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Abstract
Based on an analytically continued Riemannian foliated quantum gravity super-
Hamiltonian, known as branch cut quantum gravity (BCQG) we propose a
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novel approach to investigating the effects of noncommutative geometry on
a minisuperspace of variables, influencing the acceleration behavior of the
Universe’s wave function and the cosmic scale factor. Noncommutativity
is introduced through a deformation of the conventional Poisson algebra,
enhanced with a symplectic metric. The resulting symplectic manifold provides
a natural setting that enables an isomorphism between canonically conjugate
dual vector spaces, spanning the BCQG cosmic scale factor and its comple-
mentary quantum counterpart. Using this formulation, we describe the dynamic
evolution of the Universe’s wave function, the cosmic scale factor, and its
complementary quantum image. Our results strongly suggest that the non-
commutative algebra induces late-time accelerated growth of the wave func-
tion, the Universe’s scale factor, and its complementary quantum counterpart,
offering a new perspective on explaining the accelerating cosmic expansion
rate and the inflationary period. In contrast to the inflationary model, where
inflation requires a remarkably fine-tuned set of initial conditions in a patch
of the Universe, analytically continued non-commutative foliated quantum
gravity captures short and long scales, driving the evolutionary dynamics of
the Universe through a reconfiguration of the primordial cosmic content of
matter and energy. This reconfiguration is encapsulated into a quantum field
potential, which leads to the generation of relic gravitational waves, a topic
for future investigation. Graphical representations and contour plots indicate
a characteristic torsion (or twist) deformation of spacetime geometry. This
result introduces new speculative elements regarding the reconfiguration of
matter and energy as a driver of spacetime torsion deformation, generating
relic gravitational waves and serving as an alternative topological mechanism
for the Universe’s acceleration. However, these assumptions require further
investigation.

Keywords: foliated quantum gravity, symplectic metric,
noncommutative geometry, accelerating Universe

1. Introduction

The chronology of the Universe indicates a primordial era dominated by inflation, followed
by dominant phases of radiation, matter, and currently, a dark energy-dominated era, which is
mostly assumed as the cause of the accelerated cosmic expansion.

This paper proposesss a new noncommutative approach to the accelerating expansion of the
Universe, extending recent advances in quantum gravity theories. We build on the branch cut
quantum gravity (BCQG) [1, 2] framework, based on the Wheeler DeWitt [3] and the Hǒrava-
Lifshitz [4] formulations, incorporating elements of symplectic geometry and noncommutative
algebra to investigate the interplay between quantum effects and large-scale cosmic behavior.
Our model provides an alternative to inflationary theories by explaining cosmic acceleration
through a fundamental restructuring of spacetime geometry rather than relying on specific
initial conditions.

Moreover, this approach offers a fresh perspective on the generation of relic gravitational
waves and a possible solution to unresolved cosmological puzzles, such as the horizon and flat-
ness problems. By introducing noncommutative deformations into the standard Hamiltonian
formalism, we extend the reach of quantum gravity models to address large-scale cosmological
observations.
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In the present formulation, the noncommutativity is imposed through a deformation of the
conventional Poisson algebra structure incorporating a symplectic metric. The resulting sym-
plectic manifold provides a natural setting that allows an isomorphism between canonically
conjugate dual vector spaces, encompassing the BCQG cosmic scale factor and a comple-
mentary quantum counterpart, outlined in the perfect fluid domain of Hermann Weyl. We
describe not only the temporal evolution of the Universe’s wave function but also comple-
mentary equations that describe the temporal evolution of the cosmic scale factor and its dual
quantum image in first and second order, yielding unprecedented outcomes.

The new algebraic formulation, compared to the (few) noncommutative formulations found
in the literature, offers the consistent additional advantage of treating all degrees of freedom
symmetrically, on the same footing.

Within the symplectic noncommutative algebraic framework, we investigate the Universe’s
wave function and scale factor, denoted asΨ(u,v) and η(t), respectively. Using a reverse sym-
plectic transformation, η(t) and ξ(t) represent commutative variables that span noncommut-
ative complementary quantum spaces. The dynamic evolution of these quantities is governed
by a modified Hamiltonian that includes terms for curvature, radiation, dark matter, and other
components influencing cosmic acceleration. Furthermore, exploring the descriptive advant-
age of the new symplectic algebraic formulation we establish a point of contact with the infla-
tion model by expanding this algebraic structure to incorporate a complex inflaton-type field
into the formalism.

Based on this extended formulation, calculations of the temporal evolution of the wave
function and scale factor of the Universe and its dual counterparts are performed, bringing to
light new insights about theoretical attempts to account for cosmic acceleration. As we will
see, the presence of a noncommutative algebra structure induces the capture of short and long
spatiotemporal scales, driving not only the evolutionary dynamics of the Universe’s wave func-
tion and the cosmic scale factor but also a reconfiguration of matter on small and intermediate
scales, inducing the generation of relic gravitational waves, a topic for future investigation.
Furthermore, the results indicate a twist-warping of the spacetime geometry, which may imply
a spacetime torsion generator not only for relic gravitational waves but also as an alternative
topological mechanism for the acceleration of the Universe, an assumption that requires further
investigation. For a review of the branch-cut commutative formulation and the noncommut-
ative approach based on the conventional Poisson algebra, with applications restricted to the
time evolution of the wave function of the Universe, see [1, 2, 5–11].

2. BCQG

The BCQG extends the ontological domain of general relativity to the complex plane [1, 2,
5–13], offering a theoretical alternative to inflation models [14, 15]. This formulation is based
on the mathematical augmentation technique and notions of closure and existential complete-
ness [16], which have proved highly useful in both quantum mechanics [17–19] and pseudo-
complex general relativity (pc-GR) [20, 21], with direct physical and cosmological manifesta-
tions. These findings have broadened our understanding, showing that expanding the descript-
ive domain of a theory by incorporating complex or pseudo-complex variables can provide
insights into both infinitesimally small and large scales.

The line element in the BCQG quantum gravity, resulting from the complexification of the
Friedmann Lemaître Robertson Walker (FLRW) metric [22–25], may be expressed as [5–7]

ds2[ac]=−N2 (t)c2dt2 +
(
ln−1 [β (t)]

)2 [ dr2

(1− kr2 (t))
+ r2 (t)

(
dθ2 + sin2 θdϕ2

)]
. (1)

3



Class. Quantum Grav. 41 (2024) 245004 C A Zen Vasconcellos et al

In this expression, [ac] denotes analytical continuation to the complex plane, where r and
t represent real and complex space-time parameters, respectively, and k denotes the spatial
curvature of the multiverse, corresponding to negative curvature (k=−1), flat (k= 0), or pos-
itively curved spatial hypersurfaces (k= 1). ln−1[β(t)] represents the foliated scale factor, and
N(t) denotes the lapse function. The gauge invariance of the action in general relativity yields a
Hamiltonian constraint that requires a gauge-fixing condition on the lapse function (see [26]).
The BCQG formulation arises from the complexification of the FLRW metric, resulting in
the Riemann superposition of field equations associated with continuously distributed single-
poles arranged along a line in the complex plane (for details, see [1, 2, 5–11]), consistent with
the concept of multiverse proposed by Hawking–Hertog [27]. Through a Riemann integration
process, this complexification gives rise to the new scale factor, denoted as ln−1[β(t)], and a
topological foliated spacetime structure.

We introduce a mapping between the standard cosmological scale factor, a(t), and its non-
commutative counterpart, ln−1[β(t)], which reveals new topological structures. This mapping
reflects the complex interplay between the observed expansion of the Universe and the under-
lying quantum geometry.

To understand the role of foliation in the present formulation, we may assume a D-
dimensional Euclidean manifold M associated to a metric gµν analytically continued to the
complex plane, carrying coordinates xα. Following the conventional steps of general relativ-
ity, we may set up a preferred time-direction by defining a time function τ(x) that assigns a
specific time τ to each spacetime coordinate x. With this definition we may decompose the
manifoldM into a stack of spatial slices Στi ≡ {x : τ(x) = τi} encompassing all points x with
the same ‘time-coordinate’. Then the gradient of the time function can be used to define a vec-
tor normal to the spatial slices, with the lapse function ensuring normalization with the metric,
and the lapse defined in terms of the time coordinates τ and τΣ related toΣτi . In the projectable
Hǒrava–Lifshitz gravity, N is restricted to be a function of Euclidean time only (see [28, 29]).

The BCQG provides a gateway to the evolutionary phase preceding the primordial singular-
ity, often referred to as a mirror world. In both its classical and quantum versions, this concept
replaces the singularity with a topological transition between the contraction and expansion
phases of the evolutionary Universe. During this transition, spacetime acquires a helix-like
foliated topological shape around a branch-point, preserving the fundamental conservation
laws of thermodynamics.

In the classical scenario of the BCQG, the Universe evolves continuously from the negative
complex cosmological time sector, prior to a primordial singularity, to the positive one, cir-
cumventing continuously the branch-cut, and no primordial singularity occurs in the imaginary
sector, only branch-points. In this formulation, the foliated Universe involves a continuous sum
of an infinite number of infinitesimally separated poles, surrounding a primordial branch-point,
arranged along a line in the complex plane with infinitesimal residues. Similar to the primordial
branch-point singularity, the argument of the resulting analytic function, can be mapped from
a single point in the domain to multiple points in the range. In addition to branch-cuts, there
are still ‘singularities’, - the branch-points -, but at the same time, there are multiple points
that configure continuous paths in the Riemann sheets. This enables continuous solutions of
the primordial singularity, which, in general relativity, is inescapable. For this to happen, the
presumption at the level of a local continuity prevails, i.e. that there is some neighborhood of
the branch-point, let us call it z0, close enough although not equal to z0, where one can find
a small region around (local patches) where ln−1[β(t)] is single valued and continuous. The
cuts in the branch-cut are shaped by the β(t) function which defines the range of ln−1[β(t)].

