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Two classes of quantum-annealing-inspired-algorithms (QAIA), namely different variants of simulated
coherent Ising machine and simulated bifurcation, have been proposed for efficiently solving
combinatorial optimization problems recently. In order to certify the superiority of these algorithms,
standardized comparisons among them and against other physics-based algorithms are necessary. In
this work, for Max-Cut problems up to 20,000 nodes, we benchmark QAIA against quantum annealing
and other physics-based algorithms. We found that ballistic simulated bifurcation excelled for chimera
and small-scale graphs, achieving nearly a 50-fold reduction in time-to-solution compared to quantum
annealing. For large-scale graphs, discrete simulated bifurcation achieves the lowest time-to-target
and outperforms D-Wave Advantage system when tasked with finding the maximum cut value

in pegasus graphs. Our results suggest that QAIA represents a promising means for solving
combinatorial optimization problems in practice, and can act as a natural baseline for competing

quantum algorithms.

Combinatorial optimization involves seeking the optimal object within a set
of candidates, a prevalent issue in various research domains such as statis-
tical physics', applied mathematics’, and computer science’. As the solution
space tends to expand exponentially with increasing problem size, the
“combinatorial explosion” poses significant challenges in finding the opti-
mal with traditional algorithms or brute-force search””. To overcome this,
numerous heuristic algorithms have been devised for approximating
(or identifying sub-optimal) outcomes®”. However, developing a highly
efficient and accurate algorithm to address combinatorial optimization
problems remains a formidable challenge.

In computational physics, the great majority of combinatorial opti-
mization can be mapped to the Ising problem, i.e. finding the ground state of
the Ising model'’. An Ising model consists of a set of N Ising spins with
configuration o; = * 1, the coupling J;; between two spins and the external
fields h;. The Hamiltonian of an Ising model is defined as

1 S
H= —EZ],']U;'U; - Zhiai’ ¢y
1] 1

This model can be intuitively represented using a set of quantum bits (or
qubits). Solving the Ising model is considered nondeterministic polynomial-
time (NP) hard, meaning it is widely believed that no efficient exact classical
algorithm exists for this problem. Quantum computers or the D-Wave
quantum annealer (QA) utilizing superconducting qubits, have been
introduced to tackle the Ising problem. However, experimental results have
demonstrated that QA’s current performance is suboptimal when handling
dense graphs, owing to limited qubit connectivity and physical noise'" ™.

Inspired by the QA, various special-purpose processors for solving the
Ising model have been developed, such as the coherent Ising machine (CIM)
implemented with pulsed lasers and degenerate optical parametric
oscillators”™", the electromechanical system', FPGA-based digital
annealers'’, memristor Hopfield neural networks™, the MRAM-based sto-
chastic computing hardware (called P-bits)*"*, etc.

Several quantum annealing-inspired algorithms (QAIA) have been
developed for solving combinatorial optimization problems by simulating
the physical mechanisms of quantum annealing-inspired devices. These
algorithms include different versions of Simulated CIM and Simulated
Bifurcation (SB). They relax discrete variables into continuous ones and
employ an annealing scheme for optimization. From a quantum mechanics
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perspective, CIM is implemented using a network of optical parametric
oscillators, which exhibit two stable oscillating states above the threshold,
representing an Ising spin”’. CIM has been numerically simulated on clas-
sical computers through SimCIM. In order to mitigate the adverse effects of
relaxing spin variables, various versions of CIM with error correction were
proposed, including CIM with chaotic amplitude control (CAC), chaotic
feedback control (CFC) and separated feedback control (SFC)***. Notably,
all these algorithms are the simulation of various CIM, but the name Sim-
CIM stands for the particular version of it, as presented in*. Similarly,
quantum bifurcation machine (QbM) carries out quantum adiabatic opti-
mization with Kerr-nonlinear parametric oscillators”. Bifurcation phe-
nomena are emulated within classical nonlinear Hamiltonian systems, often
referred to as SB**”. The original SB algorithm is commonly denoted as
adiabatic SB (aSB). It is also susceptible to errors stemming from the con-
tinuous relaxation of discrete variables™. Then, ballistic SB (bSB) introduces
the inelastic walls to alleviate analog errors. To further enhance error sup-
pression, discrete SB (dSB) discretizes the spin variables within mean field
terms”®”’. Consequently, these variants not only expedite convergence but
also yield more accurate solutions.

