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We show that the Nieh-Yan topological invariant breaks projective symmetry and loses
its topological character in presence of non vanishing nonmetricity. The notion of the
Nieh-Yan topological invariant is then extended to the generic metric-affine case, defin-
ing a generalized Nieh-Yan term, which allows to recover topologicity and projective
invariance, independently. As a concrete example a class of modified theories of gravity
is considered and its dynamical properties are investigated in a cosmological setting.
In particular, bouncing cosmological solutions in Bianchi I models are derived. Finite
time singularities affecting these solutions are analysed, showing that the geodesic com-
pleteness and the regular behavior of scalar perturbations in these space-times are not
spoiled.
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1. Introduction

The theory of General Relativity (GR)%? relies on the geometric interpretation of
the gravitational field, described in terms of a metric tensor and a connection on
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a pseudo-Riemannian manifold. Both GR and many alternative theories of gravity
are based on a metric formulation, in which the connection is given by the symmet-
ric and metric compatible Levi-Civita connection, which is completely determined
by the metric and its derivatives. An alternative formulation for geometric theories
of gravity consists in adopting the metric-affine paradigm, in which the metric ten-
sor and the connection are considered as independent variables. In this approach,
symmetry and metric compatibility of the connection are not imposed a priori,
resulting in the presence of torsion and nonmetricity, respectively. Well known ex-
amples of metric-affine theories are Ricci based gravity,>* Palatini f(R) theory,’
quadratic gravity,® Born-Infeld-type models,” general teleparallel models,® general-
ized hybrid metric-Palatini gravity? '3 and metric-affine extension of higher order
theories. 1417

The metric-affine approach plays a crucial role also in one of the current attempts
to quantize gravity, i.e. loop quantum gravity (LQG),!% 19
in terms of a gauge SU(2) connection (Ashtekar-Barbero-Immirzi connection) and

where GR is reformulated

its conjugate momentum, the densitized triad.?° 23 This formulation, indeed, can be
derived®* by including an additional contribution to the first order (Palatini) action
of GR, namely the Nieh-Yan (NY) topological invariant?>-26 (the Holst term?” can
be used as well). The NY term was discovered in the context of Riemann-Cartan
theory (where nonmetricity is set to zero) and its main property is topologicity: it
reduces to a boundary term without affecting the field equations at all. This addi-

28,29 which concurs in

tional term is driven by the so called Immirzi parameter 3,
the definition of the Ashtekar variables and is related to a quantization ambiguity.3°
Attempts to address this issue led to the proposal of considering the Immirzi param-
eter as a new fundamental field,3! 33 an idea that has been later developed within
several different contexts.3!:33:33740,40-46 The promotion of such constant parame-
ter to a dynamical field is usually pursued “by hand”, substituting 8 — £(«) in the
Lagrangian and possibly adding a potential term V().

More recently, beside LQG the NY term has been studied in the context of
teleparallel gravity*” and in condensed matter physics.*8-5!

Another important property we will focus on, is projective invariance,®? %3 which
has recently been shown to be of crucial importance in metric-affine theories since
the breaking of this symmetry can give rise to dynamical instabilities.’* In this
regard, we want to stress that the NY term breaks this symmetry. This feature has
always been neglected in literature and a revision of previous formulations seems
necessary. Moreover, as will be shown in the following, the topological character of
the NY term is also lost when nonmetricity is included.

The approach followed in this note is grounded on the choice of recovering these
features from the very beginning in the action, without imposing any restriction on
the affine connection. After a formal discussion, we will implement the gravitational

model in a cosmological setting. In particular, we investigate Bianchi I models,?> 57

focusing our attention on the emergence of a classical bouncing cosmology.4? 5864
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2. The role of nonmetricity in the Nieh-Yan term

In Einstein-Cartan theory the NY term?® 26 is explicitly defined as

1 vpo 1 A
NY = 55“ p <2T v TApa - R/,Ll/pO’) ) (1)
where
Rpuau = aﬁFpuu - aVFppo + FPTO'FTHI/ - FPTVFT;uﬂ (2)

is the Riemann tensor built with the independent connection and
Tﬂl/p = Ful/p - Fupl/ (3)

is the torsion tensor. The starting point of our discussion is the observation that for
a non-vanishing nonmetricity tensor Q ., = —V,gu,, the NY term (1) is spoilt of its
topological character. Indeed, extracting the nonriemmanian part of the Riemann
tensor leads to%°

le 1 vpo
NY = =2V 8= 2e"T,, Qs (4)
where V, is built with the Levi-Civita connection T'*,, , and
Si = €upa TV (5)

