretical assumption of the unitary ensemble, then the fidelity estimation will deviate
from one. Fig. 6.4 (a) shows that the entanglement-feature-based reconstruction map ME_Fl indeed
gives unbiased estimation of fidelity F for different circuit depths L and for different system sizes
N. Furthermore, when the GHZ state is prepared with Z errors, our method can give the correct
fidelity estimation that decreases linearly with the probability of Z error, which is challenging for
the current state-of-art machine-learning quantum state tomography method[CTMA19, HKP20]
(see Appendix B.3 for more discussions).

To compare with the existing classical shadow tomography method[HKP20], we consider
the reconstruction maps 9\/[G_H1 [6] = (d¥ +1)6 — 1 and M} [6] = ®;((d + 1)5; — 1;), where
EMG_HI (or .‘ML_HI) assumes the unitary ensemble is global (or on-site local) Haar random. They can

be viewed as special limits where circuit depth L tends to infinity and zero respectively. Although
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Figure 6.5: (a) Fidelity estimation of the reconstructed GHZ state with RUC of finite depth L.
(b) Estimation of observable Py = |(¥|00---0)|? (the projection operator to the |00---0) state)
on the reconstructed GHZ state with RUC of finite depth L. In both cases, the reconstruction uses
the global Haar reconstruction map. The sample size is 5000. Error bar indicates 3-standard-
deviation estimated by the bootstrap method.

they can also achieve an unbiased estimation of quantum fidelity, the tomography efficiency
differs. In Fig. 6.4(b), the error bar shows how the (3-times) standard deviation of the estimated
fidelity scales with the number of qubits N at 5000 sample size. As we can see (both from
the error bar and from the inset of Fig. 6.4(b)), the variance of (on-site) local Haar estimation
increases drastically as N increases, which implies an increasingly high sample complexity for
large systems.

In the other limit, the variance of global Haar estimation is independent of system size,
achieving the optimal sample complexity as advocated in Ref. [HKP20]. However, to realize
the global Haar ensemble, the circuit depth needs to be at least of order O(N), which is quite
demanding for quantum devices. If we approximate the global Haar ensemble with finite-
depth circuits and use the reconstruction map MC;Hl on data collected from finite-depth circuit
measurements,[ONE13] this will yield systematically biased predictions for physical quantities
when the circuit is not deep enough. In Fig. 6.5(a), we show that the biased prediction tends to

over-estimate the fidelity, leading to the unphysical result of ' > 1 (the correct behavior is F = 1).
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This occurs because, when the measurement channel M in data acquisition protocol disagrees
with the reconstruction channel M ~! in classical post-processing protocol, the reconstructed
density matrix Ai,l Yoety, M ~1[6] may not be positive-definite (see Appendix B.4 for detailed
discussions), resulting in the unphysical fidelity estimation. This bias gets worse for larger system
size. In Fig. 6.5(b), we also show the estimation of Py = |(¥|00- - -0) |>. For GHZ state, the correct
behavior is Py = 0.5, and we still see significant bias when applying MG}} for shallow circuits.
However, with the entanglement-feature-based reconstruction map METFI, as demonstrated
in Fig. 6.4 (b), we are able to achieve an unbiased fidelity estimation with a 3-layer shallow circuit,
approaching similar variance level (i.e. similar sample efficiency) as global Haar ensemble while

keeping a low circuit complexity. This clearly demonstrates the advantage of our approach.

6.3.2 Scaling of Variance and Tomography Complexity

The above discussion motivate us to define the tomography complexity as C = (L+ 1)M,
where L is the circuit complexity (the number of layers in the quantum circuit), and M is the
sample complexity (the number of sample needed). M will be proportional to the single-shot
variance Varo. Suppose applying each layer of quantum gates and performing measurements
both take a unit of time on the quantum device, then C is roughly the total amount of time needed
to collect the classical shadow from M copies of the quantum state, which characterizes the
complexity of the data acquisition protocol. This notion of complexity is consistent with the
Quantum Algorithmic Measurement (QUALM) complexity introduced in Ref. [ACQ21] (with LM
and M being their gate and query complexities respectively). In the following, we will investigate
the scaling of single-shot variance Varé as a function of circuit depth L and system size N for
both low-rank operators (such as fidelity) and full-rank operators (such as Pauli operators), and
show how the tomography complexity C can guide us to find the optimal circuit depth L,.

For low-rank operators, we will focus on quantum fidelity, which is important in many

quantum information applications, such as (variational) state preparation. We will define the
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Figure 6.6: (a) Single-shot variance of estimated fidelity v.s. circuit depth L for a 9-qubits GHZ
state. (b) Single-shot variance of estimated fidelity as a function of the effective system size Negr.
The best fit for Var F o< exp (C(HLI)&) gives ¢ = 0.47+0.08 and o0 = 0.72 £0.1. (c) Variance of
full rank operator estimation on 9-qubit GHZ state. The full rank operators are Pauli-Z operators
of the form: Z*) = Z@*[®(N=k) with different support k. The dots are experimental results from
simulation, and the lines are theoretical prediction using operator shallow norm by Eq. (6.21).
They match perfectly.
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zero-depth limit (L — 0) of the RUC to be a single layer of on-site Haar-random gates because
even if there is no two-qubit gate in the “zero-depth” circuit, we still assume that the unitary
ensemble is locally scrambled such that on-site scrambling unitaries continue to persist. In this
limit, the single-shot variance Var F of fidelity estimation scales exponentially with the number
of qubits N. On the other hand, in the deep circuit limit (L — o), RUCs will approach the
global Haar unitary ensemble, and the variance Var F' will be independent of system size. We
are interested to investigate how Var F behaves in the shallow circuit regime. In Fig. 6.6(a), we
calculated Var F numerically using the bootstrap method for the 9-qubit GHZ state. It shows the
variance Var F' will decrease quickly in the shallow circuit regime. Interestingly, we found that
N

an empirical formula Var F' o< exp (c(LJr—l)a) fits the data well in the shallow circuit regime, with

a=0.7%0.1. In Fig. 6.6(b), we plot Var F' as a function of ﬁ for different fixed circuit depth
L. We find curves with different choices of circuit depth L all collapse together with the same
coefficient ¢ = 0.47 +0.08.

The physical intuition behind the empirical formula has to do with the operator growth
in RUC:s. If the quantum circuit is very shallow, then the computational basis measurement will
only probe local information in the original basis. If the circuit becomes deeper, computational
basis measurement can probe information in larger regions in the original basis, because the
measurement operator has grown under the (backward) circuit evolution. Suppose the size of
the measurement operator grows in a power-law manner ~ (L + 1)0‘3 with respect to the depth
L of the RUC, the relative size of the system will effectively shrink to Neg = ﬁ, such that
Var F should scale universally with Ngr, as proposed in the empirical formula. We might expect
o= 1/2 (or a = 1), if the operator grew diffusively (or ballisticaly). However, the best fit of our
numerical result seems to indicate an effective operator growth between the diffusive and ballistic

limits. Due to the limited system size in this study, we are unable to determine whether our

observation persists to the thermodynamic limit. We will leave this intriguing scaling behavior

3In the L — 0 limit, the measurement operator is still of at least size 1, which motivates the “+1” regularization
in (L+1)%
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for further investigation in the future. Nevertheless, for any o, the variance decreases faster
than exponential with L in the shallow circuit regime, which already speaks for the advantage of
applying shallow circuits in classical shadow tomography.

For full-rank operators, we mainly focus on consecutive strings of Pauli operators of the
form

ZW) = z&k W=k — 77...7]]. .1, (6.36)
k N—k

where Z is the Pauli-Z operator, and / is the identity operator. We define the locality of the Pauli
string operator by its length k. In the shallow circuit limit (L — 0), the variance of estimation for
Z®) scales VarZ®) oc 4K So shallow circuit is only efficient for predicting the local observables,
and becomes inefficient for non-local observables. In the deep circuit limit (L — o), as the unitary
ensemble becomes globally Haar, there is no difference between local and non-local operators
in this limit, and VarZ®) o< 2V A simple comparison indicates: when k = N/2, VarZ®) will
decrease with L, thus deep circuits will have lower sample complexity; when k S N/2, VarZ(*)
will increase with L, thus shallow circuits will have lower sample complexity. In Fig. 6.6(c), the
dots shows the variance VarZ(*¥) as a function of circuit depth L for different support k. The trend
agrees with our simple argument. For non-local operators, their variance will quickly decrease
with the circuit depth L, while the variance for local operators will mildly increase with L. The
behavior is theoretically described by how the operator shadow norm HOHZ% depends on both
the circuit depth L and the operator locality k, which are separately encoded in the entanglement
features of Es and Ep. We calculate the shadow norm ||Z() ||2£G based on the entanglement
feature formalism using Eq. (6.21), and plot the result as lines in Fig. 6.6(c). The theoretical
calculation agrees perfectly with the numerical results, which also indicates that the shadow norm
bounds the single-shot variance (and hence the sample complexity) quite tightly.

Based on the discussion in Sec. 6.2.2, the sample complexity M is proportional to the

single-shot variance. Given the scaling of variance with the the circuit depth L, we can study the
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Figure 6.7: (a) Tomography complexity C o< (L+ 1) VarF as a function of circuit depth L for
the fidelity (low-rank observable) estimation task. Dots are tomography complexities for GHZ
states of qubit number N by our numerical simulation. Solid curves are best fits based on the
empirical formula Eq. (6.37). (b) Tomography complexity C o< (L + 1) VarZ®) for the Pauli
string (full-rank observable) estimation task. Dots are numerical simulation results. Solid curves
are analytic calculations using the operator shadow norm formula Eq. (6.21).
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scaling of the sample complexity, as well as that of the tomography complexity C. For fidelity

estimation task, C scales as

C=(L+1)Mo< (L+1)VarF
(6.37)

o (L+1)exp (ﬁ)

For sufficiently large systems, the complexity C can have a non-trivial minimum at a finite circuit
depth L, ~ (0N) 1/ _ 1. Our simulation result in Fig. 6.7(a) verifies such behavior. For small
systems (N < 5), random single-qubit measurements can efficiently benchmark the quantum state,
so we do not need to use a finite-depth circuit for data acquisition. However, as the system size
N gets larger, to maintain the prediction accuracy, single-qubit measurements will require more
and more samples that have to grow exponentially with N. As shown in Fig. 6.6(a), applying a
few layers of quantum circuits before the measurement can quickly bring down the single-shot
variance (and hence reduce the sample complexity). However, we also do not want to go too far
in the circuit depth, because that would increase the circuit complexity. Therefore, we expect
an optimal circuit depth L, where the sample complexity and the circuit complexity reach a
balance, and the total tomography complexity is minimized. This explains the advantage of
shallow circuits in classical shadow tomography, as compared to the existing method that requires
either on-site Haar random (L — 0) or global Haar random (L — o) unitaries.

We also study the tomography complexity C o< (L+ 1) VarZ™) for the full-rank observ-
ables, such as Pauli strings Z (%), as shown in Fig. 6.6(b). In this case, what matters is the locality
k of the full-rank operator (the length k of the Pauli string). For local operators (small k), on-site
measurement will be most efficient. However, for non-local operators (large k), we observe that
the tomography complexity is minimized at some finite circuit depth, again demonstrating the
advantage of employing shallow circuits in classical shadow tomography. For different classes
of physical observables, we can use the tomography complexity C as an objective function to

guide the design of the optimal circuit structure. We will leave this promising direction for future
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investigation.

6.3.3 Approximate Classical Shadow Tomography with Local Hamiltonian
Dynamics

Requiring an unitary ensemble to be strictly locally scrambled could be restrictive. To this
end, we would like to explore a broader class of unitary ensembles that are only approximately
locally scrambled. In particular, we study unitary evolutions U = ¢ #T generated by a local
Hamiltonian H for finite amount of time 7', as depicted in Fig. 6.3(b). Two classes of Hamiltonians

are of particular interest. In the first class, we consider a model of random local Hamiltonians

H=Y Hj., (6.38)
i

where each term H; ;| is independently sampled as 2-local GUE random matrices. We dub
this class the GUE2 ensemble to remind ourselves that the Hamiltonian is 2-local. The local
Hamiltonian describes a disordered one-dimensional quantum system in general. Once every
H; ;1 term is sampled, we will use the Hamiltonian H to drive the time evolution without
changing H during the evolution. The unitary GUE2 ensemble is only invariant under U —
VIUV (not U — UV) for V € U(d)N, such that that its corresponding prior POVM g will
transform as &y, = U |b)(b|U — VUV |b)(b|VTUV # V6y ,V, which does not satisfy the
locally scrambling condition at the state level (i.e. the invariance under & — V'6V). However,
we anticipate that under a sufficient amount of time evolution, the original local basis choice (of
|b)) will be quickly randomized given the chaotic nature of the local Hamiltonian, such that the
initial choice of V|b)(b|V' or |b)(b| will not make a substantial difference statistically, so the
GUE2 ensemble will become approximately locally scrambled after some local thermalization
(scrambling) time Ty

Another more realistic class of random Hamiltonians to be considered is based on the
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quantum Ising model with both disordered coupling in space and random fields in time

Hy =Y J;jXiXj+h)_(cos6,X;+sin6,Y;), (6.39)

(ij) i
where the local coupling J;; ~ Uni[J — %,J + %] is drawn from a uniform distribution, and the
angle of magnetic field 6, ~ Uni|0, 27| is also random. We use this Hamiltonian to drive the
quantum dynamics in discrete time steps. In each period of time, the magnetic field # will be
applied along a different random direction 6; in the x-y plane for all spins uniformly. However,

Jij will remain the same throughout the time evolution. The ensemble of unitary consists of

T
U=[]e ™. (6.40)

t=1

which we name as the Disordered Quantum Ising Model or DQIM for short. The DQIM
ensemble is friendly for quantum technology such as Rydberg-atom-based[Saf16b] or trapped-
ion-based[MCD*21] quantum simulators. Similar construction of approximate unitary designs
by Hamiltonian evolution with random quenches in time was also proposed in Ref. [EVD™18,
VED™18]. We would like to investigate how well our framework applies to these two cases.

Each approximately locally scrambled unitary ensembles £y leads to a prior POVM
Fo = {6y p|b € {0,1}*¥ U € Ey} that is also approximately locally scrambled. We propose
to characterize how close the prior POVM Z; is towards its local-basis invariant limit by the
following frame potential

7= E_(Tres)t (6.41)

6,6'cEs

Recall that in deriving Eq. (6.6) from Eq. (6.3), we only require the 2nd moment to match, i.e.

FE 6= E E (VI6V)¥?, (6.42)
6€%s VeU(d)N 6€Es
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therefore we will be most interested in the 2nd frame potential ff(i). The frame potential Tf(i)

for any ensemble Z is lower bounded by its locally-scrambled (U(d )N -twirled) limit ¥, z(?s as
2 2 2 2
72 2 F = Y W Wea sW2 . (6.43)

The fact that ¥, {é?s is expressed purely in terms of the entanglement feature of % indicates that it
is indeed free of any local-basis-dependent information. We can define the gap between the frame

potential and its locally-scrambled limit as
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which turns out to match the trace-square-difference between the 2nd moment E56%2 and its
local twirling Ey,5(V '6V)®2. The frame potential gap A(Eztz serves as an indicator of the validity
of our approach, as it vanishes if % is locally scrambled such that our construction becomes
exact.

Different unitary ensembles can lead to different frame potential gaps of s, which can
be used to evaluate the quality of the unitary ensemble in obeying the local scrambling condition.
In Fig. 6.8(a), we first focus on the frame potential gap A for the GUE2 ensemble. We find the
gap will first decay exponentially and then saturate to a plateau at a very low level. The quickly
vanishing gap implies that the GUE2 ensemble quickly becomes approximately locally scrambled
as time evolves. We define the characteristic time associated with the exponential decay as Tty,
i.e. A®(T) o< exp(—T /Try), which can be considered as the local scrambling (thermalization)
time. In addition, the inset plot in Fig. 6.8(a) shows that Tty is independent of the system size

N, as the slope remains mostly the same for different N. Unlike the global scrambling (global

thermalization) which requires a long time (~ N) to achieve, achieving local scrambling only
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Figure 6.8: (a) Frame potential gap Agg of the GUE2 ensemble as a function of evolution

time 7T'. The inset shows the decay behavior for different system sizes N. (b) Frame potential
gap of DQIM ensemble at different coupling strength J, in comparison with that of the GUE2
ensemble. (c¢) The dependence of the local scrambling time 7ty on the coupling strength J. (d)
Frame potential gap for single instances in the DQIM ensemble. Each instance corresponds to a
light-green curve in the background.
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requires a fixed amount of time set by the ultra-violet energy scale that is independent of the
system size N. This is another advantage of using locally scrambled quantum dynamics for
classical shadow tomography in practice.

