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Abstract We study radiative charm decays D — P Py,
P12 = m, K in QCD factorization at leading order and within
heavy hadron chiral perturbation theory. Branching ratios
including resonance contributions are around ~ 1073 for
the Cabibbo-favored modes into K7y and ~ 10~ for the
singly Cabibbo-suppressed modes into 7 t7~y, KT Ky,
and thus in reach of the flavor factories BES III and Belle II.
Dalitz plots and forward-backward asymmetries reveal sig-
nificant differences between the two QCD frameworks; such
observables are therefore ideally suited for a data-driven
identification of relevant decay mechanisms in the standard-
model dominated D — Kmy decays. This increases the
potential to probe new physics with the D — 7 7~y and
D —- KTK~y decays, which are sensitive to enhanced
dipole operators. CP asymmetries are useful to test the SM
and look for new physics in neutral |AC| = 1 transitions.
Cuts in the Dalitz plot enhance the sensitivity to new physics
due to the presence of both s- and ¢, u-channel intermediate
resonances.

1 Introduction

Decays of charmed hadrons provide unique avenues for
studying flavor in the up-quark sector, complementary to K
and B physics, and with great opportunities for experimental
study at the LHCb [1], Belle II [2], and BES III [3] experi-
ments. We discuss the three-body Cabibbo-favored standard-
model (SM) dominated modes D — Kmy as well as the
Cabibbo-supressed modes D — nwy and D — KKy.
The latter receive |AC| = 1 flavor changing neutral current
(FCNC) contributions and are sensitive to new physics (NP).
Our goal is to study QCD and flavor dynamics in and beyond
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the standard model (BSM) in the charm sector. Multi-body
decays supply off-resonant contributions to D)y — Vy,
V =p, K , ¢ [4] and, due to their richer final states, provide
opportunities for SM tests through angular observables, such
as polarization studies in D — Ki(— Kmm)y decays [5].
Due to the poor convergence of the expansion in inverse pow-
ers of the charm-quark mass, 1/m., strategies to probe for NP
in D decays are based on null tests, exploiting approximate
symmetries of the SM, such as CP and flavor symmetries, or
flavor universality [6].

We perform a comprehensive study of available theory
tools for radiative charm decay amplitudes. A new result is
the analysis of D — P P,y at leading order QCD factor-
ization (QCDF), with the P P,-form factor as a main ingre-
dient. The framework is formally applicable for light and
energetic (P; — P») systems. At the other end of the kine-
matic spectrum, for large (P; — P») invariant masses, we
employ the soft-photon approximation. We also re-derive
the heavy-hadron chiral perturbation theory (HH x PT) ampli-
tudes for D — Kmy decays put forward in Refs. [7,8], and
provide results for the FCNC modes D — 777~y and
D — KTK~y.We find differences between our results and
those in [7] which we detail in Appendix B2.

We compare the predictions of the QCD methods, with
the goal to validate and improve the theoretical description
via the study of the SM dominated decays. Then, we work
out the NP sensitivities of the FCNC modes D — mwy and
D — KKy in several distributions and observables.

The methods we employ, such as QCDF, are well-known
and established methods in B physics. In charm physics the
expansion parameters are numerically larger, and the system-
atic computation of amplitudes from first principles becomes
a challenging task — hence the importance of null tests. On
the other hand, while B physics has entered the precision
era, very few radiative or semileptonic rare charm decays
have been observed so far. Notably, there are no data on
D — P Py decay rates or its distributions. Therefore, while
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QCDF and HH x PT are not expected to perform as well as in
B physics, we take their qualitative agreement within their
ranges of validity as indicative of providing the correct order
of magnitude in charm physics. This is sufficient to make
progress given the experimental situation and leaves room
for theory improvements, which can come also in a data-
driven way, as we very concretely propose to do using decay
distributions.

The paper is organized as follows: in Sect. 2 we intro-
duce kinematics and distributions, and use QCD factorization
methods (Sect. 2.2) and Low’s theorem (Sect. 2.3) for predic-
tions for small and large P P-invariant masses, respectively.
In Sect. 2.4 we work out the HH x PT amplitudes and Dalitz
plots. We provide SM predictions for branching ratios and the
forward-backward asymmetries in all three approaches and
compare them in Sect. 3. In Sect. 4 we analyze the maximal
impact of BSM contributions on the differential branching
ratios and the forward—backward asymmetries. New-physics

K by P,. Moreover, e**FY is the totally antisymmetric Levi-
Civita tensor; we use the convention €923 = +1. The double
differential decay rate is then given by

d2F(D — P Py) 1 5 ,
= A A ) ,
dsdt 32Q1)%m), (' L™+ [Agl
2
where m p is the D-meson mass. We obtain
AT AP+ AL
dsdt — 128Q27)3m3,
X [m%(t - m%)(s — m%)) — m‘z‘sz —st(s 41— mZD)

The subscript L(R) refers to the left- (right-)handed polar-
ization state of the photon, and

_—1( - +iAy) ——1( - —iAy) @)
A; = A_+iA)x, Ap = A Ap)x,
t \/E K \/E

X = \/mzl (t— m22)(s — m2D) — mzm:D —st(s+1— sz) + m22(st + (s +1)mp —mp) /2, (@)

signals in CP asymmetries are worked out in Sect. 5. We con-
clude in Sect. 6. Auxiliary information on parametric input
parameters and form factors is provided in two appendices.

2 Radiative three-body decays in QCD frameworks

We review the kinematics of the radiative three-body decays
D — P1Pyy in Sect. 2.1. We then work out the SM predic-
tions using QCD factorization methods in Sect. 2.2, Low’s
theorem in Sect. 2.3, and HHxPT in Sect. 2.4.

2.1 Kinematics

The general Lorentz decomposition of the D(P) — P1(p1)
P>(p2)y (k, €*) amplitude reads

AD = Py Pyy) =A_ (5,0 [(p1 - b)(pa - €%)
—(p2 k) (p1 - €] + Ay (5. 00" PV & propapky, .

ey

with parity-even (A4) and parity-odd (A_) contributions.
The four-momenta of the D, P, P, and photon are denoted
by P, p1, p2 and k, respectively; the photon’s polarization
vectoris €*. Above, s = (p1+p2)? andt = (pr+k)? refer to
the squared invariant masses of the Pj—P, and P,—y systems,
respectively. We denote the negatively charged meson or the

@ Springer

where m(m>) denotes the mass of the P;(P,) meson. The
single differential distribution in the squared invariant di-
meson mass is then given by

dr 2T
= / dt
15

ds ). " dsdt’
o m —mitm)?
min 4S
2
| [ommamr s
4s 2 2/ ’ (6)
A (m2D —m%—l—m%)z
max 4S
2
B (s—m%—i—m%)z_ 2_1112D—s
4s T 5 |

and (m +m2)2 <s < m%).

