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Abstract

In this dissertation we discuss about some progress on understanding in

super-conformal field theories and higher-spin theory.

We first study the basic properties of super-conformal symmetry in field

theory and their implications on physical quantity. We review theAdS/CFT

correspondence briefly and discuss the strong/weak nature.

Main part consist of three part. In terms of AdS/CFT correspondence,

we study the anomalous dimension of operators in N = 4 SYM with

large spin and R-charge in the symmetric representaion. Explicit calcu-

lation of energy spectrum of D-branes in terms of spin and charge is

performed.

Secondly, we study the infra-red finiteness of scattering amplitude in

ABJM theory. In terms of Kinishita-Lee-Nauenberg theorem, we calcu-

lated soft radiations and check the cancellations of leading order diver-

gence between loop corrections and soft radiations.

Finally asymptotic symmetry in super-symmetric higher-spin theory in

AdS3. We found that shsE(N |2, R) symmetry enhanced to the Super-

W∞ algebra.

keywords : Super-conformal theory, AdS/CFT, Anomalous dimen-

sion, Infra-red divergence, Asymptotic symmetry
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Super-conformal symmetry and
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Chapter 1

Introductions

A quantum field theory has been a successful framework of describing nature of fun-

damental forces in physics. After establishing the Quantum Electro-dynamics(QED)

which describes electro-magnetic interactions between elementary particles, Other

two fundamental forces - Weak and Strong interactions - unified in terms of Non-

abelian Yang-Mills theory. These three fundamental forces are summarized in the

theory called Standard Model and every experimental tests and discovery of Higgs

particles support its validity.

Meanwhile, there are still remained problems in theoretical physics. Gravity the-

ory which is the one of four fundamental forces in nature doesn’t have any quantum

mechanical descriptions yet. Any attempt to include gravity forces in quantum field

theory framework has been unsuccessful. String theory is the one of the candidate

for a consistent theory of quantum gravity.

Recently, duality between quantum field theory and gravity found in the string the-

ory framework. It relates gauge theory with super-conformal symmetry and gravity

theory in ten-dimensional curved space. Comprehensive studies has been made to un-

derstand the nature of each theory. Also explicit calculations are performed to check

the duality called AdS/CFT correspondence. Super-conformal symmetry plays im-

portant role in these works.
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Another issue is that because of confinement nature of strong forces, it is not easy

to study QCD theory quantitatively. Usual perturbative expansion is not possible,

so strong interaction phenomena in hadron energy scales has not solved yet. Super-

conformal field theory which is the gauge theory with additional symmetry can be a

simple toy model to overcome this difficulty. For example N = 4 Super Yang-Mills

theory has similar structure to QCD. Although theory is not same exactly, many

aspect of QCD can be obtained from this super-conformal theory.

Along this line, we discuss the super-conformal field theory in this thesis. We discuss

the general feature of super-conformal symmetry and AdS/CFT duality, we present

three independent progress in super-conformal theories and higher-spin theory.

In terms of AdS/CFT correspondence, we study the anomalous dimension of op-

erators in gauge theory. We focused on operators in symmetric representation with

large spin and R-charge. Using duality, we calculated the scaling dimension by con-

sidering energy spectrum of spinning branes in AdS5 × S5 space. We conclude that

logarithmic scaling which was found in perturbative computations still holds in non-

perturbative regions.

Next topic is the infra-red finiteness of scattering amplitude in three dimensional

super-conformal theory. It is Chern-Simons-matter theory with gauge group U(N)×

U(N). We review the general feature of IR divergences in terms of Kinishita-Lee-

Nauenberg theorem. Then we calculated soft radiations explicitly and check the

cancellations of leading order divergence between 2-loop corrections and soft radia-

tions in ABJM theory.

Finally we study the asymptotic symmetry in super-symmetric higher-spin theory

in AdS3. Asymptotic symmetry is the coordinate transformation which preserves

asymptotic boundary condition. We review the result of Brown-Henneaux original

derivation in pure gravity theory. And we extend to the super-symmetric theory in-

cluding higher-spin filds. We found asymptotic symmetry of super-symmetric higher-

spin theory is Super-W∞ algebra.
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This thesis is organized as follows. In section 2, we briefly discuss the general fea-

ture of super-conformal symmetry. we give the definition of conformal symmetry and

study its implications on field theory. We extend it to the super-conformal symmetry

and give two examples of super-conformal theory in four, three dimensions. In sec-

tion 3, we derive the AdS/CFT correspondence. Following the Maldacena’s original

argument, we study the strong/weak nature and AdS/CFT dictionary. In section 4,

we focus on calculations on anomalous dimension. We introduce the BMN limit and

correspondence between operators and spinning string(or branes). Explicit calcula-

tions of energy spectrum are performed. In section 5, we introduce the properties

of scattering amplitude and structure of IR divergence in loop corrections in ABJM

theory. From this we compute the IR divergence in soft emissions and verify the

cancellations in the leading order divergence. In section 6, we study the asymptotic

symmetry of higher-spin theory. We conclude the thesis by summarizing the results

in section 7.
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Chapter 2

(Super-)conformal field theory

In this section, we will review about basic properties of conformal field theories.

Conformal symmetry plays important role in quantum field theory- for example, in

the description of phase transitions in two-dimensional system and in string theory

which is conformal theory of two-dimensional world-sheets. It also takes important

role in the subject of AdS/CFT correspondence [15] or gauge/gravity duality which

is the one of the main theme in this thesis.

Conformal symmetries are global coordinate transformation preserving angle of

two vectors in spacetime. These transformations are represented by conformal group

which is isomorphic to rotational group in higher dimension. The group structure

is different according to the dimension of spacetime. For example in two dimension,

it has infinite number of generators while there are only finite generators in other

dimensions. In four dimensional theory which are relevant for particle physics, it has

15 generators.

Quantum field theory which have conformal symmetry can be roughly under-

stood as it has no particular energy scale. Classically, this is achieved by writing

the action of the theory with only dimensionless parameters. Classical field theory

with dimensionless parameter like massless φ4 theory or massless Quantum chromo-

dynamics can be conformal theory. But in quantum theory, those conformal sym-

metries of lagrangian are broken by quantum corrections. It is because of ultraviolet
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divergence which introduces some energy scale and running coupling constant by

renormalization procedure. To maintain the conformal symmetry in quantum the-

ory, we need more constraints. With some other symmetry like super-symmetry, we

can construct theories which conformal symmetries are preserved even at quantum

level. In this section we will review two examples of those conformal theories - N = 4

super Yang-Mills theory and ABJM theory. Each are in four, three dimension. These

two theories are also important in the studies of AdS/CFT duality.

2.1 (Super-)conformal symmetry

To study the conformal field theories, we first review about conformal symmetry,

their algebra structure and field representations. These are naturally extended to

supersymmetric version which forms much larger group - super conformal group.

2.1.1 Definition of conformal transformaions

Conformal transformation are defined in the following way. Consider d dimensional

spacetime with metric gµν . Under coordinate transformation, conformal transforma-

tion leaves the metric up to a local scaling.

xµ → x′µ, g′µν(x′) = Λ(x)gµν(x) (2.1)

Geometrical meaning of above expressions is that angle of two vector are preserved.

