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Abstract

Certain boundary conditions constrain the forms that the electromagnetic field can take in a theory, in
particular the boundary conditions inherent to closed spaces. According to Maxwell’s equations, this
can give rise to constraints for the electric charge in the theory. We identify three such ‘boundary
constraints’ for electric charge and highlight some of their myriad implications, touching upon a
wealth of topics including the self-consistency of practical calculations, the nature of dark matter, the
origin of electric-charge quantisation and the shape of the Universe. Furthermore, we explain that
magnetic analogues of our boundary constraints offer new insights into the possible existence of
magnetic monopoles and dyons.

1. Introduction

Electric charge is a fundamental quantity in physics, yet there is much still to be understood. The basic theory of
classical electrodynamics [ 1] allows us to choose the electric charges of particles independently with any values in
the continuous interval (— 0o , 00 )C. It seems, however, that mother nature is quite selective; empirical
observations suggest that electric charge is quantised and, moreover, that the Universe is electrically neutral, for
example. What theoretical constraints for electric charge might cause such selectivity?

In this paper, we identify three ‘boundary constraints’ for electric charge, so named because they derive from
Maxwell’s equations and the boundary conditions in relevant theories:

1. Thezero-point electric charge must vanish.
2. Thetotal electric charge in the fundamental domain of a closed space must vanish.

3. Thetotal electric current in the fundamental domain of a closed space must vanish.

As we shall see in what follows, our boundary constraints have myriad implications, touching upon a wealth of
topics including the self-consistency of practical calculations, the nature of dark matter, the origin of electric-
charge quantisation and the shape of the Universe. Furthermore, magnetic analogues of our boundary
constraints offer new insights into the possible existence of magnetic monopoles and dyons.

In section 2, we briefly summarise other work on constraints for electric charge. In section 3, we present
explicit derivations of our boundary constraints and how to satisfy them in the basic theory of quantum
electrodynamics. In section 4, we highlight some implications of our boundary constraints as they apply to
practical calculations. In section 5, we highlight some implications of our boundary constraints as they apply to
the entire Universe. In section 6, we consider magnetic analogues of our boundary constraints, applicable to
magnetic rather than electric charge.

We use SI units; 7 is the reduced Planck constant, ¢ is the electric constant, (i is the magnetic constant and

¢ = 1/ /épy is the speed of light.
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Table 1. The elementary species in the minimal standard model of particle physics and some of their properties,
where subscript o € {L, R} denotes chirality, subscript ¢ € {r, g, b} denotes colour charge, subscripta € {1,...,8} isa
component in SU(3) spaceand f € {1, 2,3} denotes family number.

£ 3aile  te  Ge  te f £ Sasfe  te G e S
H° 0 0 0 0 — Vi 0 0 0 1 3
Ver 0 1 0 0 1 Ty -3 0 0 1 3
e, -3 1 0 0 1 by 2 0 0 0 3
Upe 2 0 0 0 1 boe —1 0 0 0 3
d,. -1 0 0 0 1 5 0 0 0 0 —
VL 0 0 1 0 2 w* +3 0 0 0 —
o -3 0 1 0 2 z° 0 0 0 0 —
Coe 2 0 0 0 2 % 0 0 0 0 —
Soc -1 0 0 0 2
2. Other work

In this section, we briefly summarise other work on constraints for electric charge.

Most work to date has been motivated by the issue of electric-charge quantisation. Empirical observations
suggest that the electric charge of every known elementary particle and antiparticle in the Universe is an integer
multiple of — e/3, where — eis the electric charge of the electron [2—6]. This apparent quantisation of electric
charge was described by Jackson as ‘one of the most profound mysteries in the physical world’ [1]. Many
explanations for electric-charge quantisation have been put forward that invoke exotic new physics, including
the existence of extra dimensions [7, 8], the existence of magnetic monopoles [9, 10] and/or dyons[11, 12] and
various group structures in grand unified theories [13, 14]. Searches for direct empirical evidence in support of
these are ongoing [15].

Two classes of constraint for electric charge have been identified that do not necessarily invoke exotic new
physics; ‘classical constraints’ and ‘quantum constraints’, so named because they emerge at the levels of first and
second quantisation, respectively. Classical constraints embody the requirement of electric-charge conservation
under transmutation; if a theory permits the transmutation of a particle of type A into a particle of type B
together with a particle of type C, for example, we must satisfy

da =45 + 4c

to ensure that electric charge is conserved, where g4, g3 and qc are the electric charges of the particles [ 16].
Quantum constraints embody the requirement of gauge invariance in spite of gauge anomalies; if a theory has a
parity-violating Fermion sector yielding non-trivial gauge anomalies, for example, these anomalies must cancel
to ensure that the theory is gauge invariant [17-22].

In the minimal standard model of particle physics [15, 23] truncated at one family of elementary Fermions
and in certain plausible extensions of the minimal standard model of particle physics, electric-charge
quantisation with the familiar values can, in fact, be explained as a necessary consequence of the relevant classical
and quantum constraints® [24, 25]. In the minimal standard model of particle physics itself, however, the
relevant classical and quantum constraints, including mixed gauge-gravitational anomalies [26—28], are satisfied
even if the electric charge of the £th elementary species is taken to be

1
qg = qé/- + EfeAfg, (1)

where g é is the familiar quantised value; A&y = &, — £,c withm € {e, u, 7} = n € {e, u, 7} is the difference in
m-lepton and n-lepton numbers and e is a free parameter [24, 25]. See table 1. According to equation (1), electric
charge need not be quantised. Although empirical observations show that the deviations g, — g 5/ o € mustbe
zero or else extremely small [29-34] and thus that e must be zero or else extremely small, no theoretical argument
has been given yet within the theory to fix the value of €. Electric-charge quantisation in the minimal standard
model of particle physics is thus an open question. In section 5, we provide an answer to this question by showing
how our second boundary constraint can fix e = 0 such that electric charge must be quantised with the familiar
values.

% The belief seems to be widespread that electric-charge quantisation can only arise in a theory as the result of exotic new physics, with claims
like the following permeating the literature: ‘In any theoretical framework that requires [electric] charge to be quantised, there will exist
magnetic monopoles.” [35]. Evidently, this belief is ill-founded.
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3. Explicit derivations in basic quantum electrodynamics.

In this section, we present explicit derivations of our boundary constraints and how to satisfy them in the basic
theory of quantum electrodynamics.

We consider two or more species of massive and electrically charged matter embodied by Dirac-type fields,
accompanied by the electromagnetic field in a flat spacetime with three-dimensional periodic boundary
conditions. We work at the level of second quantisation in the Gupta-Bleuler (Lorenz-gauge) formalism [36, 37].
An explicit formulation of the theory is presented in the appendix, where the notation used in this section is
defined. Note that we use the theory in its textbook form [38, 39], without adding new ingredients; we obtain our
results below simply by refraining from the use of heuristic normal-ordering procedures and staying true to the
periodic boundary conditions, thus revealing previously overlooked subtleties.

It should be clear below that our boundary constraints are distinct from classical and quantum constraints,
as the latter are satisfied trivially by the theory.

