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We show that the Nieh-Yan topological invariant breaks projective symmetry and loses

its topological character in presence of non vanishing nonmetricity. The notion of the

Nieh-Yan topological invariant is then extended to the generic metric-affine case, defin-
ing a generalized Nieh-Yan term, which allows to recover topologicity and projective

invariance, independently. As a concrete example a class of modified theories of gravity
is considered and its dynamical properties are investigated in a cosmological setting.

In particular, bouncing cosmological solutions in Bianchi I models are derived. Finite
time singularities affecting these solutions are analysed, showing that the geodesic com-
pleteness and the regular behavior of scalar perturbations in these space-times are not

spoiled.
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1. Introduction

The theory of General Relativity (GR)1,2 relies on the geometric interpretation of

the gravitational field, described in terms of a metric tensor and a connection on

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



562

a pseudo-Riemannian manifold. Both GR and many alternative theories of gravity

are based on a metric formulation, in which the connection is given by the symmet-

ric and metric compatible Levi-Civita connection, which is completely determined

by the metric and its derivatives. An alternative formulation for geometric theories

of gravity consists in adopting the metric-affine paradigm, in which the metric ten-

sor and the connection are considered as independent variables. In this approach,

symmetry and metric compatibility of the connection are not imposed a priori,

resulting in the presence of torsion and nonmetricity, respectively. Well known ex-

amples of metric-affine theories are Ricci based gravity,3,4 Palatini f(R) theory,5

quadratic gravity,6 Born-Infeld-type models,7 general teleparallel models,8 general-

ized hybrid metric-Palatini gravity9–13 and metric-affine extension of higher order

theories.14–17

The metric-affine approach plays a crucial role also in one of the current attempts

to quantize gravity, i.e. loop quantum gravity (LQG),18,19 where GR is reformulated

in terms of a gauge SU(2) connection (Ashtekar-Barbero-Immirzi connection) and

its conjugate momentum, the densitized triad.20–23 This formulation, indeed, can be

derived24 by including an additional contribution to the first order (Palatini) action

of GR, namely the Nieh-Yan (NY) topological invariant25,26 (the Holst term27 can

be used as well). The NY term was discovered in the context of Riemann-Cartan

theory (where nonmetricity is set to zero) and its main property is topologicity: it

reduces to a boundary term without affecting the field equations at all. This addi-

tional term is driven by the so called Immirzi parameter β,28,29 which concurs in

the definition of the Ashtekar variables and is related to a quantization ambiguity.30

Attempts to address this issue led to the proposal of considering the Immirzi param-

eter as a new fundamental field,31–33 an idea that has been later developed within

several different contexts.31,33,33–40,40–46 The promotion of such constant parame-

ter to a dynamical field is usually pursued “by hand”, substituting β → β(x) in the

Lagrangian and possibly adding a potential term V (β).

More recently, beside LQG the NY term has been studied in the context of

teleparallel gravity47 and in condensed matter physics.48–51

Another important property we will focus on, is projective invariance,52,53 which

has recently been shown to be of crucial importance in metric-affine theories since

the breaking of this symmetry can give rise to dynamical instabilities.54 In this

regard, we want to stress that the NY term breaks this symmetry. This feature has

always been neglected in literature and a revision of previous formulations seems

necessary. Moreover, as will be shown in the following, the topological character of

the NY term is also lost when nonmetricity is included.

The approach followed in this note is grounded on the choice of recovering these

features from the very beginning in the action, without imposing any restriction on

the affine connection. After a formal discussion, we will implement the gravitational

model in a cosmological setting. In particular, we investigate Bianchi I models,55–57

focusing our attention on the emergence of a classical bouncing cosmology.42,58–64
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2. The role of nonmetricity in the Nieh-Yan term