We can easily see that in special case Λ(x) = 1, it is nothing but the usual Poincaré

transformations which preserve the angles trivially. So conformal group has Poincaré

group as a subgroup. We can find the other transformations by considering infinites-

imal transformation.

xµ → x′µ = xµ + εµ(x) (2.2)

The metric changes as g′µν = gµν − (∂µεν + ∂νεµ). So definition of conformal trans-

formation requires

∂µεν + ∂νεµ = F (x)gµν (2.3)
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where F (x) is arbitrary function related to Λ(x). By adding another derivative,

taking permutations of indices and taking linear combinations of those equations,

we can obtain one of the constraint equation

2∂2εµ = (2− d)∂µF (2.4)

We can see that dimension 2 is special in the above constraint equation. In d=2,

any holomorphic functions can be solutions of generator , so it has infinite number

of symmetries. These properties are important in string theory, but in this section

we will focus on dimension other than 2. By deriving several conditions of εµ from

above expressions, we can solve the most general solution of εµ in d > 2 dimension

εµ = aµ +mµνx
ν + λxµ + 2(bνx

ν)xµ − bµx2 (2.5)

There are four kinds of parameters each represent different transformations. Poincaré

transformation which are subgroup of conformal group is represented by parameters

aµ,mµν . Each corresponds translation and rotations. λ and bµ correspond to dilation

and special conformal transformation, respectively. In four dimensional spacetime

where we are living in, conformal transformation has 15 generators - 4 translations,

6 rotations, 1 dilatation and 4 special conformal transforms.

The finite transformation can be obtained by exponentiate the above infinitesimal

transformations.

x′µ = xµ + aµ -Translation

x′µ = λxµ -Rotation

x′µ = Mµνx
ν -Dilatation

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
-Special conformal transform (2.6)

For the comment, the last expression can be understood with the notion of inversion

transformation xµ → xµ

x2 . The complicate expression of special conformal trans-

form can be made of inversion followed by translation and another inversion again.

Inversion transformation is not connected to identity transform, so it can not be

represented by infinitesimal transformations.
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To study the algebra structure of conformal group, let us derive the generators

of conformal transformation. We define the generators for the infinitesimal transfor-

mation as follows

x′α = (1 + iaµPµ + imµνMµν + iλD + ibµKµ)xα (2.7)

Then from the solution of εµ in equation(2.5), we can easily obtain the expressions

of generators of conformal group

Pµ = −i∂µ

Mµν = i(xµ∂ν − xν∂µ)

D = −ixµ∂µ

Kµ = −i(2xµxν∂ν − x2∂µ) (2.8)

These generator obey the commutation relations which define the conformal group.

The conformal algebra is written as follows [7]

[Pµ, Pν ] = 0 , [Mµν , Pρ] = i(ηνρPµ − ηµρPν) ,

[Mµν ,Mρσ] = i(−ηµσMνρ + ηνσMµρ + ηµρMνσ − ηνρMµσ) , (2.9)

[D,Pµ] = iPµ , [Kρ,Mµν ] = i(ηρµKν − ηρνKµ) ,

[D,Kµ] = −iKµ , [Kµ, Pν ] = 2i(ηµνD −Mµν) . (2.10)

Three relations in equation (2.9) are usual commutation relations of Poincaré

algebra and other 4 relations in equation (2.10) are algebras of Dilatation and special

conformal transformation.

To study further the structure of conformal group, it is better to combine the

generators into another form JMN ,

Jµν = Mµν J−1,0 = D (2.11)

J−1,µ =
1

2
(Pµ −Kµ) J0,µ =

1

2
(Pµ +Kµ) (2.12)
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where JMN = −JNM and M,N ∈ −1, 0, 1, ....d. So The commutation relations of

these new generators can be summarized in simple form,

[JAB, JCD] = i(ηADJBC + ηBCJAD − ηACJBD − ηBDJAC) (2.13)

with diagonal metric in d + 2 dimension ηAB =diag(-1,1,1,..1,-1). Above commuta-

tion relations are algebra of group SO(d, 2). This shows that conformal group in d

dimension is isomorphic to rotational group SO(d,2) in d+2 dimension. SO(d,2) has

1
2(d+2)(d+1) generators which are 15 generators in 4 dimensions. This isomorphism

will be used in the study of gauge/gravity duality in the next chapter.

2.1.2 Field representations

So far we studied the definition of conformal symmetry and its action on coordi-

nates. In field theory, we also have to define its action on fields so we can say the

field theory is invariant under conformal symmetry.

Consider fundamental field φI(x) with conformal weight ∆ and Lorentz index I.

Acting of conformal generators to field gives

PµφI = ∂µφI (2.14)

MµνφI = (xµ∂ν − xν∂µ)φI + (Sµν)JI φJ (2.15)

DµφI = xν∂νφI + ∆φI (2.16)

KµνφI = (2xµxν∂ν − x2∂µ)φI + 2xµ∆φI + 2xν(Sµν)JI φJ (2.17)

where Sµν is a spin generators. First 2 lines are familiar transformation of fields un-

der Poincaré transformations and next 2 lines are new expressions under Dilatation

and special conformal transformations.

In principle we can obtain the variation of fields under finite transformation.

But for simplicity, we shall give the result for scalar field under finite conformal
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transformation. Under a conformal transformation x→ x′ ,

φ(x)→ φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

φ(x) (2.18)

The Jacobian factor is related with scale factor Λ(x) as∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)−d/2 (2.19)

The field which transformed like above expressions called primary field.

Variation of primary fields under conformal transformation is encoded in confor-

mal weight ∆. Usually, we can make the theory conformal if it has only dimensionless

parameters and conformal weight is equal to the mass dimension of fields. For ex-

ample, the usual massless φ4 theory is invariant under conformal transformation if

we choose the conformal weight ∆ = 1. But these conformal symmetry holds in only

classical level and it start to be broken when we consider quantum corrections.

With the field representation of conformal symmetry we reviewed above, let us

see the implication of conformal symmetries for correlation functions. In conformal

theory, conformal covariance of primary fields give some restrictions on expression

of correlation functions. We will see the implication on two, three, and four point

functions respectively in the simple scalar fields case.

Two-point functions Consider two-point function of scalar primary operator

φ1, φ2 with conformal weight ∆1,∆2 respectively. Under conformal transformation,

their two-point correlation function is transformed

〈φ1(x1), φ2(x2)〉 =

∣∣∣∣∂x′1∂x1

∣∣∣∣∆1/d
∣∣∣∣∂x′2∂x2

∣∣∣∣∆2/d

〈φ1(x′1), φ2(x′2)〉 (2.20)

First if we specialize the transformation to a dilatation x→ λx ,

〈φ1(x1), φ2(x2)〉 = λ(∆1+∆2)〈φ1(λx1), φ2(λx2)〉 (2.21)

Second, from translation and rotation invariance, we can require

〈φ1(x1), φ2(x2)〉 = f((x1 − x2)2) (2.22)
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From above two conditions, we can see that

〈φ1(x1), φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
(2.23)

with unconstrained coefficient C12. The last transformation remained is special con-

formal transformation. Under special conformal transformation, distance between

two points is transformed as,

|x1 − x2| →
|x1 − x2|

(1− 2b · x1 + b2x2
1)1/2(1− 2b · x1 + b2x2

1)1/2
(2.24)

which implies,

C12

|x1 − x2|∆1+∆2
=

(γ1γ2)
∆1+∆2

2

γ∆1
1 γ∆2

2

C12

|x1 − x2|∆1+∆2
(2.25)

where γi = (1− 2b · xi + b2x2
i ). So we can arrive the result ∆1 = ∆2 that only fields

which have same conformal dimension is correlated. In conclusion, the functional

form of two point function of primary fields is completely fixed up to overall constant.

