
Quantum Software Engineeringuantum
Transactions onIEEE

Received 12 October 2024; revised 16 February 2025; accepted 17 February 2025; date of publication 6 March 2025;
date of current version 1 May 2025.

Digital Object Identifier 10.1109/TQE.2025.3548423

Quantum Circuit Compilation for
Trapped-Ion Processors With the
Drive-Through Architecture
CHE-MING CHANG1,3 , JIE-HONG ROLAND JIANG1,2,3 (Member, IEEE),
DAH-WEI CHIOU2,3 , TING HSU3,4,5,6 , AND GUIN-DAR LIN3,4,5,6
1Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
2Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
3Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
4Department of Physics, National Taiwan University, Taipei 10617, Taiwan
5Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
6Trapped-Ion Quantum Computing Laboratory, Hon Hai Research Institute, Taipei 11492, Taiwan

Corresponding author: Jie-Hong Roland Jiang (e-mail: jhjiang@ntu.edu.tw).

This work was supported in part by the National Science and Technology Council of Taiwan under Grant 112-2112-M-002-001, Grant
112-2119-M-002-017, Grant 113-2112-M-002-025, and Grant 113-2119-M-002-024, in part by the Ministry of Education of Taiwan
through the Featured Area Research Center Program within the framework of the Higher Education Sprout Project under Grant
113L900903, and in part by the NTU Core Consortium Project under Grant NTU-CC114L895002.

ABSTRACT Trapped-ion technologies stand out as leading contenders in the pursuit of quantum computing,
due to their capacity for highly entangled qubits. Among many proposed trapped-ion architectures, the
“drive-through” architecture has drawn increasing attention, notably for its remarkable ability to minimize
heat generation, which is crucial for low-temperature operation and thermal noise reduction, thus reliable
quantum computation. We present the first compilation system tailored for the drive-through architecture to
achieve high-fidelity computation for intended quantum programs. Our approach accommodates the unique
features of the new architecture that utilize transport gates to facilitate direct entanglement between static
qubits and communication qubits. We optimize the qubit placement that changes over time for each trap,
considering the cost of qubit swapping. Our method strategically balances the gate and swap distances,
significantly improving the overall fidelity across various benchmarks.

INDEX TERMS Drive-through architecture, quantum circuit compilation, quantum computing (QC), qubit
mapping, trapped ion.

NOMENCLATURE
GG = (VG,EG) Dependence graph of the circuit.
VG�

�th layer of dependence graph.
�max Circuit depth.
χ Trap capacity.
GC�

Connectivity graph of the �th layer.
P� = {P�,1, . . . ,P�,k} Partition of the �th layer.
T # intertrap communications.
π�, j (π�, j,0) (Initial) Configuration in layer � trap

j.
gd(π�, j) Gate distance of layer � trap j.
sd(π�, j) Swap distance of layer � trap j.

I. INTRODUCTION
Quantum computing (QC) leverages the principles of
quantum mechanics to solve problems intractable for
classical computing. QC offers applications in diverse fields,

from quantum chemistry [1], cryptography [2], to machine
learning [3]. Despite theoretical evidence demonstrating the
quantum advantages, the biggest challenge lies in building a
scalable quantum computer with low error rates. Among var-
ious proposed quantum technologies, trapped-ion systems
are one of the most promising [4], featuring high-fidelity
quantum gates, state initialization, readout, and dense con-
nectivity.
Several architectures have been proposed for scaling up

trapped-ion quantum computers. The simplest architecture
for trapped-ion QC is a single trap that stores all ions in a
1-D array. However, it faces limitations as the two-qubit gate
speed decreases with an increasing number of ions [4]. The
quantum charge-coupled device (QCCD) architecture [5]
was then proposed to scale up near-term applications, which
employs a modular approach consisting of several small
traps. Ions are moved, or shuttled, to communicate between

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 2500414

https://orcid.org/0009-0006-9192-0217
https://orcid.org/0000-0002-2279-4732
https://orcid.org/0000-0001-5049-0333
https://orcid.org/0000-0003-0730-6136
https://orcid.org/0000-0002-2243-9490
mailto:jhjiang@ntu.edu.tw

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

FIGURE 1. (a) Drive-through architecture with static qubits in traps and communication qubits on the racetrack. Some qubits may be information-free
(colored in white). (b) Methods for transporting the information of a static qubit to another trap.

traps. Despite its advantages, QCCD still suffers from the
complexity of precise control of the ion geometric configu-
rations and the laser interactions [6].

To address the aforementioned problem, researchers in [7]
proposed a novel “drive-through” architecture, which is the
focus of our work. The advantages of this architecture are
detailed in Section II-A4. As shown in Fig. 1(a), several
traps are arranged in the middle, surrounded by a racetrack.
Logical qubits in quantum algorithms are assigned to ions in
these traps, referred to as static qubits, where standard quan-
tum operations (single- and two-qubit gates) are performed.
Simultaneously, several communication qubits move along
a predesigned rail at a constant velocity on the racetrack,
serving as the information commuters between traps, as il-
lustrated in Fig. 1(b). A swap gate can be executed between
a static and communication qubit; after the latter reaches its
destination, another swap gate transfers the information back
to the destination trap. Experiments have already demon-
strated the feasibility of moving ions through such complex
geometries [8].

Despite the progress in architectural exploration for
trapped-ion processors, limited research has focused on de-
signing qubit mapping algorithms specifically tailored to
these architectures. Qubit mapping is a critical step in imple-
menting quantum algorithms on hardware, assigning logical
qubits from the program to physical qubits in the device
while satisfying specific hardware constraints.
Most of the existing qubit mapping research has focused

on superconducting devices, where qubit coupling is sparse
and typically limited to nearest neighbors. Consequently,
the primary goal in these systems is to minimize the num-
ber of swap gates inserted, as this helps reduce circuit
depth, which is a critical optimization objective due to the
short decoherence times of superconducting qubits. In con-
trast, trapped-ion systems offer a unique advantage with
their significantly longer T2 decoherence times, allowing
for more relaxed constraints on circuit depth. Furthermore,
since ions within a trap are fully coupled, most prior works
focus on minimizing intertrap communication. This chal-
lenge resembles techniques used in distributed QC, where

physical qubits remain in the same partition throughout the
computation and rely on entanglement resources, such as
Bell states, to enable interpartition communication. How-
ever, compilers designed for distributed QC [9], [10] are not
directly applicable to trapped-ion systems, where ions must
be shuttled between traps to perform entangling gates.

A. RELATED WORK
Abidirectional searchmethod has been employed to improve
initial qubit placement and reduce the number of inserted
swap gates [11]. To optimize swap gate insertion and circuit
depth, a look-ahead heuristic cost function combined with
an A* search algorithm has been proposed in [12]. An
architecture-agnostic methodology for qubit mapping has
also been developed under the t|ket〉 framework [13], [14].
More recently, a double-sourced shortest path method has
been introduced to achieve optimal qubit mapping [15].
Beyond heuristic approaches, exact methods have also
been explored to address the qubit mapping problem.
These include satisfiability modulo theories (SMTs) [16],
[17], [18] and incremental Boolean satisfiability problem
(SAT)-solving techniques [19].
Most prior works [20], [21], [22], [23] on compilers for

trapped-ion architectures focus onminimizing intertrap com-
munication. Yet, these methods neglect the cost of reorder-
ing ion qubits in the traps and may lead to two-qubit gates
operating on distant qubits, which can significantly degrade
the fidelity. An SAT formulation of qubit mapping on QCCD
devices with cyclic topologies has been proposed in [24],
but this approach is not scalable to larger circuits. These
challenges highlight the importance of an architecture-aware
compiler that can optimize overall program fidelity, which
is particularly crucial for quantum computers in the noisy
intermediate-scale quantum (NISQ) era.