As for the DQIM ensemble, we fix the strength of the magnetic field at 7 = 1/4, since
this value produces the fastest on-site scrambling of a single qubit. According to the definition
Eq.(6.39), the only tuning parameter will be the mean value J of Ising couplings (which also
sets their disorder strength). We calculate the frame potential gap for DQIM ensemble with
different J, and use the exponential decay regime to define the local scrambling time 77y,. The
result is shown in Fig. 6.8(b). The DQIM ensemble also approaches local scrambling as time
evolves, although the final saturation plateau is not as low as the GUE2 ensemble. Larger Ising
coupling J will lower the saturation plateau and shorter the local scrambling time Ty, as shown
in Fig. 6.8(c). In addition, as shown in Fig. 6.8(d), we find the frame potential gap for a single
realization quenched-disorder Hamiltonian does not deviate significantly from the ensemble mean
value. This indicates that a single fixed disordered Ising chain under a randomly rotating uniform
magnetic field is already good to generate an approximately locally scrambled ensemble that can

be used for classical shadow tomography.
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Figure 6.9: Fidelity prediction by (a) different approximated locally scrambled ensembles,
and (b) the GUE ensemble at different system sizes N. Sample number is 10000 and error bar
indicates 3-standard deviation.

In practice, we use the two proposed approximated ensembles, (1) the GUE2 ensemble
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and (ii) a single instance of the DQIM ensemble, to perform the tomography task and predict the
fidelity of a 7-qubit GHZ state. In Fig. 6.9(a), we see the predicted fidelity will be biased in the
beginning (the biased fidelity can be greater than one, see Appendix B.4 for more discussions), due
to the fact that the quantum dynamics is still on its way to establish local scrambling. After around
T ~ 10Tty, the local scrambling condition is approximately established, then the entanglement-
feature-based reconstruction map ME}I can provide a good reconstruction of the quantum state,
as indicated by the convergence of the quantum fidelity to identity. In Appendix B.4, we further
investigate the quantum fidelity of p projected to the physical space (to tame the unphysical
F > 1 behavior) and show that the reconstruction is perfect after around 7 ~ 1077y,. In addition,
Fig. 6.9(b) also shows the local scrambling time for GUE2 is independent of system size, which
is consistent with the same behavior in Fig.6.8(a). The results in Fig. 6.9 suggest that the
entanglement-feature-based approach could be applicable for approximately locally scrambled
unitary ensembles. The reconstruction bias vanishes as the frame potential gap decays. As long
as the frame potential gap is low enough, the bias is also expected to be vanishingly small for all
predictions. This significantly broadens the application of classical shadow tomography to a large

class of quantum dynamics that can be achieved on NISQ devices.

6.4 Summary and Discussions

Our result can be further extended to more general measurement channels, which can
involve ancilla qubits and partial measurements. The unitary channel can be noisy and the
measurements can be weak. Under generalized measurements, the state p collapses to p —
K.pK] /(TrK,pK]), where K, is the Kraus operators[Kra71] associated with the measurement
outcome a. We can define the measurement operator 6, = K; K, (with the standard normalization
Y. 6., = 1), which forms the prior POVM ‘¢ = {6,|P(6,) = d~V}, and the posterior POVM will

be Egp = {64|P(64lp) = Tr&,p} correspondingly. As long as the generalized prior POVM Z is

105



locally scrambled, i.e. VV € U(d)N : P(6) = P(VT6V), our theoretical framework automatically
applies, and all formulations in this work remain valid in the same form. This enables us to

consider classical shadow tomography with very general data acquisition protocols.
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Figure 6.10: Classical post-processing protocol to estimate the operator expectation value and
shadow norm.

The entanglement feature formalism plays a central role in our approach. Fig.6.10
summarizes the proposed classical post-processing protocol to predict the expectation value (O)
of a physical observable O, together with its estimated variance (given by the shadow norm HOHZ%
divided by the sample size M). Given the circuit structure, the entanglement feature (EF) solver
calculates the entanglement feature Wg;) of the prior POVM as defined in Eq. (6.8) (the algorithm
is developed in previous works[KAAY20, FVVY20, AY20]). The result is passed to the inverse
channel solver to calculate the reconstruction coefficients r4 by solving Eq. (6.12). With r4,
we can predict any physical observable O by (O) = d" ¥ ra04 where 04 = Escty, TrOG,4 (the
median-of-means trick[HKP20] can be used here if multiple observables are to be predicted). For
every sample of classical description of the Kraus operator K, a quantum circuit simulator (running

on a classical computer) is needed to construct the (efficient representation of) measurement
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operator 6 = K TK. The classical simulation could be efficient if the circuit is Clifford[Got98b]
(our formalism applies to random Clifford circuits with no problem). The part of computation
in the dashed box of Fig. 6.10 should be repeated for every sample to evaluate the ensemble
average. Finally, given the reconstruction coefficient r and the entanglement features Wg) and
Wgo), the shadow norm [|O|| £ can be calculated, which provides an estimation for variance of
the predicted observable. Although it takes some effort to process the entanglement feature data
and to calculate the reconstruction coefficients, such computation (everything outside the dashed
box in Fig. 6.10) only occurs once for a given circuit structure, therefore this computational effort
is usually affordable (especially when efficient tensor-network approaches are developed and

employed).
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Figure 6.11: Illustration of holographic classical shadow tomography scheme, where the
quantum circuit is arranged in a hierarchical structure (forming the hyperbolic bulk space).

The theoretical framework established in this work extends the classical shadow tomogra-
phy to general quantum circuits, which opens up many possible applications. As one interesting
example, we consider performing the classical shadow tomography in the “holographic bulk”
by transforming the original state by a random Clifford circuit arranged in a hierarchical struc-
ture (see Fig.6.11), similar to the multi-scale entanglement renormalization ansatz (MERA)
network[Vid07b, VidO8b] or the holographic quantum error-correcting code[PYHP15a]. Fol-

lowing the idea of holographic duality, local measurements in the holographic bulk translate to

measurements at all different scales on the holographic boundary. Therefore it is conceivable
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that the holographic classical shadow tomography could achieve high sample efficiency for
operators of all scales, potentially evading the dichotomy between sample complexity and circuit
complexity.

Another interesting application is to consider random circuits hybrid with random mea-
surements inserted into the circuit at a fixed rate[ LCF18, LCF19, SRS19, CNPS19, SRN19]. Con-
ditioned on the intermediate measurement outcomes, the hybrid quantum circuit forms a quantum
channel that transmits quantum information from end to end. Driven by the measurement rate, the
final state can undergo an entanglement transition[ VPYL18, JYVL19, BCA19] (or the quantum
channel can undergo a purification transition[GH19] equivalently). When the measurement rate
is high, the quantum information in the initial state can be efficiently extracted by intermediate
measurements (eavesdroppers), such that the channel has zero transmission capacity. When the
measurement rate is lower than a critical threshold, the channel will have a finite capacity and
can transmit quantum information in an error-correcting manner.[CBQA19, FVVY20, GKH*20]
However, it is unclear how to take advantage of the self-organized quantum error correction in
these hybrid quantum circuits. We anticipate that the classical shadow tomography with a flexible
measurement scheme can help decoding the measurement-induced quantum error-correcting code.
We will leave these interesting applications for future explorations.

Finally, the classical shadow tomography provides an efficient interface that converts
quantum states to classical shadow data, which enables us to exploit the power of classical com-
putation, especially data-driven and machine learning approaches, to advance our understanding
of complex quantum systems and to solve challenging quantum many-body problems. As shown
in Ref. [HKT"21], classical algorithms that learns from the classical shadow data has provable
performance advantages over conventional numerical approaches that do not learn of data. Our
work further adds to this promising direction by providing a more flexible classical shadow
tomography scheme that works with very general measurement protocols (beyond on-site Pauli

measurements), which could lead to potentially more efficient classical-shadow-based learning
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algorithms.
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Chapter 7

Topological and symmetry-enriched

random quantum critical points

7.1 Introduction

Topological phases form a cornerstone of modern condensed matter physics, extending
beyond the Landau-Ginzburg paradigm of symmetry-breaking order. An especially important
class of topological states are Symmetry-Protected Topological (SPT) phases [GW09, CGW11,
TPB11, FK11, CLW11, PBTO12, LV12, LG12, CGLW12, CGLW13, Sen15], which are gapped
systems characterized by non-local order parameters and symmetry-protected topological edge
modes. Prominent examples of SPT phases include fermionic topological insulators [VBASS,
SV88, MNZ04, KMO05, FK07, Kit09, SRFL09, HK10]—protected by time-reversal and charge
conservation symmetry—or the Haldane phase in quantum spin chains [Hal83, AKLT88, DR93,
PTBO10]—protected by spin-rotation symmetry.

Recently, the concept of SPT order was extended to gapless systems [KWSDS11, FLNFI11,
SHFDS11, Tsvll, CT11, RDTHA12, GV12, KDB*13, ODC" 14, RBA15, IMR'15, LB15,
KBI15, KC15, ZW17, OC16, MDIR17, WXPH17, KSH17a, RA17, KSGC17, SPV17, GLB17,

111



CYT"18, VIP18, ZLL18, JLSL18, PSV18, KBA18, JV19, VTIP19, JSW19, Ver20]: surprisingly,
many of the key features of SPT physics carry over to the gapless case, despite the non-trivial
coupling between topological edge modes and bulk critical fluctuations. It is also helpful to
think of gapless SPT (gSPT) states [SPV17] as symmetry-enriched quantum critical points (SE-
QCP) [VTIJP19], where global symmetries can enrich the critical behavior of critical systems.
This led to the discovery of new critical points and phases with unusual nonlocal scaling operators
which imply an anomalous surface critical behavior, and symmetry-protected topological edge
modes. In certain cases, such SEQCPs are naturally realized as phase transitions separating
SPT and symmetry-broken phases: while the bulk universality class is locally dictated by the
Landau-Ginzburg theory of spontaneous symmetry-breaking, the nonlocal operators and the
surface critical behavior are affected by the neighboring SPT phase.

In this work, we show that the mechanism protecting gapless SPT phases persists upon
adding disorder. We focus on one-dimensional systems, where the bulk criticality flows to infinite-
randomness fixed points [MDH?79, DM80, Fis92, Fis94, Fis95, MMHFO00]. We first discuss
the paradigmatic infinite-randomness Ising criticality, where we find that—similar to the clean
case [VTIP19]—there are topologically distinct versions in the presence of an additional ZZT
symmetry. We find that one of these classes has topologically-protected edge states. Whilst this
is a finite-tuned critical point, our second example is a stable “random singlet” phase of matter.
Moreover, in the latter case, there are additional gapped degrees of freedom which are able to
make the edge mode exponentially-localized. We also illustrate how this topological random

quantum criticality can emerge naturally in periodically driven (Floquet) systems.
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7.2 Ising* transition

We consider the spin-1/2 chain
H=-Y UiZiZis1 =Y hiXi—Y 8iZi_1XiZi+1, (7.1)
i i i

where X,Y,Z denote the Pauli matrices. The model has a Z; spin-flip symmetry (generated by
P =]];X;) and a time-reversal symmetry ZZT (acting as the complex conjugation 7 = K). Let us
first consider the clean case, where the coefficients J; = J, h; = h and g; = g are site-independent.
In this case, the J, h, g > 0 terms respectively drive the system towards ferromagnetic (FM), trivial
paramagnetic (PM) and Z; x ZZT symmetry protected topological (SPT) [Suz71, RBO1, KM04,
SAFT11b, VMP17] phases, the latter sometimes being called the cluster or Haldane SPT phase.
The phase diagram is shown in Fig. 7.1(a), with the gray solid lines indicating Ising criticalities.

Although the FM-PM and FM-SPT transition are both described by the Ising conformal
field theory (CFT), the time-reversal symmetry acts differently on the disorder operator, leading to
different symmetry enriched CFTs (or gapless SPTs) [SPV17, VIP18, PSV18, VTIP19, Ver20].
To briefly review this, note that an Ising CFT has a unique local and a unique nonlocal scaling
operator with scaling dimension A = 1/8, commonly denoted by ¢ and y, respectively. These
are the order parameters of the nearby phases, i.e., 6(n) ~ Z, is the Ising order parameter,
whereas the disorder operator u(n) is the Kramers-Wannier-dual string order parameter of the
symmetry-preserving phase. In the trivial PM, u(n) ~ [Tj__. X, whereas in the SPT phase,
u(n) ~ M- —wZj-1XjZjr1 = - Xn—2Xn-1YnZn+1 [SAFT11a, BV14, JV19, VTJP19]. We see
that the two Ising critical lines are distinguished by the discrete invariant Tu7T = +u [VTJP19].
This means they must be separated by a phase transition. Indeed, in Fig.7.1(a) they meet at a
multicritical point where the central charge is ¢ = 1.

We refer to the non-trivial case, where the nonlocal bulk operator is charged TuT = —u,

as Ising*. This supports a localized zero-energy edge state [VTIP19]. Intuitively, the edge of the
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Ising™ criticality spontaneously breaks the Ising Z, symmetry. This unusual degenerate boundary
fixed point is stable since u is charged and hence cannot be used to disorder the boundary.
The finite-size splitting of this edge mode is parametrically faster than the finite-size bulk gap
~ 1/L. In particular, if the model is dual to free-fermions (such as Eq. (7.1)) then the edge mode
is exponentially-localized [VIP18] whereas with interactions, the splitting becomes ~ 1 /L4

[VTIP19].

7.3 Random Ising* transition

We now study the fate of Ising* upon disordering the system. The coefficients J;, h; and g;
in Eq. (7.1) are now independently drawn from power-law distributions P(J) = (J/Jo)'/" /(T'J)
for J € [0,Jo] (similarly for P(h) and P(g)), where I" controls the width of the distribution in
logarithmic scale. The limit I' — 0 would recover the clean case. We will take I' = 1, i.e., the
uniform distribution.

In the presence of randomness, the Ising CFT flows towards the infinite-randomness
fixed point (I"' — o0) [Fis92, Fis95]. We will explore the symmetry enriched infinite-randomness
fixed point as the many-body localized counterpart of gapless SPT states. The disordered phase
diagram is shown in Fig. 7.1(a), which is qualitatively unchanged from the clean case. This was
obtained by mapping Eq. (7.1) to free fermions (using a Jordan-Wigner transformation) and using
the transfer matrix method to determine the topological winding number ® [MDHO1]; in this
case the PM, FM and SPT phases map to the trivial (® = 0), Kitaev chain (®» = 1) and two Kitaev
chains (o = 2). In the original spin chain language, one can interpret ® as encoding the ground
state degeneracy 2% with open boundary conditions, which is 0, 2 and 4, respectively.

Similar to the Ising CFT, the infinite-randomness Ising fixed point also has a local ¢ and
nonlocal u scaling operator. While their scaling dimensions have changed (A™ = 1 — ¢ /2~

0.191 where @ = %(1 ++/5) is the golden ratio [Fis95]), their lattice expressions are as before—
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Figure 7.1: Random Ising* transition (a) Phase diagram of the random Ising Hamiltonian (7.1)
for clean (solid lines) and disordered (dotted lines), showing the topological winding number ®
for the dual fermionic description (see main text). (b) Floquet phase diagram of eq. (7.4) which
shows two topologically non-trivial Ising” transitions. (c) Boundary magnetization under small
Zeeman field, showing spontaneous magnetization at the Ising* transition (red star in (a)). (d)
Finite-size energy splitting of boundary spins at the Ising* transition. (e) Spin-spin correlations
involving bulk and boundary spins (averaged over 1.5 x 103 realizations), compared to theory
predictions (solid black lines), where @ is the golden ratio. Calculations are performed using the
SBRG method on a 512-site spin chain.

indeed, the nearby gapped phases are still characterized by the same order parameters. We
thus still have the bulk topological invariant TuT = £y, distinguishing two distinct symmetry-
enriched infinite-randomness Ising fixed points, which we refer to as the Ising and Ising*. For

the same reasons as before, we expect that the disordered Ising* criticality has spontaneously-
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fixed boundary conditions. This would come with at least three physical fingerprints: (i) a
nonzero spontaneous magnetization at the boundary, (ii) a degenerate edge mode whose finite-
size splitting is parametrically smaller than the bulk gap, and (iii) spin-spin correlations near the
boundary should have a boundary scaling dimension [McC69, IR98] Agdy = 1/2 (or 0) for free
(or spontaneously-fixed) boundary condition, characterizing the Ising (Ising”) case.

