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ABSTRACT The Traveling Salesman Problem (TSP) is a widely studied NP-complete optimization chal-
lenge with significant theoretical and practical implications. This study proposes a hybrid quantum-classical
framework using a Quantum-Inspired Evolutionary Algorithm (QEA) with Sort Gray Binary Encoding to
solve the TSP. The proposed method guarantees the generation of valid TSP tours by eliminating invalid
solutions. It employs quantum superposition with intrinsic randomness to enhance computational efficiency
and scalability. The framework was implemented on cloud-based NISQ platforms, including IBM Quantum
and AWS Braket, demonstrating its practicality and effectiveness. Experimental evaluations revealed that the
proposed framework successfully solved TSP instances with up to 15 cities, achieving superior performance
compared to classical methods and showcasing its ability to scale under NISQ constraints. The results also
highlight the potential of hybrid quantum-classical approaches to overcome hardware limitations in current
quantum systems. This study establishes a robust hybrid methodology for solving combinatorial optimization
problems. It also sets a benchmark for leveraging the capabilities of NISQ-era quantum devices in real-world
applications, thereby providing a foundation for future research in hybrid quantum-classical optimization
techniques.

INDEX TERMS Evolutionary algorithm, gray encoding, hybrid algorithms, noisy intermediate-scale
quantum, quantum computing, traveling salesman problem.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) can be traced back
to Euler as early as 1759 [1], where the knight tour problem
is discussed to find a solution to ensure that the knight
visits each of the 64 squares of a chessboard exactly once.
A fully symmetric version of the TSP was considered to
have been mentioned in the manual in 1832 with an example
of 48 German cities. The problem is simple to explain, yet

The associate editor coordinating the review of this manuscript and

approving it for publication was Martin Reisslein

daunting to solve optimally. Mathematically, TSP has been
proven to be NP-complete [2], thereby classifying it as a set of
problems that are difficult to solve. For a detailed discussion
of TSP evolution, readers can refer to [3]. TSP is central to
a wide array of real-world applications, including logistics
and supply chain management, where optimizing delivery
routes can significantly reduce operational costs, improve
resource utilization, and minimize energy consumption [4].
Additionally, TSP-based methodologies are widely used
in robotics for motion planning, telecommunications for
optimizing network routing, and advanced manufacturing
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for efficient tool path optimization in CNC systems. These
diverse applications highlight TSP’s utility across industries.

In its simplest form, TSP aims to find the shortest route
for visiting n cities once and returning to the starting point.
Alternatively, it can be viewed as a problem in which a
salesman visits each city only once, starting and ending in
the same city, while covering the minimum possible distance.
The distances between cities are known antecedently and are
symmetric in the simplest form of the TSP. In this study,
we focus on a fully connected TSP problem, in which city
is directly connected to every other city, ensuring a complete
graph representation of the problem. When the problem
is presented on a graph G = (V,E), with n vertices in
(V) representing cities and edges in (E) indicating paths
between cities, the following equations holistically describe
the mathematical model.

n
min Z CijXij (1)
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n
sz',j=1, ieV,i#j )
j=1
n
in,j=1, JEV,i#] 3)
i=1
in,j5|5|—1, Scv,2<|S|<n=-2 &
i,jes
xij=0or1, V(@,j) (5)

where,

¢;j = Traveling cost from city i to j

1, if path from city i to j is selected
X =
" 0, otherwise

Equation 1 represents the objective function that seeks
to minimize the total travel cost in the Traveling Salesman
Problem. The degree constraints to ensure that each city was
visited only once were implemented using Equations 2 and 3.
Finally, Equations 4 and 5 represent the sub-tour elimination
and integrality constraints, respectively.

Given that TSP is an NP-complete problem and consid-
ering the implications of the No Free Lunch Theorems for
optimization [5], extensive research has focused on solving
the TSP using classical computers. These efforts span exact
approaches [6], approximation techniques [7], and heuristic
methods [8]. In heuristic approaches, many bio-inspired
algorithms have been reported to efficiently solve TSP [4],
[9]. The best known time-space complexity for solving
specific categories of TSP is O(2"n®1) [10]. However, these
approaches often depend on a probabilistic element, which
is a part of the heuristic strategy, and do not guarantee an
optimal solution [11], [12]. As problem instances grow in
size and complexity, metaheuristics may struggle to scale
efficiently, resulting in suboptimal solutions or excessively
long computation times [13]. Therefore, it is necessary to
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explore alternative computing paradigms for solving NP-
complete problems. Solving TSP efficiently is crucial not
only for its direct applications but also for advancing
approaches to other NP-complete problems, such as job-
shop scheduling, resource allocation, and circuit design [14].
Each solution to TSP contributes to broader understanding
and algorithmic developments for tackling computationally
intractable problems.

The most revolutionary theory to explain subatomic
physics was introduced by the ideas evolved by Max
Planck, Erwin Schrodinger, Werner Heisenberg, and Paul
Dirac [15]. Building upon these foundational ideas, Richard
Feynman [16] and David Deutsch [17] introduced the idea
of using quantum effects for computations. Before functional
quantum devices were realized, theories such as Shor’s
algorithm for prime factorization [18] and Grover’s algorithm
for database searches [19] showed how quantum systems
could outperform classical computers in certain tasks.

Despite this theoretical promise, real-world applications
of quantum computing remain constrained owing to lim-
ited access to quantum hardware. The currently available
quantum bits or qubits are prone to instability, making them
vulnerable to interference, decoherence, and noise. As a
result, present-day quantum systems fall under the category
of Noisy Intermediate-Scale Quantum (NISQ) devices [20].
The term ‘‘intermediate scale” means having fewer than
100 noisy qubits. Their flaws make it difficult to control them
accurately.

In this study, we examined the methods currently deployed
to use NISQ machines to solve TSP. We present a new method
based on our literature review and identified research gap.
This method uses a population-based Evolutionary Algorithm
(EA) with specially designed binary Gray encoding to
be implemented on an NISQ machine. By integrating
classical evolutionary strategies with quantum features like
superposition and randomness, these methods can address
the scalability challenges of current quantum systems [21].
Section II of the paper provides an overview of the current
literature related to this problem. Section III highlights the
research gaps and key contributions of this study. Section IV
explains the proposed implementation of EA for the TSP on
NISQ devices. Section V provides a comprehensive descrip-
tion of the experimental framework and the parameters used
to solve the TSP using the NISQ devices. Section VI presents
the experimental results, and Section VII provides a detailed
analysis of these results. Section VIII concludes the paper by
summarizing the key contributions and proposing directions
for future research.

II. LITERATURE SURVEY

The TSP has been extensively studied using classical comput-
ing methods. Exact solvers such as Concorde have demon-
strated state-of-the-art performance by leveraging combina-
torial optimization techniques, including branch-and-bound
strategies [22]. Additionally, advanced metaheuristics, such
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as Ant Colony Optimization (ACO) and Genetic Algorithms
(GA), have been widely applied to efficiently approximate
solutions for large-scale TSP instances [23]. Although
classical solvers currently dominate TSP optimization, our
study focuses on quantum and quantum-inspired approaches,
particularly in the context of leveraging NISQ devices.

