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Performance of quantum annealing
inspired algorithms for combinatorial
optimization problems
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Qing-Guo Zeng 1,2,3,4,5 , Xiao-Peng Cui2, Bowen Liu2, Yao Wang2, Pavel Mosharev2 &
Man-Hong Yung 1,2,3,4,5

Two classes of quantum-annealing-inspired-algorithms (QAIA), namely different variants of simulated
coherent Ising machine and simulated bifurcation, have been proposed for efficiently solving
combinatorial optimization problems recently. In order to certify the superiority of these algorithms,
standardized comparisonsamong themandagainst other physics-basedalgorithmsare necessary. In
this work, forMax-Cut problems up to 20,000 nodes, we benchmark QAIA against quantum annealing
andother physics-based algorithms.We found that ballistic simulated bifurcation excelled for chimera
andsmall-scale graphs, achievingnearly a50-fold reduction in time-to-solution compared toquantum
annealing. For large-scale graphs, discrete simulated bifurcation achieves the lowest time-to-target
and outperforms D-Wave Advantage system when tasked with finding the maximum cut value
in pegasus graphs. Our results suggest that QAIA represents a promising means for solving
combinatorial optimization problems in practice, and can act as a natural baseline for competing
quantum algorithms.

Combinatorial optimization involves seeking the optimal objectwithin a set
of candidates, a prevalent issue in various research domains such as statis-
tical physics1, appliedmathematics2, and computer science3. As the solution
space tends to expand exponentially with increasing problem size, the
“combinatorial explosion” poses significant challenges in finding the opti-
mal with traditional algorithms or brute-force search4,5. To overcome this,
numerous heuristic algorithms have been devised for approximating
(or identifying sub-optimal) outcomes6–9. However, developing a highly
efficient and accurate algorithm to address combinatorial optimization
problems remains a formidable challenge.

In computational physics, the great majority of combinatorial opti-
mization canbemapped to the Isingproblem, i.e.finding the ground state of
the Ising model10. An Ising model consists of a set of N Ising spins with
configuration σi = ± 1, the coupling Jij between two spins and the external
fields hi. The Hamiltonian of an Ising model is defined as

H ¼ � 1
2

XN
ij

J ijσ iσ j �
XN
i

hiσ i: ð1Þ

This model can be intuitively represented using a set of quantum bits (or
qubits). Solving the Isingmodel is considerednondeterministic polynomial-
time (NP) hard,meaning it is widely believed that no efficient exact classical
algorithm exists for this problem. Quantum computers or the D-Wave
quantum annealer (QA) utilizing superconducting qubits, have been
introduced to tackle the Ising problem. However, experimental results have
demonstrated that QA’s current performance is suboptimal when handling
dense graphs, owing to limited qubit connectivity and physical noise11–14.

Inspired by the QA, various special-purpose processors for solving the
Isingmodelhave beendeveloped, such as the coherent Isingmachine (CIM)
implemented with pulsed lasers and degenerate optical parametric
oscillators15–17, the electromechanical system18, FPGA-based digital
annealers19, memristor Hopfield neural networks20, the MRAM-based sto-
chastic computing hardware (called P-bits)21,22, etc.

Several quantum annealing-inspired algorithms (QAIA) have been
developed for solving combinatorial optimization problems by simulating
the physical mechanisms of quantum annealing-inspired devices. These
algorithms include different versions of Simulated CIM and Simulated
Bifurcation (SB). They relax discrete variables into continuous ones and
employ an annealing scheme for optimization. From a quantummechanics
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perspective, CIM is implemented using a network of optical parametric
oscillators, which exhibit two stable oscillating states above the threshold,
representing an Ising spin23. CIM has been numerically simulated on clas-
sical computers through SimCIM. In order tomitigate the adverse effects of
relaxing spin variables, various versions of CIM with error correction were
proposed, including CIM with chaotic amplitude control (CAC), chaotic
feedback control (CFC) and separated feedback control (SFC)24,25. Notably,
all these algorithms are the simulation of various CIM, but the name Sim-
CIM stands for the particular version of it, as presented in26. Similarly,
quantum bifurcation machine (QbM) carries out quantum adiabatic opti-
mization with Kerr-nonlinear parametric oscillators27. Bifurcation phe-
nomena are emulatedwithin classical nonlinearHamiltonian systems, often
referred to as SB28,29. The original SB algorithm is commonly denoted as
adiabatic SB (aSB). It is also susceptible to errors stemming from the con-
tinuous relaxation of discrete variables30. Then, ballistic SB (bSB) introduces
the inelastic walls to alleviate analog errors. To further enhance error sup-
pression, discrete SB (dSB) discretizes the spin variables within mean field
terms28,29. Consequently, these variants not only expedite convergence but
also yield more accurate solutions.

As a promising approach to solving Ising problems, these quantum
annealing inspired algorithms have demonstrated high efficiency and
accuracy. Recent benchmark studies have reported their performance.
However, works such as31–34 only benchmark commercial solvers developed
on specialized platforms; meanwhile35, solely examines the effects of dif-
ferent nonlinear terms on analog Isingmachines’ performance. To promote
and broaden the application of these quantum-inspired algorithms, their
performance on general devices like CPUs and GPUs must be evaluated.

In this work, we provide the benchmarking experiments of QAIA and
compare them with some other physics-inspired algorithms as well as
D-Wave. Our goal is to evaluate their efficiency in solving optimization
problems. On the one hand, we find that QAIAs not only achieve lower
time-to-solution than other heuristic algorithms, classical and quantum
solvers in chimera graphs, but also outperforme Advantage system of
D-Wave (hereafter abbreviated as ’Advantage’) when searching for the
maximum cut value on pegasus graphs with varying problem size. On the
other hand, the dSB demonstrates superior performance against other
QAIA overall. Particularly, the bSB exhibits the highest success probability
and lowest time-to-solution (TTS) on chimera graphs as well as small
instances. For large graphs, dSB prove to have the lowest TTS. However,
CAC and SFC have a higher probability of searching for the optimal or
nearly-optimal solutions respectively than dSB on the skewed graphs. The
aSB is prone to getting trapped in local minima due to the error from
continuous relaxations without inelastic walls. SimCIM struggles to achieve
optimal solutions due to the numerous hyper-parameters involved.

