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Abstract. In this paper, we propose a digital signature scheme, the MQQ-

Sigv scheme, that relies on the difficulty of solving the multivariate quadratic

(MQ) problem. The central map of the proposed scheme will be designed using
the multivariate quadratic quasigroup (MQQ). We will prove that the MQQ-

Sigv scheme is secure against various attacks including existential unforgeabil-
ity under chosen message attack (EUF-CMA), Min-Rank attack, High-Rank

attack, Direct attack, and Differential attack. Furthermore, we will prove that

finding an equivalent good key for the MQQ-Sigv scheme is infeasible in poly-
nomial time, and analyze the operating characteristics of the scheme.

1. Introduction. In this modern era, where communication and data sharing via
the internet is very common, ensuring the confidentiality and integrity of the data
transferred between two systems is one of the biggest concern. Public-key crypto-
graphic primitives have played a crucial role in safeguarding data security. Classical
public-key cryptographic algorithms like RSA and ElGamal cryptosystems rely on
the difficulty of finding the prime factorization of large positive integers and solving
the discrete logarithmic problem (DLP), respectively. In [46], Peter Shor proposed
an algorithm that proves factoring a large positive integer using quantum computers
is possible in polynomial time. Subsequently, solving the DLP over natural numbers
and algebraic groups can also be feasible in polynomial time by using quantum com-
puters. As quantum computers advance, various classical public-key cryptographic
algorithms are anticipated to become vulnerable to security breaches. Post-quantum
cryptography plays a critical role following the emergence of quantum computers.
Multivariate public-key cryptography (MPKC) falls within this category and has
been an active research area for over two decades. MPKC schemes offer several
advantages compared to the classical public-key cryptosystems such as RSA, ElGa-
mal, or elliptic curve cryptography (ECC). These advantages stem from MPKC’s
highly parallelizable nature, and, as of now, no known quantum algorithm exist
which can break multivariate quadratic public-key cryptographic schemes. Finding
the solution of a system of multivariate polynomial equations over a finite field is
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widely recognized as an NP-complete problem, and MPKC relies on the inherent
complexity of this problem.

In 1849, Euler [8] published a paper introducing a new theory on Latin squares
with the property of being pairwise orthogonal, termed as mutually orthogonal
Latin squares (MOLS). In the following years, Cayley [21] introduced the concept
of group multiplication tables, and demonstrated that such tables could be viewed
as bordered Latin squares. In 1935, Moufang [30] first introduced the term ‘quasi-
group’, and later defined a loop as a quasigroup with an identity element. The
versatility of quasigroups, with their unique properties and the existence of quasi-
groups of specific orders, enables their application in diverse fields, including coding
theory, cryptography, telecommunications, and beyond. For further details, readers
may refer to [30, 21, 45, 26, 25], which contain extensive research on the applications
of quasigroups in various fields such as cryptology and coding theory.

A quasigroup, by definition, does not have the associative property, which is a
defining characteristic of a group. The properties of algebraic structures, such as
closure and element inversion, are widely acknowledged to play a crucial role in the
design of various cryptographic primitives. Groups, rings, and finite fields, which are
all associative algebraic structures, have been widely employed in creating diverse
cryptographic primitives, as well as in developing algebraic codes for simultaneous
error detection and correction. As mentioned earlier, Dénes and Keedwell [21]
designed various cryptographic primitives using these non-associative structures
(quasigroups).

1.1. Related research works in multivariate public-key cryptosystems
(MPKC). In literature [50, 6], various multivariate polynomials based public key
cryptographic schemes (also referred as multivariate public key cryptosystems
(MPKC)) have been proposed. Generally, they can be divided into four categories
depending upon their non-linear quadratic part. These include the Matsumoto-
Imai (MI) scheme [27], Hidden Field Equation (HFE) scheme [35], Oil-Vinegar
(OV) scheme [24], and Stepwise Triangular System (STS) scheme [19, 48]. The MI
cryptosystem [27] was proposed by Matsumoto and Imai in 1988. It was the first
multivariate quadratic (MQ) problem- based public-key cryptosystem. In 1995,
Patarin [33, 32] proved that the MI cryptosystem could be easily cryptanalyzed
using the linearization equation attack. In 1996, Patarin proposed a cryptosystem
named Hidden Field Equation (HFE) cryptosystem [35] and its different variants,
including the HFEv-cryptosystem which can be viewed as an extension of the MI
cryptosystem that resists the linearization equation attack. In HFE cryptosystem,
Patarin transformed the central map of a MI cryptosystem using a Frobenius au-

tomorphism map x 7→ xqi , i ∈ N of a finite field Fq. In 1997, Patarin proposed a
signature scheme named it Oil-Vinegar (OV) signature scheme [34]. The basic idea
behind the OV signature scheme [34] was motivated by the Linearization equation
attack on the MI cryptosystem. In this scheme, Patarin utilized the quadratic maps
containing oil variables in linear form and the vinegar variables in quadratic form.
In 1998, Kipnis and Shamir [23] proved that in OV signature scheme when number
of oil and vinegar variables are same then it is not secure against an attack based
on the oil-vinegar separation technique. In 1999, Kipnis et al. [22] proposed a vari-
ant of OV signature scheme called the Unbalanced Oil-Vinegar (UOV) signature
scheme. In the UOV signature scheme, the number of vinegar variables is greater
than the number of oil variables. Additionally, they proved that it was very efficient
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and immune against the oil-vinegar separation attack. However, the public key size
in this scheme was still extremely large. In [36, 37], Patarin et al. proposed two
digital signature schemes based on the MQ problem, namely, the SFlash signature
scheme and Quartz signature scheme. The idea of the SFlash signature scheme was
based on the MI cryptosystem, and the Quartz signature scheme was based upon
the HFEv- cryptosystem. Dubois et al. [7] have practically shown that the SFlash
signature scheme was not secure against direct attacks. In 2003, Chen and Yang [3]
proposed a multivariate signature scheme called the Stepwise Triangular Scheme
(STS), based on Tame Transformations or the Tame map. In 2006, Ding et al. [5]
gave the cryptanalysis of the STS scheme.

In 2005, Ding et al. [4] came up with the idea of a multilayered Oil-Vinegar
signature scheme, i.e. Rainbow. They have shown that it has shorter signature size
and smaller public-key size than the classical OV signature scheme. The Rainbow
signature scheme was submitted as a robust candidate for the NIST competition
[11]. Thereafter, Petzoldt et al.,[39] proposed a variant of the Rainbow signature
scheme, i.e. Cyclic Rainbow. The public key size of this scheme is reduced by
62%, and the number of required field multiplications operations in verifying the
legitimate signature is reduced by 30%. In 2015, Petzoldt et al. [41] proposed a
signature scheme, referred to as GUI, which was based upon the HFEv- framework.
This scheme utilized the small finite fields to increase its efficiency; however, it could
not resolve the problem of large key size. In 2017, Petzoldt et al. [40] tried to resolve
that issue by applying vinegar variations to the MultiHFE [1] scheme, resulting in
the development of a HMFEv signature scheme, defined over any random finite
field. Later on, Hashimoto [20] showed that the HMFEv signature scheme is not
secure. Parallely, in 2016 Chen et al. [2] proposed a multivariate signature scheme,
namely MQDSS, which was proved to be secure with respect to the random oracle
model. This scheme was based upon the 5-pass identification protocol explained in
[12, 42].