2.2 QCD Factorization

Rare ¢ — uy processes can be described by the effective
four-flavor Lagrangian [4]

Lett =—=

2
(9,9")
> Vi Y0
q " uq i
V2 i=1

q.q'€ld,s}



Eur. Phys. J. C (2021) 81:45

Page 3 of 27 45

6 8
+) Ci0i+ ) (GO +c;0;)>. ()

i=3 i=7

Here, GF is Fermi’s constant and V;; are elements of the
Cabibbo—Kobayashi—-Maskawa (CKM) matrix. The opera-
tors relevant to this work are given by

0" o = (@LyuTqy) (@Lv"Ts) ,
O(q 0 (”LVML) (ELVMCL) ;
em - (8)
Or= 167-;2 (”L"WCR) Fuv,
7= % (ro" eL) Fuv

where the subscripts L(R) denote left-(right-)handed quark
fields, F,, is the photon field strength tensor, and 7% are
generators of SU(3) normalized to Tr{T°T?} = §9/2,
respectively. Because of an efficient cancellation due to
the Glashow-Iliopoulos—Maiani mechanism, only the four-
quark operators quz’q/) are induced at the W-scale pw
and receive order-one coefficients at the scale He ™~ Mg
of the order of the charm-quark mass. At leading order
in the strong coupling oy, the coefficients are given for

e € [me/v/2,\/ame | by 41

Cy € [-1.28,-0.83],

4 1
§C1 + §C2 € [—0.189, —0.018] . ©)

Cy € [1.14,1.06] ,

C

The peculiar combination of Wilson coefficients C arises in
the weak annihilation amplitude (see below); note that an
accidental numerical cancellation occurs in this combina-
tion, leading to a large scale uncertainty (see Table 1). This
effect is partially mitigated by higher-order QCD corrections
which we do not take into account in this work; see, e.g., Ref.
[4]. The tiny SM contributions to C3_g are a result of renor-
malization group running and finite threshold corrections at
the bottom-mass scale, and can be neglected for the pur-
pose of this work. For instance, the SM contribution of the
electromagnetic dipole operator O7 is strongly suppressed,
|CS®| ~ ©(0.001) at u. = m, at next-to-next-to-leading
order [6].

In this section we use QCDF methods [9-11] to calculate
the leading weak annihilation (WA) contribution shown in

Fig. 1.
‘We obtain
GFe - fDQu Fop
.AWA — Z V* V 1 Z(S)
— qq/) 9
V2 -k ) gg'etds)
G e JpQu
WA _ F D¥%u * P|P2
A= R %‘; }V Vua'Tig.H )
q N

(10)

c q
—=/! P2
q
DO
q//
Py
u 7

Fig. 1 The weak annihilation diagram for D — P;P,y. The blue
cross indicates the dominant photon emission from the light quark of
the D meson. Photon emission from the other quark lines is suppressed
by powers of Aqcp/m. or oy

where Q, = 2/3 denotes the electric charge of the up-type
quarks, and we decomposed P = v m p. The nonperturbative
parameter Ap ~ Aqcp is poorly known and thus source of
large theoretical uncertainties. In the following we use Ap =
0.1 GeV [4]. For the final states 77~y and KT K™y, the
remaining form factors f({;{;z) (s) can be expressed in terms
of the electromagnetic pion and kaon form factors [12]. For
the final states 7+ K~y and 7K y, we use the form factors
extracted from 7= — v; K, 79 decays [13] in combination
with isospin relations. We obtain for the non-vanishing form
factors

fad =—F"),
+ 1=0 1 1

fhay =30 - FTV ),

KtK~

f(m) =_3F1S(+(S), (11)
f —_

f(s,d) =/

fn()fo — L Kn~

(s.d) V2t

More details about the form factors are given in Appendix B1.
We recall that QCDF holds for light and energetic Pj—P; sys-
tems. This limits the validity of the results to s < 1.5GeV?,
corresponding to an approximate upper limit on a light
hadron’s or hadronic system’s invariant mass squared, includ-
ing the ¢. The WA decay amplitudes are independent of ¢.

2.3 Soft photon approximation

Complementary to QCDF, we use Low’s theorem [14] to
estimate the decay amplitudes in the limit of soft photons.
This approach holds for photon energies below m% /Ep [15],
which results in s > 2.3GeV? for D — K*K~y and s >
3.4 GeV? for decays with a final-state pion. The amplitude
is then given by [16]
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eA(D — PP O+ N
Alov — _ ( 1P2) ’ (12) p,ﬁwu ot KA
(p1-Kk)(p2-k) 5o im _ T e o
' ' ' ’ Pu = ﬁp/L , Pu = Py ‘s K# ,
while A]_;OW = 0. There is no such contribution to D — K*— ?O o,
B n

79K Oy, since only neutral mesons are involved. The mod-
ulus of the D — Pj P, amplitudes can be extracted from
branching ratio data using

B(D — P1P)

m
(13)

16rmpl'p

_AD — P1P2)|2J (1 _ (my +m2)2> (1 _ (my —mp)?
= p

mp

where I'p is the total width of the D meson. Using the param-
eters given in Appendix A, we obtain

|A(D — 777)| = (4.62 £0.04) - 1077 GeV,
|A(D — 7TK7)| = (2.519£0.014) - 107°GeV,  (14)
|AD - KTK™)| = (8.38£0.09) - 1077 GeV.

Low’s theorem predicts that the differential decay rate
behaves as [17]

C;—F ~ 2; . (15)
s omp—s

Consequently, there is a singularity at the boundary of the
phase space. This corresponds to a vanishing photon energy
in the D meson’s rest frame. The tail of the singularity dom-
inates the decay rate for small photon energies. We remove
these events for integrated rates by cuts in the photon energy,
as they are of known SM origin and hamper access to flavor
and BSM dynamics.

2.4 HHxPT

As a third theory description we use the framework of heavy
hadron chiral perturbation theory (HH x PT), which contains
both the heavy quark and the SU (3)1, x SU (3) g chiral sym-
metry. The effective Lagrangian was introduced in [18-20]
and extended by light vector resonances by Casalbuoni et
al. [21,22]. We follow the approach of Fajfer et al., who
studied radiative two-body decays D — Vy [23,24] and
Cabibbo allowed three-body decays D — K~ mty [7] and
D — ?Onoy [8] in this way.
The light mesons are described by 3 x 3 matrices

%—l—"—% xt Kt
_ in — - _z’ i ko
u—exp<f), IT= T ﬁ"'\/a K ,
K- [
(16)
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where f =~ f; is the pion decay constant and g, = 5.9
[25-27]. To write down the photon interaction with the light
mesons in a simple way, we define two currents

Vy = (uTDMu + uDMuT) ,

(18)

N = N =

A, = (uTDMu — uDMuT) .

