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A quantum machine learning algorithm based on

generative models

X. Gao'#, Z.-Y. Zhang'?, L.-M. Duan™?*

Quantum computing and artificial intelligence, combined together, may revolutionize future technologies. A
significant school of thought regarding artificial intelligence is based on generative models. Here, we propose
a general quantum algorithm for machine learning based on a quantum generative model. We prove that our
proposed model is more capable of representing probability distributions compared with classical generative
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models and has exponential speedup in learning and inference at least for some instances if a quantum com-
puter cannot be efficiently simulated classically. Our result opens a new direction for quantum machine learning
and offers a remarkable example where a quantum algorithm shows exponential improvement over classical

algorithms in an important application field.

INTRODUCTION

A central task in the field of quantum computing is to find applications
where a quantum computer could provide exponential speedup over
any classical computer (1-3). Machine learning represents an important
field with broad applications where a quantum computer may offer sub-
stantial speedup (4-14). The candidate algorithms with potential expo-
nential speedup in runtime so far rely on efficient quantum solutions of
linear algebraic problems (6-11). These algorithms require quantum
random access memory (QRAM) as a critical component in addition
to a quantum computer (4, 5, 15). In a QRAM, the number of required
quantum routing operations (16) scales up exponentially with the num-
ber of qubits in those algorithms (9, 15, 17). This exponential overhead
in resource requirement poses a serious challenge for its experimen-
tal implementation and is a caveat for fair comparison with the cor-
responding classical algorithms (5, 18).

A significant school of thought regarding artificial intelligence is
based on generative models (19-21), which are widely used for prob-
abilistic reasoning as well as for supervised and unsupervised machine
learning (19-21). Generative models try to capture the full underlying
probability distributions for the observed data. Compared to discrim-
inative models such as support vector machines and feed-forward
neural networks, generative models can express far more complex re-
lations among variables, which makes them broadly applicable but at
the same time harder to tackle (19, 21, 22). Typical generative models
include probabilistic graphical models such as the Bayesian nets and
the Markov random fields (19, 20, 22), and generative neural networks
such as the Boltzmann machines, the deep belief nets, and the gen-
erative adversarial networks (21). The probability distributions in
these classical generative models can be represented by the so-
called factor graphs (19, 21, 22). In section S1, we give a brief intro-
duction to generative and discriminative models and their applications
in machine learning.

Here, we propose a generative quantum machine learning
algorithm that offers potential exponential improvement on three
key elements of the generative models, that is, the representational
power, and the runtimes for learning and inference. In our introduced
quantum generative model (QGM), the underlying probability
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distribution describing correlations in data is generated by measuring
a set of observables under a many-body entangled state. In terms of the
representational power, we prove that our introduced QGM can effi-
ciently represent any factor graphs, which include almost all the clas-
sical generative models as particular cases. Throughout this paper, the
word “efficiently” means that the computational or memory cost is
bounded by a polynomial function of the size of the problem. Further-
more, we show that the QGM is exponentially more expressive than
factor graphs by proving that at least some instances generated by the
QGM cannot be efficiently represented by any factor graph with a
polynomial number of variables if a widely accepted conjecture in
the computational complexity theory holds, that is, the polynomial
hierarchy, which is a generalization of the famous P versus NP prob-
lem, does not collapse. For learning and inference in our QGM, we
propose a general heuristic algorithm using a combination of tech-
niques such as tensor networks, construction of parent Hamiltonians
for many-body entangled states, and recursive quantum phase estima-
tion. Although it is unreasonable to expect that the proposed quantum
algorithm has polynomial scaling in runtime in all the cases (as this
would imply that a quantum computer could efficiently solve any NP
problems, an unlikely result), we prove that, at least for some in-
stances, our quantum algorithm has exponential speedup over any
classical algorithms, assuming that a quantum computer cannot be
efficiently simulated in general by classical computers, a conjecture
that is believed to hold. Very recently, a different generative model
for quantum machine learning was proposed on the basis of a quan-
tum version of the Boltzmann machine (23). The quantum advantages
compared with the classical generative models, however, still remain
unknown for that model in terms of the representational power and
the runtimes for learning and inference.