3.1. First and second boundary constraints
Suppose that the system occupies an arbitrary physical state. To derive our first and second boundary
constraints, we begin by considering Gauss’s law” in the form

#cf@ t 1) dr = 190, ©)

where the closed surface . is such that the enclosed volume 7" is the fundamental domain. The periodic
boundary conditions and corresponding restriction to allowed wavevectors see the electric field matched on
opposite walls of the fundamental domain:

B)x=0,y,2,0)=(B)x=L,y21)

with analogous results for the walls of constant y and z. It follows that the electric flux through % vanishes:

Lol Lol
B . 2 = — 2 p— ) =
#y(E) (r, t) - d’r f(;j; (Ex)(x =0, y, z, t)dydz + J;j; (Ex)(x =L, y, z, t)dydz+...
=0

According to Gauss’s law (2), the total electric charge in ¥~ should also vanish:

(Qy) =0. 3)

Explicit calculation reveals, however, that the total electric charge in ¥~ does not vanish immediately; it is
dependent on electric charges and occupation numbers:
N‘I
(@) = 35 a5 (8 — Nz + T2 @
F=1 k
The first contribution on the right-hand side of equation (4) is the total electric charge of the matter particles in
", the second is the total electric charge of the matter antiparticles in ¥~ and the third is the total zero-point
electric charge in 7, which is the analogue for electric charge of the total zero-point energy in ¥~ and emerges as
a consequence of anticommutation relations in a similar way. For more information on the origin of zero-point
electric charge, see the relevant discussions in [38, 39]. Comparing equations (3) and (4), we see that, firstly, we
must satisfy

Ny
> ar=0 )
F=1

if we are to have any hope of obeying Gauss’s law (2) for a state describing finite numbers of matter particles and
antiparticles, as the summation over wavevectors in equation (4) diverges4; the finite cannot neutralise the
infinite. Equation (5) is an embodiment of our first boundary constraint; the zero-point electric charge must
vanish. Secondly, we must satisfy

Nq A A
S q-(Ng — N7) = 0. ©6)
F=1

With our first boundary constraint (5) understood, equation (6) is an embodiment of our second boundary
constraint; the total electric charge in the fundamental domain must vanish.

For the sake of brevity, we refrain from specifying that this is the new mean of Gauss’s law. Such abbreviation is used throughout the
main text.

4 . . N, . . N,
More rigorously, lmjk .., —oorad m= 22 £L ) 47 i k| <[kimay 2 = Oifandonlyif 3527 g7 = 0.
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3.2. Third boundary constraint
Suppose again that the system occupies an arbitrary physical state. To derive our third boundary constraint, we
begin by considering the Ampere-Maxwell law in the form

55( (B)r, 1) - dr = g ()0 + = f/ B)(r, 1) - dr, %

where the closed curve % lies on the walls of the fundamental domain at z = L/2, circling the z axis according to
the right-hand rule, and the enclosed surface . is a square of cross-sectional area A = L*. The periodic
boundary conditions and corresponding restriction to allowed wavevectors see the magnetic field matched on
opposite walls of the fundamental domain:

B)x=0,520=B)(x=Ly, 21

with analogous results for the walls of constant y and z. It follows that the line integral of the magnetic field
around % vanishes:

ﬂ(ﬁﬂr,t)-dr:—ﬁL(By x=0,9,2z=1L/2, t)dy—i—f ) (x=L,y,z=L/2, )dy+...

According to the Ampere-Maxwell law (7), the sum of the total electric and displacement currents through %’
should also vanish:

(iy) (t)+60— ff B\, 1) -dr = o )

Explicit calculation reveals, however, that the sum of the total electric and displacement currents through &’
does not vanish immediately; it is dependent on electric charges, occupation numbers and velocities:

G0+ as B0 - VZZ a5 v (N — Nz () + . ©
F=1k
where, for the sake of brevity, we have refrained from showing terms due to Zitterbewegung [40, 41] explicitly.
The first contribution on the right-hand side of equation (9) is proportional to the mean piece [42] of the total
electric current of the matter particles in ¥~ and the second is proportional to the mean piece of the total electric
current of the matter antiparticles in ¥”. Comparing equations (8) and (9), we see that we must satisfy

Nq R R
> > dpvAacNac— Nad(®) + .. =0 (10)
Fo1 K

to obey the Ampere-Maxwell law (7). Our argument can be repeated for other curves, leading to the overarching
conclusion that we must satisfy”

Ny N N
ZZ qrVadNa — N7 )(t) + .. = 0. (11)
F=1k

Equation (11) is an embodiment of our third boundary constraint; the total electric current in the fundamental
domain must vanish.

3.3. Satisfying our boundary constraints; electric-charge quantisation

Together, our first boundary constraint (5) and second boundary constraint (6) restrict the possible electric
charges g, and occupation-number differences (N — N7) as follows, where we make use of the fact that each
of the g must be non-zero by construction (otherwise we wouldn’t have N, species of electrically charged
matter) and let ¢ be an arbitrary non-zero quantity of electric charge:

*+ N, = lisforbidden, as the requirement that g; = 0 from our first boundary constraint (5) would be at odds
with the requirement that g; = 0 by construction; it is not possible to have only one species of electrically
charged matter in the theory, as there would be nothing to neutralise the zero-point electric charge. Evidently,
atheory (without normal ordering) in which electrons and positrons constitute the only species of electrically
charged matter cannot obey Gauss’s law.

*+ IfN,=2,wemusthave g, = —q, = ¢ from our first boundary constraint (5) and thus

(Ny — Kj) = (N, — N5) from our second boundary constraint (6). Electric charge is quantised in this case,
albeit somewhat trivially.

> This conclusion can be reached more directly by integrating the differential form of the Ampere-Maxwell law over the fundamental
domain V.
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Ng=3 q3
(1 1 -1 ’TT) =i
IATZ = lA‘i— =—4
( 2) q1+q2+q3=0 €>0
(A 73 = 4 ?) =9
S ~ Tq1 —4q2 +9¢g3=0
0
q2 q 1=— 1 3 ¢
q1 2
2=4¢
e<0 q
g3 =11¢

Figure 1. A novel form of electric-charge quantisation in the basic theory of quantum electrodynamics with three species of electrically
charged matter, illustrated for some specific occupation-number differences; our first boundary constraint (5) and second boundary
constraint (6) can be regarded as planes in (q;, 42, g3) space and only quantised electric charges lying on the intersection of these planes
are allowed, the origin being excluded by construction.

+ If N, = 3, we must have one of two possible scenarios; either g, = —q, — q, = eand
(Ni = Ni) = (N, = Ny) = (N5 — Ns)or
g, = e((Ny = Nz) = (Ns — Ns)), (12)
a, = e((Ns = N3) — (N — Ni)) (13)
a5 = e((Ny = Ni) — (N; — N3)) (14)

with (N} — Ng), (N, — N3)and (N3 — Ns) differing from each other, as can be deduced from our first
boundary constraint (5) and second boundary constraint (6) by regarding them as planes in (g3, ¢, 43) space
and considering their intersection. Electric charge is non-trivially quantised in the latter scenario, assuming
that (N; — Ny), (N, — N5)and (N3 — Nj) are integers. See figure 1.

. If N, > 4, more intricate possibilities exist.

In general, the theory cannot sustain electrically charged matter with only one sign of electric charge and it is
sufficient but not necessary to have

Nq
Y 4r=0 (N — Np) = (N, — Nj)=..=(Ny, — Nx;).
F=1

For given electric charges and total occupation-number differences, our third boundary constraint (11)
restricts the possible velocities.