We now test these predictions numerically. Because we will be interested in including
interactions, we use the spectrum bifurcation renormalization group (SBRG) method [YQX16,
SYX16, SBYX17, sup], which is a numerical real-space renormalization group approach that
progressively transforms the original Hamiltonian H to its diagonal form Hvpr = Y, €4T4 +
Y b €abTaTh + - -+ as a many-body localization (MBL) effective Hamiltonian [SPA13, HNO14,
Swil3], and constructs the (approximate) local integrals of motion T, of the MBL system in
the form of Pauli strings. The approximation is asymptotically exact in the strong-disorder
limit. The rescaled parameters (J,7,g) = (Jo,ho,go)"/" are invariant under the renormalization
group (RG) flow, and should be considered as tuning parameters. SBRG can be thought of as an
implementation of the strong disorder real space renormalization group (RSRG) [MDH79, DM&0,
Fis92, Fis94, Fis95, MMHFO00] and its generalization to excited states (RSRG-X) [PRAT14,
VA13, VA14, VPP15] in operator space. While SBRG can be used to study MBL physics and

excited states, in the following we focus on 7' = 0 groundstate properties.

7.4 SBRG results

We focus on the Ising* transition at (J,/,&) = (1,0,1) (red star in Fig. 7.1(a)). We have
verified [sup] that in the bulk, the Ising* transition flows to an infinite-randomness fixed point
with dynamical scaling I ~ (log?)? ~ (—loge)? that relates the length scale [ and the energy
scale € [Fis95], and logarithmic scaling of the entanglement entropy [RMO04, RMO09]. This is not

surprising since with periodic boundary conditions, Ising and Ising* are unitarily equivalent.
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We now probe the boundary properties. To include the effect of interactions, we follow
Ref. [VTJP19] and add a generic Z» X ZZT -symmetric boundary perturbation Hy = —V (XoZ,Z, +
Z1 271 1X1), with V a random variable ten times smaller than the bulk couplings. Micro-
scopically, this perturbation can flip the boundary Ising spin. Nevertheless, if we study the
boundary magnetization m = (Zp) in response to a small Zeeman field 4, applied along the
z-axis, we find that it tends to a nonzero limit as 4, — 0 (with &, smaller than the finite-size
bulk gap, but larger than the groundstates splitting, see below), shown in Fig. 7.1(d). This is in
contrast to the trivial Ising fixed point, where the boundary magnetization is known to vanish as
m(h;) ~ 1/|logh,| [McC69].

Thus the boundary is spontaneously magnetized in the Ising* case despite the Hamilto-
nian (7.1) being symmetric. Schematically, on a finite system we have two spontaneously-fixed
ferromagnetic (FM) ground states | 7. 1) and | J1J&), where L and R denote the configurations
of the left and right edge modes (note that these are split from | 17]g) and | |1 Tx) by the critical
bulk penalizing antiferromagnetic states) [SPV17, VTJP19]. The above perturbation Hy can
couple these FM states at second order in V, which should lead to a finite-size splitting. The
claim that we have a ground state degeneracy is only meaningful if this splitting is smaller than
the bulk finite-size gap. To confirm this, we arrange the energy coefficients €, obtained from
SBRG in the ascending order €y < €; < - - -, and focus on the lowest two. For the Ising* transition
with open boundary condition (OBC), €y characterizes the smallest energy splitting between
| T.1r) £ | &) whereas € characterizes the bulk excitation gap. As shown in Fig. 7.1(e), both
splittings €y and €; follow g, ~ exp(—ocaLl/ 3) but with different exponents 0y = 5.44-0.6 and
o) =2.51+0.02, ie., & ~ &°. The finite-size splitting €y of the symmetry-protected edge
modes decays significantly faster with the system size L compared to €;. This provides a quan-
titative distinction between the topological edge modes and the bulk excitations. To further
verify this interpretation, we switch to the periodic boundary condition (PBC), the fast-decaying

topological splitting disappears and the smallest splitting decays with the “bulk™ exponent as
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oo =2.45+0.02.

The Ising and Ising* states can be further distinguished by their average boundary-bulk

spin-spin correlation functions (ZyZ;), which decay as ~ 1/ lAgdy+AbUIk, where Agdy (APUIK) s the
boundary (bulk) scaling dimension of the Ising order parameter mentioned before. We thus

predict

[-(=0)/2 7069 Tging,
(ZoZ;) ~ (7.2)
l—(2—(p)/2 ~ l—0.19 Ising*.

In Fig. 7.1(f), we find that the boundary-bulk correlation follows (ZyZ;) ~ [ —(0-67£0.08) o Ising
and [~ (0-20£0.02) for [sing*, which matches Eq. (7.2) within error bars. We also checked that
the bulk-bulk correlation (Z;Z;,;) ~ 1~(042+005) decays with the expected exponent 2APK —

2 — @ ~ 0.38 for both Ising and Ising* transitions.

7.5 Symmetry-enriched random singlet phase

The Ising™ transition provides a clear example of symmetry-enriched random quantum
critical point, with stretched-exponentially localized edge modes. It is natural to ask whether this
notion can be extended to random critical phases, and whether the topological edge modes can be
made exponentially localized despite the absence of a bulk gap. Here, we answer both questions
in the positive, by introducing a symmetry-enriched random singlet phase.

In order to obtain a critical phase in one dimension, we consider a system with charge
conservation and particle-hole symmetry. For concreteness, we will focus on the random anti-
ferromagnetic spin-1/2 XXZ spin chain Hy =Y ;J; (XiAXfH + Y;“YfH + AiZ{‘ZﬁH), with J; > 0
and 0 < A; < 1 random couplings specified later. It has a symmetry group G4 = U (1) % Zg with
the Zg‘ spin flip generated by []; XZA, while the U (1) part corresponds to }; Z;“ conservation. For
uniform couplings, this spin chain is in a Luttinger liquid phase; while for random couplings, its

low energy properties can be captured by a real-space renormalization group (RSRG) procedure
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very similar to the SBRG approach above (but restricted to the groundstate). The random XXZ
spin chain forms a random singlet phase [Fis94], where the groundstate is asymptotically made
of non-crossing pairs of singlets of all ranges, with quantum critical properties similar to the
random Ising transition (which itself can be thought of as a random singlet state of Majorana
fermions). In particular, the entanglement entropy grows logarithmically with effective central
charge ceff = log2 [RMO07, RMO09], and the gap closes stretched-exponentially with system size
(dynamical exponent 7 = o).

To obtain a topological random singlet phase, we use the decorated domain walls con-
struction [CLV 14] to “twist” the random XXZ chain. To that effect, we introduce another spin
species B, with Ising symmetry Gg = leg , with Hamiltonian Hp = — ZiXiB + gBZlBZﬁI. We take
gp < 1 so that the B spins are disordered, deep into a quantum paramagnetic phase. We then
couple the two models by attaching charges of the Gp = Zg symmetry to the domain walls of
the A spins. This is achieved by the unitary transformation U = [[pw,) (— 1)(1*213 )/2, where the
product runs over all the domain walls of the A spins in the Z basis, with U? = 1. After unitary

rotation (“twist™) of Hy + Hg+V, we find

B (vAyA AvA \B A A
H = Zfi [Zi—1<Xi Xi + Y YL )ZE +AZ; Zi—i—l]
l

~ Y ZXPZ + e ZP 2R+ Y, (7.3)
1

where V' = UV U represents arbitrary small perturbations that preserves the G4 x G symmetry.
Following the terminology of Ref. [SPV17, PSV18], we refer to Eq. (7.3) and Hy + Hp+V =
UHU as the gSPT and gTrivial (gapless, topologically trivial) Hamiltonians, respectively.

For periodic boundary conditions, H is unitarily related to H4 + Hp plus perturbations,
and thus corresponds to random singlet A spins coupled to the gapped paramagnetic B spins.
Nevertheless, the two models are topologically distinct. Like Ising and Ising* above, they can

be distinguished by the charges of nonlocal scaling operators. In fact, since now there are
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Figure 7.2: Symmetry-enriched random singlet phase. DMRG results on eq. (7.3) including

various perturbations [sup]. Fits of the typical and average finite size gaps, showing a scaling

compatible with the random-singlet z = oo scalings AEypical = el2AE VL and AE ~e L',

Top-right Inset: the splitting between the two ground states vanishes exponentially with system

size, indicating exponentially-localized edge modes. Bottom-left Inset: spontaneous boundary

magnetization in the presence of a small symmetry-breaking magnetic field A.
additional gapped degrees of freedom, one can consider a string order parameter with long-range
order: in the trivial case H4 + Hp thisis --- X f_ZX jB_ X JB whereas in the topological case H it is
X8 L xB X fz;‘ 1~ In the latter case, this string order parameter for the gapped B variables is
charged under G4. This discrete invariant shows that we have two distinct symmetry-enriched
versions of the same underlying infinite-randomness fixed point. Relatedly, for open boundary
conditions, we have H = JoA¢ZAZ} + Z8XE 78 +ZEZB + ..., and in the absence of additional
perturbations (V = 0), we see that [Zg‘,H | = 0, providing an exact edge mode.

Going away from this special limit, we expect exponentially-localized topological edge

modes to be protected by the finite gap of the B spins, as in the clean case [SPV17, PSV18]. We
confirmed numerically the presence of exponentially localized edge modes coexisting with bulk

random singlet criticality using density-matrix renormalization group (DMRG) [Whi93, ITe]

techniques (Fig. C.3), including generic symmetry-preserving perturbations [sup].
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7.6 Floquet Ising™ criticality

To close this letter, we illustrate how such novel universality classes emerge naturally in
the context of periodically driven (Floquet) systems. We focus on the driven quantum Ising chain

characterized by the single-period evolution (Floquet) operator [KLMS16]

F = e_%ZiJiZiZiJrl"‘-“e_%Zihixi+-'~ (74)

where the dots represent small but arbitrary interactions preserving the Z; symmetry G =
[1;X;. For strong enough disorder, this system admits four dynamical phases protected by
MBL [KLMS16]. In addition to the familiar paramagnetic (PM) and spin glass (SG) Ising phases,
there are two more phases called T-SG (a.k.a. time crystal [KLMS16, EBN16, vKKS16, ZHK 17,
KMS19]) and Ot PM (a non-trivial SPT phase); see Fig. 7.1(b). This phase structure is due to
an emergent Z, symmetry inherited from time translation symmetry. The transitions between
those phases have been argued to be in the random Ising universality class [YPPV17, BKPV 18]
(ignoring potential instabilities towards thermalization in the presence of interactions [MHK?20,
SMY 20, WAV20]). Here we note that the transitions out of the Ox PM are actually in the
random Ising”* universality class described above, protected by Z, x Z, symmetry (one of the
Z7’s being emergent). This is because the O PM is closely related to the Z, x Z; equilibrium
SPT [KLMSI16, vS16, EN16, PMV16, HR17]. We find exponentially localized edge modes at
the transitions separating the O PM to either the SG or ©n-SG, which are protected due to the
disorder operator u for the critical Z, symmetry again being charged with respect to the second
Z, symmetry, as detailed in the supplemental material [sup]. (The edge mode localization is
exponential as in the random singlet phase above, as the protecting symmetry is Z, X Z, instead

of Z, x 71))
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7.7 Discussion

We have demonstrated the existence of symmetry-enriched infinite-randomness fixed
points with robust topological edge modes coexisting with all the characteristics of strong disorder
quantum criticality. In particular, we have shown that the paradigmatic random Ising critical
point and XXZ random singlet phase come in topologically distinct versions in the presence of
an additional Zg or Z, symmetry. The topological edge modes couple non-trivially to gapless
bulk fluctuations, leading to anomalous boundary critical behavior. We expect our findings to
extend to essentially all known strong- and infinite-randomness critical points: finding examples
of symmetry-enriched random critical points in 2+1d [MMHF00, KPP"] and 3+1d represents an
interesting direction for future works. It would also be interesting to investigate the consequences

of our results for dynamical properties [PVS19, BKPV18, KYL19, YAM20].
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Chapter 8

Machine learning holographic mapping by

neural network renormalization group

8.1 Introduction

The holographic duality, also known as the anti-de-Sitter space and conformal field theory
correspondence (AdS/CFT) [Wit98b, Wit98a, GKP98, Mal99], is a duality between a CFT on
a flat boundary and a gravitational theory in the AdS bulk with one higher dimension. It is
intrinsically related to the renormalization group (RG) flow [dVV00, Ske02, HP11, Swil2a,
Swil2b, NRT12, BGL13] of the boundary quantum field theory, since the dilation transformation,
as a part of the conformal group, naturally corresponds to the coarse-graining procedure in
the RG flow. The extra dimension emergent in the holographic bulk can be interpreted as the
RG scale. In the traditional real-space RG [Kad66], the coarse-graining procedure decimates
irrelevant degrees of freedom along the RG flow, therefore the RG transformation is irreversible
due to the information loss. However, if the decimated degrees of freedom are collected and
hosted in the bulk, the RG transformation becomes a bijective map between the degrees of

freedom on the CFT boundary and the degrees of freedom in the AdS bulk. Such mappings,
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generated by information-preserving RG transforms, are called exact holographic mappings
(EHM) [Qi13, LQ15, GLW™16], which were first formulated for free fermion CFT. Under the
EHM, the boundary features of a quantum field theory of different scales are mapped to different
depths in the bulk, and vice versa. The field variable deep in the bulk represents the overall or
infrared (IR) feature, while the variable close to the boundary controls the detailed or ultraviolet
(UV) feature. Such a hierarchical arrangement of information is often observed in deep neural
networks, particularly in convolutional neural networks (CNN) [LBH15]. The similarity between
renormalization group and deep learning has been discussed in several works [B13, MS14, BO15,
OT17, LTR17, GS17]. With the developement of machine learning in quantum many-body
physics [TM16, Wan16, vLH17, CT17, CM17a, TMC™" 18a], deep learning techniques have also
been employed to construct the optimal RG transformations [LW 18, KR18] and to uncover the
holographic geometry [YYQ18a, HSTT18b, HSTT18a, Has19]. In this work, we further explore
the possibility of designing the EHM for interacting quantum field theories using deep learning
approaches. By training a flow-based hierarchical generative model [DSB16, KD18] to generate
field configurations following the probability distribution specified by the field theory action, the
model converges to the optimal EHM with an emergent bulk gravitational description, where
neural network parameters and latent variables correspond respectively to the gravity (geometry)
and matter degrees of freedom in the holographic bulk. The learned holographic mapping is
useful for both sampling and inference tasks. In the sampling task, the generative model is used
to propose efficient global-updates for boundary field configurations, which helps to boost the
Monte Carlo simulation efficiency of the CFT. In the inference task, the boundary field theory is
pulled back to an effective theory of the bulk field, which enables us to probe the emergent dual

geometry (on the classical level) by measuring the mutual information in bulk field.
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8.2 Renormalization Group and Generative Model

Renormalization group (RG) plays a central role in the study of quantum field theory (QFT)
and many body physics. The RG transformation progressively coarse-grains the field configuration
to extract relevant features. The coarse-graining rules (or the RG schemes) are generally model-
dependent and requires human design. Take the real-space RG[Kad66] for example: for a
ferromagnetic Ising model, the RG rule should progressively extract the uniform spin components
as the most relevant feature; however for an antiferromagnetic Ising model, the staggered spin
components should be extracted instead; if the spin couplings are randomly distributed on the
lattice, the RG rule can be more complicated. When it comes to the momentum-space RG[Wil83],
the rule becomes to renormalize the low-energy degrees of freedom by integrating out the high-
energy degrees of freedom. What is the general designing principle behind all these seemly
different RG schemes? Can a machine learns to design the optimal RG scheme based on the
model action?

(a) Renormalization IR

RG scale

I =

e~

decimated irrelevant features ...