As a promising approach to solving Ising problems, these quantum
annealing inspired algorithms have demonstrated high efficiency and
accuracy. Recent benchmark studies have reported their performance.
However, works such as’~** only benchmark commercial solvers developed
on specialized platforms; meanwhile™, solely examines the effects of dif-
ferent nonlinear terms on analog Ising machines’ performance. To promote
and broaden the application of these quantum-inspired algorithms, their
performance on general devices like CPUs and GPUs must be evaluated.

In this work, we provide the benchmarking experiments of QAIA and
compare them with some other physics-inspired algorithms as well as
D-Wave. Our goal is to evaluate their efficiency in solving optimization
problems. On the one hand, we find that QAIAs not only achieve lower
time-to-solution than other heuristic algorithms, classical and quantum
solvers in chimera graphs, but also outperforme Advantage system of
D-Wave (hereafter abbreviated as ’Advantage’) when searching for the
maximum cut value on pegasus graphs with varying problem size. On the
other hand, the dSB demonstrates superior performance against other
QAIA overall. Particularly, the bSB exhibits the highest success probability
and lowest time-to-solution (TTS) on chimera graphs as well as small
instances. For large graphs, dSB prove to have the lowest TTS. However,
CAC and SFC have a higher probability of searching for the optimal or
nearly-optimal solutions respectively than dSB on the skewed graphs. The
aSB is prone to getting trapped in local minima due to the error from
continuous relaxations without inelastic walls. SimCIM struggles to achieve
optimal solutions due to the numerous hyper-parameters involved.

Results and discussion

We carry out the numerical experiments in three different datasets and use
success probability and TTS or time-to-target (TTT) to evaluate the per-
formance of algorithms. We first briefly explain the Spin-glass and Max-Cut
problems and TTS/TTT, and then give the results of the numerical
experiments.

Spin-glass and Max-Cut Problems

Spin-glass model describes the Ising models with the couplings between
neighboring spins following a Gaussian distribution. The spin-glass pro-
blem is to find ground-state of the Ising spin glass with the energy function
Eq. (1). In statistical physics and disordered systems, the Max-Cut problem
is equivalent to the task of minimizing the Hamiltonian of a spin glass
model™.

The Max-Cut problem is one of the important combinatorial opti-
mization problems. Consider a given undirected graph G = (V, E), where
[Vl =N with edge weights w;=w;; >0, for all (i, j) € E. We partition the
vertices V into two complementary sets to maximize the sum of weighted
edges connecting points in these two different subsets. The Max-Cut has
only +1 weights, while the weighted Max-Cut can have any values of

weights, continuous or negative. Formulated as the Ising problem, we first
assign an Ising spin 0; € { — 1, 1} to each node of the graph to represent the
two groups. Hence, it can be formulated by

argmax C = Z w;(1 — 0,0;)
0;e{—1,1} (ij)eE

N
=%ij0iff; W
ij

(ij)eE

@

where J;; = — w;;. Note that the Hamiltonian H in Eq. (1) with the zero
external field is equivalent to maximizing the first term of (2) and the second
term >_;w;; is a constant. It follows that the Max-Cut problem (2) naturally
maps onto Ising problem (1), so we use it for benchmarking.