In 2008, Gligoroski et al. [14, 15] proposed a public key cryptosystem based
on multivariate quadratic quasigroup (MQQ). The central map of the proposed
cryptosystem was based on the string transformations of quasigroups. They had
shown that the proposed cryptosystem was more efficient in both hardware and soft-
ware compared to existing multivariate polynomial based public key cryptosystems.
However, in the same year, Mohamed et al. [28] analyzed the proposed cryptosys-
tem and proved that it is susceptible to the MutantXL attack [50]. In 2010, Faugére
et al. [10] and Ødeg̊ard et al. [31] proved that the proposed cryptosystem was also
susceptible to the Gröbner basis attack. Additionally, Faugére et al. [10] had shown
that the central map in existing multivariate quadratic quasigroup based public key
cryptosystem has a weakness in central map which can be exploited very easily.
In the following years, Gligoroski et al. improved their scheme, and in 2012 they
proposed a digital signature scheme, namely MQQ-SIG [16]. In the scheme, authors
used the minus modifier variation in the public key to safeguard it against direct
attacks. Additionally, they demonstrated that their scheme is ultra-fast compared
to the existing MQ-based cryptosystems, and proved that it is secure against chosen
message attacks (CMA). Following that, in the same year Gligoroski and Samard-
jiska [17] also proposed a probabilistic encryption scheme referred to as MQQ-ENC.
In this scheme, they utilized the left multivariate quadratic quasigroups (LMQQ)
for the construction of a central map. Despite the differences in central map of both
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the MQQ-SIG and MQQ-ENC schemes, in 2015 Faugére et al. [9] proved that for
both schemes, finding equivalent good keys is feasible in polynomial time.

This motivation drives us to do further research into refining the MQQ-SIG
scheme, aiming to address all existing drawbacks while ensuring the scheme’s re-
silience against Faugére’s attack [9].

Main results of the paper.

(i) We propose a digital signature scheme, MQQ-Sigv, whose security relies on
the difficulty of solving a system of multivariate polynomial equations over
a finite field. To construct the central map, we utilize a specific variant of
the bilinear MQQ scheme, known as the vinegar variant. We then present an
efficient algorithm to find the inverse of the central map.

(ii) The large size of private and public keys is a primary constraint in any mul-
tivariate polynomial based cryptosystem. To overcome this problem, we de-
signed the secret key by utilizing a Toeplitz matrix instead of a random matrix.
We will utilize the minus modifier technique to reduce the public key size.

(iii) In security analysis of the MQQ-Sigv scheme, we will prove that it is secure
against EUF-CMA attack, Min-rank attack, High-rank attack, Direct attack,
and differential attack. Additionally, we will prove that it is infeasible for any
legitimate adversary to find an equivalent good key in the polynomial time
for the proposed signature scheme. This is achieved by utilizing a randomly
selected invertible map along with two hash maps as described by Wang and
Yang in [49]. Finally, we give the operating characteristics of the proposed
signature scheme.

This paper is divided into several sections. Section 2 covers basic definitions from
quasigroup theory, the multivariate quadratic (MQ), problem and the MQQ. We
discuss how a general quasigroup can be represented as the multivariate quadratic
quasigroup, and examine the conditions necessary for the T-function to define a
MQQ over the finite field Fpk . In Section 3, we discuss a general digital signature
scheme based on the MQ problem. In Section 4, we propose a signature scheme
and its verification based on MQQ over Fpk . In Section 5, we discuss the security
analysis of the MQQ-Sigv scheme and prove some main results and theorems. In
Section 6, we analyze the operating characteristics and efficiency of the proposed
signature scheme. Finally, in Section 7 we draw the conclusion of the paper.

2. Mathematical preliminaries. This section contains basic definitions of the
quasigroups, T-functions, and multivariate quadratic (MQ) problem. Addition-
ally, we discuss the construction of MQQ over the finite field, and how to find the
parastrophe for the given MQQ. For an in-depth understanding of the system of
multivariate polynomials and the multivariate public key cryptosystems, readers are
encouraged to refer to the survey article [50]. Likewise, for the theory of quasigroups
and its application, please refer to [45].

A non-empty set Q with a binary operation q is called a quasigroup if for all
a, b ∈ Q there exist unique x, y ∈ Q satisfying the equations q(a, x) = b and
q(y, a) = b. A quasigroup of order n means it has cardinality n.

For every quasigroup we can derive left (q\) and right (q/) parastrophes by
utilizing the following identities:{

q\(x, y) = z ⇐⇒ q(x, z) = y

q/(x, y) = z ⇐⇒ q(z, y) = x
(1)
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respectively. The algebra (Q, q, q\, q/) with three operations satisfies the following
identities: 

q\(x, q(x, y)) = y

q/(q(x, y), y) = x

q(x, q\(x, y)) = y

q(q/(x, y), y) = x

(2)

Additionally, (Q, q\) and (Q, q/) also form quasigroups.

Definition 2.1 (T-function). Consider a map f : (Fd
2)

m −→ (Fd
2)

l such that, for

every x ∈ (Fd
2)

m, the kth bit of the jth component, denoted as f(x)jk, depends only
on the rightmost k bits of each component of x for all j ∈ {1, . . . , l}. Then, the
function f is defined as a T-function.

Definition 2.2. A quasigroup (Q, q) is an isotopic image of another quasigroup
(Q, q′) if there exist permutations α, β, and γ such that, for all l,m ∈ Q, q(l,m) =
γ−1q′(α(l), β(m)). The triplet (α, β, γ) is referred as an isotopism from (Q, q) to
(Q, q′).

Now we formally define the multivariate quadratic problem (MQ) problem.

Definition 2.3. (MQ Problem [50]) Consider a system of m multivariate quadratic
polynomials as given below:

p1(x1, · · · , xn) =
∑

1≤i≤j≤n α1ijxixj +
∑n

i=1 β1ixi + γ1

p2(x1, · · · , xn) =
∑

1≤i≤j≤n α2ijxixj +
∑n

i=1 β2ixi + γ2
...

pm(x1, · · · , xn) =
∑

1≤i≤j≤n αmijxixj +
∑n

i=1 βmixi + γm

(3)

in n variables x1, . . . , xn over the finite field, Fpn where p is prime and n ∈ N.
Finding a solution x = (x1, . . . , xn) of the system of equations p1(x) = . . . , pm(x) =
0 is a challenging and NP-complete problem.

Definition 2.4. A map f : Fn
q → Fm

q is said to be an affine map if it is defined
as f(x) = A · x + b, where A is an arbitrary m × n matrix and b is an arbitrary
m-vector. An affine map is said to be linear if it is defined as f(x) = A · x.

2.1. Multivariate quadratic quasigroups (MQQ). Gligoroski et al. [15] pre-
sented that every quasigroup (Q, q) with order 2d and d ≥ 2 can be represented as
a vector valued Boolean function. This means that a quasigroup operation q can be
represented as a map qvv : F2d

2 → Fd
2 and for each x, y, z ∈ Q, with their binary rep-

resentations (x1, x2, . . . , xd), (y1, y2, . . . , yd), and (z1, z2, . . . , zd), respectively. The
operation x ∗ y = z can be represented as

q(x, y) = z ⇐⇒ q(x1, x2, . . . , xd, y1, y2, . . . , yd) = (z1, z2, . . . , zd) (4)

where i = 1, 2, . . . , d, and each zi can be uniquely expressed as zi = fi(x1, . . . , xd,
y1, . . . , yd), and fi : F2d

2 → F2 is dependent on the operation q.
Every k-ary Boolean function f(x1, . . . , xk) can be uniquely represented using

its algebraic normal form (ANF). So, the ANF of f can be represented as

f(x1, . . . , xk) =
∑

I⊆{1,...,k}

aI

(∏
i∈I

xi

)
(5)
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Here, the coefficients aI ∈ F2. The addition and multiplication are done with
respect to the finite field F2. In Equation (4), all zi can be represented in their ANF
forms up to degree 2 for the 2d-ary boolean function (i.e., all zi is a multivariate
polynomial over F2).

The ANF of the function fi offers insights into the complexity of the quasigroup
(Q, q) by analyzing the degree of the boolean function fi. In the case of randomly
generated quasigroups with an order of 2d, with d ≥ 4, the degrees are greater than
2. Gligoroski et al. [15] gave the following definitions of multivariate quadratic
quasigroups (MQQ) that have been used in designing public key cryptosystems
[14, 15].

