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Abstract. Deep learning architectures in particle physics are often strongly dependent on the
order of their input variables. We present a two-stage deep learning architecture consisting of
a network for sorting input objects and a subsequent network for data analysis. The sorting
network (agent) is trained through reinforcement learning using feedback from the analysis
network (environment). The optimal order depends on the environment and is learned by the
agent in an unsupervised approach. Thus, the two-stage system can choose an optimal solution
which is not known to the physicist in advance. We present the new approach and its application
to the signal and background separation in top-quark pair associated Higgs boson production.

1. Introduction

In the past year, autonomization through machine learning methods continued to advance in
fundamental particle physics research [1-5]. Through their many network levels, deep neural
networks autonomously transfer their input into sophisticated variables, which are optimized for
answering a specific scientific question. In practice, however, common network architectures are
limited by the sequence of linear operations with nonlinear activation functions and optimization
by backpropagation. Challenges arise, for example, in questions where a suitable sorting of the
input variables is required [6].

An example of a non-trivial sorting challenge appears at modern collider experiments, where
microscopic processes appear in the sub-femtometer range and are not directly accessible. In
decays of massive particles with a short lifetime, such as the top quark or the Higgs boson, only
the hadrons, leptons and photons of the final state of the decays are visible in the detector. Thus
the short-lived massive particles need to be reconstructed from these final-state particles. In
the formation of suitable particle combinations, the ordering of the input particles is of decisive
importance for the quality of the reconstruction as shown, e.g., in reference [7].

In this work we introduce a new method to optimize the sorting of input information via a
deep neural network. This network combines the whole event information to pre-sort the input
variables before the actual analysis. Because the best sorting is most generally not known, the
training procedure is based on the principles of reinforcement learning. Another application of
reinforcement learning in particle physics has been presented at the same conference [8].

As a case study we use top-quark pair associated production of Higgs bosons (ttH) shown in
fig. 1a. The final state of the Higgs and top-quark decays consist of six jets, a charged lepton
and a neutrino, which are used as input to the analysis.
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We do not provide a true sequence of the input to the sorting network, but instead use
a second network to separate the signal process (t£H) from the background process (tf + bb)
where an example Feynman diagram is shown in fig. 1b. By assigning this classification task,
both networks, the sorting network and the classification network are to be optimized. For
the classification network we use the Lorentz-Boost-Network [7] as a pre-stage, which generates
suitable variables, followed by a standard architecture of a fully-connected network for the
classification of signal and background events.

(b)

Figure 1: Example Feynman diagrams of a) t#H and b) ¢ + bb processes.

Ideally, the order of the final state particles is optimized by the sorting network in such a way
that the classification network receives the jets from the decay of the Higgs boson or the two top
quarks in a sequence suitable for the reconstruction of the decays. The two-stage architecture
autonomously chooses an ordering accoring to the optimal outcome.

We will benchmark the results of classifying signal and background processes by comparing
the accuracy depending on the initial sorting, i.e. the order of the transverse momenta, with
the accuracy obtained by including the predictions of the sorting network. To get an upper
benchmark, we show in addition the classification accuracy when training the sorting network
with explicit generator information.

2. Simulated data sets

This analysis uses the same dataset as the previously published Lorentz Boost Network (LBN)
publication [7]. Simulated t#H and tt + bb events are used for training and evaluation of the
classification task.

The events have been generated with the PYTHIA 8.2.26 program package [9] using beam
conditions corresponding to LHC proton-proton collisions at /s = 13TeV. The production
channel is chosen to be the dominant gluon-gluon process with the Higgs bosons preferentially
decaying into bottom quark pairs. The detector response was simulated with the DELPHES
package [10] according to the CMS detector response and was covering all important effects
such as pile-up, calometry and muon detection.

Simulated events contain the six jets from the hard process, one lepton and one neutrino. We
simulated a total of 10° tZH and tf + bb events and the ratio between training and validation
data is chosen to be 80 : 20.