B. OUR CONTRIBUTIONS
The main contributions of this work are summarized as
follows.

2500414 VOLUME 6, 2025

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS Engineeringuantum
Transactions onIEEE

1) We develop the first compilation system to map a
QASMdescription of a circuit to the low-level physical
placement and movement on the drive-through archi-
tecture, which imposes constraints on intertrap com-
munication through static qubits at the trap boundaries.

2) We present a scalable algorithm to optimize the dy-
namic placement for each trap. Our approach mini-
mizes intertrap communication and optimizes intratrap
configuration by considering the ion distances during
swap gate execution [swap distance (SD)] and two-
qubit gates [gate distance (GD)] simultaneously. To our
knowledge, this is the first compiler work addressing
both intertrap communication and intratrap ion config-
uration in modular architectures.

3) We conduct comprehensive experiments on various
benchmarks to demonstrate that our approach consis-
tently reduces total distance, thereby improving the
overall program fidelity.

The rest of this article is organized as follows. Section II
introduces the trapped-ion quantum computer and its qubit
mapping problem. Section III formalizes the compilation
problem for the drive-through architecture. Section IV details
our compiling methods. Section V gives the experimental
results. Finally, Section VI concludes this article and outlines
future work.

II. BACKGROUND
A. TRAPPED-ION QUANTUM COMPUTER
1) ION CHAINS
In a trapped-ion quantum computer, quantum information is
stored in the internal states of ions. These ions are first loaded
in a fast-oscillating quadrupole potential and effectively cap-
tured, leading to crystallization that forms a 1-D ion chain via
the Coulomb repulsion [25]. This configuration enables pre-
cise control and manipulation of individual ion qubits using
lasers with specific frequencies. The entropy of the ions can
be constantly removed by laser cooling [26], thus keeping the
system at nearly zero temperature to improve the stability of
the structure and robustness of quantum operations.

2) GATE IMPLEMENTATION BY LASER
In a trapped-ion system, a single-qubit gate can be achieved
by illuminating the ions with a laser beam, driving coherence
transition between two internal states [27]. A two-qubit gate,
such as the Mølmer–Sørensen (MS) gate [28], utilizes laser
beams to exert state-dependent forces on the participating
ions, coupling the internal states of the two ions with the
aid of the collective motion to build qubit entanglement. To
consider the gate performance in simulations, we refer to [20]
and [29] for an estimate of the gate time τ of amplitude
modulation gates as

τ (d) = 38 × d + 10 (μs) (1)

where d is the number of ions that separate the two
ions being entangled. In addition, the gate fidelity can be

approximated as

F = 1 − �τ − A(2n̄+ 1) (2)

where � is the background heating rate of the trap, A
is a scaling factor on the second term proportional to
#qubits/ log(#qubits), and n̄ is the motional mode or vibra-
tional energy of an ion chain. Therefore, to achieve better
fidelity during a two-qubit gate operation, it is crucial to
minimize the distance between the two target qubits.

3) QCCD ARCHITECTURE
The QCCD architecture [5] employs a modular design of
multiple small ion chains trapped in individual traps. The
ions are then shuttled around different trapping zones to
communicate between traps. Ion shuttling may involve three
steps: 1) splitting the desired ion from an ion array in the
original trapping zone; 2) moving the ion along a specific
path to the destination zone; and 3) merging it into another
ion array in the destination zone. These processes are time
consuming [8], [30] and result in severe heat generation,
introducing extra sources of error. It can be expected that
shuttling control may eventually become a bottleneck that
limits the computation speed and fidelity for trapped ion
architectures.

4) DRIVE-THROUGH ARCHITECTURE
The drive-through architecture introduces a novel approach
to trapped-ion systems by leveraging transport gates [6], [7],
[31], [32], where quantum gates are executed when ions are
transported through stationary optical beams. When a com-
munication ion passes a static ion, a transport gate entangles
two ions directly without slowing down the communication
ion. This design eliminates the complex ion chain splitting
and merging operations required in traditional architectures
like QCCD. By avoiding such operations, this architecture
reduces heating due to motional modes and vibrational en-
ergy, which is critical for achieving high-fidelity entangling
gates. Moreover, it significantly shortens the recooling time,
which is currently a major runtime bottleneck in trapped-ion
systems [8], [30].

The fidelity of transport gates has been theoretically
demonstrated to be comparable to conventional two-qubit
gates, and the hardware implementation of this architec-
ture has been proven and validated preliminarily [7]. How-
ever, compiling programs for the drive-through architecture
presents new challenges. In [7], achieving high-fidelity trans-
port gates requires proximity between communication and
static ions, limiting the communication qubits’ connectivity
to static qubits near the trap’s periphery.
In most trapped-ion systems, ions are shuttled to different

traps for communication. We adopt a similar strategy in the
drive-through architecture, exchanging the information of a
static qubit with a communication qubit to allow the com-
munication qubit to travel to different traps for further gate

VOLUME 6, 2025 2500414

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

FIGURE 2. Examples of transforming a trapped-ion architecture into a coupling graph. The red edges indicate the communication edges, where ions
must be shuttled to different traps. (a) Linear QCCD architecture. (b) Drive-through architecture. Note that the communication edges in the drive-through
architecture are available in specific orders.

operations, as shown in Fig. 1(b). The operation of exchang-
ing the information between a static qubit and a communi-
cation qubit is achieved by applying swap gates, using the
same mechanism as in the case of a pair of static ions, rather
than physically swapping their locations, to avoid slowing
down the communication ion [7]. While this approach may
increase the number of two-qubit gates, it simplifies the ion
movement, reduces transport-induced heating, and improves
overall routing efficiency.
Although the use of bridge gates (such as implementing

a cnot gate through a communication qubit) may reduce
the number of logical two-qubit gates (requiring only four
cnot gates), it introduces significant inefficiencies in qubit
routing. For example, implementing a cnot(A, C) through a
communication qubit B involves a sequence of cnot gates:
cnot(B, C), cnot(A, B), cnot(B, C), and cnot(A, B). This
requires two complete cycles around the racetrack to com-
plete the operation. Such repeated cycles generate excessive
heat during ion transport, undermining the efficiency of this
architecture. Only if the cost of ion movement was signif-
icantly reduced through technological advancements could
employing bridge gates become a preferable option.

B. QUBIT MAPPING
As different quantum hardware only supports a predefined
universal gate set known as the primitive gates, logic synthe-
sis translates the quantum circuit into a lower level circuit
description (e.g., QASM description) consisting of primitive
gates from a particular gate set by performing gate decom-
position and merging to optimize various objectives such as
circuit depth or gate count [33]. The logical qubits within the
synthesized circuit then need to be mapped onto the physical

hardware so that the geometric configurations of the qubits
are determined. This process is known as qubit mapping.
However, the circuit potentially requires minor modifications
(adding swap gates) to adhere to the coupling constraints
imposed by the hardware.
The input of the qubit mapping problem typically

consists of two components: the quantum circuit to
be mapped, and the graph representing the coupling
constraint of the hardware device. While most prior
qubit mapping algorithms are primarily benchmarked
on superconducting architectures, many can be adapted
for trapped-ion processors if the coupling graph of the
device is well defined. Fig. 2 illustrates two examples of
how a trapped-ion architecture can be transformed into
a coupling graph. In the linear QCCD system discussed
in [21], the coupling graph can be modeled as several fully
connected subgraphs linked by intertrap communication
edges, as shown in Fig. 2(a). The coupling graph of the
drive-through architecture can also be described using
fully connected subgraphs, but with communication edges
available in a specific sequence, emphasizing the dynamic
nature of this architecture, as shown in Fig. 2(b). Due to its
unique hardware constraints, most prior qubit mapping
algorithms are not directly applicable to this new
architecture.