Definition 2.5. [15] Consider a quasigroup (Q, ∗) of order 2d referred to as the
multivariate quadratic quasigroup (MQQ) of type Quadd−kLink if its vector valued
Boolean representation contains exactly d − k quadratic polynomials and k linear
polynomials, where 0 ≤ k < d.

The sufficient condition for a quasigroup (Q, ∗) to be MQQ is given by the fol-
lowing theorem.

Theorem 2.6. [15] Consider two d × d sized matrices P and Q of linear Boolean
expressions, and two vectors b1 and b2 of linear or quadratic Boolean expression.
Let elements of P, b1 depends on the variables x = (x1, . . . , xd), and the elements
of Q, b2 depend upon the variables y = (y1, y2, . . . , yd). If det(P ) = det(Q) = 1 and
P · yT + b1 ≡ Q · xT + b2 in F2, then the vector-valued operation ∗vv of the given
quasigroup (Q, ∗) with order 2d can be expressed as

qvv(x, y) = P · yT + b1

The quasigroup Q with vector valued operation ∗vv is known as “multivariate qua-
dratic quasigroup (MQQ)”

2.1.1. Multivariate quadratic quasigroups (MQQ) over finite field. In this section,
we discuss a construction of MQQ over the finite field Fpk , where p is prime and
k ≥ 1 [43]. This construction utilizes T-functions, and, consequently, the MQQ is
referred to as a “T-multivariate quadratic quasigroups (T-MQQ)”. Additionally, we
explore an efficient method for determining the parastrophes of the T-MQQ.

The conditions under which the T-function defines a quasigroup are outlined in
Theorem 2.7. For better comprehension, we specifically discuss the case for p = 2.

Theorem 2.7. [44] A Boolean T-function q : F2d
2 −→ Fd

2 defines a quasigroup
operation if and only if it is of the form q = (q(d), q(d−1), . . . , q(1)), where for every
s = 1, . . . , d and (x, y) = (xd, . . . , x1, yd, . . . , y1) we define q(s)(x, y) as

q(s)(x, y) = xs ⊕ ys ⊕

(
⊕

j=(js−1,...,j0)∈Fs
2,k=(ks−1,...,k0)∈Fs

2

bjkx
js−1

s−1 . . . xj1
1 y

ks−1

s−1 . . . yk1
1

)
(6)

Theorem 2.8. [43] Consider (Q, q) as a quasigroup defined using a T -function over
Fpk of order pkd. For a map q : F2d

pk −→ Fd
pk such that q = (q(1), . . . , q(d)), for all

s = 1, . . . , d and (x, y) = (xd, . . . , x1, yd, . . . , y1), we define each coordinate q(s) of q
as

q(s)(x, y) = p
(s)
1 (xs) + p

(s)
2 (ys) +

∑
l,m>s

α
(s)
l,mxlxm
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+
∑

l,m>s

β
(s)
l,mylym +

∑
l,m>s

γ
(s)
l,mxlym

+
∑
l>s

δ
(s)
l xl +

∑
l>s

ϵ
(s)
l yl + η(s). (7)

where p
(s)
1 (xs) and p

(s)
2 (ys) are a quadratic permutation polynomials over Fpk , and

defines a multivariate quadratic quasigroup MQQ(Fd
pk , q) of order pkd.

Proposition 2.9. [43] Consider (Q, q) as an MQQ over Fpk of order pkd as defined
in Theorem 2.8. Let [D]d×d, [D1]d×d, and [D2]d×d be three non-singular matrices,
whereas c, c1, and c2 are non-zero vectors of dimension d. The quasigroup (Q, q0)
is isotopic to the quasigroup (Q, q) if the following condition holds:

q0(x, y) = D · q(D1 · x+ c1, D2 · y + c2) + c (8)

Consider a quasigroup (Q, q) of order pkd. In the cryptographic algorithms,
finding the left q\ or right q/ parastrophes of the given quasigroup operation q is
necessary for the decryption or signature process. However, determining the explicit
form of the left parastrophe q\ can be computationally intensive in terms of space
and time, especially when the degree of parastrophe can be arbitrary (2 ≤ deg ≤ d).
In this context, we explore two distinct approaches for obtaining the parastrophe
of q, with the choice depending on the system architecture:

1. Finding and storing the multiplication table (Latin square) of the quasigroup
q, and compute the parastrophe q\ by referring to the multiplication table
(Latin square). But, in this process architecture, the machine utilizes the
most memory in the system. Since, this approach is independent of the type
of quasigroup, we can compute the parastrophe q\ for any type of MQQ.

2. Another way of computing the parastrophe q\ of the quasigroup q is by solving
the system of d equations given by Equation (9), and to find out the unknowns
{y1, · · · , yd} for memory constrained architectures. By this approach, we can
avoid finding the explicit form of the parastrophe q\.

Our primary focus here is on the second approach for determining the parastrophe
q\ of quasigroup operation q. Instead of directly obtaining the explicit form of q\
and evaluating y = q\(u, v) for given u, v ∈ Fpk , k ≥ 1, we choose to find y for the
bilinear MQQ operation (q) by leveraging the identity q\(u, v) = y ⇐⇒ q(u, y) = v.
In simpler terms, we transform the task of evaluating q\ into solving a system of d
equations in d variables y1, . . . , yd over Fpk

q(u, y) = v. (9)

Solving this system is generally a non-trivial problem. However, owing to the
specific structure of MQQ, this system can be efficiently solved in polynomial time.
The reason lies in the conversion of Equation (9) into a system of linear equations
involving ‘d’ variables.

2.2. Existential unforgeability under chosen-message attack (EUF-CMA).
In this section we discuss a notion of security designed for digital signature schemes.
This standard notion of security is referred to as Existential Unforgeability Under
Chosen-Message Attack (EUF-CMA) [18], and this concept is established through
an experiment or game conducted between an adversary A and a challenger Ch.

Consider a digital signature scheme Sig = {K,Gen,Ver}, where K is the Key-
Generation algorithm, Gen is the Signature-Generation algorithm, and Ver is the
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Signature Verification algorithm. SupposeA represents an adversary that can access
the signature protocol as a black box (meaning it takes a message as an input and
gives the signature as an output) and Ch represents as challenger of game. Now,

we define the following experiment ExpEUF−CMA
Sig(k) , which runs between A and Ch:

Algorithm 1 Experiment ExpEUF−CMA
Sig(k)

1: The challenger (Ch) generates keys (sk, pk)← K(k) by running Key-Generation
algorithm which takes security parameter k as an input. Additionally, gives pk
to A.

2: The adversary A requests signatures for chosen n messages {mi}ni=1 and ob-
tains the valid signatures {σi}ni=1 in response, where σi ← Gen(sk,mi) for
i = 1, . . . , n.

3: The adversary A adaptively produces the message-signature pair (σ∗,m∗).

4: The output of the experiment ExpEUF−CMA
Sig(k) is{

1, if V er(pk,m∗, σ∗) = accept and m∗ /∈ {mi}ni=1

0, otherwise

The success probability (or, Advantage (Adv)) of A can be defined as

Adv(AEUF−CMA
Sig(k) ) = Prob[ExpEUF−CMA

Sig(k) = 1].

The signature scheme Sig(k) is EUF-CMA-secure if Adv(AEUF−CMA
Sig(k) ) of any prob-

abilistic polynomial time (PPT) adversary A is negligible concerning the security
parameter k.

3. Multivariate quadratic public-key signature scheme. The multivariate
public key signature scheme [50] relies on difficulty of solving the the multivariate
quadratic (MQ) problem (3). For the multivariate public key signature scheme, we
need to construct a central map F : Fn

pn −→ Fm
pn , where Fpn , p is prime, n ∈ N, and

it must satisfy the following two criteria:

1. F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) where fi ∈ Fpn

[x1, . . . , xn];
2. Equation F (x1, . . . , xn) = (y1, . . . , ym) can be solved easily, and we can find

the pre-image of (y1, . . . , ym) efficiently.