The evaluation metrics

All the QAIA are heuristic algorithms. To extensively assess these methods,
we sample 100 times on each graph to compute the ratio of achieving the
optimal solution which is referred to as the success probability P. Mean-
while, TTS and TTT are used to assess the computation speed of the
methods”. TTT measures the time required for the algorithm to make sure
the reference outcome can occur at least once with a probability Q that is
conventionally set to 0.99. When running a probabilistic solver for a period
of time T, the probability of yielding the required solution is given by P(T5).
Consider the case of k trials, the probability of obtaining at least one right
outcome is given by

Q=1-(@1-PT)), 3)

then the number of runs needed to achieve the right outcome with a
probability of Q( = 0.99) is given by k = 2105

1-P(T,)
log(1—0.99) .
TIT = s log(1=P(T))’ P(T,)<0.99; (4)
T,, P(T,)=0.99,

where T is the time to run the algorithm once. For TTS, P(T;) is set to
success probability P. And the reference target in TTT is usually set to the
99% of the exact or best-known value. In addition, we compute the median
and maximum of the ratio between the cut value of the sample and the
optimal one, denoted as Rypedian and R .

Experiment |

In the first experiment, we benchmark QAIA on small regular graphs with
problem sizes N ranging from 10 to 500. We want to observe the trend of
performance for QAIA on regular graphs with the increased problem size,
thereby setting the weight to { — 1, 1}. The problem can be divided into four
categories according to the edge weight and density, including sparse and
dense Max-Cut instances, and sparse and dense spin-glass instances. For
each problem, we generate 10 instances per size to assess the average per-
formance. These instances are generated by NetworkX”, a Python package,
and the cut value of the graphs has been calculated in advance by the Biq
Max solver”, an exact method employing semidefinite programming based
on the Branch & Bound algorithm.

To increase the reliability of the experimental results, the metrics are
evaluated on QAIAs for 10,000 trials in each instance. For sparse instances,
varying algorithms perform significantly differently. The bSB exhibits
orders of magnitude advantage of success probability as well as TTS com-
pared with other algorithms and possesses superior robustness as the pro-
blem size increases no matter for Max-Cut instances (Fig. 1) and spin-glass
instances (Fig. 2). SimCIM, aSB and dSB perform similarly. And the dSB
obtains slightly higher success probability and robustness while the SimCIM
achieves lower TTS. The NMFA is inferior to them in this experiment.
While for dense graphs, the performances of QAIA tend to be the same,
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Fig. 1 | Comparison results of QAIA in 3-regular @)
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especially for the Max-Cut instances. But bSB still performs best, while aSB is
the worst one (Fig. 3).

Experiment Il

To evaluate the performance of the methods in the large-scale problem, the
second experiment is conducted in the random Max-Cut instances
(G22 and G81), skewed instances (G39-G42) from Gset and the fully-
connected instance K2000 with best-known cuts provided by breakout local
search (BLS) algorithms™. The G22, G39-42 and K2000 are all the 2000-spin
size instances. The G22 has uniform degree. The skewed graphs mean that
the graphs have a long-tailed distribution of their vertex degrees and the

authors of the CIM with error correction claim that their methods perform
better on this type of graph™. K2000 is a SK spin-glass problem. And the
problem size of G81 is 10 times that of them. We run each algorithm for 1000
trials with the different number of time steps, Nyep (Nytep indicates the final
number of time steps but not intermediate values.) In Fig. 4, the variants of
SimCIM and SB perform much better than the SimCIM and aSB. The dSB
achieves the best performance, especially in large dense graphs. Equipped
with discretization, dSB not only converges fastest but also improves the
search capability so that it is more likely to find the optimal solution or
extremely approximate solutions even for the extremely large graph G81, and
meanwhile, although for small Ny, the dSB still performs well and as Nyep
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Fig. 3 | Comparison results of quantum- (@) (b)
annealing-inspired-algorithms in dense graphs. 10° 10!
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Fig. 4 | Comparison between quantum-annealing- (a)

inspired-algorithms for Gset and a fully-
connected K2000 graph. a For G22, b For G39,