The intuition for quantum speedup in our algorithm can be un-
derstood as follows: The purpose of generative machine learning is to
model any data generation process in nature by finding the underlying
probability distribution. As nature is governed by the law of quantum
mechanics, it is too restrictive to assume that the real-world data can
always be modeled by an underlying probability distribution as in clas-
sical generative models. Instead, in our QGM, correlations in data are
parameterized by the underlying probability amplitudes of a many-
body entangled state. As the interference of quantum probability am-
plitudes can lead to phenomena much more complex than those from
classical probabilistic models, it is possible to achieve marked im-
provement in our QGM under certain circumstances.
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RESULTS

Factor graphs and our QGM

We start by defining factor graphs and our QGM. Direct characteriza-
tion of a probability distribution of n binary variables has an exponential
cost of 2". A factor graph, which includes many classical generative
models as special cases, is a compact way to represent n-particle corre-
lation (21, 22). As shown in Fig. 1A, a factor graph is associated with a
bipartite graph where the probability distribution can be expressed as a
product of positive correlation functions of a constant number of varia-
bles. Here, without loss of generality, we have assumed constant-degree
graphs, where the maximum number of edges per vertex is bounded by
a constant.

Our QGM is defined on a graph state |G) of m qubits. As a powerful
tool to represent many-body entangled states, the graph state |G) is
defined on a graph G (24), where each vertex in G is associated with
a qubit. To prepare the graph state |G), all the qubits are initialized to
the state |[+) = (]0) + |1))/+/2 at the beginning, where |0), |1) denote
the qubit computational basis vectors, and then a controlled phase flip
gate is applied to all the qubit pairs connected by an edge in the graph G.
We then introduce the following transformation to the graph state |G)

(1)

where M; denotes an invertible (in general, nonunitary) 2 x 2 matrix
applied on the Hilbert space of qubit i. Note that for general nonunitary
M, the state |Q) cannot be directly prepared from the state |G) effi-
ciently, and in our following learning algorithm, we actually first
transform |Q) into a tensor network state and then use a combination
of techniques to prepare this tensor network state. From m vertices of
the graph G, we choose a subset of n qubits as the visible units and
measure them in the computational basis {|0), |1)}. The measurement
outcomes sample from a probability distribution Q({x;}) of n binary
variables {x;, i = 1, 2, --- n} (the other m — n hidden qubits are just
traced over to give the reduced density matrix). Given a graph G
and the subset of visible vertices, the distribution Q({x;}) defines our
QGM, which is parameterized efficiently by the parameters in the
matrices M;. As shown in Fig. 1C, the pure entangled quantum state

Q) =M, ® - ®M,|G)

|Q) can be written as a special tensor network state. We define our
model in this form for two reasons: First, the probability distribution
Q({x;}) needs to be general enough to include all the factor graphs;
second, for the specific form of the state |Q) introduced in this paper,
the parameters in this model can be conveniently trained by a quan-
tum algorithm on any given dataset.

Representational power of our QGM

Representational power is a key property of a generative model. It sets
the ultimate limit to which the model might be useful. The more prob-
ability distributions a generative model can efficiently represent, the
wider applications it can potentially have. The representational power
is also closely related to the so-called generalization ability of a probabil-
istic model (see section S2). In this subsection, we prove that the QGM
introduced above is exponentially more expressive in terms of the re-
presentation power compared with the classical factor graphs. This re-
sult is more accurately described by theorems 1 and 2. First, we show
that any factor graph can be viewed as a special case of our QGM by the
following theorem.

Theorem 1

The QGM defined above can efficiently represent probability distribu-
tions from any constant-degree factor graphs with arbitrary precision.
Concretely, the number of parameters in the QGM can be bounded by
0(2s), where s is the number of function nodes in the factor graph and
k is the degree of the graph.

As probabilistic graphical models and generative neural networks
can all be reduced to constant-degree factor graphs (22), the above
theorem shows that our proposed QGM is general enough to include
those probability distributions in widely used classical generative
models. In section S3, we show how to reduce typical classical generative
models to factor graphs with a bounded degree. Actually, by reducing
the degree of the factor graph through equivalence transformation (see
fig. S4), we can consider the factor graphs with degree k = 3 without loss
of generality.