Results and discussion
We carry out the numerical experiments in three different datasets and use
success probability and TTS or time-to-target (TTT) to evaluate the per-
formance of algorithms.Wefirst briefly explain the Spin-glass andMax-Cut
problems and TTS/TTT, and then give the results of the numerical
experiments.

Spin-glass and Max-Cut Problems
Spin-glass model describes the Ising models with the couplings between
neighboring spins following a Gaussian distribution. The spin-glass pro-
blem is to find ground-state of the Ising spin glass with the energy function
Eq. (1). In statistical physics and disordered systems, the Max-Cut problem
is equivalent to the task of minimizing the Hamiltonian of a spin glass
model36.

The Max-Cut problem is one of the important combinatorial opti-
mization problems. Consider a given undirected graph G = (V, E), where
∣V∣ =N with edge weights wij =wji > 0, for all (i, j)∈ E. We partition the
vertices V into two complementary sets to maximize the sum of weighted
edges connecting points in these two different subsets. The Max-Cut has
only +1 weights, while the weighted Max-Cut can have any values of

weights, continuous or negative. Formulated as the Ising problem, we first
assign an Ising spin σi∈ {− 1, 1} to each node of the graph to represent the
two groups. Hence, it can be formulated by

argmax
σ i2f�1;1g

C ¼
X
ði;jÞ2E

wijð1� σ iσ jÞ

¼ 1
2

XN
ij

Jijσ iσ j þ
X
ði;jÞ2E

wij

ð2Þ

where Jij =−wij. Note that the Hamiltonian H in Eq. (1) with the zero
externalfield is equivalent tomaximizing thefirst termof (2) and the second
term∑ijwij is a constant. It follows that the Max-Cut problem (2) naturally
maps onto Ising problem (1), so we use it for benchmarking.

The evaluation metrics
All the QAIA are heuristic algorithms. To extensively assess these methods,
we sample 100 times on each graph to compute the ratio of achieving the
optimal solution which is referred to as the success probability P. Mean-
while, TTS and TTT are used to assess the computation speed of the
methods19. TTTmeasures the time required for the algorithm to make sure
the reference outcome can occur at least once with a probability Q that is
conventionally set to 0.99.When running a probabilistic solver for a period
of time Ts, the probability of yielding the required solution is given by P(Ts).
Consider the case of k trials, the probability of obtaining at least one right
outcome is given by

Q ¼ 1� ð1� PðTsÞÞk; ð3Þ

then the number of runs needed to achieve the right outcome with a
probability of Q( = 0.99) is given by k ¼ logð1�0:99Þ

1�PðTsÞ

TTT ¼ Ts
logð1�0:99Þ
logð1�PðTsÞÞ ; PðTsÞ < 0:99;
Ts; PðTsÞ ≥ 0:99;

(
ð4Þ

where Ts is the time to run the algorithm once. For TTS, P(Ts) is set to
success probability P. And the reference target in TTT is usually set to the
99% of the exact or best-known value. In addition, we compute the median
and maximum of the ratio between the cut value of the sample and the
optimal one, denoted as Rmedian and Rmax.

Experiment I
In the first experiment, we benchmark QAIA on small regular graphs with
problem sizes N ranging from 10 to 500. We want to observe the trend of
performance for QAIA on regular graphs with the increased problem size,
thereby setting theweight to {− 1, 1}. The problem can be divided into four
categories according to the edge weight and density, including sparse and
dense Max-Cut instances, and sparse and dense spin-glass instances. For
each problem, we generate 10 instances per size to assess the average per-
formance. These instances are generated by NetworkX37, a Python package,
and the cut value of the graphs has been calculated in advance by the Biq
Max solver38, an exactmethod employing semidefinite programming based
on the Branch & Bound algorithm.

To increase the reliability of the experimental results, the metrics are
evaluated on QAIAs for 10,000 trials in each instance. For sparse instances,
varying algorithms perform significantly differently. The bSB exhibits
orders of magnitude advantage of success probability as well as TTS com-
pared with other algorithms and possesses superior robustness as the pro-
blem size increases no matter for Max-Cut instances (Fig. 1) and spin-glass
instances (Fig. 2). SimCIM, aSB and dSB perform similarly. And the dSB
obtains slightly higher success probability and robustnesswhile the SimCIM
achieves lower TTS. The NMFA is inferior to them in this experiment.
While for dense graphs, the performances of QAIA tend to be the same,
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especially for theMax-Cut instances. But bSBstill performsbest,while aSB is
the worst one (Fig. 3).