In Einstein-Cartan theory the NY term25,26 is explicitly defined as

NY ≡ 1

2
εµνρσ

(
1

2
Tλ

µν Tλρσ −Rµνρσ

)
, (1)

where

Rρ
µσν = ∂σΓ

ρ
µν − ∂νΓ

ρ
µσ + Γρ

τσΓ
τ
µν − Γρ

τνΓ
τ
µσ, (2)

is the Riemann tensor built with the independent connection and

Tµ
νρ = Γµ

νρ − Γµ
ρν (3)

is the torsion tensor. The starting point of our discussion is the observation that for

a non-vanishing nonmetricity tensorQµνρ = −∇µgνρ, the NY term (1) is spoilt of its

topological character. Indeed, extracting the nonriemmanian part of the Riemann

tensor leads to65

NY = −1

2
∇̄ · S − 1

2
εµνρσTλ

µνQρσλ, (4)

where ∇̄µ is built with the Levi-Civita connection Γ̄µ
νρ and

Sµ ≡ εµνρσT
νρσ. (5)

Therefore, when Qρµν ̸= 0, the Nieh-Yan term does not simply reduce to the di-

vergence of a vector, and the appearance of nonmetricity spoils the topologicity.

Let us now consider the behavior of (1) under projective transformations of the

connection, namely

Γ̃ρ
µν = Γρ

µν + δρµξν , (6)

It can easily be shown that (1) is also not invariant under projective transformations,

since

1

4
εµνρσT̃λ

µν T̃λρσ − 1

4
εµνρσTλ

µν Tλρσ = −Sµξ
µ. (7)

Now, by looking at (4), we point out that a newly topological Nieh-Yan term can

be recovered by simply setting

NY ∗ ≡ NY +
1

2
εµνρσTλ

µνQρσλ. (8)

We note that projective invariance is now enclosed as well, since

1

2
εµνρσT̃λ

µν Q̃ρσλ − 1

2
εµνρσTλ

µνQρσλ = +Sµξ
µ, (9)

which exactly cancels out (7). We stress, however, that projective invariance is

not strictly related to topologicity, and suitable generalizations of (2) breaking up

only with the latter can be actually formulated. Let us consider, for instance, the

following modified Nieh-Yan term

NYgen ≡ 1

2
εµνρσ

(
λ1
2
Tλ

µν Tλρσ + λ2 T
λ
µνQρσλ −Rµνρσ

)
, (10)
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where we introduced the real parameters λ1, λ2. In this case the term (10) trans-

forms under a projective transformation as

NYgen → NYgen − (λ1 − λ2)ξ
µSµ, (11)

so that by setting λ1 = λ2 we can recover again projective invariance, despite

topologicity being in general violated if λ1 = λ2 ̸= 1, since

NYgen = −1

2
∇̄ · S +

(λ1 − 1)

4
εµνρσTλ

µν Tλρσ +
(λ2 − 1)

2
εµνρσTλ

µνQρσλ. (12)

In the following, we will consider the general form (10), which by a suitable choice

of the parameters λ1,2 can reproduce all known actions usually studied in literature,

as the Holst (λ1 = λ2 = 0) or the standard Nieh-Yan (4) (λ1 = 1, λ2 = 0) terms.

3. Generalized Nieh-Yan models

As a specific gravitational model featuring the generalized NY term we consider

an action defined by a general function of two arguments, the Ricci scalar and the

generalized NY term (10):

Sg =
1

2κ

∫
d4x

√
−g F (R,NYgen), (13)

Now, performing the transformation to the Jordan frame leads to the scalar tensor

representation

Sg =
1

2κ

∫
d4x

√
−g (ϕR+ βNYgen −W (ϕ, β)) , (14)

with ϕ ≡ ∂F
∂R , β ≡ ∂F

∂NYgen
and W ≡ ϕR(ϕ, β) + βNYgen(ϕ, β)− F (ϕ, β).

The scalar field β can be identified with the Immirzi field, which acquires in this

way a dynamical character without the need of introducing this feature by hand

in the action. Moreover, this formulation offers a viable mechanism to produce an

interaction term W (ϕ, β) as well. Now, the field equation for the connection are

obtained varying (14) with respect to Γµ
νρ. For the full set of equations the reader

may cosnult,65 while here we are interest in the following contraction

δλν
δSg

δΓλ
νµ

= 0 (15)

which leads to

(λ1 − λ2)S
µ = 0. (16)

This implies that the features of the solutions depend on the parameters λ1 and λ2,

and when projective invariance is broken (λ1 ̸= λ2) one is compelled to set Sµ = 0.