¢ for K2000, d for G81. The polygons show the top-
1% cut value for different algorithms. The present
best-known cuts (black dashed line) for Gset are
given by Breakout Local Search (BLS) algorithm,
and the best cut for K2000 is computed by SA. The
results of G40-G42 are shown in Supplemen-

tary Fig. 3.
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increases, the cut values of dSB keep improving. The CIM with error cor-
rection, CAC and CFC achieve the highest success probability and the
probability of obtaining 99% of the best solution in large skew and random
graphs respectively. However, we found that the CIM with error correction,
especially CAC and SFC, are sensitive to the parameters. They can not obtain
reasonable results when setting the wrong parameter values. SInCIM has
many parameters (pump loss factor, learning rate, noise factor, etc.) to tune to
achieve a satisfying solution. On the contrary, SB and its variants are easy to
operate since most of the parameters can be fixed according to the literature”.
The aSB and NMFA trail in last place.

In addition, we compare the convergence rate of Ising energy of QAIA,
and NMFA as well as SA during evolution in sparse (G22) and dense
(K2000) graphs respectively on one CPU core. The SA refers to® which is
specifically used to deal with Max-Cut problems. It is extremely fast

compared to the standard SA and is >10 times faster than the Python
packages provided by* and®. The dSB achieves the optimal solutions in both
two types of graphs and starts converging at around 0.03s and 0.1s,
respectively; while SA needs to spend >10 times the time to get a satisfying
result on these 2000-node Ising graphs (Fig. 5). It is worth noting that NMFA
performs similarly to SA in K2000 due to normalization in each iteration.

Experiment i

The last one is conducted on chimera and pegasus graphs of the actual
D-Wave device'"**, allowing for a comparison of QAIA against QA with the
highest computing capabilities. For chimera graphs, the ground state energy
of spin-glass instance is provided by Tropical Tensor Network (TTN)*. We
compare QAIA with other physics-based algorithms, QA and some exact
solvers from published literature'**”. Figure 6 shows that bSB achieves the
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Fig. 5 | Evolution of Ising energy. a Sparse graph (a)

K2000
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highest probability of obtaining 99% of the best solution in the chimera
graphs. As for the success probability that is not shown in the histogram, all
the heuristic algorithms can find the optimal solution in 4 x 4 x 8 chimera
and bSB achieves the highest success probability, nearly 70%. In larger
chimera systems, dSB and SimCIM stand out for efficiently identifying
ground state configurations among QAIAs with extremely few iterations.
After that, we choose the best-performing QAIAs in chimera graphs on
success probability (bSB for chimera 4x4x8 and dSB for chimera
8 x 8 x 8) to compare with D-Wave as well as some other solvers including
TTN", brute force search* and exact belief propagation using bucket sort'”.
It should be noting that D-Wave leap cloud service is not available in our
location so we can only obtain the results of QA in chimera 4 x 4 x 8 from
the published literature. The bSB on the CPU is much faster than TTN and
slightly slower than D-Wave. However, when running on GPU, it far sur-
passes D-wave. Meanwhile, dSB gives the ground state energy of 8 x 8 x 8
chimera much faster than any other exact solvers listed in the table no matter
on CPU and GPU (Table 1).

For theoretical pegasus graphs (also refer to full pegasus graphs), we
conducted a comparison between the Advantage and QAIA. We set up the
experiment to be consistent with the paper" as much as possible to fairly
compare their performance. First, we utilize the procedure outlined in* to
extract the Pegasus graph, which consists of 5640 qubits and 40,484 cou-
plers. Following this, we proceed to generate subgraphs of it by varying the
number of nodes, ranging from 564 to 5640, and configure the experiment
with 100 samples and 1000 iterations per instance for each QAIA. The global
optima of these subgraphs are computed by Biq Max solver. The aSB, bSB,
CAC, and CFC are capable of searching for the optimal solution with a 100%
probability for problem sizes ranging from 564 to 2820. For larger pegasus
graphs, dSB demonstrates superior performance against other QAIA.
Advantage can only achieve more than 99% best of the optimal value but not
the optimal one on the pegasus graphs with real connectivity which is easier
for Advantage system than the theoretical pegasus graphs*, while dSB, CAC
and CFC achieve the optimal solution across all the problem size (Table 2). It
should be noted that QAIA achieved an execution time of ~0.2 s on the

NVIDIA Tesla A100 GPU across all instances. This execution time matches
the total time taken by Advantage (the annealing time of D-Wave Advan-
tage system is 2000 us). Thus, we conclude that QAIA outperforms
Advantage on pegasus graph.