(b) Generation uv

iverse

o RG scale

L ; b 2
év(xv 20) {(Jj, zl) {(377 ZQ) n

— ~ — ()

bulk field boundary field

Figure 8.1: Relation between (a) RG and (b) generative model. The inverse RG can be viewed
as a generative model that generates the ensemble of field configurations from random sources.
The random sources can are supplied at different RG scales (coordinated by z), which can be
viewed as a field {(x,z) living in the holographic bulk with one more dimension. The original
field ¢(x) will be generated on the holographic boundary.
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With these questions in mind, we take a closer look at the RG procedure in a lattice field
theory setting. In the traditional RG approach, the RG transformation is invertible due to the
information loss at each RG step when the irrelevant features are decimated, as illustrated in
Fig. 8.1(a). However, if the decimated features are kept at each RG scale, the RG transformation
can be inverted. Under the inverse RG flow, the decimated degrees of freedom {(x, z) are supplied
to each layer (step) of the inverse RG transformation, such that the field configuration ¢(x) can
be regenerated, as shown in Fig. 8.1(b). Here we assume that the ¢(x) field is defined in a flat
Euclidean spacetime coordinated by x = (x1,x2,---) € RY, then {(x,z) will live on a manifold
with one higher dimension, and the extra dimension z corresponds to the RG scale. Given its
close analogy to the holographic duality, we may view {(x,z) as the field in the holographic bulk
and ¢(x) as the field on the holographic boundary. The inverse RG can be considered as a deep

generative model G, which organizes the bulk field {(x,z) to generate the boundary field ¢(x),

0(x) = G[E(x,2)]- (8.1)

The renormalization G~! and generation G procedures are thus unified as the forward and
backward maps of a bijective (invertible) map between the boundary and the bulk, known as the
EHM.[Qi13, LQ15]

At the first glance, such an information-preserving RG does not seem to have much
practical use, because {(x,z) is simply a rewriting of ¢(x), which does not seem to reduce the
degrees of freedom. However, since the bulk field {(x, z) represents the irrelevant feature to be
decimated under RG, it should look like independent random noise, which contains minimal
amount of information. So instead of memorizing the bulk field configuration {(x,z) at each
RG scale for reconstruction purpose, we can simply sample {(x,z) from uncorrelated (or weakly
correlated) random source and serve them to the inverse RG transformation. Suppose the bulk

field {(x,z) is drawn from a prior distribution Ppyior[C], the transformation ¢ = G[(] will deform
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the prior distribution to a posterior distribution Pyos[¢] for the boundary field ¢(x),

56[@]) )‘1,

Poos[0] = P[] det (8—C (82)

where |det(8;G) |~ ! is the Jacobian determinant of transformation. In such manner, the objective
of the inverse RG is not to reconstruct a particular original field configuration, but to generate an
ensemble of field configurations ¢(x), whose probability distribution Ppos[¢] should better match

the Boltzmann distribution

Prarget[9] = 510/ Z 0y (8.3)

specified by the action functional Sqrr[¢(x)] of the boundary field theory, where Zgpr =
Y] e~ Sartl0) denotes the partition function.

This setup provides us a theoretical framework to discuss the designing principles of a good
RG scheme. We propose two objectives for a good RG scheme (or EHM): the RG transformation
should aim at decimating irrelevant features and preserving relevant features, and the inverse RG
must aim at generating field configurations matching the target field theory distribution Prarget[0)]
in Eq. (8.3). An information theoretic criterion for “irrelevant” features is that they should have
minimal mutual information, so the prior distribution Pprior[C] should be chosen to minimize the
mutual information between bulk fields at different points, i.e. min/(&(x,z) : {(x',2)). We will
refer to this designing principle as the minimal bulk mutual information (minBMI) principle,
which is a general information theoretic principle behind different RG schemes and is independent
of the notion of field pattern or energy scale. The close relation between RG and deep learning
has been discussed in several early works[MS14, OT17, LTR17]. However, as pointed out
in Ref. [KR18, LRHK18], the hierarchical architecture itself cannot guarantee the emergence
of RG transformation in a deep neural network. Additional information theoretic principles
must be imposed to guide the learning. In light of this observation, Ref. [KR18, LRHK18]

proposed the maximal real-space mutual information (maxRSMI) principle, which aims at
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maximizing the mutual information between the coarse-grained field and the fine-grained field in
the surrounding environment. Our minBMI principle is consistent with and is more general than
the maxRSMI principle (see Appendix D.1 for detailed discussion about the relation between
these two principles).

In the simplest setting, we can hard code the minBMI principle by assigning the prior

distribution to the uncorrelated Gaussian distribution,

Posior[C] = A[G;0,1] o< e~ 157 (8.4)

where ||{[|* = X, . |{(x,2)[>. Hence the mutual information vanishes for every pair of points in
the holographic bulk. Given the prior distribution, the problem of finding the optimal EHM
boils down to training the optimal generative model G to minimize the Kullback-Leibler (KL)
divergence between the posterior distribution Pyos[0] in Eq. (8.2) and the target distribution

Parget[9] in Eq. (8.3), i.e. min L with

L= KL(Ppost (0] || Parget [0])
(8.5)

3G({]
- ngrior SorFr[G[L]] + In Pprior[C] — Indet (5—(:)7

where Etp o denotes the average over the ensemble of { drawn from the prior distribution.
This fits perfectly to the framework of flow-based generative models|[DSB16, KD18] in machine
learning, which can be trained efficiently thanks to its tractable and differentiable posterior
likelihood. We model the bijective map G by a neural network (to be detailed later) with trainable
network parameters. We initiate the sampling from the bulk  ~ Pyior and push the bulk field to the
boundary by ¢ = GJ[{], collecting the logarithm of the Jacobian determinant along the way. Given
the action Sgrr[0], we can evaluate the loss function £ in Eq. (8.5) and back propagate its gradient
with respect to the network parameters. We then update the network parameters by stochastic

gradient descent. We iterate the above steps to train the neural network. In this way, simply
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by presenting the QFT action Sqpr to the machine, the machine learns to design the optimal
RG transformation G by keep probing Sqrr with various machine generated field configurations.
Thus our algorithm may be called the neural network renormalization group (neural RG)[LW 18],

which can be implemented using the deep learning platforms such as TensorFlow|AAB™15a].

8.3 Holographic Duality and Classical Approximation

We would like to provide an alternative interpretation of the loss function £ in Eq. (8.5)
in the context of holographic duality, which will deepen our understanding of the capabilities
and limitations of our approach. Suppose we can sample the boundary field configuration ¢(x)
from the target distribution Piareec[¢] and map ¢(x) to the bulk by applying the EHM along the
RG direction { = G~ ![0], the obtained bulk field {(x,z) will follow the distribution

Pouik[C] = Prarget[0] det(8oG 1 [0]) !

= Zoppe S0 det(8,G).

(8.6)

where we have used Eq. (8.3) to express Parget [¢] in terms of . The normalization of the bulk
field probability distribution ¥ (¢ Poulk [€] = 1 further implies that the QFT partition function Zgpr,
which was originally defined on the holographic boundary, can now be written in terms of the
bulk field € as well

ZoFr = Ze—SQFT[Gm]‘Hndet(SQG)‘ (8.7)
(€]

Note that Zgpr is by definition independent of G, we are allowed to sum over all possible G on

both sides of Eq. (8.7), which establishes a duality between the following two partition functions

ZQFT = Ze_SQFT[q)] <~ Zgrav = Z e_SgraVK’G], (8.8)
(9] [€.G]
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with the bulk theory Sgray given by
Sgrav[c, G] = SQFT[G[CH — lndet(SCG). (8.9)

By “duality” we mean that Zgrr and Zg,y only differ by a proportionality constant (as Zgray =
Y.jG] ZqF1), so they are equivalent descriptions of the same physics theory. Sgray [€, G| describes
how the bulk variables  (matter field) and the neural network G (geometry) would fluctuate and
interact with each other, which resembles a “quantum gravity” theory in the holographic bulk. The
bulk has more degrees of freedom than the boundary, as there can be many different choices of {
and G that leads to the same boundary field configuration ¢ = G[]. This is a gauge redundancy
in the bulk theory, which covers the diffeomorphism invariance as well as the interchangeable
role between matter and spacetime geometry in a gravity theory. At this level, the bulk theory
looks intrinsically nonlocal and the geometry can fluctuate strongly.

However, it is usually more desired to work with quantum gravity theories with a classical
limit, which describe weak fluctuations (matter fields and gravitons) around a classical geometry.
Although not every CFT admits a classical gravity dual, we still attempt to find the classical
approximation of the dual quantum gravity theory, neglecting the fluctuation of G. Aiming
at a classical geometry, we look for the optimal G that maximizes its marginal probability
Peum|[G] = Zg_rzlw Yy ¢~ Sewv[5.G] with the bulk matter field { traced out. This optimization problem
seems trivial, because according to Eq.(8.7), Penm|[G| = Zqrr/Zgray is independent of G. It
is understandable that any choice of G is equally likely if we have no preference on the prior
distribution Pprior[f;] of the bulk matter field, because there is a trade-off between G and Pprior
that one can always adjust Pyjor to compensate the change in G. Such a trade-off behavior is
fundamentally required by the gauge redundancy in the bulk gravity theory. To fix the gauge, we
evoke the minBMI principle to bias the bulk matter field towards independent random noise, such

that the classical solution of G will look like a RG transformation, in line with our expectation
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for a holographic mapping. Choosing a minBMI prior distribution such as Eq. (8.4) and replace

det(8¢G) in Eq. (8.9) by Pyrior/ Ppost> Perm|[G] can be cast into

ZQFT Ptarget[G[C]] N ZQFT —L

Perv |G| = > e -,
HM[ ] Zgrav C~Porior Ppost[G[CH Zgrav

(8.10)

which is bounded by e~ L from below, with £ being the KL divergence between Pyost and Praget
as defined in Eq. (8.5). Therefore the objective of maximizing Pgpm|[G] can be approximately
replaced by minimizing the loss function £, which is no longer a trivial optimization problem.
From this perspective, the loss function £ can be approximately interpreted as the action (negative
log-likelihood) for the holographic bulk geometry associated to the EHM G. Minimizing the
loss function corresponds to finding the classical saddle point solution of the bulk geometry. We
will build a flow-based generative model to parameterize G and train the neural network using
deep learning approaches. The fluctuation of neural network parameters in the learning dynamics
reflects (at least partially) the gravitational fluctuation in the holographic bulk.

At the classical saddle point G, = argming; L, we may extract an effective theory for the

bulk matter field

Seff[C] = Sgrav[C, Gs]

= [GI + 1n P [G[] 1 Prga G ]

(8.11)

As the KL divergence L = KL(Ppost || Prarget) is minimized after training, we expect Ppos and
Piarger to be similar, such that their log-likelihood difference In Pyos¢ — In Pearger Will be small, so
the effective theory Se[¢] will be dominated by the first term ||{||? in Eq. (8.11), implying that the
bulk field { will be massive. The small log-likelihood difference further provides kinetic terms
(and interactions) for the bulk field {, allowing it to propagate on a classical background that is
implicitly specified by G.. In this way, the bulk field will be correlated in general. Even though

one of our objectives is to minimize the bulk mutual information as much as possible, the learned
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EHM typically cannot resolve all correlations in the original QFT, so the residual correlations will
be left in the bulk field { as described by the log-likelihood difference in Eq. (8.11). The mismatch
between Pyost and Praeer may arise from several reasons: first, limited by the design of the neural
network, the generative model G may not be expressive enough to precisely deform the prior
distribution to the target distribution; second, even if G has the sufficient representation power,
the training may not be able to converge to the global minimum; finally and perhaps the most
fundamental reason is not every QFT has a classical gravitational dual, the bulk theory should be
quantum gravity in general. Taking the classical approximation and ignoring the gravitational
fluctuation leads the unresolvable correlation and interaction for the matter field { that has to be
kept in the bulk.

Nevertheless, our framework could in principle include fluctuations of G by falling back to
Zorav in Eq. (8.8). We can either model the marginal distribution Pev [G] by techniques like graph
generative models, or directly analyze the gravitational fluctuations by observing the fluctuations
of neural network parameters in the learning dynamics as mentioned below Eq. (8.10). We will
leave these ideas for future exploration. In the following, we will use a concrete example, a 2D
compact boson CFT on a lattice, to illustrate our approach of learning the EHM as a generative

model and to demonstrate its applications in both the sampling and the inference tasks.

8.4 Application to Complex ¢* Model

We consider a lattice field theory defined on a 2D square lattice, described by the Euclidean

action

Sorr(0] = —1 Y 070, + Y (uldil* + Moi[*), (8.12)
(i) i

where 0; € C is a complex scalar field defined on each site i of a square lattice and (i j) denotes the
summation over all nearest neighbor sites. The model has a global U(1) symmetry, under which

the field rotates by ¢; — ¢'¢; on every site. We choose u = —200+ 2¢ and A = 25 to create a
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deep Mexican hat potential that basically pins the complex field on a circle ¢; = \/ﬁeiei of radius
VP = 2. In this way, the field theory falls back to the XY-model Sqrr = —%ZW) cos(6; —0;)
with an effective temperature T = (pt)~!. By tuning the temperature T, the model exhibits two
phases: the low-T algebraic liquid phase with a power-law correlation (¢;;) ~ |x; —x;|~% and
the high-T disordered phase with a short-range correlation. The two phases are separated by
the Kosterlitz-Thouless (KT) transition. Several recent works|[ BGM18, ZLW 18, RS18, ZEPS18]
have focused on applying machine learning method to identify phase transitions or topological
defects (vortices). Our purpose is different here: we stay in the algebraic liquid phase, described
by a Luttinger liquid CFT, and seek to develop the optimal holographic mapping for the CFT.
We design the generative model G as a bijective deep neural network following the
architecture of the neural network renormalization group (neural-RG) proposed by Ref. [LW18].
Its structure resembles the MERA network [Vid07c] as depicted in Fig. 8.2(a). Each RG step
contains a layer of disentangler blocks (like CNN convolutional layer) to resolve local correlations,
and a layer of decimator blocks (like CNN pooling layer) to separate the renormalized and
decimated variables. Given that the spacetime dimension is two on the boundary, we can overlay
decimators on top of disentanglers in an interweaving manner as shown in Fig. 8.2(b). Both
the disentangler and the decimator are made of three bijective layers: a linear scaling layer,
an orthogonal transformation layer and an invertible non-linear activation layer, as arranged in
Fig. 8.3 (see Appendix D.2 for more details). They are designed to be invertible, non-linear and
U(1)-symmetric transformations, which are used to model generic RG transformations for the
complex ¢* model. The bijector parameters are subject to training (training procesure and number
of parameters are specified in Appendix D.3). The Jacobian matrix of these transformations are
calculable. After each decimator, only one renormalized variable flows to the next RG layer,
and the other three decimated variables are positioned into the bulk as little crosses as shown in
Fig. 8.2(a) and (b). The entire network constitutes an EHM between the original boundary field

¢(x) and the dual field {(x,z) in the holographic bulk.
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Figure 8.2: (a) Side view of the neural-RG network. x is the spatial dimension(s) and z
corresponds to the RG scale. There are two types of blocks: disentanglers (dark green) and
decimators (light yellow). The network forms an EHM between the boundary variables (blue
dots) and the bulk variables (red crosses). (b) Top view of one RG layer in the network.
Disentanglers and decimators interweave in the spacetime (taking two-dimensional spacetime
for example). Each decimator pushes the coarse-grained variable (black dot) to the higher
layer and leaves the decimated variables (red crosses) in the holographic bulk. (c) The training
contains two stages. In the first stage, we fix the prior distribution P[] to be uncorrelated
Gaussian and train the EHM G to bring it to the Boltzmann distribution of the CFT. In the
second stage, we learn the prior distribution with the trained EHM held fixed. (d) The behavior
of the loss function £ in the two training stages.
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Figure 8.3: Neural network architecture within a decimator block (the disentangler block shares
the same architecture). Starting from the renormalized variable ¢’ and the bulk noise {; 23
as complex variables, the Re and Im channels are first separated, then S applies the scaling
separately to the four variables within each channel and O implements the O(4) transformation
that mixes the four variables together. .§ and O are identical for Re and Im channels to preserve
the U(1) symmetry. Then the channels merge into complex variables followed by element wise
non-linear activation describe by an invertible U(1)-symmetric map ¢; — (0;/|d;|) sinh |;|.

We start with a 32 x 32 square lattice as the holographic boundary and build up the
neural-RG network. The network will have five layers in total. Since the boundary field theory
has a gobal U(1) symmetry, the bijectors in the neural network are designed to respect the U(1)
symmetry (see Fig. 8.3), such that the bulk filed also preserves the U(1) symmetry. The training
will be divided into two stages, as pictured in Fig. 8.2(c). In the training stage I, we fix the prior
distribution in Eq. (8.4) and train the network parameters in the generative model G to minimize
the loss function L. The training method is outlined below Eq. (8.5). The loss function £ decays
with training steps, whose typical behavior is shown in Fig. 8.2(d). We will discuss the stage II
training later.