After the construction of the central map F , we define the public key function F̄ by
masking the central map F using two invertible affine maps S and T . The public
key function F̄ is

F̄ = S ◦ F ◦ T (10)

Signatures scheme: To sign the document M , the system (user) utilizes the
private key (S, F, T ) and hash function H : {0, 1}∗ −→ Fm

pn . First, the system (user)

computes d = H(M) ∈ Fm
pn and then computes x = T−1(d), y = F−1(x), and z =

S−1(y). Finally, the signature of the document M is z ∈ Fn
pn

Verification: For the verification process, if the user has the signed document
vector z ∈ Fn

pn and the public key function F̄ , The system (user) authenticates the
signature scheme by verifying the equation

F̄ (z)
?
= H(M) (11)
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and return either true or false.

4. Construction of central map based on MQQ. We introduce a new method
to construct a central map using the MQQ with vinegar variables. The idea is
motivated by the structure of the central map of the HFEv- signature scheme [41].
We will add some vinegar variables in Equation (7) to design the central map for
the signature scheme.

Consider a quasigroup (Q, q) of order pkd. The map q = (q(1), . . . , q(d)) :

F2d+v
pk −→ Fd

pk , with components q(s), ∀ s = 1, . . . , d of q, is of the form

q(s)(x1, · · · , xd, y1, · · · , yd, z1, . . . , zv) = p(s)(xs) + p(s)(ys) +
∑

l,m>s

α
(s)
l,mxlxm+

∑
l,m>s

β
(s)
l,mylym +

∑
l,m>s

γ
(s)
l,mxlym +

∑
l>s

δ
(s)
l (z1, . . . , zv)xl +

∑
l>s

ϵ
(s)
l (z1, . . . , zv)yl

+ η(s)(z1, . . . , zv) + c (12)

where p(s)(ys) and p(s)(xs) are quadratic permutation polynomials [29] over Fpk

and the coefficients α
(s)
l,m, β

(s)
l,m, and γ

(s)
l,m ∈ Fpk , the coefficients δ

(s)
l (z1, . . . , zv),

ϵ
(s)
l (z1, . . . , zv) must be linear, while the coefficient η(s)(z1, . . . , zv) must be qua-
dratic in the vinegar variable. We use Algorithm 2 for the generation of the central
map.

Algorithm 2 Construction of central map by utilizing the vinegar variation of
MQQ

Input: d, k ∈ N and p-prime

1: Randomly generate the coefficients α
(s)
l,m, β

(s)
l,m, γ

(s)
l,m, c ∈ Fpk ∀ l,m > s, ∀ s ∈

{1, . . . , d}
2: For all s ∈ {1, . . . , d},

• Construct randomly the coefficients δ
(s)
i =

∑v
i=1 aizi and ϵ

(s)
i =

∑v
i=1 bizi,

where ai, bi ∈ Fpk .

• Construct randomly the coefficient η(s) =
∑v

i=0 ciz
2
i , where ci ∈ Fpk .

3: For all s ∈ {1, . . . , d},
• Generate two random bits r1, r2 ∈ F2 if p = 2, otherwise set r1 = 0, r2 = 0.

• If rl = 0 construct p
(s)
l = a

(s)
l xs + b

(s)
l , otherwise construct p

(s)
l = a

(s)
l x2

s +

b
(s)
l , for l ∈ {1, 2}.

4: Construct the polynomial map q(s)(x1, . . . , xd, y1, . . . , yd, z1, . . . , zv) for all s ∈
{1, . . . , d} by utilizing the Equation (12), and the map

q = (q(1), q(2), . . . , q(d)).

5: Randomly generate three non-singular d× d matrices D, D1, D2 and vectors c,
c1, c2 with dimension d over Fpk .

Output: The tuple (q, D−1, D−1
1 , D−1

2 ) and the central map: q0(x, y, z) = D·q(D1 ·
x+ c1, D2 · y + c2, z) + c.

In Algorithm 2, if we chose random values of the vinegar variables {z1, . . . , zv}
where each zi ∈ Fpk for i = 1, . . . , v, the coefficients δ

(s)
l , ϵ

(s)
l , and η(s) become the

constant terms and belong to the field Fpk . As a consequence, we give the following
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theorem. This theorem plays a crucial role in determining the inverse of central
map.

Theorem 4.1. Consider a map q = (q(1), . . . , q(d)) : F2d+v
pk −→ Fd

pk , and the

components q(s), ∀ s = 1, . . . , d of the quasigroup operation q, are of the form

q(s)(x1, · · · , xd, y1, · · · , yd, z1, . . . , zv) = p(s)(xs) + p(s)(ys) +
∑

l,m>s

α
(s)
l,mxlxm+

∑
l,m>s

β
(s)
l,mylym +

∑
l,m>s

γ
(s)
l,mxlym +

∑
l>s

δ
(s)
l (z1, . . . , zv)xl +

∑
l>s

ϵ
(s)
l (z1, . . . , zv)yl

+ η(s)(z1, . . . , zv) + c (13)

where p(s)(ys) and p(s)(xs) are quadratic permutations over Fpk and the coefficients

α
(s)
l,m, β

(s)
l,m, and γ

(s)
l,m ∈ Fpk , and the coefficients δ

(s)
l (z1, . . . , zv) and ϵ

(s)
l (z1, . . . , zv)

must be linear, where the coefficient η(s)(z1, . . . , zv) must be quadratic in the vinegar
variable. After choosing random values of the vinegar variables {z1, . . . , zv} where
each zi ∈ Fpk for i = 1, . . . , v, the above Equation (13) defines a T-MQQ (Fd

pk , q)

of order pkd.

4.1. Generation of private-key pair. This section unveils an algorithm for gen-
erating two different affine maps S and T . We will utilize the symmetric Toeplitz
matrix instead of some random permutation matrix to save the memory consump-
tion, and speed up the signing process significantly. The idea of the generation of
the private key pair (S, T ) is motivated by the MQQ-SIG signature scheme [16].

According to Algorithm 3, to construct the pair of affine maps (S, T ) we just need
to store the (σ1, σ2,M0, (αi)n, Pρi

, Pρj
) parameters. This requires only (2n+ rn

8 +
kn
8 +n(u1+u2)) byte spaces where n, k, r, u1, and u2 are input parameters, which is
proportional to O(n). The randomness of the private key generated using Algorithm
3 is equivalent to the random matrix. For better understanding of the generation
of the private key pair S, T , reader may refer to the toy example mentioned in
Appendix.

4.2. Generation of public-key. We construct a public key by utilizing the central
map, which is defined by Equation (12), and the private key pair, which is defined
by Algorithm 3. For the public key, we also utilized the minus modifier technique
to decrease the public key size. The construction of the public key is inspired by
the Rainbow signature scheme.

4.3. Signature scheme. In this section, we propos a signing scheme for a given
document M ∈ Fn

pk in which we need to find the inverse of the tuple (S, F, T ). To

find the inverse of central map F , we have used the previous crucial Theorem 4.1.
For this, the first step is to convert the central map into the T-MQQ by choosing
random values of the vinegar variables from field Fpk , then calculate the parastrophe
of the given quasigroup operation q using Proposition 2.9.

The procedure consists of a step in which we first concatenate the hash of the
message M with random values from the field Fpk . This concatenation helps in
improving the security of the scheme against direct attacks. Then, we generate the
signature for the resultant string.



1346 SATISH KUMAR, INDIVAR GUPTA AND ASHOK JI GUPTA

Algorithm 3 Affine maps S and T

Input: n, u1, u2, r, k ∈ N and p-prime
1: Generate two permutation matrices pσ1

and pσ2
randomly over field F2 cor-

responding to two different permutations σ1 and σ2 respectively on the set
{1, . . . , n}.

