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With the use of the principle of least action the equation of motion of a relativistic
particle can be derived. With the Nambu-Goto action, we are able to derive the
equations of motion of higher dimensional objects such as strings and the classical
membrane. There are several highly symmetric solutions of the classical membrane
such as the string, the periodic pulsating spherical and cylindrical membrane and
the pancake model.

1. Introduction

In the course ”Introduction to string theory” [1] the basic aspects of string
theory are discussed, such as the relativistic particle and the classical theory
of the open and the closed string. First a coordinate system is set up and
with the use of the principle of least action the equations of motion of the
particle and the string can be derived. The Nambu-Goto action that was
used to derive the equation of motion of the string can, in a more general
way, also be used to derive the equation of motion of an extended object
with higher dimensions such as the classical membrane.

In section 2 we discuss briefly the relativistic particle and the action princi-
ple of higher dimension objects such as the string and the membrane.
In section 3 we present the equation of motion of the classical membrane
from the Nambu-Goto action which is derived in section 2.
In section 4 we show some solutions of this equation of motion of the mem-
brane and we discuss the movement and the boundary conditions of these
membranes.

2. The principle of least action

The relativistic Particle
To obtain the equation of motion for a relativistic particle we us the prin-
ciple of least action. For the relativistic particle the action is given by the
length of the path that the particle travels trough space-time as shown in
figure 1.
The path length that is swept out by the particle is:

dl = (−ds2)
1
2 = (−ηµνdxµdxν) = (−dxµdxµ)

1
2 (1)
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Figure 1: The embedding coordinates xµ(σ) sweeps out path length on the world-
sheet

Hence, the action for the particle is given by the total length of the trajectory
swept out by the particle in space-time:

S[x] = −m

∫
dτ

√
− .

x2 (2)

with
.
x2= gµν

.
xµ .

xν
,

.
xµ≡ dxµ

dτ

where we use the Einstein summation convention for µ and ν. m is a param-
eter with dimension of mass and xµ(τ) are called the embedding coordinates
with the dimension of length. We choose the spacetime metric gµν as the
flat Minkowski metric:

ηµν =


−1 0

1
. . .

0 1


After applying the principle of least action we find for a relativistic particle
the following equation of motion:

− d

dτ

 m
.
xµ√
− .

x2

 = 0 (3)

Higher dimensional objects
The theory of the relativistic particle can be extended to a theory for higher
dimensional objects such as strings and membranes.
To use the principle of least action we need to find the action for such an
extended object.
First we set up a coordinate system σα,α = 0, ..., p, where p is the number
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of dimensions of the extended object (for the membrane p = 2). The em-
bedding coordinates are given by xµ(σα), with µ = 0, ..., d − 1 and d the
number of dimensions in which the object moves. Figure 2 shows the string
trajectory embedded in the worldsheet.
The zeroth components of x and σ are the timelike directions. From this
point we will use σ0 = τ .

Figure 2: The embedding coordinates xµ(σ) sweeps out the shape on the world-
sheet

The square of the distance between the points with coordinates σ and σ+dσ
is given by:

ds2 = gµνdxµdxν = −gµν
∂xµ

∂σα

∂xν

∂σβ
dσαdσβ ≡ −gαβdσαdσβ

Now the action can be written in terms of the induced metric gαβ :

S = −T

∫
dp+1σ

√
−Det(gαβ) (4)

This action is called the Nambu-Goto form of the action. The parameter T
has a dimension of mass x (length)−p. The Nambu-Goto action is invariant
under coordinate transformations on the world-sheet:

g
′
αβ(σ

′
) =

∂σγ

∂σ′α

∂σδ

∂σ′β
gγδ(σ)

3. The equation of motion of the classical membrane

As we mentioned in the second paragraph, the Nambu-Goto action of an
extended object can be written as:

S = −T

∫
dp+1σ

√
−g (5)
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where g is the determinant of the induce metric gαβ . To derive the equation
of motion of the classical membrane we minimize the difference in action
and choose p = 2.