Experiment II
To evaluate the performance of the methods in the large-scale problem, the
second experiment is conducted in the random Max-Cut instances
(G22 and G81), skewed instances (G39-G42) from Gset and the fully-
connected instance K2000with best-known cuts provided by breakout local
search (BLS) algorithms39. TheG22,G39-42 andK2000are all the 2000-spin
size instances. The G22 has uniform degree. The skewed graphs mean that
the graphs have a long-tailed distribution of their vertex degrees and the

authors of the CIM with error correction claim that their methods perform
better on this type of graph24. K2000 is a SK spin-glass problem. And the
problem size ofG81 is 10 times that of them.We run each algorithm for 1000
trials with the different number of time steps, Nstep (Nstep indicates the final
number of time steps but not intermediate values.) In Fig. 4, the variants of
SimCIM and SB perform much better than the SimCIM and aSB. The dSB
achieves the best performance, especially in large dense graphs. Equipped
with discretization, dSB not only converges fastest but also improves the
search capability so that it is more likely to find the optimal solution or
extremely approximate solutions even for the extremely large graphG81, and
meanwhile, although for small Nstep, the dSB still performs well and as Nstep

Fig. 2 | Comparison results of quantum-
annealing-inspired-algorithms in 3-regular spin-
glass problems on GPU. (a) Success Probability,
(b) Time-to-solution (TTS), (c) median of the ratio
between the sample’s cut value and (d) the optimal
cut value Rmedian andmaximum of the ratio between
the sample’s cut value and the optimal cut value
Rmax. The algorithms run for 10,000 trials with 1,000
iterations on each instance. The solid curves in (a)
and (b) are obtained by fitting the corresponding
data points for each algorithm to show the tendency
of the metrics along with the problem size increases.

Fig. 1 | Comparison results of QAIA in 3-regular
Max-Cut problems with positive weights on GPU.
(a) Success Probability, (b) Time-to-solution (TTS),
(c) median of the ratio between the sample’s cut
value and (d) the optimal cut value Rmedian and
maximum of the ratio between the sample’s cut
value and the optimal cut valueRmax. The algorithms
run for 10,000 trials with 1,000 iterations on each
instance. The solid curves in (a) and (b) are obtained
by fitting the corresponding data points for each
algorithm to show the tendency of the metrics along
with the problem size increases.
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increases, the cut values of dSB keep improving. The CIM with error cor-
rection, CAC and CFC achieve the highest success probability and the
probability of obtaining 99% of the best solution in large skew and random
graphs respectively. However, we found that the CIM with error correction,
especially CAC and SFC, are sensitive to the parameters. They can not obtain
reasonable results when setting the wrong parameter values. SimCIM has
manyparameters (pump loss factor, learning rate, noise factor, etc.) to tune to
achieve a satisfying solution. On the contrary, SB and its variants are easy to
operate sincemost of theparameters can befixed according to the literature29.
The aSB and NMFA trail in last place.

In addition, we compare the convergence rate of Ising energy of QAIA,
and NMFA as well as SA during evolution in sparse (G22) and dense
(K2000) graphs respectively on one CPU core. The SA refers to40 which is
specifically used to deal with Max-Cut problems. It is extremely fast

compared to the standard SA and is >10 times faster than the Python
packages provided by41 and42. The dSB achieves the optimal solutions in both
two types of graphs and starts converging at around 0.03s and 0.1s,
respectively; while SA needs to spend >10 times the time to get a satisfying
result on these 2000-node Ising graphs (Fig. 5). It is worth noting that NMFA
performs similarly to SA in K2000 due to normalization in each iteration.

Experiment III
The last one is conducted on chimera and pegasus graphs of the actual
D-Wave device11,43, allowing for a comparison ofQAIA againstQAwith the
highest computing capabilities. For chimera graphs, the ground state energy
of spin-glass instance is provided by Tropical TensorNetwork (TTN)44.We
compare QAIA with other physics-based algorithms, QA and some exact
solvers from published literature13,45. Figure 6 shows that bSB achieves the

Fig. 4 | Comparison between quantum-annealing-
inspired-algorithms for Gset and a fully-
connected K2000 graph. a For G22, b For G39,
c for K2000, d for G81. The polygons show the top-
1% cut value for different algorithms. The present
best-known cuts (black dashed line) for Gset are
given by Breakout Local Search (BLS) algorithm,
and the best cut for K2000 is computed by SA. The
results of G40-G42 are shown in Supplemen-
tary Fig. 3.

Fig. 3 | Comparison results of quantum-
annealing-inspired-algorithms in dense graphs.
(a) (b) spin-glass problems, (c) (d) Max-Cut pro-
blems. The solid curves are obtained by fitting the
corresponding data points for each algorithm to
show the tendency of the metrics along with the
problem size increases. Since the optimal solution
for the dense instances can not be obtained in a
reasonable time, we just show the time-to-target
(TTT) rather than time-to-solution (TTS) for them.
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highest probability of obtaining 99% of the best solution in the chimera
graphs. As for the success probability that is not shown in the histogram, all
the heuristic algorithms can find the optimal solution in 4 × 4 × 8 chimera
and bSB achieves the highest success probability, nearly 70%. In larger
chimera systems, dSB and SimCIM stand out for efficiently identifying
ground state configurations among QAIAs with extremely few iterations.
After that, we choose the best-performing QAIAs in chimera graphs on
success probability (bSB for chimera 4 × 4 × 8 and dSB for chimera
8 × 8 × 8) to compare with D-Wave as well as some other solvers including
TTN44, brute force search46 and exact belief propagation using bucket sort13.
It should be noting that D-Wave leap cloud service is not available in our
location so we can only obtain the results of QA in chimera 4 × 4 × 8 from
the published literature. The bSB on the CPU is much faster than TTN and
slightly slower than D-Wave. However, when running on GPU, it far sur-
passes D-wave. Meanwhile, dSB gives the ground state energy of 8 × 8 × 8
chimeramuch faster thananyother exact solvers listed in the tablenomatter
on CPU and GPU (Table 1).