In the primordial phase, the scale factor ln−1[β(t)] shrinks to a finite critical size, shaped
by the β(t) function which, besides the range, characterizes also its foliation regularization
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and domain extension. It is important to emphasize that the presence of a regularization func-
tion β(t) in this formulation does not imply a change in the integration limits of Friedmann’s
equations to avoid singularities since essential or real singularities at t= 0 cannot be removed
simply by any coordinate transformation. The technical procedure adopted here results in
solutions conformed by branch-cuts that allow circumventing the singularities, which in turn
become branch-points. Its range, in particular, extends beyond the Planck length as per the
Bekenstein criterion [9]. In view of this criterion, the impossibility of confining energy and
entropy within a finite size makes the transition between the contraction and expansion phases
exceptionally peculiar, in which spacetime shapes itself topologically around a branch-point.
In the contraction phase, as the patch size reduces linearly with ln[β(t)], light travels along
geodesics within each leaf of the Riemann foliation, continually circumventing the analyt-
ically continued foliated domain. Although the horizon size increases with lnϵ[β(t)]/ ln[β(t)],
where ϵ denotes the dimensionless thermodynamic connection, the length of the path that light
must traverse compensates for the difference in scale between the patch and the horizon sizes.
Under these conditions, causality between the size of the horizon and the size of the patch can
be achieved through the accumulation of branches in the transition region between the cur-
rent state of the Universe and those of past events [9]. In addition to causality, cosmological
dilemmas such as the flatness problem and the horizon problem come into focus. Technically,
the flatness problem concerns the value of the ratio between the total density of the Universe
and the critical density, resulting in a very small Planck value for the dimensionless and time-
dependent cosmic spatial factor Ωc [30–32]. This factor scales as ln2ϵ[β(t)]/ ln2[β(t)]. The
horizon problem, on the other hand, arises precisely because the patch corresponding to the
observable Universe has never been causally connected in the past [30–32]. The restoration
of causality in BCQG provides an additional reliable perspective on the resolution of these
cosmological puzzles [10].

Regarding the presence of a mirror Universe, the model presents a similarity with the
concepts of cyclical and bouncing models that experience infinitely alternating periods of
rapid expansion and contraction, overcoming the primordial singularity, with no ending and
no beginning. However, from the point of view of theoretical construction, the similarities
between the two lines of investigation are quite remote. The main reason is related to the onto-
logical and epistemological aspects of both lines of investigation. Cyclic bouncing models are
proposed on basis of an analytical investigation of the Universe evolution and implemented
mostly in an ad hoc way, through parameterizations, cosmic wedge diagrams and other aes-
thetic grounds. Analytic continuation foliated quantum gravity in turn, from the ontological
and epistemological aspects, except for the complexification of the standard metric, combined
with the concepts of multiverse, it contemplates the same theoretical foundations and theor-
etical investigation procedures as general relativity. BCQG shares with general relativity the
same fundamental questions, the same objects of inquiry, the same claims about the nature of
being and existence, that is, the same principles of its conceptual philosophy. In this sense,
the realization of a transition that overcomes the primordial singularity is not the result of an
ad hoc proposition, but is the natural outcome of an evolutionary process of the fundamental
equations of general relativity, generated through theoretical ontological, methodological, and
epistemological procedures based on field theory. Likewise, the realization of the transition
region that overcomes the primordial singularity does not require the imposition of a mechan-
ism, being the natural result of a topological restructuring of spacetime.
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3. Noncommutative BCQG

The starting point of this study is the commutative BCQG action which depends on the branch-
ing scalar curvature of the Universe, R, and on its covariant derivatives, ∇iΓ, in different
orders [1, 2]:

SHL =

ˆ
d3xdtL=

M2
P

2

ˆ
d3xdtN

√
g×

(
KijK

ij−λK2 − g0M
2
P− g1R

−g2M−2
P R2 − g3M

−2
P RijRij− g4M

−4
P R3 − g5M

−4
P R

(
Ri
jR

j
i

)
−g6M−4

P Ri
jR

j
kR

k
i − g7M

−4
P R∇2R− g8M

−4
P ∇iRjk∇iRjk

)
. (2)

In this expression, gi denote running coupling constants,MP is the Planckmass, and the branch-
ing Ricci components of the three dimensional metrics may be determined by imposing a
maximum symmetric surface foliation [11] which gives:

Rij =
2

σ2u2 (t)
gij , and R=

6
σ2u2 (t)

, (3)

where the variable change u(t)≡ ln−1[β(t)], with du≡ dln−1[β(t)], was introduced.K= Kijgij
represents in expression (2) the trace of the extrinsic curvature tensor Kij [1, 2, 11]:

K= Kijgij =− 3
2σNu(t)

du(t)
dt

. (4)

In the context of the ADM formalism, for the metric introduced in equation (1), Ni = 0 and
the three-metric hij → gij corresponds to a projectable analytically continued quantum gravity
approach:

hij = ln−1 [β (t)]2 diag

(
1

1− kr2 (t)
,r2 (t) ,r2 (t)sin2 θ

)
. (5)

Applying standard canonical quantization procedures to the action, the canonical momentum
reads

πu =
∂S
∂u̇

=−2u(t) u̇(t)
N(t)

. (6)

From these equations, the resulting Hamiltonian density

H= πuu̇−L, (7)

becomes

=
1
2
N
u

[
−p2u+ gr− gmu− gku

2 − gqu
3 + gΛu

4 +
gs
u2

]
, (8)

where gk, gΛ, gr, and gs represent respectively the curvature, cosmological constant, radiation,
and stiff matter running coupling constants [33, 34] defined as
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gk ≡
2

3λ− 1
; gΛ ≡ ΛM−2

PI

18π2 (3λ− 1)2
; gr ≡ 24π2 (3g2 + g3) ;

gs ≡ 288π4 (3λ− 1)(9g4 + 3g5 + g6) . (9)

The gr, and gs running coupling constants can be positive or negative, without affecting the
stability of the solutions. Stiff matter contribution in turn is determined by the p = ωρ condi-
tion in the corresponding equation of state (EoS). We supplemented the Hamiltonian with two
additional terms, gmu, that describes the contribution of baryon matter combined with dark
matter, and gqu3, a quintessence contribution, a time-varying, spatially-inhomogeneous and
negative pressure component of the cosmic fluid, which allows approaching the ‘coincidence
problem’ [35, 36]:

In order to introduce a noncommutative formalism, based on the perfect fluid conception of
Weyl [37], using the formalism of Schutz [38], an additional term is inserted in the Hamiltonian
density associated to a field v(t), which obeys the perfect fluid Weyl equation, characterized
by a dimensionless quantity ω, whose canonically conjugated momentum to v(t) is denoted
as pv:

Hv ≡
1
2
N

pv

u(t)3ω
, with pv =−2v(t) v̇(t)

N(t)
. (10)

The variables u(t) and v(t) span complementary quantum dual variable spaces. After simplify-
ing the notation and combining (8) and (10), the following super-Hamiltonian density results:

H=
1
2
N
u

[
−p2u+ gr− gmu− gku

2 − gqu
3 + gΛu

4 +
gs
u2

+
1

u3ω−1
pv

]
. (11)

The fields u and v obey the following commutative Poisson algebra

{u,v}= {pu,pv}= {u,pv}= {v,pu}= 0;

{u.pu}= {v,pv}= 1 . (12)

4. Faddeev–Jackiw symplectic approach for a noncommutative algebra: two
fields approach

The geometrically motivated formalism of Faddeev and Jackiw’s depends on a phase-space
symplectic structure and represents an alternative to Dirac’s quantization method for con-
strained and unconstrained systems. The focus of the Faddeev and Jackiw’s approach is to
overcome the generally assumed mandatory quantization requirement based on bracketing
and constraints categorization [39]. As an additional outcome Faddeev and Jackiw’s formal-
ism furthermore represents a robust procedure for constructing a noncommutative algebraic
structure of symplectic variables.

The steps followed by the authors for quantization of physical systems follow as a starting
point the particular case of a Lagrangian density with first order time derivatives dependence,
describing a constrained system. Upon introducing phase-space canonical variables and the
corresponding conjugated momenta, the authors introduce an equivalent Lagrangian density
expressed in terms of a symplectic matrix, which represents the key element of the formulation
for generating a noncommutative formulation. When considering a more general case, the
approach gives rise to Euler–Lagrange equations, and the resulting non-singular inverse of the
symplectic matrix directly provides the Hamiltonian of the system which is expressed in terms
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of the phase-space variables, without the imposition of any constraint, as usually imposed
by the Dirac quantization method. In short, the Faddeev and Jackiw’s method introduces a
noncommutative algebra involving the phase-space variables, whichmay be expressed in terms
of the symplectic matrix [39], although, as indicated by [40], this alternative is not mandatory.
The realization of the underlying geometric structure synthesized by the method can in short
be materialized from the elements of the inverse of the mentioned symplectic matrix, whose
components are in line with the corresponding Dirac brackets, thus providing a consistent
connection with the commutators of the quantized theory.