Here, the covariant derivative acting on u and u" is given by
D,u'" = 3,u" +ieB, Qu", with the photon field B,, and
the diagonal charge matrix Q = diag(2/3, —1/3, —1/3).
The even-parity strong Lagrangian for light mesons is then
given by [25-27]

Liight = _%2 [Trp (.AMA“) +aTrp ((Vu - ﬁu)z)]

1 n o
+@ Trr (Fuv(,O)FW(,O)) s (19)

v

where Fj,, (5) = 3,y — dvfy + [P, Av] denotes the field
strength tensor of the vector resonances. In general, a is a
free parameter, which satisfies a = 2 in case of exact vector
meson dominance (VMD). In VMD there is no direct vertex
that connects two pseudoscalars and a photon. In this case, the
photon couples to pseudoscalars via a virtual vector meson.
Analogously, the matrix element (P; P2|gy* (1 — y5)q’|0)
also vanishes. However, we do not use the case of VMD
and exact flavor symmetry, but allow for SU(3) breaking
effects. Therefore, we choose to set @ = 1 and replace the
model coupling g,, decay constant f, and vector meson mass
my = Ja/2g,f in Lign with the respective measured
masses, decay constants and couplings g, = ﬁm%, /8v-
They are defined by

(Vig. mljyl0) = 1" (@)gv(g>) . (20)
L e Y S )
K/here Ik ko = qy*q’ and j, , = ﬁ(uy u +
dy™d). Here, g and n denote the vector meson’s momen-
tum and polarization vector, respectively. For our numerical
evaluation we use gy (0) ~ gy (m%,) = my fy, where fy is

the vector meson decay constant with mass dimension one.
With these couplings the following V y interactions arise [24]

e 1 \/5
Lyyy = —EBM (gp,OO“ + ggww“ - Tg<1>q>“> . 2D
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Instead of the VVP interactions generated by the odd-parity
Lagrangian [28], we use effective VPy interactions

1
~ €8V Py€pvpo F*(B)a* Ve Pf + h.c. (22)

Lypy = —3

and determine the effective coefficients gy p, from experi-
mental data [7,29]

cwnl ol m)
1— — . 23
7 lgvpyl ( m%/) (23)

The heavy pseudoscalar and vector mesons are repre-
sented by 4 x 4 matrices

rwv — Py)=

1 -
Ha:§(1+¢) (Pauy - 6!7/5) ’
(24)
Ho =y H]y" = (Piiy" + P )—(1 9.
where P /(j), P(T) annihilate (create) a heavy spin-one and

spin-zero meson h, with quark flavor content cg, and veloc-
ity v, respectively. The annihilation operators are normalized
as

(O1Pglha(v)) =1,

s (25)
(O1P|hg (v, m) = "
The heavy-meson Lagrangian reads
Lheavy = 1Trp (Ha”u (Du)ab ﬁb)
+ig Trp (Hayuys(A")ap Hp)
+iBTrp (Have (V= %), Hy) | (26)

where the covariant derivative is defined as (D*),;, Hp =
O“H, + ZaM Hj, —ieQ.B*H,, with the electric charge
of the charm quark Q. = 2/3. The parameter g = 0.59
was determined by experimental data of strong D* — D
decays [30,31]. The coupling B seems to be very small and
will be neglected [32]. The odd-parity Lagrangian for the
heavy mesons is given by

L = iATr (Hyopn F* (D)ap Hp)
—)eTr (Hyo,, F* (BYH,) | 27

%[yﬂ, y,,]. The couplings A and A" can be
extracted from rations Rg/ * = rvt+ - pv v/
r* — DY r) A = —049GeV~! and ' =
—0.102GeV~! are in good agreement with data [7]. The
partonic weak currents can be expressed in terms of chiral

with o, =

currents as [23,33]

1 .
@, Qg = Iy = 5iaTr (y“(l _ yS)Hbu,;a)

2
+a; Tr ()/sHb( -V, ca)
+o Tr (V”VSHbva(ﬁ“ - V”)bcuja)

+ ...,
@jaen = I =i fu[ A" +a (v

_ﬁu)]uT]“’

ij
(28)

where the ellipsis denotes higher-order terms in the chiral and
heavy-quark expansions. The definition of the heavy-meson
decay constants implies o = fj,./my,. The parameters oy and
oy can be extracted from D — V transition form factors [7]

2
/ m
Ar(ghy) =22 _ TV,
mp +my gy (29)
2
mp+mym
Az(%%qax) = ZT g—“//az .
mp

Using the D — K* form factors [34] we obtain o =
0.188GeV? and a» = 0.086 GeVZ. The signs in (29) are
due to the conventions in [34]. The weak tensor current is
given by [35]

go" (1 +y5)0 = Jpr
= %ia Tr (qu(l + J/S)Hb“za)
Fioy (g’w‘g”ﬂ _ %ieuvaﬂ) Tr (ys Hp [va (68 — V,s)bc
5 (P = Va)y )
—azTr<c7“ ysHpve (5% — V%), *)+...,

(30)

where, again, the ellipsis denotes higher-order terms in the
chiral and heavy-quark expansions.

The parity-even and parity-odd amplitudes are given in
terms of four form factors

uHypr _ Gre 1 (q.9")
-5 v f(o-te) e

q.q'€{d,s} i

1 (q.9"
+5C1 D E
1
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3.0 A 103
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1074
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$ 1.00 - 0
0.75 A
-7
0.50 1 10
0.25
1078
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1.0 15 2.0 2.5 3.0 35
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Fig. 2 SM Dualitz plots for the decays D — Eorroy (upper left), D — K~ 7y (upper right), D — 77~y (lower left) and D — KTK~y

(lower right) based on HHx PT at . = m,

uaypT GFe
AHHPT _ ZFE

! (¢.4)
+ V2 Z VeqVua [(CZ_gCI)Xi:Biqq

q.q'€ld,s}

1 ¢.4)
+5C1 ZDi :
1

(€29

Here, A and B belong to the charged current opera-
tor (gq")uy-a@e)s_, = 403% and D and E to the
neutral current operator (Gq'),v—a(c)},_, = 80}‘1/"1) +

4 05‘1/"1) /3. The corresponding diagrams are shown in Figs. 18
and 19. The non-zero contributions are listed in Appendix B2,
where we also provide a list with differences between our
results and those in Ref. [7]. We neglect the masses of
the light mesons in the form factors, but consider them in
the phase space. To enforce Low’s theorem, we remove
the bremsstrahlung contributions A; > in (31) and add (12)
to ATPT For the strong phase we have taken the value

predicted by HHxPT. In Fig. 2 we show Dalitz plots

@ Springer

based on the SM HHyPT predictions. Besides the dom-
inant bremsstrahlung effects for large s, the intermediate
p, w, K* and ® resonances are clearly visible as bands in
s, t and the third Mandelstam variable, u = (p; + k)2 =
mZD—i—m%—i-m%—s—t.

