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Abstract: We aim to analyze the infrared singularities of scattering amplitudes
for soft gluon emission between external massive partons, using the soft gluon expo-
nentiation method, in terms of sets of diagrams known as webs. In renormalizing these
divergences we use an infrared regulator and introduce the finite soft anomalous dimen-
sion function. This anomalous dimension was computed for one-loop diagrams and
two-loop diagrams, but the three-loop research is still open. As a new contribution to
this, we consider six three-loop diagrams, composing the W1113 web. We compute the
kinematic factor of one of them, and we derive its singularities to all orders. Then, we
are able to find some symmetry relations, which enable us to analyze all the other five
diagrams from computing only one. In the end, we present a method of solving the
integrals, entering these webs, obtaining actually two contributions to the three-loop
anomalous dimension.
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1. INTRODUCTION

The theories describing the interactions between the fundamental particles are
known as Quantum Field Theories (QFT) [1]. The interactions between color charged
particles, such as quargs and gluons are described by a theory called Quantum Chro-
modynamics (QCD). To compute the scattering amplitudes of scattering processes
between these particles, we rely on perturbative QCD [2], [3]. Scattering processes
involving emission of soft gluons, such as top quargs pair-production, imply the exis-
tence of long distance or infrared singularities when trying to compute the scattering
cross sections [4], [5]. In this kind of processes, the scattering amplitude can be fac-
torized into a hard interaction function, which is finite and a soft function, which
contains all the singularities [6]. The advantage of this is that the soft function has
a much simpler form, not depending anymore on variables like energy or spin and
also it has the key property of being exponentiated. Now, the soft gluon exponenti-
ation method uses a diagramatic approach, in which the exponent may be written in
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2 Renormalizing infrared singularities in 3-loop multiparton web with soft exponentiation 1053

terms of a set of Feynman diagrams, called webs, which in the case of two external
partons are irreducible but in the case of multipartons it contains subdiagrams and
hence subdivergences [7]. The renormalization of these singularities is based on the
existence of a so called soft anomalous dimension, which is finite, depending only
on the kinematic variables and on the renormalization scale. Hence, the main goal
is to compute this anomalous dimension both for one-loop diagrams and higher-loop
ones.

In this paper, we want to use the soft-gluon exponentiation in multiparton webs.
We will rely on the so called soft (eikonal) approximation, in which to each hard
parton i we associate a corresponding semi-infinite Wilson line, starting at the origin
(i.e. the hard interaction) and pointing in the direction ; of motion of the parton
1, given by the corresponding momentum p;. Here, we would like to eliminate the
collinear singularities and hence we choose non-lightlike Wilson lines with 5@2 <0,
by tilting them off the lightcone. The background of the theory is based on [8].

So, we consider emission of soft gluons, whose momenta can be neglected
in comparison with the hard parton momenta and thus we can replace the external
particles by the semi-infinite Wilson line, as motivated in [8]:

oo
@5, = Pexp (g / dAB-A(AB))- M
0
The soft singularities can be then described by the eikonal amplitude

Sren('yij’EIR) =< 0|(I>B1 ®(I)52 (I),BL’() >rens ()

where L is the number of considered partons. The kinematic dependence of the soft
function is given by the cusp parameters

Yij = 2Bi- B[/ B B5- 3)

It can be shown that (2) renormalizes multiplicatively, by introducing a counterterm
factor Z, which contains all the UV singularities and thus the eikonal amplitude is
ultraviolet finite, containing only the IR singularities, e;r. Thus, working in pure
dimensional regularization, with d = 4 — 2¢, the following result holds:

Sren(Vijs sy €1R, 1) =Suv 1R Z(Vij, s, €UV, 1)
:Z<')/Z‘j,06576UV7,LL), (4)

where p is the renormalization scale and «; is the coupling constant. Therefore, in
this case the infrared (soft) singularities are described by the ultraviolet renormaliza-
tion factor Z, as in [4]. Note that in the case of multiparton webs, both the factor
Z and the amplitude S are actually matrices in colour flow space. Taking a look at
equation (4), we notice that actually the UV and IR singularities cancel each other.
So, in order to be able to further distinguish between them, one wants to introduce
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an exponential infrared regulator to cut off the IR divergences, leaving only the UV
ones, as proposed also in [9].