2: Randomly generate the matrices which satisfy the condition such that p
ρ
(1)
i

=

[pρi
[row, col]] and p

ρ
(2)
j

= [pρj
[row, col]] over Fpk ,∀ i ∈ {0, . . . , u1}, j ∈

{0, . . . , u2} such that [pρi
[row, col]] = [pρi

[row+1, col+1]] and [pρj
[row, col]] =

[pρj
[row + 1, col + 1]], respectively, with the symmetric condition of matrix.

3: Generate a random matrix M0 = [m0
i,j ]r×n over the set {0, 1} ⊂ Fpk , such that

for each column j there exits at least one row i where mi,j ̸= 0.

4: For the fixed ordering of Fpk\{0}, construct a repeating sequence (αi)n of length

n. Form a new matrix M = [ασ1(j) ·m
(0)
i,j ]r×n, and then obtain the matrix IM

by replacing the last r rows of the identity matrix In by M .

5: Compute the matrices

S
′

inv =

u1∑
i=0

p
ρ
(1)
i
· pσ2 +

v1∑
j=0

p
ρ
(2)
j
· Pσ1 , (14)

T
′

inv =

u1∑
i=0

p
ρ
(1)
i
· pσ1 · IM +

v1∑
j=0

p
ρ
(1)
j
· pσ2 · IM (15)

6: Let SubT
′

inv be the r × n matrix of the first r rows of T
′

inv. If SubT
′

inv has

zero column or det(T
′

inv) = 0 or det(S
′

inv) = 0, then go to step 1, else create the

matrices S = ((S
′

inv)
transpose)−1 and T = ((T

′

inv)
transpose)−1 and the column

vector vs = (ασ1(1) · ασ2(1), . . . , ασ1(n)ασ2(n))
T .

7: The affine maps are S(x) = S · x+ vs and T (x) = T · x.
Output: The tuple (σ1, σ2,M0, (αi)n) and the affine maps S and T .

5. Security analysis of MQQ-SIGv scheme. We will prove that the MQQ-
Sigv scheme is EUF-CMA secure, assuming the hardness of the MQ problem. Ad-
ditionally, we present the comprehensive analysis demonstrating its resistance to
Min-Rank, High-Rank, Direct, and Differential attack for different parameters, and
it is discussed in the respective theorems. Finally, we will show that after applying
the transformation proposed by Wang et al. [49] on the proposed signature scheme,
it will be infeasible to find an equivalent good key in polynomial time.

Theorem 5.1. Consider a cryptographically secure collision-resistant hash function
H as a random oracle. Then, the proposed MQQ-Sigv scheme is EUF-CMA secure
under the hardness of the MQ problem.

Proof. We will prove the result by contradiction. Assume there exists an adversary
A with a non-negligible winning probability in the EUF-CMA game for MQQ-Sigv.
We then demonstrate the construction of an oracle machine OA capable of solving
the MQ problem.

The proof proceeds through a series of games, denoted as G0, G1, and G2. Each
game Gi modifies Gi−1 slightly for i = 1, 2. The probability of A winning game
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Algorithm 4 Generation of public key

Input: leader element b = (11 . . . 1)
1: First we obtain the private key pair S, T using Algorithm 3.
2: Construct a central map q0 using Algorithm 2.
3: Suppose x = (x1, . . . , xn) is a vector with xi ∈ Fpk , we transform vector x into

X = (X1, . . . , Xl) over field F8
pk , where n = 8l and every Xi = (x8i−7, . . . , x8i).

4: We construct a mapping F : Fn
pk −→ Fn

pk by utilizing the string transformations

which we mentioned in Equation (12) as

F (x1, . . . xn) = (y1, . . . , yn)⇐⇒ (Y1, . . . , Yl)

= ((q0(b,X1, Z1), q0(X1, X2, Z2), . . . , q0(Xl−1, Xl, Zl))) (16)

where b = (11 . . . 1) is the leader element and Z = (Z1, . . . , Zl), Zi =
(z8i−7, . . . , z8i) the vector containing vinegar variables.

5: Now, we construct a map P ′ : Fpk −→ Fpk as P ′ = T ◦ F ◦ S = (P1, . . . , Pn),
where Pi(x1, . . . , xn), 1 ≤ i ≤ n.

6: We remove r quadratic equations from the map P
′
to construct the public key

map P : Fn
pk −→ Fn−r

pk as P = (Pr+1, . . . , Pn).

7: Choose a cryptographically secure hash map H : {0, 1}∗ −→ {0, 1}n
Output: Public key pair is (P,H)

Algorithm 5 Inverse of the function

Input: d, k ∈ N, p-prime,
1: Randomly choose the vinegar variables {z1, . . . , zv} ∈ Fpk . Substitute these

variables into the map q(x, y, z) defined by Equation (12). Then, this map
converts into Equation (7) as described by Theorem (4.1).

2: Compute u1 = D1 · u+ c1 and v1 = D−1 · (v − c).
3: Solve the system of equations q(u1, y1) = v1 for the unknown y1.
4: If the aforementioned system of equations has no solution, a new set of vinegar

variables is chosen, resulting in a new system of equations which needs to be
solved. If the solution is unique, then proceed to the next step. In case of more
than one solution, use other form of technique to find the correct set of y1 like
hash functions.

5: Compute y = D−1
2 · (y1 − c2)

Output: y = F−1, inverse of function ‘F ’.

Gi is denoted as Prob[Gi]. We assume that OA runs A and controls the output of
the random oracle H in these games.

• G0: This game corresponds to the EUF-CMA game for MQQ-Sigv. Therefore,
Adv(AEUF-CMA

Sig(1k) ) = Prob[ExpEUF-CMA
Sig(1k) = 1] = Prob[G0].

• G1: G1 is identical to G0, except that for j = 1, . . . , n, OA substitutes
the output of the hash H query of msgj by mj = P (σ0) ∥ P (σ1) = S ◦
F ◦ T (σ0) ∥ S ◦ F ◦ T (σ1) ∈ Fn

q and the signature query with σj , where σj

is randomly selected from Fn
q . It is important to note that if | Prob(G1) −

Prob(G0) | is non-negligible, it implies that A can distinguish the output ofH.
However, this is not possible sinceH is chosen to be a cryptographically secure
collision-resistant hash function. Therefore, | Prob(G1) − Prob(G0) |= ϵ1(k)
is negligible.
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Algorithm 6 Signature algorithm

Input: Message M = (m1, . . . ,ml,ml+1,ml+2, . . . ,mn) ∈ Fn
pk , secret affine map

pair (S, T ), and the central function F .
1: Compute h = H(m1,m2, . . . ,ml,ml+1, . . . ,mn) = h0 || h1; here, h0 is first

n− l-bits of h and h1 is remaining l-bits long.
2: Choose r0 = (r01, r02, . . . , r0l) ∈ Fl

pk and r1 = (r11, r12, . . . , r1(n−l)) ∈ Fn−l
pk

randomly and uniformly. Compute x0 = r0 || h0 and x1 = r1 || h1.
3: First, we compute y0 = T−1(x0) and y1 = T−1(x1)
4: Then, compute z0 = F−1(y0) and z1 = F−1(y1).
5: Finally, the signature of message M is σ = (σ0, σ1), where σ0 = S−1(z0) and

σ1 = S−1(z1).
Output: Signature of the message M as σ(M) = (σ0, σ1).