〈φ1(x1), φ2(x2)〉 =
C12

|x1 − x2|2∆1
(2.26)

Three-point functions A similar analysis can be performed in three-point func-

tions. Just as previous case, a translation and rotation transformation make the

functional form as function of Lorentz invariant distances x2
ij = (xi − xj)

2. And

covariance under dilatation transform implies

〈φ1(x1), φ2(x2), φ3(x3)〉 =
C123

xa12x
b
23x

c
13

(2.27)

with coefficient a,b,c such that

a+ b+ c = ∆1 + ∆2 + ∆3 (2.28)

Under special conformal transformation, eq (2.27) becomes

(γ1γ2)a/2(γ2γ3)b/2(γ1γ3)c/2

γ∆1
1 γ∆2

2 γ∆3
3

C123

xa12x
b
23x

c
13

(2.29)
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which leads to

a+ c = 2∆1, a+ b = 2∆2, b+ c = 2∆3 (2.30)

The solution of above equations are

a = ∆1 + ∆2 −∆3 (2.31)

b = ∆2 + ∆3 −∆1 (2.32)

c = ∆3 + ∆1 −∆2 (2.33)

So we arrived to conclusion that conformal symmetry also constrain the three-point

function completely up to coefficient as

〈φ1(x1), φ2(x2), φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
13

(2.34)

Four-point functions So far conformal symmetry determines the functional form

of two, three point function completely up to coefficient. But from four point corre-

lation function, it stops. This property comes from the possibility of construction of

conformal invariant cross-ratios,

x2
ijx

2
k`

x2
ikx

2
j`

(2.35)

which gives two independent cross-ratios in four point case.

x2
12x

2
34

x2
13x

2
24

,
x2

14x
2
23

x2
13x

2
24

(2.36)

Any function of these two cross-ratios are conformal invariant and cannot be re-

stricted further. So the general form of four-point correlation function can be

〈φ1(x1), φ2(x2), φ3(x3), φ4(x4)〉 = f

(
x2

12x
2
34

x2
13x

2
24

,
x2

14x
2
23

x2
13x

2
24

)∏
x

∆/3−∆i∆j

ij (2.37)

with ∆ =
∑

∆i.

As we have seen so far, in conformal theory, there is restrictions on correlation

functions. It is one aspect that conformal symmetry constrain the structure of the

theory. We can also find restrictions on correlation function made of fields other than

scalars. We will not list particular example here but one can see some result in [7]
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2.1.3 Super-symmetric extension

One can extend the ordinary Poincaré group by including fermionic generators which

satisfies anti-commutation relations

{Qα, Qα̇} = −2σµαα̇Pµ (2.38)

The fermionic generators Qα, Qα̇ is transformed under (1
2 , 0),(0, 1

2) representation

respectively and have roles of making connections between bosonic and fermionic

fields. With these fermionic generators, new algebra between bosonic and fermionic

generators arises and makes the larger group, Super-Poincaré group.

For the application in the following chapters, let us concentrate on N = 4 super-

conformal group. This is the super-conformal symmetry of gauge theory in four

dimension which is called N = 4 Super Yang-Mills theory. This theory plays the

role of basic playground in the next two chapters. This theory is important because

it can be considered as simplified version of Quantum chromo-dynamics which in

not easy to solve directly. And it is also important as one of the concrete example

of AdS/CFT duality which is the main theme in the next chapter.

In the N = 4 super-conformal group, there are sixteen super-charges and sixteen

super-conformal charges.

Qaα, Qα̇a, Sαa, S
a
α̇, (α, α̇ = 1, 2, a = 1, 2, 3, 4) (2.39)

The N = 4 super-conformal algebra which combine previous conformal algebra and
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super-symmetry algebra is written in the followings. [8]

[Kµ, Qaα] = (σµ)αβ̇ε
β̇γ̇S̄aγ̇ , [Kµ, Q̄α̇a] = (σµ)βα̇ε

βγSγa , (2.40)

[Pµ, Sαa] = (σµ)αβ̇ε
β̇γ̇Q̄γ̇a , [Pµ, S̄aα̇] = (σµ)βα̇ε

βγQaγ , (2.41)

[Lµν , Qaα] = −i (σµν)αβ ε
βγQaγ , [Lµν , Q̄α̇a] = −i (σ̄µν)α̇β̇ ε

β̇γ̇Q̄γ̇a , (2.42)

[Lµν , Sαa] = −i (σµν)αβ ε
βγSγa , [Lµν , S̄aα̇] = −i (σ̄µν)α̇β̇ ε

β̇γ̇S̄aγ̇ , (2.43)

[D,Qaα] = − i
2
Qaα , [D, Q̄α̇a] = − i

2
Q̄α̇a , (2.44)

[D,Sαa] = + i
2
Sαa , [D, S̄aα̇] = + i

2
S̄aα̇ , (2.45)

{Qaα, Q̄β̇b} = (σµ)αβ̇δ
a
bPµ , {Sαa, S̄bβ̇} = (σµ)αβ̇δa

bKµ , (2.46)

{Qaα, Sβb} = (σij)abεαβRij + i(σµν)αβδ
a
bLµν − iεαβδabD , (2.47)

{Q̄α̇a, S̄bβ̇} = −(σij)a
bεα̇β̇Rij + i(σ̄µν)α̇β̇δa

bLµν − iεα̇β̇δa
bD . (2.48)

where the Pauli matrices are defines as

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 , [σi, σj ] = iεijkσ
k(2.49)

σµ = (−1, σi), σµ = (−1,−σi), σµν =
1

4
σ[µσν], σµν =

1

4
σ[µσν](2.50)

All other commutation or anti-commutation relations are vanish. In the commuta-

tion relations between Qaα and Sbβ , new bosonic generators Rij appear. These are

SO(6) R-symmetry generators which means it has extended super-symmetry N = 4.

This R-symmetry is used to label the local operators in terms of corresponding R

charges.

The bosonic part of super-conformal symmetry are SO(2, 4) ≈ SU(2, 2) which is

usual conformal symmetry and SO(6) ≈ SU(4) which is R-symmetry. These makes

the full super-conformal group SU(2, 2|4). In matrix representation, this can be

written schematically as  Pµ, Lµν , D,Kµ Qaα, S
a
α̇

Qα̇a, Sαa Rij

 (2.51)
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Before finish this subsection, let us consider chiral primary operators which also

called BPS operators. If some operator satisfy the relations

[Qaα,O] = 0 for some α and a, (2.52)

[Sαa,O] = 0 for all α and a (2.53)

we call this operator as chiral primary operator. According to the super-conformal

algebra, we can see that there is nice property on conformal dimension of this oper-

ator. Consider scalar operator in zero point which is chiral primary,

[{Qaα, Sβb},O(0)] = [(σij)abεαβRij + i(σµν)αβδ
a
bLµν − iεαβδabD,O(0)] (2.54)

Because the definition of chiral primary operators, left hand side is zero. Then be-

cause O(0) is a scalar, [Lµν ,O(0)] = 0. So scaling dimension of chiral primary

operator is directly determined from it R-symmetry charges. Because they do not

receive quantum corrections, their scaling dimension is just the same as their classical

values.

2.2 N = 4 Super Yang-Mills theory in 4 dimension

So far we have been discussed about (super-)conformal symmetry of field theories.

As a example of conformal theory which is still invariant at quantum level, let us

introduce two maximally super-symmetric gauge theories. First one we will consider

in this section is maximally super-symmetric Yang-Mills theory in four dimension

which called N = 4 Super Yang-Mills theory.

The natural way to derive N = 4 Super Yang-Mills theory is starting from N = 1

SYM in ten dimensions and taking dimensional reduction [6]. The Lagrangian of

N = 1 SYM in ten dimensions is

L = Tr

(
−1

4
FMNF

MN +
ig

2
ΨΓNDNΨ

)
(2.55)
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where the index M,N run from 0 to 9. The FMN is field strength of ten-dimensional

gauge field AM and ΓM ,Ψ are Dirac matrices, Majorana-Weyl fermion respectively.