In what follows, we will elaborate on a two fields transformations from non-commuting
coordinates to commuting variables on basis on the Faddeev–Jackiw symplectic approach,
limited to the dual quantum fields u(t) and v(t). The procedure adopted below follows a reverse
logic of the conventional Faddeev–Jackiw formalism, presupposing a character change for the
variables u and v, assuming that they obey the noncommutative algebraic structure described
by a non-zero Poisson bracket formalism.

Let us assume the commutative, labeled by tilde, and non-commuting coordinates are rep-
resented in general as

(x̃i) = (ũ, p̃u, ṽ, p̃v) and (xi) = (u,pu,v,pv) . (13)

The commuting and non-commuting coordinates satisfy both the respective Poisson-brackets

{x̃i , x̃j}= g̃ij and {xi ,xj}= gij , (14)

where on the right side of these equations we have the symplectic metrics, satisfying
respectively

g̃ji =−g̃ij and gji =−gij . (15)

This symmetry property corresponds, for natural reasons, to a symplectic space. The matrix
structure corresponding to these metrics are

(g̃) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ;

(g) =


0 1 0 −γ
−1 0 χ α
0 −χ 0 1
γ −α −1 0

 . (16)

In this expression, σ,α,γ and χ represent the parameters of the noncommutative non-zero
Poisson algebra. Using (14), this leads to the non-zero commutative algebra Poisson brackets

{ũ, ṽ}= 0; {ũ, p̃u}= 1 ; {ṽ, p̃v}= 1 ;

{ũ, p̃v}= 0 ; {ṽ, p̃u}= 0 ; and {p̃u, p̃v}= 0 . (17)

For the noncommutative case the following relations apply:

{u,v}= σ; {u,pu}= 1 ; {v,pv}= 1;

{u,pv}=−γ ;{v,pu}=−χ ; and {pu,pv}= α. (18)

8
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In what follows, we seek for a linear transformation involving both commutative and noncom-
mutative elements that complies with the above algebraic requirements, defined as:

xi =
∑
j

Mijx̃j . (19)

Applying the requirements of the Poisson algebra brackets above, we obtain the structural
conditions the matrix elements ofMij should fulfill. As a result, equation (19) can be cast into
the form

u=M11ũ+M12p̃u+M13ṽ+M14p̃v ;

pu =M21ũ+M22p̃u+M23ṽ+M24p̃v ;

v=M31ũ+M32p̃u+M33ṽ+M34p̃v ;

pv =M41ũ+M42p̃u+M43ṽ+M44p̃v . (20)

Using the condition σ= 0 which implies ũ= u and ṽ= v, we can reduce the matrix M to the
expression

(M) =


1 0 0 0
M21 M22 M23 M24

0 0 1 0
M41 M42 M43 M44

 . (21)

We can also take a second path, namely transforming the commuting variables to the non-
commuting ones. However, the present path chosen is more effective and it gives us directly
the non-commuting variables in terms of the commuting ones, as will be needed in the next
section.

From equations (18), (19) and (21), we obtain

{u,pu}= 1=M22 ; {v,pv}= 1=M44 ;

{u,pv}=−γ =M42 ; {v,pu}=−χ =M24 , (22)

where the Poisson-bracket {pu,pv}= 0 will be posteriorly determined.
In the following we seek to resolve the set of equations given in (22), which leads to the

following conditions:

M22 =M44 = 1 ; M42 =−γ M24 =−χ . (23)

Additionally, from the commutator condition {pu,pv}= α, we obtain :

{pu,pv}=α=M21M42 −M41M22 +M23M44 −M24M43, (24)

which can be simplified, using the former results M22 =M44 = 1 and M42 =−γ, M24 =−χ.
leading to

α=−γM21 −M41 +M23 −χM43 . (25)

The transformation implemented shows still some freedom in choosing the remaining matric
elementsM21,M23,M41 andM43. We can then implement a particular gauge fixing condition
in finding the remaining metric elements (see discussion below). We then make the choice:

M21 =M23 = 0 ; M41 =−M43 = α . (26)

9
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The application of the Faddeev and Jackiw method implies an additional symmetry associ-
ated with the super-Hamiltonian which implies a gauge fixing given as Σ= N− 1 (for details
we recommend reading [39]). This implies that the ongoing method is subject to gauge fixing
conditions which suggests, more broadly, ambiguities in the determination of the remaining
matrix elements. In this sense, we visualize two main paths: the first is to select a particular
choice for p̃u and p̃v in terms of the non-commuting variables; the second one is to express the
non-commuting momenta pu and pv in terms of the commuting ones. We used the second path,
as explained above. The choice then gives conditions to the remaining matrix elements, which
can be resolved. The present deduction also implies that there are several options in choosing
pu and pv, depending on the particular choice of M21, M23 and M43. Still, for each alternative
one has to verify the corresponding relations of the Poisson brackets.

In conclusion, we have presented a novel framework for understanding the accelerating
expansion of the Universe based on noncommutative quantum gravity. This model provides a
unified explanation for both early inflation and late-time acceleration without the need for fine-
tuning. By introducing noncommutative deformations to the conventional Poisson algebra, we
have shown that the Universe’s wave function and scale factor can evolve in ways that align
with observed acceleration. Future work will focus on further refining this model, particularly
its implications for relic gravitational waves and its compatibility with observational data.

5. The wave function of the Universe in the noncommutative two-fields
formalism

With the choice of gauge taken in the previous section, the transformation of the commuting
variables to the noncommuting ones is given by

pu = (p̃u−χ p̃v) ; pv = (−γp̃u+αũ−αṽ+ p̃v) , (27)

we arrive at the following expression for the super-Hamiltonian (11) expressed in terms of
commutative variables and the parameters of the noncommutative algebra:

H=
1
2
N
ũ

[
−(p̃u−χ p̃v)

2− 1
u3α−1

(γp̃u−αũ+αṽ− p̃v)

+
(
gr− gmũ− gkũ

2 − gqũ
3 + gΛũ

4 +
gs
ũ2

)]
. (28)

By adopting the reverse mapping path proposal, the above equation materializes the effects of
reconfiguration of the original super-Hamiltonian through the imposition of a noncommutat-
ive algebra. The resulting equation, although dependent on the original commutative variables,
highlights this reconfiguration through the imposition of a structural composition that inserts
new dynamic components into the original formalism, modulated by the parameters σ, χ, γ,
α. In the following, for notation simplicity, we eliminate the tilde identification of the com-
mutative variables.

Canonical quantization procedures applied to the Hamiltonian (28), allow the variables u(t)
and v(t) along with their corresponding conjugate momenta pu and pv, to be treated as operat-
ors. Making the replacements pu →−i ∂

∂u and pv →−i ∂
∂v , we obtain the following differential

10



Class. Quantum Grav. 41 (2024) 245004 C A Zen Vasconcellos et al

equation to describe the evolution of the wave function of the Universe, giving the condition
HΨ(u,v) = 0, which results in the wave equation:[(

∂2

∂u2
−2χ

∂

∂u
∂

∂v
+χ2 ∂2

∂v2

)
+

1
u3α−1

(
iγ

∂

∂u
− i

∂

∂v
+αu−αv

)

+
(
gr− gmu− gku

2 − gqu
3 + gΛu

4 +
gs
u2

)]
Ψ(u,v) = 0. (29)

The parameters χ and γ are treated as complex numbers. Moreover, to make contact with con-
ventional formulations, in special regarding the insertion of a set of factor-ordering paramet-
rization to overcome ambiguities in the time-ordering of quantum operators [1, 2, 41–43]. To
maintain the complex nature of the variables u and v, only the real component of the parameter
αwas taken into account. In addition, the following notation was adopted: γ = i|γ| 7→ iγ, with
iγ = i2|γ|= iγ =−|γ|, so the previous equation then becomes:[(

∂2

∂u2
− 2χ

∂

∂u
∂

∂v
+χ2 ∂2

∂v2

)
− 1
u3α−1

(
|γ| ∂

∂u
+ i

∂

∂v
−αu+αv

)

+
(
gr− gmu− gku

2 − gqu
3 + gΛu

4 +
gs
u2

)]
Ψ(u,v) = 0 . (30)

Following the steps shown in appendix, we reduce equation (30) to a canonical form[
∂2

∂η2
+

γ

η3α−1

∂

∂η
+ gr− gmη− gkη

2 − gqη
3 + gΛη

4 +
gs
η2

+
α

η3α−2

− αξ

η3α−1
− i

η3α−1

∂

∂ξ

]
Ψ(η,ξ)=0. (31)

In the Faddeev-Jakiw original formalism, the variables u and u are noncommutative, and after
the variable transformation η and ξ are commutative.However, due to a reverse symplectic
transformation and the subjacent noncommutative algebraic structure, η(t) and ξ(t)) represent
commutative variables that span noncommutative complementary quantum spaces. Thus, the
following relation between these variables holds:

ξ =
1√
2π

ˆ ∞

−∞
A(η)eiξηdη . (32)