For theoretical pegasus graphs (also refer to full pegasus graphs), we
conducted a comparison between the Advantage and QAIA.We set up the
experiment to be consistent with the paper47 as much as possible to fairly
compare their performance. First, we utilize the procedure outlined in48 to
extract the Pegasus graph, which consists of 5640 qubits and 40,484 cou-
plers. Following this, we proceed to generate subgraphs of it by varying the
number of nodes, ranging from 564 to 5640, and configure the experiment
with100 samples and1000 iterationsper instance for eachQAIA.Theglobal
optima of these subgraphs are computed by Biq Max solver. The aSB, bSB,
CAC, andCFCare capable of searching for the optimal solutionwith a 100%
probability for problem sizes ranging from 564 to 2820. For larger pegasus
graphs, dSB demonstrates superior performance against other QAIA.
Advantage canonly achievemore than99%best of the optimal value butnot
the optimal one on the pegasus graphs with real connectivity which is easier
forAdvantage system than the theoretical pegasus graphs47, while dSB,CAC
andCFCachieve the optimal solutionacross all the problemsize (Table 2). It
should be noted that QAIA achieved an execution time of ~0.2 s on the

NVIDIATesla A100GPU across all instances. This execution timematches
the total time taken by Advantage (the annealing time of D-Wave Advan-
tage system is 2000 μs). Thus, we conclude that QAIA outperforms
Advantage on pegasus graph.

Conclusions
In this work, we benchmarked quantum-inspired algorithms across a range
of graph types in solving the combinatorial problem.We also compare them
with some physics-based algorithms as well as the D-Wave quantum
annealer.

We summarize the benchmarking results in Table 3. In chimera
graphs, bSB excels not only in comparison to other QAIAs, but also delivers
an impressive nearly 50-fold reduction in TTS when contrasted with
D-Wave. For pegasus graphs, CAC demonstrates superior performance
against others in general. Additionally, CFC and dSB exhibit the ability to
search for optimal solutions across a wide range of problem sizes while
Advantage system of D-Wave fails.

For small graphs, bSB consistently demonstrates superior perfor-
mance. Even as the problem size grows, its success probability and TTS
exhibit minimal changes. In the case of large random, skewed, and dense
graphs, CAC, CFC, and dSB excel with the highest success probabilities
respectively, and dSB achieves the lowest TTT.

In the context of solving optimization problems, the choice of solver
depends on the characteristics of the graphs involved. For chimera and small
graphs, bSB emerges as the ideal option. On the other hand, for larger
graphs, dSB proves to be themost effective solver. However, given sufficient
computational resources and time, CAC and SFCmay outperform dSB for
large random and skewed graphs, as they offer a higher likelihood of
obtaining optimal or near-optimal solutions. The original version of QAIA,
which includes aSB and SimCIM, is susceptible to getting stuck in local
minima49. Nevertheless, when equipped with inelastic walls, discretization,
or error correction techniques,QAIAexhibits a remarkable improvement in
performance. Notably, QAIA excels in rapidly finding optimal solutions,
surpassingD-Wave annealer and other conventional algorithmsmentioned

Fig. 5 | Evolution of Ising energy. a Sparse graph
G22. b Dense graph K2000. Both quantum-
annealing-inspired-algorithms and simulated
annealing (SA) are running on one CPU core.
The solid lines indicate average energy while
dash-dotted lines represent max and min cases
within the 100 trials.

Fig. 6 | The energy distribution of the samples of
stochastic quantum-inspired algorithms.
a For 4×4×8 chiemra, b for 8×8×8 chimera. Each
algorithm runs for 100 trials with 1000 iterations
and is compared to the result of the exact solver
Tropical Tensor Network (TTN) on the spin-glass
instances. Histograms classify the results of all the
algorithms into several intervals. Among each
interval, the order of bins is arranged by the number
of samples corresponding to the algorithm. The first
interval in the histograms counts the number of
samples with an energy within 99% of the ground
state energy.
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in this paper. As a result, QAIA serves as a valuable baseline for competing
quantum algorithms.

Methods
In this paper, we benchmark two categories of quantum annealing inspired
methods: Simulating CIM and SB, and compare them with some other
physics-based algorithms including NMFA and TTN on spin-glass and
Max-Cut problems.

Quantum annealing inspired algorithms
Simulated coherent ising machine. In general, every iteration in
SimCIM simulates a roundtrip of optical pulses through the fiber loop in
CIM. The operation of CIM can be modeled as c-number stochastic
differential equations by characterizing each pulse by its complex
amplitude17. The stochastic differential equations are used to describe
optical squeezing, linear and nonlinear loss, mutual coupling optical
pulse, and noise of CIM. For simplified computation, SimCIM drops the
nonlinear term and imaginary part of amplitude, and then, updates spin
variables x ¼ fxigNi¼1 in a continuous style as follows.

dxi
dt

¼ vxi þ ζ
X
j

J ijxj

 !
þ σf i; ð5Þ

where ζ is the coupling strength, v denotes parametric gain and the linear
loss coefficients, and fi is a Gaussian noise. v gradually increases to zero
duringoptimization to ensure thefinal objective function is equivalent to the
Hamiltonian of Ising problem. This optimization problem is solved via
gradient descent with momentum.

The standard CIM suffers from amplitude heterogeneity, giving rise to
improper mapping of the energy function. To overcome this, an auxiliary
variable ei (also called error variable) is introduced for error detection and
correction. The time evolution of the spin variable and error variable can be
described as follows:

dxi
dt

¼ �x3i þ ðp� 1Þxi þ ei
X
j

ζJijxj; ð6Þ

dei
dt

¼ �βei x
2
i � α

� �
; ð7Þ

Table 1 | Benchmarking results of energy of spin-glass on the
chimera graphs

Graph size Algorithm Hardware Time(s)

TTN CPU 1 core 5.62

Brute-force search46 GPU Titan V >1048

4 × 4 × 8 Exact belief
propagation13

CPU 1 core ~0.96

QA13 D-Wave ~0.05

bSB CPU 1 core 0.12

bSB GPU Tesla V100 <0.001

TTN CPU 1 core 32400

TTN44 GPU Tesla V100 84

8 × 8 × 8 Brute-force search46 GPU Titan V >10190

Exact belief
propagation13

CPU 1 core ~2880

dSB CPU 1 core 17.64

dSB GPU Tesla V100 <0.68

It shows the running time for the exact sovlers including Tropical Tensor Network (TTN) and exact
belief propagation, and Time-to-solution (TTS) for quantum annealer (QA), brute-force search and
quantum-annealing-inspired-algorithms. The metrics in italics type mean the previously reported
results in the literatures.
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where p, α and β are the gain parameter, the target amplitude and the rate of
change of error variables respectively. The introduction of error variables
makes the system exhibits chaotic dynamics that explore successively
configurations close to the ground state, thereby accelerating solving the
Ising problem. This system is referred to as CAC.