Proof of theorem 1: First, in any factor graph with its degree
bounded by a constant k, each of the functions (denoted by square
nodes in Fig. 1) has at most k variables and therefore, by the universal

= M;;

Fig. 1. Classical and quantum generative models. (A) lllustration of a factor graph, which includes widely used classical generative models as its special cases. A
factor graph is a bipartite graph where one group of the vertices represents variables (denoted by circles) and the other group of vertices represents positive functions
(denoted by squares) acting on the connected variables. The corresponding probability distribution is given by the product of all these functions. For instance, the
probability distribution in (A) is p(x1, X2, X3, X4, Xs) = F1(X1, X2, X3, Xa)fa(X1, Xa, Xs5)f3(X3, X4)/Z, where Z is a normalization factor. Each variable connects to at most a constant
number of functions that introduce correlations in the probability distribution. (B) lllustration of a tensor network state. Each unshared (shared) edge represents a
physical (hidden) variable, and each vertex represents a complex function of the variables on its connected edges. The wave function of the physical variables is defined
as a product of the functions on all the vertices, after summation (contraction) of the hidden variables. Note that a tensor network state can be regarded as a quantum
version of the factor graph after partial contraction (similar to the marginal probability in the classical case), with positive real functions replaced by complex functions.
(C) Definition of a QGM introduced in this paper. The state |Q) represented here is a special kind of tensor network state, with the vertex functions fixed to be three
types as shown on the right side. Without the single-qubit invertible matrix M;, which contains the model parameters, the wave function connected by Hadamard and
identity matrices just represent a graph state. To get a probability distribution from this model, we measure a subset of n qubits (among total m qubits corresponding
to the physical variables) in the computational basis under this state. The unmeasured m — n qubits are traced over to get the marginal probability distribution P({x}) of
the measured n qubits. We prove in this paper that the P({x}) is general enough to include probability distributions of all the classical factor graphs and special enough
to allow a convenient quantum algorithm for the parameter training and inference.
7 December 2018
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approximation theorem (25), it can be approximated arbitrarily well
with a restricted Boltzmann machine with k visible variables and 2
hidden variables. In section S4, we give an accurate description of
the universal approximation theorem and an explanation of the
restricted Boltzmann machine. As the degree k of the factor graph
can be reduced to a very small number (such as k = 3), the number
of hidden variables 2* only represents a moderate constant cost, which
does not increase with the system size. In a restricted Boltzmann ma-
chine, only the visible and the hidden variables are connected by the
two-variable correlator that takes the generic form f(x;,x,) =
et tbuten ywhere x,. x, denote the binary variables and a, b, c are
real parameters. The representation precision using the universal ap-
proximation theorem does not affect the number of variables but only
depends on the range of the parameters 4, b, ¢, e.g., arbitrary prevision
can be achieved if g, b, c are allowed to vary over the whole real axis. As
Q({x;}) has a similar factorization structure as the factor graph after
measuring the visible qubits x; under a diagonal matrix M; (see
Fig. 2), it is sufficient to show that each correlator flx;, x,) can be
constructed in the QGM. This construction can be achieved by adding
one hidden variable (qubit) j with the invertible matrix M; between
two visible variables x; and x,. As shown in Fig. 2, Q({x, x,}) can
be calculated by contracting two copies of a diagram from Fig. 1C
as (Q|x1, x2)(x1, x2|Q). To make this equal to arbitrary correlation
f(x1, x,) between the two variables x; and x,, we first take the matrix
M]-TMj = M| + X + | + 2| = X — |, where |£) = (|0)£|1))/+/2, and
A and A, terms account for positive and negative correlations, respec-
tively. Here, positive (negative) correlation means that two variables
tend to be the same (different). The convex hull of these positive and
negative correlations generates any symmetric correlation of the form
g@x2—ax/2-ax/2 hetween the two variables x; and x,. Then, we take
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additional single-qubit matrix D; and D, to account for the remaining
difference between —ax,/2 — ax,/2 and bx; + cx, in the correlation
function f(x;, x,). Specifically, we take D; and D, to be diagonal with
eigenvalues /d;(x;) and \/da(x,), respectively. As shown in Fig. 2
(C and D), the correlator between x; and x, in the QGM is then given
by di (x1)da(x2)[M8x,x, + A2(1 — 8x,x,)] /2, and one simple solution
with d,(0) = d»(0) = M/2 = Land di(1) = &" * %, dy(1) = ¢+ % 0, =
2¢? makes it equal to the correlation function f(x;, x,) with arbi-
trary coefficients 4, b, c. From the above proof, each function node
introduces the number of parameters of the order O(2*) independent
of the representation precision. For a factor graph of s function nodes
(note that s is upper bounded by 1, where # is the number of varia-
bles), the total number of parameters is of the order 0(2%s). This
completes the proof.