We perform the stage I training for several neural networks at different temperatures T
separately, i.e. we use Sqrr[0] of different parameters to train different neural networks. After

training, each neural network can generate configurations of the boundary field ¢ from the bulk
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Figure 8.4: Performance of the trained EHM for the complex ¢* theory. (a) Order parameter
(0) v.s. temperature 7. Different models are trained separately at different temperature. For
finite-sized system, () crosses over to zero around the KT transition. Correlation function
(¢7¢;) scaling in log-log plot (b) and log-linear plot (c). Distribution of ¢; in a single sample
generated by the neural network trained in (d) the algebraic liquid phase and (e) the disordered
phase.
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uncorrelated Gaussian field C efficiently. To test how well these generative models work, we
measured the order parameter (¢) and the correlation function (¢;¢;) using the field configurations
generated by the neural network. Although the order parameter () is expected to vanish in the
thermodynamic limit, for our finite-size system, it is not vanishing and can exhibit a crossover
around the KT transition, as shown in Fig. 8.4(a). The cross over temperature 7' ~ 0.9 agrees
with the previous Monte Carlo study [Ols95, HP97, Has05] of the KT transition temperature
Tkt = 0.8929 in the two-dimensional XY model. We measure the correlation function (¢7¢;) at
two different temperatures: one at 7 = 0.5 in the algebraic liquid phase, one at 7 = 1.0 in the
disordered phase. We plot the two-point function (¢;¢;) as a function of the Euclidean distance
rij = |x; — x| (on the square lattice) in both the log-log scale as Fig. 8.4(b) and the log-linear
scale as Fig. 8.4(c). The comparison shows that the correlation function in the algebraic liquid (or
the disordered) phase fits better to the power-law (or the exponential) decay. Fig. 8.4(d) shows the
statistics of ¢; in one sample generated by the machine trained in the algebraic liquid phase. It
exhibits the “spontaneous symmetry breaking” behavior due to the finite-size effect, although
accumulating over multiple samples will restore the U(1) symmetry. However, similar plot
Fig. 8.4(e) in the disordered phase respects the U(1) symmetry in every single sample. Based on
these tests, we can conclude that the neural network has learned to generate field configurations
(x) that reproduce the correct physics of the complex ¢* model. The trained generative model G
maps an almost uncorrelated bulk field £ to a correlated boundary field ¢, and vice versa, therefore
G provides a good EHM for the ¢* theory.

The learned EHM can be useful in both the backward and forward directions. The
backward mapping from bulk to boundary provides efficient sampling of the CFT configurations,
which can be used to boost the Monte Carlo simulation of the CFT. The forward mapping from
boundary to bulk enables direct inference of bulk field configurations, allowing us to study the
bulk effective theory and to probe the bulk geometry. Let us first discuss the sampling task. The

EHM establishes a mapping between the massive bulk field { and the massless boundary field ¢.
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Figure 8.5: The boundary field configuration ¢ before (left) and after (right) a local update in
the most IR layer of the bulk field {. The complex field ¢; is represented by the small arrow on
each site. The background color represents the vorticity. The inset shows the distribution of ¢;
in the complex plane.

The bulk field admits efficient sampling in terms of local update, because the it is uncorrelated (or
short-range correlated). Local updates in the bulk gets maps to global updates on the boundary,
which allows us to sample the critical boundary field efficiently, minimizing the effect of critical
slowdown. To demonstrate this, we first generate one field configuration as shown in the left
panel of Fig.8.5. Then we push this field configuration back into the bulk field . We tweak
the bulk field in the most IR degree of freedom by adding a small random Gaussian number.
The variance of the added Gaussian variable is five times smaller than the variance of the bulk
field degree of freedom. Under the EHM, we observe a global change of the boundary field
configuration as shown in Fig. 8.5. It is interesting to note that the change of the IR bulk field
basically induces a global U(1) rotation of ¢; (see the insets of Fig.8.5), which corresponds
the “Goldstone mode” associated to the “spontaneous symmetry breaking” in the fine-sized
system, showing that the machine can identify the order parameter as the relevant IR degrees of
freedom without prior knowledge about low-energy modes of the system. We also check that
the Hamiltonian Monte Carlo sampling in the bulk converges much faster compared to applying
the same algorithm on the boundary (see Appendix D.4 for more evidences). In connection to
several recent works, our neural-RG architecture can be integrated to self-learning Monte Carlo

approaches[LSQ™ 16, AK16, HW17, LQMF17, NSQ*17, TT17, NOT18] to boost the numerical
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efficiency in simulating CFTs. The inverse RG transformation can also be used to generate
super-resolution samples[EBM 18] for finite-size extrapolation of thermodynamic observables.

Now let us turn to the inference task. We can use the optimal EHM to push the boundary
field back into the bulk and investigate the effective bulk theory Sef¢[C] induced by the boundary
CFT. As analyzed below Eq. (8.11), the mismatch between Ppost and Prarger Will give rise to the
residual correlation (mutual information) of the bulk matter field, which can be used to probe
the holographic bulk geometry. Assuming an emergent locality in the holographic bulk, the
expectation is that the bulk effective theory Se[C] will take the following form in the continuum
limit,

Senlt] = [ g0,8 0+ mPCR - ulgl 4. (513

which describes the bulk field  on a curved spacetime background M equipped with the metric
tensor g"V. Strictly speaking, { is not a single field but contains a tower of fields corresponding to
different primary operators in the CFT. We choose to focus on the lightest component and model
it by a scalar field, as it will dominate the bulk mutual information at large scale. Because the bulk
field excitation is massive and can not propagate far, we expect the mutual information between
the bulk variables at two different points to decay exponentially with their geodesic distance in
the bulk. Following this idea, suppose {; = {(x;,z;) and {; = {(x},z;) are two bulk field variables,
then their distance d(G; : {;) can be inferred from their mutual information I(g; : {;) as follows
d(Gi:§j) = —CIn———=

1G:5) &1
Ip

where the correlation length & and the information unit Iy are global fitting parameters.
To estimate the mutual information among bulk field variables, we take a quadratic
approximation of the bulk effective action Se[] ~ ¥;; (¥ K;;¢; = ('KC, ignoring the higher order

interactions of { for now. This amounts to relaxing the prior distribution of the bulk field { to a
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correlated Gaussian distribution

1 +
Pl = ————e kL. 8.15
prios (5 det(2nK 1) (81

The kernel matrix K is carefully designed to ensure positivity and bulk locality (see Appendix D.5
for more details). To determine the best fit of K, we initiate the stage II training to learn the
prior distribution with the EHM fixed at its optimal solution obtained in the stage I training, as
illustrated in Fig. 8.2(c). We use the reparametrization trick [KW13] to sample the bulk field {
from the correlated Gaussian in Eq. (8.15), then C is pushed to the boundary by the fixed EHM
to evaluate the loss function L in Eq. (8.5), and the gradient signal can back-propagate to train
the kernel K. As we relax the Gaussian kernel K for training, we can see that the loss function
will continue to drop in the stage II, as shown in Fig. 8.2(d). This indicates that the Gaussian
model is learning to capture the residual bulk field correlation (at least partially), such that the
overall performance of generation gets improved. One may wonder why we do not train the
generative model G and bulk field distribution Py, [C] jointly. This is because there is a trade-off
between these two objectives. For example, one can weaken the disentanglers in G and push more
correlation to the bulk field distribution Pprior[C]- Such trade-off will undermine our objective of
minimizing bulk mutual information in training a good EHM, therefore the two training stages
should be separated, or at least assigned very different learning rates. Intuitively, the machine
learns the background geometry in the stage I training and the bulk field theory (to the quadratic
order) in the stage II training. The trade-off between the two training stages resembles the
interchangeable roles between matter and spacetime geometry in a gravity theory.

After the stage II training, we obtain the fitted kernel matrix K. The mutual information
I(G; : Cj) can be evaluated from

(&%)

|
I(?;,-:Cj):—zln<l—m), (8.16)
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Figure 8.6: (a) Distance matrix D(A : B), indexed by the decimator indices A, B, obtained based
on Eq. (8.17). (b) Visualization of the bulk geometry by multidimensional scaling projected to
the leading three principle dimensions. Each point represent a decimator in the neural network,
colored according to layers from UV to IR. The neighboring UV-IR links are add to guide

the eye. Subplot (c) & (d) shows the distance scaling along (c) the radius and (b) the angular
direction.
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where the bulk correlation ({;{;) = (K~!);; is simply given by the inverse of the kernel matrix K.
Then we can measure the holographic distance d({; : {;) between any pair of bulk variables {;
and ; following Eq. (8.14). To probe the bulk geometry, we further define the distance between
two decimators A and B to be the average distance between all pairs of bulk variables separately
associated to them,

D(A:B)= avg d((:§)). (8.17)
GicAL;eB

The result is presented in Fig. 8.6(a). To visualize the bulk geometry qualitatively, we perform a
multidimensional scaling to obtain a three-dimensional embedding of the decimators in Fig. 8.6(b).
One can see a hyperbolic geometry emerges in the bulk. To be more quantitative, we label each

2.7), where x = (x',x?) denotes its center position projected

decimator by three coordinates (x!,x
to the holographic boundary and z = 2/ is related to its layer depth [ (ascending from UV to IR).

We found that the measured distance function follows the scaling behavior

D(x],xz,z s x! +r,x2,z) < Inr,
(8.18)
D(xl,xz,z : xl,xz,z+ r)e<r,
as demonstrated in Fig.8.6(c)&(d). These scaling behaviors agree with the geometry of a
three-dimensional hyperbolic space H>, which corresponds to the AdS3 spacetime under the
Wick rotation of the time dimension. This indicates that the emergent bulk geometry is indeed
hyperbolic at the classical level.

Our result demonstrates that the Luttinger liquid CFT can be approximately dual to a
massive scalar fields on AdS3 background geometry. The duality is only approximate because
we have assumed a classical geometry in the bulk, ignoring all the gravitational fluctuations. In
AdS3/CFT, correspondence, the bulk gravitational coupling Gy = 3¢/2c is inversely proportional
to the central charge ¢ of the CFT.[BH86] The Luttinger liquid CFT has a relatively small central

charge ¢ = 1 and hence a large gravitational coupling in the bulk, so we should not expect a
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classical dual description. It would be more appropriate to consider holographic CFTs which
admit classical duals. However, our current method only applies to lattice field theories of
bosons with explicit action functionals, which prevent us to study interesting holographic CFTs.
Generalizing the neural RG approach to involve fermions and gauge fields and to work with

continuous spacetime will be important directions for future development.

8.5 Summary and Discussions

In conclusion, we introduced the neural RG algorithm to allow automated construction of
EHM by machine learning instead of human design. Previously, the EHM was only designed for
free fermion CFT. Using machine learning approaches, we are able to develop more general EHMs
that also apply to interacting field theories. Given the QFT action as input, the machine effective
digests the information contained in the action and encode it into the structure of the EHM
network, which represents the emergent holographic geometry. Our result provides a concrete
example that the holographic spacetime geometry can emerge as the optimal generative network
of a quantum field theory.[DZ18] The obtained EHM simultaneously provides an information-
preserving RG scheme and a generative model to reproduce the QFT, which could be useful for
both inference and sampling tasks.

However, as a version of EHM, our approach also bares the limitations of EHM. By
construction, the bulk geometry is discrete and classical, such that the model can not resolve
the sub-AdS geometry and can not capture gravitational fluctuations. Recent development of
neural ordinary differential equation approaches[CRBD18, ZEW 18, GCB 18] are natural ways
to extend our flow-based generative model to the continuum limit. Continuous formulation of
real-space RG has been discussed in the context of gradient flows[Fujl6, AF18, CHN18] and
trivializing maps[L.10], where the RG flow equations are human-designed. Our research may pave

way for machine-learned RG flow equations for continuous holographic mappings. Our formalism
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also allows the inclusion of gravitational fluctuations in principle, by relaxing optimization to
allow superposition of different EHMs. We conjecture that the bulk gravitational fluctuation could
be partially captured by the fluctuation of neural network parameters. The learned EHM provides
us a starting point to investigate the corrections on top of the classical geometry approximation,
which may enable us to go beyond holographic CFTs and study the quantum gravity dual of
generic QFTs. Another feature of EHM is that it is a one-to-one mapping of field configurations
(operators) between bulk and boundary, while in holographic duality, a local bulk operator can be
mapped to multiple boundary operators in different regions. A resolution[ADH15, PYHP15b] of
the paradox is that the non-unique bulk-boundary correspondence only applies to the low-energy
freedoms in the bulk, which can be encoded on the boundary in a redundant and error-correcting
manner. The bidirectional holographic code (BHC)[YHQ16, QYY17] was proposed as an
extension of the EHM to capture the error-correction property of the holographic mapping.
Extending our current network design to realize machine-learned BHC will be another open

question for future research.
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Chapter 9

Summary and outlook

Quantum mechanics is one of the most successful and striking theories in physics. It
predicts atomic particles can have exotic properties, such as quantum entanglement, that cannot be
described by any classical local theory. This phenomenon dramatically increases the complexity
of nature in two ways: first, it is really hard to fully characterize the quantum many-body states in
a black box and it usually takes exponentially many measurements; second, it is really hard to
simulate quantum many-body states on a classical computer, and it usually takes exponentially
classical resources, such as time and memory. These two tasks are essential in both theoretical
and experimental physics.

To tackle these problems, I investigate two efficient (classical) representations of quantum
many-body states in this thesis: 1) the classical shadow representation and 2) hierarchical
representation. In chapter 5 and 6, I introduced classical shadow tomography with chaotic
dynamics. My new proposal explicitly shows how the entanglement created in quantum dynamics
can help with quantum measurements, and it is the first classical shadow tomography protocol
does not rely on the group structure of random measurements. In chapter 7, I introduced
spectrum bifurcation renormalization group, and showed strongly disordered quantum system

can be approximated solved by a hierarchical Clifford circuit, therefore those systems can be
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efficiently simulated classically. Especially I applied this technique to study the interplay between
strong disorder and topological critical point. In chapter 8, I introduced machine learning
holographic mapping. I showed the invertible renormalization group scheme, exact holographic
mapping and flow-based generative model in unsupervised learning are related to each other.
Especially, I introduced an information theoretical goal for machines to learn optimal (real-space)
renormalization group solely based on the action or Hamiltonian description of physical systems.
And I showed this new method can not only find interesting holographic dual theory of critical
field theory on the boundary but also boost the efficiency of classical simulation of critical
systems.

Statistical machine learning theory provides a new scope in understanding quantum many-
body states and still have many interesting open questions. Despite many practical applications
of machine learning to quantum many-body states, a theoretical understanding of what properties
of quantum systems are hard to learn is still opening [Aar07, Roc18, RAS*19]. In recent
literature [HKT21], the authors showed the provable advantage of machine learning models in
solving quantum many-body problems. It is an interesting open question about how the results
generalized to self-supervised or unsupervised machine learning settings, where less or no human
prior knowledge is given to the machine. In the future, I am interested in investigating the
unsupervised machine learning theory and its implication on quantum many-body physics.

In addition, there lacks a standard test and database for machine learning quantum many-
body problems. Over the past a few years, there are many machine learning models proposed
for quantum phase classifications, quantum controls, and etc. But most of them are specifically
designed for one task in quantum many-body physics. The lack of a standard test makes it hard to
compare the performance of different models and their generalization performance in real-world
applications. Therefore, I propose to design a standard test and dataset for quantum many-body
problems. Like the ImageNet challenge [RDS™15] in computer vision, I envision a standard

dataset for quantum many-body states should contain many quantum wave functions that gathered
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from different quantum phase of matter. Each quantum wave function can be saved as a set of
classical shadows, which contain unbiased information of underlying quantum states. A standard
dataset challenge would benefit the whole field of machine learning quantum many-body physics
in many ways. It will provide a fair comparison among machine learning models, and their
generalization performance. In analog to the natural language applications and BERT [DCLT19],
a standard dataset can be used by machines to learn the representations of quantum states and
perform self-supervised learning and few-shot learning.

A successfully pretrained model for quantum many-body states will soon find applications
in the near-term quantum machines. Over the past a few years, we have witnessed the great
process made in programmable quantum simulators (PQS). We will soon enter a region where
interesting quantum phase of matter can be realized in PQS but doing a full quantum state
tomography is impossible [SHP*21, SLK™21, MSE*21]. Therefore, it is an interesting and
challenging questions to predict properties of those quantum states in PQS and understanding
their phases by classical measurement readouts. The pretrained machine learning model can help
with those important tasks with fewer experimental data.