Conclusions

In this work, we benchmarked quantum-inspired algorithms across a range
of graph types in solving the combinatorial problem. We also compare them
with some physics-based algorithms as well as the D-Wave quantum
annealer.

We summarize the benchmarking results in Table 3. In chimera
graphs, bSB excels not only in comparison to other QAIAs, but also delivers
an impressive nearly 50-fold reduction in TTS when contrasted with
D-Wave. For pegasus graphs, CAC demonstrates superior performance
against others in general. Additionally, CFC and dSB exhibit the ability to
search for optimal solutions across a wide range of problem sizes while
Advantage system of D-Wave fails.

For small graphs, bSB consistently demonstrates superior perfor-
mance. Even as the problem size grows, its success probability and TTS
exhibit minimal changes. In the case of large random, skewed, and dense
graphs, CAC, CFC, and dSB excel with the highest success probabilities
respectively, and dSB achieves the lowest TTT.

In the context of solving optimization problems, the choice of solver
depends on the characteristics of the graphs involved. For chimera and small
graphs, bSB emerges as the ideal option. On the other hand, for larger
graphs, dSB proves to be the most effective solver. However, given sufficient
computational resources and time, CAC and SFC may outperform dSB for
large random and skewed graphs, as they offer a higher likelihood of
obtaining optimal or near-optimal solutions. The original version of QAIA,
which includes aSB and SimCIV, is susceptible to getting stuck in local
minima®’. Nevertheless, when equipped with inelastic walls, discretization,
or error correction techniques, QAIA exhibits a remarkable improvement in
performance. Notably, QAIA excels in rapidly finding optimal solutions,
surpassing D-Wave annealer and other conventional algorithms mentioned
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Table 1 | Benchmarking results of energy of spin-glass on the
chimera graphs

Graph size Algorithm Hardware Time(s)
TTN CPU 1 core 5.62
Brute-force search* GPU Titan V >10

4x4x8 Exact belief CPU 1 core ~0.96
propagation®
QA" D-Wave ~0.05
bSB CPU 1 core 0.12
bSB GPU Tesla V100 <0.001
TTN CPU 1 core 32400
TTN* GPU Tesla V100 84

8x8x8 Brute-force search* GPU Titan V >10'%°
Exact belief CPU 1 core ~2880
propagation®
dsB CPU 1 core 17.64
dsB GPU Tesla V100 <0.68

It shows the running time for the exact sovlers including Tropical Tensor Network (TTN) and exact
belief propagation, and Time-to-solution (TTS) for quantum annealer (QA), brute-force search and
quantum-annealing-inspired-algorithms. The metrics in italics type mean the previously reported
results in the literatures.

in this paper. As a result, QAIA serves as a valuable baseline for competing
quantum algorithms.

Methods

In this paper, we benchmark two categories of quantum annealing inspired
methods: Simulating CIM and SB, and compare them with some other
physics-based algorithms including NMFA and TTN on spin-glass and
Max-Cut problems.