Therefore, when Q,.., # 0, the Nieh-Yan term does not simply reduce to the di-
vergence of a vector, and the appearance of nonmetricity spoils the topologicity.
Let us now consider the behavior of (1) under projective transformations of the
connection, namely

Fp,u.l/ = Fp[LV + 6p,u£V7 (6)

It can easily be shown that (1) is also not invariant under projective transformations,
since

1 - 1
1gl“fpf’TAW Trpo — Ze““”"TAW Trpo = =S, (7)

Now, by looking at (4), we point out that a newly topological Nieh-Yan term can
be recovered by simply setting

X 1

NY" = NY + §€HVPGT)\MV on)v (8)
We note that projective invariance is now enclosed as well, since
1 LY po I A 1 LV PO A 4

§5l T pv on‘)\ - §EI veeT Nz Qpa)\ = +SN§A ) (9)

which exactly cancels out (7). We stress, however, that projective invariance is
not strictly related to topologicity, and suitable generalizations of (2) breaking up
only with the latter can be actually formulated. Let us consider, for instance, the
following modified Nieh-Yan term

1 A
Nygen = isuupo' <21T)\;w TAPU + /\2 T)\;w Qpcr)\ - R#upo) ) (10)
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where we introduced the real parameters A;, Az. In this case the term (10) trans-
forms under a projective transformation as

NYgen — NYgen - (/\1 - >\2)§MS/U (11)
so that by setting A\; = Ay we can recover again projective invariance, despite
topologicity being in general violated if Ay = Ao # 1, since

(A —1)

1_ Ao —1
NYgen = =5V - S+ eI, Thpo + %E“VPUTAHV Quor- (12)

In the following, we will consider the general form (10), which by a suitable choice
of the parameters A; » can reproduce all known actions usually studied in literature,
as the Holst (A; = A2 = 0) or the standard Nieh-Yan (4) (A; =1, Ay = 0) terms.

3. Generalized Nieh-Yan models

As a specific gravitational model featuring the generalized NY term we consider
an action defined by a general function of two arguments, the Ricci scalar and the
generalized NY term (10):

1
S, = P /d4x\/—g F(R,NY,e,), (13)

Now, performing the transformation to the Jordan frame leads to the scalar tensor
representation

5, = i / d'2/=g (R + BNYyen — W (0, 8)), (14)

with ¢ = 95, = 595 — and W = 9R(0, 8) + BNYyen(6,8) — F(9, 8).

The scalar field S can be identified with the Immirzi field, which acquires in this
way a dynamical character without the need of introducing this feature by hand
in the action. Moreover, this formulation offers a viable mechanism to produce an
interaction term W (¢, 3) as well. Now, the field equation for the connection are
obtained varying (14) with respect to I'*, ,. For the full set of equations the reader

may cosnult,% while here we are interest in the following contraction
6S
Oy = 1
5 =0 (15
which leads to
(A1 — A2)SH = 0. (16)

This implies that the features of the solutions depend on the parameters A\; and Ao,
and when projective invariance is broken (A1 # A2) one is compelled to set S, = 0.
In this case, (10) can be re-expressed as

SHQP ., (17)

= (1— A1) (1—2X2)
NYen = =59 -8 = = "gns, - 2222
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implying that the generalized Nieh-Yan term (10) is identically vanishing on half-
shell. In other words, terms violating projective invariance are harmless along the
dynamics. This can be further appreciated deriving the effective scalar tensor action
stemming from (14), when the solutions of the full set of connection field equations
are plugged in it. Explicit calculations (see%® for details) lead to

/ d*zv=g <¢R+ 3 ViV 6~ W (5, 6)) (18)

where R is the Ricci scalar of the Levi-Clvita connection. This resembles the form
of a Palatini f(R) theory, with a potential depending on the Immirzi field as well.
The equation for the latter, i.e.

oW (¢, 5)

op
fixes its form in terms of the remaining scalar field: 5 = (¢). Then, using the trace
of the metric field equations, variation of (18) with respect to ¢ results in the usual

structural equation featuring Palatini f(R) theories,® i.e.

2w (0,6) - 0P| e, (20)

B=B(¢)
where T is the trace of the stress energy tensor of matter. This implies that the
dynamics of the scalaron ¢ is frozen as well, and completely determined by 7'. Con-
ditions (19) and (20) then guarantee that the scalar fields ¢, § are not propagating

degrees of freedom, and reduce to constants in vacuum, where the theory is stable

=0, (19)

and the breaking of projective invariance does not lead to ghost instabilities, in
contrast to.%*

If A\ = A2 = A, instead, the projective invariance of the model can be used to get
rid of one vector degree of freedom, which can be set to zero properly choosing the
vector &,,. A convenient choice consists in setting §,, = —%Q” upe Which allows to deal
only with torsion in the connection field equations. The effective action stemming

from (14) then reads (see®)

S = /d4x\ﬁ(¢R+ % A !