Evidently, novel forms of electric-charge quantisation can arise even in the basic theory of quantum
electrodynamics, as a result of our boundary constraints. This does not appear to have been recognised before.
Note that the mechanism here has nothing to do with extra dimensions, magnetic monopoles and/or dyons,
grand unification, classical constraints or quantum constraints.

3.4. Why are such observations not made routinely?
The derivations above are simple and it is natural, therefore, to ask why such observations are not made routinely
in the basic theory of quantum electrodynamics.

When Dirac first described the Dirac sea [43], he did recognise a ‘difficulty’ in that the ‘infinite density of
electricity’ should, according to Gauss’s law, ‘produce an electric field of infinite divergence’. He went on,
however, to ignore the difficulty, arguing that it ‘seems natural ... to interpret [the electric charge density] as the
departure from the normal state of electrification of the world’. This approach persists to the present day. In
Cohen-Tannoudji, Dupont-Roc and Grynberg’s textbook on quantum electrodynamics [38], Milonni’s
textbook on the quantum vacuum [39] and many other seminal works, the zero-point electric charge is
circumnavigated without significant comment by focussing on the normal-ordered form(s) of the electric
charge density and/or total electric charge. Weinberg highlights Dirac’s difficulty in one of his textbooks [44]




10P Publishing

Phys. Scr. 97 (2022) 035502 R P Cameron

and, by omission, seems to convey the view that it has not yet been resolved. To derive our first boundary
constraint (5), we have refrained from using such heuristic normal-ordering procedures, asking instead that the
theory be self consistent in its natural form. In this author’s view, the zero-point electric charge is to electric
charge what the zero-point energy is to energy and, like the zero-point energy, we should seek to understand it
rather than simply removing it. In section 5, we offer a fundamental resolution to Dirac’s difficulty.

When periodic boundary conditions are used, they are usually regarded as a mere computational aid without
physical meaning; ultimately, the (singular) limit V — oo m” is taken and replacements like

s I o

k

are made. To derive our second boundary constraint (6) and third boundary constraint (11), we have instead
stayed true to the periodic boundary constraints. There are contexts in which it is appropriate to consider a closed
space like this. In sections 4 and 6, we consider systems such as an ideal crystal, for example, where three-
dimensional periodic boundary conditions are physically meaningful. In sections 5 and 6, we consider the
possibility that the entire Universe is closed.

In the appendix, we show that our boundary constraints (5), (6) and (11) emerge via Heisenberg’s equation
of motion only when we are careful enough to exclude electromagnetic modes with wavevector k = 0; thereisa
factor of 1//|k| in the mode expansion of the potential four-vector A” (r), which is not defined for k = 0. This

subtlety is easy to overlook and is obscured when replacements like (15) are made, as 1 / \/|k| multiplied by the
continuous reciprocal-space volume element d’k appears to be well defined for k = 0 in the usual spherical-type
coordinates |k|, 9 and 3 dsk/\/ k| = |kP/2sin?¥d|k|ddde.

3.5. Some comments on generality

The arguments we have made above in support of our boundary constraints (5), (6) and (11) are essentially
geometrical in nature. The fundamental domain has the topology of a three-dimensional torus due to the
periodic boundary conditions; an attempt to exit through one of its walls results in a re-entrance through the
opposite wall. It is impossible for a non-vanishing electric flux to simultaneously exit and enter the fundamental
domain or for a non-vanishing line integral of the magnetic field around the walls of the fundamental domain to
simultaneously circulate in opposite directions.

Our first boundary constraint (5) also applies if, instead of a fundamental domain with three-dimensional
periodic boundary conditions, we consider a space of infinite extent with the boundary condition that the
electric field vanish at spatial infinity; it applies whether the space is closed or open. In contrast, our second
boundary constraint (6) and third boundary constraint (11) apply no matter how large the volume V of the
fundamental domain is but do not obviously apply in a space of infinite extent; they are emphatically due to the
closed nature of the space. The limit V — oo m” is singular [45] in this regard.

As our arguments are essentially geometrical in nature and assume only the validity of Maxwell’s equations,
it should be clear that derivations analogous to those presented above apply in other relevant theories, including
theories with curved rather than flat spacetimes; our boundary constraints have a generality that transcends the
specific formulation of the basic theory of quantum electrodynamics considered in this section.

4. Implications for practical calculations

In this section, we highlight some implications of our boundary constraints as they apply to practical
calculations.

4.1. Second boundary constraint

When treating electrostatic problems using three-dimensional periodic boundary conditions, our second
boundary constraint tells us to ensure that the total electric charge in the fundamental domain vanishes. This is
true whether the periodic boundary conditions are used merely as a computational aid or to model a system with
real three-dimensional quasi-periodicity. Possible examples of the former include the simulation of an
electrically charged colloid [46, 47], the simulation of an electrically charged quasiparticle or defect in the solid
state [48] and the simulation of an electrolyte solution [49]. Examples of the latter include an ionic atomic crystal
[50-52], a Wigner crystal [53—55], a noble metal crystal [56] and an ionic colloidal crystal [57]. The requirement
that the total electric charge in the fundamental domain vanishes can be seen in Ewald’s original description of
his summation technique [50] as well as Evjen’s [51] and it is usually respected. The requirement is usually
justified, however, on the grounds that it helps prevent the electrostatic potential and thus the Coulomb energy
from diverging [48, 49] or on the grounds that it helps to ensure that a Ewald summation is independent of the
chosen screening factor [58]. Although such arguments are complementary to the arguments we have made in
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section 3, they are nevertheless weaker, as they invite attempts to ‘renormalise’ the divergent quantities, thus
leading to erroneous results [49, 58]. The arguments we have made in section 3 show clearly that such attempts
are doomed to failure; it is geometrically impossible to have a non-vanishing total electric charge in the
fundamental domain. This precludes the use of three-dimensional periodic boundary conditions to simulate or
model non-neutral plasmas [59-61], for example.

4.2. Third boundary constraint

When treating more general electromagnetic problems using three-dimensional periodic boundary conditions,
our third boundary constraint tells us to ensure that, in addition to the above, the total electric current in the
fundamental domain vanishes. Again, this is true whether the periodic boundary conditions are used merely as a
computational aid or to model a system with real three-dimensional quasi-periodicity. A possible example of the
former is the simulation of a plasma [62]. An example of the latter is a thin-wire metamaterial [63, 64].

5. Implications for the Universe
In this section, we highlight some implications of our boundary constraints as they apply to the entire Universe.

5.1. First boundary constraint
Our first boundary constraint applies whether the Universe is closed or open and reads

ddrdr= ) ar+ > qrdr
F F F
(known) (yet to be discovered)

=0, (16)

where the 7 summation runs over all elementary species of Fermion in the Universe; q - is the electric charge of
the Fthspecies; dr with dr = 1for a Weyl-type field is a spin-multiplicity factor, included for generality’, and
we have partitioned the summation into a summation over known species and a summation over any species yet
to be discovered. In this author’s view, our first boundary constraint (16) embodies the fundamental resolution
of Dirac’s difficulty [43]; the zero-point electric charge poses no problem, as it vanishes by necessity. In 1930,
there was little prospect of Dirac recognising this, as only a handful of particle types were known.