Hybrid quantum-classical methods have the potential to
complement classical solvers by incorporating quantum
properties such as superposition and entanglement, which
can enhance search space exploration and provide novel
optimization strategies. Although quantum hardware is still in
its early stages, steady advancements in qubit stability, error
mitigation, and quantum circuit design suggest that hybrid
and quantum approaches may become viable for solving
large-scale combinatorial problems [24]. Our literature
review further explores how quantum-inspired evolutionary
algorithms can leverage emerging quantum hardware to
address TSP optimization challenges.

Early developments in theoretical quantum algorithms
have proven the feasibility of large-scale improvements in
computing capabilities by using this new paradigm. However,
full-scale implementation of these algorithms is not possible
owing to the low availability of quantum computing devices.
This has led to innovative research methods that utilize
quantum and classical paradigms in a hybrid mode to
maximize the benefits of quantum techniques. Interested
readers can refer to [25] and [26] for recent literature on the
advances in hybrid quantum metaheuristics.

In this literature survey, we examined only quantum
algorithms that have been applied to solve the TSP. Typically,,
quantum algorithms for optimization are categorized into
two paradigms: gate-based quantum machines and quan-
tum annealing-based algorithms [27]. However, with the
progressive blurring of boundaries for Quantum-inspired
Evolutionary Algorithms (QEA) to be used on quantum
machines in hybrid models [28], we propose three distinct
categories for solving the TSP on quantum machines. Based
on the type of quantum device used, we classified the current
research into the categories mentioned below and present a
brief description of each method for solving TSP.!

o Quantum-inspired Evolutionary Algorithms (QEA)
o Gate-Based Quantum Machines

¢ Quantum Annealing (QA) based Machines

« Digital Annealers (DA)

A. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHMS
(QEA)

Inspired by the quantum computing paradigm, these algo-
rithms mimic quantum techniques for solving optimization
problems on classical computers. They are designed to run
on classical computers, and do not use quantum computers.
QEA [29] represents a subset of population-based methods
that utilize multimodal probability distribution estimation

TA detailed recent survey of gate-based quantum machines and QA
algorithms to solve routing problems and TSP is provided in [27].
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techniques [30], and has demonstrated significant success in
addressing diverse search and optimization challenges. QEA
employs a representation based on simulated quantum bits
(g-bits) along with unitary rotation gates and measurement
operators, all of which are simulated using classical com-
putational devices [31]. NISQ devices, on the other hand,
have achieved selective quantum supremacy by efficiently
sampling complex probability distributions that are com-
putationally hard for classical systems [32]. Such devices
could enhance the QEA by facilitating the implementation
of genotype qubit representations, rotation operations, and
measurement tasks with greater efficiency than their classical
counterparts. It is conjectured that NISQ systems can
inherently improve the accuracy of multimodal probability
distribution estimations in a QEA, potentially enabling
accelerated search and optimization processes compared to
traditional digital implementations.

Implementation of population-based heuristics on quan-
tum computers has recently been reported using the Hybrid
Quantum Genetic Algorithm (HQGA) [28], [33], Quantum-
Inspired Estimation of Distribution Algorithm (QIEDA)
[34], and Tabu Search Algorithm with implementation for
TSP [35]. A study of the applications of the above techniques
to solve the TSP revealed the following.

« HQGA [28], [33] does not have a direct implementation
for solving TSP.

o QIEDA [34] innovatively implemented an array rep-
resentation of the TSP and a quantum simulator was
used to sample valid routes using W-state quantum
circuits. These algorithms have been reported to run
directly on a real quantum computer using circuit-model
programming, without modifications. However, results
were obtained for TSP instances in up to 20 cities by
simulating real IBM quantum computers.

o Similarly, owing to the restrictions of quantum
machines, the Tabu Search Algorithm implemented for
TSP [35] uses the QBSolv tool offered by the D-Wave
System in its local variant for 14-23 cities.

Thus, to the best of our knowledge, no population-based
systems have reported the results of a hybrid implementation
in actual quantum machines to solve the TSP. However, there
are reports on solving TSP instances for up to 20 cities on
both gate-based machines and D-Wave simulators using the
QEA.

The proposed method belongs to the QEA class and
extends it by introducing hybrid quantum-classical strate-
gies. The framework provides a bridge for extending the
QEA class by utilizing gate-based circuits and employing
superposition within the QEA on NISQ devices to solve
the TSP.

B. GATE-BASED QUANTUM MACHINES
There are two common approaches for solving the TSP

on gate-based quantum machines: Quantum Approximate
Optimization Algorithm (QAOA) [36] and Quantum Phase
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Estimation Algorithm [37]. Both techniques encode the
problem in a suitable method to be fed to a quantum
computer (unitary/Hamiltonian operator), and then use
separate procedures for manipulation with quantum gates
to estimate the eigenstate to find the optimal solution.
They have detailed tutorials on QISKIT, the Open-Source
Quantum Development website [38], and in [39]. Recent
results using QAOA have been reported for TSP problems
in a maximum of four cities. The limitation in the number
of cities is primarily owing to the non-availability of larger
numbers of stable qubits [40]. The quantum phase estimation
algorithm claims the theoretical gain of a quadratic speedup
over the brute force search [41]; however, the practical
implementation of all the algorithms in this category has been
found to be restricted to trivial problems of TSP with up to 4-5
cities [42], [43] [44].

C. QUANTUM ANNEALING (QA) BASED MACHINES

QA machines accept TSP as a quantum Hamiltonian, and the
minimum quantum energy of this Hamiltonian is estimated
using an adiabatic annealing process. The general technique
used in QA is adiabatic quantum optimization [45] with the
following four steps:

o Convert TSP to an Ising model.

o Feed the Ising model to the Quantum Machine.
o Undertake QA.

« Interpret the results.

Quantum annealing outperforms gate-based machines
in complex optimization problems. Furthermore, D-Wave
launched Advantage Quantum Computers with over 5,000
qubits on its cloud in 2020 [46], whereas IBM offered
127 qubit gate-based devices on the cloud in 2021 [47].
However, owing to various implementation restrictions,
D-Wave machines with more than 5000 qubits on quantum
annealing devices translate approximately 73 logical qubits
[48]. QA solutions for TSP are restricted to problems below
the size of eight cities for practical implementation [48], [49],
primarily because of the limited availability of stable and
noise free qubits.

D. DIGITAL ANNEALERS (DA)

DAs have been developed by employing unique computing
technologies inspired by quantum phenomena [50]. Results
from these classical devices, such as Fujitsu’s CMOS
Digital Annealer, have demonstrated success in solving TSP
instances with up to 100 vertices [51]. However, these
approaches are fundamentally distinct from QEA, gate-based
quantum machines, and quantum annealers. DA uses highly
connected classical bits. Together, they run a stochastic search
to minimize energy functions. However, they do not use
qubits as computing elements [52]. Leading review papers
on quantum systems and quantum-inspired evolutionary
algorithms, typically do not classify digital annealers within
these categories [27], [53], [54].
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Ill. RESEARCH GAPS AND KEY CONTRIBUTIONS
Based on the literature survey, we do observe the following.

o There has been limited progress in evolving Quantum-
Inspired Evolutionary Algorithms (QEA) for implemen-
tation on quantum simulators or gate-based quantum
machines to solve the Traveling Salesman Problem
(TSP). No study has reported results for the actual imple-
mentation of QEA on gate-based quantum machines.