III. PROBLEM FORMULATION
We formulate the quantum circuit compilation problem on
the drive-through architectures as follows.
Problem 1 (The Drive-Through Architecture Compilation

Problem): We are given an input quantum circuit C (in the
QASM format) of primitive one- and two-qubit gates with

2500414 VOLUME 6, 2025

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS Engineeringuantum
Transactions onIEEE

FIGURE 3. Compiler overview.

n logical qubits Q = {q1, . . . , qn} and given a drive-through
architecture A in the form of Fig. 1(a) with k traps, each
accommodating χ ions (i.e., static physical qubits) and one
racetrack with sufficient communication ions (i.e., communi-
cation physical qubits), for n ≤ kχ . We are asked to provide
a feasible execution of C on A such that the overall fidelity
of the entire circuit execution is maximized.
We remark that our primary objective is to maximize the

fidelity by the end of program execution using the gate errors
defined by (2).

IV. METHODOLOGY
We summarize the notations used in this article in the
Nomenclature. An overview of our algorithm is shown in
Fig. 3. We first transform the QASM description into a
directed acyclic graph (DAG) consisting of several layers.
Then, we perform gate partitioning to assign gates to differ-
ent traps. After partitioning, we solve the qubit placement
trap by trap, optimizing the fidelity by simultaneously con-
sidering the program’s swap gate and two-qubit gates. The
qubit placement of each layer is slightly modified to serve
as the initial placement for the next layer until all layers are
solved.

A. CIRCUIT DAG GENERATION
We first transform the input QASM circuit description into
a DAG GG = (VG,EG), where each vertex vi ∈ VG denotes
a two-qubit gate, and each edge (vi, v j) ∈ EG denotes the
precedence constraint that vi should be executed before v j.
We remark that our definition aligns with prior work [11],
[23]: A two-qubit gate on (qi, q j) can only be executed when
all previous two-qubit gates on qi or q j have been executed.
This definition does not consider the commutativity of two-
qubit gates but directly follows the QASM description. The
single-qubit gates are also not considered here because they
could be executed locally on the target qubit without affect-
ing the dependence [11]. The construction of the graph can
be done in O(|VG |) by traversing the QASM description of
the circuit.

After the circuit DAG is constructed, we organize the DAG
into several layers through as soon as possible scheduling.
We define the �th layer of gate dependence graph GG as
a subset of gates VG�

⊂ VG with maximum path length �

from any vertex with in-degree 0. A layer consists of several
independent gates that can be executed simultaneously. All
layers can be initialized in O(|VG |) by: 1) adding a source
vertex s with in-degree 0 that connects to all input gates; 2)
topological sorting of GG ; and 3) finding the longest path
from s to each vertex.

B. GATE PARTITIONING
After the dependence graph GG is constructed, our next task
is to assign quantum gates and qubits to different traps for
execution. A partition of qubits is valid if each pair of qubits
that requires gate execution is located in the same partition.
The goal is to compute a sequence of valid partitions for each
layer.

1) INITIAL PARTITION
We employ a greedy strategy to generate an initial partition
based on qubit interactions from the first few layers of the
circuit. For each gate involving a pair of qubits (qi, q j) in
the first layer, we group qi and q j to the same cluster. This
process is then repeated for the subsequent layers, adding
additional qubits to clusters as long as the cluster size does
not exceed the trap capacity χ . Once a cluster exceeds χ , no
further qubits are added. Finally, small clusters are merged
to create a balanced partition across all clusters.

2) SUBSEQUENT PARTITIONS
After the initial partition is generated, the partitions are dy-
namically updated for each layer. Intuitively, we aim to group
interacting qubits together, while ensuring that the changes
between consecutive partitions are minimized to reduce in-
tertrap communication.
To achieve this, we first construct a connectivity graphGC�

for each layer �. Each qubit represents a vertex in GC�
, and

each gate (qi, q j) in the �th layer adds an edge between qubits
qi and q j. Formally, the edge weight wC�

(qm, qn) accounts
for the interaction between qm and qn over a small window
of layers of depth d and is defined as

wC�
(qm, qn) =

min(�+d,�max)∑
i=�

I[(qm, qn) ∈ VGi] f (i− �) (3)

where I[·] is the indicator function of whether qm and qn
interact in layer i, f (·) is a decreasing positive function de-
scribing the decaying tendency, and �max is the depth of
the dependence graph. Once the connectivity graph is con-
structed, we perform min-cut partitioning on GC�

until a
valid partition is achieved. A simple illustration of the par-
titioning on the connectivity graph is depicted in Fig. 4(c),
with the valid partition P1 = {P1,1 = {q2, q4, q8, q9},P1,2 =
{q0, q3, q5},P1,3 = {q1, q6, q7}}.

VOLUME 6, 2025 2500414

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

FIGURE 4. Illustration of circuit DAG generation and the gate partitioning at � = 1. (a) Example program. (b) DAG generated following the order of the
circuit in (a). (c) Valid k = 3 partition P1 on the connectivity graph GC�

with a look-ahead depth d = 2 (weights are not shown). The corresponding edges
are indicated in the highlighted part in (b).

3) DYNAMIC LOOK-AHEAD DEPTH ADJUSTMENT
The look-ahead depth d determines howmany additional lay-
ers are considered during partitioning, balancing the trade-
off between “global” information and processing time. Prior
work [23] uses a constant d = �max for all circuits. However,
this approach overlooks the local structure of the circuit. We
propose amethod to dynamically adjust the look-ahead depth
d according to the local circuit density. For sparse circuits
with a low average number of two-qubit gates per layer, a
larger d is preferable because it allows the partitioning al-
gorithm to gather more information about upcoming qubit
connections, leading to better partitioning decisions. On the
other hand, the qubit connections are inherently more local-
ized in dense circuits. In such cases, an excessive look-ahead
d may increase program runtime without significant gains.
By dynamically adjusting the look-ahead depth d, we tailor
the partitioning process to the circuit’s characteristics to im-
prove both the solution quality and processing time.

4) MODIFIED k-WAY FIDUCCIA–MATTHEYSES ALGORITHM
Previous work [23] relies on the Kernighan–Lin (KL) al-
gorithm [34] for partitioning, yet it has several limitations.
While each iteration of the KL algorithm requires calculat-
ing the gain of swapping each vertex, the complexity could
be O(n3), where n is the number of vertices. Second, the
KL algorithm assumes a fixed number of logical qubits per
trap, which restricts flexibility in partitioning. We adopt the
Fiduccia–Mattheyses (FM) algorithm to address these issues.
While utilizing implementation techniques in k-way FM al-
gorithms [35] and the reduction from hypergraphs to graphs,
we can achieve a linear-time complexity. Also, it allows dif-
ferent numbers of logical qubits to be stored in a trap in
different time steps.

5) COST METRIC
A combinatorial metric is required to describe the intertrap
communications. However, the cost metric described in [23]
is not applicable when partition sizes vary between layers.
We proposed another cost metric based on the maximum
bipartite matching that can be applied to these cases.

Given the partition of two consecutive layers P� =
{P�,1, . . . ,P�,k} and P�+1 = {P�+1,1, . . . ,P�+1,k} of the qubit
set S, we create an undirected bipartite graph with vertices
P�,i,P�+1,i∀i = 1, . . . , k. An edge (P�,i,P�+1, j) with weight
|P�,i ∩ P�+1, j|∀i, j = 1, . . . , k, describes how many qubits
are the same in trap i of layer � and trap j of layer � + 1.
The minimum number of qubits required to move between
these two layers is then given by

T� = |S| − max
σ

k∑
j=1

|P�, j ∩ P�+1,σ (j)| (4)

where σ is a permutation over {1, . . . , k}. The total number
of intertrap communications is the sum of communications
in each consecutive layer

T =
�max−1∑

�=0

T�. (5)

Empirical evaluation shows that σ (x) = x holds most of the
time (that is, trap j itself is the most similar to trap j in
the next layer for all j = 1, . . . , k). This suggests that the
partitioning algorithm does not lead to excess movements
between traps.