Pleasingly, we find that our first boundary constraint (16) is satisfied by the known elementary species of
Fermion in the Universe, as described by the minimal standard model of particle physics:

> 4r= 1 n Z(§—§)—e +0 —l—%ee[Z(l—l)—i—l—l

=123 \o=L,R| c=r,g,b 3 o=L,R
(known)

=0, (17)

where the F summation runs over all elementary species of Fermion in the theory and we have used equation (1)
and table 1, leaving the value of the parameter ¢ unspecified in the interests of generality. This leads us to make a
prediction about physics beyond the minimal standard model of particle physics; as equation (17) holds, our first
boundary constraint (16) dictates that the appropriately weighted sum over the electric charges of any
elementary species of Fermion yet to be discovered must vanish:

E qr d]: =0. ( 1 8)
F
(yet to be discovered)

A simple way to satisfy equation (18) is to have each electric charge in the summation be zero.

The possibility that there do indeed exist as-yet-unknown elementary species of Fermion with zero electric
charge such as sterile right-handed neutrinos, for example, is appealing as they could serve as components of
dark matter [15, 65, 66].

5.2.Second boundary constraint
Our second boundary constraint applies if the Universe is closed and reads

(Qu) =0, (19)

where (Qy) is the total electric charge in the Universe. Equation (19) has already been reported multiple times,
albeit with various interpretations; Landau and Lifshitz seem to have held the view that the total of a conserved
quantity in a closed Universe is meaningless as the corresponding conservation law is trivial (‘0 = 0”) [67] and Li

Itis possible that not all elementary species of Fermion in the Universe have the same spin multiplicity; there might be as-yet-unknown
species out there with spin 3/2, for example.
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recently described equation (19) as a ‘paradox’ that necessitates modification of Maxwell’s equations [68], for
example. The identification made in this paper of equation (19) as aboundary constraint does not appear to have
been made explicitly before.

Consider the minimal standard model of particle physics augmented with three-dimensional periodic
boundary conditions to model a closed Universe. Combining equation (1) with the appropriate statement of our
second boundary constraint (19), we obtain

(Qu) =Y qc (R — Kz) (1)
—(O)) + %ee@iw

=0 (20)
with
(Qu) =Y a4 (Re — Re) (1) 1)
£
<Aff?/> = Z(fmg - fn5)<N€ - Ng> ®), (22)
3

where the £ summations run over all elementary species in the theoryand (Nz — Ng) (¢) is the total number of
particles minus the total number of antiparticles of the £th species. According to equations (20)—(22), the
parameter e is not free as is usually understood [24, 25] but is instead fixed as a function of occupation-number
differences:

Al

__(Qw
4 <ALA7Z/> ’

assuming that the difference (AL ) in total lepton numbers under consideration does not vanish. If one

(23)

. - . . . N .
considers a realistic state with occupation-number differences chosen such that (Q,) = 0, equation (23)
dictates that

e=0.
If none of the differences in total lepton number vanish, electric charge must thus be quantised with the familiar
values.

Evidently, the combination of classical, quantum and boundary constraints can give rise to electric-charge
quantisation with the familiar values in the minimal standard model of particle physics augmented with three-
dimensional periodic boundary conditions. This does not appear to have been recognised before.

In this author’s view, the preceding argument is interesting but unlikely to be the explanation for electric-
charge quantisation. The minimal standard model of particle physics is not our final theory of nature and it
seems reasonable to expect that electric-charge quantisation will arise more naturally in a more complete theory.
If one extends the minimal standard model of particle physics by adding sterile right-handed neutrinos with
Majorana masses, for example, electric-charge quantisation with the familiar values can be explained as a
necessary consequence of the relevant classical and quantum constraints only [24, 25]. With electric charge
already fixed in such a theory, our second boundary constraint (19) simply restricts the possible occupation-
number differences.

The possibility that there do indeed exist sterile right-handed neutrinos with Majorana masses is appealing
as they could give rise to the empirically observed neutrino masses via a seesaw mechanism [66].

5.3. Do our boundary constraints actually apply to the Universe?
Akey question is whether or not the Universe is closed such that our second and third boundary constraints
apply. At present, we cannot answer this definitively, as the shape of the Universe is not known with certainty.

In the minimal ACDM model of cosmology, the Universe is taken to be open rather than closed, with zero
curvature and a trivial topology [ 15, 69]. Anomalous features observed in the cosmic microwave background
have led some to suggest, however, that the Universe might be closed by virtue of having positive curvature and
perhaps even a non-trivial topology [70-73].

Itis encouraging to note that the electric charge and current densities appear to vanish on astronomical and
grander scales’; the apparent dominance of gravitational interactions over electromagnetic interactions in
sculpting the Universe at large suggests an electric-charge imbalance of no more than 1 partin 10'*[74, 75] and
more stringent albeit speculative bounds can be claimed based on the apparent isotropy of the Universe [75, 76].
Our boundary constraints offer an immediate theoretical explanation for this empirical observation; if the

7 In the minimal ACDM model of cosmology, the Universe is taken to be electrically neutral without an underlying explanation.
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Universe is closed, it must exhibit such electrical neutrality to obey Maxwell’s equations and the boundary
conditions. In the absence of other explanations, one might reverse this to interpret the apparent electric
neutrality of the Universe as indirect evidence that the Universe is closed.

The possibility that the Universe is indeed electrically neutral is appealing, perhaps, as it aligns with the
hypothesis that the Universe is literally an intricate embodiment of nothing [77-79].

We have tacitly assumed above that Maxwell’s equations apply to the Universe, in particular that the photon
rest mass is zero [1, 80]. There is currently no direct empirical evidence to suggest otherwise, the validity of
Maxwell’s equations having been extremely well tested [81-83]. Astronomical observations might soon reveal
whether or not the photon rest mass is indeed zero [84, 85]. Some pertinent consequences of a non-zero photon
rest mass are considered in [68, 74, 86, 87].

6. Magnetic analogues

In this section, we consider magnetic analogues of our boundary constraints, applicable to magnetic rather than
electric charge.

Magnetic monopoles can be emulated using magnetised needles [88, 89] and in spin ices [90-93], for
example. No magnetic monopoles or dyons of elementary character have ever been detected, however, in spite of
efforts involving rocks recovered from the Moon [94], cosmic rays [95], the mantle near the geomagnetic poles
[96] and our most powerful accelerators [97, 98], to name but a few lines of enquiry [15]. There is nevertheless
strong interest in the possible existence of magnetic monopoles and dyons, in part because they offer an
explanation for electric-charge quantisation [9—12] and occur naturally in many grand unified theories [99, 100].

The magnetic analogues of our boundary constraints can be summarised as follows:

+ The zero-point magnetic charge must vanish.
+ The total magnetic charge in the fundamental domain of a closed space must vanish.

+ The total magnetic current in the fundamental domain of a closed space must vanish.

These follow from the duplex (duality-symmetric) form of Maxwell’s equations [ 1, 101], using derivations
analogous to those already presented in this paper for electric charge. Our magnetic analogues apply in addition
to the Dirac quantisation constraint [9-12] and do not appear to have been identified before.