« Existing QEA implementations are restricted to classical
machines or simulators, meaning that key quantum
phenomena such as superposition and entanglement
have not been utilized in current approaches. This limits
the potential advantages of quantum computing for
solving optimization problems like the TSP.

« Traditional encoding schemes, such as binary or matrix-
based representations, often produce invalid TSP solu-
tions during evolutionary operations like crossover and
mutation. These inefficiencies increase computational
overhead and negatively impact the scalability of
algorithms for larger problem instances.

To mitigate the above mentioned research gaps, we
attempted to implement QEA on a gate-based model with
a population-based technique using NISQ machines. The
proposed novel approach ensures that all TSP solutions
generated by the proposed EA in the hybrid mode using
classical and quantum computers are valid and eliminates
all invalid tours. This study provides a framework for
solving TSP problems in up to 15 cities on present-day
quantum machines in hybrid mode using EA. The specific
contributions of this study are as follows.

« An innovatively designed Sort Gray Binary Encoding
for TSP (SGBET) eliminates errors in TSP tours.
This encoding ensures that all solutions generated
during evolutionary operations are valid, overcoming
the challenges associated with traditional encoding
schemes. The method and its validity are demonstrated
in Section IV-A with proofs and examples.

e A hybrid framework was presented for solving TSP
instances of up to 15 cities, leveraging cloud-based
access to IBM-Q [55] and AWS Braket [56]. The
framework combines the strengths of classical and
quantum paradigms to overcome the limitations of the
NISQ hardware.

o The use of quantum superposition was demonstrated via
controlled gate-based circuits on NISQ machines. This
feature leverages quantum randomness to improve the
solution diversity and convergence efficiency.

IV. PROPOSED IMPLEMENTATION OF EA FOR TSP ON
NISQ

We propose a hybrid model to solve combinatorial opti-
mization problems (COP) in gate-based quantum machines
using population-based techniques. The motivation for the
proposed model (as shown in Fig. 1) was drawn from
the Quantum-inspired EA [29] and the implementation
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of EAs on IBM-Q [28]. A key advantage of quantum
computing is its ability to generate true randomness by
using quantum mechanics and measurements. In the proposed
methodology, this randomness is leveraged to formulate
the routes in the TSP. Unlike classical systems that rely
on pseudo random number generators, quantum systems
exhibit intrinsic randomness, which provides more authentic
randomization.

In our approach, route formation is automated using
quantum evolutionary algorithms that systematically explore
potential routes for the TSP without requiring manual
intervention at each decision point. The tasks of reading
the TSP problem, initialization, interpretation, evaluation of
solutions, and population management are performed using a
classical machine. A quantum machine is used for key EA
procedures such as crossover, mutation, and generation of
offspring. The innovation in the implementation of TSP in
this model is the design of a special binary Gray encoding,
as explained in the following subsection.

Classical Quantum
Computer Computer
I Initialize quantum -
e i circuits !
Initialisation | * |
blocks Population I
' initialisation Apply random rotation | .

gates 1
! |

Quantum sampling by

Yes

Stop if

criteria - observation |
| o
Report [ N\ J~ = |'=r=r=r=== -
results
| A7 1
| 1
1 Interpret and Initialize quantum 1
evaluate .
| ! circuits 1
solution "
I
. 3 ! !
| Population Apply rotation 1
1| management including gates I
migration I
! { .
1 Generate new Q“alr_““"; 1
1 rotation angles Zi::r\lfr;?io: 1
1 T 1

Iteration
blocks

FIGURE 1. Block diagram.

A. GRAY BINARY ENCODING

Gray binary encoding is a system of representing binary num-
bers where two consecutive values differ in only one bit [57].
This helps to minimize changes between solutions during
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optimization. It reduces disruptions caused by mutations in
GA and makes the search process more stable. Using Gray
binary encoding in SGBET ensures smoother transitions
between solutions. This improves the performance of solving
problems such as TSP [58].

B. SORT GRAY BINARY ENCODING FOR TSP (SGBET)

In the Genetic Algorithm (GA) there are generally two
representations of a TSP solution: binary representation
and matrix representation. A binary representation was
considered in the proposed methodology to minimize the
number of qubits required. In this representation, each
solution is called a chromosome, that contains variables
called genes. The method used to interpret these genes and
chromosomes is defined by SGBET.

As an example of a binary representation, a six-city TSP
solution can be represented by a chromosome with genes 0-
2-3-4-5-1 which is encoded as follows.

0 2 3 4 5 1

000 010 011 100 101 001

It is trivial to interpret that the bits required in this case
are n[log, n] and each ordered set of [log, 1] bits represents
the next city to be visited. This encoding is known as Lidd’s
encoding [59]. This representation is not suitable for the TSP.
It creates many invalid tours for high-order TSP problems
when GA operators (such as combination and mutation) are
used [1]. To understand these issues, two simple mutations in
the chromosome are presented below.

< decimal
< binary

« A single-bit mutation in the second gene (bit 6) results in
a binary sequence (000-011-011-100-101-001), which is
interpreted as an invalid tour because City 3 is visited
twice and City 2 is not visited at all, as depicted below.

000 o011 011 100 101 001
0 3 3 4 5 1

« Another problem can be demonstrated by considering
the mutation in the third gene (bit 7), which leads to the
inclusion of the seventh city (which does not exist as per
our problem) in the tour. This situation can be described
as follows.

000 010 111 100 101 001

0 3 7 4 5 1

To overcome the aforementioned problems of invalid
solutions, we propose SGBET which draws inspiration from
the proposal of using special sorted encoding to overcome the
aforementioned shortcomings [60]. The Gray code was used
for the initial interpretation of the genes [61] to minimize
the Hamming distance between similar TSP solutions. The
process of decoding chromosomes using SGBET involves the
following steps.

1) Score Sequence: Decode individual genes in the
chromosome to obtain a score using grayscale as a
decimal value and call it the score sequence.
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2) Repaired Score Sequence: In case of repetition in
the score sequence, the score of the repetition gene is
increased until no repetition exists.

3) Sorted Sequence: Sort the repaired score sequence in
ascending order.

4) City Tour: For every element in the sorted sequence,
the index of the same element in the Repaired
Score Sequence was determined. The score index was
considered as the city to be visited at each step.

Algorithm 1 SGBET: Sort Gray Binary Encoding for TSP
1: procedure SGBET (chromosome)

2 n < Number of cities; gene_len <— [log, n]

3: for i fromOton — 1 do

4: score_seq; <— gray_decode (chromosome[i X
gene_len:(i + 1) x gene_len))

5: end for

6: create repaired_score_seq:

7: each repetition in score_seq is increased by 1 until

all repetitions are removed

8: create sorted_seq:
9: sort repaired_score_seq in ascending order
10: for i fromOton — 1 do
11: city_tour; < index (repaired_score_seq
[sorted_seq])
12: end for

13: return (city_tour, (length (city_tour)))
14: end procedure

TABLE 1. Example tour 1.