Furthermore, we can show that the QGM is exponentially more
expressive than factor graphs in representing some probability dis-
tributions. This is summarized by the following theorem.
Theorem 2
If the polynomial hierarchy in the computational complexity theory
does not collapse, there exist probability distributions that can be effi-
ciently represented by a QGM but cannot be efficiently represented
even under approximation by conditional probabilities from any clas-
sical generative models that are reducible to factor graphs.

The rigorous proof of this theorem is lengthy and technical, and we
thus include it in section S5. Here, we briefly summarize the major idea
of the proof: In the QGM, we construct the underlying distribution by
adding up the probability amplitudes (complex numbers), while in the
factor graphs, we only add up probabilities (positive real numbers). The
complexity of these two addition problems turns out to be different:
Adding the positive probabilities up to get the normalization factor in
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Fig. 2. Efficient representation of factor graphs by the QGM. (A) General form of correlation functions of two binary variables in a factor graph, with parameters a, b,
¢ being real. This correlation acts as the building block for general correlations in any factor graphs by use of the universal approximation theorem (25). (B) Notations of
some common tensors and their identities: D is a diagonal matrix with diagonal elements \/m with x = 0, 1; Z is the diagonal Pauli matrix diag(1, —1); and |£) =
(|0)£|1))/+/2. (C) Representation of the building block correlator f(x;, x5) in a factor graph [see (A)] by the QGM with one hidden variable (unmeasured) between two
visible variables x;, x, (measured in the computational basis). As illustrated in this figure, f(x;, x,) can be calculated as contraction of two copies of a diagram from Fig.
1C as (QJxy, X2)(X1, X2|Q), where x;, X, are measurement results of the two visible variables. We choose the single-bit matrix D, D, to be diagonal with D; =
diag(4/d:(0),/d:(1)) and D, = diag(1/d,(0), 1/d>(1)). For simplification of this graph, we have used the identities shown in (B). (D) Further simplification of the
graph in (C), where we choose the form of the single-bit matrix M'M acting on the hidden variable to be MM = 1| + ) + | + A2 — ) — | with positive eigenvalues A;, A,.
We have used the identities in (B) and the relation HZH = X, where X (H) denotes the Pauli (Hadamard) matrix, respectively. By solving the values of A, &, d;(x1), da(x,) in
terms of a, b, ¢ (see the proof of theorem 1), this correlator of the QGM exactly reproduces the building block correlator f(x;, x,) of the factor graph.
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factor graphs is a nondecreasing process and its complexity is at a lower
level of the polynomial hierarchy in the computational complexity the-
ory according to the Stockmeyer’s theorem (26). In contrast, the sum-
mation of complex numbers to get the normalization factor in the QGM
involves marked oscillating behaviors, similar to the sign problem in the
quantum Monte Carlo method (27), which puts its computational
complexity at a much higher level. Because of this difference in the com-
putational complexity, by adding up probability amplitudes in the
QGM, we can generate a much wider type of distributions, which are
hard to represent by factor graphs through adding up the positive prob-
abilities. To represent some distributions generated by the QGM with
factor graphs, the number of parameters in the factor graphs is required
to scale up exponentially with the size of the QGM, and therefore, there
is an exponential gap between the representational power of these two
models if the polynomial hierarchy in the computational complexity
theory does not collapse.

Theorems 1 and 2 show that the QGM is much more powerful to
represent probability distributions compared with the classical factor
graphs. Representational power is important for the success of a ma-
chine learning model. It is closely related to the generalization ability.
Generalization ability characterizes the ability of a model to make a
good prediction for new data by using as few training data as possible.
Higher representational power usually implies better generalization
ability in practice (21, 28). Similar to the principle of Occam’s razor
in physics, a good choice for the machine learning model is the one with
a minimum number of parameters but still can well explain the ob-
served training data. The representational power characterizes this
feature by representing a wide class of distributions using as few
parameters as possible. Our QGM can efficiently represent some
probability distributions that are out of the reach of the classical
factor graphs, as the latter may need an exponentially large number
of parameters for the representation. This suggests that our proposed
QGM is a good choice for the machine learning model in terms of the
representational power.