C. LAYERWISE PLACEMENT
After qubit partitioning, the next step is to determine the
optimal placement of qubits within each trap at each layer
to enhance gate execution efficiency. To achieve this, we em-
ploy simulated annealing (SA) to optimize qubit placement,
considering both standard two-qubit gates and swap gates
simultaneously. Our method minimizes the cost function

Cost(π�, j) = LA(π�, j)︸ ︷︷ ︸
net force

+B(π�, j)︸ ︷︷ ︸
pull force

+3 × sd(π�, j, π�, j,0)︸ ︷︷ ︸
hold force

(6)
which consists of the following three terms.

1) Net force: It encourages logical qubits involved in two-
qubit gates to be positioned as close as possible to
minimize the gate distance and thus improve fidelity.

2500414 VOLUME 6, 2025

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS Engineeringuantum
Transactions onIEEE

2) Pull force: It guides logical qubits that will leave
the trap in subsequent layers toward the boundary in
advance.

3) Hold force: It penalizes excessive swap operations
to minimize the swap distance, thereby preserving
fidelity.

In the cost function, the hold force is weighted by a factor
of 3, since each swap gate is decomposed into three cnot
gates, with each cnot gate further decomposed into one ms
gate and several single-qubit operations.
In the following, we formally define each term and de-

scribe its calculation in the optimization process.

1) NET FORCE: MINIMIZING GATE DISTANCE
The goal of optimizing qubit placement is to minimize the
distance between ion qubits that are involved in two-qubit
gate operations, which directly impacts the fidelity of those
gates. To achieve this, we define the gate distance as the sum
of the distances between the qubits involved in two-qubit
gates within the same layer. Formally, for trap j at the �th
layer, the gate distance for permutation π�, j can be defined
as

gd(π�, j) =
∑

qm,qn∈P�, j
(qm,qn)∈VG�

|π�, j(qm) − π�, j(qn)|. (7)

In our setting, the objective is to minimize the gate distance
within the current layer while also considering the effect on
future layers. To model this, we draw from the minimum lin-
ear arrangement problem (MinLA), which is commonly used
in very large scale integration design to minimize wirelength
in 1-D placements [36]. The input of the MinLA problem is
an undirected graphG = (V,E) with nonnegative weight ci, j
for each edge (i, j) ∈ E. The goal is to find a permutation
π : {1, . . . , |V |} → {1, . . . , |V |} that minimizes the sum of
weighted edge length

π∗ := argmin
π

LA(G, π) = argmin
π

∑
(i, j)∈E

ci, j|π (i) − π (j)|.

(8)
In our case, the graph for each layer � and trap j can be
derived from the connectivity graph GC�

, with the subgraph
GC�

[P�, j] representing the logical qubits in trap j. The edges
in this subgraph correspond to qubit pairs involved in two-
qubit gates. To account for future layers, we apply a decaying
function f to adjust the edge weight. The net force can then
be described by the MinLA cost to improve the fidelity of
two-qubit gates in the program

LA(π�, j) =
min(�+d,�max)∑

i=�

∑
qm,qn∈P�, j
(qm,qn)∈VGi

|π�, j(qm) − π�, j(qn)|

× f (i− �). (9)

TABLE 1. Example Partitioning Solution of the Program in Fig. 4(a)

2) PULL FORCE: GUIDING LEAVING QUBITS
To ensure that the transport gate can be executed within a
small distance, we propose a preprocessing step that moves
qubits, which will leave the trap in the next layer, to the
boundary. Logical qubits q ∈ P�, j \ P�+1, j, which are leaving
the trap, will be moved to the edge, and fixed during SA.
After SA is finished, we remove those leaving qubits from
π�, j and add new incoming qubits q ∈ P�+1, j \ P�, j at the
border to form the initial configuration π�+1, j,0 of the next
layer. This process can be continued for all layer’s initial
configurations.
Taking the program in Fig. 4(a) as an example again, a

simple partition solution is given in Table 1. As seen from
� = 1 to � = 2, q1 leaves from trap 3 to trap 2, which is thus
placed in the boundary of the trap in Fig. 5(b). Then, for the
current layer � = 2, since qubits q2 in trap 1 and q3 in trap 2
are leaving to other traps, they are placed at the boundary, as
shown in Fig. 5(c). After moving these ions to different traps,
it forms the initial configuration of the next layer � = 3.

Since we have the information on the upcoming partition-
ing result, we can guide those leaving qubits to the border in
the previous layers before they leave.We consider some leav-
ing sets of trap j in layer � L�, j,i = P�, j \ P�+i, j, i = 2, . . . , d,
where q ∈ L�, j,i means that qubit q is in trap j in layer �, and
will leave after i layers. The boundary leaving cost for the
leaving set L�, j,i is defined as

b(�, j, i) =
∑

q∈L�, j,i

{
π�, j(q), q leaves from top

|π�, j(q) − χ |, q leaves from bottom

(10)
where χ is the trap capacity. The departure direction (top or
bottom part of the racetrack) depends on the relative position
of the destination trap. To consider each upcoming leaving
set, we add the following cost into SA:

B(π�, j) =
min(�+d,�max)∑

i=2

b(�, j, i) × f (i) (11)

where f is a decreasing function. This cost essentially acts
as a “pull,” guiding these qubits toward the boundary before
the actual layer of departure. We termed it the pull force.

3) HOLD FORCE: REDUCING SWAP OVERHEAD
As the configuration transforms during SA due to swap
gates, the executing cost of these gates must also be con-
sidered. Thus, we incorporate the “distance” between the

VOLUME 6, 2025 2500414

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

FIGURE 5. Illustration of layerwise placement from � = 2 to � = 3 using the partition solution in Table 1. (a) Entering (pink)/exiting (green) directions.
(b) Configurations of (π2,1,0, π2,2,0, π2,3,0). (c) Configurations of (π2,1, π2,2, π2,3). Note that the edge modification relocates leaving qubits to the
boundary. (d) Configurations of (π3,1,0, π3,2,0, π3,3,0).

initial and final configurations in the SA cost metric. We
termed it the hold force, which aims to stabilize the qubit con-
figuration and reduce unnecessary transformations during
optimization.
The final configuration π�, j is a permutation of the ini-

tial configuration π�, j,0. To analyze the transformation, we
decompose π�, j into its disjoint cycle decomposition [37]
Cπ�, j = {c1, . . . , cm} by constructing a directed graphGwith
edges connecting each qubit’s position in the initial configu-
rationπ�, j,0(i) to its position in the final configurationπ�, j(i),
where i = 1, . . . , χ are the index of physical qubits in P�, j.
For each cycle ci ∈ Cπ�, j , we compute the total displacement
of physical qubits, which is the sum of the distances between
two cyclically adjacent qubits in the cycle. The swap distance
of π�, j is then defined as half of this total displacement,
representing the movement needed to realize the permutation
through swap gate operations

sd(π�, j, π�, j,0) = 1

2

∑
i

|π�, j,0(i) − π�, j(i)|

= 1

2

∑
c∈Cπ�, j

∑
i∈c

|π�, j(i) − π�, j(i+ 1 mod |c|)|.