Example Tour 1: SGBET Decoding
Chromosome 010 | 110 | 111 | 000 | 010 | OI1
Score Sequence 3 4 5 0 3 2
Repaired Score Sequence 4 5 0 6 2
Sorted Score 0 2 3 4 5 6
City Tour 3 5 0 1 2 4
TABLE 2. Example tour 2.
Example Tour 2: SGBET Decoding
Chromosome 010 | 110 | 111 | 110 | 010 | O11
Score Sequence 3 4 5 4 3 2
Repaired Score Sequence 5 6 7 2
Sorted Score 2 3 4 5 6 7
City Tour 5 0 1 2 3 4

The process is outlined in Algorithm 1. This algorithm
resolves the key challenge in interpreting a random binary
string as a valid TSP tour. The algorithm presents a step-
by-step procedure for SGBET, and its implementation is
presented in Tables 1 and 2. The tables show examples of
interpreting two tours, which would have been considered
invalid with a simple binary representation and are shown
to represent a valid chromosome with SGBET. For better
insight into the decoding operation, two additional examples
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are included in the Appendix for TSPs with 12 and 15 cities.
Based on the distance matrix provided as an input for the TSP,
Step 13 of the algorithm returns the tour length, which is used
in Step 5 of Algorithm 2.

The following lemma holds for the decoding procedure.

Theorem 1: Every input chromosome (bitstring) of length
n[log, n] provided as an input to the SGBET algorithm
produces a valid TSP tour for n cities.

Proof: We define a valid TSP tour for n cities as a
permutation of 0 to (n — 1) that satisfies the following
conditions.

(a) Each city was visited exactly once.

(b) Only cities between 0 and n — 1 were included in the
tour.

(c) Every city from 0 to n — 1 was included in the tour.

For the sake of contradiction, assume that there is a TSP
tour produced by the SGBET algorithm that is invalid and
violates at least one of the aforementioned conditions.

Algorithm 1 ensures the following:

1) In Steps 6 and 7, all repetitions of the tour are removed,
guaranteeing that each city is visited exactly once, thus
satisfying condition (a).

2) Steps 10 and 11 ensure that only city numbers from the
repaired_score_seq index are included in the
tour, which means that only cities from 0 to n — 1 are
included, which meets Condition (b).

Because (a) and (b) are satisfied, it follows that every city
from O to n — 1 is included in the tour, thereby satisfying
condition (c).

Therefore, the assumption of an invalid TSP tour produced
by the SGBET algorithm leads to contradictions.

Thus, every input chromosome of length n[log, n] given to
the SGBET algorithm produces a valid TSP tour for  cities.

C. TIME COMPLEXITY OF SGBET

Here, we briefly describe the time-complexity analysis of
the proposed SGBET, as explained in Algorithm 1. For
this analysis, an asymptotic upper bound is used with O-
notation. The stepwise O-notation analysis for each step in
Algorithm 1 is tabulated in Table 3 and is briefly explained
below.

« Step 3-5. For a TSP of n cities, there are n Gray codes,
each with length [log, n]. Because we are calculating
the upper bound, we assume that the Gray code length is
log, n. A Gray code of length m can be converted into a
binary code in O(log m) time [62]. Thus, the total upper
time bound for these steps is O(n log logan).

o Step 6-7. These steps remove duplicates from the
unsorted list. Numerous methods exist for removing
duplicates, including hashing-based algorithms with a
time complexity of O(n) for a list of n items [63].

o Step 8-9. These steps sort a given list of n items,
without duplicates. One of the methods with optimal
time complexity is merge sort with O(n log n).
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o Step 10-12. For these steps, we considered two lists of
n items each. The action performed in these steps is
analogous to identifying the position of each element
in the second list within the first list. Each of these
search operations has worst-case complexity of O(n).
Therefore, all n searches have a complexity of Om?).

TABLE 3. Stepwise O-notation analysis of Algorithm 1.

Steps | O-notation bound | Remarks
1-2 Constant —
3-5 O(n log logan) —
6-7 O(n) —
8-9 O(nlog n) —
10-12 On?) Dominating Step for time com-
plexity
13-14 Constant —

Based on the dominant time complexity in the above
steps, the overall worst-case time complexity of SGBET in
Algorithm 1 is O(n?). It is noteworthy that the dominant
time-complexity factor of this algorithm is related to the
search for a key in an unsorted list, and quantum computing
has the potential to provide quadratic improvement [19] in
this function after the availability of quantum machines with
sufficiently stable qubits.

D. EA ALGORITHM FOR HYBRID IMPLEMENTATION ON
NISQ

This section outlines the key elements of implementing the
proposed EA in gate-based quantum machines. It is based
on the validity of SGBET and uses a hybrid framework,
as illustrated in Fig. 1. As stochastic optimization techniques,
EAs maintain a diverse population of candidate solutions.
These solutions, referred to as individuals, undergo iterative
improvement through the application of specialized operators
to converge toward an optimal result. In QIEA, individuals
in a population are represented as Q-bits, which inherently
exhibit probabilistic characteristics similar to those of the
qubits employed in quantum machines. Unlike the classical
binary bit, which is limited to representing information in one
of the two definite states, that is, O or 1, a qubit can encode
information as a superposition of both states simultaneously.
Mathematically, this property is expressed as.

V) = a[0) + BI1) (6)

Vel + 1812 =1 (N

|oz|2 : Probability of |y) collapsing to state O
|/3|2 : Probability of |yr) collapsing to state 1
a,BeC

where,

The probabilistic framework inherent to QIEA offers an
enhanced representational capacity. This fosters a greater
solution diversity and reduces the likelihood of premature
convergence.
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In this study, we employed the QIEA framework for the
TSP, as introduced in [29], and adapted it to align it with
real-world quantum hardware. The modified algorithm was
designed to run for MAX_GEN, generations and is presented
in Algorithm 2. The steps outlined in this algorithm utilize a
hybrid quantum-classical framework to achieve the objective
of minimizing the TSP tour length, as mathematically defined
in Equation 1. In this implementation, a quantum population,
denoted as Q(t), is maintained, where each quantum entity is
encoded with n[log, n| qubits, enabling the superposition of
multiple candidate solutions. By performing measurements,
this quantum population generates a corresponding classical
population P(t), where each classical entity consists of
n[log, n] bits. The classical population is evaluated using
a fitness function, and the feedback from its performance
guides the update process of the quantum population. Addi-
tionally, the algorithm retains a repository of top-performing
solutions for each individual in B(t), and the global best
solution is tracked as b.