In dimensional reduction to four dimension, we split ten dimensional space into

four dimensional Minkowski space and six dimensional Euclidean space. We write

ten dimensional indices M,N into four dimensional indices µ and six dimensional

one m. Then one can write the ten-dimensional Γ matrices in terms of four and six

dimensional ones,

Γµ = γµ ⊗ 1, µ = 0, .., 3 (2.56)

Γm+3 = γ5 ⊗ Γ̃m, m = 1, .., 6 (2.57)

where γµ and γ5 are ordinary four dimensional gamma matrices and Γ̃m are Dirac

matrices in six dimensional Euclidean space,

Γ̃m =

 0 σ̃m

σ̃−1
m 0

 (2.58)

Now we require that fields depend only on four dimensions, i.e.

∂mAN = 0 (2.59)

∂mΨ = 0 m = 4, 5, .., 9 (2.60)

In four dimensional point of view, six dimensional component of gauge field behaves

as scalars while other components are remained as vectors.

Aµ = AM=µ µ = 0, .., 3 (2.61)

φm = A3+m m = 1, .., 6 (2.62)

With these decompositions and reduction, we obtain four dimensional action which

is N = 4 SYM. Action for this in written as [7]

L = Tr

(
−1

4
F 2
µν + iλiσ

µDµλ
i
+

1

2
(Dµφ)2 + igλi[λj , φ

ij ] + igλ
i
[λ
j
, φij ] +

g2

4
[φij , φk`][φ

ij , φk`]

)
(2.63)
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N = 4 SYM is a Yang-Mills theory in four-dimension which is similar to QCD.

Because of asymptotic freedom and confinement, it is not easy to analyze QCD

quantitatively. By studying conformal theory in four-dimension, we can get many

insight about the general behavior of QCD. This theory is also important as a

concrete realization of AdS/CFT correspondence. We will study this aspect in the

next chapter.

2.3 N = 6 Chern-Simons matter theory in 3 dimension

Another example of super-conformal theory isN = 6 Chern-Simons matter theory in

3 dimension which called ABJM theory [68]. It consists of two copies of Chern-Simons

action which coupled to scalars and fermion fields. Its gauge group is U(N)×U(N).

Action for ABJM theory is

S = SCS(Aµ)− SCS(Aµ) + Smatter + Sint (2.64)

SCS =

∫
Tr

(
k

4π
A ∧ dA+

2i

3
A ∧A ∧A

)
(2.65)

Smatter =

∫
Tr
(
DµφADµφA + iψAσ

µDµψ
A
)

(2.66)

Sint contains interactions between matters and gauge fields. Details of expression

for this can be found in [68].

Because the action for gauge field is Chern-Simons theory, degrees of freedom of

gauge fields are zero. They only participate as a interaction with matter fields. The

representations of each fields under gauge group U(N)× U(N) is the followings.

Aµ : (adj, 1) Aµ : (1, adj) (2.67)

φA : (N,N ; 4) φA : (N,N, 4) (2.68)

ψA : (N,N ; 4) ψ
A

: (N,N, 4) (2.69)

Each matter fields is in bi-fundamental representation under gauge group. To make

a gauge invariant object, every fields and anti-fields come in alternate way. These
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properties constrains the structure of scattering amplitude. We will come to this

point in the next section.

Like N = 4 SYM theory, ABJM theory is also a example of AdS/CFT correspon-

dence. In this AdS4/CFT3 case, dual gravity is ΠA string theory living in AdS4×CP3

and ABJM theory is world-volume theory of M2-branes. To study further, let us re-

view about AdS/CFT briefly.
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Chapter 3

Gauge gravity duality

In this chapter we briefly review about the gauge-gravity duality. This has been one

of the main theme in theoretical physics for last fifteen years. Gauge-gravity dual-

ity implies correspondence between two different theory. So studying the structure

of each theories and reveal their correspondence relation will improves our under-

standing of quantum field theory and quantum gravity theory. Meanwhile because

the physical observable in two different theories is related each other, gauge-gravity

duality is important not only in pure theoretical point of view but also in practical

point of view. If some physical quantity is hard to calculate in one theory, it could

be obtained in a alternative way from a dual theory.

Gauge-gravity duality is also known as holographic theory because it relates gauge

theory with gravity in higher dimension. There had been many argument about this

duality [1, 2] and concrete example was found by J.Maldacena. We will review his

derivation of AdS/CFT correspondence and briefly discuss about implication of it.

3.1 Large N expansion

Before we derive the AdS/CFT correspondence, let us review t’hooft large N planar

limit. Consider Yang-Mills theory with gauge group SU(N). Together with coupling

parameter gYM , we take N as a free parameter too. If we calculate the Feynman
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diagram in perturbative expansion, we can divide the diagrams according to the two

parameters gYM , N . Draw the Feynman diagram in the double line notation and

consider it two-dimensional surfaces. Then we can see any Feynman diagram can be

organized in terms of their topological nature. Generally, diagrams with vertices V,

propagators E and loops F has dependence on parameters as

(g2
YMN)E−VNF−E+V (3.1)

where F − E + V = 2− 2g with genus number g. Now, in the two parameter space

gYM , N we take the limit

N →∞, g2
YMN = λ = fixed (3.2)

This is called Large N limit or Planar limit [5]. In planer limit, we organize it

in the double expansion with g2
YMN and 1

N . We can easily check that 1
N expansion

divide the diagram according to their topological property. The leading order in 1
N

expansion can be seen a sphere and next sub-leading order becomes torus and so

on. This implies double expansion of physical qunatity.

O(λ,
1

N
) =

∑
g=0

(
1

N

)2g−2∑
n

λnOg,n (3.3)

In the following chapters we will use this double expansion in large-N limit. In the

leading order of N, we can concentrate on only planar diagrams. This makes the

perturbative calculation simple.

3.2 AdS/CFT correspondence

Here we introduce the original derivation ofAdS/CFT correspondence by J.Maldacena

[15]. From the two different point of view of D-brane dynamics, we briefly show how

correspondence arises. For detailed review, see [4].

Consider D3-branes in type ΠB string theory in ten dimensional flat space time. We

set the N D3-branes stacked together and choose a coordinate system as

x0, x1, x2, x3 : coordinate of coincident D3-branes, xI = 0 (I = 4, 5, ..9) (3.4)

Now we analyze these D3-branes in two different point of view.
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Low-energy dynamic of D-branes

In this setup, we need to consider open strings attached to D3-branes and closed

strings living in ten dimensions. So this physical system can be divided into three

part, brane dynamics including open strings, closed string propagating ten dimen-

sional flat spacetime and interaction between brane and closed strings. Open string

mode contains gauge field Aµ, fermionψ, scalar Φ and higher massive modes. Closed

string also contains graviton gµν , dilaton φ and two, four form fields Bµν , Cµν , Cµνρσ

and higher modes. Now consider low-energy and decoupling limit.

α′ → 0, gs = fixed (3.5)

In this limit every massive excitation modes get away. Open string on D3-branes

becomes N = 4 SYM theory and closed string in the bulk becomes super-gravity.

Moreover because

Sint ∼ gsα′2 (3.6)

interaction between open and closed string switched off. Thus we have two decoupled

system in this limit.