(12)

Take the program in Fig. 5(b) and (c) as an example.
The initial configuration is ordered qubit set (q4, q2, q9, q8),
and the final configuration is (q4, q8, q9, q2). To analyze the
transformation, we represent the initial configuration π�, j,0
by indices (1, 2, 3, 4). This corresponds to the permutation

π�, j =
(
1 2 3 4

1 4 3 2

)
(13)

with a cycle decomposition Cπ�, j = (1)(3)(42). Thus, the
total displacement of physical qubits is |1 − 1| + |3 − 3| +
|2 − 4| + |4 − 2| = 4 and the swap distance is 2. This result
is intuitive as the only necessary swaps are between q8 and
q2, which have a distance of 2. Note that this metric includes

the cost of swapping qubits to the boundary, as described in
Section IV-C2.
Since each node has only one outgoing edge, the swap

operation defined here for two vertices is as follows. If
(vi, vi+1), (v j, v j+1) ∈ E, then swapping vi and v j means to
replace the above edges into (vi, v j+1) and (v j, vi+1), while
the other edges remains the same. By only calculating the dis-
placement difference on these incident edges, we can com-
pute the cost difference more efficiently.
In summary, we optimize the dynamic qubit placement

by three forces: net force, pull force, and hold force. The
net force minimizes the gate distance to enhance two-qubit
gate fidelity, the pull force guides qubits that will leave the
trap to the boundary, and the hold force reduces unnecessary
swap operations. By incorporating these forces into SA, we
ensure that qubits are positioned in a way that improves over-
all execution fidelity while minimizing transport and swap
overhead.

V. EVALUATION
A. EXPERIMENTAL SETUP
1) BENCHMARKS
We implemented our proposed algorithm in Python 3.7. Run-
time tests were conducted on Ubuntu 20.04.6 LTS with Intel
Xeon Silver 4208 at 2400 MHz with 256-GB memory. We
benchmarked the performance of our algorithms on a wide
range of application circuits including theHardware Efficient
Ansatz of the quantum approximate optimization algorithm
(QAOA), Adder, and Supremacy circuit from [38] multiplier,
quantum K-nearest neighbor (KNN), and quantum neural
network (QNN) from [39], and the quantum volume (QV)
and quantum Fourier transform (QFT), which are compiled
by Qiskit [40]. Random circuits (Random M/L, where M
stands for medium and L for large) were also generated to
test patterns lacking in structured circuits. These testing cir-
cuits have around 50–250 qubits and contain thousands of
two-qubit gates. Circuits of this size are large enough so that
exact methods [16], [17], [18] could not find the optimum

2500414 VOLUME 6, 2025

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS Engineeringuantum
Transactions onIEEE

TABLE 2. Results of Intertrap Transport Requirements in Different Compiling Methods Under Trap Capacity 30

solution and are also the next major milestone for trapped-ion
systems [20].

2) COMPILING METHODS
In our experiments, we compared our proposed method with
two widely used qubit mapping tools: Qiskit [40] with its
default mapping algorithms SABRE [11] and t|ket〉 [14]. For
SABRE, we use the standard placement and routing methods
provided in Qiskit. We also set the optimization level to 0
since we do not want the tool to perform additional logic
optimization to compare only the placement and routing re-
sults. For t|ket〉, we use the noise-aware placement [using the
two-qubit gate errors defined by (2)] method combined with
the lexicographical comparison approach [13] for routing,
both provided in t|ket〉.
Although neither SABRE nor t|ket〉 is specifically de-

signed for the constraints of the drive-through architecture,
we can still make a fair comparison with reasonable ad-
justments on the compiling results by utilizing the coupling
graph shown in Fig. 2(b). Instead of adhering strictly to
the communication order constraints imposed by the drive-
through architecture, we create a complete graph for these
boundary ion qubits. We denote the compiling methods
here as SABRE-ext and t|ket〉-ext as they are the extended
versions of the original ones.

B. INTERTRAP COMMUNICATIONS
1) EVALUATION
In the drive-through architecture, it is not possible to imple-
ment a cnot gate directly on these communication edges,
since the static qubits must be physically shuttled to the other
trap for entangling gate execution. Therefore, when a cnot
or swap gate appears on a communication edge in the com-
piled circuit, we count it as two intertrap communications
to reflect the overhead accurately. In addition, suppose that
consecutive cnot gates are executed on the same commu-
nication edge without any other entangling gates operating
on the incident qubits in between. In that case, they are still
counted as only two intertrap communications.
Table 2 lists the statistics of the benchmarks and the re-

sults of the number of intertrap communications by different
compiling algorithms. “#Gate” represents the two-qubit gate

count in the circuit, and “Depth” indicates the depth of the
circuit DAG. For our proposed algorithm, we ran the same
experiment five times and reported the best-case result due to
the randomness of SA. For trap capacity, to date, the largest
trapped-ion systems have up to 32 qubits (IonQ [41] and
Quantinuum [8]) per trap. Thus, we set the maximum trap
capacity as a fixed number χ = 30 for these experiments. As
can be seen in the table, the gate partitioning approach con-
siders the global structure of the circuit and thus minimizes
the intertrap communication and outperforms the extended
version of the qubit mapper SABRE-ext and t|ket〉-ext in
most large cases since these methods are not tailored for this
kind of modular architecture.

2) EFFECT ON WEIGHT DECAYING FUNCTION AND
LOOK-AHEAD DEPTH
We assign a baseline weight b to the gates in the current layer
and apply an exponentially decaying weight f (x) = b× a−x
to the subsequent layers, where x < d. This allows us to
assess the impact of different decaying tendencies (by tun-
ing the parameter a) and various look-ahead depth d on the
partitioning quality across three distinct types of circuits.
As illustrated in Fig. 6, the optimal choice for d and the

decaying tendency is influenced by the circuit structure. For
instance, the QNN typically exhibits a relatively sparse cir-
cuit structure, and thus, utilizing a larger d (around 60 to 70)
can lead to better solution quality. In contrast, the number of
intertrap communications for dense circuits such as QV or
supremacy circuits eventually increases for larger d.

In addition, the runtime of partitioning increases as d in-
creases due to larger processing data, as shown in Fig. 7.
Interestingly, the runtime at d = 0 is higher than expected.
This is because, at d = 0, the algorithmmust frequentlymod-
ify partitions without any upcoming information, resulting in
inefficient runtime and poor quality. Therefore, considering
too deep look-ahead information about the dense circuit can
be nonbeneficial forminimizing the number of intertrap com-
munications, and a suitable choice of d around 3–10 balances
the optimization quality and processing time in such cases. In
conclusion, our analysis indicates that a larger d is preferable
for sparse circuits, while a smaller d is more appropriate for
dense circuits.

VOLUME 6, 2025 2500414

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

FIGURE 6. Number of intertrap transportation across various circuits with different look-ahead depth and decaying schemes.

FIGURE 7. Gate partitioning time across various circuits with different look-ahead depths.

C. INTRATRAP QUBIT MAPPING
1) EVALUATION
We define the following distance metric to relate to the
overall program fidelity.

1) The total gate distance is defined as the sum of gate
distance in each trap and each layer, which is defined
in Section IV-C

GD =
�max∑
�=1

k∑
j=1

gd(π�, j). (14)

2) The total swap distance is defined as the sum of swap
distance in each trap and each layer, which is defined
in Section IV-C3

SD =
�max∑
�=1

k∑
j=1

sd(π�, j, π�, j,0). (15)

3) The total distance is defined as TD = GD + 3SD. The
swap distance is penalized by a factor of 3 since a swap
gate can be decomposed into three cnot gates, and all
cnot gates can be decomposed into one ms gate and
some single-qubit gates. As the following shows, this
cost metric accurately relates a combinatorial metric to
the overall program fidelity.

Table 3 presents the GD, SD, and TD results after different
compilation methods. To provide a rough idea of impacts on
fidelity, we use a constant heating rate � = 0.01 (quanta per
second) for a rough fidelity approximation for normal two-
qubit gates as in (2). For the parameter A(2n̄+ 1), we use the
numerical approximation as in [20] and [42]. For the fidelity
of transport gates, we penalize the gate time by a factor of 2 as
current transport gate technologies are limited by the velocity
of the communication ions [32]. These gate fidelities are then
multiplied to estimate the program fidelity.