Algorithm 2 QEA on NISQ for TSP
1: procedure QEA TSP

2: t<0

3: Q(t) < Initialize ()

4 P(t) < Observe (Q(1))

5: {P(1), fitness (P(t))} < SGBET (P())

6: B(t) < arg minyep() Fitness(p)

7 while 1 < MAX_GEN do

8 t<—t+1

9: P(t) < Observe (Q(t — 1))

10 P(t) < SGBET (P(1))

11: Update (Q(t))

12: B(t) < Best individual in P(¢) and B(t — 1)

13: b <« Best individual in B(t)

14: if migration-period then

15: migrate b; or b to B(t) locally or globally
respectively

16: end if

17: end while

18: end procedure

For an in-depth analysis of Algorithm 2, readers are
encouraged to consult [29]. A concise overview of the key
routines employed in the algorithm is provided below:

Initialize (): The quantum population is initialized by
assigning a random probability to each qubir of every
quantum individual to collapse into either State O or
State 1 upon measurement. This was accomplished by
applying a randomly selected rotation angle for each qubit
ranging between 0 and 2. This is equivalent to the random
selection of the values of « and 8 for a qubit, as defined in
Equations 6 and 7.

Observe (Q): In this procedure, the qubit of each
individual g within the quantum population (Q) is measured
to produce the corresponding classical bit for each individual
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p in the classical population (P). Detailed steps of this process
are presented in Algorithm 3. The QuantumCirc procedure
(described in the next section) implements the rotation and
observation of qubits by using gate-based quantum circuits.

Algorithm 3 Observe (Q)
1: procedure Observe (Q)
2: for all qubits in individual g € Q do
3: C-bits of p in P <— QuantumCirc (qubits) > on
NISQ
end for
end procedure
procedure QuantumCirc (qubits, N = 5)
for each set of N qubits do
C-bits < collapsed qubits value after rotation on

® NNk

NISQ
9: end for
10: return C-bits
11: end procedure

SGBET (P): The SGBET routine is executed for each
solution p in the classical population (P) to guarantee the
correctness of the TSP tour. The routine is guaranteed to
produce a valid tour for all binary strings of length [log, 1],
where 7 is the number of cities.
Update (Q): The routine modifies the qubits of each
individual ¢ in the quantum population (Q) by considering
the fitness of the corresponding classical individual p and that
of the best solution b. Each qubit operates in a Bloch sphere
with a rotation angle 6 in the range [—m /2, +7/2]. The value
of the rotation angle A#6; to be applied to each qubit g; was
selected as follows:
o Value of corresponding classical individual p; versus
fitness of the best solution b.

o Current quadrant of qubit g; in the Bloch sphere. In this
study, the Bloch sphere is divided into four quadrants.
As mentioned below, these four quadrants are where the
qubit can reside in the x-z plane of a Bloch sphere.

1) to  (1/+/2)(|0) + 1))
(1/v/2)(10) +11))  to |0)

|0) to  —(1/4/2)(|0) + [1))
—(1/v/2)(0) + 1)) to 1)

An illustration of the movement of a qubit in Hilbert
space is presented using a Bloch sphere, as shown in Fig. 2.2
Each qubit moves in the x-z plane (depicted with a dotted
circle). Controlled rotations of qubits with parameterized
quantum circuits are used to manipulate the probability of
wave functions collapsing to an optimal solution.

In each quadrant, the qubit can be rotated clockwise or
anticlockwise. This rotation of the qubit is required to control
the probability of the qubit collapsing to |0) or [1) when
the qubit is observed. With four quadrants and two rotation

2Credit: The figure was generated using “QuTiP: Quantum Toolbox in
Python”.
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FIGURE 2. Movement of qubit during successive generation of EA in
Bloch Sphere.

directions in each coordinate, eight angles can be applied to
rotate any qubit during each iteration. In the current proposal,
we selected the angle of rotation Af using the lookup in
Table 4. The value of A@ can be positive or negative based
on clockwise or anticlockwise rotation. The details of the
optimization for values of Af; to Afg are discussed in
the next section under the optimization of parameters. The
method used to select the value of A6 for each qubit in Table 4
is explained below.

TABLE 4. Basis of selection of Ag;.

Di b; f(B) better thdnf(P) AD;
0 0 True A6
0 0 False Ab2
0 1 True Af3
0 1 False Aby
1 0 True Abs5
1 0 False Abg
1 1 True AO7
1 1 False Afg

o Step 1. Rows that represent the p; value (0 or 1)
corresponding to the value at which qubit g; collapses
in the current state are selected.

o Step 2. Within the rows selected in Step 1, those
representing the value (0 or 1) of the current best solution
for the corresponding bit b; in Table 4 were selected.

« Step 3. Finally, within the rows selected in Steps 1 and 2,
a row is selected based on whether the fitness of the
current solution is better than that of the local best
solution (true or false).

AB is set to A#; as specified in the row selected in Step 3,
and the rotation gate is applied, as shown in Step 4 of
Algorithm 4.

For more detailed insight into similar update procedures in
QEA, readers are advised to consult [29], [31], [33].
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Algorithm 4 Update (Q, P, b)
1: procedure Update (Q, P, b)
2: for each (¢, p) € (Q, P) do

3: determine A6 with the lookup Table 4
4: update g < [Ry(A0)){(q] > Rotation
5: end for

6: end procedure

Migration: The migration process introduces variability
in the probability distributions of the quantum individuals.
Local and global migration were applied to the population
in the proposed design. The migration process is briefly
explained below.>

o The EA population was divided into multiple groups
for independent evolution. The size of the group is a
design parameter, and the details regarding the selection
of optimal values for group size are discussed in the next
section under optimization of parameters. The number
of groups was based on the size of each group and total
number of agents employed.

o When the migration condition is satisfied, the optimal
solution in b is copied locally or globally. In the
proposed implementation, the conditions for local and
global migration are based on a fixed number of EA
generations. The parameters for initiating local and
global migration were also optimized, as elucidated in
the next section under the optimization of parameters.

E. EVOLUTION OPERATOR

For QIEA implemented on classical computers, evolution
operators akin to mutation and crossover in GA are simulated
using Q-gates, which modify qubit probability distributions.
This enables a probabilistic and adaptive search mechanism
that differs from classical heuristics. The simulation of
quantum properties, including superposition and controlled
qubit rotations on the Bloch sphere, enhances search space
exploration and solution diversity.

In the proposed hybrid methodology, actual qubits on
NISQ devices are placed in a superposition state using
controlled rotation gates. This mechanism replaces classical
mutation and crossover, dynamically inducing solution diver-
sity through quantum state evolution rather than predefined
heuristics. One of the key advantages of this approach
is the ability of quantum superposition to simultaneously
maintain diverse solution states, thereby broadening search
space exploration [64], [65]. Unlike classical methods, which
often suffer from premature convergence, quantum-inspired
techniques leverage intrinsic randomness and quantum paral-
lelism to explore multiple potential solutions simultaneously.
This enhances both adaptability and optimization efficiency,
making them well-suited for complex combinatorial prob-
lems.