Algorithm 7 Verification algorithm

Input: Message M ∈ Fn
pk , signature of message M is σ = (σ0, σ1), and public key

pk = (p,H).
1: First, compute h = H(m1,m2, . . . ,ml,ml+1, . . . ,mn) = h0 || h1; here, h0 is

first n− l bits of h and h1 is remaining l-bits long.
2: Compute h′

0 as the last n− l bits of P (σ0) and h′
1 as the last l bits of P (σ1)

3: Check if h′
0 = h0 and h′

1 = h1 and return true; else, return false.
Output: True or False

• G2: This game is identical to G1 except that OA substitutes the output of
the hash (H) query of msg∗ with a random element m∗ from Fn

q . Similar to
that argument for G1, it can be asserted that | Prob(G2)−Prob(G1) |= ϵ2(k)
is negligible.

Now we have

| Prob[G2]− Prob[ExpEUF−CMA
Sig(1k)

= 1] |=| Prob[G2]− Prob[G0] |
≤| Prob[G2]− Prob[G1] | + | Prob[G1]− Prob[G0] |= ϵ1(k) + ϵ2(k) = ϵ(k).

Here, ϵ(k) is a negligible function. Consequently, the probability Prob[G2] that A
wins the gameG2 is same as the probabilityAdv(AEUF-CMA

Sig(1k) ) = Prob[ExpEUF-CMA
Sig(1k) =

1] that A wins EUF-CMA game. In other words, if Prob[G2] is non-negligible,
then AEUF-CMA

Sig(1k) is also non-negligible. It is important to note that Prob[G2] being

non-negligible implies that A can generate the signature σ∗ for msg∗ such that
P (σ∗) = S ◦ F ◦ T (σ∗) = m∗ with non-negligible probability. Thus, with the as-
sistance of A, the machine OA can solve the MQ problem P (x) = S ◦ F ◦ T (x) =
σ∗, contradicting our assumption that the MQ problem is hard. Therefore, the
Adv(AEUF−CMA

Sig(1k)
) = Prob[ExpEUF−CMA

Sig(1k)
= 1] is negligible. Consequently, we con-

clude that MQQ-Sigv is EUF-CMA secure.

Theorem 5.2. The proposed MQQ-Sigv signature scheme achieves l(y)-bits secu-
rity against Min-Rank attack if the number of variables vmin−rank ≥ ⌈r1 + 2val⌉,
where val = l(y)−r1 log2 q

3 .

Proof. For the Min-rank attack [50], we need to find the tuple (ω1, . . . , ωk) ∈ Fpk

such that
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M

Hash (M) = h

x0 = r0 || h0 x1 = r1 || h1

h1h0

y0 y1

T -1T -1

z0 z1

F -1F -1

σ0 σ1

S -1S -1

σ = (σ0 , σ1)

P (
σ 0) =

 h 0  a
nd

  P
 (σ

1) =
 h 1

?
?

Figure 1. Pictorial representation of the signature scheme and its verification

Rank(
∑k

i=1 ωiMi −M0) ≤ r for given r ∈ N. In [51], the Min-Rank complexity of

the multivariate digital signature is qs⌈
m
n ⌉m3, where m is number of equations, n

the numbers of variables, and s is the minimum rank. For the MQQ-Sigv scheme,
we consider n = vmin−rank,m = vmin−rank − r1, and s ≈ n − (n − r1) = r1. As
a result, to obtain an l(y) bit security against Min-Rank attack, qs⌈

m
n ⌉m3 ≥ 2l(y),

which implies qr1(vmin−rank − r1)
3 ≥ 2l(y) means vmin−rank ≥ ⌈r1 + 2val⌉, where

val = l(y)−r1 log2 q
3 . Therefore, the MQQ-Sigv signature scheme would be safe to

Min-Rank attack if vmin−rank ≥ ⌈r1 + 2val⌉ where, val = l(y)−r1 log2 q
3 .

Remark. For finite field F2k , the MQQ-Sigv signature scheme would be immune
to Min-Rank attack with l(y)-bit security if vmin−rank ≥ ⌈r + 2val1⌉, where val1 =
l(y)−r1k

3 .

Theorem 5.3. The proposed MQQ-Sigv signature scheme achieves l(y)-bits secu-
rity against High-Rank attack over Fq, where q = 2k, if the number of variables

vhigh−rank ≈ l(y)
2 log2 q .

Proof. In [51], Yang and Chen mentioned that the complexity of High-Rank attack

is qω̄(ω̄n2 + n3

6 ) where n is the number of plaintext variables, and for any plaintext
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variables, the minimal of appearances in central map is ω̄. For MQQ-Sigv scheme,
we fix n = 2d and ω̄ = v. To obtain l(y) bit security against High-Rank attack,

qv(4vd2 + 8d3

6 ) ≥ 2l(y). In particular, if q = 2k and d ≈ l(y)
2k = l(y)

2 log2 q , then the

complexity is greater than 2l(y). This implies that MQQ-Sigv signature scheme

would be immune against High Rank attack if vhigh−rank ≈ l(y)
2 log2 q .

Security level l(y) (in bits) Number of removed equations (r1)
Number of variables to

resist min-rank attack

Number of varibles to

resist high-rank attack

80

8 264 5

9 59 5

10 20 5

96

9 265 6

10 50 6

11 17 6

112

10 1635 7

11 267 7

12 52 7

128

11 10332 8

12 1637 8

15 21 8

Table 1. Least number of variables required to resist min-rank
and high-rank attack over the finite field F28 .

Theorem 5.4. The MQQ-Sigv signature scheme achieves l(y)-bit security level
against Direct attack under the hardness of the MQ problem if the number of equa-
tions d is chosen accordingly to Table 2.

Proof. In this method, the adversary tries to solve the system of equations p(x) = y
for fixed y directly by utilizing the different algebraic method like Gröbner bases
methods, such as the F5 algorithm [47]. In [38], Petzoldt determined the minimal
number of equations d needed to attain l(y)-bit security level experimentally, and
given in Table the 2.

Security level
l(y) (in bits)

Number of equations
F24 F31 F28

80 30 28 26
100 39 36 33
128 51 48 43
192 80 75 68
256 110 103 93

Table 2. Minimal number of equations needed to achieve a given
security level

Assuming the hardness of MQ problem, MQQ-Sigv remains secure against Direct
attack provided the minimum number of equations are chosen according to the
Table 2.
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Theorem 5.5. The proposed MQQ-Sigv is secure against Differential attack if the
MQQ operations q(i), i = 1, . . . , n are chosen uniformly at random.

Proof. The notion of differential cryptanalysis introduced by Fouque, Granboulan,
and Stern [13] has been effectively applied to various symmetric cryptographic al-
gorithms and multivariate schemes. The fundamental concept involves consider-
ing a finite field Fq with characteristics p and any multivariate quadratic function
G : Fn

q → Fm
q . The differential operator between two points x, y ∈ Fn

q can be ex-
pressed as LG,k = G(x+ k)−G(x)−G(k) +G(0), where this operator is indeed a
bilinear function.

The MQQ-Sigv scheme employs randomly selected multivariate quadratic quasi-
groups q1, . . . , qn. The non-linear component of the MQQ-Sigv scheme does not

follow a function of the form F : x → xql+1, and its details are concealed from
potential attackers as it is a part of the private key. Consequently, the MQQ-Sigv
scheme is immune to differential attack.

5.1. Resistance against good-key attack. In [10], Faugére et al. showed that
the MQQ construction is a layered single field scheme and has Rainbow-like struc-
ture. In [9], Faugére et al. proved that, due to the structure of MQQ with only
2-variables, the MQQ-SIG [16] is vulnerable against the equivalent good-key attack.

Definition 5.6. [9] Both keys (F, S, T ) and (F
′
, S

′
, T

′
) are equivalent keys, if and

only if (T ◦ F ◦ S) = (T
′ ◦ F ′ ◦ S′

) ∧ (F |I= F
′ |I), ∧ is the ‘and’ operator,

whereas F, F
′ ∈ Fq[x1, . . . , xn]

m S, S
′ ∈ GLn(Fq), and T, T

′ ∈ GLm(Fq), i.e., the

central function F and F
′
have a similar structure when restricted to a limited set

I = {I(1), . . . , I(m)}.