2500414 VOLUME 6, 2025

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS Engineeringuantum
Transactions onIEEE

TABLE 3. Results of Running the Proposed Algorithm on Benchmark Circuits With Trap Capacity Set to 30

TABLE 4. Comparison of Different Intratrap Qubit Mapping Methods Using the Partitioning Result in Table 2

It is important to note that the heating rate � = 0.01 used
here is significantly more optimistic than realistic values.
For instance, the equivalent heating rate studied in [41] is
approximately � ∼ 1. Achieving � ∼ 0.01 would require
substantial advancements to realize systems with 50–100
qubits. However, if we had used � ∼ 1, the overall fidelity
would have been too low to allow meaningful comparisons
for large-scale circuits. Therefore, we have chosen the highly
idealized value of � = 0.01 to ensure a fair comparison.
Table 3 is provided for comparison purposes only, and its
numerical values should not be interpreted literally. In ad-
dition, single-qubit gates are neglected here as they can be
implemented locally under the same operating conditions
(within the trap), and they have identical effects on fidelity,
assuming a constant heating rate �. Including single-qubit
gates in the fidelity estimation would significantly lower the
overall fidelity, rendering the comparison meaningless.
As shown in Table 3, our method achieves a notable re-

duction in total distance across various benchmarks, directly
improving program fidelity due to the inverse relationship
between ion distance and gate fidelity. In addition, reduc-
ing intertrap communication often minimizes swap distance
by decreasing the number of edge modifications required to
move qubits to the boundaries. These results underscore the
importance of architecture-aware compilers in optimizing
program fidelity, particularly for quantum computers oper-
ating in the NISQ era.

2) EFFECT ON INTRATRAP MAPPING METHOD
To evaluate the effect of the intratrap mapping result, we fur-
ther compared our method with the heuristic ion reordering
strategies implemented in [20] and [21]. These approaches
assign weights to qubits based on the number of gates they
participate in and then reorder qubits in descending order of
weight. For a fair comparison, we applied our partitioning
result in Table 2 to both approaches.
While the heuristic method significantly reduces the GD

by optimizing the mapping of ion qubits within traps, it
also leads to a considerable increase in the SD, as shown
in Table 4. This indicates a tradeoff between minimiz-
ing gate distances and the additional overhead introduced
by frequent ion swaps. In contrast, our method strikes
a better balance by simultaneously considering both GD
and SD, resulting in a substantial improvement in overall
fidelity.

3) EFFECT ON TRAP CAPACITY CHOICES
We also conducted several experiments on the same circuit
with different trap capacities as in Table 5 to examine the
compiler’s performance for different trap capacities to reflect
the tradeoff between intertrap communications and intratrap
configurations. As trap capacity increases, the number of
required traps decreases, shortening the compilation time
and reducing the number of intertrap communications—a

VOLUME 6, 2025 2500414

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

TABLE 5. Results of Running the Proposed Algorithm on Adder 102 With Different Choices of Trap Capacity χ and Heating Rate �

FIGURE 8. Compilation time for a series of circuits of different sizes.

major bottleneck in current trapped-ion technologies. How-
ever, larger traps introduce more complex intratrap configu-
ration transformations, leading to higher GD and SD. On the
other hand, using smaller traps minimizes intratrap complex-
ity. Still, the increased number of traps significantly raises the
number of intertrap communications. This higher commu-
nication overhead can impact gate scheduling, introducing
delays that degrade performance and fidelity.

4) EFFECT ON PHYSICAL PARAMETERS
Simulated fidelity also depends on the heating rate �. For
instance, as shown in Table 5, a lower heating rate improves
the fidelity of all configurations. As the heating rate in-
creases, the associated intratrap costs for GD and SD become
more dominant than the intertrap communications. Thus, we
conclude that the optimal trap capacity lies in the middle,
where the tradeoff between intratrap complexity and inter-
trap communication is well balanced. It also depends on how
effectively the technology, such as the heating rate or the
transport gates in our drive-through architecture, canmitigate
the penalties associated with intertrap communications.

5) SCALABILITY
To evaluate the scalability of our algorithm, we run a fam-
ily of circuits with different sizes and record their average
running time, as shown in Fig. 8. We also adjusted the trap
size proportionally with the number of qubits to reflect ad-
vancements in trapped-ion technology. The results demon-
strate that our compilation method exhibits an O(n2) run-
time growth, which aligns with the O(n2) growth of two-
qubit gates for circuits with O(n) depth examined here. Our
analytical method could trade a reasonable amount of
runtime for solution quality, which is crucial for circuit sizes

in the NISQ era. In contrast, exact methods such as SMT are
often limited to small circuit sizes due to the computational
complexity, and the runtime may grow exponentially as the
circuit size increases. This limitation makes exact methods
impractical for large modular architectures, highlighting the
advantage of our scalable approach.

VI. CONCLUSION AND FUTURE WORK
Researchers have recently shown increasing interest in new
QC hardware, and several compilers tailored for various ar-
chitectures have been proposed. The drive-through archi-
tecture provides a promising approach toward large-scale
trapped-ion quantum computers. This article proposed a scal-
able compilation flow for the drive-through architecture, con-
sidering the effect of both intertrap communications and the
gates in the intended program. Our method substantially re-
duces the total distance of circuit execution, which can be
crucial for total fidelity improvement, especially for quantum
computers in the NISQ era.
Future work will focus on exploring and optimizing dif-

ferent architectural designs, including configurations with
additional traps or racetracks, which may require more fine-
grained mappings of partitions to specific traps for improved
performance. In addition, addressing intertrap bottlenecks
will require optimizing communication protocols. This could
include strategies like scheduling traps with a higher num-
ber of two-qubit gates for execution priority or designing
specific routing algorithms for communication qubits, ulti-
mately minimizing intertrap transportation latency.
Our algorithm could also be extended to other

similar modular architectures that communicate through
near-boundary qubits, such as the modular universal scalable
ion trap quantum computer [43], where different processor

2500414 VOLUME 6, 2025

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS Engineeringuantum
Transactions onIEEE

nodes could communicate through communication qubits
at the border via an optical interface or other trapped-ion
architectures with cyclic topologies [24]. Our compilation
flow can potentially guide the trapped-ion quantum compiler
design in the near future.

ACKNOWLEDGMENT
The authors thank IBM Quantum Hub at National Taiwan
University and the Quantum Technology Cloud Computing
Center at National Cheng Kung University for supporting
access to quantum devices.

REFERENCES
[1] A. Kandala et al., “Hardware-efficient variational quantum Eigensolver

for small molecules and quantum magnets,” Nature, vol. 549, no. 7671,
pp. 242–246, Sep. 2017, doi: 10.1038/nature23879.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5,
pp. 1484–1509, Oct. 1997, doi: 10.1137/s0097539795293172.

[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202,
Sep. 2017, doi: 10.1038/nature23474.

[4] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,”Appl. Phys. Rev., vol. 6,
no. 2, Jun. 2019, Art. no. 021314, doi: 10.1063/1.5088164.

[5] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a
large-scale ion-trap quantum computer,” Nature, vol. 417, no. 6890,
pp. 709–711, Jun. 2002, doi: 10.1038/nature00784.

[6] D. Leibfried, E. Knill, C. Ospelkaus, and D. J.Wineland, “Transport quan-
tum logic gates for trapped ions,” Phys. Rev. A, vol. 76, no. 3, Sep. 2007,
Art. no. 032324, doi: 10.1103/physreva.76.032324.