In this case, (10) can be re-expressed as

NYgen = −1

2
∇̄ · S − (1− λ1)

3
SµT ρ

µρ − (1− λ2)

2
SµQρ

µρ, (17)
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implying that the generalized Nieh-Yan term (10) is identically vanishing on half-

shell. In other words, terms violating projective invariance are harmless along the

dynamics. This can be further appreciated deriving the effective scalar tensor action

stemming from (14), when the solutions of the full set of connection field equations

are plugged in it. Explicit calculations (see65 for details) lead to

S =
1

2κ

∫
d4x

√
−g
(
ϕR̄+

3

2ϕ
∇̄µϕ∇̄µϕ−W (ϕ, β)

)
, (18)

where R̄ is the Ricci scalar of the Levi-CIvita connection. This resembles the form

of a Palatini f(R) theory, with a potential depending on the Immirzi field as well.

The equation for the latter, i.e.

∂W (ϕ, β)

∂β
= 0, (19)

fixes its form in terms of the remaining scalar field: β = β(ϕ). Then, using the trace

of the metric field equations, variation of (18) with respect to ϕ results in the usual

structural equation featuring Palatini f(R) theories,5 i.e.[
2W (ϕ, β)− ϕ

∂W (ϕ, β)

∂ϕ

]
β=β(ϕ)

= κT, (20)

where T is the trace of the stress energy tensor of matter. This implies that the

dynamics of the scalaron ϕ is frozen as well, and completely determined by T . Con-

ditions (19) and (20) then guarantee that the scalar fields ϕ, β are not propagating

degrees of freedom, and reduce to constants in vacuum, where the theory is stable

and the breaking of projective invariance does not lead to ghost instabilities, in

contrast to.54

If λ1 = λ2 ≡ λ, instead, the projective invariance of the model can be used to get

rid of one vector degree of freedom, which can be set to zero properly choosing the

vector ξµ. A convenient choice consists in setting ξµ = − 1
2Q

ρ
µρ, which allows to deal

only with torsion in the connection field equations. The effective action stemming

from (14) then reads (see65)

S =
1

2κ

∫
d4x

√
−g
(
ϕR̄+

3

2ϕ
∇̄µϕ∇̄µϕ− 3ϕ

2

1

ϕ2λ + (1−λ)2ψ2
∇̄µψ∇̄µψ − V (ϕ, ψ)

)
,

(21)

where we used the transformation ψ ≡ βϕλ−1 and redefined the potential as

V (ϕ, ψ) = W (ϕ, ψϕ1−λ). In general, the Immirzi field is expected to be a well-

behaved dynamical degree of freedom, since in the Einstein frame action, defined

by the conformal rescaling g̃µν = ϕ gµν , the kinetic term for the Immirzi field takes

the form

−3

2

g̃µν∇µψ∇νψ

ϕ2λ + (1− λ)2ψ2
. (22)

Since ϕ2λ+(1−λ)2ψ2 > 0 for every value of ϕ, ψ and λ, (22) has always the correct

sign and no ghost instability arise.66
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Let us end this section with a remark on how previous results with vanishing

nonmetricity can properly be recovered. In particular, the Riemann-Cartan struc-

ture of32,33,36,37,46,67–69 can be replicated by inserting in (13) the condition of

vanishing nonmetricity with a Lagrange multiplier, i.e. adding to the Lagrangian

a term lρµνQρµν , with lρµν = lρνµ. Then, results of32,33,36,37,46,67–69 are simply

obtained by setting λ1 = 1. The fact that the usual Einstein-Cartan NY invari-

ant and related models are recovered in this way, supports the correctness of our

generalization of the NY term, with respect to other possible generalizations.

4. Big bounce in Bianchi I cosmology

In this section we consider dynamical models, i.e. those described by (21), which

are characterized by a dynamical Immirzi field and look for cosmological solutions

in Bianchi I spacetimes. In particular, we will be interested in obtaining solutions

characterized by a bouncing behavior for the universe volume, thanks to which the

big bang singularity is regularized in favour of a big bounce scenario.