3Consult [29] for detailed understanding of migration in QEA.
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V. EXPERIMENTAL FRAMEWORK AND PARAMETER
OPTIMIZATION

A. EA IMPLEMENTATION ON NISQ

As mentioned previously, a proposal for the implementation
of EA in gate-based quantum machines using the hybrid
mode is presented in Fig. 1. The steps of the proposed
method were described in the previous section. This section
presents a consolidated methodology for the implementation
of proposed cloud-based access. As mentioned in Theorem 1
and Algorithm 1, a chromosome (bitstring) of length
n[log, n] is required to produce a valid TSP tour for
n cities. Therefore, to implement a TSP with 15 cities,
60 = (15 x [3.917) qubits are required. However, owing to
the restriction of the available qubits in present-day quantum
devices, the implementation of Observe (Q) in Algorithm 3
is executed using N qubits at a time, where N represents the
number of qubits available on the NISQ device being used.
Multiple quantum circuits were constructed, each containing
N qubits configured with rotation gates and observed using a
measurement operator.

B. QUANTUM CIRCUIT

Quantum computers are typically accessed by using a quan-
tum circuit model that serves as an abstraction layer to mask
the underlying physical architecture of a machine. Platforms
such as IBM Quantum and AWS Braket enable users to
interact with their quantum systems via cloud-based Appli-
cation Programming Interfaces (APIs). The Python-based
Qiskit framework [38] facilitates the development of quantum
algorithms using circuits, and allows execution on quantum
hardware.

o] -5 |
0| - —
[~
@ — o723 £
|~
as — | —JRE— =
5 + 0 w1 w2 w3 4
C b

FIGURE 3. Sample circuit to observe 5 qubits.

The QuantumCirc (qubits, N) procedure in Algorithm 3
involves the creation of multiple quantum circuits, each
comprising N qubits. These circuits were designed with
rotation gates determined by the state of each qubit and
measurement gates, to record the resulting values as classical
bits. An example circuit created using the QISKIT framework
to measure the five qubits is shown in Fig. 3. The angles
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FIGURE 4. Transpiled circuit to observe 5 qubits on “ibmq_bogota”.

associated with the qubits in this figure are gg9o = 0.01m,
gor = 0197, goo = 0237, gz = 0.557, and
qos = 0.777. Before the circuit is executed, it must be
transpiled to satisfy the constraints of the target quantum
device. The transpiled version of the circuit optimized for
the ibmg_bogota device is shown in Fig. 4. The quantum
depth of the transpiled circuits was measured to be 6, which is
considered a shallow quantum circuit minimizing the impact
of noise. Furthermore, for EAs, noise-induced randomness
can enhance population diversity.*

To estimate execution time, a job consisting of 75 circuits
was submitted to the QPU over the Internet, yielding an
average execution time of 5.3s per batch. This translates to
approximately 70.67 ms per circuit, providing a practical
measure of real-time execution performance.

C. METHODOLOGY

The quantum routine outlined in Algorithm 3 involves
generating multiple circuits for execution on 5-qubit NISQ
devices. IBMQJobManager, a function of Qiskit, was used
to combine all the circuits for each generation. In the TSP
encoding described above, solving a problem with n cities
requires n[log, n| qubits, where n represents the number of
cities. However, by applying the proposed methodology, the
TSP with n cities can be solved using a NISQ device with
N available qubits, where N < n[log, n]. This approach
ensures the efficient use of limited qubits in currently
available quantum machines.

D. FRAMEWORK

The framework was designed to execute the EA concurrently
on classical and quantum computing platforms for the same
set of problems. The implementation of the EA discussed in
Section II on a classical computing device is straightforward.

4While quantum noise is generally a limitation, in EAs, noise-induced
randomness can enhance population diversity by introducing beneficial
mutations. Thus, quantum error rates were not explicitly analyzed. However,
future work could explore impact of quantum errors and mitigation
techniques in detail.
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However, executing the same EA on NISQ machines using
Qiskit requires the use of specific techniques, which are
outlined below:

o Circuit Bunching: NISQ machines operate in the fair-
share mode, where submitted circuits are placed in
a queue and executed sequentially in a first-in, first-
out (FIFO) manner. To minimize the waiting time
for circuit execution, the Qiskit’s IBMQJobManager
functionality was employed to group the circuits into
batches. This approach enables the submission of a large
set of circuits in a single job, thereby facilitating efficient
simultaneous observation of hundreds of qubits.

o NISQ Machine Selection: The workload on each NISQ
machine fluctuates depending on the volume of the
submitted jobs. To optimize resource utilization, two
approaches are employed to select a machine based on
access availability.

— Fairshare Access: This represents the default
access provided by the IBMQ. Under this arrange-
ment, the Least_busy function is used to identify
the machine that meets the required number of
qubits and has the lowest load at any given moment.

— Dedicated Access: IBMQ and AWS Braket were
used to obtain preferential/dedicated access to
quantum machines/simulators. During the reserva-
tion period, the designated machine was used for all
submitted jobs.

E. PARAMETER OPTIMIZATION

The selection of optimal parameters is critical for efficient
EA operation. The Taguchi method is widely used to select
correct parameter values [66]. To select the parameters, the
techniques explained in [67] were used with the Taguchi
Orthogonal Arrays [68], [69]. The experiments for the
selection of the values for the parameters listed in Table 5
were performed using classical computers. The design of
experiments based on the Taguchi method for parameter
selection was repetitively applied with a reduced number of
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variable parameters in each experiment to select the final
value of each parameter, as shown in the last column of
Table 5.

TABLE 5. EA parameters range and selected values.

Ser | Variable Range of Values Selected Value
1 No of agents 70, 100, 120, 150 120
2 Local group size 2,5,15,25 agents | 25
3 Local Migration | 0, 10, 15, 30 gen- 10
condition erations
4 Global Migration | 30, 70, 100, 200 | 100
condition generations
5 Abq 0.0017
6 A0O2 0.0057
7 Afs3 0.00017. 0.0017
8 Afy 0.00057
0.00057, 0.0017r,
9 Ab5 0.0057 0.0017
10 Afbg ' 0.0017
11 A~ 0.0017
12 Afg 0.0017

F. SENSITIVITY ANALYSIS FOR EA PARAMETERS
Sensitivity analysis of the proposed EA framework was
conducted to examine the influence of these parameters on
the performance of the algorithm [70]. The insights from
this analysis based on the results obtained during the tuning
process of the parameters are as follows.

o Number of agents. The selection of the number of
agents in the proposed technique is similar to the
population size in the classical EA. As expected, higher
values for the number of agents lead to convergence to
the optimal solution in fewer generations. However, the
requirement for additional qubits and API calls to NISQ
devices for a larger number of agents is the primary
reason for restricting this value to 120.

o Local/Global Migration. The selection of values for
the group size, local migration, and global migration
parameters must be interdependent. It was observed that
the selection of low values for migration frequently
led to premature convergence of the EA, thus missing
the global optimal solution. Alternatively, employing
migration after a large number of generations leads to the
island effect, where each subgroup evolves into separate
results. Maintaining balance, we found that low local
migration values and high global migration values were
the optimal strategies for the problems in our study.

o 16. The rotation of the gubits is determined based on
this parameter, and this rotation implements the primary
functions of mutation and crossover in the proposed
methodology. Our study revealed two contrasting effects
of A6 selection.