Our magnetic analogues have implications for certain practical calculations, even though no magnetic
charge has ever been found. An example can be seen in the fledgling field of magnetronics; when replacing
Amperian dipoles with Gilbertian dipoles to model spin ice [90-93], say, using three-dimensional periodic
boundary conditions, the magnetic analogues of our second and third boundary constraints tell us to ensure that
the total magnetic charge and total magnetic current in the fundamental domain vanish.

Our magnetic analogues also yield new insights into the possible existence of magnetic monopoles and
dyons. The magnetic analogue of our first boundary constraint applies whether the Universe is closed or open
and reads

> 8rdr =0, (24)
f

where g is the magnetic charge of the F th elementary species of Fermion in the Universe. According to our
first magnetic analogue (24), there cannot exist only one elementary species of magnetically charged Fermion, as
the summation cannot vanish if there is only one term. If an elementary species of magnetically charged Fermion
were to be discovered tomorrow, via the creation of a new particle-antiparticle pair at an accelerator, for
example, our first magnetic analogue (24) would tell us immediately that there must exist one or more additional
species with the opposite magnetic polarity. Note that this says nothing about occupation numbers, just the
existence of the elementary fields, irrespective of their excitations. The magnetic analogue of our second
boundary constraint applies if the Universe is closed and reads

(Gy) =0, (25)

where (Gy) is the total magnetic charge in the Universe. According to our second magnetic analogue (25), the
Universe must contain as much north magnetic charge as south. If a single magnetic monopole or dyon were to
be discovered tomorrow, our second magnetic analogue (25) would tell us immediately that there must exist one
or more additional magnetic monopoles and/or dyons with the opposite magnetic polarity, assuming that the
Universe is closed.

This work was supported by grants from the Leverhulme Trust (RPG-2017-048) and the Royal Society
(URF\R1\191243). The author is a Royal Society University Research Fellow.
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Appendix Basic theory of quantum electrodynamics

In this appendix, we present an explicit formulation of the basic theory of quantum electrodynamics considered
in section 3.

A.1. Fundamental domain and allowed wavevectors

The fundamental domain is a cube of volume V = L* described by time t and right-handed Cartesian
coordinates 0 < x < L,0 < y < Land 0 < z < Lwith associated unit vectors X, ¥ and Z. The position vector, del
operator and Laplacian are

+i2— V?

r=xX+yy+ 2z V:fg2 g 0 :3_2 8_2 8_2
vy ’ x Oy 0z ox2 9yt 0z

respectively.
The periodic boundary conditions are ensured by only allowing wavevectors of the form

k= 2%(1)2 + my + nz),
where ], m,n € {0, £ 1,...} are integers.

A.2. Basic operators and Hilbert space
We consider N, € {2, 3,...} species of massive and electrically charged matter, labelled 7 € {1,..., N;}. For the
Fth species, we identify Fermionic annihilation operators ¢z, and creation operators E}Tkms ,where 7 = + for
particles, 7 = — for antiparticles, ik is an eigenvalue of linear momentum and him, € {h/2, — h/2} isan
eigenvalue of the zcomponent of mean spin. The ¢z, and E}Tkms satisfy the usual Fermionic anticommutation
relations, in particular
[ﬁ?—'rkmy E}Tfkfmsf]Jr = 57'7" 6kk/5m5ms/.
The corresponding matter occupation numbers are
N]:kms = E;:Jrkms 6}'H(m,a I\]?kmS = E]T‘, ks é\]:7 kmy>

Npo = stzjd/z N]-‘kmsy N7 = stzil/z N?km_c)

Nf:Ek Nnc Nz = Zk Nzy.

For the electromagnetic field, we identify Bosonic annihilation operators dy,, and creation operators élfa,
where k = 0 is a non-zero allowed wavevector, « = t for scalar photons and o =i € {x, y, z} for Cartesian
photons. The d, and d;, satisfy the usual Bosonic commutation relations, in particular

[dxas ﬁ]j/a/] = Ok Oaa-
The corresponding electromagnetic occupation numbers are

Nyka = alja ko  Nyx = Z Noka Ny = Z Nk

a=txyz k=0
The Hilbert space is spanned by Fock states of the form
@y (@f)"...

where A, B,... stand for distinct matter modes (Frkm); I J,... stand for distinct electromagnetic modes (ka); 1y,
... € {0, 1,...} are electromagnetic-occupation-number eigenvalues and |0) is the unperturbed vacuum state,
for which

|0},

|1A) 13 seees 15 NJ ,> = AIZ Ag

Ekams|0> =0 dkalo> = 0.
The Hilbert space is equipped with the usual inner product

(Y1) = (olY)*,

where |¢) and |¢) are arbitrary kets and (1| and (¢| are the corresponding bras. The usual Hermitian conjugate
X" ofan arbitrary operator X is defined such that
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(WIkT10) = (sIXI0)*.

A.3. Indefinite metric
The new ket |1))) and corresponding bra (1| associated with an arbitrary ket |¢)) and corresponding bra (¢ are

W) = 1¥)  (el=(IM,
where M is the indefinite metric, acting on the subspace of the Hilbert space pertaining to scalar photons as
M|14, Ig,...,np, 1y o) = (— D2w=0™|1y, 1gs... om0, 1y e

Notethat M = M' = M ' is Hermitian in the usual sense and unitary in the usual sense.
The new Hermitian conjugate X *ofan arbitrary operator X is defined such that

(X lo) = (IRIvY*.

Note that the new Hermitian conjugate coincides with the usual Hermitian conjugate for the matter creation
operators 5}71(”15 = E}Tkms and the Cartesian-photon creation operators 4,; = 4, but not the scalar-photon

creation operators égt = —ﬁlft.
Ifthe system occupies a state |U(t)), the new mean of an arbitrary operator X is
(@)

assuming that the new norm W(#)|¥(#)) of |¥(#)) is non-zero.

A.4. Matter fields
We consider the Dirac matrices

ﬂ:(lzxz 02><2) o — 02x2 o o 022
022 —hy2) o 0 052 o )

(0 1\, , {0 —i\s , (1 0).
"_(1 O)H(i 0)”(0 —1)Z
is a vector of Pauli matrices.

The Fth species of matter is embodied by the Dirac-type field

Ur(m) =" > Crrim ™ uriim, + g € T ur i m)
k mg=+1/2

where

with rest mass - and electric charge q -, where the

1 [ isa-x_ (7K "
rkm, = —— —1i| — t Or+0m.172> 0710m.—1/2> 0r—0m.1/2> Or—Opm, —
UFrkm, v eXP{ 1[ 2K an (Cmf [0740m.1/25 O74Om.—1,2 12 —1/2]

are spinors corresponding to modes of definite energy, linear momentum and mean-spin projection along the z
axis in that

h}'elk rl"]-'TkmS =T+ 52C2|k|2 + C4m_’F elk rufrkm5> Pelk r1'1.7:7'1(#1S = 7ike r1’1]-"r'km,-

SFz UFrkm, = fimg UFrkmo
where

hr = —ificc - V + *me3, p=—iiV

S 7 B x V L 732V x (2 x V)
F= 24—
2 2\/—/22c2V2 + c*my 2\/—ﬁzc2V2 + c*my (\/—ﬁzczv2 + c*my + myr)

are the first-quantised free-field Dirac Hamiltonian, linear momentum and mean spin, respectively. Note that
the tzrn, satisfy the orthonormality condition