0 = δS = −T

∫
d3σ

1
2
√
−g

(−δg)

where
δg = Det(gαβ + δgαβ)−Det(gαβ)

= g.Det(1 + gαβδgαβ)− g

= g.Tr(gαβδgαβ)

= g.gαβδgαβ

with
δgαβ = gµν

(
∂δxµ

∂σα

∂xν

∂σβ
+

∂xµ

∂σα

∂δxν

∂σβ

)
When we combine this we get:

δS = −T

∫
d3σ

√
−g gαβgµν

(
∂xµ

∂σα

∂δxν

∂σβ

)
After partial integration and by using the boundary condition:

∂xµ

∂σα
= 0 (6)

at the surface of the membrane, we obtain

δS = T

∫
d3σ

∂

∂σβ

(√
−g gαβgµν

∂xµ

∂σα

)
δxν = 0

Which gives us the equation of motion for the classical membrane:

∂

∂σβ

(√
−g gαβgµν

∂xµ

∂σα

)
= 0 (7)

For calculating the different solutions in section 4 we use gµν = ηµν , the flat
Minkowski metric.

4. Solutions of the equation of motion

The string solution
One of the solutions of the equation of motion of the membrane should be
the string solution. The string is described by:

x0 = rτ
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x1 = rcos(σ)cos(τ)

x2 = rcos(σ)sin(τ)

where r is a parameter which describes the length of the string. The sec-
ond spatial coordinate ρ is not included in the parametrization because the
string model is independent of ρ.

To know if this string is a solution of the membrane we have to check if
(7) holds.
For the string yields:

∂xµ

∂σα
=

(
r −rcos(σ)sin(τ) rcos(σ)cos(τ)
0 −rsin(σ)cos(τ) −rsin(σ)sin(τ)

)

∂xν

∂σβ
=

 r 0
−rcos(σ)cos(τ) −rsin(σ)cos(τ)
rcos(σ)cos(τ) −rsin(σ)sin(τ)


With the flat Minkowsky metric ηµν we find:

gαβ = (gαβ)−1 =
(

ηµν
∂xµ

∂σα

∂xν

∂σβ

)−1

=

(
1

−r2(1+cos2(σ))
0

0 1
r2sin2(σ)

)

and
g = Det(gαβ) = r4sin2(σ)(1 + cos2(σ))

So the following three equations have to hold:

∂

∂τ

(
rsin(σ)√

1 + cos2(σ)

)
?= 0

∂

∂τ

(
−rcos(σ) sin(σ) sin(τ)√

1 + cos2(σ)

)
+

∂

∂σ

(
−rcos(τ)

√
1 + cos2(σ)

)
?= 0

∂

∂τ

(
rcos(σ)sin(σ)cos(τ)√

1 + cos2(σ)

)
+

∂

∂σ

(
−rsin(τ)

√
1 + cos2(σ)

)
?= 0

The first equation is trivial because the argument is independent of τ . In
the second and third equation the derivative of τ and σ cancel each other,
so the tree equations hold. This means that,as expected, the string is a
solution of the equation of motion of the membrane.
This solution represents a line which is rotating around the origin (figure 3).

We see that:

.
xµ= (r,−rcos(σ)sin(τ), rcos(σ)cos(τ)) → .

x2= r2(−1 + cos2(σ))
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This vanishes at the endpoints (
.
x2= −1+

→
v

2
), which means that the end-

points of the string move with the speed of light. The fact the the end-points
move with the speed of light prevents the string from collapsing due to the
string tension.

Figure 3: Sequence of five pictures of the rotating string with increasing τ and
r = 1

The Pancake membrane
An other solution for the equation of motion for the membrane is the pancake
membrane:

x0 = τ

x1 = r(σ, ρ)cos(ω1τ)

x2 = r(σ, ρ)sin(ω1τ)

x3 = R(σ, ρ)cos(ω2τ)

x4 = R(σ, ρ)sin(ω2τ)

This pancake membrane is only a solution for the equation of motion if the
following conditions are satisfied:

∂r

∂σ
=

∂R

∂ρ
= constant

and

∂r

∂ρ
=

∂R

∂σ
= 0

So this means that r(σ, ρ) = C1 ∗ σ and R(σ, ρ) = C2 ∗ ρ, with C1 and C2

arbitrary constants which we will put to 1.
The pancake solution represents a disc spinning in the x1 − x2 plane with
frequency ω1 and the x3 − x4 plane with frequency ω2. We see that

.
xµ= (1,−σω1sin(ω1τ), σω1cos(ω1τ),−ρω2sin(ω2τ), ρω2cos(ω2τ))

6



→ .
x2= −1 + σ2ω2

1 + ρ2ω2
2

Again
.
x2 should vanish, because the membrane must move with the speed

of light to prevent collapsing. This means that we have found the boundary
condition for the pancake membrane:

σ2ω2
1 + ρ2ω2

2 = 1 (8)

Because the pancake membrane moves in a four dimensional world-sheet it
is not possible to draw this membrane.

Periodic pulsating cylindrical membrane
The cylindrical membrane is given by:

x0 = τ

x1 = r(τ)cos(σ)

x2 = r(τ)sin(σ)

x3 = ρ

This cylindrical membrane is only a solution of the equation of motion if
the following condition on the radius r(τ) is satisfied:

..
r (τ) =

2(1+
.
r2)

r
(9)

This equation can be solved in terms of Jacobi elliptic functions. The func-
tion cn(x, k) solves the following equations:(

dy

dx

)2

= (1− y2)(1− k2 + k2y2) (10)

and
d2y

dx2
+ (1− 2k2)y + 2k2y3 = 0 (11)

When we choose k = 1
r0

=
√

1
2 , y = r(τ) and x = τ and we use both Jacobi

functions we find:

r(τ) = cn

(
τ,

√
1
2

)
(12)

The function cn is a periodic pulsating function, which means that the
cylindrical membrane will pulsate with a radius between 1 and 0 as shown
in figure 4.
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Figure 4: Sequence of five pictures of the pulsating cylindrical membrane with
increasing τ

Periodic pulsating spherical membrane
The spherical membrane is given by:

x0 = τ

x1 = r(τ)sin(σ)cos(ρ)

x2 = r(τ)sin(σ)sin(ρ)

x3 = r(τ)cos(σ)

This is just as the cylindrical membrane only a solution if the condition (7)
is satisfied for the radius r(τ). So like the cylindrical membrane:

r(τ) = cn

(
τ,

√
1
2

)

Therefore the spherical membrane pulsates just as the cylindrical membrane
with a radius varying between 1 and 0 (shown in figure 5).

Figure 5: Sequence of five pictures of the pulsating spherical membrane with
increasing τ
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Periodic pulsating disk membrane
The last solution of the equation of motion of the membrane is the periodic
pulsating disk membrane. This membrane is given by:

x0 = τ

x1 = r(τ)sin(σ)cos(ρ)

x2 = r(τ)sin(σ)sin(ρ)

By calculation of the equation of motion we find no condition for the radius
r(τ). This is surprising because this means that we could choose r(τ) as a
constant, which means that we have a static membrane. This is impossible
because a static membrane isn’t stable due to the tension in the membrane.
Dirac [4] stated that a static membrane is only possible if the membrane
carries an electric charge where the charge balances the surface tension.

In their paper about properties of the eleven-dimensional supermembrane
theory [5] Bergshoeff, Sezgin and Townsend give a solution for this mem-
brane. In this solution the radius r(τ) should satisfy the following condition:

r(τ) =
1
r0

√
r4
0 − r4 (13)

This equation can again be solved in terms of the Jacobi Elliptic function
(11), and as a result we find cn(τ,

√
1
2). Hence, the membrane is a periodic

pulsating disk which collapses to a point and expands to a disk.

Figure 6: Sequence of five pictures of the periodic pulsating membrane with in-
creasing τ

For a following research about the classical membrane one may look at
the equation of motion with the Dirichlet boundary conditions in stead of
the Neumann boundary conditions (6). Also the disk membrane can be
investigated further to find the answer why this static membrane is a solution
of the equation of motion.
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