3 Comparison of QCD frameworks

In this section, we compare the predictions obtained using
the different QCD methods in Sect. 2. We anticipate quan-
titative and qualitative differences between QCDF to lead-
ing order and HHx PT. First, we study differential and inte-
grated branching ratios in Sect. 3.1. In Sect. 3.2 we propose
to utilze a forward—backward asymmetry, defined below in
Eq. (32), to help disentangling the resonance contributions
to the branching ratios. This subsequently improves the NP
sensitivity of the D — PT P~y decays. We consider the
U-spin link, exploited already for polarization-asymmetries
in radiative charm decays [36], in Sect. 3.3.
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D - %K% D-n*K~y
QCDF 10-14 —-- Low's Theorem |
10-3 4 HHYPT QCDF l’
HHYPT + Low /
1075 10—3 4
¥ v
> > -5 4
§ 1077 A g1
%) %)
2 2
B E)
e ke
1079 107 4
101 107° 4
T T T T T T T T T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5
s[GeVv?] s[GeVv?]
D-n*n"y D-K*K~y
2] _
10 —=- Low's Theorem 1 10724 - Low's Theorem |
QCDF / QCDF /
HHYPT + Low / HHYPT + Low /
e
107 4 1074 7
L o L o]
3 1071 v
S S
%) w
3 3
K K
® 1004 | S 10-84
|
|
10-10 10710 4
T T T T T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5
s [GeV?] s [Gev?]

Fig. 3 The SM predictions for the differential branching ratios of
the decays D — foﬂoy (upper left), D — K~ m "y (upper right),
D — ntx~y (lower left) and D — K+TK ™y (lower right). Blue
bands correspond to QCDF, green bands to HH x PT and the red dashed

Table 1 SM and BSM branching ratios for D — nofoy , D —
7tK~y,D — ntn~y and D — K+TK~y. QCDF is applicable for
s < 1.5GeV?; to enable sensible comparison we also provide HHy PT

lines to the soft photon approximation. The lighter shaded areas and
lines illustrate extrapolations beyond the model’s region of applicabil-
ity. QCDF branching ratios are obtained for Ap = 0.1 GeV and are
 (0.1GeV/rp)?

branching ratios with this cut. Also given are HH PT predictions for
E, > 0.1GeV, see text for details. The QCDF branching ratios are
obtained for Ap = 0.1 GeV. The SM predictions are o (0.1 GeV /A )2

D — nofoy

D—natK~y

D—natn~y D— KTK~y

SM

s<1.5 GeV?2

SM

s<1.5 GeV?
SM

HHXPT|Ey30.1 GeV

BSM

s<1.5 GeV?

BSM

s<1.5 GeV?

BSM

HHYy PT|Ey >0.1 GeV B B

QCDF| (0.04 — 6.36) - 107

HHyPT| (0.9—-22)-1073
(2.1-5.0)-1073

QCDF|
HHyPT|

(0.01 — 1.28) - 1074
(72-9.2)-107
6.7—-172)-107*

(0.04 —5.16) - 10~° (0.05—-9.92) - 10~
62-7.1)-107°

3.9—-4.1)-107

(1.1 —1.6)- 107
(32—-3.5)-1073
(0.1 —10.5)-107°
0.9—-1.7)-107°
(3.2-3.6)-107°

0.6—=1.7)-1073
0©.9—-1.7)-107°
(43-53)-107°
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D - n°K%y D->n*K-y
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Fig. 4 The forward-backward asymmetry Apg(s) (32) as a function
of s. The red bands contain only non-resonant contributions. The green,
orange and light blue bands contain additional contributions of a spe-

U
P
a/
c q
Do 3
u u

cific resonance channel. The dark blue bands are the complete forward—
backward asymmetries according to HH x PT. To leading order QCDF
Apg(s) =0

u
Vi
q/
c q
D° Py
u u

Fig. 5 The dominant diagrams to D — V P(— P Py) in the Aqcp/m. and a; expansion. At order ag QCDF reproduces the naive factorization
[9]. The diagrams are shown for charged final state mesons. For the final state with uncharged mesons the « and g quark have to be exchanged

3.1 Branching ratios

The branching ratios for the various decay modes, obtained
from QCDF (blue bands), HHx PT (green bands) and Low’s
theorem (red dashed lines), are shown in Fig. 3. The width
of the bands represents the theoretical uncertainty due to the
e dependence of the Wilson coefficients.
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The shape of the QCDF results is mainly given by the
P — P, form factors and their resonance structure. For the
D — P1+ P,y decays, the high-s regions of the HH  PT pre-
dictions are dominated by bremsstrahlung effects. Since we
have replaced the model’s own bremsstrahlung contributions
by those of Low’s theorem, the results approach each other
asymptotically towards the large-s endpoint. Without this
substitution, the differential branching ratios from HHx PT
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Fig. 6 The SM predictions for the differential branching ratios of the
decays D — 7w~y (left) and D — KK~y (right) from a direct
QCDF computation (blue bands in upper plots), HHx PT computations
(green bands in lower plots) and from the D — K~z "y distribution

in this region would be about one order of magnitude larger.
For lower s, the impact of the resonances becomes visible.

In the soft photon approximation the photon couples
directly to the mesons. Therefore, there is no such contribu-
tion for the D — nofoy decay. Its distribution is dominated
by the w resonance which has a significant branching ratio
to 70y ; this is manifest in the Dalitz plot in Fig. 2.

Apart from the K*, p, and ¢ peaks, the shapes of the dif-
ferential branching ratios differ significantly between QCDF
and HH x PT, due to the ¢ and u-channel resonance contribu-
tions in the latter. This is shown in the Dalitz plot in Fig. 2.

In Table 1 we give the SM branching ratios for the four
decay modes. We employ phase space cuts s < 1.5GeV?,
the region of applicability of QCDF, or E, > 0.1 GeV, cor-
responding to s < 3.1 GeV?, to avoid the soft photon pole.
Here, £, = (sz —5)/(2mp) is the photon energy in the D
meson’s rest frame. Applying the same cuts in both cases, the
HHx PT branching ratios are generally larger than the QCDF

multiplied by | Vea/ Ves \2 and |V,s/ Vya |2, respectively (red bands). The
prediction for the SM-like mode D — K ~m "y in this figure is from
the respective models but could be taken from data

ones, except for the D — KK~y mode, where they are of
comparable size.