As any factor graphs can be efficiently represented by our QGM, this
suggests that we should not expect that an arbitrary state |Q) can be
prepared efficiently with a quantum computer. If we can prepare arbi-
trary |Q) efficiently, we can efficiently solve the inference problem for
any factor graph, which is known to be an NP-hard problem and un-
likely to be fully solved with a quantum computer. The detailed proof of
this statement is included in section S6. For applications in generative
learning, we have the freedom to choose the topology and the parameter
form of |Q) and only need to use a subset of states |Q) that can be effi-
ciently prepared. Normally, we first construct the parent Hamiltonian
for the state |Q) (see section S7) and then use the tensor network for-
malism for its preparation, inference, and learning, as will be explained
in the next section.

A quantum algorithm for inference and training of our QGM
For a generative model to be useful for machine learning, apart from its
representational power and generalization ability, we also need to have
an efficient algorithm for both training and inference. Training is the
process of tuning parameters in a model to represent the probability
distribution as close as possible to that of the dataset. This usually in-
volves minimization of a cost function, which determines how close
these two distributions are. Once we have a trained model, we make
inference to extract useful information for analysis or prediction. Most
of inference tasks can be reduced to computing conditional probability
2,p(x, y|2) (22), where x, y, z denote different variable sets. For training,
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we choose to minimize the Kullback-Leibler (KL) divergence D(qq||pe) =
—X,q4(v)log(pe(v)/qa(v)) between gg, the distribution of the given data
sample, and pe, the distribution of the generative model, with the
whole parameter set denoted by 6. Typically, one minimizes D(qq4||pe)
by optimizing the model parameters 6 using the gradient descent
method (21). The 8-dependent part D(6) of D(q4||pe) can be expressed
as — Yycdata set 108 Po(v)/M, where M denotes the total number of data
points.

In our QGM, both the conditional probability 3,p(x, y|z) and the
gradient of the KL divergence dgD(8) can be conveniently calculated
using the structure of state |Q) defined in Fig. 1. We first define a tensor
network state |Q(z)) = (I ® {2|)|Q) by projecting the variable set z to the
computational basis. As shown in section S8, the conditional probability
can be expressed as

ZP(X,y|z) = W

> Q2)Q) @)

which is the expectation value of the operator O = |x) (x| under the state
|Q(2)). For inference problems, we typically only need to know the
distribution p(x|z) = ,p(x, y|2) in the label x by a constant precision.
This can be conveniently achieved by measuring the operator O under
the state |Q(2)). The measurement results correspond to an importance
sampling and automatically give the dominant x labels for which the
probability distribution p(x|z) has notable nonzero values. Similarly,
we show in section S8 that dgD(0) can be reduced to a combination of
terms taking the same form as Eq. 2, with operator O replaced by O; =
(06, M;)M;' + H.c. or Oy = |v;)(v|(9e,M;)M;* + H.c., where 6, de-
notes a specific parameter in the invertible matrix M;, v; is the qubit of
data v corresponding to the variable x;, and H. c. stands for the Hermi-
tian conjugate term. The variable z in this case takes the value of v (or v
excluding v;) expressed in a binary string.

With the above simplification, training or inference in the QGM is
reduced to preparation of the tensor network state |Q(z)). With an
algorithm similar to the one in (29), we use recurrent quantum phase
estimation to prepare the state |Q(z)). For this purpose, we first
construct the parent Hamiltonian H(z), which has a unique ground
state given by |Q(z)) with zero eigenenergy in the generic case as shown
in (30). The procedure is illustrated in Fig. 3, where the variables z = {z}
are grouped as in Fig. 3A. In this case, the corresponding local tensors in
the tensor network state |Q(2)) are all easy to compute and of a constant
degree. The parent Hamiltonian H(z) is constructed through contrac-
tion of these local tensors as shown in Fig. 3 (C and D) (30).

By constructing the parent Hamiltonian for the tensor network
state, the quantum algorithm for training and inference in the
QGM is realized through the following steps:

Step 1: Construct a classical description of a series of tensor network
states {|Qp} with t =0, 1,.., n, as shown in Fig. 3C, by reduction from |
Q.) = |Q(2)). The initial state |Qo) is a product state |0)®", and |Q,) is
constructed from |Q, _;) by adding one more tensor in |Q(z)) that is not
contained in |Q; _;) and setting the uncontracted virtual indices as 0.