Another version of Simulated CIM, CFC is quite similar to CAC
and the only difference between them is that the time evolution of error
variable is controlled by the feedback signal zi instead of amplitude xi as
follows:

zi ¼ �ei
X
j

ζJijxj; ð8Þ

dxi
dt

¼ �x3i þ ðp� 1Þxi � zi; ð9Þ

dei
dt

¼ �βei z
2
i � α

� �
: ð10Þ

Unlike CAC and CFC, SFC divides the error variable and mutual coupling
into two linear terms rather than nonlinear terms combined with these two
parts.

zi ¼ �
X
j

ζJijxj; ð11Þ

dxi
dt

¼ �x3i þ ðp� 1Þxi � tanhðcziÞ � kðzi � eiÞ; ð12Þ

dei
dt

¼ �βðei � ziÞ; ð13Þ

where p, k, c and β are the system parameters. The tanh function overcomes
the problemof amplitude heterogeneity by tuning theparameter c. The local
minima traps are destabilized by the difference between feedback signal and
error variable. The potential landscape of all CIM with error correction
closely resembles that of aSB (SupplementaryFig. 1).However,with thehelp

of error correction, these variants converge faster than the original SB and
SimCIM (Supplementary Fig. 2).

SimulatedBifurcation (SB). QbM is designed to solve the Ising problem
by mimicking the Kerr nonlinear oscillators which generate a quantum
superposition of two oscillation states50–54. In order to simulate a large-
scale QbM in present digital computers efficiently, aSB is formulated by
the classical mechanical Hamiltonian as follows.

dxi
dt

¼ a0yi; ð14Þ

dyi
dt

¼ � x2i þ a0 � aðtÞ� �
xi þ c0

XN
j¼1

Jijxj; ð15Þ

where xi and yi denote position and momentum for the ith Kerr-nonlinear
parametric oscillator respectively, a0 is the positive detuning frequency and
a(t) is the time-dependent pumping amplitude increasing from zero, c0
denotes the coupling strength, and Jij is the coupling coefficients of the Ising
problem without the external magnetic field in (1).

In the bSB, the perfectly inelastic walls at xi = ± 1 are introduced.
Specifically, xi is replaced by sgnðxiÞ ¼ ± 1, and set yi = 0 if ∣xi∣ > 1 in each
iteration.Thesewalls forcepositions tobe exactly equal to1or− 1whena(t)
becomes sufficiently large. Moreover, the fourth-order term in VaSB is
dropped, because the inelastic walls can play a role similar to the nonlinear
potential walls. It follows that the equations of motion are given by

dxi
dt

¼ a0yi; ð16Þ

dyi
dt

¼ �ða0 � aðtÞÞxi þ c0
XN
j¼1

Jijxj; ð17Þ

In aSB of the two spin cases, the origin is the unique local minima when t is
sufficiently small. With the increase of a(t), the origin turns to be a saddle

Table 3 | Performance ranking of quantum-annealing-inspired-algorithms

Class of graph Metric NMFA SimCIM aSB bSB dSB CAC CFC SFC

Chimera p 8 3 2 1 4 7 5 6

99% of best 8 2 3 1 4 7 5 6

Pegasus p 7 7 3 4 6 1 2 5

TTS 8 7 5 4 2 1 3 6

Small/sparse p 5 3 4 1 2 - - -

TTS 5 3 4 1 2 - - -

Small/dense p 3 4 5 1 2 - - -

TTS 3 4 5 1 2 - - -

Large/random (N ≥ 2000) p 5 3 5 4 2 5 1 5

99.9% of best 5 3 5 4 2 5 1 5

TTT 5 3 5 4 1 5 2 5

Large/skew (N = 2000) p 3 3 3 3 2 1 3 3

99% of best 7 4 8 6 2 1 3 5

TTT 7 4 8 6 1 2 3 5

Large/dense (N ≥ 2000) p 8 8 8 8 1 8 8 8

99% of best 5 1 5 1 1 4 3 2

TTT 7 3 7 2 1 6 4 5

Average ranking 5.82 3.82 5 3.05 2.17 4.07 3.30 5.7

Themetrics in different classes graphs and varying problem size (N) include success probability p, the probability of obtaining the solutionwhich is 99%or 99.9%of the optimal value, and time-to-solution
(TTS) or time-to-target (TTT). “-” indicates that the corresponding algorithm was not tested on the specified graphs.
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and two saddles appearnear theorigin after thefirst bifurcation.For thebSB,
the origin turns out to be the saddle the two local minima appear at
[− 1,− 1] and [1, 1]. It follows that the convergence is accelerated (Sup-
plementary Fig. 2).

To further mitigate the error of continuous relaxation, the bSB can be
further formulated by dSB whose equations of motion are given by

dxi
dt

¼ a0yi; ð18Þ

dyi
dt

¼ �ða0 � aðtÞÞxi þ c0
XN
j¼1

JijsgnðxjÞ; ð19Þ

Namely, it is discretized by setting
PN

j¼1Jijxixj to
PN

j¼1Jijxi sign ðxjÞ in Eq.
(15). In contrast to aSBandbSB, thedSB searches the solutionswithin awide
range at the beginning of the iteration, which makes it achieve faster con-
vergence and the ability to jumpout of localminima (Supplementary Fig. 2).