Expression (31) may be cast as[
−p2η,γ,α + gr− gmη− gkη

2 − gqη
3 + gΛη

4 +
gs
η2

+
α

η3α−2

− αξ

η3α−1
+

1
η3α−1

pξ

]
Ψ(η,ξ) = 0 . (33)
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In this expression, −p2η,γ,α is defined as

−p2η,γ,α ≡ ∂2

∂η2
+

γ

η3α−1

∂

∂η

=−
(
−i ∂

∂η

) (
−i ∂

∂η

)
+

i |γ|
η3α−1

∂

∂η
≡−p2η − pη,γ,α , (34)

with

pη,γ,α ≡− i |γ|
η3α−1

∂

∂η
7→ γ

η3α−1

(
−i ∂

∂η

)
=

γ

η3α−1
pη . (35)

With the particular choice α= 1/3, that allows a separation of variables, with Ψ(ξ,η) =
Ψ(ξ)Ψ(η), equation (33), reduces to the following equations(

∂2

∂η2
+ γ

∂

∂η
+V(η)

)
Ψ(η) = 0 , (36)

where

V(η) = g̃r− g̃mη− gkη
2 − gqη

3 + gΛη
4 +

gs
η2

, (37)

with g̃r ≡ gr−C and g̃m ≡ gm− 1/3, and(
i
∂

∂ξ
− 1

3
ξ + C

)
Ψ(ξ) = 0 ; (38)

in these equation, C is a separation constant.
By using the successive approximation method, we found the following algebraic solution

for equation (39):

Ψ(η) = a1e
− γ

2 (η−log(η)/γ)J i
√

3
2

(
− iγx

2

)
+ a2e

− γ
2 (η−log(η)/γ)Y i

√
3

2

(
− iγx

2

)
+ b1 + b2γ

5∑
m=1

ηm

m!
+

1
γ

11∑
n=6

bn
ηn

n!
+O

(
η12
)
. (39)

The solution to the equation (38) in turn, up to an additional constant is

Ψ(ξ) = cexp

(
Cξ − 1

6
ξ2
)
. (40)

5.1. Naturalness

In the study of the evolution of the Universe, we come across an epistemic limitation of real-
ism: the under-determination of theory by evidence. Data under-determination poses a sub-
stantial problem for the high-energy frontier of fundamental physics, most notably within the
fields of particle physics and quantum gravity. Therefore, an organizing and guiding principle
is required to assess the viability of models in a non-empirical manner, enabling consistent
and accurate calculations. As first proposed by Weinberg [44] the principle of naturalness
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serves as a conventional method for classifying and organizing the terms within highly intric-
ate approaches. It also provides guidance for understanding the various interaction couplings
associated with the dynamic composition of matter, energy, and the primordial sources of
gravitational waves. This principle, which suggests that the underlying parameters are all of
the same size in appropriate units or, more precisely, that a given quantum field theory can
only describe nature at energies below a certain scale or cutoff [44], will be adopted. In this
context, we adhere to the principles of naturalness, normalizing them to unity.

5.2. Solutions

In what follows, we use the successive approximation method to find algebraic solutions
for equation (36), in order to describe the dynamical evolution of the wave function of the
Universe, Ψ(η,ξ). The boundary conditions of the solutions are based on the Bekenstein cri-
terion, which provides an upper limit for the Universe’s entropy, following the proposition
presented in [1, 2]. The total entropy of a black hole, according to the Bekenstein limit, is pro-
portional to the number of Planck areas needed to cover the event horizon, where each area cor-
responds to one unit of entropy. In noncommutative branched gravitation, we assume that the
primordial singularity is equally covered by a certain number of Planck areas, whose numer-
ical value in turn corresponds to the total primordial entropy of the Universe. We assume that
the dimensions of this boundary region correspond to the farthest points observable while still
respecting causality. For this, we consider an appropriate distance, denoted as d(t), between
a pair of objects at any given time instant t, and the corresponding distance, denoted as d(t0),
at a reference time t0. We establish this relationship as d(t) = |η(t)|d(t0). This means that the
relationship between the two distances is modulated by the scale factor of the BCQGUniverse.
This implies that for t= t0 we have |η(t0)|= 1. From a quantum probabilistic point of view,
this condition implies a maximum probability of observation, |Ψ(1)|2 = 1, assuming a normal-
ized wave function. Thus, the boundary conditions considered in this contribution are, in the
contraction sector Ψ(−1) =−1, while in the expansion region, Ψ(1) = 1,Ψ ′(±1) = 0. The
other possibility in turn corresponds to Ψ(1) = 0,Ψ ′(±1) =±1.

Figure 1 depict family sample solutions of equation (36), for different γ values. Figure 2
shows the plot of the solutions of equation (38), which corresponds toΨ(ξ), the dual quantum
counterpart of Ψ(η). The behavior of the solutions highlights the process of acceleration of
the Universe as a result of the noncommutative algebraic structure. These results align with
the previous predictions of the BCQG, suggesting that the present Universe did not originate
from nothing as stressed by [14, 15, 45]) or event from a quantum loop as indicated by [46].
Instead, it appears to have emerged from a prior phase before the current expansion phase.

Various explanations have been proposed for the accelerating expansion of the Universe.
Traditional models, such as Einstein’s cosmological constant or the concept of dark energy,
attribute this acceleration to an intrinsic property of spacetime or a new form of energy.
However, our model suggests a more fundamental origin: the noncommutative geometry of
spacetime itself. This quantum modification leads to a late-time accelerated growth of the cos-
mic scale factor, offering a compelling alternative to dark energy and other external driving
forces.

When we examine the plots of the configuration of matter and energy in the early Universe
(see (49) and (51)), we may identify noncommutative imprints of the spacetime structure
implying non-symmetrical redistribution of matter and energy which captures, in our con-
ception, the short- and long-range spacetime scales. Moreover, the transition region between
the two universes could serve as a source of matter/particles and energy, which drives the
acceleration of the Universe. Briefly, our results involving the contraction phase as well as the
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Figure 1. Sample solutions of the wave function Ψ(η) for the Universe, derived using
the noncommutative algebraic formulation in equation (39). The left figures represent
solutions for positive values of the running coupling constants, while the right figures
show solutions for negative values. These plots illustrate the role of noncommutative
geometry in driving the Universe’s acceleration, with key differences between positive
and negative parameter sets influencing the wave function’s behavior. On the left figures,
the values of the running coupling constants and parameters are as follows: g̃r = 0.4;
g̃m = 0.6185; gk = 1; gq = 0.7; gΛ = 0.333; gs =−0.03; α= 1/3; γ= 1; C = 1. The
boundary condition set as Ψ(−1) = 0,Ψ ′(−1) =−1. On the right figures, the values
of the running coupling constants and parameters are: g̃r = 0.4; g̃m = 0.6185; gk = 1;
gq = 0.7; gΛ = 0.333; gs =−0.03; α= 1/3; γ =−1; C = 1. The boundary conditions
are set as Ψ(1) = 0,Ψ ′(1) = 1.

Figure 2. Solution of equation (38) corresponding to Ψ(ξ), the dual quantum counter-
part of Ψ(η). The blue lines correspond to real solutions while the orange lines corres-
pond to imaginary solutions.
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expansion phase of the analytically continued foliated quantum Universe in the noncommut-
ative domain, indicate an acceleration of the wave function Ψ(η) in the expansion phase, in
tune with the predictions of the inflation model, as well as a deceleration in the contraction
phase, both predictions in tune with the BCQG prognosis.

This heterogeneous distribution of matter and energy and its implications in terms of the
expansion dynamics of the Universe can be visualized, as we will see later, particularly in the
configuration of the color palette of the effective potentials of the noncommutative formula-
tion of the BCQG. The intensities of these potentials, which are reflected in the accelerated
evolution of the wave function and the scale factor of the Universe, are intrinsically linked
to the spectrum of these color palettes. In the 3D colored graphical representations of these
potentials, lighter colors identify regions of greater intensity, while darker colors represent
regions of lower intensity. The palettes also allow us to visualize the asymmetry of these color
combinations, which reflect the heterogeneity of the distribution of matter and energy in the
primordial Universe.

5.3. Probability interpretation of the wave function of the Universe

For Rovelli [47–50] the absence of time is a feature of the classical Hamilton–Jacobi formula-
tion of general relativity, and the wave function is only a function of the ‘3-geometry’, namely
the equivalence class of metrics under a diffeomorphism, and not of the specific coordinate
dependent form of the metric tensor. According to the second law of thermodynamics, forward
in time represents the direction in which entropy increases and in which we obtain information,
so the flow of time would represent a subjective feature of the Universe, not an objective part
of physical reality [47–50]. In this realm, in which the observable Universe does not exhibit
time-reversal symmetry, events, rather than particles or fields, are the basic constituents of the
Universe, implying that the evolution of physical quantities is related to the description of the
relationship between events [47–50]. For instance, given the wave function of the Universe as
a functional constrained to a super-space that contains a three-surfaceΣ and matter fields con-
figuration, represented by ϕ, where the metric is given by hij, the corresponding WdW wave
function Ψ(hij,ϕ) may be interpreted according to [47–50], as stressed before, as describing
the Ψ(ϕ) evolution not in a temporal sense but in terms of the physical variable ϕ.

For Hawking [42] for which |Ψ[hij,ϕ,Σ]|2 is proportional to the probability P(A) of finding
a three-surface Σ with metric hij and matter field configuration ϕ:

P(A)∝
ˆ
A
|Ψ[hij,ϕ,Σ] |2 dV (41)

where V corresponds to a volume element [42]. Γ(N) in turn represents the superspace metric
which does not depend linearly on N.