Last but not the least, quantum systems can be naturally viewed as (quantum) generative
models, as under each measurement, a random outcome is generated based on the Born’s rule.
It is interesting to investigate whether quantum properties, such as quantum non-locality and
contextuality, can enhance neural network generative models. In a recent work [GAW*21] and
my work in preparation, we study the relative expressive power between classical recurrent neural
networks and quantum recurrent models based on Gaussian operations. We show there is an
unconditional quantum advantage in quantum sequence generative models. More importantly,
we can interpret the quantum advantage is inherited from quantum contextuality. In addition,
we demonstrate this quantum advantage through the popular natural language translation tasks,
implying the potential impact of quantum recurrent neural networks for real-world applications.

In the future, I want to investigate whether other intrinsic quantum many-body effect, such as

147



topological quantum effect, can also enhance the performance of quantum neural networks. I am
also interested in the relation between barren plateau problem and information scrambling in the

training of quantum neural networks [PNGY21, SMM 22, SZYZ20].
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Appendix A

Hamiltonian-driven shadow tomography of

quantum states

A.1 Diagrammatic approach towards quantum channel 3/

In the shadow tomography of quantum states, for each experiment, the state p is first
evolved by a random unitary operator U = e~ " = VA(t)V" generated from GUE random
Hamiltonian H, then measured in the computational basis. The measurement will prepare a
classical snapshot of quantum system & = U|b)(b|U with b € {0,1}" labeling the measurement
outcome. We can view the average mapping from the quantum state p to its classical snapshots as

a quantum channel M,

M (p) = E[U7[b) (b|U]
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in the last line we use the tensor network to represent the equation, the dashed line means summing
over the bit-string b, and the arrow indicates the order that operators are multiplied together. As
we can see this is a 4-fold twirl of Haar random matrix V, and A(¢) is a diagonal matrix with

Aun(t) = e~ Ent with E, being eigen energies of H. It can be further simplified as

M(p)=E ), Welot'go]A[o]B[d], (A2)

A C,T€S8,
where G, T are permutations from permutation group Ss, Wg[g]| is the Weingarten function[Wei78]
of the permutation group element g, go = (1,3)(2,4) is a fixed permutation to match the tensor

network connection, and A[G|, B[] are defined as:
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In the above tensor diagram, the double line means the periodic boundary condition for top and

bottom legs. After specifying the choice of permutation ¢ and T, one can make a connection

according to ¢ and 7T in the yellow and green block, and those tensor diagram can be evaluated.
The average over A, (t) = e_iE"tSn,n/ can be calculated using the joint probability distri-

bution of eigen energies, and the spectral form factor of GUE matrices]CHLY 17, YG18].
2 Dy p2
PouelE] o< [] (En—E, ) e 22m"n. (A.4)
m>m'

The summation of 0,7 € S4 permutation group and averaging over eigen energies can be carries
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out and gives

M(p) =M(1/D+po+pa)

Po Pa
D ap(®) o)’

(A.S)

where 1 stands for the identity matrix, p, is the off-diagonal part of p, and p, is the traceless

diagonal part of p. The coefficients oy (), and Bp(¢) are defined as

an(t) = (g o)

Bo(r) = (D%l +D>»D<t>)_l, (A.6)
B (Drz(t) + r(2t))2 — 4r2(t)

ol =—pmm=n

and r(¢t) = J;(2¢t)/t with J; being the Bessel function of the first kind.

A.2 Diagrammatic approach towards variance calculation

In the main text, we have shown that the efficiency of using shadow tomography to predict
physical observables o = F (O, p) is closely related to the variance of 6 = F(O,p), where p is
the classical shadow, and F is a function that depends on density matrix p, and observable O. In

general, we have

Var(6) < E[6?], (A7)
and we define a V|- -] linear function of the double-operator 0% as
E[6°] = E[Tr(0p)?] = V[O®?]. (A.8)
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Diagrammatically, the above equation can be expressed as

BT

80
| | . (A.9)

L,
_b>_

The V[---] function that take O®? as input can be expressed diagrammatically as

GRELE
b (A.10)

The calculation of Eq.A.10 involves 6-design random unitaries and we showed that is involves 8

:Z‘”f“(t). (A1)

We name them P-diagrams, which are defined as:

-0 B8 B
- — A.12

-0 g By,

- B -

where P, is a projection operator that takes the off-diagonal part of an operator, Py is a projection

diagrams:

operator that takes the traceless diagonal part of an operator. The form factors fy(t) are given by
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(with r(t) = J1(21) /1)

_ 1374 +2r%(r)

0=y
£ =260

ey = 200
f4(t)=1++r4(t)

fot = =20
f7<t>=$(ji()
= 200 ) +

(14+Dr(0) (1 —r4(z ))

The shapes of these form factors are shown in Fig. A.1.
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Figure A.1: Form factors fy(¢) and their asymptotic behaviors. Colored curves corresponds to
different D = 2V with N = 10,20, 30 (blue, green, red). For form factors independent of D, the

curve is plotted in black.
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Collecting the P-diagrams, V[0%?] can be decomposed into five parts:
V(0% = =V[05H + V0G| +V[0,2 0] +2V[1R 0, +2V[1®0,4]  (A.14)

where V[0%?] involves diagram Py, P>, and Ps; V[O?z] involves diagram Py, and Ps; V|1 ® O,
involves Pg; V[1 ® O] involves P7; V[0, ® O,4] involves P3. Here Oy, O, stand for the traceless

diagonal part and the off-diagonal part of the observable O. More explicitly, we can write down:

VI05?] = fi(t) Te(07) + f2(t) Tr(O5p) + f3(¢) Tr(OZpa)

VI07?] = fa(t) Te(03) + f5(1) Te(OFp)

V[1®0,] = fs(t) Tr(0,p) Tr(0) (A.15)
VI1®0q4] = f1(t) Tr(0ap) Tr(0)

V[0, @ 04] = f3(t)(Tr(0a0op) +Tr(00ap)).

We analyze the asymptotic behavior of form factor fy(¢) in the following, and provide numerical
evidence in the following appendix. Given () = J;(2¢)/t and the envelop behavior of the Bessel

function Jy (1) ~ /2/(mt), we can obtain the following asymptotic behavior
1 oo
r(r) 201 57 () ey (A.16)

Off-diagonal terms: The off-diagonal terms involve P;, P», and P3, corresponding to the
form factors fi, f» and f3. As shown in Fig. A.1, the form factors f1(¢) and f,(¢) are bounded

between their t = 0 and ¢ — oo values,

li =0. li =1
lim £1(r) = 0.75, lim fi(t) = 1, At

lim f2() = 1.5, lim f2(t) =2.

t—0
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The early-time divergence behavior of off-diagonal terms comes from f3. As we can see,

t—=0 1

ZDFZ. (A.18)

f3(1)
So for short time, f3() diverges as 2 as shown in Fig. A.1. The long time behavior of f3(t) is

(1) < DS (A.19)
Diagonal traceless terms: The diagonal traceless terms involve two P-diagrams, P4 and
Ps, corresponding to f4 and f5 form factors.
For f(t), the form factor reaches local maximal f1(#;) = 1 at ty = x;/2, where x; is the
kth zero point of the Bessel function Jj (x), see Fig. A.1. And in the window between those points,

fa(t) ~ D~'t%. We name this phenomenon as scrambling beats. And for the long time,

1) X 1-Di S (A.20)
Therefore the beats behavior of f4(¢) will last for a characteristic time Ty ~ D/

For f5(t), in the long time, it becomes

fs(t) =" 242Dt 6+ D%, (A.21)
We can define two characteristic times Ts(l) ~ D'/6 and TS(Z) ~ D9 In Fig. A.1, we show the
asymptotic behavior of f5(z). We can see the oscillation behavior separates to two stages. In the
first stage, it will peak at a constant value that scales as D'/2. This stage ends around Ts(l) ~ D'/
Then, in the second stage, the peak of f5() will decay and eventually reaches its long-time value.
Time TS(Z) ~ D?/® characters the total time for f5 (1) to reach its long-time value.

We now analyze how the peak value scales with D in the first stage. We observe the peak
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happens in vicinity of #; = x; /2. First, we Talyor expand r(¢) around f; as

r(ty +8t) = a;ot
24 D2a25t6 + 6Da£6t4
(1+Da}dt*)?

(A.22)

fs(tx+8t) =

31/4

By analyzing the behavior of f5(#; + 8¢), we can find the maximal peak happens at &t = :i:akD—l/“

with the peak value max(f5) = % + %5.

A.3 Variance of linear functions

With the diagrammatic tool developed in Appendix A.2, we can discuss the efficiency of
shadow tomography in predicting linear and nonlinear functions. In this section, we are going to
focus on the linear function prediction, which has the form o = Tr(Op), and in Appendix A.4, we
will provide numerical evidence of variance behavior under various conditions. In addition, in
Appendix A.5, we will discuss the prediction of nonlinear function o = Tr(Op®¥), which involves
k copies of p.

The linear function o = Tr(Op) can be estimated from classical shadows p via 0 =
E[Tr(Op)] = E[], where 6 = Tr(Op) can be viewed as a random variable derived from the
classical shadow. In the main text, we have shown the efficiency of shadow tomography is closely

related the variance of estimation Var(6), which is upper bounded by
Var(6) < E[6%]. (A.23)
Diagrammatically, it can be expressed as

{0 B o= A 3= v 3
C g O (A.24)

Y
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where V operator is defined in Eq.A.11. Furthermore, since Tr(p) = 1, adding O by c1 only
shifts 0 by a constant c, and it will not affect variance. So for linear function, we can assume the

observable O to be traceless, i.e. Tr(O) = 0. Then

Var(0) < E[6%] = V[0¥?] = V[0 + V[0 + V[0, ® O4). (A.25)

A.3.1 Off-diagonal Pauli observables

We define the off-diagonal dynamical form factor F,(¢) as

74 0®2
Fo(t) = Tr[( 5%)]. (A.26)

If the observables are off-diagonal Pauli operator O,, then F,(¢) can be simplified as

fi)Te(03) + f(1) Tr(05p) + f5(1) Tr(O5p) _ At)D+f(1) + /(1) 1
Tr(02) N D T =)

(A.27)

Fo(t):

In the last step, we only keep the leading D terms.

A.3.2 Diagonal Pauli observables

We define the diagonal dynamical form factor F;(t) as

\% 0®2
Fy(t) = Tr[( 53)]' (A.28)

If the observables are diagonal Pauli operator O, then F;(¢) can be simplified as

fo(O)Tr(0F) + f5(1) Te(0GP) _ fa(t)D+ f5(t) 1

Fa(t) = Tr(03) D = 1) = gy

(A.29)
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In the second last step, we use the fact that max( f5(r) /D) ~ D~'/2. For large D, this contribution

can be ignored.

A.4 Numerical results and case studies

A.4.1 Numerical studies of reconstruction channel

(@) (b)

5
®

N umo

OHNW AL
i

¢
)

Figure A.2: Early time reconstruction of GHZ state. Measurements are taken at 7 = 0.4. (a)
shows the unbiased reconstruction of GHZ density matrix with 100,000 classical snapshots,
while (b) shows the reconstruction channel using unitary 2-design is highly biased for early time
reconstruction.

In the main text, we derived the unbiased reconstruction channel M ~!(X) for whole
range of dynamical time. We demonstrated this using 5 qubits GHZ states, which GUE random
Hamiltonians. At early time 7 = 0.4, we collected 10° classical snapshots. In Fig. A.2(a), we
showed our reconstruction channel give unbiased density matrix of 5 qubits GHZ states, while the
reconstruction channel of unitary 2-design is high biased for early time reconstruction. Especially,
the off-diagonal information in density matrix is missing. In practice, we need to measure the
state and collect classical snapshots at short-time or intermediate-time scale. Firstly, we want to
shrink the evolution time to reduce the total time of experiments. Secondly, long-time evolution
posts difficulties in classical post-processing. Because simulate chaotic Hamiltonian dynamics is
hard and inaccurate for long time. These reasons justify the need for an unbiased reconstruction

channel for whole time range.
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A.4.2 Numerical case studies of variance estimations

In the main text, Appendix A.2 and Appendix A.3, we derived and analyzed the upper
bound of the variance of é = Tr(Op). We numerically studied variance for several cases. We
found our analytical calculation agrees well with numerical simulations, and the upper bound is
tight for those cases.

Case 1: The observable only contains off-diagonal term O = O,,.

From the previous discussion, we know

Var(6) < E[0°] = fi(1) Te(05) + f2(1) Te(O3p) + f3(1) Te(Ogpa) (A.30)

The f;(¢) and f>(¢) terms are regular and bounded, while f3(¢) will give =2 divergence as

D
li = —. A3l

So in early time, E[6] will scale with D, and t~2. To test these phenomenon, we prepare the
system in the GHZ state, and O, = 0.5|1---P)(L--- L |[+0.5| L - L)(T--- 1| to be the off-
diagonal fidelity. We collected 10* classical snapshots, and numerically estimate Var(O,) under
various conditions. In Fig. A.3(a), we found the =2 behavior agrees well with the numerical
simulation. And in Fig. A.3(b), we also numerically confirmed the variance scales with Hilbert

space dimension D.

(@ ®)
.~ 3000

2500
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1500
1000
500
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1x10°

5x10*

Var (0,)
Var (0,)

1x10*
5000

® Numerical result

—— Analytical fitting

0 50 100 150 200 250
t D

Figure A.3: Numerical tests on the scaling of variance for off-diagonal operators. (a) shows the
t~2 scaling using 5 qubits GHZ states; (b) shows D scaling at fixed evolution time 7 = 0.1.
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Case 2: The observable only contains diagonal term O = Oy, and Tr(0%p) ~ Tr(03)/D.
For diagonal operator Oy, the variance of estimation using shadow tomography is upper

bounded by

Var(6q) < E[67] = fa(t) Tr(07) + f5(t) Tr(03p) = (fa(t) + f5(1) /D) Tr(07).  (A32)

The behavior of the variance will dominated by f4(¢). To test this, we prepared 9 qubits GHZ
state as initial state, and we measure the diagonal operator Oy = Z11, - - - Iy. In Fig. A.4(a), the
blue dots shows the numerical estimation of the variance of 6,. Indeed, we see numerical results
match f4(¢) behavior. And to further quantify it, we use ansatz c| f4(t) + c2.f5(t) + c3 to fit the
numerical results, where c > 3 are fitting parameters. By minimizing the mean-square error, we
got the best fitting results with ¢y = 514.5, ¢; = 0.93, and c3 = —1.742. We see the value of ¢
matches its theoretical value ¢; = Tr(07) = 512, and ¢, matches ¢, = Tr(0%p) = 1 really well.
And the red curve in Fig. A.4(a) shows the fitting result.

Case 3: The observable only contains diagonal term O = Oy, and Tr(0%p) ~ Tr(03).

If this is the case, then the variance behavior will be dominated by f5(¢). To test this
idea, we prepare the state in |y) = || ---]) with 9 qubits, and choose the diagonal operator
as Oy = |-~ 1)} - -1 |- InFig.A.4(b), we see the variance behavior is indeed resembles
f5(t). We also use ansatz ¢y fa(t) + c2f5(t) + c3 to fit the numerical results, where ¢ 23 are
fitting parameters. By minimizing the mean-square error, we got the best fitting results with
c1 =1.02, ¢ =0.94, and c3 = —1.02. Again, the fitting result ¢; matches its theoretical result
c1 =Tr(03) = 1, and ¢, matches ¢, = Tr(0%p) = 1 very well. From these tests, we can see
our analytical upper bound estimation of variance matches the numerical results under various

conditions, and the upper bound is tight in the numerical tests.
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Figure A.4: Numerical tests of the variance of diagonal variables. We use 9 qubits GHZ
states as our initial state. Subplot (a) and (b) shows different choices of diagonal observables
corresponding to case 2, and case 3. Blue dots are numerical results, and the red curves are
analytical fittings.