Let us start from the equations of motion for the metric and scalar fields which

are given by

Ḡµν =
κ

ϕ
Tµν +

1

ϕ

(
∇̄µ∇̄ν − gµν□̄

)
ϕ− 3

2ϕ2
∇̄µϕ∇̄νϕ+

3

2

∇̄µψ∇̄νψ

ϕ2λ + (1− λ)2ψ2

+
1

2
gµν

(
3(∇̄ϕ)2

2ϕ2
− 3

2

(∇̄ψ)2

ϕ2λ + (1− λ)2ψ2
− V (ϕ, ψ)

ϕ

)
, (23)

2V (ϕ, ψ)− ϕ
∂V (ϕ, ψ)

∂ϕ
+

3λϕ2λ+1

(ϕ2λ + (1− λ)2ψ2)
2 (∇̄ψ)

2 = κT, (24)

□̄ψ − (1− λ)2ψ

ϕ2λ + (1− λ)2ψ2
(∇̄ψ)2 +

(
1− 2λϕ2λ

ϕ2λ + (1− λ)2ψ2

)
∇̄µ lnϕ∇̄µψ =

∂V (ϕ, ψ)

3∂ψ
.

(25)

As will be shown, cosmological solutions can be found for projective invariant models

(λ = 1), and restricting to potentials of the form V (ϕ, ψ) = V (ϕ). To this end, we

consider the metric for a Bianchi I flat spacetime, i.e.

ds2 = −dt2 + a(t)2dx2 + b(t)2dy2 + c(t)2dz2, (26)

which represents a homogeneous but anisotropic spacetime, with three different

scale factors a(t), b(t), c(t). We include matter in the form of a perfect fluid with

stress energy tensor

Tµν = diag(ρ, a2p, b2p, c2p), (27)

where ρ is the energy density and p the pressure. Assuming the equation of state

p = wρ, conservation of the stress energy tensor implies

ρ(t) =
µ2

(abc)w+1
, (28)
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where µ2 is a constant. Now, considering a Starobinsky quadratic potential70

V (ϕ) =
1

α

(
ϕ− 1

2

)2

, (29)

it can be shown that the equations for the scalar fields yielda

ψ̇ =
k0ϕ

v
, ϕ =

v2f(v)

6αk20 + v2
, (30)

in terms of the volume-like variable v ≡ abc and the function f(v) ≡ 1− 2ακ(3w−
1)ρ(v), while k0 is an integration constant. Regarding the metric field equations,

lengthy computations65 allow to rewrite the tt component in the form of a modified

Friedmann equation:

H2 ≡
(
v̇

3v

)2

=

κ
3

(
µ2
I

v2 + ρ
ϕ +

µ2
AN

ϕ2v2

)
+ V (ϕ)

6ϕ(
1 + 3v

2
d
dv lnϕ

)2 , (31)

where µ2
A and µ2

I are constants, representing the anisotropy density parameter and

the energy density parameter of the Immirzi field, respectively. We note that the

r.h.s is a rational function of the volume alone.

In the following we will take into account dust and radiation as matter contri-

butions, specified by the choices w = 0, µ = µD and w = 1/3, µ = µR in (28),

respectively. Then, bouncing solutions can be derived for α < 0 integrating Eq. (31)

for v(t), which then yields the scalar fields behavior via (30).

4.1. Vacuum case

It is convenient to first focus on the vacuum case, where f(v) = 1 and µD = µR = 0.

In this case we found the big bounce in the volume variable depicted in Fig. 1, where

also the behavior of each scale factor is shown. We note that the volume is affected

by a future finite-time singularity71,72 where the Hubble function diverges, while

the scale factors are always finite and nonvanishing. Such singular points will be

carefully investigated in the next section studying the geodesic completeness and

scalar perturbations across them. Here we just note that, in general, quantum effects

of particle creation73–76 can produce additional effective terms in the Friedman

equation, able to regularize singularities of the Hubble function.

Finally, the scalar fields behaviour is shown in Fig. 2 where the field ϕ asymptot-

ically reaches unity as t→ ∞, while the Immirzi field relaxes to a constant Immirzi

parameter.