20+ (1N

VbV — V (8, w))
(21)

where we used the transformation p = B¢*~! and redefined the potential as
V(g,v) = W(¢p,¢' ™). In general, the Immirzi field is expected to be a well-
behaved dynamical degree of freedom, since in the Einstein frame action, defined
by the conformal rescaling g,,, = ¢ g, the kinetic term for the Immirzi field takes
the form
3 gV

T2 (LA
Since ¢** 4 (1 —\)242 > 0 for every value of ¢, 1 and \, (22) has always the correct
sign and no ghost instability arise.%¢

(22)
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Let us end this section with a remark on how previous results with vanishing
nonmetricity can properly be recovered. In particular, the Riemann-Cartan struc-
ture of32:33,36,37,46,67°69 can he replicated by inserting in (13) the condition of
vanishing nonmetricity with a Lagrange multiplier, i.e. adding to the Lagrangian
a term [PMQ ., with [P = [PY#. Then, results of32:33:36:37,46,67°69 are gimply
obtained by setting A\; = 1. The fact that the usual Einstein-Cartan NY invari-
ant and related models are recovered in this way, supports the correctness of our
generalization of the NY term, with respect to other possible generalizations.

4. Big bounce in Bianchi I cosmology

In this section we consider dynamical models, i.e. those described by (21), which
are characterized by a dynamical Immirzi field and look for cosmological solutions
in Bianchi I spacetimes. In particular, we will be interested in obtaining solutions
characterized by a bouncing behavior for the universe volume, thanks to which the
big bang singularity is regularized in favour of a big bounce scenario.

Let us start from the equations of motion for the metric and scalar fields which
are given by

G = 5Ty 5 (V00 =000 = 55 V,d¥u0+ § s
o (S5 2 SR V) s
2V(¢,%) — ¢av((;2; v o j?f)%;g o (Ve)? = &T, (24)
50— g T+ (1 g ) Vo = P
(25)

As will be shown, cosmological solutions can be found for projective invariant models
(A = 1), and restricting to potentials of the form V(¢,) = V(). To this end, we
consider the metric for a Bianchi I flat spacetime, i.e.

ds? = —dt® + a(t)?dz? + b(t)?dy? + c(t)*d2?, (26)

which represents a homogeneous but anisotropic spacetime, with three different
scale factors a(t),b(t),c(t). We include matter in the form of a perfect fluid with
stress energy tensor

THV = dlag(pv &2p, b2p7 62p)7 (27)

where p is the energy density and p the pressure. Assuming the equation of state
p = wp, conservation of the stress energy tensor implies
2

p(t) = (abfw (28)
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where p? is a constant. Now, considering a Starobinsky quadratic potential™

VT¢)=:1(¢:;1>2, (29)

(07

it can be shown that the equations for the scalar fields yield®

P Y0 v2f(v)

_ koo S A C) 30
in terms of the volume-like variable v = abc and the function f(v) =1 — 2ax(3w —
1)p(v), while kg is an integration constant. Regarding the metric field equations,
lengthy computations®® allow to rewrite the tt component in the form of a modified

Friedmann equation:

2 2
o (0N _E(Br s )P .
S\ (14 2dmg)’ (31)
2 dv

where u2A and /ﬁ are constants, representing the anisotropy density parameter and

the energy density parameter of the Immirzi field, respectively. We note that the
r.h.s is a rational function of the volume alone.

In the following we will take into account dust and radiation as matter contri-
butions, specified by the choices w = 0, p = pup and w = 1/3, p = pg in (28),
respectively. Then, bouncing solutions can be derived for @ < 0 integrating Eq. (31)
for v(t), which then yields the scalar fields behavior via (30).

4.1. Vacuum case

Tt is convenient to first focus on the vacuum case, where f(v) = 1 and pup = ug = 0.
In this case we found the big bounce in the volume variable depicted in Fig. 1, where
also the behavior of each scale factor is shown. We note that the volume is affected
"L72 where the Hubble function diverges, while
the scale factors are always finite and nonvanishing. Such singular points will be

by a future finite-time singularity

carefully investigated in the next section studying the geodesic completeness and
scalar perturbations across them. Here we just note that, in general, quantum effects
of particle creation”™ 7% can produce additional effective terms in the Friedman
equation, able to regularize singularities of the Hubble function.