T i(k’—k)- _
_/]/ u]I:Tkms ufT/k/ms'el( )rdSr - 67'7'/51(1(/6'”5"15/'
v
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The electric charge and current densities are
. N . . Ny .
P = qrVr@Ur@)  J) = ) gV @) vx(),
F=1 F=1

respectively, where
vV =co

is the first-quantised Dirac velocity. The total electric charge and total electric current in the fundamental

domain ¥ are
Q=[] podr
= Y 12 9 CF o, &P ko, + EFtom S )
=y 4y — N7 + 5, 2)
= /f/ J(r)dr
= quzlzkzmszil/Z qfvﬂ((a}+kms CFykm, + Effkmf;:-,kms) + A,
=Y Y drvala - Na) + A,
respectively, where
fic’k

Vik =
A2k + c*mF

is a mean-velocity eigenvalue and

o qr
A=y
qu:lzk 2 21112 4,2 2 2112 4,2 2
\/ﬁc|k| —&—cm;(\/ﬁclkl + c*'my + c*mr)

X {[\//72c2|k|2 + c*m% (\/ﬁzczlkl2 + c*mE + mp)k — 2%k, k]

X (6;-'+k1/26;——k1/2 + e;+k—1/26_;-‘——k—1/2)
Y 2RKRP + ctmE (YK + ctmE + Amp)§ — 2%k K]

A A
X (= 1Cf+k1/ch ka2t 28 )
+[\/l’izcz|k|2 + c*mjf (\/fizczlkl2 + c¢*my + mp)z — 2%k k]

A N N At " .
X (c}_+k1/2c}[—77k71/2 - c}[—+k71/2c}-77k1/2) + usualHermitianconjugate}

is due to Zitterbewegung.
For each non-zero allowed wavevector k == 0, we identify the rescaled reciprocal-space Fourier components

ik- rdS A —ik- rdS I
N = |k|v i A 70 = TN eV i A 1o

Fr(r) obeys the Dirac equation

ﬁ% = {hr + q- (@) — v - A@]} ).

A.5. Electromagnetic field
The electromagnetic field is embodied by the potential four-vector

A1) = (B(r)/c, A@D)),

where

&)(r) (Aiee™™ — ﬁlj e~ikr) A(r) — L (AgelT + éif(e_ik.r)
kzz:o oVIkI ' kgo 2¢€0c V|k|

are the scalar and vector potentials, respectively. Note that d(r) = &* (r) is Hermitian in the new sense. The
four-divergence of A “(r) is

12



10P Publishing

Phys. Scr. 97 (2022) 035502 RP Cameron

1 8<I>(r)
ot
— A%) + A7),

A () A . Q R O
AN = | ———illkl (A — i) + k - aJer
() Zk 0 26()CV|k| [| |( ke kt) k]

A (=) 7 . I AT il
AN =Y | ———ilk| N + @) + k - afJe ks
( ) Zk 0 ZEOCV|k| [l |( kt kt) k]

A()— + V -A@)

where

are the positive- and negative-frequency parts, respectively. Note that A(r) = A*(r) is Hermitian in the new
sense and that the reciprocal-space Fourier components Ay, = /A\jkt make no overall contribution to A(r), as

their contributions to /A\(H(r) and /A\(f)(r) cancel.
The electric and magnetic fields are

E(r) — —V(i)(l‘) _ M
ot
= T =ik + KaekT — (kaf, + [klaDe k] (AD
k=0 260V|k| kt k

B(r)=V x A(r)

/3 . .
= /—ik X (Age*r — ale—ikr), A2
Zk¢0 2605V|k| ( k k ) ( )

respectively. Note that E@) = Ei(r) is Hermitian in the new sense.

Let us emphasise here that we are working in the Gupta-Bleuler (Lorenz-gauge) formalism [36, 37]. In this
formalism, Maxwell’s equations do not all hold in terms of operators but are expected to hold with respect to the
new mean. Equations (A1) and (A2) ensure the validity of Gauss’s law for magnetism and the Faraday-Lenz law

V.-Br=0 V xBr= —81;(:),

respectively. Instead of Gauss’s law and the Ampere-Maxwell law, however, we obtain

V-E(r):@—&— IA(r)
€o 6V ot

(A3)

1 OB (r)
V x B@r) = VA X A4
x B(r) = poJ(r) — V Po7” (r) + o (A4)

respectively. Note that the ‘Q,~and ‘K, terms in equations (A3) and (A4) emerge only when we are careful
enough to exclude electromagnetic modes with wavevector k = 0, as

%Zk¢0 ///y Ib(r/)eik-(rfr/)dSr/ — —Ek[ /// p(rl)eﬂkr d3r’]elk’
0
_ Lo s onay

— Ml perdr

_b@® _ Qr

€o E()V

MOZkiOW ](rl)elk(r ) Pyl — [ [[//](rl)eﬂkr Pr /] iker
L0 I sear

MOK’V
v .

=1J(r) —
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It follows from equation (A4) that the total electric current through the surface #” satisfies

Iyr= [, 3@ - dr

:%ffy/ KV . d’r — MLO [yl VA(I‘) . d%r — GO%J , E(I’) . d2r.

A.6. Hamiltonian
The system is governed by the Hamiltonian

A

H = Hmatter + HEMﬁeld + HEMinteractionS)
where
Fanee = X3, [, U0 heir ) dr
= 1o N PR 4 mE (EF g SR km, S om CF )
=Y Sy VAKP + c*mi (Nac— Nz — 2),

A 1 dd(r) 0 OA OA . .
HgMfield = /f/, > —% 6?) air) + & 8?) . 8?) — 6 VoO(r) - VO(r)

1 N N
+ Z,‘:x,y,zzj':x,y,z ‘u—aiAj(I')aiAj(l') &r
0

=S %ﬁc|k|(&£t&kt v Al + a) - A+ A - 4D
= Yo 7kl (N + 2)
Heninteractions =[], [0 @) = J(©) - A@0)] dr
= Shec /il G — Sl — A+ & — A~ a])
describe the matter, the electromagnetic field and electromagnetic interactions, respectively. Note that H = H i

is Hermitian in the new sense.
The state | ¥(#)) of the system evolves according to Schrodinger’s equation

L dP@) .
2 Awe)).
i7 i [ (1))

The time derivative dX/dt of an arbitrary operator X with no explicit time dependence is given by Heisenberg’s
equation of motion

A.7.Recovery of Maxwell’s equations
To recover all of Maxwell’s equations, we must focus on the ‘physical’ subspace of the Hilbert space, defined such
that

A(H)
A (l‘) |¢physical> =0,

where [{physicar) is an arbitary physical ket. If the system occupies an arbitrary state |Wpysica(t)) comprised solely
of the [1)physicar) » the new means of equations (A3) and (A4) are

r,H)  (Q)

A5
€o c’oV ( )

V(B =2

110 (K) (1) L LB Y

V x (B)(r, t) = p, () (x, 1) — RV

(A6)

respectively, assuming that the new norm W physicai(9)|Wphysical())) Of [¥physicar()) is non-zero. Equations (A5)
and (A6) reduce to Gauss’s law and the Ampere-Maxwell law, respectively, if and only if
(Qr) =0 (Ky) =0,

from which our boundary constraints (5), (6) and (11) follow.