We recall that SM branching ratios within leading order
QCDF are proportional to (1/A p)2. Since Ap is of the order
of Agcp and we employ a rather low value Ap = 0.1 GeV
[4], the values in Table 1 should be regarded as maximal
branching ratios. The large uncertainty of these values arises
from the residual scale dependence of the Wilson coefficient
C (9). A measurement of the branching ratios of the SM-like
modes D — Ky thus provides an experimentally extracted
value of C/Ap. Color-allowed modes feature Wilson coeffi-
cients with significantly smaller scale uncertainty, and allow
for a cleaner, direct probe of Ap [4]. While Ap is poorly
known, it effectively drives the annihilation with initial state
radiation and experimental constraints are informative even
in the presence of sizable systematic uncertainties inherent
to QCDF in charm.
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Fig. 7 Comparison of QCDF-based SM predictions of differential branching ratios for D — 77~y (upper plots) and D — KK~y (lower
plots) within different BSM scenarios. One BSM coefficient is set to zero while the other one exhausts the limit (37) with CP-phase 0, £ /2, 7

3.2 Forward-backward asymmetry

Angular observables are also suitable for testing QCD mod-
els. We define the forward—backward asymmetry

I d*r tmax 7, d*T
App (s) = Jmi dtgsai = Jig . 4 asar
FBYI= Ty aer +ftmaxdtd2r’

tmin dsdt 1o dsdt

1
0= (s iy ).
(32)

where the first (second) term in the numerator corresponds
t0 0 < cos(hy) < 1 (=1 < cos(2,) < 0). Here, 6, is the
angle between P, and the photon in the P — P> center-of-
mass frame. In Fig. 4 we show the SM forward—backward
asymmetry based on HHxPT. In all decay modes Apg(s)
is dominated by intermediate vector resonances. To illus-
trate this, the forward—backward asymmetries are also shown
without or only with individual resonance contributions. The
(P1 P>)res resonances contribute to Apg only via interfer-
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ence terms, since the corresponding form factors depend
onlyons. For D — 7tn~y and D — KK~y the dia-
grams of the neutral current operator, which contain (P} )res
and (P»y )res Tesonances, give the same contribution to the
amplitude in the forward and backward region of the phase
space. For P; # P» this symmetry does not exist. In case
of the charged current operator, these resonances contribute
in different ways to the forward and backward region due
to the asymmetric factorization of the diagrams B3 (B20),
(B23), (B26). This effect is primarily responsible for the
shape of Apg in D — 777~y and D — K™K~y decays.
Apg(D — nofoy) is, like the differential branching ratio
shown in Fig. 2, dominated by the w resonance.

Since the WA form factors are only dependent on s, the
SM forward-backward asymmetry vanishes to leading order
QCDF. Therefore, we add contributions from ¢ and u-channel
resonances using a phenomenological approach. To this end,
we combine D — V P amplitudes with the effective V Py
coupling from Eq. (22).
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Fig. 8 Asin Fig. 7 but for HHxPT

We obtain

G 1
e _ j; VE Vg <C2 _ 8c1>

N ( 2my fpgvpy AV (m?)

(p2 +k)?— m%, +imyly

2my fvgvey FPY ((p1 +k)?)
(p1+k)2—m%,+imvrv '

(33)

where the first (second) term in (33) corresponds to the left
(right) diagram in Fig. 5. The amplitude for the final state
nofoy can be obtained from Eq. (33) by substituting C, —
1/6Cy — C2/2, m; — my, and p; < p;, and multiplying
by the factor —1/+/2. The D — P and D — V transition
form factors are taken from Ref. [34]. As expected, resulting
distributions based on (33) exhibit the same main resonance
features as the ones in HHchiPT, and are therefore not shown.

3.3 The U-spin link

We further investigate the U-spin link between the SM-
dominated mode D — K~ 7 *y and the BSM-probes D —
7t7~y and D — KT K™ y. In practice, a measurement of
B(D — K~ m"y) can provide a data-driven SM prediction
for the branching ratios of the FCNC decays. The method is
phenomenological and serves, in the case of branching ratios,
as an order-of-magnitude estimate. The U-spin approxima-
tion is expected to yield better results in ratios of observables
(which arise already at lowest order in the U-spin limit), such
that overall systematics drops out. Useful applications have
been made for polarization asymmetries in D — Vy decays
[36]. However, three-body radiative decays are considerably
more complicated due to the intermediate resonances, and
we do not pursue the U-spin link for the forward—backward
or CP asymmetries.

A comparison between | Vs |%/|Vya|?dB(D — K~ nty)/
ds withdB(D — KT K~y)/ds and |V,q|?>/|Ves|?dB(D —
K~—nTy)/ds withdB(D — n+tm~y)/ds is showninFig. 6.
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Fig. 9 The forward-backward asymmetry in the SM (blue band) and beyond for the decays D — 77~y and D — KK~y as a function of

s, based on the HHx PT form factors

For s 2 1.5 GeV the predictions of the direct calculations
and the U-spin relations are in good agreement. This holds
for both the extrapolations of QCDF and the HH x PT predic-
tions. In the second case this is due to the dominance of the
bremsstrahlung contributions and the U-spin relations of the
D — Py P, amplitudes. For s < 1.5 GeV, there are large
deviations due to the differences in phase space boundaries
and the different intermediate resonances.

At the level of integrated SM branching ratios we find

B— B(U-spin link) QCDF

B <15 Gev2 ~ —0:33(0.3), (34)
B — B(U-spin link)

Bp |§{§1X5P TGeV2 ~0.35(=2.3), (35)
B — B(U-spin link) |Hiy pT

B |Ey >0.1GeV 0.07 (-0.11), (36)

for the D — w7~ (K™K ™)y modes. Equations (34)—(36)
underline the main features of Fig. 6: as a result of the dom-
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inance of bremsstrahlung photons from Low’s theorem the
corrections (36) are small; the proximity of the ¢ to the phase
space boundaryin D — K Ky makes the U-spin limitin (35)
poor. In the other cases the U-spin symmetry performs as
expected, within ~ 30%.

4 BSM analysis

BSM physics can significantly increase the Wilson coef-
ficients contributing to ¢ — wuy transitions. Examples
are supersymmetric models with flavor mixing and chi-
rally enhanced gluino loops, or leptoquarks, see Ref. [4] for
details. In the following we work out BSM spectra and phe-
nomenology in a model-independent way. Experimental data
obtained from D — p°y decays provide model-independent
constraints [6,37]

1C71.1C71 S 0.3. 37)
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Fig. 10 As in Fig. 9 but within QCDF (40)

These values are in agreement with recent studies of D —
il decays [38]. In Sect. 5.1 we discuss the implications
of CP asymmetries in hadronic charm decays that can lead
to constraints on the imaginary parts of the dipole opera-
tors.

The D — P; P, matrix elements of the tensor currents
can be parameterized as

(P1(p1) P2(p2)[uo"’k, (1 £ ys)c| D(P))
=mp [d'p} +b'p5 + C/P":|22ih’6”“ﬂyp1ap2ﬂky] )
(38)

with the form factors a’, b’, ¢/, h’ given in App.B 2. The form
factors depend on s and ¢ and satisfy

ap-k+bpy-k+P-k=0. 39)

The BSM amplitudes are then obtained as

.Gre m, (' —a')
ABSM _ —(C7 4+ Cé)— R
- D 4r? v-k
Gi;m mp (40)
APM = = (C7 — Cph.

V2 2m?