• N = 4 Super Yang-Mills theory in 4 dimensions

• Free super-gravity in ten dimension

Black branes geometry

N coincident D3-branes can be seen in a geometric point of view. Like black-hole

system, N d3-Dranes make the geometry curved. In this view point we can replace

the D3-branes with curved geometry solution called black 3-brane geometry.

ds2 = H−
1
2 (r)dx2

4 +H
1
2 (r)(dr2 + r2dΩ2

5) (3.7)

with the harmonic function

H(r) = 1 +
R4

r4
, R4 = 4πgsα

′2N (3.8)
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In the same limit (3.5) we can see that two different region r � R, r � R is

decoupled. This can be understood by considering dilaton field going from r � R to

r � R region. Due to the redshift, any finite energy cannot reach to r � R region.

In r � R region, geometry becomes AdS5 × S5

ds2 →
(
r2

R2
dx2

4 +
R2

r2
dr2

)
+R2dΩ2

5 (3.9)

and in r � R region, geometry becomes flat space. So we have also two decoupled

system in the limit.

• Type ΠB superstring theory in AdS5 × S5

• Free super-gravity in ten dimension

Now by comparing the result of two different view point, we can arrive to the con-

clusion that two theories, N = 4 Super Yang-Mills theory and Type PiB superstring

theory in AdS5 × S5 are same. This is the AdS5/CFT4 correspondence.

3.3 Implications of Duality

Let us study more about the duality and see what is the implication of duality we

derived.

First we can compare the symmetry structure of both theory. In N = 4 SYM

theory, there are two kinds of bosonic symmetry

SO(2, 4) : conformal symmetry in 4d, SO(6) : R-symmetry (3.10)

These bosonic symmetries correspond isometry group of AdS5 × S5 spacetime.

SO(2, 4) : isometry group of AdS5, SO(6) : isometry of S5 (3.11)

Beside this bosonic symmetry we can check the correspondence of fermionic gener-

ators and the full global symmetry PSU(2, 2|4).
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Now let us see how the parameters of both theories are identified. According to

the black p-brane solution, we can get the relation

4πgs = g2
YM ,

R4

α′2
= g2

YMN = λ (3.12)

In large N planar limit(3.2), N = 4 SYM theory has perturbative expansion with

parameter is g2
YMN = λ . On the other hand, dual string theory has α′ expansion

which is in inverse relation with λ(3.12). If we keep the parpameter λ small, we can

calculate perturbatively in field theory side, but cannot do it in gravity side, and

vice versa. Because of this property, AdS/CFT duality is also called strong/weak

duality.

This strong/weak nature of duality makes it difficult to test the duality. Because we

cannot access to the both perturbative region, it is hard to calculate the physical

quantity in both theory simultaneously. There has been many progress to overcome

this difficulties. We will study about this in detail in the next chapter and calculate

one physical quantity-anomalous dimension- explicitly to compare with dual theory

calculations.

29



Part II

Studies on Super-Conformal

field theories
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Chapter 4

Anomalous dimensions of N = 4

SYM

So far, we studied the basic properties of super-conformal theories and general argu-

ment about gauge gravity duality. After discovery of concrete example of holographic

duality - the correspondence between N = 4 Super Yang-Mills theory in 4 dimension

and type IIB string theory in AdS5 × S5 , lots of explicit tests were delivered. One

way to check the correspondence is computing physical quantities explicitly on both

side and see if they agree each other. One of the object which is used to test the

duality is anomalous dimension of composite operators in gauge theory. This is main

theme of this chapter.

Let us see what kind of physical quantity in string side should be computed to

compare with the anomalous dimension in gauge theory. According to the AdS/CFT

dictionary, local operators in N = 4 SYM correspond to string states. The AdS5

space where the string states live in can be written in global coordinate system,

ds2 = R2(dρ2 − cosh2 ρ dt2 + sinh2 ρ dΩ3) (4.1)

with ρ ∈ [0,∞], t ∈ [−∞,∞]. The gauge theory which is dual to string theory is

supposed to live in the boundary space of AdS5. This correspond to space located

at ρ→∞. By conformal mapping, we can see that this boundary space is equal to
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R× S3,

sinh ρ = tanα, α ∈ [0,
π

2
] (4.2)

ds2 =
R2

cos2 α
(dα2 − dt2 + sin2 αdΩ3) (4.3)

which corresponds to α → π
2 in this coordinate system. So the boundary theory

which lives in R× S3 is mapped to N = 4 SYM in R4. This is done by usual radial

quantization. In this conformal mapping, translation in time direction is mapped

to dilatation generator in R4. In other word, Energy of string state correspond to

conformal dimension of local operator.

E(
R4

α′2
, gs) of string = ∆(λ,

λ

N
) of local operator (4.4)

Next let us consider other quantum numbers in N = 4 SYM. As we discussed

earlier, underlying symmetry of N = 4 SYM is SU(2, 2|4) whose bosonic subgroup

is SO(2, 4)×SO(6). So any local operators in gauge theory are labeled by six Cartan

generators of SO(2, 4)× SO(6).

( ∆, S1, S2, J1, J2, J3 ) (4.5)

where Si are spins of Lorentz generators and Ji are R-charges of bosonic SO(6)

symmetries. From this we can guess which string state correspond to given local

operator. Because the group SO(2, 4) which is conformal symmetry in gauge theory

is realized as isometry group of AdS5 space in string theory, operators with Lorentz

spin Si is related to string state rotating in AdS5 space. And by the fact that R

symmetry SO(6) is isometry group of S5, operators with R-charge Ji correspond to

sting state with spin Ji in S5 space.

The strategy is now find the string state with given quantum numbers and com-

pute its energy E.

E(S1, S2, J1, J2, J3) (4.6)
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Then we compare it with the conformal dimension of operators in gauge theory side

with same quantum charges.

∆(S1, S2, J1, J2, J3) (4.7)

Unfortunately, it is not easy to compare directly and check the relation (4) in

general. As we have seen before, strong/weak nature of duality makes it difficult to

check because we can not maintain both theory in perturbative regime. In gauge

theory side, we can obtain perturbative expansion of conformal dimension of local

operator in small-λ limit,

∆(λ) = ∆0 + λ∆1 + λ2∆2 + λ3∆3 . . . (4.8)

while in string theory side, energy of string state can be expanded in large-λ limit.

E(λ) =
√
λE0 + E1 +

1√
λ
E2 +

1
√
λ

2E3 . . . (4.9)

So unless we can calculate the all orders of perturbations and sum up to get exact

result, we can not compare both quantity in ordinary perturbation expansions.

To overcome this problem we consider new expansion parameter and take some

particular limit. This new region of parameter space was discovered by Berenstein,

Maldacena and Nastase [13] in 2002. They consider R-charge J as a new expansion

parameter and take it very large with certain conditions.

J,N →∞, λ̃ ≡ λ

J2
: fixed,

N

J2
: fixed (4.10)

With this BMN limit, even in the large-λ region which was not good perturbative

region for gauge theory side, we can take the R-charge J much larger than
√
λ and

have a new small expansion parameter λ̃ ≡ λ
J2 . Therefore we can make both theories

in the perturbative region and have a chance to compare them. More precisely, we

expand the physical quantities in double expansion of 1
J ,

λ
J2

∆(J, λ) = J

(
1 +

λ

J2
δ1 +

λ2

J4
δ2 + . . .

)
+O(J0) (4.11)

E(J, λ) = J

(
1 +

λ

J2
ε1 +

λ2

J4
ε2 + . . .

)
+O(J0) (4.12)
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and see if

δk = εk ? k = 1, 2, 3 . . . (4.13)

So we compare the conformal dimension of long operator with large R-charge with

the energy of sting state which is rotating very fast in S5 space. In gauge theory

side, such large R-charge limit is translated to thermodynamic limit of Bethe ansat

equations and makes one possible to compute conformal dimension explicitly.