As highlighted by Hartle [51], in standard quantum mechanics, the probabilities associ-
ated with wave functions are represented by squares of amplitudes, and additionally, a cri-
terion is needed to specify which sets of histories can have probabilities consistently assigned
to them. And yet, as highlighted by Hartle, in standard quantum mechanics that criterion is
measurement, so probabilities can be consistently assigned to histories of measured altern-
atives and usually not otherwise. Hartle further emphasizes that the application of quantum
mechanics to cosmology also requires another kind of generalization of the usual formula-
tion. Usual quantum mechanics predicts the outcomes of ‘measurements’ carried out on a
system by another system outside it. But in cosmology there is no system outside. So, cosmo-
logy requires a quantum mechanics interpretation of closed systems as a generalization of the
usual theory. The most general predictions of this formulation of quantum mechanics are the

15



Class. Quantum Grav. 41 (2024) 245004 C A Zen Vasconcellos et al

Figure 3. The upper-left and lower-left figures depict 3D plots illustrating the real and
imaginary solutions of equation (33) for the wave function of the Universe, Ψ(η,ξ) =
Ψ(η)Ψ(ξ). The solutionsΨ(η) andΨ(ξ) are obtained in the naturalness regimen, C = 1
and γ =−1. Correspondingly, the upper-right and lower-right figures display the asso-
ciated contour plots.

probabilities of the individual members of sets of alternative histories of the closed system.
Consistency of probability sum rules is the criterion determining the sets of histories to which
may be assigned probabilities rather than any notion of measurement. The absence of quantum
mechanical interference between histories, or decoherence, is the sufficient condition for this
consistency. The initial condition of the closed system and Hamiltonian determine which sets
of histories decohere rather than the action of any external observer [51].

This form of interpretation, in our view, is more in harmony with Hawking’s prescription.
In what follows, we consider both interpretations, Rovelli’s and Hawking’s prescription for
|Ψ(η)|2 and |Ψ(ξ)|2, and to establish a connection with standard quantum mechanics we use
the denomination ‘probability density’.

The upper-left and below-left images in figure 3 show the 3D plots of the real and imagin-
ary solutions of equation (33) for the wave function of the Universe Ψ(η,ξ), while the upper-
right and below-right images show the corresponding contour plots. Figure 3 in turn show the
corresponding density distributions of the wave function of the Universe Ψ(η,ξ). The results
describe the expansive acceleration of the Universe similarly to previous cases. Themost unex-
pected results correspond to the minimum values of the Universe’s wave function, separated
symmetrically, whose realization occurs in the mirror Universe, separated by maximum values
that are more intense at the initial point of the transition to the current Universe, presenting a
behavior similar to that of the roll on inflation potential on the inflaton field. In particular, the
format of this potential presents points of similarity with the argument of the equation, more
specifically, V(ξ) = (C(ξ− ξ0)− (1/6)(ξ− ξ0)

2)2. This result indicates a strong correlation
involving the scale factor η and quantum fluctuations of its dual partner ξ, that behave as a
kind of noncommutative symplectic phase space background.
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Figure 4. The upper-left and lower-left figures show the 3D plots of the probability
density distributions of the real and imaginary solutions of equation (33) for the com-
plete wave function of the Universe, denoted asΨ(η,ξ). The upper-right and lower-right
figures show the corresponding contour plots. The parametrization of the solutions are
similar to those of the previous figure.

Figure 4 shows 3D plots of the probability density for the real and imaginary solution of
equation (33) for the complete wave function of the universe, denoted by Ψ(η,ξ ). The para-
metrization of the solution is similar t that in the previous figure.

As a summary, complex equations similar to Friedmann’s equations underlie the branched
gravitation scenarios, in which the primordial singularity is replaced by a foliated transition
region, described by helix-shaped cosmological factor η(t), analytically continued to the com-
plex plane, interposing two distinct evolutionary stages of the Universe, a contraction phase
and an expansion phase. The consequences of these scenarios on the behavior of the Universe’s
wave function are notable in that they imply the evolutionary description of Ψ(η,ξ) in both
regions.

6. Dynamical equations: two-fields noncommutative approach

In what follows, we analyze the role of the noncommutative algebraic structure in the expan-
sion of the Universe. In the analysis that we will carry out, we seek to examine the role of
the noncommutative structure in the early time accelerated expansion of the Universe, more
precisely in the inflation period.

6.1. Second-order dynamical equations: two-fields noncommutative approach

In the following, we consider second-order dynamical equations for the scale factor η(τ) and
its counterpart ξ(η).
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From expression (28), assuming the gauge fixing condition N= 1, the following dynamical
equations for η(τ) and ξ(τ) result:

η̇ =
∂HNC

∂pη
=−pη

η
− γ

2η3α
; (42)

ξ̇ =
∂HNC

∂pξ
=

1
2η3α

; (43)

ṗξ = − ∂HNC

∂ξ
=− α

2η3α
; (44)

ṗη =−∂HNC

∂η
=− 1

2η

[
1
η
p2η +

3αγ
η3α

pη −
gr
η
− gkη

−2gqη
2 − 3gΛη

3 − 3
gs
η3

− α(3α− 1)
η3α−1

+
3α2t
η6α−1

]
, (45)

where we have assumed an explicit conformal time-dependence on the variables η and ξ; thus,
all known solutions are of the separation of variables type, where time and space dependence
are treated separately. Thus, from the previous equations, we obtain the following expressions
for η and ξ:

ξ =

ˆ
dtξ̇ =

t
2η3α

, pξ =
ˆ

dtṗξ =− αt
2η3α

. (46)

The time derivative of the conjugate canonical momentum pη =−ηη̇/N in the N= 1 gauge
may be written as

ṗη =
∂pη
∂t

=−∂ (ηη̇)

∂t
=−η̇2 − ηη̈ . (47)

Equation (45) combined with (47) may be recast in the form

2η (t) η̈ (t)+ η̇2 (t)+
3αγη̇
η3α

+V(η, t) = 0 , (48)

where the potential V(η, t) has an explicit time dependence:

V(η, t) = gk+ 2gqη− 3gΛη
2 +

gr
η2

+ 3
gs
η4

+
α(3α− 1)

η3α
− 3α2t

η6α−1
. (49)

Figure 5 show 3D graphical illustrations of the potential V(η, t) of equation (49) and the corres-
ponding contour plots characterizing the dependence of the scale factor η(t) on time. Figure 6
presents graphical representations of the potential v(η, t) from equation (51), indicating the
presence of a torsion deformation. More specifically, it indicates a deformation that resembles
a kind of torsional conformation of an object due to the application of an ‘external’ torque. In
the noncommutative formulation, this symmetry is broken, indicating a mixture of intensities
or amplitudes of the potential V(η, t). The potential V(η, t) simulates the presence of different
compositions of matter in the primordial Universe that imply structural modifications of the
spacetime structure, shaping this way its curvature that depends locally on the amount and
distribution of matter or, equivalently, energy. This symmetry breaking reveals the potenti-
ality of a noncommutative formulation in terms of its implications in affecting not only the
curvature of space-time, but furthermore, the capture of short and long scales, boosting the
evolution dynamics of the wave function of the Universe and the cosmic scale factor. Insofar,
as the presence of the potential is associated with a force, of a gravitational character, which
may constitute the propelling element of the acceleration of the primordial Universe. These

18



Class. Quantum Grav. 41 (2024) 245004 C A Zen Vasconcellos et al

Figure 5. Graphical illustrations of the potential V(η, t) from equation (49) and cor-
responding contour plots are presented. In the upper pair of figures, the values of the
running coupling constants and the parameters of the noncommutative algebra are as
follows: gk = 1; gq = 0.7; gΛ = 0.333; gr = 0.4; gs =−0.03; α= 1/2; C = 1. In the
below pair of figures, the values of the running coupling constants and parameters are:
gk = 1; gq = 0.7; gΛ = 0.333; gr = 0.4; gs = 0.03; α= 1/2; C = 1.

Figure 6. Graphical illustrations of the potential v(η, t) of equation (51) and contour
plots, indicating the presence of a torsion deformation The values of the running coup-
ling constants and the parameters of the noncommutative algebra for the figure are:
gk = 1; gq = 0.7; gΛ = 0.333; gr = 0.4; gs =−0.03; α=−5/6; γ = 3/5 ; C = 1.
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results provide conceptual elements that indicate a reconfiguration of matter on small scales
of dimensions. This reconfiguration of matter, as previously observed, represents a typical
characteristic of a noncommutative formulation, which drives, through a non-symmetric grav-
itational force, the acceleration of the Universe. Furthermore, due to the dual role of gravity,
spacetime is both warped by matter and matter in turn experiences a warped spacetime due to
the presence of other distributions of matter, which intensifies the effects of higher curvature
terms. The color palette used in the contour plots is indicative of these dynamic processes.
Lighter colors suggests the materialization of greater amplitudes or intensities of the effects
associated with the composition of matter and energy, while darker colors signify the oppos-
ite effects. It is precisely within the interplay of these effects, where symmetry breaks along
the axis η(t) = t= 0, that the accelerated evolutionary dynamics of the analytically continued
foliated quantum Universe finds the necessary components for its manifestation.