Step 2: Construct a classical description of the parent Hamiltonian
H, for each |Q,) with the method illustrated in Fig. 3 (B to D) (30).

Step 3: On a quantum computer, starting from |Qo), we prepare
|Q1)>-r |Q,) sequentially. Suppose that we have prepared |Q, _;).
The following substeps will prepare |Q;) based on the recursive
quantum phase estimation to measure the eigenstates of the parent
Hamiltonian H,.
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Fig. 3. Illustration of our training algorithm for the QGM. (A) Training and inference of the QGM are reduced to measuring certain operators under the state |Q(z)). The key
step of the quantum algorithm is therefore to prepare the state |Q(2)), which is achieved by recursive quantum phase estimation of the constructed parent Hamiltonian. The
variables in the set z whose values are specified are called conditioned variables, whereas the other variables that carry the binary physical index are called unconditioned
variables. We group the variables in a way such that each group contains only one unconditioned variable and different groups are connected by a small constant number
of edges (representing virtual indices or hidden variables). Each group then defines a tensor with one physical index (denoted by p) and a small constant number of virtual indices
(denoted by i, j, k in the figure). (B) Tensor network representation of |Q(2)), where a local tensor is defined for each group specified in (A). (C) Tensor network representation of |Q;),
where |Q,) are the series of states reduced from |Q,). In each step of the reduction, one local tensor is moved out. The moved-out local tensors are represented by the unfilled
circles, each carrying a physical index set to 0. For the edges between the remaining tensor network and the moved-out tensors, we set the corresponding virtual indices to 0
(represented by the unfilled circles). (D) Construction of the parent Hamiltonian. The figure shows how to construct one term in the parent Hamiltonian, which corresponds to a
group of neighboring local tensors such as those in the dashed box in (C). After contraction of all virtual indices among the group, we get a tensor L,g,; which defines a linear
map L from the virtual indices j, j to the physical indices p, g, r. As the indices i, j take all the possible values, the range of this mapping L spans a subspace range(L) in the Hilbert
space H,, g, of the physical indices p, g, r. This subspace has a complementary orthogonal subspace inside H,,,, denoted by comp(L). The projector to the subspace comp(L)
then defines one term in the parent Hamiltonian, and by this definition, |Q;) lies in the kernel space of this projector. We construct each local term with a group of neighboring
tensors. Each local tensor can be involved in several Hamiltonian terms [as illustrated in (C) by the dashed box and the dotted box]; thus, some neighboring groups have non-
empty overlap, and they generate terms that, in general, do not commute. By this method, one can construct the parent Hamiltonian whose ground state generally uniquely
defines the state |Q;) (30) [technically, this step requires the tensor network to be injective (29), a condition that is generically satisfied for random choice of the tensor networks
(30)]. (E) States involved in the evolution from |Q; ;) to |Q;) by quantum phase estimation applied on their parent Hamiltonians. |Q: ; ), |Q}) represent the states orthogonal
t0|Q; _1), |Qs), respectively, inside the two-dimensional (2D) subspace spanned by |Q; 1) and |Q,). The angle between |Q;)and |Q; _;) is determined by the overlap n,= [(Q{Q; _1)|*
(F) State evolution under recursive application of the quantum phase estimation algorithm. Starting from the state |Q; _;), we always stop at the state |Q,), following any branch of
this evolution, where n, and 1 — 1, denote the probabilities of the corresponding outcomes.

Substep 1: We use the quantum phase estimation algorithm to mea-
sure whether the eigenenergy of the parent Hamiltonian H, is zero (31),
which implements a projective measurement to the corresponding ei-
genspaces {|QXQy|, I — |Q:XQ4} of H; with zero and nonzero eigenener-
gies, respectively (see Fig. 3E). Similarly, we can implement the
projective measurement {|Q; _;XQ; _1], I — |Q; _1XQ; _i|} by the quan-
tum phase estimation using the parent Hamiltonian H; _;

Substep 2: Starting from |Q, _;), we perform the projective measure-
ment {|QXQ/, I - |QXQ}. If the result is |Q), we succeed and skip the
following substeps. Otherwise, we get | Q})lying in the plane spanned by
|Qt —1yand |Qt>

Substep 3: We perform the projective measurement {|Q; _1XQ; 1|,

— Qs -1X{Q; _1|} on the state | Qj> The result is either |Q, _;) or }Qtil >

Substep 4: We perform the projective measurement {|QXQy|, I - |Qp)
{Q4} again. We either succeed in getting |Q,), with probability n, = Q|
Q, ,1)|2, or have |Qtl> In the latter case, we go back to the substep 3 and
continue until success.