We can generalize the situation by turning on other quantum number, Lorentz

spin S. Large spin S limit opens a new window of parameter space and make it

possible to consider various limit. In the large S and J region, the local operators we

consider takes the following forms

O(§) = Tr[∇SφJ(x)] (4.14)

The corresponding string state is spinning string in both AdS5 and S5 with large

angular momentum S and J respectively. This is the main objet we will consider in

this chapter. By obtaining solution of spinning strings or D-branes and computing

their energy, we can compare them with conformal dimensions of corresponding

local operators in gauge theory. In this way we can check the AdS/CFT conjecture

explicitly. Another aspect of this study is that if we assume the duality hold, we

can study the non-perturbative properties of conformal dimension by string dual

method.

In the following sections, we will study how to compute the above physical quan-

tities explicitly. In the gauge theory side, diagonalization of dilatation operator can

be translated to spin chain problem and Bethe ansat equations. From this we can

compute conformal dimension of operators we concern. We will not see this gauge

theory aspect in details in this thesis. For reviews see [60, 61, 61–64] We will fo-

cus to string theory side and consider spinning string in AdS5 and S5. By solving

equations of motion of string sigma model, we can get the expression of energy in

terms of angular momentum S and J. we will explore the various parameter region

and study several properties like logarithmic scaling on spin. We will conclude this
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section by considering generalize the result to operators in different representations

- especially in symmetric representation. This can be done by replacing the string

with D-branes.

4.1 Spinning strings in AdS5 × S5

Local operator with Lorentz spin S and R-charge J corresponds to rotating string

in AdS5 × S5 with angular momentum S in AdS5 and another angular momentum

J in S5. Here we will review the previous works of solving the string solution and

computations their classical energy spectrum of it in large λ = r4

α′2 limit. [14,16,65–

67]

We shall use the global coordinate metric for AdS5 and S5 as followings [16].

ds2
AdS5

= R2(dρ2 − cosh2 ρ dt2 + sinh2 ρ dΩ3) (4.15)

dΩ3 = dβ2
1 + cos2 β1(dβ2

2 + cos2 β2dφ
2) (4.16)

ds2
S5 = R2(dψ2

1 + cos2 ψ1( dψ2
2 + cos2 ψ2 dΩ′3)) (4.17)

dΩ′3 = dψ2
3 + cos2 ψ3(dψ2

4 + cos2 ψ4dϕ
2) (4.18)

The relevant bosonic part of Polyakov string action is given by

S = −
√
λ

4π

∫
d2σ
√
−ggab

[
GAdS5
MN (X)∂aX

M∂bX
N +GS

5

MN (Y )∂aY
M∂bY

N
]

(4.19)

where σi = (τ, σ), M,N = 0, 1, .., 4.

For the ansat XM (τ, σ), YM (τ, σ) for rotating closed string in AdS5 and S5, we

take the following forms [16],

t = κτ, φ = ωτ, ϕ = ντ (4.20)

ρ = ρ(σ), βi = 0, ψi = 0 (4.21)

with constants κ, ω, ν. Now we need to solve ρ(σ) configuration by varying the string

action. The result of equations of motion is

ρ′′ = (κ2 − ω2) sinh ρ cosh ρ (4.22)
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with the constraint from conformal gauge fixing,

ρ′2 = κ2 cosh2 ρ− ω2 sinh2 ρ− ν2 (4.23)

The rotating closed string should satisfy the periodic condition ρ(σ) = ρ(σ + 2π).

The simplest solution for this condition is considering folded string configuration

which splits into four segments. In 0 < σ < π
2 region, as σ increase from 0 to π/2,

the sting stretches from 0 to its maximum reach ρ0. So we can obtain additional

equations.

(κ2 − ν2) cosh2 ρ0 − (ω2 − ν2) sinh2 ρ0 = 0 (4.24)∫ 2π

0
dσ = 4

∫ ρ0

0

dρ√
(κ2 − ν2) cosh2 ρ− (ω2 − ν2) sinh2 ρ

= 2π (4.25)

From these equations we have derived, we can obtain the solution of rotating string

configuration.

Next things we need are the expressions for the conserved charges E,S and J .

These can be obtained easily by Noether theorem and the results are [14,16]

E =
√
λκ

∫ 2π

0

dσ

2π
cosh2 ρ, (4.26)

S =
√
λω

∫ 2π

0

dσ

2π
sinh2 ρ, (4.27)

J =
√
λν

∫ 2π

0

dσ

2π
(4.28)

Angular momentum J of S5 is written trivially and other E and S are written in

integral equations of string configuration. We can solve the integrals analytically and

find the expression as

E√
λ

=
κ√

κ2 − ν2

1
√
η
F21

(
−1

2
,
1

2
; 1;−1

η

)
(4.29)

S√
λ

=
ω√

κ2 − ν2

1

2η
√
η
F21

(
1

2
,
3

2
; 2;−1

η

)
(4.30)√

κ2 − ν2 =
1
√
η
F21

(
1

2
,
1

2
; 1;−1

η

)
(4.31)
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with the parameter η which is defined as

coth2 ρ0 =
ω2 − ν2

κ2 − ν2
= 1 + η (4.32)

To study the meanings of this solution and compare with gauge theory side, now we

consider several parameter limits.

Short string Let us first consider short string which means ρ0 → 0. When spin S

is small, string can not be stretched in AdS space and shrink to point particle. To

compare with BMN limit in gauge theory side, we keep the angular momentum J is

large. In parameter space, this region is expressed as

η � 1, ν � 1 (4.33)

Under this limit, we can have the relations among parameters

ω ≈
√

1 + ν2 +
1

η
, κ ≈

√
ν2 +

1

η
(4.34)

and get the expression for energy spectrum.

E ≈ J + S +
λ

J2

S

2
+ . . . (4.35)

In terms of conformal dimension of dual gauge theory side, first two terms are clas-

sical dimension which is trivial. For the next term, we can notice that this is exactly

the BMN expansion(4.12) we have considered before. This is achieved because we

are considering large J limit. This result can be directly compared with perturbative

result of gauge theory side, and verified they agree. This is the one of the non-trivial

test of AdS/CFT correspondence.

Long string More interesting case is long string case which is opposite limit ρ0 →

∞. We take the angular momentum S in AdS5 large, so makes the string stretches.

In this region (η � 1), we can get the parameter relations,

ω ≈
√
ν2 +

1

π2
(1 + η) ln2 1

η
, (4.36)

κ ≈
√
ν2 +

1

π2
ln2 1

η
(4.37)
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Interesting point here is we now have logarithmic function of η which was just the

polynomial in short string case. To go further in this large S region, we divide the

case whether J is large or not.

In small angular momentum J case which can be expressed precisely,

J√
λ
� lnS (4.38)

we obtain the energy spectrum as

E ≈ S +

√
λ

π
ln

S√
λ

+ . . . (4.39)

This shows the famous logarithmic scaling in spin S of minimal twist operators in

gauge theory [14]. In ordinary gauge theory like Quantum Chromo-Dynamics or

N = 4 SYM theory, twist 2 operators scales as

E = S + (a1λ+ a2λ
2 + . . .) lnS (4.40)

This behavior is first obtained by perturbative calculations. Its logarithmic scaling

is very non-trivial result - if we count naively lnk S terms appear in each Feynman

diagram but they are canceled each other in the summation of diagrams. We obtained

same logarithmic scaling behavior in dual string theory side. Because we consider the

case of small J with large S, the corresponding operator approaches to the minimal

twist operator. Above result implies that even in the non-perturbative case (we keep

the coupling constant λ large) logarithmic scaling continues to hold. This gives some

evidence to the conjecture that for all λ value, scaling dimension of minimal twist

operator with large spin S is written

E = S + f(λ) lnS (4.41)

Next, in the large J region with large S,

lnS � J√
λ
� S√

λ
(4.42)
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We can obtain the BMN-like expansion of energy

E ≈ S + J +
λ

2π2J
ln2 S

J
+ . . . (4.43)

In this case, we can not see the large spin lnS term. Because we keep the angular

momentum J is large enough(although it is still less than S) it doesn’t correspond

to minimal twist operators. Instead we can again compare the result with the con-

formal dimension of operators in gauge theory side, and see that it agrees again.