6.2. First-order dynamical equations: two-fields noncommutative formulation

As mentioned earlier, the dynamic equations governing the evolution of the scale factor η(t),
both in terms of first-order and second-order time derivatives, are crucial for describing prim-
ordial gravitational waves. Thus, in the following, we will elaborate on the corresponding
first-order dynamic equations.

Although it may seem unnecessary or redundant to seek for the behavior of the solutions
by determining first- and second-order equations, we adopt this procedure fundamentally for
reasons of formal consistency. This is because, as previously noted, we adopt an explicit con-
formal time-dependence on the variables η and ξ; thus, all known solutions are of the separation
of variables type, where time and space dependence are treated separately. In this sense, the
deductions of the first- and second-order wave equations present distinct characteristics, espe-
cially with regard to time dependence. However, it is expected, and this has been proven as
will be observed later, that the predictions regarding the temporal evolution of the Universe
are consistent.

Upon integrating equation (47), while assuming that η possesses explicit time dependence
allowing for separation from time, and further considering the η̇ and η function as independent
variables, we obtain the following expression relating the time-derivative dependence of the
scale factor η(t) and a time-dependent potential v(η, t):

η̇+ v(η, t) = 0 . (50)

In the expression the potential v(η, t) is defined as

v(η, t) =
1
3η

{
− 3αγ(

3α− 1
)
η3α−1

+

(
gk+ 2gqη− 3gΛη

2 +
gr
η2

+ 3
gs
η4

+
α
(
3α− 1

)
η3α

)
t− 3

2
α2t2

η6α−1

}
. (51)

6.3. Results: noncommutative dynamical equations

Figure 7 presents typical sample family solutions of the scale factor of the analytically con-
tinued foliated quantum Universe, η(t), obtained through the combination of second-order in
time η̈(t) and first-order in η̇(t) noncommutative approach given by equation (48). These solu-
tions are for variations in the initial conditions η(0) and η ′(0). Figure 7 shows also typical
sample family solutions of η(t) using the first-order in time η̇ noncommutative approach given
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Figure 7. The left and central figures depict typical sample family solutions for the scale
factor of the analytically continued foliated quantumUniverse, denoted as η(t), utilizing
the second-order time derivative noncommutative approach equation (48). These solu-
tions are for varying initial conditions η(0) and η ′(0). In the right figure, the values of the
running coupling constants and parameters are as follows: g̃r =−0.4; gk = 1; gq = 0.7;
gΛ =−0.333; gs =−0.03;α=−1/2; γ= 1; C = 1. In figure (b), the values of the run-
ning coupling constants and parameters remain the same, except forα=−3/4; γ =−1.
Figure (c) displays a typical sample family corresponding to the firs-order time deriv-
ative noncommutative approach, following equation (50), with variations in the initial
condition η(0). The values of coupling constants and parameters are: g̃r =−0.4; gk = 1;
gq = 0.7; gΛ =−0.333; gs =−0.03; α=−3/4; γ =−1; C = 1.

by equation (50), with variations in the value of η(0). These results demonstrate the significant
impact of the noncommutative formulation on the dynamics of the early Universe’s evolution.
The findings reveal that the behavior of the scale factor η(t) is notably different from what is
predicted in a commutative formulation, particularly concerning the acceleration components
of the early Universe.

While the Universe may experience a deceleration phase in its initial moments of expansion
for specific parameter sets, it abruptly undergoes a drastic acceleration. This acceleration is
characterized by an evolutionary curve that approaches a ninety-degree angle with the x-axis,
nearly parallel to the y-axis. These results align with one of the key propositions of this work,
which aims to understand themechanisms driving the acceleration of theUniverse’s expansion.

The formal structure of the super-Hamiltonian obtained enables us to associate the new vari-
able η(t) with the scale factor of the BCQG, ln−1[β(t)]. However, it is evident that, as a result
of the imposed variables transformations, this incorporates elements characterizing a noncom-
mutative algebra at a fundamental level. And given its noncommutative nature, this algebraic
structure allows us to identify the ξ(t) variable as the dual quantum counterpart of η(t), with
both variables scanning reciprocal quantum complex spaces. It is important to note that, even
though the new variables η and ξ are treated as linearly independent dual variables, they carry
new effective identities when compared to the original bare variables. This is due to the nature
of the coordinate transformations, which imbue these variables with underlying mutual and
complementary properties and identities. In classical formulations, the statistical distribution
of matter is typically assumed to be homogeneous and is determined by the dynamics of the
Hamiltonian. However, systems with higher complexity can exhibit topological constraints
that may be independent of the Hamiltonian and can affect the shape of statistical matter dis-
tribution functions [52]. In general relativity, the curvature of spacetime arises as a source of
heterogeneity in the statistical distribution of matter [52]. In our formulation we can identify
an additional source of statistical distribution heterogeneity, specifically, the noncommutative
algebraic representation of the BCQG combined with the Hǒrava–Lifshitz formulation. This
formulation leads to the realization of a potential that incorporates different matter composi-
tion contributions. These contributions are represented by algebraic terms dependent on η(t)
and appear in different orders. Their formal structure, apart from the derivative terms, is similar
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to the dependence of the Hǒrava–Lifshitz formulation on the scalar curvature of the Universe.
The implications of this formulation suggest a significant impact not only on the curvature of
spacetime and the statistical distribution of matter but also on the evolutionary dynamics of
the early Universe, which drives its acceleration.

In revisiting the cosmological implications of the results presented in Figure 6, which indic-
ate the presence of a torsion or twist deformation of spacetime in the context of the analytic-
ally continued foliated noncommutative algebra, we encounter an intriguing outcome. The
color palette associated with the contour plots unveils a remarkable pattern. There appears to
be a progressive transition in color intensity, ranging from darker colors (representing lower
potential intensity values) to lighter colors (indicating higher potential intensity values) when
examining the contour plots of the potential v(η,τ). When we relate these colors to the regions
corresponding to the 3D graph of the potential, a significant revelation emerges. The point
where t= 0, the boundary region between the present Universe and its mirrored counterpart,
aligns with the point of maximum torsion in the potential v(η,τ). This suggests that the acceler-
ated expansion of our Universe may be the result of a folded memory shared by both universes.
This concept implies that spacetime possesses a fold-memory (or twist-memory or torsion-
memory), which, when subjected to a twist in the mirrored counterpart and subsequently regu-
lated and shaped by this fold-memory, spontaneously unfolds in response to ‘external’ stimuli.
This unfolding process propels the acceleration of our Universe’s expansion.

7. Discussion of results

In simplewords, a symplecticmanifold is equippedwith a symplectic form, i.e. a closed nonde-
generate two-form manifold [53]. Symplectic forms allow the definition of symplectic bases,
which are the analogues of orthonormal bases in Euclidean geometry. Let E be a real vector
space; its generic vector will be denoted by z. A symplectic form (or: skew-product) on E
is a mapping ω: E×E→ R [54]. The symplectic geometry in turn is the geometry of sym-
plectic manifolds. Symplectic manifolds are necessarily even-dimensional and orientable, due
to the nondegeneracy condition which states that the top exterior power of a symplectic form
is a volume form. The closedness condition is a natural differential equation, which forces
all symplectic manifolds to being locally indistinguishable. In short, symplectic geometry is
the geometry of manifolds equipped with a symplectic form, that is, with a closed and non-
degenerate form of degree 2. Hamiltonian geometry, in turn, is the geometry of (symplectic)
manifolds equipped with a moment map, that is, with a collection of quantities conserved by
symmetries [53].

Noncommutative symplectic geometry, parallel to the usual calculus of differential forms,
Poisson brackets and operator algebras, corresponds to a generalization of symplectic geo-
metry in the domain of noncommutative algebra [55]. The noncommutative symplectic geo-
metry was motivated by the cohomology (or compactification) study of the properties of topo-
logical spaces, a complementary way to homology theory, with applications to moduli spaces
of smooth complex algebraic curves, as well as to cohomology of foliations and by perturbation
expansions of Chern–Simons theory. According to Kontsevich [55], when applied to a general-
ized version of Lie theory, the resulting approach is reflected in differential graded algebra with
finite dimensional cohomology and a rational Poincaré duality [55]. It is important to high-
light that the Poincaré Duality Theorem is valid for the basic cohomology of taut Riemannian
foliations, more precisely, for harmonic foliations with minimal leaves on a Riemannian man-
ifold [56]. In short, the Poisson brackets have the form {qi,pj}= gij. Because of the antisym-
metry of the Poisson brackets, the gij automatically correspond to a symplectic metric, no
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further assumptions required. As seen in equation (16), the metric has the block structure of a
symplectic metric.