Physics-based algorithms
NMFA is used for comparison in all the experiments due to its excellent
scalabilitywhile TTNonly provides the best cut value in the last experiment.

NoisyMean Field Annealing (NMFA). Performed by the classical FPGA
coprocessor, the central step in CIM is the combination of spin mea-
surement and mean-field computation55. In NMFA, the rest optical
portion of CIM is implemented on a classical computer. More specifi-
cally, the discrete spin values are replaced by continuous real numbers in
the interval [− 1, 1] and the Hamiltonian is minimized by mean-field
annealing where Gaussian noise is added to escape from local minima.
Then, the updating of spin value can be formulated as followed.

x̂i ¼ tanh
X
j

J ijxj=
ffiffiffiffiffiffiffiffiffiffiffiffiX
j

J2ij

s
þN ð0; σÞ

0
@

1
A=Tt

2
4

3
5; ð20Þ

xi ¼ αx̂i þ ð1� αÞxi ð21Þ

where σ denotes noise amplitude, Tt indicates the temperature value which
gradually decreases throughout the annealing, and parameter α acts like the
momentum in the gradient method to accelerate the convergence.

Tropical Tensor Network (TTN). Equipped with the Tropical algebra
defined on the semiring of ðR∪ f�1g;�;�Þ56, the tensor network
contraction can give the exact ground state energy and entropy of the
model directly at zero temperature, where the⊕ and⊙ operators mean

x� y ¼ maxðx; yÞ; x� y ¼ x þ y: ð22Þ

During the contraction,⊕ selects the optimal spin configuration
and⊙ sums the energy from subregions of the tensor network. At the same
time, the contraction of TNN is performed by a differential way so that the
ground state configuration can be sampled57. The combination of the tro-
pical algebra and the usual algebra can give the ground state degeneracy
without enumerating the solutions58.

Experimental setup
We conducted three experiments using a single thread on a solitary core of
an IntelXeonE5-2699processor running at 2.20GHz and anNVIDIATesla
V100 GPU equipped with 32GB of RAM, respectively. This allows for a
comparative analysis of various algorithms to determine the optimal solu-
tions while utilizing the available computing resources.

Parameter settings
There are many types of parameters in each algorithm. In each algo-
rithm, there is always a parameter controlling the annealing process,
such as the temperature T in NMFA, the pumping amplitude a(t) in SB,
and the pump-loss factor v in SimCIM. In NMFA and SB, this para-
meter increase linearly. From the potential energy landscape, we can
observe that there are four local minima within the landscape of Sim-
CIM, only two of which corresponds to the minimizer of the Ising
problem (Supplementary Fig. 1). Therefore, we use the hyperbolic
tangent function rather than a linear function to increase the pump loss
factor in order to avoid the point being trapped in local minima at the
beginning of the iterations. For the same reason, the momentum in
SimCIM is set to β = 0.9. In SB, the positive detuning frequency is set
to a0 = 1. Setting c0 ¼ a0

λmax
(λmax is the maximum eigenvalue of the

coupling matrix J ¼ ðJijÞn× n) can accelerate the iteration to reach an

approximate solution. For weighted Max-Cut and spin-glass problems,

the estimation of λmax is given as 2
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiP

ij
J2ij

NðN�1Þ

r
according to Wigner’s

semicircle law59,60. And for unweighted Max-Cut problems with
Jij∈ {0, 1}, it is set to λmax ¼ maxi

P
jJ ij

61. The parameters of the CIMs

with error correction are set according to the paper24. And the rest of the
parameters in all the algorithms are obtained by grid search62 and the
parameter values for different algorithms can be seen from Supple-
mentary Tables 1–3.

Data availability
Three types of datasets are used in this work. The first dataset is gen-
erated by NetworkX, a Python package, with the method and parameters
of generation fully described in the “Experimental setup” subsection in
“Methods”. The second dataset is public data from G-set, which can be
downloaded from https://web.stanford.edu/~yyye/yyye/Gset/. The
dataset used in the third experiments can be divided in two parts. The
chimera graphs are provided by https://github.com/TensorBFS/
TropicalTensors.jl, and the pegasus-like graphs are generated according
to the literature47. Additional data are available from the corresponding
author upon reasonable request.

Code availability
Methods, algorithms and value of parameters are fully described in themain
text and Supplementary Information (Algorithm Pseudocode in Supple-
mentary Methods, Parameters value in Supplementary Tables 1–3). The
code has been publicly released in https://github.com/mindspore-ai/
mindquantum/tree/master/mindquantum/algorithm/qaia.

Received: 28 November 2023; Accepted: 20 June 2024;

References
1. Leleu, T., Yamamoto, Y., Utsunomiya, S. & Aihara, K. Combinatorial

optimization using dynamical phase transitions in driven-dissipative
systems. Physical Review E 95, 022118 (2017).

2. Rosenberg, G. et al. Solving the optimal trading trajectory problem
using a quantum annealer. IEEE Journal of Selected Topics in Signal
Processing 10, 1053–1060 (2016).

3. Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J. S. & Ronagh, P.
Reinforcement learning using quantum boltzmann machines.
Quantum Inf. Comput. 18, 51–74 (2018).