4.2. Radiation and dust

The above analysis can be extended to the non vacuum case, including the energy

density of radiation and dust. A first difference concerns the late time region, since

aA dot denotes derivatives with respect to time.
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Fig. 1. Numerical solutions for α = −5/3, µI =
√
3, µA = 0.2µI as a function of t/tPl. Dotted and

dashed lines represent where bounce and future time singularity happen, respectively. The bounce
is centered at the origin of time for convenience, and the values of the parameters are chosen in

order to yield graphs that display features in a clear fashion. (a) Universe volume normalised to

vB . (b) Scale factors.

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

Fig. 2. Scalaron ϕ and Immirzi field derivative ψ̇ for α = −5/3, µI =
√
3, µA = 0.2µI as a

function of t/tPl.

both radiation and dust are able to provide an isotropization mechanism for the

universe, as is apparent studying the anisotropy degree

A(t) =

(
H2

A +H2
B +H2

C

)
3H2

− 1, (32)

whose behavior is shown in Fig. 3. Regarding the universe in its early phase, instead,

two different scenarios may occur, depending on the value of the parameter α. If

ᾱ < α < 0, where ᾱ = −2µ2
I/µ

4
D, the solutions are qualitatively equivalent to the

vacuum case. If ᾱ > α, instead, we still obtain a bouncing behavior for the volume

(See Fig. 4), which however is now devoid of singularities. However, now the scale

factors either diverge or vanish at some critical time tc.

5. Physical implications of curvature divergences

As described in the previous section there are two classes of solutions, characterized

by a singularity in the Hubble function and non vanishing and finite scale factors
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Fig. 3. Asymptotic behavior of the anisotropy degree A as a function of t/tPl after the finite

time singularity for various values of µR, µD and α = −5/3, µI =
√
3, µA = 0.2µI .
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Fig. 4. Numerical solutions as a function of t/tPl for µI = 0.057, µA = 2.4, µD = 0.365,
µR = 1.56 and α = −8.42 < ᾱ. The dashed lines represent where the scalaron vanishes. (a)

Volume normalised to vB , ϕ and derivative of the Immirzi field. (b) Scale factors.

(Fig. 1) or with regular Hubble function but vanishing or divergent scale factors

(Fig. 4). In this section we will analyse such singularities studying the behavior of

null geodesics and of scalar perturbations near the critical time tc, at which the

singularity is located.

Regarding null geodesics with tangent vector uα = dxα/ds, it can be shown that

they admit a first integral of the form77,78

x′ =
ka
a2
, y′ =

kb
b2
, z′ =

kc
c2
, t′ =

(
k2a
a2

+
k2b
b2

+
k2c
c2

)1/2

+ C0, (33)

where prime denotes derivative with respect to the affine parameter s and ka, kb, kc
and C0 are integration constants. It follows that if a(t), b(t), and c(t) are continuous

and non-vanishing, as in Fig. 1, the tangent vector to the geodesics will be unique

and well defined. Therefore, such cases are geodesically complete, a result that holds

both in the anisotropic and in the isotropic case.79

In the other class of solutions (Fig. 4), instead, we see that the volume remains

finite despite the vanishing/divergence of some scale factors. The divergence of

individual scale factors does not affect the geodesics, but the vanishing of some of
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them may spoil the continuity and lead to the impossibility of a unique extension

across tc. Indeed, let us consider the case in which one scale factor vanishes at some

affine parameter sc. In particular, suppose that

a(s) = a0(s− sc)
γ , (34)

with γ > 0. Then, integrating the relevant equations yields

x(s) = xc +
ka(s− sc)

1−2γ

a20(1− 2γ)
, (35)

t(s) = tc + C0(s− sc) +
ka(s− sc)

1−γ

a0(1− γ)
, (36)

which are smooth if 0 < γ < 1/2 and 0 < γ < 1, respectively. Note that if 1/2 < γ <

1, then x(s)
s→sc−−−→ ±∞, which would imply reaching infinity in finite coordinate

time. Conversely, if 0 < γ < 1/2, then the geodesic path will span the range {t, x} ∈
(−∞,∞), and the geodesics would be complete, despite the vanishing of some scale

factors. However, this result is dependent on how rapidly the zero is reached, i.e.

we have to determine the value of γ relative to the solutions in question. The

results are shown in Fig. 5 and prove that the solution approaches zero too rapidly,

corresponding to a value of γ larger than 1/2. We are thus forced to conclude that

the example shown in Fig. 4 does represent a geodesically incomplete space-time.