Step 4: After successful preparation of the state |Q(z)), we measure
the operator O (for inference) or Oy, O, (for training), and the expec-
tation value of the measurement gives the required conditional prob-
ability (for inference) or the gradient of the KL divergence (for training).

In the following, we analyze the runtime of this algorithm for getting
the correct answer. Step 1 computes 7 tensor network states with run-
time O(n) because we only add one tensor with a constant number of
variables in constructing each of n states |Q,) with ¢ from 1 to n. Step 2

Gao et al., Sci. Adv. 2018;4:eaat9004 7 December 2018

computes # Hamiltonians with runtime O(n°™!) for some constant
which denotes the number of nodes involved for constructing a local
term of the parent Hamiltonians with the method shown in Fig. 3D
[thus, there are O(n) local terms]; H, constructed by this method ge-
nerically has the unique ground state |Q,) (30) and the larger c is, the
more likely there is no ground-state degeneracy.

A quantum computer is required for implementation of step 3.
When this step gives the correct answer, the correctness of this
algorithm is guaranteed. Let A, denote the energy gap for the parent
Hamiltonian H,. Because we require the precision of the quantum phase
estimation to be A to distinguish the ground state from the excited states
of H,, the quantum phase estimation algorithm in substep 1 has runtime
complexity O (n* /A) for the QGM defined on a constant-degree graph
(32-34), where A = min,A, and O ) suppresses slowly growing factors
such as (n/A)°Y (6, 30). The key idea of step 3 is that the subspace
spanned by {|Q), |Q; _1)}, as shown in Fig. 3E, is the invariant subspace
of all the projective operators involved. It can be seen from the evolution
tree of step 3 (shown in Fig. 3F) that the construction of |Q,) from |Q; _;)
can terminate within 2k + 1 iterations with probability

term(k) =1 — (1 — ﬂt)(ntz +(1- ﬂt)z)k (3)

This implies that within s steps of iteration, the probability of failure
to get |Q,) is smaller than pgy(s) < sne/2 for all ¢, where e is the base of the
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natural logarithm and 1 = min, (30). Denote the probability of failure to
get |Q,,) as €, then we require (1 — pgg)” = 1 — €, s0 s > n/(2nee) is suf-
ficient. Thus, the runtime of preparing |Q,) in step 3 is O (n**!/(nAg)).
Iterating from 1 to 7, we can get |Q(2)) with a probability of at least 1 — €.
Measuring operator O over |Q(z)) 1/8 times, the result will be an approx-
imation of the conditional probability to an additive error § as shown in
Eq. 2.

Therefore, the total runtime of approximating the conditional
probability is

T = O(n**"?/(nAed)) (4)

The gap A, and the overlap 1, depend on the topology of the graph
G, the variable set z, and the parameters of the matrices M;. If these
two quantities are bounded by poly (#) for all the steps ¢ from 1 to #,
this quantum algorithm will be efficient with its runtime bounded by
poly (n).

Gradient of the KL divergence for each parameter is constituted
by several simple terms (see section S8), where each term is similar to
the expression of the conditional probability except that the operator
O is replaced by O; or O,. The number of terms is proportional to M,
which is the number of training data for a full gradient descent
method, or the batch size using the stochastic gradient descent
method, which usually requires only O(1) data for calculation of the
gradient (22).

Quantum speedup

Although we do not expect the above algorithm to be efficient in the
worst case [even for the simplified classical generative model such as
the Bayesian network, the worst-case complexity is at least NP hard
(35)], we know that the QGM with the above heuristic algorithm will
provide exponential speedup over classical generative models for some
instances. In section S9, we give a rigorous proof that our inference and
learning algorithm has an exponential speedup over any classical
algorithm for some instances under a well-accepted conjecture in the
computational complexity theory. We arrive at the following theorem.
Theorem 3

There exist instances for computing the conditional probabilities or the
gradients of the KL divergence in our QGM to an additive error 1/ poly
(n) such that (i) our algorithm can achieve those calculations in a poly-
nomial time and (ii) any classical algorithm cannot accomplish them in
a polynomial time if universal quantum computing cannot be efficiently
simulated by a classical computer.