A.5 Variance of nonlinear functions

For nonlinear function involving k copies of p, such as oy = Tr(Op®*), we can estimate
it using 6 = Tr(OPp; ® - - - ® Pr), where P, are independent samples of classical shadows. The

efficiency is related to Var(6) < E[67]. Since p; are independent random variables, we can have

Ey:
Elof)= E[ | © | = (A.33)
P
e
Using Eq.A.10, we can simplify the above equation as
] ,J —
Elp1  pi 1%
E[6f] = = - : (A34)
E[ﬁ‘k ﬁ({: ] 1%

where each V|---| involves 7 P-diagrams as defined in Eq.A.12. From Eq.A.34, we can in

principle calculate the upper bound for variance of nonlinear functions involving any order k of p:
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Var(Tr(0p™F)) < E[Tr(0p* )] = Y []/fou(t)Poss (A.35)

ae[l 8Jk O

where & = (aiy,--- ,04) € [1,7]¥ labels the P-diagram attached to each tensor leg. For convenience,

we€ rename

S1(0) + f2(t) + f3(2) = Fo0)(1)

Jat) +15(1) = Fla,a)(t)

Jo(t) = Fip 0)(t) = Fo) (1) (A.36)
fi(t) = Fua)(t) = Fapn(t)

13(t) = Floa)(t) = Fla,0)(2).

With those names, we can formally rewrite Eq.A.35 as

Var(Tr(()@@k)) < [E[Tr(Of)@k)2] < Z Tr(OyryL... LOOCR(XZ o HFOL, (A.37)

_ o %2
a:(alu"' 70‘/()

where & = (G, -+ ,0) has k-component, and each &; = (af,af) is a two component vector

where ocl.L/ R labels the i-th tensor leg of left/right O operator. Each

—

& = (0,04 ) € {(0,0),(d.d), (1,0),(0,1),(1,d),(d,1),(0,d),(d,0)}

, and the summation is over all combinations of . In the last step, we use the fact, Tr(Op) <

Tr(O).
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Appendix B

Classical shadow tomography with locally

scrambled quantum dynamics

B.1 Entanglement feature and the reconstruction channel

In this appendix, we discuss the details about the derivation on measurement channel
6 = M|[p] and reconstruction channel p = M ~![c]. With the notation developed in 6.2.1, the

expected classical snapshot G is expressed as

c=Mp]= Y &Tr(6p)d". (B.1)
Géfg

By utilizing the assumption that prior ensemble Z is locally scrambled, i.e. P(6) =P(VI6V), ¥V €

U(d )N , we are free to insert local basis transformations V, and average it out. By doing so, we
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have

6 = EyeyanEser,V' 6V Tr(V 6V p)a"

_VIT Vi— II—VlJr
- g g Vi . V=
Veu(dNees, o : :
—v} Va— =V (B.2)
- BC%QIC\% WgB7CI : p . I (5‘650
’ [ —ZT

where each B; and C; have two choices: swap operator (1) or identity operator (0), and WgB’C =
(d?> —1)~N(—1/d)BCl is the Weingarten function of regions B and C, where B&C = (B\ C)U
(C\ B) denotes their symmetric difference. In the above tensor diagram, short parallel lines
indicate the periodic boundary condition, and the summation of B and C is over all possible
subregions of the N qudit system. As we can see, if we choose a subregion B to be the swap
operators, then p will be traced out on the counter part B. In addition, the identity operators (red
lines) on B are inserted. So the first tensor diagram in Eq. (B.2) is the reduced density matrix
embedded back into the total Hilbert space. We spoil the notation and use ppd® = (Trzp) @15
to denote the first tensor diagram, but one should remember the identity operators are supported
in region B. The tensor product ® notation indicates that (Trgp) and 15 act separately in regions
B and B, which does not imply that B should be a consecutive region “in front of” B (as in the
conventional notation). The second tensor diagram in Eq. (B.2) is the 2nd entanglement feature

of the prior POVM %,
_ ) —s9(8)
c= E Trc(Trg6)"= E e °c %, (B.3)

where S(C2 ) (6) denotes the 2nd Rényi entanglement entropy of the state & in region C. The above

tensor diagram representation is equivalent to Eq.6.7 in the main text.
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B.2 Variance estimation and sample complexity

In the main text, we relate the sample complexity M with the p-dependent shadow norm
2
0I1%,, . by
M > ||0\|2£6‘p /€%8. (B.4)

However, the p-dependent shadow norm || OHZEG‘p is generally complicated to evaluate. If we are
not interested in the shadow norm for a specific state p, but rather the expectation of the shadow
norm over an ensemble of states {VpV '} that are similar to p by local basis transformations
V € U(d)", we can actually define a p-independent shadow norm by averaging over V. The result

is similar to Eq. (6.15)

o|vpvt

o2 = E |o|?
0]/, VEU@N” 1

(B.5)
2 3
= ¥ [0lWeg W)
g.hesy
where H0||§, is inherited from Eq. (6.16)
10lg=E 0I5y
ST yeulan pVig B.6)

=Tr (M O]* @ 1)x,).

Compared with Eq. (6.16), we can see that the ensemble average Ey cyq)v in Eq. (B.6) removes
the p dependence by effectively replacing p with d =1 (the prior density matrix that defines
the prior POVM Z). This explains the consistency in our notation that ||0||2Zﬁ = Egez,0(6)?
follows from essentially the same definition as in Eq. (6.14).

Note that the reconstruction map M ~! always commutes with the local basis transfor-
mation V = [[;V;, i.e. M~ [VTOV] = VI 10|V, because V; acts on each qudit separately

and hence does not interfere with the partial trace operation. This indicates that the norm
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HOH§ = ||VTOVH§ is invariant under the transformation V. This suggests us to define a locally

scrambled ensemble E¢ (or known as U (d)V-twirling) associated with any given observable O
Fo={Viov|V e U@@)"}, (B.7)
such that || 0H§ in Eq. (B.6) can be redefined as its ensemble average

ol)’= e |l0|?
[red 0650“ g

= E Tr((M 'Yviov®2e1
Veu(d)N "l | | ) (B.8)

2
= )y 4 rBWgC,DWéO),D Tr (((Xc)as ® 1)Xe)-
A,B,C,DE2ON

Here Y ¢ denotes the swap operator supported in region C that acts between the first two copies of
the Hilbert space, and ()c)a s denotes the reduction of ) in region A and B respectively in the

first and the second copies of the Hilbert space, which results in (}c)a B = Xansncd [AnBNC|—|C]

The operator entanglement feature WgO{ p = Eocx, Trp(Trp 0)? follows from the same defi-
nition given in Eq.(6.8). r4,rp are the reconstruction coefficients given by the solution of
Eq. (6.12). Substitute Eq. (B.8) to Eq. (B.5), we can evaluate the summation of g,/ given that
Zg’ hesy Tr(XAﬂBﬂCXg)ng7hW£)7 h= Wg;) angne- The reduction of the 3rd entanglement feature
to the 2nd entanglement feature is a consequence of the fact that p drops out from the tensor
product in Eq. (B.6), such that only 2-fold Hilbert space is required to define || 0||2£6

Thus we finally arrive at the expression for the operator shadow norm purely in terms of

the entanglement features of 4 and £y,

2 2 2
1015, = X vascoWe ansrcWi b (B.9)
A,.B,C.DE2®N
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where the coefficient v4 g c p is given by

>NdAmBmC|C <_ l)ceDl. (B.10)

VAB.C.D = VAVB( ]

d?—1

B.3 Fidelity estimation for mixed state

Our method is not restricted to pure state. In variational quantum state preparation, even
the target state is some pure state, noise in the preparation circuit could make the final state
in experiments a mixed state. We can use the shallow circuit classical shadow tomography to
efficiently estimate the quantum fidelity between final prepared quantum state pp and the target
quantum state pr. Fast access to this quantity is crucial for variational quantum state preparation,
error mitigation and etc. As an example, we consider the noisy preparation of a perfect GHZ state

with Z errors occurs at probability p. The prepared state can be expressed as

pr = (1= p)Wnz) (Wenzl + PIWGHZ) (Wanz !, (B.11)

where |W§HZ> = \/Li(|0®N ) £ [1®N)). We compare the performance between random Pauli
measurement and shallow circuit shadow tomography with 3 layers of local random unitaries.
Experiments are performed on a 9-qubit system and 5000 classical snapshots are collected for
both random Pauli shadow tomography and shallow circuits shadow tomography. The result is
shown in Fig. B.1. As we can see, for 5000 experiments, the quantum fidelity estimated using
random Pauli measurement has huge error bar, indicated by the blue shaded region. However,
same amount of data collected after shallow circuit evolution can give accurate estimation of
quantum fidelity, and error bar is almost four times smaller. Practically, this makes the usage of

shallow circuits more appealing.
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Figure B.1: Fidelity estimation between mix state and target state. 5000 experimental classical
snapshots are prepared for both random Pauli measurement (L = 0) and shallow random unitary
circuit (L = 3). Error bar indicates 3 standard deviation.

B.4 Approximated unitary ensemble and purification

In the main text, we have seen when the measurement channel M in data acquisition and
the reconstruction channel M ~! in classical post-processing mismatch, the reconstructed density
matrix ﬁ Yoety, M ~'[6] may not be positive-definite. And it results in biased prediction of
physical quantities. In Fig. 6.5 (a) and Fig. 6.9, we have seen the biased prediction of fidelity that
is larger than one. In Fig. B.2, we plot the eigenvalues of reconstructed density matrix of 7-qubit
GHZ state using DQIM ensemble with 7'/ T, = 1.38. In the main text, we have seen the DQIM
ensemble with one period of evolutional time or 7' /T, = 1.38 is not sufficient to achieve the
local scrambling assumption, such that there is mismatch between data acquisition channel M
and reconstruction channel M ~!. We see the spectrum of density matrix contains some negative

eigenvalues.

2.5
2.0
1.5
1.0
0.5
0.0
-0.5

-1.0 bk .
0 20

DQIM J =1,T/ Ty, = 1.38

Eigenvalues

0 60 80 10 120
Figure B.2: Eigenvalues of reconstructed density matrix p of 7-qubit GHZ state using mis-
matched channels. The unitary ensemble is single instance of DQIM ensemble with J = 1, and

T /Tty = 1.38. Under this condition, the unitary ensemble is not locally scrambled.
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In addition, the approximate shadow tomography based on locally scrambling Hamiltonian
evolution, such as DQIM ensemble or GUE2 ensemble, is approximately unbiased when local
scrambling is approximately satisfied or frame potential gap is vanishingly small. In Fig. 6.9, we
have seen they all can give unbiased prediction of quantum fidelity when 7" > 1077,. We directly
visualize the reconstructed density matrix using approximated DQIM ensemble in Fig. B.4 and
Fig.B.5. As we see in Fig.B.5, at T /Ty, = 1.95, the locally scrambling assumption is not
satisfied, and reconstructed density matrix is biased. In contrast, at T /T, = 25.3 (Fig. B.4), the
reconstructed density matrix using a single instance of DQIM Hamiltonian is perfect, justifying

the validity of our approach when the locally scrambling assumption is approximated satisfied.

0.4 DQIM J =1
02 & GUE2

0.0 , , , , ,
0 5 10 15 20 25
T/ Try,

Figure B.3: Fidelity estimation of approximated unitary ensemble after purification. After
around T ~ 10Tty, the fidelity is around 0.99. Same data are used as Fig. 6.9

Further more, for biased reconstruction, in order to make it positive definite, we can
nonlinear project the reconstructed p to the convex set of physical states C = {p|p = 1,Tr(p) =1}
by minimizing

I (c) = argmin Tr((p — 6)?), (B.12)
peC

which is the method mentioned in Ref. [ASS21]. If we have more prior knowledge about the
quantum state, such as it is a pure state, then we can further impose those assumptions into the
projection. Here, as an illustration, we utilize the knowledge that the target quantum state is pure,
and we project the reconstructed p to a pure state p in C by choosing the eigenstate of p with the

largest eigenvalue. As shown in Fig. B.3, for the approximated ensembles, the GUE2 and DQIM
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are biased in the short time region, and projected state p has a fidelity less than one. And when
locally scrambling assumption is approximately satisfied, the projected p will have fidelity that is

approximately 0.99. With these checks:
e unbiased prediction of physical quantities, see Fig. 6.9
o high fidelity of reconstructed density matrix projected back to physical space, see Fig. B.3

we confirm the approximated shadow tomography can perform unbiased reconstruction.
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Figure B.4: Unbiased reconstruction of a 7-qubit GHZ density matrix, using a single instance
of Hamiltonian in the DQIM ensemble at T’/ Tr, = 25.3 (after the local scrambling condition is

achieved).

171

amplitude

phase



32

64

96

128

324

64

96 1

1284

!!(L?

0.6
0.5
0.4
0.3
0.2

Figure B.S: Biased reconstruction of a 7-qubit GHZ density matrix, using a single instance of
Hamiltonian in the DQIM ensemble at 7'/ Tt, = 1.95 (before the local scrambling condition is

achieved).
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Appendix C

Topological and symmetry-enriched

random quantum critical points

C.1 Spectrum bifurcation renormalization group

In this appendix, we briefly summarize the spectrum bifurcation renormalization group
(SBRG) method [YQX16, SYX16, SBYX17]. The basic idea of SBRG is to progressively
identify conserved quantities by block diagonalization, and treat the off-diagonal term within
second order perturbation theory. The general form of a qubit model Hamiltonian can be written

as

H= %hMGV‘], (C.1)

where 6 (u; = 0,1,2,3) are Pauli matrices acting on the ith site, and ol =ct o2 @0
denotes a string of Pauli operators. The real coefficients /, are drawn from some random
distribution. To progressively diagonalize the Hamiltonian in Eq.(C.1), we first find the leading
energy scale term

Ho = hyy,,, o1%m, (C2)
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where |hy, | has the largest value among all the coefficients. We then block diagonalize term
oltmax by a Clifford rotation R,

RigMmaxp — (53[0"'0}’ (C.3)

and all the other terms will be rotated by the same operator R, such that H — R'HR. As we
block diagonalize the leading energy term, the many-body spectrum bifurcates to high energy
E ~ |hy,...| sector, or to low energy E ~ —|hy, | sector. We now reduce the other leftover

Hamiltonian to either sector. The Hamiltonian can be separated into the following three terms:

H=Hy+A+Z, (C4)

where A are the terms that commute with the leading term Hp, and X are the terms that anti-

commute with Hy. We will renormalize the off-diagonal term ¥ using second order perturbation

Figure C.1: Spectrum bifurcation renormalization group. Spectrum of energy generated by
SBRG: at each RG steps, the RG bifurcates into a high- and low-energy branch, corresponding
to T; = £1 respectively. Each many-body eigenstate corresponds to a leaf of the tree, uniquely
labelled by the values {t; = +1}.
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theory, H — STHS, with S = exp (—HoX/ ZhMmaX). The effective Hamiltonian reads

1 >
. (C.5)
3
2R

And we will only keep terms generated up to 2nd order in perturbation theory. We then repeat

1
H=Hy+A+—5—HX*+0

this procedure at O(N) times to fully diagonalize the original many-body Hamiltonian. At the

end of RG flow, we will obtain the effective Hamiltonian

H. = ZSiTl‘ + Zeiﬂﬂj +-- (C.6)
i i<j

where T; = 1 are the emergent conserved quantities.

The whole RG transformation can be summarized as a unitary transformation,
Urg = RiS1R2S: -+ = [ [ RiS:, (C.7)
i

and H — UIZGH Urg =~ Hf. The eigenstates can be labeled by a vector of conserved quantities,
ie. |t) =]ty = 1,73 = —1,---). We can effectively calculate the expectation value of any physical

observable O in the {t;} basis as

(W|Oy) = (W|UrGUZOUrGULG W) = (] Ocsi]T). (C.8)

The entanglement entropy can also be efficiently calculate using the stabilizer formalism[YQX16,
FCY104).

We investigated the bulk property of Ising” transition as a sanity check. In Fig.C.2 (a)
show the entanglement entropy Sg = —trpa logpa grows logarithmically with the size Ly of the
entanglement region following Sg (La) = (cefr/3) log L4[RMO7]. We observe the “effective central

charge” ceer = (0.51 +£0.02) log2, which is consistent with the expectation cef = (1/2)log?2 for
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the infinite-randomness fixed point in the Ising universality class. Another signature of the
infinite-randomness fixed point is the dynamical scaling / ~ (log#)? ~ (—loge)? that relates the
length scale I and the energy scale €[Fis95]. We check this by examining the relation between the
length [, of the Pauli string T, and its corresponding energy coefficient €, in HygL. Fig. C.2 (b)
confirms the scaling loge, ~ —+/I,. These evidences justify that the disordered Ising* does flow

to an infinite-randomness fixed point.
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Figure C.2: Bulk criticality of the Ising” fixed point (a) Entanglement entropy scaling and (b)
dynamical scaling (collected over 10* realizations) at the Ising* fixed point.