To further make use of the relation (4), we introduce the previous mentioned
soft anomalous dimension I, given by

dz
=—-ZT 5
dln i ; &)

which can be decomposed in terms of the renormalized coupling as, as
oo
r=> TMar. (©6)
n=1

Here, it is important to mention the fact that it can be proven [8] that the anomalous
dimension is actually finite, this property imposing a lot of restrictions on the struc-
ture of Z factor. So, it turns out that I' depends only on the renormalization scales
and is € dependent only through the coupling ., but from equation (6), we see that
the coefficients of I" are entirely independent of e.

Coming back to the diagramatic approach introduced in [7] , mentioned in the
introduction, we want to define the notion of a web. A web W(,,, ) contains a set
of diagrams D obtained by permuting the way the gluons attach to the Wilson lines,
where n; is the number of gluon attachments to line i. Then, the following relation
holds:

Winy.np) = Y F(D)Rpp C(D), (7)

D,D

where the (D) function is the kinematic factor, C(D) is the colour factor and R(D)
are the so called web mixing matrices, which are analyzed in [10]. It is important
to make a separation between the single colour webs and the multiparton case. In
the former, the web contains only irreducible diagrams that have one UV divergence,
given by the 1/¢ pole in dimensional regularization, associated with the hard interac-
tion. This is because any subdiagram of a reducible diagram can be shrunk towards
the hard interaction without affecting the gluons attachments. In the latter case, this
is no longer true in general, but by using the properties of these R matrices and con-
sidering the whole set of diagrams rather than individual ones, we can generalize the
same web properties.

To apply all this theory, following the derivations in [8], we write the eikonal
amplitude S(e) in the form

S(e) = e, ®)

where the non-renormalized webs w, can be decomposed as

w= Zw(")ag, 9)
n=1
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with o denoting the renormalized coupling in d = 4 — 2¢ dimensions. At a given
order in «; we have that

N1,
where n; is the number of gluon attachments to the Wilson line [ = 1,..., L. Using

this foundation, it can be shown [8] that the coefficients of the first orders in the
decomposition of the anomalous dimension are given by:

r® = _gwt-1 (11)
r® = 4w @b oy =b y(.0)) (12)
3y
2
WD) O, w0 o)) — =D, =D D 13)

where by is a constant and we used W instead of w since we will consider just a
specific subset of diagrams. These are the equations one has to use in the in order
to compute the soft anomalous dimension at one-loop and two-loop order and to
prepare all the ingredients needed to compute it also at three-loop order, which is still
an unfinished work. A specific one-loop computation was published by the author in
[11], while the two-loop calculations can be found in [12], [13].

r'® = _gwG-1 4 W=D Wb 43w @0 w—b) 4 3w 10,

2. THE THREE-LOOP WEB W13

In this section, we want to analyze the case of three-loop diagrams, with three
gluons interchanged between four external quarks. Our goal is to find different in-
gredients, which enter in the computation of the anomalous dimension at three-loop
order, using (13). It is important to mention that this is still an ongoing research and
the results obtained here will be new contributions. For this, we will consider the
web Wi113, containing six distinct diagrams, denoted below as 3A, 3B, 3C, 3D, 3E,
3F in Figure 1. We want to describe each one of it by computing the kinematic fac-
tors and thus extracting the leading, subleading and next to subleading poles. Firstly,
we want to start with diagram 3F and perform a complete analysis and a full calcu-
lation. Then, based on the results we obtain for this, together with some symmetry
properties we are able to derive, we will consider also the other five diagrams below,
in Figure 1.