Finally, the scalar fields behaviour is shown in Fig. 2 where the field ¢ asymptot-
ically reaches unity as t — oo, while the Immirzi field relaxes to a constant Immirzi
parameter.

4.2. Radziation and dust

The above analysis can be extended to the non vacuum case, including the energy
density of radiation and dust. A first difference concerns the late time region, since

2A dot denotes derivatives with respect to time.
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=

Fig. 1. Numerical solutions for « = —5/3, ur = V3, A = 0.2u5 as a function of ¢/t p;. Dotted and
dashed lines represent where bounce and future time singularity happen, respectively. The bounce
is centered at the origin of time for convenience, and the values of the parameters are chosen in
order to yield graphs that display features in a clear fashion. (a) Universe volume normalised to
vp. (b) Scale factors.

2.0
— o(t/tp)
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— p(t/tp)
Z 1.0 !
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o.c// —
0 20 40 60 80
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Fig. 2. Scalaron ¢ and Immirzi field derivative ¥ for o0 = —5/3, ur = V3, ua = 0.2us as a
function of t/tp;.

both radiation and dust are able to provide an isotropization mechanism for the
universe, as is apparent studying the anisotropy degree
H3 + H% + HZ)
A(t) = (H + Hp + HE) 1, 32
whose behavior is shown in Fig. 3. Regarding the universe in its early phase, instead,
two different scenarios may occur, depending on the value of the parameter «. If

a < a <0, where & = —2u%/u%,, the solutions are qualitatively equivalent to the
vacuum case. If @ > «, instead, we still obtain a bouncing behavior for the volume
(See Fig. 4), which however is now devoid of singularities. However, now the scale
factors either diverge or vanish at some critical time ¢..

5. Physical implications of curvature divergences

As described in the previous section there are two classes of solutions, characterized
by a singularity in the Hubble function and non vanishing and finite scale factors
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Fig. 3. Asymptotic behavior of the anisotropy degree A as a function of ¢/tp; after the finite
time singularity for various values of ugr, up and a = —5/3, uy = V3, pa =0.2u;.

4
—v/vg 14
3 ,c? 12 a(t/tp)
) 0 —b(t/tp)
B 10 e(t/tr)
8 Z
£ ° 6
S
-1 4
-2 2
-3 0

-15  -10 -5 0 5 10 15 -15  -10 -5 0 5 10 15
t/tp t/tp

(a) (b)
Fig. 4. Numerical solutions as a function of t/tp; for uy = 0.057, pa = 2.4, up = 0.365,

pur = 1.56 and @ = —8.42 < &. The dashed lines represent where the scalaron vanishes. (a)
Volume normalised to vg, ¢ and derivative of the Immirzi field. (b) Scale factors.

(Fig. 1) or with regular Hubble function but vanishing or divergent scale factors
(Fig. 4). In this section we will analyse such singularities studying the behavior of
null geodesics and of scalar perturbations near the critical time t., at which the
singularity is located.

Regarding null geodesics with tangent vector u® = dx®/ds, it can be shown that

they admit a first integral of the form™">™®
ko ke ke A
»T/:ﬁa y/:bja Z/:cj’ t = < +b7+ + Co, (33)

where prime denotes derivative with respect to the affine parameter s and kg, ky, k.
and Cj are integration constants. It follows that if a(t), b(t), and ¢(t) are continuous
and non-vanishing, as in Fig. 1, the tangent vector to the geodesics will be unique
and well defined. Therefore, such cases are geodesically complete, a result that holds
both in the anisotropic and in the isotropic case.”

In the other class of solutions (Fig. 4), instead, we see that the volume remains
finite despite the vanishing/divergence of some scale factors. The divergence of
individual scale factors does not affect the geodesics, but the vanishing of some of
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them may spoil the continuity and lead to the impossibility of a unique extension
across t.. Indeed, let us consider the case in which one scale factor vanishes at some
affine parameter s.. In particular, suppose that

a(s) = aog(s — s¢)?, (34)
with v > 0. Then, integrating the relevant equations yields
ka(s — s)t727

ag(1—2y) ’
ka(s — sc)t™
ao(1 =)
which are smooth if 0 < v < 1/2 and 0 < 7y < 1, respectively. Note that if 1/2 < v <
1, then z(s) 278y 460, which would imply reaching infinity in finite coordinate
time. Conversely, if 0 < v < 1/2, then the geodesic path will span the range {¢,2} €

(—00, ), and the geodesics would be complete, despite the vanishing of some scale
factors. However, this result is dependent on how rapidly the zero is reached, i.e.

x(s) =z, + (35)

t(s) =t.+ Co(s — sc) + , (36)

we have to determine the value of v relative to the solutions in question. The
results are shown in Fig. 5 and prove that the solution approaches zero too rapidly,
corresponding to a value of v larger than 1/2. We are thus forced to conclude that
the example shown in Fig. 4 does represent a geodesically incomplete space-time.