In Figs. 7 and 8 we show differential branching ratios
for the FCNC modes based on QCDF and HH x PT, respec-
tively, both in the SM (blue) and in different BSM scenar-
i0s. One of the BSM coefficients, C7 or C§, is set to zero
while the other one is taken to saturate the limit (37) with
CP-phases 0, /2, . The same conclusions are drawn for
both QCD approaches: the D — KK~y branching ratio
is insensitive to NP in the dipole operators. In particular, the
benchmarks for O] and the SM prediction are almost iden-
tical. For O7 small deviations occur directly beyond the ¢
peak. On the other hand, BSM contributions can increase the
differential branching ratio of D — 777~y by up to one
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Fig. 11 Predictions for the CP asymmetries in D — m 7~y and

D — KTK~™y as a function of s, within the SM and beyond
(using (40)), based on QCDEF. For the BSM scenarios, we have set

order of magnitude around the p peak. However, due to the
intrinsic uncertainties from the Breit—Wigner contributions
around the resonance peaks it is difficult to actually claim
sensitivity to NP. This is frequently the case in D physics for
simple observables such as branching ratios. The NP sensi-
tivity is higher in observables involving ratios, such as CP
asymmetries, discussed in the next section.

The NP impact on App is sizable, see Fig. 9 for the
HHx PT predictions.

However, due to the complicated interplay of s-, - and
u-channel resonances further study in SM-like D — Kmy
decays is suggested to understand the decay dynamics before
drawing firm conclusions within NP. Since the form factors
depend on s and ¢, the pure BSM contributions (40) induce
a forward—backward asymmetry within QCDF, whereas it
vanishes in the SM (see Fig. 10).
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one coefficient C ;/) to 0 and the other one to 0.05, 0.2. The weak phase

of Cé/) is ¢y, = £7/2. We performed a cut s < 1.5GeV? to remain
within the region where QCDF applies

5 CP Violation

Another observable that offers the possibility to test for BSM
physics is the single- or double-differential CP asymmetry.
It is defined, respectively, by

A ()—/th 60 e l)_; dzr_dﬁ
cp(s) = cpls, 1), Cpis, 1) = F+T \dsdt dsdt]
41)

Here, T refers to the decay rate of the CP-conjugated mode.
Within the SM, D — K+ K™y is the only decay that con-
tains contributions with different weak phases and thus the
only decay mode with a nonvanishing CP asymmetry. A max-
imum of Aéll\f (s) < 1.4-107* located around the ¢ peak is
predicted by QCDF. Since the ¢ is a narrow resonance, the CP
asymmetry decreases rapidly with increasing s. BSM contri-
butions can contain further strong and weak phases and thus
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Fig. 12 Asin Fig. 11 but for HHy PT and with cut s < 2 GeV? to avoid large bremsstrahlung contributions in the normalization

significantly increase the CP asymmetry. In Fig. 11 we show
the predictions for the CP asymmetries within the SM and
for several different BSM scenarios, based on QCDF. We
assign a non-zero value to one of the BSM coefficients and
set the weak phase to ¢, = /2. The BSM CP asymme-
tries Acp(s) can, in principle, reach O(1) values. Constraints
can arise from data on CP asymmetries in hadronic decays;
these are further discussed in Sect. 5.1. We emphasize that
Acp depends on cuts used in the normalization I' + I. In
Fig. 11 we include the contributions up to s = 1.5 GeV?2.

HHxPT predicts a SM CP asymmetry Aél\P/I(s) < 0.7
10~ for the D — K+ K~y decay. In Fig. 12 we show the
same BSM benchmarks as before, employing HH x PT. We
performed a cut s < 2GeV to avoid large bremsstrahlung
effects in the normalization, which would artificially sup-
press Acp. Still, the CP asymmetries obtained using HHy PT
are smaller than those using QCDEF, since a larger part of the
phase space is included in the normalization.

For D — 77y, the contributions of A_ and A to the
CP asymmetries are of roughly the same size. Therefore, the

relative signs of the dipole Wilson coefficients in (40) results
in a constructive increase (for C 9) and a cancellation (for C7),
respectively, of the CP asymmetry. For the D — KTK ™y
mode, the ¢ resonance contributes only to A . Therefore, in
this case the CP asymmetry is dominated by the parity-even
amplitude.

In order to get additional strong phases and thus an
increase of the CP asymmetry, one could consider further
heavy vector resonances such as the ¢ (1680). Intermediate
scalar particles like fo(1710) [39] would also add additional
strong phases. We remark that Acp can change its sign in
dependence of s; therefore, binning is required to avoid can-
cellations. Acp is very small beyond the (P) P>)es peak due
to the cancellation of the (P] ) )res and (P2 ) )res contributions
upon integration over ¢. To avoid this cancellation one could
use the s- and t-dependent CP asymmetry Acp (s, ¢) as shown
in Fig. 13. Note that part of the resonance contribution to the
asymmetry is removed by the bremsstrahlung cut.
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Fig. 13 Dalitz plot of Acp(s, t) for D — 7 7~y (upper plots) and
D — K™K~y decays (lower plots) based on HHyPT. We have set
one BSM coefficient, C7 or C., to 0 and the other one to 0.1, with
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Fig. 14 Dalitz plot of Aél\rfl (s,t) for D — KK~y decays based on
HHPT for s < 2GeV?
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weak phase ¢, = /2. We employed a cut s < 2GeV? to avoid large

bremsstrahlung contributions in the normalization

5.1 CP phases and A Acp

We briefly discuss the impact of the chromomagnetic dipole
operators Og) on radiative charm decays, where

8sMe
Og = 1;7[; (Lo Guocr) |
m
04 = 3 (Gro " G et )

1672

(42)

and G, denotes the chromomagnetic field strength tensor.

We do not consider contributions from Og) to the matrix
element of D — P Py decays, which is beyond the scope of
this work. The corresponding contributions forthe D — Vy

decays have been worked out in Ref. [4].
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The QCD renormalization-group evolution connects the
electromagnetic and the chromomagnetic dipole operators
at different scales. To leading order we find the following
relation [4],

¥ me) = 0.4(cP(A) — ),
cd(me) ~0.4¢y (), (43)

which is valid to roughly 20% if A, the scale of NP, lies
within 1-10 TeV. It follows that CP asymmetries for radia-
tive decays are related to hadronic decays, a connection dis-
cussed in [40,41] in the context of AAcp = Acp(D —
KTK™) — Acp(D — mm™). The latter is measured by
LHCb, AAcp = —(15.4 £2.9) - 107 [42], and implies
AARE ~Im(Cs — C})siné < 2 - 1073 for NP from dipole
operators, with a strong phase difference § and Wilson coef-
ficients evaluated at 4 = m,. For sin§ ~ O(1), and Cg
only (or Cg only), strong constraints on the electromagnetic
dipole operators follow from (43), unless C7(A) > Cg(A),
as ImC7 ~ ImCg < 2 - 1073, We study the correspond-
ing CP asymmetries for D — P Py in the Dalitz region
as this avoids large cancellations from #- or u-channel res-
onances. Note that the latter have not been included in Ref.
[40]. We find values of Acp(s,t) upto ~ (3 —4) x 1073
which is more than one order of magnitude above the SM
with maximal values of ~ 2 x 10™%, shown in Fig. 14 for
D — K1tK~y. (As already discussed, the corresponding
SM asymmetry for D — 777~y vanishes at this order.)
The largest values for Acp(s, t) arise around the resonances,
notably the K* — Ky contributions to D — KKy.