Definition 5.7. [9] We can say the key (F
′
, S

′
, T

′
) is a good key for (F, S, T ) iff

(T ◦ F ◦ S = T
′ ◦ F ′ ◦ S′

) ∧ (F |J= F
′ |J) for the fixed set J such that J satisfies

the following criteria:

• Consider two fixed sets I = {I(1), . . . , I(m)} and J = {J (1), . . . , J (m)} such
that J (k) ⊊ I(k) ∀ k, 1 ≤ k ≤ m with at least one J (k) ̸= Ø.

Essentially, the equivalent key notion reduces the number of variables by introducing
two more linear maps (K,L), where K ∈ GLm(Fq) and L ∈ GLn(Fq), such that

P = T ◦K−1 ◦K ◦ F ◦L ◦L−1 ◦ S. If F and F
′
= K ◦ F ◦L have similar structure

according to Definition (5.6), then T
′
= T ◦ K−1 and S

′
= L−1 ◦ S will be the

equivalent keys. Furthermore, the good key concept [47] lowers the number of

unknowns or unfixed coefficients in (S
′
, T

′
).

In the MQQ-Sigv scheme, we introduced vinegar variables into the MQQ struc-
ture and the construction of the signature scheme, as outlined in Algorithm 6,
follows a Rainbow-like signature scheme. However, the proposed signature scheme
is also based on MQQ, and according to Faugére et al. [9], MQQ-based signature
schemes are susceptible to the equivalent good key attack.

To enhance the resistance of the MQQ-Sigv signature scheme against good key
attacks, the transformation proposed by Wang and Yang [49] introduces several key
elements to the scheme. Here is a detailed breakdown of the process and its goals:

1. Quadratic Map Selection: The transformation involves randomly selecting
an invertible quadratic map over Fpk , where p is a prime and k is an integer.
A quadratic map is a polynomial function of degree 2, and its use introduces
additional complexity into the cryptographic scheme. The randomness in the
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selection of this map helps ensure that the scheme is less predictable and
harder to attack.

2. Incorporation of Hash Maps: Two hash maps are used in conjunction with
the quadratic map. Hash maps are typically used to transform data in cryp-
tographic schemes. They provide a way to securely process and incorporate
information into the signature scheme, adding another layer of security.

3. Additional Public Key Pairs: The transformation introduces four addi-
tional pairs of public keys. This augmentation increases the number of public
keys that must be handled and validated. By doing so, it strengthens the
authentication condition, making the scheme more robust against attacks.

4. Enhanced Verification Process: The verification process is updated to
include both the original external information and new, precise internal kernel
information. This combined approach means that the verification not only
checks against the initial external data, but also considers additional internal
data provided by the new public keys and quadratic map.

The primary objective of these enhancements is to make it computationally in-
feasible for an adversary to find an equivalent key in polynomial time. By adding
complexity through the quadratic map, hash maps, and additional public keys,
the transformation increases the difficulty of solving the underlying mathematical
problems that an attacker would face.

In the proposed scheme, we used the above ideas to protect the scheme against
good key attacks.

Transformation of MQQ-Sigv scheme. Consider an MQQ-Sigv={K, Sig, V er} as a
digital signature described in Section 4.3. To secure the MQQ-Sigv against good
key attack, the user needs to randomly select an invertible quadratic polynomial
G : F2n

pk → F2n
pk as a part of the private key and two random irreversible hash maps

H : Fn
pk → Fn

pk and H̃ : Fn
pk → Fn

pk .

Suppose the transformed version of the MQQ-Sigv signature scheme is
˜MQQ− Sigv = {K̃, S̃ig, Ṽ er}, where K̃ is the key generation algorithm, S̃ig is

the signature generation algorithm, and Ṽ er is the verification algorithm.

1. Key Generation algorithm: The affine maps S and T can be generated by
following Algorithm 3. Subsequently, (P,Hash) can be generated by utilizing
Algorithm 4. The secret key consists of a map G : F2n

pk → F2n
pk , which is an

invertible map. Consequently, the public key tuple is {P,H◦S,H◦G−1◦S, H̃◦
F ◦G−1◦S, H̃◦T−1} and the private keys tuple is: {S, T,G} for ˜MQQ− Sigv.

To construct the affine map pair (S, T ), it is sufficient to store the parame-
ters (σ1, σ2,M0, (αi)n, Pρi

, Pρj
) as mentioned in Section 4.1. Additionally, to

store the map G : F2n
pk → F2n

pk , it requires 4n
2 space. Therefore, the computa-

tion of the private key tuple (S, T,G) requires (2n+ rn
8 + kn

8 +n(u1+u2)+4n2)

space, which is proportional to O(n2), where n, k, r, u1, andu2 are input pa-
rameters.

2. Signature Generation algorithm: ConsiderM = (m1,m2, . . . ,ml,ml+1, . . .
. . . ,mn) ∈ Fn

pk needs to be signed using the private key pair (S, T,G). Algo-

rithm 8 can be used to generate the signature of M .
3. Signature Verification algorithm: For the verification protocol, the input

is message M ∈ Fn
pk , signature (σ = (σ0, σ1), σg = (σg0 , σg1)), and the public



QUANTUM SECURE DIGITAL SIGNATURE SCHEME BASED ON MQQ 1353

Algorithm 8 Transformed signature scheme ˜MQQ− Sigv

Input: Message M = (m1,m2, . . . ,ml,ml+1, . . . ,mn) ∈ Fn
pk , secret key tuple

(S, T,G), and the central function F .
1: Compute h = Hash(m1, . . . ,mn) = h0 || h1; here, h0 is the first n− l bits of h,

and h1 is the remaining l-bits long;
2: Choose r0 = (r01, r02, . . . , r0l) ∈ Fl

pk and r1 = (r11, r12, . . . , r1(n−l)) ∈ Fn−l
pk

randomly and uniformly. Compute x0 = r0 || h0 and x1 = r1 || h1;
3: Calculate the following:

(i) y0 = T−1(x0) and y1 = T−1(x1);
(ii) z0 = F−1(y0) and z1 = F−1(y1),

(a) σ0 = S−1(z0) and σ1 = S−1(z1);
(b) g(z0, z1) = g0 || g1, σg0 = S−1(g0) and σg1 = S−1(g1).

Output: The signature of message M is (σ, σg), where σ = (σ0, σ1) and σg =
(σg0 , σg1) is referred to as the forward signature and backward signature, respec-
tively.

key tuple (P,Hash,H ◦ S,H ◦G−1 ◦ S, H̃ ◦ F ◦G−1 ◦ S, H̃ ◦ T−1). By using
Algorithm 9, the user can verify whether the signature is legitimate or not.

Algorithm 9 Verification algorithm

Input: The message M = (m1,m2, . . . ,ml,ml+1, . . . ,mn) ∈ Fn
pk , the signature

pair (σ = (σ0, σ1), σg = (σg0 , σg1)) and the public key tuple (P,Hash,H ◦
S,H ◦G−1 ◦ S, H̃ ◦ F ◦G−1 ◦ S, H̃ ◦ T−1.

1: Compute h = Hash(m1,m2, . . . ,mn) = h0 || h1; here, h0 is the first n − l bits
of h and h1 is the remaining l-bits long.

2: Compute h′
0 as the last n− l bits of P (σ0) and h′

1 the last l bits of P (σ1).
3: Check whether h′

0 = h0 and h′
1 = h1, if yes then

(a) Check H̃ ◦ T−1(h0)||H̃ ◦ T−1(h1) = H̃ ◦ F ◦G−1 ◦ S(σg); if yes, then

(i) Check H̃ ◦G−1 ◦ S(σg) = H ◦ S(σ).
If any one condition in step (3) is not true, then the verification fails.

Output: Either true or false.