In the long string case, each result can be interpreted as follows. In considering

the large J region we can give the non-trivial test of AdS/CFT duality. And in small

J region, by just assuming the AdS/CFT duality, the non-perturbative calculation

of scaling dimension of minimal twist operator can be performed using sting theory

dual.

4.2 Spinning D-branes and higher representations

Fields in single trace operators which we considered so far was in fundamental rep-

resentation of SU(N) gauge group of N = 4 SYM. This can be generalized to higher

representation. In other word, we can consider the local operators of the form,

O = Tr(DSZJ) (4.44)

where Z = ZaT aR, D = n · (∂ + [AaT aR, ∗]) (4.45)

with large spin S and R-charge J. As we have seen so far, conformal dimension of

operators in fundamental representation can be related to the energy of rotating

fundamental string in AdS5×S5 space. Then for operators in higher representation,

what kind of object in string theory would be the corresponding one?

There are several studies on this problem with Wilson lines in AdS/CFT [47,48]

which originally correspond to macroscopic fundamental strings. When the macro-

scopic string is replaced by a D-brane with electric flux [47, 49–52], it corresponds

to a Wilson line of a higher representation; a D3-brane corresponds to the k-th
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symmetric representation while a D5-brane corresponds to the k-th anti-symmetric

representation, where k is the string charge of the D-brane with electric flux.

Thus, replacing the rotating string by a rotating D3 or D5-brane, one could

analyze the spectrum of the local operators in the k-th symmetric or anti-symmetric

representation 1. The spectrum of twist two operators in the k-th anti-symmetric

representation is studied by Armoni [53] using rotating D5-brane.

In this section, we explicitly solve the equations of motion for D3 branes and

find the expressions for energy spectrum in terms of angular momentums S and J

of AdS5 and S5. To use the holographic dictionary for Wilson lines and the more

symmetries, we study the D3-brane counterpart of the “long string”. In the “long

string” case, the folded string touches the boundary of AdS5 (so it represents Wilson

lines) and one more symmetry is enhanced (translation in χ. See the section 4.2.1).

As a result, we find following scaling behavior in certain parameter regime.

(E − S)2 − J2 = T 2
3 f(β, µ) log2 S

J
, (4.46)

where, β =
J

T3 log S
J

, µ = 2π

√
λk

N
, T3 =

N

2π2
. (4.47)

Which is valid when

β, µ fixed, S � J, N →∞, λ→∞. (4.48)

In small β and µ, the function f can be expanded as polynomial in β2 and µ2.

f(β, µ) = µ2 + c2,0β
4 + c1,1β

2µ2 + c0,2µ
4 + higher order terms. (4.49)

Thus from (4.46), the anomalous dimension γ := E − S − J can be written as

γ = J
∞∑
m=0

β2mγm(x2), (4.50)

= J
[
(
√

1 + x2 − 1) + β2(
c2,0 + c1,1x

2 + c0,2x
4

2
√

1 + x2
) + o(β4)

]
, (4.51)

where, x :=
µ

β
=
k
√
λ log(S/J)

πJ
. (4.52)

1More precisely Tr in the fundamental representation is replaced by the character (or Schur

polynomial) of the symmetric or the anti-symmetric representation.
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Note that the double expansion in β2 and x2 has same structure with the double

expansion in 1
N2 and λ in the gauge theory side. At planar order (zeroth in β2), the

anomalous dimension coincide with that of k noninteracting folded strings (compare

with (4.43)).

In some region in (β, µ), there is no classical D3-brane solution. There exists a

critical value for µ for each β above which the classical D3-brane solution does not

exist (see Figure 4.1). This seems to be a similar phenomenon as the phase transition

in a symmetric Wilson loop observed in [50,58,59].

4.2.1 Set up

Symmetry, ansatz and boundary condition

First we will consider the symmetries of “infinity strings” in [14] which are dual

to twist two operators with large spin, S �
√
λ. From those symmetries, we will

find the appropriate ansatz and boundary conditions for the D3-brane which wraps 4

dimensional submanifold inAdS5 and ends on the two light-like segments in theAdS5

boundary. Then we will generalize the ansatz by turning on the angular momentum

along S5.

The infinite string solution is given by [27] 2

X−1X2 −X0X1 = 0, X3 = X4 = 0. (4.53)

Here {Xµ} are the Cartesian coordinates of R2,4 where the AdS5 is embedded. In

the global coordinates {τ̃ , ρ̃,Ωi}, (i = 1, 2, 3, 4) for AdS5,

X−1 = cosh ρ̃ cos τ̃ , X0 = cosh ρ̃ sin τ̃ , Xi = sinh ρ̃Ωi,
4∑
i=1

Ω2
i = 1, (4.54)

the boundary is located at ρ̃ → ∞. The infinite string ends on the following two

2Actually the folded string world-sheet covers (4.53) twice. Thus quantum numbers of the folded

string should be doubled if one calculates them using (4.53). This two-foldedness should be taken

into account in calculating quantum numbers for folded D3-brane.

41



light-like lines at the boundary.

τ̃ = ϕ̃ or τ̃ = ϕ̃+ π, Ω2
3 + Ω2

4 = 0. where ϕ̃ = arctan
Ω2

Ω1
. (4.55)

These two light-like Wilson lines preserve three symmetries of SO(2, 4). These sym-

metries are more manifest in the AdS3 × S1 foliation of AdS5.

(X−1, X0, X1, X2) = cosh ζ(x−1, x0, x1, x2), −x2
−1 − x2

0 + x2
1 + x2

2 = −1,

(X3, X4) = sinh ζ(x3, x4), x2
3 + x2

4 = 1,

ds2(AdS5) = cosh2 ζds2(AdS3) + sinh2 ζdψ2 + dζ2. (4.56)

We will use two coordinate systems for AdS3, {u, χ, σ} and {τ, ρ, ϕ}. See Appendix

A. The infinite string (4.53) stretches along u, χ directions and located at ζ = 0, σ =

0. And the three symmetries correspond to translations in u, χ and ψ [26]. Besides

these continuous symmetries, there is an additional Z2 symmetry, σ ↔ −σ.

We will consider the D3-brane motion described by the DBI+WZ action

SD3 = T3

∫
d4yL = T3

∫
d4y(LDBI + LWZ),

LDBI = −
√
−detH, Hαβ := GMN (Y )

∂YM

∂yα
∂Y N

∂yβ
+ Fαβ,

LWZ = −aCM1...M4

∂YM1

∂yα1
. . .

∂YM4

∂yα4
εα1...α4

1

4!
,

(4.57)

where YM , (M = 0, . . . , 9) denote the space-time coordinates and yα, (α = 0, 1, 2, 3)

are the D3-brane world-volume coordinates. Fαβ is the world-volume gauge flux. a

is ±1 depending on the choice of the orientation. The D3-brane tension T3 is related

to N by T3 = N
2π2 in our unit (AdS radius)= 1.