We work in the configuration space and, as mentioned above, one introduces
an exponential regulator along the Wilson lines, which gives the following Feynman
rule, according to [8]:

(igs) 8" /Oo d\e™ AW B (), (14)

0
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Fig. 1 — The six diagrams 3A, 3B, 3C, 3D, 3E, 3F, composing the three-loop web W1113. Figures from
[8].

together with the gluon propagator in configuration-space

[(1—¢)
A2—e °

This regulator has the advantage that it can be applied at any loop order, in does not

affect the Z factor since it removes only the long distance (A — co) singularities and
it doesn’t break the invariance under rescaling, namely

Dy =-Ngu(—2*) N= (15)

A=k, Bi— Bi/k. (16)
2.1. DIAGRAM 3F

Kinematic factor: Further, we want to compute the kinematic factor for the three-
loop diagram 3F, using the eikonal Feynman rule (14). Thus,

F(F) = N (31 50 B 5B 0) [ s [t [T [
/ dUQ/ dve” m( 51$+ —Bat1++/— B2 (u1tua+t2)++/—B2v)

(881 —t2Ba)*(t182 — u1Ba)* (ua By — vB3) 2 1 O(ta —u1) O(ur —u2),  (17)
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where we labeled the gluons according to diagram 3F. By rescaling the distance pa-

rameters as $; — S;/4/ —622, we have

F(3F) :(92/8)N66N3’Yl4’¥24734/ ds dty dtadu dugdy e~ ™S HF 2w tuzt)
0

[(82 + t% — Stg’ylg)(t% + u% — tlul’mg)(u% + v?— UQ’U”)/34)]671
@(tg—ul)@(ul—ug). (18)

Further, we can make the transformations,

D) G0 ()=o) o

obtaining the result

1
F(3F) —(95/8)M65N3714’724734/ drdydzP(z,714) P(y,724) P(2,734)
0
/ drdpdo(Apa)? e mOHEFIQ(N(1 — 2) — u(1 —y))
0
O(u(l-y) —az), (20)
upon introducing the propagator function
P(z,7i5) =[z* + (1 —2)? —2(1—2)y;,) "
:[1 - 43}(1 - .%')Odij]e_l,
Jij.

where we define the variable «;; = % + -7 and we notice that it has a symmetry
z <+ 1 — 2. We can apply a second transformation

(5)=o(2 ) (2)=2(0) @1

obtaining the result

00 1
F(3F) 2(95/8)u66/\/'3714724734/ dﬁﬁ&_le_mﬂ/ dxdydzP(x,v14)
0 0

1 11—z w
2e—171 2e—1 —
P(y,724)P(Z,734)/0 dww™ (1 ~w) @<1—y 1—w>

1
/derE_l(l—r)4€_1®<w(1_y)— : > (22)
0

z 1—7r

Now, the /3 integral gives m ~5¢T'(6¢) and the r integral can be computed using
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the substitution p = r/(1 —r), giving

w(l—y)

Ir(3F):/0 T dpp* TN (1)

_1 <“’(1_y)>2 oy ([26,66], [2e+1],—w(1z_y)> : (23)

2¢ z

Thus the kinematic factor (22) becomes

6 6e (6 1
F(3F) I (ﬁ) N3 ( 6)714’724’734/ drdydzP(z,v14) P (y,v24) P (2, 734)
8 \m 2¢ 0
1— 2¢ p1 o
< y) / dww4€—1(1—w)26—1 oy <[26>66],[26—|— 1]’_’11)(y)>
z 0 -
1—x w
@<1_y_1_w>' 24)