4. Siarry, P.Metaheuristics (Springer, 2016).
5. Arora, S. & Barak, B.Computational Complexity - AModern Approach

(Cambridge University Press, 2009).
6. Kirkpatrick, S., Gelatt, C. D. & Vecchi,M. P. Optimization by simulated

annealing. science 220, 671–680 (1983).
7. Bilbro, G. L. et al. Optimization by mean field annealing. In Touretzky,

D. S. (ed.) Advances in Neural Information Processing Systems 1,

https://doi.org/10.1038/s42005-024-01705-7 Article

Communications Physics |           (2024) 7:249 8

https://web.stanford.edu/~yyye/yyye/Gset/
https://github.com/TensorBFS/TropicalTensors.jl
https://github.com/TensorBFS/TropicalTensors.jl
https://github.com/mindspore-ai/mindquantum/tree/master/mindquantum/algorithm/qaia
https://github.com/mindspore-ai/mindquantum/tree/master/mindquantum/algorithm/qaia


[NIPS Conference, Denver, Colorado, USA, 1988], 91–98 (Morgan
Kaufmann, 1988).

8. Goemans, M. X. & Williamson, D. P. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. JACM 42, 1115–1145 (1995).

9. Smith, K. A. Neural networks for combinatorial optimization: a review
of more than a decade of research. INFORMS J. Comput. 11,
15–34 (1999).

10. Lucas, A. Ising formulations of many np problems. Front. Phys. 2,
5 (2014).

11. Johnson, M. W. et al. Quantum annealing with manufactured spins.
Nature 473, 194–198 (2011).

12. Bunyk, P. I. et al. Architectural considerations in the design of a
superconducting quantum annealing processor. IEEE Transactions
on Applied Superconductivity 24, 1–10 (2014).

13. Boixo, S. et al. Evidence for quantum annealing with more than one
hundred qubits. Nature physics 10, 218–224 (2014).

14. Boev, A. S. et al. Quantum-inspired optimization for wavelength
assignment. Frontiers in Physics 10, 1092065 (2023).

15. Marandi, A.,Wang, Z., Takata, K., Byer, R. L. &Yamamoto, Y.Network
of time-multiplexed optical parametric oscillators as a coherent ising
machine. Nature Photonics 8, 937–942 (2014).

16. Inagaki, T. et al. A coherent isingmachine for 2000-node optimization
problems. Science 354, 603–606 (2016).

17. McMahon, P. L. et al. A fully programmable 100-spin coherent
ising machine with all-to-all connections. Science 354,
614–617 (2016).

18. Mahboob, I., Okamoto, H. & Yamaguchi, H. An electromechanical
ising hamiltonian. Science advances 2, e1600236 (2016).

19. Aramon, M. et al. Physics-inspired optimization for quadratic
unconstrained problems using a digital annealer. Frontiers in Physics
7, 48 (2019).

20. Cai, F. et al. Power-efficient combinatorial optimization using intrinsic
noise in memristor hopfield neural networks. Nature Electronics 3,
409–418 (2020).

21. Camsari, K. Y., Sutton, B. M. & Datta, S. P-bits for probabilistic spin
logic. Applied Physics Reviews 6, 011305 (2019).

22. Borders, W. A. et al. Integer factorization using stochastic magnetic
tunnel junctions. Nature 573, 390–393 (2019).

23. Wang, Z., Marandi, A., Wen, K., Byer, R. L. & Yamamoto, Y. Coherent
ising machine based on degenerate optical parametric oscillators.
Physical Review A 88, 063853 (2013).

24. Reifenstein, S., Kako, S., Khoyratee, F., Leleu, T. & Yamamoto, Y.
Coherent ising machines with optical error correction circuits.
Advanced Quantum Technologies 4, 2100077 (2021).

25. Reifenstein, S. et al. Coherent sat solvers: a tutorial. Advances in
Optics and Photonics 15, 385–441 (2023).

26. Tiunov, E. S., Ulanov, A. E. & Lvovsky, A. Annealing by simulating
the coherent ising machine. Optics express 27, 10288–10295
(2019).

27. Goto, H. Bifurcation-based adiabatic quantum computation
with a nonlinear oscillator network. Scientific reports 6, 1–8
(2016).

28. Goto, H., Tatsumura, K. & Dixon, A. R. Combinatorial optimization by
simulating adiabatic bifurcations in nonlinear hamiltonian systems.
Science advances 5, eaav2372 (2019).

29. Goto,H. et al. High-performancecombinatorial optimizationbasedon
classical mechanics. Science Advances 7, eabe7953 (2021).

30. Wang, J., Ebler, D., Wong, K. M., Hui, D. S. W. & Sun, J.
Bifurcation behaviors shape how continuous physical dynamics
solves discrete ising optimization. Nature Communications 14,
2510 (2023).

31. Oshiyama, H. & Ohzeki, M. Benchmark of quantum-inspired heuristic
solvers for quadratic unconstrained binary optimization. Scientific
reports 12, 2146 (2022).

32. Kowalsky, M., Albash, T., Hen, I. & Lidar, D. A. 3-regular three-
xorsat planted solutions benchmark of classical and quantum
heuristic optimizers. Quantum Science and Technology 7,
025008 (2022).

33. Jiang, J.-R. & Chu, C.-W. Classifying and benchmarking quantum
annealing algorithms based on quadratic unconstrained binary
optimization for solving np-hard problems. IEEE Access (2023).

34. Mohseni, N.,McMahon, P. L. &Byrnes, T. Isingmachines as hardware
solvers of combinatorial optimization problems. Nature Reviews
Physics 4, 363–379 (2022).

35. Böhm, F., Van Vaerenbergh, T., Verschaffelt, G. & Van der Sande, G.
Order-of-magnitude differences in computational performance of
analog ising machines induced by the choice of nonlinearity.
Communications Physics 4, 1–11 (2021).

36. Barahona, F., Grötschel,M., Jünger,M. & Reinelt, G. An application of
combinatorial optimization to statistical physics and circuit layout
design. Operations Research 36, 493–513 (1988).

37. Schult, D. A. & Swart, P. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th Python in science
conferences (SciPy 2008), vol. 2008, 11–16 (Pasadena, CA, 2008).