[7] W. H. Png, T. Hsu, T.-W. Liu, M.-S. Chang, and G.-D. Lin, “Non-stop
quantum entangling gate between a stationary ion qubit and a mobile
one,” Bull. Amer. Phys. Soc., vol. 68, no. 7, Jun. 2023. [Online]. Available:
https://meetings.aps.org/Meeting/DAMOP23/Session/U09.8

[8] S. A. Moses et al., “A race-track trapped-ion quantum processor,” Phys.
Rev. X., vol. 13, no. 4, Dec. 2023, Art. no. 041052, doi: 10.1103/phys-
revx.13.041052.

[9] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, “Compiler
design for distributed quantum computing,” IEEE Trans. Quantum Eng.,
vol. 2, 2021, Art. no. 4100720, doi: 10.1109/tqe.2021.3053921.

[10] I. Ghodsollahee, Z. Davarzani, M. Zomorodi, P. Pławiak, M. Housh-
mand, and M. Houshmand, “Connectivity matrix model of quantum
circuits and its application to distributed quantum circuit optimiza-
tion,” Quantum Inf. Process, vol. 20, no. 7, Jul. 2021, Art. no. 235,
doi: 10.1007/s11128-021-03170-5.

[11] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping prob-
lem for NISQ-Era quantum devices,” in Proc. 24th Int. Conf. Ar-
chit. Support Program. Lang. Oper. Syst., Apr. 2019, pp. 1001–1014,
doi: 10.1145/3297858.3304023.

[12] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the IBM QX architectures,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 7, pp. 1226–1236,
Jul. 2019, doi: 10.1109/tcad.2018.2846658.

[13] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and
S. Sivarajah, “On the qubit routing problem,” in Proc. 14th Conf.
Theory Quantum Comput., Commun. Cryptogr., 2024, pp. 5:1–5:32,
doi: 10.4230/LIPIcs.TQC.2019.5.

[14] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington,
and R. Duncan, “t|ket〉: A retargetable compiler for NISQ de-
vices,” Quantum Sci. Technol., vol. 6, Apr. 2020, Art. no. 014003,
doi: 10.1088/2058-9565/ab8e92.

[15] C.-Y. Cheng, C.-Y. Yang, Y.-H. Kuo, R.-C. Wang, H.-C. Cheng, and C.-
Y. Huang, “Robust Qubit mapping algorithm via double-source optimal
routing on large quantum circuits,” ACM Trans. Quantum Comput., vol. 5,
pp. 1–26, Aug. 2024, doi: 10.1145/3680291.

[16] B. Tan and J. Cong, “Optimal layout synthesis for quantum computing,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., Dec. 2020, pp. 1–9,
doi: 10.1145/3400302.3415620.

[17] T.-A. Wu, Y.-J. Jiang, and S.-Y. Fang, “A robust quantum layout synthesis
algorithm with a Qubit mapping checker,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Oct. 2022, pp. 1–9, doi: 10.1145/3508352.3549394.

[18] W.-H. Lin, J. Kimko, B. Tan, N. Bjørner, and J. Cong, “Scalable
optimal layout synthesis for NISQ quantum processors,” in
Proc. 60th ACM/IEEE Des. Autom. Conf., Jul. 2023, pp. 1–6,
doi: 10.1109/dac56929.2023.10247760.

[19] I. Shaik and J. Van de Pol, “Optimal layout synthesis for deep quantum
circuits on NISQ processors with 100+ Qubits,” in Proc. 27th Int. Conf.
Theory Appl. Satisfiability Test., Aug. 2024, vol. 305, pp. 26:1–26:18,
doi: 10.4230/LIPIcs.SAT.2024.26.

[20] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Archi-
tecting noisy intermediate-scale trapped ion quantum computers,” in
Proc. IEEE/ACM Int. Symp. Comput. Archit., Sep. 2020, pp. 529–542,
doi: 10.1109/ISCA45697.2020.00051.

[21] A. A. Saki, R. O. Topaloglu, and S. Ghosh, “Muzzle the shuttle: Ef-
ficient compilation for multi-trap trapped-ion quantum computers,” in
Proc. Des., Autom. Test Eur. Conf. Exhib., Mar. 2022, pp. 322–327,
doi: 10.23919/date54114.2022.9774619.

[22] E. Nikahd, N. Mohammadzadeh, M. Sedighi, and M. S. Zamani, “Auto-
mated window-based partitioning of quantum circuits,” Phys. Scr., vol. 96,
no. 3, Jan. 2021, Art. no. 035102, doi: 10.1088/1402-4896/abd57c.

[23] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-
sliced quantum circuit partitioning for modular architectures,”
in Proc. 17th Int. Conf. Comput. Front., May 2020, pp. 98–107,
doi: 10.1145/3387902.3392617.

[24] D. Schoenberger, S. Hillmich, M. Brandl, and R. Wille, “Using Boolean
satisfiability for exact shuttling in trapped-ion quantum computers,” in
Proc. 29th Asia South Pacific Des. Autom. Conf., Jan. 2024, pp. 127–133,
doi: 10.1109/ASP-DAC58780.2024.10473902.

[25] W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev.
Mod. Phys., vol. 62, no. 3, pp. 531–540, Jul. 1990, doi: 10.1103/revmod-
phys.62.531.

[26] J. Eschner, G. Morigi, F. Schmidt-Kaler, and R. Blatt, “Laser cooling of
trapped ions,” J. Opt. Soc. Amer. B, vol. 20, no. 5,May 2003, Art. no. 1003,
doi: 10.1364/josab.20.001003.

[27] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics
of single trapped ions,” Rev. Mod. Phys., vol. 75, no. 1, pp. 281–324,
Mar. 2003, doi: 10.1103/revmodphys.75.281.

[28] A. Sørensen and K. Mølmer, “Quantum computation with ions in ther-
mal motion,” Phys. Rev. Lett., vol. 82, no. 9, pp. 1971–1974, Mar. 1999,
doi: 10.1103/physrevlett.82.1971.

[29] C. J. Trout et al., “Simulating the performance of a distance-3 surface
code in a linear ion trap,” New J. Phys., vol. 20, no. 4, Mar. 2018,
Art. no. 043038, doi: 10.1088/1367-2630/aab341.

[30] J. M. Pino et al., “Demonstration of the trapped-ion quantum CCD com-
puter architecture,” Nature, vol. 592, no. 7853, pp. 209–213, Apr. 2021,
doi: 10.1038/s41586-021-03318-4.

[31] L. E. de Clercq et al., “Parallel transport quantum logic gates with trapped
ions,” Phys. Rev. Lett., vol. 116, no. 8, Feb. 2016, Art. no. 080502,
doi: 10.1103/physrevlett.116.080502.

[32] H. N. Tinkey, C. R. Clark, B. C. Sawyer, and K. R. Brown, “Transport-
enabled entangling gate for trapped ions,” Phys. Rev. Lett., vol. 128, no. 5,
Jan. 2022, Art. no. 050502, doi: 10.1103/physrevlett.128.050502.

[33] G. De Micheli, J.-H. R. Jiang, R. Rand, K. Smith, and M. Soeken, “Ad-
vances in quantum computation and quantum technologies: A design au-
tomation perspective,” IEEE Trans. Emerg. Sel. Top. Circuits Syst., vol. 12,
no. 3, pp. 584–601, Sep. 2022, doi: 10.1109/jetcas.2022.3205174.

[34] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307, Feb. 1970,
doi: 10.1002/j.1538-7305.1970.tb01770.x.

[35] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, “Engineering a direct
k-way hypergraph partitioning algorithm,” in Proc. 19th Workshop Algo-
rithm Eng. Exp., Jan. 2017, pp. 28–42, doi: 10.1137/1.9781611974768.3.