The expansion in e of the hypergeometric function, appearing in expression (24),
using the formulas in [14], is

o F1 ([26,66],[2&1],_1"(1;3/)) ~1+122Lis(—w(1—y)/2). (25

Considering only the expansion up to first order in € of (25), the integral over w in
(24) may be computed using p = w/(1 —w):

l—x
-y €— —b6€
LGP = [ dpp (1)
1 /1—z\* 1—x
=— Fi | |4de,4€], [4e + 1], — . 26
4e<1—y> ? 1<[ e e+l 1—y> 26
Thus the kinematic factor (24) becomes
6 Ge I'(6e 1
FBF) =% (ﬂ> NP ( 2)714724734/ dxdydzP(z,v14) P(y,v24) P(2,734)
8 m 86 0

L=y)* (1== 46F de.6e|, [de 1], - F 27
( 5 > <1_y> 2 1<[ €, 6]7[ 6+ ]7_1_y>7 ( )

where the expansion of the hypergeometric is:

oI <[46,66],[46—|— 1],—1$> ~1+246%Lig(—(1—2)/(1—y)).  (28)

Finally, considering again only the first order in expansion of the hypergeometric
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from (27), we find

8

1— 2e 1— 4e
(=) =) @

The integrals in expression (29) can be computed by factorizing them in three
integrals of variables X, y and z, thus obtaining

6 6e N3 1
9s (M
F)==(— -— dxdydzP P P
F(3F) (m> 4863714’)’24734/0 xdydzP(z,714) P(y,v24) P(2,734)

1
LEF) = [ deP@a) (1 -a)"

:4;13F2([1,1—e,1+4e],[1+2e,3/2+2e],a14) (30)
I,(3F) —/OldyP(y,’Yzz;)(l—y)_ze

:1_126 o Fy([1,1—2€],[3/2 — €], 24)) (31)
I.(3F) = /0 ldzP(z,'yg4)z_26

zlfk2F1([1,1_26],[3/2—61,%4). (32)

Expansion in poles: At this stage, we can compute the leading pole F (3,-3) (3F)
of the diagram 3F, by considering only the first order in the e expansion of the inte-
grals above, i.e. their values at e = (, in the equation (29):

6 A3 arcsin /o4 arcsin, /o4  arcsin,/asg
FB=3)(3F _9s N
BF) g 483 MR Va1 —ana) vaoa(1—aoa) /asa(1— aza)
6 AS3
:%9 183 In(y14)2coth(In(1/y14)) In(y24)2coth(In(1/ya4))

In(ys4)2coth(In(1/ys4)), (33)

after using the following identities, in order to replace the variables v;; and «a;; by
the single variable y;;:

1— Yij+2
W= (34)
Yij—2
1

—%Yij =Yij + -t (35)
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together with,

1+
l—ygj'

Vij (1 — yij) =2coth(In(1/y;;)) =2 (36)

L47i5/2 \1+yi;

For the next to subleading pole (3,-1), we find the following several contribu-
tions:

6 1
}.1(3,_1)(3F) = %Ng 714724734/ dxdydzPo(x,v14) Po(y, v24) Po(2,734)
0

1
/ dww* 1 (1 —w)* ' Liy <_w(1 _y)> ) (1 v ) (37)
0 z l-y 1-w

coming from using the second order term of € expansion (25) in equation (24). The
Py denotes the propagator function considered in the limit € — 0. Now, the integral
over w can be computed using the identity

U, (_ w(l—y) > Y )

z n?

n=1
thus obtaining,

1
Iw :/ dww4s—1+n(1_w)25—1@ l—x _L
0 1—y 1—w

L (Lza\™ g (e +n,6e+n],[1+4e+n), —~—2 ). (39)
= —_— e+n,6e+n|, e+n|,— .
de4+n \1—y 21 1—y
Here, we can see that there is no singularity and hence this pole gives no contribution.
Another contribution comes from using the second order term of € expansion
(28) in equation (27):

- A3 1
.7-'2(3’ 1)(?)F) =g° 166’714’724734/ dxdydzPo(x,v14) Po(y,v24) Po(2,734)
0
1—
Lis (- x) (40)
I-y

The final contribution comes from expanding the relevant kinematic factors in (29),
getting
3