The pictorial representation of the transformed MQQ-Sigv signature scheme is given
in Figure 2. In the transformed MQQ-Sigv signature scheme, there are two signature
pairs (σ, σg), where σ is the forward signature and σg is the backward signature.
Suppose an adversary A tries to find an equivalent key (S′, F ′, T ′) of (S, F, T ) for
the given MQQ-Sigv signature scheme. There may be a possibility that A can find
these pairs of the equivalent key corresponding to the forward signature σ, but to
find the random map G : F2n

pk → F2n
pk is not feasible in polynomial time according to

[49]. Therefore, for an adversary to find the equivalent good key corresponding to
the tuple (S, F, T,G) is not feasible in polynomial time. As a consequence, we have
the following result.

Theorem 5.8. The transformed digital signature scheme ˜MQQ− Sigv based on
MQQ is secure against the equivalent good key attack.
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M

Hash (M) = h

x0 = r0 || h0 x1 = r1 || h1

h1h0

y0 y1

T -1T -1

z0 z1

F -1F -1

σ0 σ1

S -1S -1

σ = (σ0 , σ1)

Forward Signature

g (z0 , z1) = g0 || g1

σg  = S-1 (g0) σg  = S-1 (g1)

S -1S -1

σg = (σg  , σg )

Backward Signature

G

H Ο S (σ0) || H Ο S (σ1)

H Ο G-1 Ο S (σg ) || H Ο G-1 Ο S (σg )
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Figure 2. Pictorial representation of the transformed MQQ-Sigv scheme

6. Operating characteristics of MQQ-Sigv signature scheme. In this sec-
tion, we discuss the operating characteristics, like public key, private key size, and
signature size of the MQQ-Sigv scheme. Additionally, we compare these character-
istics with the existing schemes, like MQQ-SIG and Rainbow, experimentally.

The proposed scheme includes the public key tuple (P,H), where P consists of
(n − r) polynomials in n variables over F2k and a standardized collision free hash
function H. We analyzed the public key size of the proposed signature scheme over
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F2k :

Size of public key (pk) :=


k
8 (n− r)

(
1 + (n+v)(n+v+1)

2

)
if k = 1;

k
8 (n− r)

(
1 + (n+v)(n+v+3)

2

)
if k > 1

(17)

It was already mentioned in Section 4.1 that to construct the pair of affine maps
(S, T ), we need the (σ1, σ2,M0, (αi)n, Pρi , Pρj ) parameters only. This requires(
2n+ rn

8 + kn
8 + n(u1 + u2)

)
byte space for k > 1, where n, k, r, u1 and u2 are input

parameters.

Finite field
Security level
l(y) (in bits)

Number of variables
(n)

Number of removed
equations (r)

Number of vinegar
variables (v)

Public key size
(in bytes)

Private key size
(in bytes)
for fixed u1 = u2 = 10

128 128
25 15 8 5206 618
35 15 10 18917 866

256 128
45 20 15 47275 1147
45 20 20 102410 1147

Table 3. For 128-bit security, the size of the public and private key

Security level

l(y) (in bits)
Algorithm

Number of

variables (n)

Number of vinegar

variables (v)

Public key

size (in bytes)

Private key

size (in bytes)

Signature size

(in bytes)

80

MQQ-SIG 50 20 137408 401 40

Rainbow 50 20 30240 23408 42

MQQ-Sigv 50 20 12780 1156 100

96
MQQ-SIG 70 20 222360 465 48

MQQ-Sigv 70 20 32441 1618 140

112
MQQ-SIG 90 30 352828 529 56

MQQ-Sigv 90 30 73810 2081 180

128
MQQ-SIG 100 40 526368 593 64

MQQ-Sigv 100 40 100110 2312 200

Table 4. Comparative analysis of the MQQ-SIG, Rainbow, and
MQQ-Sigv schemes in terms of key size and signature size

7. Conclusion. We have proposed a quantum secure digital signature scheme
based on the multivariate quadratic quasigroup structure. For the proposed scheme,
we use two different variations of the bilinear MQQ: one is the vinegar variation, and
the other is the minus modifier variation to the public key. This results in reducing
the public key size. We have performed the security analysis of the proposed scheme
and proved that it is secure against existential unforgeability under chosen message
attack, Min-rank attack, High-rank attack, direct attack, and differential under
given conditions. Most importantly, using the transformation proposed by Wang
et al. [49], we secure the proposed scheme against equivalent good key attacks,
i.e., it is infeasible for a computationally bounded adversary to find an equivalent
good key of the proposed digital signature scheme in polynomial time. Finally, we
discussed the operating characteristics and efficiency of the proposed scheme.

As a part of future work, to design an encryption technique based on the proposed
algebraic structure or by leveraging the central map represented by Equation (13)
and its optimized implementation.
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8. Appendix.

8.1. Generation of affine map S and T. For the construction of an affine map
described by Algorithm 3, we assume particular values for n = 5, u1 = 2, u2 = 3, p =
5, and k = 2. We describe the construction of the private key pair step-by-step as
follows:

1. Let us consider the permutations σ1 =

(
1 2 3 4 5
2 3 4 5 1

)
and

σ2 =

(
1 2 3 4 5
2 3 1 5 4

)
. Generate the permutation matrix as per the permu-

tations σ1 and σ2 as

pσ1
=


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , pσ2
=


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

2. For i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}, consider the Toeplitz matrix with the
symmetric conditions as

p(1)ρ0
=


1 2 3 4 5
2 2 3 4 5
3 3 2 3 4
4 2 3 2 3
5 5 4 3 2

 , p(1)ρ1
=


2 3 4 5 6
3 2 3 4 5
4 3 2 3 4
5 4 3 2 3
6 5 4 3 2

 , p(1)ρ2
=


2 0 5 2 2
0 2 0 5 2
5 0 2 0 5
2 5 0 2 0
2 2 5 0 2



p(2)ρ0
=


6 7 8 0 6
7 6 7 8 0
8 7 6 7 8
0 8 7 6 7
6 0 8 7 6

 , p(2)ρ1
=


1 5 4 1 7
5 1 5 4 1
4 5 1 5 4
1 4 5 1 5
7 1 4 5 1

 , p(2)ρ2
=


0 1 3 5 9
1 0 1 3 5
3 1 0 1 3
5 3 1 0 1
9 5 3 1 0



p(2)ρ3
=


6 1 4 5 3
1 6 1 4 5
4 1 6 1 4
5 4 1 6 1
3 5 4 1 6

 .

3. Consider a matrix M0 =

[
0 1 1 0 1
1 0 1 1 0

]
of order 2× 5.

4. We create a matrix M = [ασ1(j)
· m(0)

i,j ]2×5 =

[
0 α3 α4 0 α1

α2 0 α4 α5 0

]
and

the matrix IM =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 α3 α4 0 α1

α2 0 α4 α5 0

. So, after choosing the particular

values of α1 = 2, α2 = 4, α3 = 5, α4 = 7, and α5 = 9, we get the matrix

IM =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 5 7 0 2
4 0 7 9 0

.
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5. Now, we compute the matrices

S
′

inv =

2∑
k=0

p(1)ρk
· pσ2

+

3∑
l=0

p(2)ρl
· pσ1

, T
′

inv =

2∑
k=0

p(1)ρk
· pσ1

· IM +

3∑
l=0

p(2)ρl
· pσ2

· IM

S
′

inv =


19 31 16 38 24
19 20 24 23 27
20 19 26 32 25
30 20 24 20 17
23 32 27 19 31

 , T
′

inv =


144 153 417 270 52
84 155 320 144 52
143 180 461 279 64
125 104 319 225 34
135 182 416 234 62


6. Consider the column vector vs = (α2 · α2, α3 · α3, α4 · α1, α5 · α5, α1 · α4)

T =
(16, 25, 14, 81, 14)T .

7. Finally, the affine maps s(x) = (Stranspose
inv )−1(x) + vs and T (x) =

(T transpose
inv )−1(x).
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