3. Forward pass: Sorting and Analysis

In this section, we will discuss the two-stage architecture in greater detail following fig. 2. In
particular, we will focus on the sorting network and the analysis. Our explanations include the
internal representation of the different permutations.
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Algorithm 1 Reinforced Training

Input: Events (e), Permutations (IP),
Analysis (Ap), Sorting model (Sp)

1: for ¢ < 0 to epochs do

2. P« argmax A;(P,(Si(e)))

P,elP
3 T« P(S))
4: train S;y1 to approximate T
5: train Ai—i—l with SZ-_H(e)

3.1. Sorting
The inputs of the sorting mechanism are the p,-sorted events (e), consisting of the 6 jets in
descending pp-order, the lepton, the neutrino and global event information as described in [7].

First, a deep neural network produces an internal representation for the reordering of the
jets. This internal representation is a feature vector which contains a position index for each jet.
These indices can subsequently be used to reorder the event. The task of the sorting network is
to specify suitable indices for the individual jets. The indices range between 0 and 1 and such
the discrete problem of order is represented by a regression approach. After rearranging the 6
jets along the internal representation, they are assembled with the lepton and the neutrino to
the sorted event (S;(e) with ¢ being the current training epoch) and passed on to the analysis
network.

The architecture of the sorting network is given by a feed-forward network with a depth of 6
layers, each layer consisting of 256 nodes with a selu activation [11]. The inputs are normalized
and a dropout of 5% (drop probability), and an Lo-regularization with a scale of 107 are used
in each layer.

3.2. Analysis
The LBN along with a deep neural network is used as analysis in this work following [7]. It is
trained to combine specific input four-vectors to create particles and corresponding rest frames
through linear combinations. Each particle is boosted into its dedicated rest frame via a Lorentz
transformation and a generic set of features is extracted from the boosted particles. Subsequently
a feed-forward deep neural network, which represents the classifier, takes the extracted high-level
variables as inputs. The special sensitivity of the LBN to the order of inputs is due to the fixed
linear combinations of the input particles before the Lorentz transformations. In [7] it has been
shown that the LBN can achieve very good results at the ttH versus tf + bb classification if the
input particles are ordered with generator information. With a p; sorting, the order of the jets
of the different decays changes and in consequence, the performance of the LBN decreases.
The chosen hyperparameters are selected according to [7]. They have proven to be the optimal
setting for this classification task, if the jets are sorted according to generator information.
Almost any analysis can be used in conjunction with the reinforced sorting mechanism. The
only requirement is that for every single event, the analysis needs to have a well-defined objective.
When training with an analysis based on a neural network, its loss can directly be used as
feedback for the sorting mechanism.

4. Backward pass: Training

This section describes the training process of the two-stage architecture. First a pre-training
is carried out, followed by an alternating training of the sorting and the analysis network.
Particular attention will be paid to the permutation policy.
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Figure 2: Network architecture as used for training the sorting and the classification network.
Tensors are marked in white, operators are marked in grey. The input (e) consists of events
with 6 pp-sorted jets, the lepton and the neutrino. During evaluation, only the sorting agent
and the analysis part are evaluated and S;(e) is directly fed into the analysis.

4.1. Pre-training

Before the actual reinforcement training, a pre-training of the sorting and the analysis network
is performed. The sorting network is trained in a supervised approach to output the p;-order,
i.e. to reproduce the sorting according to the transverse momenta. The analysis network is
trained with this pp-order on the classification task. Both, sorting and analysis network are
pre-trained for 10 epochs each. The pre-training avoids that a simple preliminary convergence
of the networks must take place in the costly reinforcement learning process. In the next step,
this pre-sorting state will be optimized autonomously by the reinforcement technique.