1
15 714724734/ dxdydzPo(x,v14)Po(y,v24) Po(2,734)
0

1—y 1-z 1 ,(1-y of1l1—=x
[ln( . )ln(l_y>—l—4ln <z>—|—ln (1_y>] (41)

FPIER) =
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Collecting all the terms, the (3,-1) pole is

3

_ N 1
FB=U(3F) 292486%4%4734/ dxdydzPy(z,v14) Po(y,v24) Po(2,734)
0

1—y 11—z 1. 5(1—y of1l—=x
[ln( ~ >ln<1_y>—|—4ln <Z>+ln <1_y>+
3LQ<—1_$>]. 42

1-y

Finally, we can extract also the subleading pole (3,-2), from expanding the
contributing factors in (29):

B A3 1
FB=2(3F) —9519262714’724734/ dxdydzPy(x,v14) Po(y,v24) Po(2,734)
0

[m<1;y>+2m<1:§)]. @3)

Regarding the above analysis, an extra explanation is recommended. When we
computed the (3,-1) pole, there are also contributions coming from expanding in e
the numerical prefactors and the propagators P. The idea is that, it can be shown, that
all these extra terms cancel either when we combine the diagrams using the mixing
matrices, to form the web, or when we combine the commutators for the three-order
anomalous dimension (13).

2.2. DIAGRAMS 3E, 3D, 3C, 3B, 3A

At this stage, we can write down the next to next to leading poles (3,-1) also
for the rest of the five diagrams above, just by applying symmetry principles to the
expression (42) corresponding to diagram 3F. Hence,

6 3
ngf&

1-z 1—y 1, 5(1—2x o 1—y
[ln( o >ln<1_$>—|—4ln < ~ )—l—ln <1—x)+
3Lb<—l_y>], (44)
1—2x

1
FE-D(3E) 714724734/ dxdydzPo(x,v14)Po(y, v24) Po(2,7v34)
0
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since we notice that we have to interchange gluons between legs 1-4 and 2-4, i.e.
Y14 <> 724, wWhich is the same as interchanging x <> y, in diagram 3F.
3

B ¢ N 1
FBD3D) =8 — 18¢ ’714’724734/ dxdydzPy(x,v14)Po(y,v24) Po(2,734)

1-2 -z 91— ofl—=x
[m( y >m<1—2> 11 ( y >+1 <1—Z>+
3LQ<—1_$>], (45)
1-2

since we notice that we have to interchange gluons between legs 2-4 and 3-4, i.e.
Y24 > Y34, Which is the same as interchanging y <> z, in diagram 3F.
A3 1
FEI(30) =g8 486714724734/0 dzdydzPo(x,v14) Po(y,v24) Po(2,734)

1—=z 11—z 1 9 f1l—x 91—z
[ln( ” )1n<1_x>+4ln < y >—H <1 x)-ﬁ-
3LQ<—1_2)], (46)
1—=x

since we notice that we have to interchange gluons between legs 1-4 and 3-4, i.e.
Y14 <> 734, Which is the same as interchanging x <> z, in diagram 3D.

3 1
=90 5 15 714724734/ drdydzPo(z,714) Po(y,v24) Po(2,734)

1-y 1-2 1. 5,/1-y 91—z
3L12<—1Z>], (47)
l—y

since we notice that we have to interchange gluons between legs 1-4 and 2-4, i.e.
Y14 > Y24, Which is the same as interchanging = < y, in diagram 3C.
3 1
=99 — 15 714’724734/ dzdydzPo(x,v14) Po(y,7v24) Po (2, 734)
0

1-2 1—y 1. 5(1-2 9of1—y
[ln( . >ln<1_z>—|—4ln < . )—l—ln (1_2>—|—
3Lm<—1_y)], 48)
1—=2

FE-(3B)

FE=D(34)
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since we notice that we have to interchange gluons between legs 2-4 and 3-4, i.e.
Y24 < 734, Which is the same as interchanging y <> z, in diagram 3B.