5.6 5.8 6.0 6.2 6.4
0.00

0.01

0.02

0.03

0.04

Fig. 5. Outcomes of null geodesics test for α < ᾱ. Scale factor a(s(t)) for different values of γ.

The dashed-black line represent the numerical solution a(t) reported in Fig. 4.

We now turn the attention to the behavior of scalar field perturbations. For a

scalar mode given by σk⃗(t, x⃗) = Θ(t)eik⃗·x⃗, one finds65 an equation of the form

Θ̈ + h(v)
v̇

v
Θ̇ +

(
k2x
a2

+
k2y
b2

+
k2z
c2

)
Θ = 0 , (37)

where h(v) represents some regular function of the volume v and k⃗ = (kx, ky, kz)

represents a set of constants. From this expression, we see that scalar modes are

sensible to the presence of the individual scale factors a, b, and c, and of the Hubble
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function H = v̇/3v. If the scalar factors do not vanish anywhere, then any potential

problems should come only from the term involving the Hubble function, which di-

verges in tc. In particular, in vacuum one finds65 the following approximate solution

near the singularity

Θ(t) ≈ Θc +
Θ̇c

2h̃2c
e∓2h̃c|t−tc|1/2

(
1± 2h̃c|t− tc|1/2

)
, (38)

with Θc, Θ̇c, h̃c constants, from which we see that scalar field perturbations remain

bounded around tc despite the divergence in the Hubble function. A similar result

holds in presence of dust and radiation, since

Θ ≈ Θc −
Θ̇c

32h̃4c
e∓4h̃c|t−tc|1/4

(
3± 12h̃c|t− tc|1/4

+24h̃2c |t− tc|1/2 ± 32h̃3c |t− tc|3/4
)
, (39)

which is easy to see to be again bounded. On the other hand, for a regular Hubble

function but vanishing scale factors, equation (37) describes a harmonic oscillator

with a time dependent frequency,

Θ̈(t) +
k2x
a2(t)

Θ(t) ≈ 0, (40)

which diverges as a(t) → 0. Therefore, for the values of a(t) obtained numerically

in the previous section neither geodesics nor scalar perturbations are well behaved.

6. Conclusion

We proposed a generalization of the Nieh-Yan term to metric-affine gravity, by in-

cluding an additional term featuring nonmetricity and inserting two parameters (λ1,

λ2), which allow to recover the projective invariance and the topological character,

otherwise lost in presence of nonmetricity. In particular, projective invariance can

be independently obtained by setting λ1 = λ2 = λ, whereas topologicity is only

guaranteed for λ = 1.

As an explicit example, we considered a model with Lagrangian F (R,NYgen),

which re-expressed in the Jordan frame features two scalar fields. We identified these

scalar degrees as the f(R)-like scalaron ϕ and the Immirzi field β and showed that

the latter acquires dynamical character and a potential term in a more natural way

than in previous treatments, where these features are introduced by hand in the

action. Depending on the values of λ1 and λ2, we found two different scalar tensor

theories. Models with λ1 ̸= λ2, are non-dynamical, and the scalar fields are frozen

to constant values in vacuum. In the projective invariant case (λ1 = λ2), instead,

the theory is endowed with one additional dynamical degree of freedom, the Immirzi

field, while the field ϕ is algebraically related to the latter via a modified structural

equation.
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Then, we considered in more detail the dynamical models, looking for cosmo-

logical solutions in Bianchi I spacetimes. We found numerical solutions in which

the big bang singularity is replaced by a big bounce scenario, in which the universe

volume undergoes a contraction up to a minimum value and then bounces back, re-

expanding in another branch. The scalaron and the Immirzi field reach a maximum

during the bounce and relax to constant values at later times, where the standard

LQG picture, with ϕ = 1 and a constant Immirzi parameter β = β0, is recovered.

Moreover, the inclusion of dust and radiation turns out to provide an isotropization

mechanism at late times, a feature that is absent in the vacuum case.