The BSM CP asymmetries scale linearly with Im C 7(/). We
checked explicitly that the CP asymmetries for Im C;/) ~
21073 agree, up to an overall suppression factor of 50, with
those shown in Fig. 13 which are based on Im Cé/) ~ 0.1,
and are therefore not shown.

Note that the A Acp constraint can be eased with a strong
phase suppression. In general, it can be escaped in the pres-
ence of different sources of BSM CP violation in the hadronic
amplitudes. Yet, our analysis has shown that even with small
CP violation in the dipole couplings sizable NP enhance-
ments can occur.

6 Conclusions

We worked out predictions for D — P Py decay rates and
asymmetries in QCDF and in HHPT. The D — n¥tm~y
and D — KVK~y decays are sensitive to BSM physics,
while D — Ky decays are SM-like and serve as ““standard
candles”. Therefore, a future measurementofthe D — Knwy
decay spectra can diagnose the performance of the QCD
tools. The forward—backward asymmetry (32) is particu-

larly useful as it vanishes for amplitudes without #- or u-
channel dependence; this happens, for instance, in leading-
order QCDEF. On the other hand, 7- or u-channel resonances
are included within HHx PT, and give rise to finite interfer-
ence patterns, shown in Fig. 4. Within QCDF, the value of
C/Ap can be extracted from the branching ratio.

While branching ratios of D — 777~y can be affected
by NP, these effects will be difficult to discern due to the
large uncertainties. On the other hand, the SM can be cleanly
probed with CP asymmetries in the D — 777~y and
D — KTK~™y decays, which can be sizable, see Figs. 11
and 12. We stress that the sensitivity of the CP asymmetries is
maximized by performing a Dalitz analysis or applying suit-
able cuts in ¢ (see Fig. 13), as otherwise large cancellations
occur. Values of the CP asymmetries depend strongly on the
cutin s employed to remove the bremsstrahlung contribution.
The latter is SM-like and dominates the branching ratios for
small photon energies. The forward—backward asymmetries
also offer SM tests, see Fig. 9, but requires prior consolida-
tion of resonance effects.

Radiative charm decays are well-suited for investigation
at the eTe™ flavor facilities Belle II [2], BES III [3], and
future e e~ -colliders running at the Z-pole [43]. Branching
ratios for D° — 7t7~y and D — K+K~y decays are
of the order 1073, see Table 1. With fragmentation fraction
f(c - D% ~0.59and cé production rates of 550- 10° (Fcc-
ee) and 65 - 10° (Belle IT with 50ab™1) [43] this gives 6- 10!
and 8- 100 neutral D-mesons and sizeable (unreconstructed)
event rates of 6 - 10% and 8 - 10°, respectively. Rates for
the “standard candles” D° — 77K~y are one order of
magnitude larger. We look forward to future investigations.
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Appendix A: Parameters
The couplings, masses, branching ratios, total decay widths
and the mean life time are taken from the PDG [44]. The

mass of the ng results from the Gell-Mann—-Okubo (GMO)
mass formula [45,46]

4m%( — m%
Mmys = ——=—— = 0.56929 GeV.
3

The CKM matrix elements are taken from the UTfit collab-
oration [47]

Vg = 0.9743140.00012,  V,; = 0.22514 4 0.00055,
Vea = (—0.22500 =+ 0.00054) exp [i(0.0351 £ 0.0010)°] ,
Ves = (0.97344 + 0.00012) exp [i(—0.001880 + 0.000055)°] .

The decay constant of the D-meson is given by the FLAG
working group [48]

fp = (0.21215 £ 0.00145) GeV,
fp, = (0.24883 £ 0.00127) GeV,
fx = (0.1556 £ 0.0004) GeV,
f= = (0.1302 £0.0014) GeV.

The gg —ss mixing scheme [49] and x PT [50] provide decay
constants for ng and ng

4 1

fos = /gflg — 32 = (01632 £ 0.0006) GeV.
2 2 1 2

fao =\ 3/% + 313 = (0.1476 £ 0.0005) GeV.

These values are in agreement with values extracted from
n") — yy decays [49]

fus = (0.164 £ 0.006) GeV, f;, = (0.152 £0.004) GeV.

The decay constants of the vector mesons are given by [51,
52] (and references therein)

fp = (0.213 £ 0.005) GeV Jfo = (0.197 £0.008) GeV,
fo = (0.233 £0.004) GeV, fgx+ = (0.204 £ 0.007) GeV.
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Appendix B: Form factors
1. Vacuum — P P transition form factors

The electromagnetic pion form factor F2™ is defined as

(T (P (p1jM10) = (1 — P2 FE™(s) s (BI)

with the electromagnetic current

. 2_ 1_
]ﬁm = guyﬂu — gdyﬂd — gsyus

1 _ — 1 _ — 1_
= E(MVU-M —dyud) + 6(”)’#"‘ +dy,d) — §sVuS

1 1 1
— Y - (1=0) -
= \/EJII. 3ﬁJ/L - 5];1
— gu=n (I=0) !

= =0 4 g 0=0 4 s

=0 4
(B2)

In the isospin symmetry limit, only the / = 1 current con-
tributes to F2™, which reads [12]

3
F;m(s) = |:ZCnBWnKS(S):|
fit

n=0

+ [Z cnBW, 5 (s)

} , (B3)
n=4 dual—QCDyp=c

where the coefficients ¢, are given by

co = 1.1714+0.007, ¢; = —0.119+£0.011,
¢2 = 0.0115 £0.0064, ¢3 = —0.0438 +0.02,
2(=1)"T'(1.8)m?
cp = n>4,
Jam2C(n + (1.3 — n)
my, =mo (1 +2n)

(B4)

and the functions B WnK S(s) read

m2

n
m% -5 —i\/EFn(s)’

_02m) ([ ps) )
) == <p(m,%>)’

p(s) =0.5,/s —4m2.