Now, the web Wi113 is obtained by applying the mixing matrices [10], con-
taining actually two different components

(Wiass)s = ¢ (= F(3A) +27(38) - F30)

(49)
— F(3D) - F(3E)+ 2]—"(3F)) Cy
1
(Wins)e = ¢ (= F(34) = F(3B) +2F(3C)
(50
— F(3D)+2F(3E) — J—"(SF)) Oy
where the C’s are the corresponding mixed colour factors,
Cy =" [T Ty T T (51)
Cy =f fPe TP Ty TS T4 (52)

We observe that there is a symmetry between the two colour factors, namely the
interchange between gluons a, b and legs 1, 2. Using the (3,-1) poles obtained above
for each of the six diagrams in equations (49) and (50) and applying the symmetry
property x <> 1 — z and similarly for y, z, we have

Y :
(Wﬁ)’igl)) =g0 — 18¢ 714724’734/ dxdydzPy(x,v14)Po(y,v24) Po(2,734)

4ln(x)ln<y)+l 2(36) "l 2( )+—1n <Z>+
+9Li, (-Z) —9Lij (-%)

_ s N3 !
(Wffig )) =g0 — 15¢ 714’)’24’734/ dxdydzPy(x,v14) Po(y,v24) Po(2,734)

4ln <z) 1n( ) +1n? (;) 721112 <z) . 141 12 (x) .
+9Liy <—§) —9Liy <—9y”>

where we again observe that there is a symmetry also between the two kinematic
factors, namely the interchange x <+ y, which agrees with the symmetry of C,C.
The key point is that the two equations (53) and (54) are two main contributions to
the three-loop anomalous dimension, corresponding to the first term into expression

1
6 Ch (53)

1
- 4
52 (54)
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(13).

Now, apart from the dilogarithms, we can actually solve all the integrals in
equations (53) and (54), in the following way. We can compute the integral below by
writing the propagator Py as partial fractions,

1
i 1
o= [ do PaCeig)a® =P o (o (1,26, 12 0~ 1))
0

_ygj —1 2¢
—2F([1,2¢) [1+2€,1-y)). (55)

where as previously defined, —v;; = v;; +1/v;;. The expansion as € — 0 of the
hypergeometrics in (55) is found using [14] to be, for a general z

QFAU24JL+%L@)zl—Qdm1—zy—%%Jx@+8éLgu) (56)

Thus, by expanding in e, the integral Iy above becomes

1
Iy :/ dx Po(x,7ij5) [14—261111‘—!—26211124
0

Ui . .
y2.?_1 (21n3ﬁj4-26[1J2(1—-ym?-—IJ2((y@i—-1)/yu)]4-
v

+4€ [Li:a((yz‘j —1)/vij) —Li3(1—y¢j)}>- (57)
Further, identifying the terms with the same order of € in equation (57), we have:

1 ..
| P ) = 2y, 58)
0 Yij —

1 y
/0 dz Po(z,7i5) Inz = Qym 7 [LiZ(l_yij)_LiZ((yij_l)/yij)} (59)

(]

1 ..
/0 dz Py(z,7ij) In*z = Qy” 7 2 [Lii’)((yi]’ —1)/yij) — Liz(1 *yij)] (60)

ij

Before using these integrals, note also the following substitution:

2
Yij L+y;;

2 Yig = 2
7

:COth(ln(l/yij)). (61)

We want to finish up by giving an example of applying the above integrals and
the given substitution, in the case of the web WW7113 in expression (53), for which we
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obtain