4.2. Training schedule
The two-staged architecture is trained in an alternating approach following Algorithm 1.

For the training of the sorting network the classification network is evaluated several
times with a fixed number of permutations P of the current ordering (S;(e)). The different
permutations P, € IP will be explained in section 4.3. The sorting network is trained to predict
a sequence of jets that best separates signal and background processes with the classification
network. The classification network is then trained with the optimized sequence (Si;1(e)) for
an improved separation of the signal and background processes.

Since in general the optimal sorting of the inputs for the analysis network is not known, the
training targets of the sorting network are to be built depending on the analysis. To achieve
this, the pre-sorted events (.5;(e)) are permuted according all permutations in IP. The permuted
events are then evaluated by the analysis and the permuted events with the highest quality
measure determine the targets of the sorting network. In this implementation, the quality of
the permutations is directly measured by the analysis accuracy of the LBN A; with ¢ being the
current epoch. After the evaluation of the different permutations, the sorting network is trained
to output P,(S;), where A;(P,(Si(e))) > Ai(Py(Si(e))) ¥ m # n. To achieve a higher training
stability, the sorting network is trained not only on the best but the best three permutations
weighted with a factor of exp(—a) with a = 0 for the permutation with the smallest objective,
a = 1 for the permutation with the second smallest objective etc.

When the analysis network is trained further, the preferred permutations in the training of the
sorting network change. When the sorting network is trained further, the inputs of the analysis
network change. The performance of the two networks therefore directly depends on each other.
The flexibility of this end-to-end approach allows the overall system to learn permutations that
lie beyond naive physical intuition.
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Figure 3: The training process of the reinforced sorting in terms of the classification accuracy
of the analysis network. Two trainings form the lower (p,-sorted) and upper (sorting trained
with generator information) benchmark for the training process. The first 10 epochs on the
reinforced sorting are pre-training.

4.3. Policy

The policy decides which new permutations are to be considered in each training step. Thus it
forms the core of the reinforced sorting mechanism. The policy ensures that in each training
step as much space as possible of previously unseen permutations is considered. At the same
time, however, it ensures that the number of evaluations remains so small that they remain
quickly computable. In this implementation we consider all two-particle swaps of the sorted
events S;(e), i.e. all exchanges & of element k with element [ for all ¥ > [ and k& < n. Each
sorted event results in a total of K (K —1)/2 new permutations, where K is given by the number
of permutable particles. The number of new permutations per training step thus increases
according to O(K?) and remains computable for large K as well. The identity (&) is always
also taken into account to allow the mechanism to remain stable at good permutations.

5. Results

For the evaluation, only the sorting S; and the analysis A; are used (fig. 2). The training process
is shown in fig. 3 in terms of the classification accuracy of the analysis network. T'wo trainings
form the upper and lower benchmark for the training process. As lower bound, the training with
pp-sorted events is shown. For the upper benchmark, we first train the sorting network until
convergence to output a fixed order based on generator information and subsequently train the
LBN.

It can be seen that the performance of the classifier increases in conjunction with the sorting
network. The classification accuracy of the two-stage architecture starts at the lower benchmark
(pp-sorted) and during training advances towards the upper benchmark (generator-sorted).

The internal representation of the jets can be seen in fig. 4a. By comparing the internal
representation of the sorting network and the p, sorting shown in fig. 4b it can be seen that the
sorting network learns an intrinsic structure which is different to the p; sorting. It shows that
the most important jets for the classification task (b;1 and bjs) are arranged closer.
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Figure 4: Structure of the p, sorting and the sorting network at the end of the training. The x-
axis comprises the true particle information, the y-axis comprises the slot of the sorting network
prediction and p; sorting.

6. Conclusion

We presented a two-stage deep learning architecture consisting of a network for sorting input
objects and a subsequent network for data analysis. The sorting network combines the whole
event information and explicitly pre-sorts the inputs of the analysis. The system of sorting and
analysis network is then trained with an end-to-end reinforcement learning approach. Using the
example of top-quark pair associated Higgs boson production, we show an improvement of the
signal and background separation in comparison to conventional sorting of jets with respect to
their transverse momenta.
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