Quantum annealing inspired algorithms

Simulated coherent ising machine. In general, every iteration in
SimCIM simulates a roundtrip of optical pulses through the fiber loop in
CIM. The operation of CIM can be modeled as c-number stochastic
differential equations by characterizing each pulse by its complex
amplitude”. The stochastic differential equations are used to describe
optical squeezing, linear and nonlinear loss, mutual coupling optical
pulse, and noise of CIM. For simplified computation, SimCIM drops the
nonlinear term and imaginary part of amplitude, and then, updates spin
variables x = {x;}V| in a continuous style as follows.

dx;
o= vxi+(]Z],jxj +of 5)

where ( is the coupling strength, v denotes parametric gain and the linear
loss coefficients, and f; is a Gaussian noise. v gradually increases to zero
during optimization to ensure the final objective function is equivalent to the
Hamiltonian of Ising problem. This optimization problem is solved via
gradient descent with momentum.

The standard CIM suffers from amplitude heterogeneity, giving rise to
improper mapping of the energy function. To overcome this, an auxiliary
variable e; (also called error variable) is introduced for error detection and
correction. The time evolution of the spin variable and error variable can be
described as follows:

dx;

5= =X +(p—Dx; +e¢ Ej :Uijxj’ ©)
de;
a —Be;(xi —a), @

Table 2 | Performance of quantum-annealing-inspired-algorithms on the pegasus-like graphs

dsB CAC CFC SFC

aSB bSB

SimCIM

NMFA

Best cut

No. of node

TTS

TTS

TTS

TTS

TTS

TTS

TTS

TTS

0.24
0.25
0.35
0.35
0.42

0.98
0.98
0.93
0.93
0.89

0.26
0.26
0.26
0.26
0.26
5.41

0.25
0.25
0.25
0.25
0.25
8.64
4.05
4.55
7.84
9.34

0.97
2.47
3.16
4.72

0.6
0.3

0.18
0.18
0.18
0.18
0.18

0.24
0.24
0.24
0.25
0.24

0.01 81.78 1

85.96

0.01

805

564

1610
2419

1128
1692
2256
2820
3384
3948
4512

0.24
0.16
0.05
0.32

0.4

0.99

3230
4042
9294

1

16.94
2.24
1.69
2.10
3.57
5.41
4.33

0.2

0.13
0.25
0.23
0.14
0.12

7.07

0.16
0.02
0.01
0.01
0.54

15171
21067
26941
32400

72.43
122.72

0.34
0.22
0.15

0
0

5076
5640

121.34

0.471

33.027

3.567

0.001 0.5 0.499 0.278 0.564

0.001

Average

The metrics include success probability (p) and time-to-solution (TTS). The the number of nodes of pegasus-like graphs range from 564 to 5640. Bold values represent the best performance. “-” in table means that the algorithm cannot achieve the optimal solution of the

problem so that it has not TTS.
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Table 3 | Performance ranking of quantum-annealing-inspired-algorithms

Class of graph Metric NMFA SimCIM aSB bSB dsB CAC CFC SFC
Chimera P 8 3 2 1 4 5 6
99% of best 8 2 3 1 4 7 5) 6
Pegasus p 7 7 3 4 6 1 2 5
TTS 8 7 5) 4 2 1 3 6
Small/sparse p 5 3 4 1 2 - - -
TTS 5 3 4 1 2 - - -
Small/dense p 3 4 5 1 2 - - -
TTS 3 4 5 1 2 - - -
Large/random (N >2000) p 5 3 5 4 2 5 1 5
99.9% of best 5 3 5) 4 2 5 1 5
TTT 5) 3 5 4 1 5 2 5
Large/skew (N =2000) p 3 3 3 3 2 1 3 3
99% of best 7 4 8 6 2 1 3 5
TTT 7 4 8 6 1 2 3 5
Large/dense (N >2000) p 8 8 8 8 1 8 8 8
99% of best 5 1 5) 1 1 4 3 2
TTT 7 3 7 2 1 6 4 5
Average ranking 5.82 3.82 5 3.05 217 4.07 3.30 5.7

The metrics in different classes graphs and varying problem size (N) include success probability p, the probability of obtaining the solution which is 99% or 99.9% of the optimal value, and time-to-solution
(TTS) or time-to-target ( . “-” indicates that the corresponding algorithm was not tested on the specified graphs.

where p, a and f§ are the gain parameter, the target amplitude and the rate of
change of error variables respectively. The introduction of error variables
makes the system exhibits chaotic dynamics that explore successively
configurations close to the ground state, thereby accelerating solving the
Ising problem. This system is referred to as CAC.