Regarding this topic, in our formulation we have two foliation levels. The first level
was addressed in section 2. The second level is characterized by an analytically continued
Riemannian foliation which corresponds to the reciprocal of a complex multi-valued func-
tion, the natural complex logarithm function ln[β(t)], a helix-like superposition of cut-planes,
which correlates Riemann sheets, with an upper edge cut in the nth plane joined with a lower
edge of cut in the (n+ 1)th plane. The BCQG Universe’s scale factor ln[β(t)] maps an infinite
number of Riemann sheets onto horizontal strips, which represent in the branch-cut cosmo-
logy the evolution of the time-parameter dependence of horizon sizes. The patch sizes in turn
maps progressively the various branches of the ln[β(t)] function which are glued along the
copies of each upper-half plane with their copies on the corresponding lower-half planes. In
the branch-cut cosmology, the cosmic singularity is replaced by a family of Riemann sheets
in which the scale factor shrinks to a finite critical size, — the range of ln−1[β(t)], associated
to the cuts in the branch cut, shaped by the β(t) function —, well above the Planck length. In
the contraction phase, as the patch size decreases with a linear dependence on ln[β(t)], light
travels through geodesics on each Riemann sheet, circumventing continuously the branch-cut,
and although the horizon size scale with lnϵ[β(t)], the length of the path to be traveled by
light compensates for the scaling difference between the patch and horizon sizes. Here, ϵ(t)
represents the dimensionless thermodynamical connection between the energy density E and
the pressure P of a perfect fluid thus enabling the fully description of the EoS of the system.
Under these conditions, causality between the horizon size and the patch size may be achieved
through the accumulation of branches in the transition region between the present state of the
Universe and the past events.

Conventionally, the theory deals exclusively with finite-dimensional real symplectic spaces.
The BCQG in turn extends the ontological domain of general relativity to the complex plane.

In the BCQG approach, as previously emphasized, noncommutativity was introduced by
means of a deformation of the conventional Poisson algebra, enhanced with a symplectic met-
ric, based in the Faddeev–Jackiw symplectic two fields formulation. As an alternative exem-
plification, the deformation to the minisuperspace, in order to incorporate noncommutativity,
may be introduced by means of Moyal brackets, which are based on the Moyal product [57].
A key insight from this formulation is that the introduction of noncommutative geometry cre-
ates a natural asymmetry in the early Universe, potentially explaining both the inflationary
phase and late-time acceleration without requiring separate mechanisms. The evolution of the
dual spaces, η and ξ, reveals a topological twist in the spacetime fabric, which drives this
expansion. Additionally, the model suggests the emergence of relic gravitational waves from
the early Universe, which may offer observable signatures in upcoming cosmic microwave
background (CMB) experiments.

The limitations presented by standard cosmology arise not only from the fact that, when
extrapolating back in time, the ratio of the horizon size to the patch size shrinks in such way
that the horizon size approaches zero significantly faster, but essentially from the existence
of singularities that break down this ratio and thus make it impossible to restore causality,
making conventional cosmology geodesically incomplete. In the standard big bang model,
this vertex corresponds to the cosmic singularity, a point in spacetime where, formally, the
density and temperature diverge and the geometry shrinks to zero, a sign that the equations
used to describe the evolution of the Universe cannot be trusted near this point. The horizon
represents the maximal region that is causally connected by means of interactions with light
or any other particles; as a corollary, a patch corresponding to the observable Universe today
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was increasingly disconnected in the past. Finding a suitable fix corresponds to overcoming
the cosmic singularity and horizon problems (see [30–32]).

In the branch-cut cosmology, these problems are overcome by the presence of a branch-cut
and a branch point, defining this way the domain of the analytically continued to the complex
sector Universe’s scale factor ln−1[β(t)]. In BCQG, going back in time, the scale factor shrinks
as stressed before to a finite critical size, keeping causality restored. Furthermore, our proposal
assumes the description of the background evolution of branch-cut cosmological scenarios in
leading order by classical equations of motion.

The new symplectic algebraic quantum formulation presented in this contribution offers, in
comparison with traditional methods, another descriptive advantage by overcoming the impos-
ition for an explicit ad hoc insertion of an inflaton-type field to describe the cosmic inflation-
ary period of the Universe. And additionally, BCQG allows us to overcome still controversial
aspects of the inflationary model, such as the ambiguities in defining probabilities in eternally
inflating spacetimes, with emphasis on the youngness paradox that results from a synchronous
gauge regularization technique. Moreover, taking into account that although inflation is gener-
ically eternal into the future, it is not eternal into the past. This implies that the inflating region
must be incomplete in past directions, which has implications in settling past boundaries of
the inflating region. Additionally, according to the authors of [58], as a descriptive additional
advantage, the noncommutative symplectic algebraic formulation gives a mechanism to end
inflation and also permits that a non accelerating Universe after a period of time can start a
reacceleration period. This is because the noncommutative symplectic algebraic formulation
induces the capture of short and long spatiotemporal scales, driving not only the evolutionary
dynamics of the Universe’s wave function and the cosmic scale factor but also a reconfig-
uration of matter on small and intermediate scales, inducing additionally the generation of
mass-quadrupole moment configurations and relic gravitational waves (an investigation still
in progress).

There are numerous research works in the literature that address the topic of quantum grav-
ity in a noncommutative environment. However, with regard to the description of the wave
function of the Universe based on the formalism of Hǒrava–Lifshitz quantum gravity and the
Wheeler-DeWitt equation, or based on other alternative approaches, the number of articles
dealing with this topic are not significant. Most of the published works deal with the tem-
poral evolution of the scale factor of the Universe, a topic of studies commonly designated
as ‘dynamical equations’. In some articles the authors address both topics. A few references
on these subjects are [59–70]. We emphasize once again that concerning the wave function of
the Universe in a noncommutative environment, most authors, due to the inherent computa-
tional difficulties imposed by the formalism, use approximations that significantly limit their
conclusions and direct their studies towards formal aspects without a numerical approach or
algebraic results.

Regarding dynamic equations, some studies involving non-commutative formulations
present different degrees of improvement from a theoretical point of view, but the corres-
ponding results are limited by the introduction of computational approximations that imply the
shortcoming of the corresponding conclusions. It is important to mention, although this is not a
central topic in the present work, studies involving strings and noncommutative gauge theories
which have contributed significantly to a better understanding of the influence of noncommut-
ative algebra on the deformation of geometric structures and the impacts of these studies in
understanding the accelerated evolution of our Universe in string theory. Edward Witten, pre-
cursor of this line of investigation [71], was followed by many scientists who have continued
this line of research (see, for instance [72, 73], and references therein).
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In our study, we concentrate on numerically solving the equations describing the evolution
of the Universe’s wave function, as well as the dynamic equations involving the Universe’s
scale factor and relic gravitational waves. We aim to achieve this without resorting to any
computational approximations. To this end, we employ a numerical approach based on the
Runge–Kutta–Fehlberg method. This method is known for its effectiveness in solving differ-
ential equations accurately without the need for numerical approximations. Despite the signi-
ficant formal complexity of the theory and resulting equations, this computational approach
enables us to conduct a comprehensive numerical investigation of the evolutionary process
examined in our work. We explore the theory’s parameter space, allowing for a broad analysis
of the evolution of functions such as Ψ(η), Ψ(ξ), η(t), and ξ(t), along with a wide range of
solutions. Due to space constraints, we present only a select few figures representing the most
significant results. The most expressive results involving both the contraction phase and the
expansion phase of the branched Universe indicate an accelerating cosmic expansion.

8. Conclusions

The paradigm supporting the theory of renormalization groups—organizing physical phenom-
ena based on energy or distance scales—holds firm in commutative quantum field theories. In
their noncommutative counterparts, however, one encounters uncertain territory. One of the
features of noncommutative field theories is the mixing of short and long scales. A striking
illustration of this phenomenon can be found in UV/IR mixing [74]. In cases where non-
commutativity exists at a small scale, the UV/IR mixing effect is anticipated to manifest at
an earlier epoch in the Universe’s history, thereby raising new questions about the hierarchy
problem. The authors of [57, 75] address the features of noncommutative field theories related
to UV/IR mixing, as a result of the capture of short and long scales, emphasizing on the same
line of investigation that these effectsmight be present at an older time of theUniverse. Another
striking example pertains to the inhomogeneities within the distribution of large-scale struc-
tures and anisotropies observed in the CMB radiation. These anomalies bear traces of the non-
commutative nature of the early Universe. Specifically, the power spectrum of these structures
becomes direction-dependent in noncommutative spacetime [76].

In 1947, Hartland Sweet Snyder introduced the concept of quantizing spacetime in a seminal
paper [77]. While this paper has received relatively few citations, it sparked one of the most
remarkable inquiries in the realm of physics, namely the possibility of discretizing spacetime.
In alignment with Snyder’s proposal, the uncertainty principle of Werner Heisenberg suggests
that spacetime possesses a noncommutative structure, which can be represented as

[xµ,xν ] = iθµν . (52)

This noncommutative property implies a minimum scale of approximately ∼
√
θ. From a

cosmological perspective, to assess the implications of this concept on the dynamics of the
Universe, it is most appealing to investigate how the noncommutativity of coordinates affects
the deformation of spacetime algebra. We assume that this equation holds within a comoving
frame, a coordinate system in which galaxies are freely falling.

In this work we adopt an alternative approach by considering a noncommutative quantum
cosmological scenario based on the deformation of a mini-superspace of variables obeying
Poisson algebra. We aim to examine whether such a perspective can help identify the mech-
anism that drives the acceleration of the Universe [78]. While the results presented here are
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preliminary, they are promising in suggesting that noncommutative BCQG offers an algeb-
raic framework that impacts both the statistical distribution and gravitational dynamics of the
matter constituting the primordial Universe.