_ 6&3 1+y3, 14+y5, 1443,

3,-1)
W1 =g
e TA8e -yl 1-yd 1-u3,

<15lny34 [Liz(l —y14) — Lia((y14 — 1)/y14)} [LiQ(l —y24)—

— Liz((y24 — 1)/y24)] —12Inyss [Li2(1 —y14) —Lia((y14 — 1)/3/14)}
[Liz(l —y34) — Lia((y34 — 1)/3134)} +8Inyus [Li2(1 —Y34)—
—Lia((y3a— 1)/ya1) | [Liz(1 = y20) = Lia((y20 = 1)/y20) | + 61y
Ings |Lis((y14 = 1)/y14) ~ Lis(1 = y10) | = (69/2) Inyra Inyss

[Li3((y24 —1)/y24) —Liz(1— y24)} +6Iny14 Inyay

. ) 1 N3
[ng((y34 —1)/y34) —Li3(1— y34)}) G Cy+¢8 18 V12728734

1
/dﬂ?d?/dZPo(a?,712)P0(y7723)P0(Z7734)
0
(YY) o (2] 2
[—9L12 (—x>+9L12< y)] - Cu. (62)

Using exactly the same procedure we can derive also a similar expression for the web
Wi113 in equation (54).

At the end, we notice that only the integrals involving di-logarithms remain to
be solved, in order to have a final expression for the webs at three-loop order. So, at
this stage we see that we have all the ingredients needed to compute the terms and
the commutators for the anomalous dimension at three-loop order in (13), for the
specific webs of different orders considered, namely: the leading pole (1,-1) and the
subleading pole (1,0) at one-loop, the next to leading pole (2,-1) and the next to next
to leading pole (2,0) at two-loops, which are all known results in the literature and
the next to next to leading poles (3,-1) at three-loop level, computed in this paper.
So, as the next step for the continuation of this research, we can perform all these
integrals, find similar expressions to (62), then apply all this analysis also to other
three-loop webs contributing, in order to get closer and closer to the calculation of
the three-loop anomalous dimension. An important progress in this direction was
done in paper [15], using different webs.
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3. CONCLUSIONS

In this paper, we focused on the IR singularities of scattering processes in-
volving emission of soft gluons, using the soft gluon exponentiation method. This
method is based on a diagramatic approach, using sets of diagrams called webs and
also on the property of multiplicative renormalizability of Wilson lines. In trying to
renormalize these divergences, we introduced the finite soft anomalous dimension
function I', which was determined in the literature in the case of one-loop diagrams
and two-loop diagrams. But, the case of three-loop diagrams is still an open analy-
sis and so our goal was to compute some three-loop contributions to the anomalous
dimension at three-loop order. In the first section, based on the theory in [8], we in-
troduced the eikonal approximation, using Wilson lines and an infrared exponential
regulator. Then, we stated the fundamental identities for the anomalous dimension I'
in terms of different loop-orders webs.

In the second section, we considered the six diagrams belonging to the Wﬁ?:}.
web. Firstly, we completely analyzed just one of them, by deriving its kinematic fac-
tor and thus extracting the leading, subleading and next to subleading poles. Based on
identifying some interesting symmetry properties, arising from interchanging differ-
ent gluon attachments, we were able to find also the poles of the other five diagrams,
within the given three-loop web. Next, we combined the six diagrams, using the
mixing matrices method, and we found actually two contributions to the web, related
also by a symmetry properties. These obtained expressions enter into the first term
from the three-loop anomalous dimension equation (13). Finally, using some spe-
cial techniques, we gave an example of performing the integrals, appearing in the
three-loop web expressions.

As a next step, what remains to be done is to develop and apply new mathemat-
ical techniques to solve also the integrals involving the dilogarithms and hence to be
able to combine all the already found contributions to the anomalous dimension at
three-loop order. Some of these techniques are explained and used to perform similar
computations, but using different webs, in the papers [15], [16]. As further research,
we can also consider taking the massless limit and analyze the massless partons case,
i.e. lightlike Wilson lines, and compare the results with the ones existing. This will
provide a powerful check for the whole computations of the massive partons case.
Note that in the lightlike case we encounter also collinear singularities, which makes
the problem more difficult and more advanced.
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