The proof of this theorem is lengthy and can be found in the Sup-
plementary Materials. Here, we briefly summarize the major idea. We
construct a specific |Q(z)) that corresponds to the tensor network repre-
sentation of the history state for universal quantum circuits rearranged
into a 2D spatial layout. The history state is a powerful tool in quantum
complexity theory (36). It is a superposition state of the entire comput-
ing history of an arbitrary universal quantum circuit

T
1
Snev-vw @

‘Whistory> = \/TT

where T'is the number of total gates in a quantum circuit, which is as-
sumed to be a polynomial function of the total qubit number m; |t} is a
quantum state encoding the step counter #; |0)®" is the input state of the
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circuits with m qubits; and V, is the tth gate. A similar type of the history
state has been used before to prove the QMA (quantum Merlin-Arthur)
hardness for spin systems in a 2D lattice (37). For this specific |Q(z)), we
prove that both the gap A, and the overlap 1, scale as 1/ poly () for all
the steps t, by calculating the parent Hamiltonian of |Q;) with proper
grouping of the local tensors. Our heuristic algorithm for training
and inference therefore can be accomplished in a polynomial time if
all the conditional probabilities that we need can be generated from
those history states. On the other hand, our specific state | Q(z)) encodes
universal quantum computation through representation of the history
state, so it not only should include a large set of useful distributions but
also cannot be achieved by any classical algorithm in a polynomial time
if universal quantum computation cannot be efficiently simulated by a
classical computer.

Here, we focus on the complexity theoretical proofs to support the
quantum advantages of our proposed QGM in terms of the representa-
tional power and the runtimes for learning and inference. Before ending
the paper, we briefly discuss the possibility to apply the model here for
solving practical problems in machine learning. We mention two
examples in section S10 and show a sketchy diagram there on how to
embed our QGM model into a typical machine learning pipeline. The
first example is on classification of handwritten digits, which is a typical
task for supervised learning. The second example is on completion of
incomplete pictures, a typical unsupervised learning task. The diagrams
in section S10 illustrate the basic steps for these two examples, which
require a combination of both classical and quantum computing. The
numerical test for these two examples requires efficient classical
simulation of the quantum computing part, which puts restrictions
on the topology of the underlying graph states, requires a lot of numer-
ical optimizations, and is still an ongoing project. The efficiency and
runtimes for real-world problems need to be tested with a quantum
computer or classical simulation of sufficiently large quantum circuits,
which, of course, is not a easy task and remains an interesting question
for the future.

Summary

In summary, we have introduced a QGM for machine learning and
proven that it offers potential exponential improvement in the represen-
tational power over widely used classical generative models. We have
also proposed a heuristic quantum algorithm for training and making
inference on our model, and proven that this quantum algorithm offers
exponential speedup over classical algorithms at least for some instances
if quantum computing cannot be efficiently simulated by a classical
computer. Our result combines the tools of different areas and generates
an intriguing link between quantum many-body physics, quantum
computational complexity theory, and the machine learning frontier.
This result opens a new route to apply the power of quantum
computation to solving the challenging problems in machine learning
and artificial intelligence, which, apart from its fundamental interest,
may have wide applications in the future.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaat9004/DC1

Section S1. A brief introduction to generative models

Section S2. Representational power and generalization ability

Section S3. Reduction of typical generative models to factor graphs

Section S4. Universal approximation theorem

Section S5. Proof of theorem 2
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Section S6. NP hardness for preparation of an arbitrary QGM state |Q)

Section S7. Parent Hamiltonian of the state |Q)

Section S8. Training and inference in the QGM

Section S9. Proof of theorem 3

Section S10. Applying the QGM to practical examples

Fig. S1. Parameter space of factor graph and QGM.

Fig. S2. Probabilistic graphical models.

Fig. S3. Energy-based neural networks.

Fig. S4. Simulating graphs of unbounded degrees with graphs of constantly bounded degrees.
Fig. S5. lllustration of the universal approximation theorem by a restricted Boltzmann machine.
Fig. S6. #P-hardness for the QGM.

Fig. S7. Contraction between two local tensors using the structure of QGM state and
conditioned variables.

Fig. S8. Construction of the history state.

Fig. S9. Flow chart for a machine learning process using the QGM.
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