As previously emphasized, the implications of noncommutative algebra are evident in the
solutions presented in this study. These implications manifest in various aspects, including the
wave function of the early Universe, the dynamical equations involving the cosmic scale factor
and its dual counterpart, as well as relic gravitational waves. The results point to a dynamic
acceleration driven by a force that, in our view, arises from the reconfiguration of matter in
the early Universe due to the algebraic structure of noncommutative geometry. This structure
captures the intrinsic properties of spacetime at short distances, with significant implications
for the dynamical symmetries and conventional duality symmetries of quantum spacetime
geometry.

As we have seen, we adopt in our proposal a reverse logical approach to the Faddeev-Jackiw
symplectic formalism, implying a change of character for the original quantum fields u(t)
and v(t), by imposing a noncommutative algebraic structure described by a nonzero Poisson
bracket formalism. Then, we carry out a linear transformation of the noncommutative phase
space configuration into a commutative representation; this transformation allows the incor-
poration of the noncommutative algebra, through the insertion of a new set of variables and
the consequent modification of the quantum gravity phase space, conforming a new intrinsic
structure of the cosmic quantum dynamics. After reducing the corresponding equations of
motion to a canonical form, the resulting commutative variables, - the cosmic scale factor η(t)
and its quantum dual counterpart ξ(t), encompassing a non-commutative underlying strutcure,
and the corresponding separable solutions, Ψ(η) and Ψ(ξ), present a compelling tenue. By
taking the product Ψ(η)Ψ(ξ), the Ψ(η) amplitude is modulated by Ψ(ξ), whose probabil-
ity density presents a similar behavior of the inflaton potential field of the inflation theory.
In other words, although we do not explicitly incorporate the presence of an inflaton-type
scalar-complex field, our approach describes the exponential growth expansion of space in
the early Universe, without the need to insert, in an ad hoc manner, an inflaton-type field. In
short, the most unexpected results correspond to the behavior of the Universe’s wave function
counterpart Ψ(ξ), whose more intense realization occurs in the mirror Universe, in which the
maximum values of the probability density are symmetrically separated and are more intense
at the initial point of the transition from the mirror Universe to the current one, presenting a
behavior similar to the roll-on inflation Guth’s potential. In our conception, the inflaton roll-
on potential represents a simple field parametrization-realization of the structural effects of a
noncommutative algebra structure, one of the most fundamental features of spacetime.

Due to its structural character, the algebraic structure of the formalism allows identifying the
complex variable ξ(t) as the complex dual quantum counterpart of η(t), both scanning recip-
rocal quantum complex spaces. In quantummechanics, conjugate dual variables correspond to
pairs of mathematical variables which comprise dual-Fourier transforms, or more generally,
they are related through the Pontryagin duality, more precisely, a locally compact abelian
topological group formed by the continuous homomorphisms group and the topology of uni-
form convergence on compact sets. Duality relations naturally lead to an uncertainty relation
conformed by the Heisenberg uncertainty principle. In mathematical terms, conjugate vari-
ables are part of a symplectic basis, and the corresponding uncertainty relation are akin to a
symplectic form. Furthermore, conjugate variables are related by Noether’s theorem, which
states that if the laws of physics are invariant with respect to a change in one of the conjug-
ate variables, then the other will remain invariant, or more precisely, represents a conserved
quantity. These concepts then apply to the variables η(t) and ξ(t), although the deepening of
its content and cosmological meaning requires a more rigorous approach, an aspect still open
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in our analysis, allowing for broad and speculative interpretative possibilities in the future.
Even more so when we come across Hawking’s conception of the multiverse, whose theoret-
ical potentialities have been permanently the object of the most diverse speculations, involving
for instance, dual complementary quantum universes, among others. This interpretation would
follow the many-worlds proposed by Hugh Everett [79], one of the mainstream interpretations
of quantum mechanics, along with quantum decoherence, which implies that there are most
likely an uncountable number of universes, for which time corresponded to a many-branched
tree, wherein every possible quantum outcome is realized.

As stressed before, in our formulation we do not explicitly incorporate the presence of a
complex scalar field of inflaton-type. Its explicit additional inclusion, we can foresee, would
certainly imply an enhancement of the acceleration of the primordial Universe. As previously
mentioned, the probability density associated toΨ(ξ) presents a behavior similar to the inflaton
potential field of the inflation theory. It is important to note that the presence of the variables
ξ(t) as well as the wave function Ψ(ξ) are the result of the incorporation, - taking as starting
point the commutative version of the Horava–Lifshitz Hamiltonian formalism -, of the per-
fect fluid conception of Hermann Weyl combined with the formalism of Bernard F. Schutz.
Later, using the Faddeev–Jackiw symplectic two fields approach, the canonical noncommutat-
ive version of a super Hamiltonian was developed and the corresponding wave equation of the
Universe was solved. The particular choice α= 1/3 allowed the separation of the variables in
the form Ψ(η)Ψ(ξ). The resulting equations were solved algebraically, using the successive
approximation method to obtain the solution corresponding toΨ(η) and the pure integration
method to obtain the solution corresponding to Ψ(ξ). In other words, we do not impose, in
any of the stages of treating the problem in focus, explicitly and in an ad hoc way, any type of
solution corresponding to an inflaton-type field, whether of a scalar or scalar-complex nature.
Even so, the results obtained reveal that Ψ(ξ) presents a behavior similar to an inflaton-type
potential in the transition region between the present Universe and its mirror homonymous.
Evidently, this behavior is not a coincidence, being a result of the noncommutative algebra
that induces, as we stated before, the capture of short and large spacetime scales, which in
the case of the conventional model of cosmic inflation was modeled by a baseline slow-roll
potential. In the case of the explicit inclusion of a complex scalar field of the same nature as
the inflaton field, which in conventional formalism configures a state that drives inflation, in
a local (not global) configuration, the superposition of the effects of the three fields, in phase,
we can foresee, would ignate a superposed level of inflation. However, for such a process to
be configured, it would be appropriate to construct an extension of the two-fields noncom-
mutative version as proposed in the present contribution. Such an extension would cause the
original fields to acquire a quantum dual nature, evidently sharing their original natures among
themselves. This is a proposal that deserves a technically rigorous approach in the near future.
We thank the referee once again for raising this possibility that deserves further study as well
as an extension of the present study involving two fields, to a three-fields configuration.

In conclusion, the results suggesting a primordial dynamic acceleration of spacetime
demonstrate that noncommutative BCQG provides a viable theoretical alternative to models
such as inflation [14, 15] and bouncing [30–32]. This exploration aligns with a fundamental
characteristic of noncommutative algebra, namely the interplay between small and large scales.
As a result, if the effects of noncommutative algebra were indeed present in the primordial
Universe, it is reasonable to anticipate their persistence in the present day.

A fundamental question then emerges: Can inhomogeneities in the distribution of large-
scale structures and anisotropies in the stochastic gravitational wave background (SGWB), if
they indeed exist, carry traces of the noncommutative nature of the early Universe? Our res-
ults indicate a scenario during the early stages of the Universe, characterized by an SGWB
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distribution that deviates significantly from the homogeneity expected to be observed today.
As a consequence, inhomogeneities in the SGWB distribution, if influenced by traces of non-
commutativity, could serve as crucial windows into the initial phases of the early Universe,
preceding the recombination era. However, answering this question necessitates further obser-
vations, and this theme will remain the primary focus of our ongoing investigations.
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Appendix. Canonical form of the two-fields noncommutative Hamiltonian

Equation (30) can be rewritten in the general form:{[
a(u,v)

∂2

∂u2
− 2b(u,v)

∂2

∂u∂v
+ c(u,v)

∂2

∂v2

]
−
[
d(u,v)

∂

∂u
+ e(u,v)

∂

∂v
+F(u,v)

]}
Ψ(u,v) = 0 , (A1)

with

a(u,v) = 1 ; b(u,v) = χ ; c(u,v) = χ2 ;

d(u,v) =
|γ|

u3α−1
; e(u,v) =

i
u3α−1

;

F(u,v) =−
(
gr− gmu− gku

2 − gqu
3 + gΛu

4 +
gs
u2

− α

u3α−2
+

αv
u3α−1

)
, (A2)

where, for simplicity, we do not use the symbol tilde in the partial derivatives as identification
of the new variables in the scope of the noncommutative algebra. In the above expression,
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a(u,v), b(u,v), and c(u,v) represent functions of the independent variables u and v, and have
continuous derivatives up to second-order. Moreover, since these variables obbey the condition
b2(u,v) − a(u,v) c(u,v) = 0 , expression (A1) belongs to the mathematical group of para-
bolic differential equations. In order to reduce this equation to a canonical form, one should
first write out the characteristic equation [80]

a du2 − 2b du dv+ c dv2 = 0 , (A3)

which splits into two equations:

a dη−
(
b±

√
b2 − ac

)
dξ = 0 . (A4)

The next step corresponds to find the general integrals of the differential equation above. In
case of a parabolic equation, the two previous solutions coincide, resulting in a common gen-
eral integral φ(u,v) = IG. This allows the variables u and v to be replaced by two new inde-
pendent variables, which we denote as ξ and η, in accordance with

ξ = φ(u,v) , and η = η (u,v) , (A5)

where η(u,v) is a differentiable function that satisfies the non-degeneracy condition of the
Jacobian D(ξ,η)/D(u,v) in the given domain. As a result, equation (A1) is reduced to the
canonical form

∂2Ψ(ξ,η)

∂η2
= G

(
ξ,η,Ψ,

∂

∂ξ
,
∂

∂η

)
. (A6)

For η one can take u or v. We take, for convenience, u.
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