Another version of Simulated CIM, CFC is quite similar to CAC
and the only difference between them is that the time evolution of error
variable is controlled by the feedback signal z; instead of amplitude x; as
follows:

z = —e,»ZU,jxj, (8)
J

dx.
Ti -+ —Dx; -z, ©)
de;
d—tl = —Pe;(z; — a). (10)
Unlike CAC and CFC, SFC divides the error variable and mutual coupling
into two linear terms rather than nonlinear terms combined with these two
parts.

== Uy (11)

i
% = —x] +(p — Dx; — tanh(cz,) — k(z; — ¢,), (12)
% = —Be, — z,), (13)

where p, k, cand 3 are the system parameters. The tanh function overcomes
the problem of amplitude heterogeneity by tuning the parameter c. The local
minima traps are destabilized by the difference between feedback signal and
error variable. The potential landscape of all CIM with error correction
closely resembles that of aSB (Supplementary Fig. 1). However, with the help

of error correction, these variants converge faster than the original SB and
SimCIM (Supplementary Fig. 2).

Simulated Bifurcation (SB). QbM is designed to solve the Ising problem
by mimicking the Kerr nonlinear oscillators which generate a quantum
superposition of two oscillation states™ . In order to simulate a large-
scale QbM in present digital computers efficiently, aSB is formulated by
the classical mechanical Hamiltonian as follows.

dx.
% =AY (14)
dy; 2 Y
T = —(xi +ay — a(t))xi + ¢ Z]’jxj’ (15)
=1

where x; and y; denote position and momentum for the ith Kerr-nonlinear
parametric oscillator respectively, gy is the positive detuning frequency and
a(f) is the time-dependent pumping amplitude increasing from zero, ¢y
denotes the coupling strength, and J;; is the coupling coefficients of the Ising
problem without the external magnetic field in (1).

In the bSB, the perfectly inelastic walls at x;=+1 are introduced.
Specifically, x; is replaced by sgn(x;) = +1, and set y; =0 if |x;| > 1 in each
iteration. These walls force positions to be exactly equal to 1 or — 1 when a()
becomes sufficiently large. Moreover, the fourth-order term in V,gp is
dropped, because the inelastic walls can play a role similar to the nonlinear
potential walls. It follows that the equations of motion are given by

dx;

dt = “0}’,’: (16)

" N
% = —(ay — a(®))x; + ¢, Z]ijxja (17)
=1

In aSB of the two spin cases, the origin is the unique local minima when ¢ is
sufficiently small. With the increase of a(t), the origin turns to be a saddle
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and two saddles appear near the origin after the first bifurcation. For the bSB,
the origin turns out to be the saddle the two local minima appear at
[—1,—1] and [1, 1]. It follows that the convergence is accelerated (Sup-
plementary Fig. 2).

To further mitigate the error of continuous relaxation, the bSB can be
further formulated by dSB whose equations of motion are given by

d.
d_; = ay); (18)

d, C
% = —(ay — a(t))x; + ¢, Z;Iijsgn(ij (19)
=

Namely, it is discretized by setting 3 .~ Jx;x; to > .=, Jyix; sign (x;) in Eq.
(15). In contrast to aSB and bSB, the dSB searches the solutions within a wide
range at the beginning of the iteration, which makes it achieve faster con-

vergence and the ability to jump out of local minima (Supplementary Fig. 2).

Physics-based algorithms
NMFA is used for comparison in all the experiments due to its excellent
scalability while TTN only provides the best cut value in the last experiment.