Such solutions are characterized by future finite time singularities after the

bounce, either in the Hubble function or in the individual scale factors. In the

former case, we showed that null geodesics are still well behaved and scalar per-

turbations bounded, which allows us to conclude that the solution is physically

acceptable. In the latter case, instead, the study of null geodesics shows that they

cannot be extended across the singular point, where also scalar perturbations grow

in time, leading us to regard such solutions as unphysical.
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16. B. Janssen and A. Jiménez-Cano, On the topological character of metric-affine Love-
lock Lagrangians in critical dimensions, Phys. Lett. B 798, p. 134996 (2019).

17. R. Percacci and E. Sezgin, New class of ghost- and tachyon-free metric affine gravities,
Phys. Rev. D 101, p. 084040 (2020).

18. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, England,
2004).

19. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University
Press, Cambridge, England, 2007).

20. A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57,
2244 (nov 1986).

21. A. Ashtekar, New Hamiltonian formulation of general relativity, Physical Review D
36, 1587 (sep 1987).

22. A. Ashtekar, J. D. Romano and R. S. Tate, New variables for gravity: Inclusion of
matter, Physical Review D 40, 2572 (oct 1989).

23. A. Ashtekar and C. J. Isham, Representations of the holonomy algebras of gravity and
nonAbelian gauge theories, Classical and Quantum Gravity 9, 1433 (jun 1992).

24. G. Date, R. K. Kaul and S. Sengupta, Topological interpretation of Barbero-Immirzi
parameter, Phys. Rev. D 79, p. 44008 (feb 2009).

25. H. T. Nieh and M. L. Yan, An identity in Riemann–Cartan geometry, Journal of
Mathematical Physics 23, 373 (1982).

26. H. T. Nieh, A TORSIONAL TOPOLOGICAL INVARIANT, International Journal
of Modern Physics A 22, 5237 (2007).

27. S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action,
Phys. Rev. D 53, 5966 (may 1996).

28. G. Immirzi, Real and complex connections for canonical gravity, Class. Quant. Grav.
14, L177 (1997).

29. G. Immirzi, Real and complex connections for canonical gravity, Classical and Quan-
tum Gravity 14, L177 (oct 1997).

30. C. Rovelli and T. Thiemann, The Immirzi parameter in quantum general relativity,
Phys. Rev. D 57, 1009 (1998).

31. V. Taveras and N. Yunes, Barbero-Immirzi parameter as a scalar field: K-inflation
from loop quantum gravity?, Phys. Rev. D 78, p. 64070 (sep 2008).

32. G. Calcagni and S. Mercuri, Barbero-Immirzi field in canonical formalism of pure
gravity, Phys. Rev. D 79, p. 84004 (apr 2009).

33. F. Bombacigno, F. Cianfrani and G. Montani, Big-bounce cosmology in the presence
of Immirzi field, Phys. Rev. D 94, p. 64021 (sep 2016).

34. O. J. Veraguth and C. H. Wang, Immirzi parameter without Immirzi ambiguity: Con-
formal loop quantization of scalar-tensor gravity, Physical Review D 96, p. 084011
(oct 2017).

35. C. H. Wang and D. P. Rodrigues, Closing the gaps in quantum space and time: Con-
formally augmented gauge structure of gravitation, Physical Review D 98, p. 124041
(dec 2018).

36. F. Bombacigno and G. Montani, Implications of the Holst term in a f(R) theory with
torsion, Phys. Rev. D 99, p. 64016 (mar 2019).

37. F. Bombacigno and G. Montani, f(R) gravity with torsion and the Immirzi field:
Signature for gravitational wave detection, Phys. Rev. D 97, p. 124066 (jun 2018).

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



574

38. C. H.-T. Wang and M. Stankiewicz, Quantization of time and the big bang via scale-
invariant loop gravity, Physics Letters B 800, p. 135106 (jan 2020).

39. D. Iosifidis and L. Ravera, Parity Violating Metric-Affine Gravity Theories (9 2020).
40. F. Bombacigno, S. Boudet and G. Montani, Generalized ashtekar variables for palatini

f(r) models, Nuclear Physics B 963, p. 115281 (2021).
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