14



10P Publishing Phys. Scr. 97 (2022) 035502 RP Cameron

ORCIDiDs

Robert P Cameron ® https://orcid.org/0000-0002-8809-5459

References

[1] Jackson ] D 1999 Classical Electrodynamics (New York: Wiley)
[2] Stoney G] 1881 Philos. Mag. 11 381
[3] Stoney GJ 1894 Philos. Mag. 38 418
[4] Thomson]] 1897 Philos. Mag. 44293
[5] Millikan R A 1913 Phys. Rev. 2 109
[6] Fletcher H 1982 Phys. Today 35 43
[7] Klein O 1926 Z. Phys. 37 895
[8] Klein O 1926 Nature118516
[9] DiracP AM 1931 Proc. R. Soc. A133 60
[10] Dirac P AM 1948 Phys. Rev. 74817
[11] Schwinger ] 1969 Science 165 757
[12] Witten E 1979 Phys. Lett. B 86 283
[13] PatiJ Cand Salam A 1974 Phys. Rev. D 10275
[14] GeorgiH and Glashow SL 1974 Phys. Rev. Lett. 32 438
[15] ZylaP A et al (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01 and 2021 update.
[16] Deshpande N G 1979 Oregon OITS-107 107 (unpublished preprint)
[17] Adler SL 1969 Phys. Rev. 111 2426
[18] BellJ S and Jackiw R 1969 Nuovo Cimento A 60 47
[19] Adler SLand Bardeen W A 1969 Phys. Rev. 1821517
[20] Bouchiat C, Iliopoulos J and Meyer P 1972 Phys. Lett. B38 519
[21] Gross D and Jackiw R 1972 Phys. Rev. D 6 477
[22] Georgi H and Glashow SL 1972 Phys. Rev. D 6 429
[23] Kane G 1993 Modern Elementary Particle Physics: The Fundamental Particles and Forces? (Cambridge, MA: Perseus Publishing)
[24] FootR,Joshi G C, Lew H and Volkas R R 1990 Mod. Phys. Lett. A52721
[25] FootR, Lew Hand Volkas RR 1993 J. Phys. G: Nucl.Part. Phys. 19 361
[26] Delbourgo R and Salam A 1972 Phys. Lett. B 40 381
[27] Eguchi T and Freund P G O 1976 Phys. Rev. Lett. 37 1251
[28] Alvarez-Gaumé L and Witten E 1983 Nucl. Phys. B 234 269
[29] Baumann J, Gahler R, Kalus ] and Mampe W 1988 Phys. Rev. D 37 3107
[30] Altschul B2007 Phys. Rev. Lett. 98 261801
[31] BressiG, Carugno G, Della Valle F, Galeazzi G, Ruoso G and Sartori G 2011 Phys. Rev. A 83 052101
[32] HoriM etal2011 Nature 475 484
[33] GiuntiCand Studenikin A 2015 Rev. Mod. Phys. 87 531
[34] AhmadiM et al (ALPHA Collaboration) 2016 Nature 529 373
[35] Polchinski] 2004 Int. J. Mod. Phys. A19 145
[36] GuptaSN 1950 Proc. Phys. Soc. A 63 681
[37] Bleuler K 1950 Helv. Phys. Acta 23 567
[38] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1989 Photons and Atoms: Introduction to Quantum Electrodynamics
(Morlenbach: Wiley-Interscience)
[39] Milonni P W 1994 The Quantum Vacuum: An Introduction to Quantum Electrodynamics (New York: Academic)
[40] Schrodinger E 1930 Sitzungsb. Preuss. Akad. Wiss. Phys.-Math. KI. 24 418
[41] Barut A O and Bracken A J 1981 Phys. Rev. D 23 2454
[42] Foldy LLand Wouthuysen S A 1950 Phys. Rev. 78 29
[43] DiracP AM 1930 Proc. R. Soc. Lond. A 126 360
[44] Weinberg S 2016 The Quantum Theory of Fields vol 1: Foundations (Cambridge: Cambridge University Press)
[45] Berry MV 2002 Phys. Today 55 10
[46] Cawood W and Patterson H S 1931 Nature 128 150
[47] Linse P and Lobaskin V 1999 Phys. Rev. Lett. 83 4208
[48] Bruneval F, Crocombette J-P, Gonze X, Dorado B, Torrent M and Jollet F 2014 Phys. Rev. B89 045116
[49] dos Santos A P, Girotto M and Levin Y 2016 J. Chem. Phys. 144 144103
[50] Ewald P P 1921 Ann. Phys. 369 253
[51] Evjen HM 1931 Phys. Rev. 39 675
[52] Grosso RP]Jr., Fermann] T and Vining W] 2001 J. Chem. Educ. 78 1198
[53] Wigner E 1934 Phys. Rev. 46 1002
[54] Wigner E 1938 Trans. Faraday Soc. 34 678
[55] Coldwell-Horsfall R A and Maradudin A A 1960 J. Math. Phys.]J. Math. Phys. 1 395
[56] FuchsK 1935 Proc. R. Soc. A151 585
[57] Hueckel T, Hocky G M, Palacci J and Sacanna S 2020 Nature 580 487
[58] YiS,Pan Cand HuZ 2017 J. Chem. Phys. 147 126101
[59] Malmberg] H and de Grassie ] S 1975 Phys. Rev. Lett. 35577
[60] Malmberg] Hand O’Neil T M 1977 Phys. Rev. Lett. 39 1333
[61] Davidson R C 1990 Physics of Non-Neutral Plasmas (Reading, MA: Addison-Wesley)
[62] Smiet C B, Candelaresi S, Thompson A, Swearngin J, Dalhuisen ] W and Bouwmeester D 2015 Phys. Rev. Lett. 115 095001
[63] Pendry] B, Holden A ], Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[64] Pendry] B, Holden A J, Robbins D J and Stewart W] 1998 J. Phys. Condens. Matter 10 4785
[65] Lee BW and WeinbergS 1977 Phys. Rev. Lett. 39 165

15


https://orcid.org/0000-0002-8809-5459
https://orcid.org/0000-0002-8809-5459
https://orcid.org/0000-0002-8809-5459
https://orcid.org/0000-0002-8809-5459
https://doi.org/10.1080/14786448108627031
https://doi.org/10.1080/14786449408620653
https://doi.org/10.1080/14786449708621070
https://doi.org/10.1103/PhysRev.2.109
https://doi.org/10.1063/1.2915126
https://doi.org/10.1007/BF01397481
https://doi.org/10.1038/118516a0
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1103/PhysRev.74.817
https://doi.org/10.1126/science.165.3895.757
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRev.182.1517
https://doi.org/10.1016/0370-2693(72)90532-1
https://doi.org/10.1103/PhysRevD.6.477
https://doi.org/10.1103/PhysRevD.6.429
https://doi.org/10.1142/S0217732390003176
https://doi.org/10.1088/0954-3899/19/3/005
https://doi.org/10.1016/0370-2693(72)90825-8
https://doi.org/10.1103/PhysRevLett.37.1251
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1103/PhysRevD.37.3107
https://doi.org/10.1103/PhysRevLett.98.261801
https://doi.org/10.1103/PhysRevA.83.052101
https://doi.org/10.1038/nature10260
https://doi.org/10.1103/RevModPhys.87.531
https://doi.org/10.1038/nature16491
https://doi.org/10.1142/S0217751X0401866X
https://doi.org/10.1088/0370-1298/63/7/301
https://doi.org/10.1103/PhysRevD.23.2454
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1098/rspa.1930.0013
https://doi.org/10.1063/1.1485555
https://doi.org/10.1038/128150a0
https://doi.org/10.1103/PhysRevLett.83.4208
https://doi.org/10.1103/PhysRevB.89.045116
https://doi.org/10.1063/1.4945560
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1103/PhysRev.39.675
https://doi.org/10.1021/ed078p1198
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1039/tf9383400678
https://doi.org/10.1063/1.1703670
https://doi.org/10.1098/rspa.1935.0167
https://doi.org/10.1038/s41586-020-2205-0
https://doi.org/10.1063/1.4998320
https://doi.org/10.1103/PhysRevLett.35.577
https://doi.org/10.1103/PhysRevLett.39.1333
https://doi.org/10.1103/PhysRevLett.115.095001
https://doi.org/10.1103/PhysRevLett.76.4773
https://doi.org/10.1088/0953-8984/10/22/007
https://doi.org/10.1103/PhysRevLett.39.165