The masses and widths of the p meson and its first resonance
are fitted as well

BWKS(5) =

(B5)

mp = (0.7739 £0.0006) GeV, m, = (1.357£0.018) GeV,

Tp = (0.1149 £0.0010) GeV, T, = (0.437 £ 0.060) GeV.
(B6)

F7™ is shown in Fig. 15.
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Fig. 15 The real and imaginary
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The electromagnetic kaon form factor F;’(‘ﬂ, defined as

(KT (pK ™ (p2)1J5™10) = (p1 — p2)uFR(s), (B7)

is taken from [12] and shown in Fig. 16. It can be decom-
posed into an isospin-one component F I((If D and two isospin-

Zero components F (/=0) Flsﬁ, with @ and ¢ contributions,

respectively,

+(S)
1
E(cffBWp (s) + e BW,y(s) + ch BW,i(s)),

Fe) = F0 @+ FEP @) + F

I=1
FI((+ )(S) =

FE0s) = (cjf BW.(s) + ¢ BW,y () + cl BW,y(s)),
1
Fii(s) = §(c¢BW¢ () + cgy BWy (s)).
(B8)

The requisite parameters are given by
mg = 1.019372GeV, my = 1.68GeV,
my = 1.465GeV,
myr = 1.720GeV, my = 1.425GeV,
myy = 1.67GeV,
Iy =0.00436GeV, I'y =0.150GeV,
', =0.150GeV, I, =0.400GeV,
Iy =0.250GeV, T, =0.0084GeV, (BY)

I, =0215GeV, T, =0315GeV,

¢p = (1.018 £0.006), ¢y = (—0.018 £ 0.006),
ch = (1.1954£0.009), ck = (=0.112£0.010),
ff,, = (—0.083 £ 0.019),
cX = (1.195 £ 0.009),

K

¢, » = (—0.083 £0.019).

w

c

X = (-0.112£0.010),

The K7~ form factors are defined as

(r~ (P K (p2)|5y,ul0)

= 5 2= PO+ 5T O (24 P,

| Ak
= 28T KT () (pa 4 p1)y

+ [(Pz —pD,+ Tﬂ (p2+ pl)u] 57 (s), B10)

with Ag, = m% — m% The vector form factor ff”7 , shown

inFig. 17, can be parametrized with a dispersion relation with
three subtractions at s = 0 [13]

) = £F70) - exp [x;

Scut 8[(71 (S/)
_/K (S/)%S—S—IE)

with sgr = (mg + my)?. The phase 85” (s) is extracted
from a two resonance model [13]

7R () = ) _ mhe ke Ak @+ s ps
" K70 D(K*) D(K*)’
(B12)
where

D(n) = m? —s — kyRe (ﬁxn(s)) — MY (s)

3

— S Tkz®)
Yn () = Vn m% 0'13(7.[(1%%)7
2k (s) 1

= (s = i +m0)2) (5 = (mc = mr)?),

1927 fx fr a
Kn = >3 (mz) m—

Km n n

Yn = Vn(m%)y

ok (s) =

(B13)

The function Hg is a XPT loop integral function [53]

Hin(s) = Hir (s) — f S Las
1 r
= 2 [Mix () = Lix )] (B14)
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Fig. 16 The real and imaginary parts of the electromagnetic kaon form factors (B8) (left) as well as their absolute values (right) as a function of
(I=1,0) (s
s. The upper (lower) plots show F (Fg+)

Fig. 17 The real and imaginary
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the two resonance models as 104 H

well as in the dispersive lll """" Im(Fgisp)

description. The form factor is 54 H ';‘

extracted from 7~ — v K7 ;' S

decays [13]. For K%7° and 0 —==' | TTememmemmeeeeee 1094

K ™7™, we use isospin relations

(11) -5

-10 T T T T T T T T T T T T T T
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explicit expressions for M" (s) and L (s) can be found in chap- kKyT () + —— 1
ter 8 of Ref. [54]: 28872

A2_
Liz(s) = ZJKJT(S) ,

A2— Kxen (1) = 11 2 m%( 2, m%
n|—|— n|—=%
Migr(s) = 5 (s—zz)JKn(sH T kns) Kall =32 A \"MK M\ 2 ) T 2 ) )
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Tkn(s) = Tkn(s) — 5T, (0),
7K7r(s)—JK7r(s) JKn(O)

(et T

~ 302 s a2
_Y ((s+v)2—A2))
s (s—v)2—-A2))°

— 1 ) m%(m2 m2
J O)=—[—=+2—""TLIn| X ,
kx (0 3272 <A2 + A3 m%(

v(s) = 50k (),
2 2
Y =myx +mg,

A=my —m>. (B15)

The renormalization scale u is set to the physical resonance
mass 4 = mg~ [13]. The resonance masses and width param-
eters are unphysical fitting parameters. They are obtained as
(13]

mil, = (0.94341 + 0.00058) GeV,
)/K* = (0.06672 + 0.00086) GeV,
mf K,, = (1.374 £ 0.030) GeV,
Y, = (0.24 £0.10) GeV,
Ser =4GeV2,  =mbY =0.892GeV,
B=(=39+15) 1072,
A= (24.66 £0.69) - 1072,
= (11.99 £0.19) - 1074,
[Vas | £ K77 (0) = 0.21664 + 0.00048. (B16)

2. HHx PT form factors
a. Vector form factors

The Feynman diagrams are shown in Figs. 18 and 19.
D — 7Ky

g9 _ /pfk v-k
1 T8
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1 1
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Fig. 18 Feynman diagrams for D" o mt o P
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factors B and D. The diagrams

Fig. 19 Feynman diagrams for DO Dox B p° Df D, DO DO D,

the D — 7™ K~y decay, which ¥ K \ | \ |

contribute to the parity-odd form | | | 1 1
R o K- 7 gt 7 K- ot

+ —
for the decay+s D7—>n 7y Biy Bis By s
and D — K* K~y are obtained
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b. Tensor form factors

See Fig. 20.
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Fig. 20 Feynman diagrams D* D*
contributing to the tensor current DY (s) DO DO (s) e Dt
form factors a’, b’, ¢’ and h’ { { ! P
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c. Differences with respect to [7]

In the following, we list some differences between our results
and those obtained in Ref. [7]. Equation numbers refer to Ref.

[7].

Eq. (9): the factor i should be absent

Eq. (15): the electromagnetic coupling e is missing

Eq. (18): the factor i in front of the A, term is missing

Eq. (21): the sign in front of a should be a 4 (as written

in [23])

5. The Wilson coefficients aj and a; are missing in the ampli-
tudes in Eqgs. (24) and (29).

6. The contributions of the diagrams AII, le and AQ 1
vanish in our calculation. ’ , 7

7. We believe that there are diagrams that have not been
shown in Ref. [7]: For each of the diagrams A |, AY ,,
AY 5 AS,, A5, AY,. €Y, Y, €75 and €Y, there
is another one in which the photon couples via a vector
meson. Moreover, we find two additional diagrams for
CY. The first one is the same diagram as Ag 5, but with
a different factorization. The second is another diagram
witha V — P Py vertex. Only with these two additional
diagrams we obtain an expression that is gauge invariant
for any value of a. However, we obtain C9% =0, as in Ref.
[7].

8. We reproduce AT, but for A? we get an expression ~
(g-k) =M@ -k+v-q).

9. We have an extra factor of 2 in Dg.

. We obtain a relative minus sign for each vector meson in

a diagram; however, we get the same relative signs for

Rg/ *as given in Egs. (24) and (25) [23].

L=
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