0.04
—v=0.5
7=0.6
0.03 —y=0.72
=075
s 0.02
0.01
0.00 5.6 5.8 6.0 6.2 6.4
t/tpl

Fig. 5. Outcomes of null geodesics test for a < @. Scale factor a(s(t)) for different values of .
The dashed-black line represent the numerical solution a(t) reported in Fig. 4.

We now turn the attention to the behavior of scalar field perturbations. For a

scalar mode given by oz (t,¥) = @(t)ei’;'i, one finds® an equation of the form

. b . k2 kK2
O+ h(v)—-6 2+ -4+-210=0, 37
thv) O+ 2+t 3 (37)
where h(v) represents some regular function of the volume v and k = (kg ky, k)
represents a set of constants. From this expression, we see that scalar modes are
sensible to the presence of the individual scale factors a, b, and ¢, and of the Hubble
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function H = ©/3v. If the scalar factors do not vanish anywhere, then any potential
problems should come only from the term involving the Hubble function, which di-
verges in t.. In particular, in vacuum one finds® the following approximate solution
near the singularity

Ot) ~ O, + ¢ (F2helt—te]'/? (1 4 2Rt — ¢ |1/2) (38)

~ c = C c ?
2h2

with 6., O, he constants, from which we see that scalar field perturbations remain
bounded around t. despite the divergence in the Hubble function. A similar result
holds in presence of dust and radiation, since

O~ 0, — Do Faholi—tel! (3 127t — ¢/
3254
+24R2Jt — t[ M2 & 32RE — o) (39)

which is easy to see to be again bounded. On the other hand, for a regular Hubble
function but vanishing scale factors, equation (37) describes a harmonic oscillator
with a time dependent frequency,

k2
a?(t)

O(t) + O(t) ~ 0, (40)
which diverges as a(t) — 0. Therefore, for the values of a(t) obtained numerically
in the previous section neither geodesics nor scalar perturbations are well behaved.

6. Conclusion

We proposed a generalization of the Nieh-Yan term to metric-affine gravity, by in-
cluding an additional term featuring nonmetricity and inserting two parameters (Aq,
A2), which allow to recover the projective invariance and the topological character,
otherwise lost in presence of nonmetricity. In particular, projective invariance can
be independently obtained by setting A\; = A2 = A, whereas topologicity is only
guaranteed for A = 1.

As an explicit example, we considered a model with Lagrangian F(R, NYg.,),
which re-expressed in the Jordan frame features two scalar fields. We identified these
scalar degrees as the f(R)-like scalaron ¢ and the Immirzi field 8 and showed that
the latter acquires dynamical character and a potential term in a more natural way
than in previous treatments, where these features are introduced by hand in the
action. Depending on the values of A1 and A9, we found two different scalar tensor
theories. Models with A\; # A2, are non-dynamical, and the scalar fields are frozen
to constant values in vacuum. In the projective invariant case (A\; = ), instead,
the theory is endowed with one additional dynamical degree of freedom, the Immirzi
field, while the field ¢ is algebraically related to the latter via a modified structural
equation.
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Then, we considered in more detail the dynamical models, looking for cosmo-
logical solutions in Bianchi I spacetimes. We found numerical solutions in which
the big bang singularity is replaced by a big bounce scenario, in which the universe
volume undergoes a contraction up to a minimum value and then bounces back, re-
expanding in another branch. The scalaron and the Immirzi field reach a maximum
during the bounce and relax to constant values at later times, where the standard
LQG picture, with ¢ = 1 and a constant Immirzi parameter 8 = g, is recovered.
Moreover, the inclusion of dust and radiation turns out to provide an isotropization
mechanism at late times, a feature that is absent in the vacuum case.

Such solutions are characterized by future finite time singularities after the
bounce, either in the Hubble function or in the individual scale factors. In the
former case, we showed that null geodesics are still well behaved and scalar per-
turbations bounded, which allows us to conclude that the solution is physically
acceptable. In the latter case, instead, the study of null geodesics shows that they
cannot be extended across the singular point, where also scalar perturbations grow
in time, leading us to regard such solutions as unphysical.
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