10P Publishing Phys. Scr. 97 (2022) 035502 RP Cameron

[66] Dasgupta B and Kopp J 2021 Phys. Rep. 928 1
[67] Landau L D and Lifshitz EM 1971 The Classical Theory of Fields (Oxford: Pergamon)
[68] LiL-X 2016 Gen. Relativ. Gravit. 48 28
[69] Spergel DN 2015 Science 347 1100
[70] Efstathiou G 2003 Mon. Not. R. Astron. Soc. 343 L95
[71] Ellis G F R 2003 Nature 425 566
[72] Luminet ], Weeks J R, Riazuelo A, Lehoucq R and Uzan J 2003 Nature 425 593
[73] DiValentino E, Melchiorri A and Silk ] 2020 Nat. Astron 4 196
[74] Lyttleton R A and Bondi H 1959 Proc. R. Soc. A 252313
[75] Orito Sand Yoshimura M 1985 Phys. Rev. Lett. 54
[76] Caprini Cand Ferreira P G 2005 J. Cosmol. Astropart. Phys. JCAP02(2005)006
[77] Tryon EP 1973 Nature 246 396
[78] Upper D 1974 J. Appl. Behav. Anal. 7 497
[79] Krauss L M 2012 A Universe from Nothing: Why is there Something Rather than Nothing? (New York: Free Press)
[80] Proca A 1936 J. Phys. Radium 7 347
[81] Williams E R, Faller J Eand Hill H A 1971 Phys. Rev. Lett. 26 721
[82] Fulcher L P 1986 Phys. Rev. A33 759
[83] ChernikovM A, Gerber CJ, Ott H R and Gerber H-J 1992 Phys. Rev. Lett. 68 3383
[84] Cameron RP 2019 Res. Notes AAS 3 34
[85] Erofeev A L2020 Eur. Phys. J. C 80495
[86] Dolgov A and Pelliccia D N 2007 Phys. Lett. B 650 97
[87] Brisudova M, Kinney W H and Woodard R P 2001 Class. Quantum Grav 18 3929
[88] Poincaré H 1896 Compt. Rend. Acad. Sc. 123 530
[89] Béché A, Van Boxem R, Van Tendeloo G and Verbeeck ] 2014 Nat. Phys 10 26
[90] RyzhkinIA 2005 ]. Exp. Theor. Phys. 101 481
[91] Castelnovo C, Moessner R and Sondhi SL2008 Nature 451 42
[92] Bramwell ST, Giblin SR, Calder S, Aldus R, Prabhakaran D and Fennell T 2009 Nature 461 956
[93] DusadR, Kirschner FK K, Hoke ] C, Roberts B R, Eyal A, Flicker F, Luke G M, Blundell S J and Davis ] C 2019 Nature 571 234
[94] Alvarez LW, Eberhard P H, Ross R R and Watt R D 1970 Science 167 701
[95] Ambrosio M et al (The MACRO Collaboration) 2002 Eur. Phys. J. C25 511
[96] Bendtz K, Milstead D, Hichler H P, Hirt A M, Mermod P, Michael P, Sloan T, Tegner C and Thorarinsson S B 2013 Phys. Rev. Lett. 110
121803
[97] Acharya B et al (MoEDAL Collaboration) 2017 Phys. Rev. Lett. 118 061801
[98] Aad G etal (ATLAS Collaboration) 2020 Phys. Rev. Lett. 124 031802
[99] *tHooft G 1974 Nucl. Phys. B79 276
[100] Polyakov AM 1974 JETP Lett. 20 194
[101] Hunt BJ 1991 The Maxwellians (Ithaca: Cornell University Press)

16


https://doi.org/10.1016/j.physrep.2021.06.002
https://doi.org/10.1007/s10714-016-2028-3
https://doi.org/10.1126/science.aaa0980
https://doi.org/10.1046/j.1365-8711.2003.06940.x
https://doi.org/10.1038/425566a
https://doi.org/10.1038/nature01944
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1098/rspa.1959.0155
https://doi.org/10.1103/PhysRevLett.54.2457
https://doi.org/10.1088/1475-7516/2005/02/006
https://doi.org/10.1038/246396a0
https://doi.org/10.1901/jaba.1974.7-497a
https://doi.org/10.1051/jphysrad:0193600708034700
https://doi.org/10.1103/PhysRevLett.26.721
https://doi.org/10.1103/PhysRevA.33.759
https://doi.org/10.1103/PhysRevLett.68.3383
https://doi.org/10.3847/2515-5172/ab064b
https://doi.org/10.1140/epjc/s10052-020-8044-1
https://doi.org/10.1016/j.physletb.2007.05.004
https://doi.org/10.1088/0264-9381/18/18/311
https://doi.org/10.1038/nphys2816
https://doi.org/10.1134/1.2103216
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/nature08500
https://doi.org/10.1038/s41586-019-1358-1
https://doi.org/10.1126/science.167.3918.701
https://doi.org/10.1140/epjc/s2002-01046-9
https://doi.org/10.1103/PhysRevLett.110.121803
https://doi.org/10.1103/PhysRevLett.110.121803
https://doi.org/10.1103/PhysRevLett.118.061801
https://doi.org/10.1103/PhysRevLett.124.031802
https://doi.org/10.1016/0550-3213(74)90486-6

	1. Introduction
	2. Other work
	3. Explicit derivations in basic quantum electrodynamics.
	3.1. First and second boundary constraints
	3.2. Third boundary constraint
	3.3. Satisfying our boundary constraints; electric-charge quantisation
	3.4. Why are such observations not made routinely?
	3.5. Some comments on generality

	4. Implications for practical calculations
	4.1. Second boundary constraint
	4.2. Third boundary constraint

	5. Implications for the Universe
	5.1. First boundary constraint
	5.2. Second boundary constraint
	5.3. Do our boundary constraints actually apply to the Universe?

	6. Magnetic analogues
	Data availability statement
	Appendix Basic theory of quantum electrodynamics
	A.1. Fundamental domain and allowed wavevectors
	A.2. Basic operators and Hilbert space
	A.3. Indefinite metric
	A.4. Matter fields
	A.5. Electromagnetic field
	A.6. Hamiltonian
	A.7. Recovery of Maxwell’s equations

	References