— Low value of Af. This leads to a slow improvement
in the quality of the solution for the given problems.
Thus, the number of generations required to reach
the optimal value generally increases at lower
values of A6.
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— High value of Af. This leads to early saturation
of the qubit, which does not allow sufficient
opportunities for the EA to explore the search space
efficiently.

G. EXPERIMENTATION
Six TSPs are evaluated using the proposed algorithm. The
problem size varied from 10 to 15 cities, and the problems
were obtained from a set of benchmark TSPs used to solve
drone routing, which are available on GitHub [71]. These
problems have been considered in the classical TSP format,
which is compatible with the TSPLIB [72]. The results
discussed in the next section were derived from ten runs
of the EA on each problem executed in hybrid mode on
NISQ machines via the Internet cloud. The algorithms for the
experiments were developed in Python using Qiskit and were
executed on an open-source Linux OS.

Based on the parameters and framework discussed above,
an overview of the quantum resources required for a 15-city
TSP is presented below.

o Number of qubits/gene = [log, n] = [log, 157 =4

o Number of qubits/chromosome = n x [log, n] = 15 x
4 =60

o Number of qubits/generation = chromosome x no of
agents = 60 x 120 = 7200

o Number of qubits observed for 3000 generations =
7200 x 3000 = 2, 16, 00, 000 gubits

o Number of qubits observed on NISQ machines for
15-city TSP to run the experiment 10 times for
3000 generations = 21, 60, 00, 000 gubits.

Finally, during the experiment for the six problems under
consideration, each repeated 10 times, the total number
of qubits observed on the IBMQ NISQ devices exceeded
1, 00, 00, 00, 000 qubits. The results presented in the next
section are based on ten runs of EA for each problem.

H. IMPLEMENTATION ON OTHER NISQ DEVICES AND
SIMULATORS

We tested the efficacy and portability of the proposed
technique by using various cloud-based NISQ devices and
simulators. Owing to the limited availability of devices
on the cloud, an additional test was conducted using a
single problem generated using the coordinates of ten cities
with a known minimum tour length of 7553. The results
of running EA ten times on each device/simulator with
a maximum generation of 600 for the above problem
across various devices and simulators are presented in
Table 6. These findings confirmed the feasibility of the
proposed implementation across a spectrum of platforms and
simulators. A brief description of the devices used in this
experiment is provided below:

o Ibm_nairobi. This is a 7 qubit NISQ device available
on the IBM Quantum Platform. The device is used
over the cloud with API calls to run multiple quantum
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TABLE 6. Implementation across various devices and simulators.

Tour length Min tour l(l; en'eljatlon :0 h
found reach minimum lengt
Method Runs | Minimum | Average | Median | Mode | Std Dev | Count Minimum Average
Ibm_nairobi 10 7553 7,595.91 7561 7553 71.27 5 395 459.20
TN1 10 7553 7,635.44 7651 7553 86.72 2 416 472.40
QASM 10 7553 7,632.40 7561 7553 129.73 7 401 456.43
QEA 10 7553 7,620.13 7650 7553 70.15 5 411 466.20

circuits. A sample circuit for one of the rotation gates
and observations is shown in Fig. 5.

o TNI1. This is a high-performance tensor-network simu-
lator. TN1 can simulate up to 50 qubits to implement
a certain type of quantum circuits. The simulator was
provided on the Amazon Braket platform.

e« QASM. This simulator was provided by the Qiskit
opensource ecosystem, which supports multiple sim-
ulation methods and configurable options for each
simulation method. The simulator was installed in a
Python environment on a Linux-based operating system.
The experiments were performed using a local machine.

o QEA. These runs were performed using simulated
Q-bits on a classical computer. For this purpose, trial
observations were performed using the RANDOM
function in Python library with a normal distribution.
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FIGURE 5. Sample circuit on ibm_nairobi.

VI. RESULTS

A. RECORD OF READINGS

The experimental results are presented in Tables 7 and 8.
As mentioned above, ten experiments were conducted for
each problem using NISQ machines with cloud-based access
via the Internet. Table 7 provides the following values for each
problem.

« Optimal Reached: It is the number of times the optimal
tour length was achieved during the ten experiments.

« Optimal: Optimal tour length is established by applying
the Bellman-Held-Karp Algorithm, which employs
dynamic programming to determine the minimum cost
tour [73].

o Min/Max: The minimum and maximum tour length
achieved in the experiments.
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o Average (u): The average the tour length achieved
during the ten experiments.

o Standard Deviation (o ): Standard Deviation of the tour
length achieved during the ten experiments.

The number of generations required to reach the optimal
value is a key parameter for evaluating EA quality. For the
proposed EA in the hybrid mode, the values provided in
Table 8 include only those experiments in which the optimal
tour length was reached. The descriptions of the values
presented in this table are as follows.

« Min/Max: Minimum and maximum number of gen-
erations that elapsed before reaching the optimal tour
length.

o Average (u): The average number of generations
elapsed before reaching the optimal tour length.

o Standard Deviation (0): The standard deviation of
the number of generations elapsed before reaching the
optimal tour length.

B. PLOTS

Plots of the results of the above experiments are shown in
Figs. 6 and 7 for graphical appreciation of the performance
of the proposed algorithm. Fig. 6 shows a plot of the tour
lengths obtained for each TSP problem. For the problem
size with cities 10, 11 and 13, the minimum, average, and
maximum tour lengths obtained in ten runs overlapped. This
indicates that the algorithm achieved an optimal tour in each
run for these problems. Minor variations in the remaining
problems indicate deviations in achieving the optimal tour
length. Fig. 7 shows the number of generations required to
reach the optimal tour length for each problem size. The graph
shows that, as the size of the problem increases, the number of
generations required to reach the optimal tour also increases.
This is consistent with the logical view of problem solving.

VII. DISCUSSION OF RESULTS

The results demonstrate the feasibility and effectiveness
of the proposed algorithm in solving TSP problems using
present-day NISQ machines. Compared to prior imple-
mentations, such as QIEDA on QASM [34], which relied
on simulations, the proposed Hybrid NISQ-Classical EA
achieves superior performance. This can be attributed to
the use of quantum superposition in the algorithm, which
enhances solution diversity through intrinsic randomness.
The comparative analysis and tabulated results highlight
significant improvements in both minimum and average tour
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TABLE 7. Tour length achieved in hybrid NISQ-classical EA.

Experiments Tour Length Achieved
Problem Name | Cities | Runs | Optimal Reached | Optimal | Min | Max o o
uniform-51-n10 10 10 10 302 302 302 302 0
uniform-1-n11 11 10 10 328 328 328 328 0
uniform-1-n12 12 10 9 359 359 361 359.2 0.63
uniform-1-n13 13 10 10 330 330 330 330 0
uniform-1-n14 14 10 9 339 339 348 339.90 | 2.85
uniform-1-n15 15 10 8 391 391 420 394.3 9.12

TABLE 8. Number of generations to achieve optimal in hybrid NISQ-classical EA.