[36] H. Seitz, “Contributions to the minimum linear arrangement problem,”
Ph.D. dissertation, Univ. Heidelberg, Heidelberg, Germany, 2024.
[Online]. Available: http://archiv.ub.uni-heidelberg.de/volltextserver/
10578/1/MinLA_Thesis_Seitz.pdf

VOLUME 6, 2025 2500414

https://dx.doi.org/10.1038/nature23879
https://dx.doi.org/10.1137/s0097539795293172
https://dx.doi.org/10.1038/nature23474
https://dx.doi.org/10.1063/1.5088164
https://dx.doi.org/10.1038/nature00784
https://dx.doi.org/10.1103/physreva.76.032324
https://meetings.aps.org/Meeting/DAMOP23/Session/U09.8
https://dx.doi.org/10.1103/physrevx.13.041052
https://dx.doi.org/10.1103/physrevx.13.041052
https://dx.doi.org/10.1109/tqe.2021.3053921
https://dx.doi.org/10.1007/s11128-021-03170-5
https://dx.doi.org/10.1145/3297858.3304023
https://dx.doi.org/10.1109/tcad.2018.2846658
https://dx.doi.org/10.4230/LIPIcs.TQC.2019.5
https://dx.doi.org/10.1088/2058-9565/ab8e92
https://dx.doi.org/10.1145/3680291
https://dx.doi.org/10.1145/3400302.3415620
https://dx.doi.org/10.1145/3508352.3549394
https://dx.doi.org/10.1109/dac56929.2023.10247760
https://dx.doi.org/10.4230/LIPIcs.SAT.2024.26
https://dx.doi.org/10.1109/ISCA45697.2020.00051
https://dx.doi.org/10.23919/date54114.2022.9774619
https://dx.doi.org/10.1088/1402-4896/abd57c
https://dx.doi.org/10.1145/3387902.3392617
https://dx.doi.org/10.1109/ASP-DAC58780.2024.10473902
https://dx.doi.org/10.1103/revmodphys.62.531
https://dx.doi.org/10.1103/revmodphys.62.531
https://dx.doi.org/10.1364/josab.20.001003
https://dx.doi.org/10.1103/revmodphys.75.281
https://dx.doi.org/10.1103/physrevlett.82.1971
https://dx.doi.org/10.1088/1367-2630/aab341
https://dx.doi.org/10.1038/s41586-021-03318-4
https://dx.doi.org/10.1103/physrevlett.116.080502
https://dx.doi.org/10.1103/physrevlett.128.050502
https://dx.doi.org/10.1109/jetcas.2022.3205174
https://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://dx.doi.org/10.1137/1.9781611974768.3
http://archiv.ub.uni-heidelberg.de/volltextserver/penalty -@M 10578/1/MinLA_Thesis_Seitz.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/penalty -@M 10578/1/MinLA_Thesis_Seitz.pdf

Engineeringuantum
Transactions onIEEE

Chang et al.: QUANTUM CIRCUIT COMPILATION FOR TRAPPED-ION PROCESSORS

[37] A. Labarre, “Lower bounding edit distances between permutations,”
SIAM J. Discrete Math, vol. 27, no. 3, pp. 1410–1428, Jan. 2013,
doi: 10.1137/13090897x.

[38] T. Tomesh, “Quantum circuit generator: Python package for
automated generation of different types of quantum circuits,”
GitHub, 2019. Accessed: 3 Oct. 2024. [Online]. Available:
https://github.com/teaguetomesh/quantum_circuit_generator/tree/master

[39] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “QASMBench: A
low-level quantum benchmark suite for NISQ evaluation and simu-
lation,” ACM Trans. Quantum Comput., vol. 4, pp. 1–26, Jul. 2022,
doi: 10.1145/3550488.

[40] A. Javadi-Abhari et al., “Quantum computing with Qiskit,” May 2024,
arXiv:2405.08810, doi: 10.48550/arxiv.2405.08810.

[41] J.-S. Chen et al., “Benchmarking a trapped-ion quantum
computer with 30 qubits,” Quantum, vol. 8, Art. no. 1516,
doi: 10.22331/q-2024-11-07-1516.

[42] Y. Wu, S.-T. Wang, and L.-M. Duan, “Noise analysis for high-fidelity
quantum entangling gates in an anharmonic linear Paul trap,” Phys.
Rev. A, vol. 97, no. 6, Jun. 2018, Art. no. 062325, doi: 10.1103/phys-
reva.97.062325.

[43] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Sci-
ence, vol. 339, no. 6124, pp. 1164–1169, Mar. 2013, doi: 10.1126/sci-
ence.1231298.

Che-Ming Chang received the B.S. degree in
electrical engineering fromNational Taiwan Uni-
versity, Taipei, Taiwan, in 2024.

He previously interned with the AI for EDA
Group, IBM Research Almaden Lab, San Jose,
CA, USA. His research interests include elec-
tronic design automation (EDA) with emerging
technologies and the application of artificial in-
telligence in EDA.

Jie-Hong Roland Jiang (Member, IEEE) re-
ceived the B.S. and M.S. degrees in electronics
engineering from National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 1996 and 1998, respec-
tively, and the Ph.D. degree in electrical engineer-
ing and computer sciences from the University
of California at Berkeley, Berkeley, CA, USA, in
2004.

He is currently a Professor with the Depart-
ment of Electrical Engineering and the Gradu-
ate Institute of Electronics Engineering, National

Taiwan University, Taipei, Taiwan, where he also leads the Applied Logic
and Computation Laboratory. His research interests include logic synthesis,
formal verification, electronic design automation, and computation models
of biological and physical systems.
Dr. Jiang is a member of Phi Tau Phi and the Association for Computing

Machinery.

Dah-Wei Chiou received the B.S. and M.S.
degrees from National Tsing Hua University,
Hsinchu, Taiwan, in 1996 and 1998, respectively,
and the Ph.D. degree from the University of Cal-
ifornia at Berkeley, Berkeley, CA, USA, in 2006,
all in physics.

From 2020 to 2022, he was an Assis-
tant Professor with the Department of Physics,
National Sun Yat-sen University, Kaohsiung,
Taiwan. Since 2023, he has been a Postdoctoral
Researcher with the Graduate Institute of Elec-

tronics Engineering, National Taiwan University, Taipei, Taiwan.

Ting Hsu received the B.S. and M.S. degrees in
physics from National Taiwan University, Taipei,
Taiwan, in 2015 and 2019, respectively.

From 2019 to 2021, she was a Research Assis-
tant with National TaiwanUniversity. Since 2021,
she has been a Research Assistant with the Hon
Hai Research Institute, Taipei.

Guin-Dar Lin received the B.S. degree in electri-
cal engineering and M.S. degree in physics from
National Taiwan University, Taipei, Taiwan, in
1998 and 2000, respectively, and the Ph.D. degree
in physics from the University of Michigan, Ann
Arbor, MI, USA, in 2010.

He was a Postdoctoral Researcher with the
University of Connecticut, Mansfield, CT, USA,
from 2010 to 2012, and with the Institute for The-
oretical Atomic, Molecular, and Optical Physics,
Harvard-Smithsonian Center for Astrophysics

and the Harvard Physics Department, Cambridge, MA, USA, from 2010
to 2013. From 2014 to 2020, he was an Assistant Professor with the De-
partment of Physics, National Taiwan University, where he has been an
Associate Professor since 2020. Since 2021, he has also been the Director
of the Trapped Ion Quantum Computing Laboratory, Hon Hai Research
Institute, Taipei.

2500414 VOLUME 6, 2025

https://dx.doi.org/10.1137/13090897x
https://github.com/teaguetomesh/quantum_circuit_generator/tree/master
https://dx.doi.org/10.1145/3550488
https://dx.doi.org/10.48550/arxiv.2405.08810
https://dx.doi.org/10.22331/q-2024-11-07-1516
https://dx.doi.org/10.1103/physreva.97.062325
https://dx.doi.org/10.1103/physreva.97.062325
https://dx.doi.org/10.1126/science.1231298
https://dx.doi.org/10.1126/science.1231298

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