38. Rendl, F., Rinaldi, G. & Wiegele, A. Solving Max-Cut to optimality by
intersecting semidefinite and polyhedral relaxations.Math.
Programming 121, 307 (2010).

39. Benlic, U. & Hao, J.-K. Breakout local search for themax-cutproblem.
Engineering Applications of Artificial Intelligence 26,
1162–1173 (2013).

40. Isakov, S. V., Zintchenko, I. N., Rønnow, T. F. & Troyer, M. Optimised
simulated annealing for ising spin glasses. Computer Physics
Communications 192, 265–271 (2015).

41. Inc., J.https://github.com/OpenJij/OpenJij (2019).
42. Inc., D.-W. S.https://github.com/dwavesystems/dwave-neal (2017).
43. McGeoch, F.P., C. Thed-waveadvantagesystem: anoverview. Tech.

Rep., D-Wave Systems Inc, Burnaby, BC, Canada (2020).
44. Liu, J.-G., Wang, L. & Zhang, P. Tropical tensor network for ground

states of spin glasses. Physical Review Letters 126, 090506 (2021).
45. Dechter, R. Bucket elimination: A unifying framework for reasoning.

Artificial Intelligence 113, 41–85 (1999).
46. Jałowiecki, K., Rams, M. M. & Gardas, B. Brute-forcing spin-glass

problems with cuda. Computer Physics Communications 260,
107728 (2021).

47. Huang, T. et al. Benchmarking quantum (-inspired) annealing
hardwareonpractical usecases. IEEETransactionsonComputers72,
1692–1705 (2022).

48. Inc., D.-W. S. D-wave ocean documentation: Dnx generators (2021).
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/
latest. Accessed on September 27, 2023.

49. Kanao, T. & Goto, H. Simulated bifurcation assisted by thermal
fluctuation. Communications Physics 5, 153 (2022).

50. Goto, H. Bifurcation-based adiabatic quantum computation with a
nonlinear oscillator network. Scientific reports 6, 21686 (2016).

51. Nigg,S. E., Lörch,N. &Tiwari, R. P.Robust quantumoptimizerwith full
connectivity. Science advances 3, e1602273 (2017).

52. Puri, S., Andersen, C. K., Grimsmo, A. L. & Blais, A. Quantum
annealing with all-to-all connected nonlinear oscillators. Nature
communications 8, 1–9 (2017).

53. Goto, H., Lin, Z. & Nakamura, Y. Boltzmann sampling from the ising
model using quantum heating of coupled nonlinear oscillators.
Scientific reports 8, 1–9 (2018).

54. Goto, H. Quantum computation based on quantum adiabatic
bifurcations of kerr-nonlinear parametric oscillators. Journal of the
Physical Society of Japan 88, 061015 (2019).

55. King, A. D., Bernoudy, W., King, J., Berkley, A. J. & Lanting, T.
Emulating the coherent ising machine with a mean-field algorithm.
arXiv preprint arXiv:1806.08422 (2018). https://arxiv.org/abs/
1806.08422.

https://doi.org/10.1038/s42005-024-01705-7 Article

Communications Physics |           (2024) 7:249 9

https://github.com/OpenJij/OpenJij
https://github.com/OpenJij/OpenJij
https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dwave-neal
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest
https://arxiv.org/abs/1806.08422
https://arxiv.org/abs/1806.08422
https://arxiv.org/abs/1806.08422


56. Maclagan, D. & Sturmfels, B. Introduction to tropical geometry.
Graduate Studies in Mathematics 161, 75–91 (2009).

57. Liao,H.-J., Liu, J.-G.,Wang, L. &Xiang, T. Differentiable programming
tensor networks. Physical Review X 9, 031041 (2019).

58. Zhang, P., Zeng, Y. & Zhou, H. Stability analysis on the finite-
temperature replica-symmetric and first-step replica-symmetry-
broken cavity solutions of the random vertex cover problem. Physical
Review E 80, 021122 (2009).

59. Arnold, L. On wigner’s semicircle law for the eigenvalues of random
matrices. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete 19, 191–198 (1971).

60. Alon, N., Krivelevich, M. & Vu, V. H. On the concentration of
eigenvalues of random symmetric matrices. Israel Journal of
Mathematics 131, 259–267 (2002).

61. Nosal, E.Eigenvalues of graphs. Master’s thesis, University of
Calgary (1970).

62. Bergstra, J. & Bengio, Y. Random search for hyper-parameter
optimization. J. Mach. Learn. Res. 13, 281–305 (2012).

Acknowledgements
We gratefully acknowledge discussions with Dr. Pan Shi-jie and Dr. Luo
Maolin.

Author contributions
M.H.Y. and X.C. supervised the project. Q.Z. and X.C. performed the
numerical experiments. Q.Z. wrote the first draft of the manuscript. Q.Z.,
X.C., B.L., Y.W., P.M. and M.H.Y. contributed to and participated in
analyzing the results and modifying the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01705-7.

Correspondence and requests for materials should be addressed to
Qing-Guo Zeng or Man-Hong Yung.

Peer review informationCommunications Physics thanks the anonymous
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01705-7 Article

Communications Physics |           (2024) 7:249 10

https://doi.org/10.1038/s42005-024-01705-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Performance of quantum annealing inspired algorithms for combinatorial optimization problems
	Results and discussion
	Spin-glass and Max-Cut Problems
	The evaluation metrics
	Experiment I
	Experiment II
	Experiment III

	Conclusions
	Methods
	Quantum annealing inspired algorithms
	Simulated coherent ising machine
	Simulated Bifurcation (SB)

	Physics-based algorithms
	Noisy Mean Field Annealing (NMFA)
	Tropical Tensor Network (TTN)

	Experimental setup
	Parameter settings

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