Experiments No of Generations to Reach Optimal®

Problem Name | Cities | Runs | Optimal Reached | Min | Max o o

uniform-51-n10 10 10 10 235 490 289.8 74.87

uniform-1-n11 11 10 10 222 494 386.1 82.47

uniform-1-n12 12 10 9 404 | 1949 | 1069.89 721.37

uniform-1-n13 13 10 10 360 | 2379 1032.7 654.92

uniform-1-n14 14 10 9 419 | 2106 | 906.11 686.04

uniform-1-n15 15 10 8 412 | 2933 1084 907.28

TABLE 9. Comparison between QIEDA on QASM and hybrid NISQ-classical EA.
QIEDA on QASM Hybrid NISQ-Classical EA

TSP Name Cities | Runs | Optimal Length Minimum Length Average Length Minimum Length Average Length
uniform-51-n10 10 10 302 308 344 302 302
uniform-1-n11 11 10 328 330 344 328 328
uniform-1-n12 12 10 359 418 445 359 361
uniform-1-n13 13 10 330 397 456 330 330
uniform-1-n14 14 10 339 399 459 339 348
uniform-1-n15 15 10 391 548 584 391 420

TABLE 10. Victory-draw-defeat WRT minimum & average tour length.

Number of Generations to Tour

Method — QIEDA on QASM
Value Minimum Average
l Length Length
Hybrid Minimum 5-1-0 -
NISQ-Classical Length
EA Average - 6-0-0
Length

Tour Length for TSP
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FIGURE 6. Tour length vs TSP name.

lengths across various instances. These findings confirm
the robustness of the proposed framework in leveraging
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FIGURE 7. Number of generations to reach optimal tour.

quantum-classical hybrid techniques within the constraints
of NISQ devices. Furthermore, for completeness, the results
obtained with the proposed Hybrid NISQ-Classical EA were
compared with QIEDA on QASM as proposed in [34]. For
fair comparison, the problems under study were executed
using the code provided in [74] for QIEDA [34]. The
parameters for QIEDA have been retained as per the original
values and QIDEA has been allowed to be executed for
2000 iterations in each run. Table 9 presents the values of
QIEDA on QASM and Hybrid NISQ-Classical EA.

The comparative values in Table 9 illustrate the optimal
tour length vis-a-vis the minimum and average tour lengths
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TABLE 11. SGBET decoding for 12 city tour.

Example Tour: SGBET Decoding Remarks
Chromosome 1010 | 0010 | 1010 | 1010 | 0010 | 0110 | O101 | O101 | 0101 | 1010 | 1101 Gray
Score Sequence 12 3 12 12 3 4 6 6 6 12 9 Gary Decode
12 3 13 12 3 4 6 6 6 12 9
12 3 13 14 3 4 6 6 6 12 9
. 12 3 13 14 4 4 6 6 6 12 9 .
S 0 T 2
12 3 13 14 4 4 6 7 6 12 9
12 3 13 14 4 4 6 7 8 12 9
12 3 13 14 4 4 6 7 8 15 9
Repaired Score Sequence 12 3 13 14 4 4 6 7 8 15 9
Sorted Score 3 4 5 6 7 8 9 10 12 13 14
City Tour 1 4 5 6 7 8 10 11 0 2 3 Valid Tour
TABLE 12. SGBET decoding for 15 city tour.
Example Tour: SGBET Decoding Remarks
Chromosome | 0000 | 1111 | 1010 | 0010 | 1010 | 1010 | 0010 | 0110 | 0101 | 0101 | 0101 | 1010 | 1101 | 1111 | 0000 | Gray
Score 0 10 12 3 12 12 3 4 6 6 6 12 9 10 0 Gary
Sequence Decode
0 10 12 3 13 12 3 4 6 6 6 12 9 10 0
0 10 12 3 13 14 3 4 6 6 6 12 9 10 0
0 10 12 3 13 14 4 4 6 6 6 12 9 10 0
Repair of 0 10 12 3 13 14 4 5 6 6 6 12 9 10 0 Repaired
Score 0 10 12 3 13 14 4 5 6 7 6 12 9 10 0 gene
Sequence 0 10 12 3 13 14 4 5 6 7 8 12 9 10 0 :shown
0 10 12 3 13 14 4 5 6 7 8 15 9 10 0 in bold
0 10 12 3 13 14 4 5 6 7 8 15 9 11 0
0 10 12 3 13 14 4 5 6 7 8 15 9 11 1
Repaired 0 10 12 3 13 14 4 5 6 7 8 15 9 11 1
Score
Sequence
Sorted 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15
Score
City Tour 0 14 3 6 7 8 9 10 12 1 13 2 4 5 11 Valid
Tour

obtained by the Hybrid NISQ-Classical EA and QIEDA
on QASM. The "Pairwise Victory—Draw—Defeat" method
was used for the statistical examination of these techniques.
A summary of the Pairwise Victory—Draw—Defeat results for
the TSP instances, comparing the two methodologies, is pre-
sented in Table 10. The dominance of Hybrid NISQ-Classical
EA in producing better minimum and average tour lengths on
the set of test case problems is clearly demonstrated by the
number of wins in Table 10. Thus, we infer that the Hybrid
NISQ-Classical EA produces better minimum and average
tour lengths than QIEDA in the QASM for the TSP instances
under study.

VIil. CONCLUSION

Present-day NISQ machines exhibit an array of complica-
tions, including restrictions on the available qubits, noise
and error susceptibility, and qubit connectivity. Under these
constraints, evolving methods for utilizing NISQ machines
to solve real-world problems present both engineering and
algorithmic challenges. This study successfully introduced a
novel encoding scheme that allows for the implementation
of EAs on NISQ machines with minimal overhead. This
technique was successfully applied to current NISQ machines
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to solve TSP instances involving up to 15 cities, using a
hybrid approach. To the best of our knowledge, this has not
been reported previously.

Several avenues for future research have arisen based on
these findings. The proposed methodology and encoding can
be applied to explore its applicability to other combinatorial
optimization problems and tackle larger instances of the
TSP. The framework is effective in solving TSP instances.
It has potential applications in real-world scenarios, such
as logistics optimization, autonomous vehicle routing, and
network design. Furthermore, this methodology can be
extended to address other NP-complete problems, providing a
foundation for future research into scalable quantum-inspired
optimization techniques. In addition, it can be used to
investigate the integration of advanced error-correction
techniques to enhance the robustness of the algorithm against
noise present in NISQ devices. The work presented can be
expanded to combine this approach with machine learning
methods to optimize the selection of hyperparameters in
real time. Finally, a comparative analysis of the proposed
method against other existing quantum algorithms is con-
ducted to assess its performance across diverse problem
sets. The methods discussed in this paper represent an
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ongoing effort to further explore the possibilities of improved
optimization techniques that utilize contemporary quantum
frameworks. The scalability of the proposed approach is
primarily restricted by the number of gubits available on
QPUs. As quantum devices evolve and qubit availability
increases, this approach can be scaled to more complex
problems. Future work will explore improved hardware, error
impact, and mitigation techniques to enhance accuracy and
efficiency.

APPENDIX

ADDITIONAL EXAMPLES OF SGBET

This appendix provides two examples of decoding a given
bitstring by using Algorithm 1. These examples are presented
in Tables 11 and 12 for TSPs with 12 and 15 cities,
respectively.
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