C.2 DMRG analysis of the symmetry-enriched random singlet
phase

In order to study the stability of the symmetry-enriched random singlet phase discussed
in the main text, we included perturbations to take the B spins away from integrability, to further
couple the A and B spins, and we also added generic symmetry-preserving terms near the edges.
In the following, we take J; and A; to be drawn from uniform random distributions, between
[0.1,1.0] and [0.3,0.7], respectively; gz = 0.3, and V = — ¥, 0.1X2X5 | +0.1Z8 X272 | where
the first term breaks integrability of the B spins while the second term couples A and B spins

before the unitary twist. We also add small fields 0.2(X6‘ +X1{‘,) + (Xg + X¥%) that preserve the
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Figure C.3: Entanglement scaling in the symmetry-enriched random singlet phase. Bipar-
tite entanglement entropy vs system size in the groundstate of the symmetry-enriched random
singlet phase, computed using DMRG. The numerical results are consistent with the random
singlet phase prediction S ~ log2/61logL (solid lines).
Z‘% X leg symmetry. (Note that those boundary terms break the U (1) }; Z? conservation at the
boundary, but that symmetry is only required to tune the bulk to criticality, and does not play a
role in protecting the edge modes.)

Because of the non-Abelian symmetry G4 of the model, the SBRG approach used to study
eq. 1 in the main text does not apply here '. In order to establish the presence of topological
edge modes and study their interplay with the coexisting quantum critical bulk fluctuations,
we compute the low-energy spectrum using density-matrix renormalization group (DMRG)
techniques [Whi93, ITe]. While DMRG cannot access system sizes as large as SBRG, it has the
advantaged of being essentially numerically exact for reasonably small system sizes (L < 50 before
numerical instabilities make the variational sweeps unpractical). We used the ITensor library [ITe]
to perform DMRG simulations of the disordered symmetry-enriched random singlet Hamiltonian,
using bond dimension ¥, ~ 500. We considered system sizes L = 2N = 12, 16, 20,..., 48, where

N is the number of spins per species A, B. The number of disordered realizations ranged from

IContrary to the random Ising* universality class which extends to the whole spectrum (at least in the non-
interacting case, where there is a “strong zero mode” [Fenl2, Fen16]), here we expect the ZQ symmetry to be
spontaneously broken in highly excited states, protected by MBL [VFPP16], resulting in very different physics than

the quantum critical behavior at low energies.
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~ 6000 (for the largest system size L = 48) to 3 x 10*. We found that a large number of disorder
realizations was necessary to observe the expected random singlet quantum critical behavior.
However, the topological edge modes can be observed on individual disorder realizations.

We find an exponentially small in system size splitting between the two groundstates,
| T2dr) £ | L2 Tr), where R and L denote the configurations of the right and left edge modes,
as in the main text. The orientation of the edge modes can be detected from the spontaneous
boundary magnetization in each eigenstate upon adding a small magnetic field. We observe
numerically that those groundstates are separated from the first excited states | T Tr) = | Jrdr):
critical bulk fluctuations separate ferro- and antiferromagnetic alignments of the edge modes,
leading to a 2-fold groundstate degeneracy. Coexisting with these topological edge modes, we
find bulk quantum critical properties characteristic of a random singlet phase. The typical bulk
gap closes as AEypical = elogAE e_ﬁ, with as in the Ising case, a broad gap distribution leading
to a different scaling for the average AE ~ e X" This stretched-exponential gap closing is
hallmark of an infinite randomness quantum critical point, and is apparent in our DMRG results
as shown in the main text. We find other signatures of random-singlet criticality: in particular, the
entanglement entropy (using open boundary conditions, with the entanglement cut in the middle
of the system) grows logarithmically with system size L (Fig. C.3), with a prefactor compatible

with the prediction S ~ % log L [RMO4].

C.3 Floquet Ising™ criticality

In this appendix, we analyze the edge mode structure of the Floquet transverse Ising chain.
We focus on the non-interacting limit for simplicity, and also consider uniform couplings as most
features we want to illustrate are already apparent in this limit. Disorder is needed to many-body
localize the phases in the presence of interactions, and to make the notion of Floquet phase

structure meaningful away from the non-interacting limit. (Without disorder, Floquet systems
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typically heat up indefinitely and thermalize to infinite temperature.) Let us work in the Majorana

representation with a pair of Majorana fermions v;,¥; per site j, and define

Hq = %;?nvm- (C.9)
Under time evolution, we have
Yu(t) = oty e ol — cos(t )y, — sin(t)¥—_o,
and
Tu (1) = e, e~ Hol — cos (1), + sin(t)Ypta-
If we introduce the unitaries
Uy=e ™o and U, =M, (C.10)
we have, after a Jordan-Wigner transformation
F = U Uy = e~ 2 Li/%iZivig= s LihXi (C.11)

which is indeed the Floquet operator of the driven Ising chain.

179



arctan(€())
retan (&

a

(a) N gz (b) g /2 (C) o . /2
. 0nPM zero mode
J| SG . ©SG ~7/2 N AN ~ /2 "4 5
2 PM
% /2 S % /2 .
h h

h

Figure C.4: Topological edge modes at Floquet criticality. (a) Schematic representation of
the Floquet phase diagram of eq. (C.11). (b) The localization length of the zero mode; note
that it remains finite (purple region) at the critical line between SG and OnPM (c) Similarly, the
localization length for the T mode remains finite at the transition between ©SG and OTPM.

Under Floquet stroboscopic evolution, we have

cos(J) (cos(h)y, — sin(h)¥,) + sin(J) (cos(h)¥p—1 +sin(h)y,—1) ifn>1

Fiy,F =
cos(h)y; —sin(h)¥; ifn=1
(C.12)
P g cos(J) (cos(h)¥, +sin(h)Y,) —sin(J) (cos(h) Y1 —sin(h)¥p+1)  ifn <N
Tl =
cos(h)yy +sin(h)yn ifn=N.
(C.13)

From these expressions, we can construct the exact 0 and T modes for a half-infinite chain [YEM19]:

0 _ & (tan(h/2)\""! . )

" :r; (W) (cos(h/2)y, —sin(h/2)¥,), (C.14)
) _ y ! " in(h/2 h/2)F C.15
YL :E(_tan(h/Z)tan(J/2)> (Sln( / )'Yn+COS( / )’Yn) ( . )

Here the labels 0 and 7 refer to the quasi-energies of those modes, that is, F TY(LO) F= 720), and

}7Tw§?)17 — einW§jw'
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Those edge modes are only meaningful when they are localized and normalizable. We
plot the localization length of those modes as a function of J and 4, and compare it to the
known phase diagram of this model [KLMS16] (Fig. C.4). As expected, all four phases can be
distinguished by their edge mode content: the paramagnet (PM) has no edge mode, the spin
glass (SG) Ising symmetry-broken phase has a 0-Majorana mode, the t-spin glass (TSG) has a
m-Majorana mode, and finally, the On-paramagnet (OtPM) has both a 0 and a T-Majorana mode.
Remarkably, we find that the localization length of the zero mode remains finite at the critical
line between SG and OtPM. Similarly, the localization length for the T mode remains finite at the
transition between TSG and OtPM. In other words, the transitions out of the OTPM phase are in
the Ising” universality class. While we focused on the clean (uniform) case for simplicity, we have
checked numerically that this carries over to the disordered case, and that both transition lines
out of the OnPM support exponentially localized edge modes. This Ising* critically is protected
by a Z, x Z> symmetry, where one of the Z,’s is emergent and inherited from time translation
symmetry. Indeed, the SG-OPM transition will have an Ising disorder operator u (for the critical
Z; Ising symmetry) which is charged under the emergent Z, time-translation symmetry (this
protects the edge mode for the same reasons as the Z, x Zg -symmetric case studied in the main
text); analogously, the Ising disorder operator u for the TSG-0mPM transition corresponds to the
time translation Z; which is now charged under the explicit Ising symmetry [],, X,,. Disorder
is essential to meaningfully discuss the phase structure of Floquet systems in the presence of
interactions, so the relevant criticality in general is the random Ising”* universality class discussed

in the main text.
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Appendix D

Machine learning holographic mapping by

neural network renormalization group

D.1 Minimal Bulk Mutual Information Principle

The maximal real-space mutual information (maxRMI) principle proposed in Ref. [KR18,
LRHK18] aims to maximize the mutual information between the coarse-grained field and the
fine-grained field in the surrounding environment at a single RG step. In this section, we show
that the maxRMI principle can be derived from our minimal bulk mutual information (minBMI)

principle under certain assumptions.

IR
da , R , B ~
3:(% ¢B>:{ Sl
H_} H_}
¢A ¢B uv

Figure D.1: Functional dependence of variables in the neural-RG network. Each block repre-
sents a bijective map.
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Let us set up the problem based on Fig.D.1. Assuming ¢4 and ¢p are field configurations
in two neighboring regions A and B in the UV layer. Under one step of the RG transformation,
¢4 gets mapped to the coarse grained variable ¢, and the bulk variable {4, and the mapping
is bijective. Similarly, another bijection takes ¢p to ¢ and {p. Eventually, ¢/, and ¢ will be
mapped to the bulk field {¢ in deeper IR layers. Therefore the random variables that appeared in

Fig. D.1 are related by the following bijections fa, f5, fc as

(q)xlé\? CA) = fA(¢A)7 (q);?v C.,B) = fB(q)B)v CC = fC(q)jA:q);B) (D.1)

What are the information theoretical principles to guide the bijections f4, f, fc toward good RG
transformations? We propose the minBMI principle that these bijections should minimize the

mutual information among the bulk variables,

min/(Ca : Cp) +1(Ca : Cc) +1(Cp : Co)- (D.2)

Ref. [KR18, LRHK18] propose another principle, the maxRMI principle, that the RG transforma-
tion should maximize the mutual information between the coarse grained variable (such as ¢/,)

and its environments (such as ¢p),

max () : dp). (D.3)

We can show that the objective of the maxRMI in Eq. (D.3) is consistent with the objective of the
minBMI in Eq. (D.2) in the limit of UV-IR decoupling.

The minBMI principle aims to minimize mutual information among all bulk variables,
both between different RG scales and within the same RG scale. Its objective has a broader
scope than the maxRMI principle, because the later does not specify its objectives across the RG
scales. So to make a connection between these two principles, one must first restrict the scope

of the minBMI principle to a single layer. This can be achieved by assuming that there is no
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mutual information between bulk variables at different RG scales. In our setup, this corresponds
to 1(Ca,Cp : {c) = 0, which factorizes the joint probability p(£a,ls,Cc) = p(Ca, ) p(Ec) and
decouples the bulk variables between UV and IR. As a result, the mutual information between
any bulk variables across different RG scales vanishes 1(C4 : {¢) = I({p : {¢) = 0. This already
minimizes the bulk mutual information across layers and reduces the minBMI objective in
Eq.(D.2) to

min/(Ca : {p). (D.4)

In this UV-IR decoupled limit, we can prove that max(¢/, : o) and minl ({4 : {p) are equivalent.
The proof starts by considering the mutual information between ¢4 and ¢pp. We can see

that

I(04 < ¢5) =1(0},Ca : 05)
=1(04 : 95) +1(Ca : 05)
=1(¢} : 08) +1(Ca : 05,Cp) (D.5)
=1(¢} : 08) +1(Ca: 05) +1(Ca: Cp)
=1(0 : 95) +1(8a : Cp)-

Here we have used the bijective property of fu, fp, fc to obtain I(¢4 : ¢p) = 1(¢)4,Ca : 08), 1(Ca :
0) =1(Ca : 0, Cp) and I (84 : C¢) =1(Ca : ¢y, 07). In the UV-IR decoupled limit, 1({a : {¢) =0,
s0 I(Ca @ ¢y, 0%) = 0, which further implies 1(4 : ¢,) = I({a : ¢) = 0. With these relations, all
steps in Eq. (D.5) are justified. On the left hand side, I(¢4 : ¢p) is determined by the field theory
in the UV layer, which can be treated as a constant. For the given amount of information between
regions A and B, Eq. (D.5) tells us that 1(¢/, : ¢p) and (L4 : {p) are competing for information
resources. Therefore maximizing /(¢, : ¢p) is equivalent to minimizing 1(C4 : {p).

We can apply this argument layer by layer. Then to achieve the objective of the maxRMI

principle, we need to minimize mutual information among bulk variables in the same RG scale,
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which is precisely the statement of the minBMI principle when restricted to each layer. In this
sense, the maxRMI and minBMI principles are consistent. However, the minBMI principle
actually relaxes the assumption that bulk variables at different RG scales are fully decoupled.
Instead, we want to minimize mutual information among all bulk variables, including those across

the scales. In this sense, the minBMI principle is more general than the maxRMI principle.

D.2 Design of Bijectors

We designed a set of symmetry-persevere bijectors to making sure that U (1) symmetry of
the boundary is preserved at each bijector. For the generative process, at each RG step, it takes
the four complex degrees of freedom and they go through three layers of bijectors: S, O, and 4.

I. Scaling layer(S): At scaling layer, each complex variables ¢; is multiplied by a factor
¢*. The inverse and the Jacobian of this transformation can be obtained easily.

II. Orthogonal transformation layer(O): The orthogonal transformation in disentangler
and decimator is in general an O(4) transformation. In stead, we implemented it by stacking

multiple O(2) transformations. In Fig. D.2(a), each blue block represents the matrix:

sin®; cosO;
My1e(0;) = , (D.6)

cos0; —sinb;

and the orange block in Fig. D.2(b) represents the matrix:

cosO; —sinb;
Morange(ei) = . (D.7)
sin®; cosO;
0; in those blocks are training parameters. The arrangement of the type I and type II blocks are

such designed that when Myjye(0; = 7t/4) and Morange(0; = 0) the network reproduces the ideal

EHM originally proposed in Ref. [Qi13]. We initialize the parameter to this ideal limit.

185



Type one block Tpe two block

Decimator Disentangler
tr *° tr
Type two block Type two block
[ [ [ 1 |1 G |G
TBpe one block Type two block

O T T T T T O

Figure D.2: Orthogonal transformation.

II1. Non-linear layer(A2) For non-linear part, we use the amplitude hyperbolic functions

for complex field ¢;. In coarse-graining direction, it acts in the following,

Re({) = sinh 0|1 os
Im(C) = sinh\¢|%. |

The corresponding inverse and Jacobian can be calculated easily.

D.3 Neural Network Training

All the training parameters of our neural RG network are contained in scaling bijectors
and orthogonal transformation bijectors as illustrated in Appendix D.2. We imposed translation
invariance of our network at each layer, due to translation invariance of the system at each energy
scale. The total number of training parameters scale with O(log(N)), where N is the size of
boundary theory. The prefactor depends on the depth of bijector neural networks. In our case, the
total number of training parameters are 24log, N. In order for faster convergence of the training,

we first set learning rate for parameters contained in scaling bijectors as 102, and gradually
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reduce it to 10~*. And the learning rate for parameters contained in orthogonal transformation

bijectors is always 10~%.

D.4 Monte Carlo Sampling Efficiency

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0k . . . . N
0 100000 200000 300000 400000 500000

Epochs

()

{ Latent space HMC { Physical space HMC

Figure D.3: MCMC result.

We tested numerical efficiency of our method by comparing convergence rate between
Hamiltonian Monte Carlo(HMC) on the boundary system, and HMC in the bulk system. Both
method are implemented using TensorFlow probability API with same parameters. The result is
shown in Fig.D.3. As we can see, the HMC in the bulk system converges faster than the HMC on

the boundary system.

D.5 Design of the Correlated Gaussian Prior

In finding the effective bulk field theory, we assume the bulk field is very massive. Under
this assumption, higher-order interaction terms are irrelevant. Therefore, we use a correlated
Gaussian distribution with positive definite kernel matrix K as our effective bulk field theory.
We also assumed locality of our effective bulk field theory, which means K;; is non-zero if and
only if {; and {; are nearest neighbors in the bulk, including neighbors inter-scale and intra-scale.

To further reduce the fitting parameters of matrix K, we also imposed translation invariance of
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the bulk field at each scale. This is reasonable, because our RG scheme also has the translation
invariance at each scale.
To ensure matrix K is positive definite, we decomposed matrix K into a set of positive

semi-definite matrix and a mass term. Particularly,

K= %M(!i)(ﬂ + A U= 1D U= 1)) + ml, (D.9)
ij

where [ is the identity matrix, and A;; and m are positive numbers. This ensures matrix K we

constructed is positive definite.
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