Noisy Mean Field Annealing (NMFA). Performed by the classical FPGA
coprocessor, the central step in CIM is the combination of spin mea-
surement and mean-field computation®. In NMFA, the rest optical
portion of CIM is implemented on a classical computer. More specifi-
cally, the discrete spin values are replaced by continuous real numbers in
the interval [ — 1, 1] and the Hamiltonian is minimized by mean-field
annealing where Gaussian noise is added to escape from local minima.
Then, the updating of spin value can be formulated as followed.

Z=tanh| [ > Jux/ Y R4+ N©o0)|/T,|, (20)
j

J

x; = ax; + (1 — a)x; (21)
where o denotes noise amplitude, T; indicates the temperature value which
gradually decreases throughout the annealing, and parameter o acts like the
momentum in the gradient method to accelerate the convergence.

Tropical Tensor Network (TTN). Equipped with the Tropical algebra
defined on the semiring of (R U{—o0},®,®)”, the tensor network
contraction can give the exact ground state energy and entropy of the
model directly at zero temperature, where the @ and ® operators mean

x@y=max(x,y), xOy=x+y. (22)

During the contraction, @ selects the optimal spin configuration
and O sums the energy from subregions of the tensor network. At the same
time, the contraction of TNN is performed by a differential way so that the
ground state configuration can be sampled””. The combination of the tro-
pical algebra and the usual algebra can give the ground state degeneracy

without enumerating the solutions™.

Experimental setup

We conducted three experiments using a single thread on a solitary core of
an Intel Xeon E5-2699 processor running at 2.20GHz and an NVIDIA Tesla
V100 GPU equipped with 32GB of RAM, respectively. This allows for a
comparative analysis of various algorithms to determine the optimal solu-
tions while utilizing the available computing resources.

Parameter settings

There are many types of parameters in each algorithm. In each algo-
rithm, there is always a parameter controlling the annealing process,
such as the temperature T in NMFA, the pumping amplitude a(f) in SB,
and the pump-loss factor v in SImCIM. In NMFA and SB, this para-
meter increase linearly. From the potential energy landscape, we can
observe that there are four local minima within the landscape of Sim-
CIM, only two of which corresponds to the minimizer of the Ising
problem (Supplementary Fig. 1). Therefore, we use the hyperbolic
tangent function rather than a linear function to increase the pump loss
factor in order to avoid the point being trapped in local minima at the
beginning of the iterations. For the same reason, the momentum in
SimCIM is set to $=0.9. In SB, the positive detuning frequency is set
to ag=1. Setting ¢, = ﬁ (Apax is the maximum eigenvalue of the
coupling matrix J = (J;) ) can accelerate the iteration to reach an
approximate solution. For weighted Max-Cut and spin-glass problems,
20
NN-D
semicircle law””. And for unweighted Max-Cut problems with
J; €10, 1}, it is set to A,,,,, = max;>_;J;"". The parameters of the CIMs
with error correction are set according to the paper”. And the rest of the
parameters in all the algorithms are obtained by grid search® and the
parameter values for different algorithms can be seen from Supple-
mentary Tables 1-3.

the estimation of A, is given as 24/N according to Wigner’s

59,60

Data availability

Three types of datasets are used in this work. The first dataset is gen-
erated by NetworkX, a Python package, with the method and parameters
of generation fully described in the “Experimental setup” subsection in
“Methods”. The second dataset is public data from G-set, which can be
downloaded from https://web.stanford.edu/~yyye/yyye/Gset/. The
dataset used in the third experiments can be divided in two parts. The
chimera graphs are provided by https://github.com/TensorBFS/
TropicalTensors.jl, and the pegasus-like graphs are generated according
to the literature”. Additional data are available from the corresponding
author upon reasonable request.

Code availability

Methods, algorithms and value of parameters are fully described in the main
text and Supplementary Information (Algorithm Pseudocode in Supple-
mentary Methods, Parameters value in Supplementary Tables 1-3). The
code has been publicly released in https://github.com/mindspore-ai/
mindquantum/tree/master/mindquantum/algorithm/qaia.
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