We are going to find classical D3-brane solution which preserves the three sym-

metries and ends on the light-like segments (4.55) at the R×S3 boundary. From three

continuous symmetries, the ansatz for D3-brane is ({u, χ, ψ, y} are the world-volume

coordinates)

F = b du dχ, σ = σ(y), ζ = ζ(y). (4.58)
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To preserve the Z2 symmetry (σ ↔ −σ), we impose the following.

dζ

dσ
= 0, when σ = 0. (4.59)

When ζ = 0 where the size of S1 shrinks, there may be conical singularity. To avoid

this, we impose the following condition.

dσ

dζ
= 0, when ζ = 0. (4.60)

In theAdS3×S1 foliation, the R×S3 boundary ofAdS5 is located at cosh2 ζ cosh2 ρ→

∞, or equivalently

ρ→∞ or ζ →∞. (4.61)

And the two light-like lines at the boundary (4.55) becomes

τ = ϕ or τ = ϕ+ π,

X2
3 +X2

4

X2
−1 +X2

0

=
sinh2 ζ

cosh2 ζ cosh2 ρ
→ 0. (4.62)

Under the ansatz (4.58), the D3-brane ends on the two segments (4.62) at the bound-

ary (4.61) if and only if

σ(y), ζ(y) = finite. (4.63)

Equations (4.58),(4.59),(4.60),(4.63) are the summary of ansatz and conditions for

D3-brane rotating in AdS5. These can be generalized by turning on the angular

momentum along S5:

θ = νu. (4.64)

Here θ is the coordinate of a great circle of S5. Under these ansatz, the D3-brane

action (4.57) becomes

SD3 = T3

∫
dudχdψdyL, L = LDBI + LWZ ,

LDBI = −
√

sinh2 ζ(cosh4 ζ cosh2 2σ − b2 − ν2 cosh2 ζ)(cosh2 ζσ′2 + ζ ′2),

LWZ = −a(cosh4 ζ − 1) cosh 2σσ′. (4.65)

Here a is ±1 depending on the choice of the orientation. Under these ansatz, the

equation of motion for the world-volume gauge field is automatically satisfied.
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Quantum numbers

Here in this subsection we will obtain the expression of the conserved charges: the

energy E, the spin S, the R-charge J , and the string charge k. First three charges

E,S, J are calculated as the Noether charges from the spacetime isometry. Later we

will calculate k by taking variation by NSNS B-field.

For a Killing vector ξM in AdS5×S5 and a small parameter ε, there is a symmetry

of the action (4.57). Since this isometry also preserves the RR5-form field strength

F5, the variation of 4-form potential should be written as

δC4 = εdΛ3, (4.66)

where Λ3 is a 3-form. The variation of the Lagrangian becomes

δL = ε∂α

[
−a 1

3!
εαα2α3α4∂α2Y

M2∂α3Y
M3∂α4Y

M4ΛM2M3M4

]
=: ε∂αR

α. (4.67)

The Noether current jα and the Noether charge Q for this symmetry is written as

jα =
∂L

∂(∂αYM )
ξM −Rα, (4.68)

Q = T3

∫
d3y j0. (4.69)

We only need to consider DBI-term in the action because we are considering

folded D3-brane solution. Actually the terms in eq. (4.68) which come from the

WZ-term cancel since two D3-branes have the opposite sign of the WZ-term to each

other. The derivative of the DBI-term is given by

∂LDBI
∂(∂αYM )

= −
√
−detH(H−1

sym)αβGMN∂βY
N , (4.70)

where H−1
sym is the symmetric part of the inverse matrix of H.

We take u as the world-volume time. For the R-charge J the Killing vector is

ξJ = ∂/∂θ. The Noether charge is given as

J = T3

∫
dχ

∫
dψ

∫
dy juJ = 2χ0T3β, (4.71)

β :=

∫
dy

4πν(cosh2 ζσ′2 + ζ ′2) sinh ζ cosh2 ζ√
(cosh4 ζ cosh2 2σ − b2 − ν2 cosh2 ζ)(cosh2 ζσ′2 + ζ ′2)

, (4.72)
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where χ0 is the cut-off of the χ integral; χ is limited to −χ0 ≤ χ ≤ χ0. As the same

way, the Killing vector for E − S is ξE−S = −∂/∂τ − ∂/∂ϕ = −∂/∂u (see eqs. (A)

and (A)), and the Noether charge is obtained as

E − S = 2χ0T3α, (4.73)

α :=

∫
dy

4π(cosh2 ζσ′2 + ζ ′2) sinh ζ cosh4 ζ cosh2 2σ√
(cosh4 ζ cosh2 2σ − b2 − ν2 cosh2 ζ)(cosh2 ζσ′2 + ζ ′2)

. (4.74)

On the other hand, for the spin S, the components of the Killing vector behave

as ξS ∼ e2χ in large χ (see eq. (A)). Thus the charge S after integral over χ behaves

as

S ∼ T3e
2χ0 , or 2χ0 ∼ log

S

J
. (4.75)

As a result we obtain the scaling behavior

(E − S)2 − J2 = T 2
3 (α2 − β2) log2 S

J
. (4.76)

Let us turn to the string charge k. For a variation of B-field δBuχ, the variation

of the action and the string charge k are related as (α′ = 1√
λ

is the slope parameter

in our unit.)

δSD3 =
k

2πα′

∫
dudχδBuχ. (4.77)

Hence the string charge k is expressed as

k =2πα′T3

∫
dψ

∫
dy
∂L

∂b
=

N

2π
√
λ
µ, (4.78)

µ :=

∫
dy

4πb sinh ζ(cosh2 ζσ′2 + ζ ′2)√
(cosh4 ζ cosh2 2σ − b2 − ν2 cosh2 ζ)(cosh2 ζσ′2 + ζ ′2)

. (4.79)

The scaling function f(β, µ) in eq. (4.46) is obtained from (4.76) by expressing

α2 − β2 in terms of β and µ.

4.2.2 Numerical analysis

So far we describe the general procedure for obtaining a D3-brane solution which

is dual to the composite operator Tr(DSZJ) in symmetric representations. In this
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Figure 4.1: D3-brane example (ν = 0.999, b = 0.1).

section, we will find numerical solutions and analyze its phase structure and energy

spectrum.

Phase structure

The equation of motion derived from the action (4.65) is too complicated to solve

it analytically. Thus, we find solutions numerically. The solution which satisfies the

conditions (4.59),(4.60),(4.63) looks like an ellipse in (ζ, σ)-plane (see the Figure

4.1). For some values of (ν, b), there are several solutions. But if we impose stability

condition3, only one or no solution survives. And for some other values of (ν, b),

there’s no solution (even unstable one). Figure 4.2 shows the region in (ν, b) where

the stable solutions exist. The region is surrounded by following three curves.

• ν2 + b2 = 1.

To avoid the Lagrangian (4.65) being an imaginary number, there’s a lower

bound for the size of solutions.

r :=
√
ζ2 + σ2 ≥ 1

2
arccosh(

√
ν2 + b2) (4.80)

When ν2 +b2 approaches to 1, the bound becomes smaller and stable solutions

3We check the stability numerically. We consider several small fluctuations {δσ, δζ} around a

solution. If the solution maximize the Lagrangian
∫
dχdψdyL under the fluctuations, then it is

considered as a stable one.
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Figure 4.2: left: the region stable solutions exit, right: (β, µ) of the solutions fill the

colored region.

tend to shrink to the point r = 0. Accordingly, the physical quantities (β, µ)

of the solution become smaller.

• ν = 1.

If ν ≥ 1, there’s no solution except unstable one. Stable solutions (and its β, µ)

in the colored region become infinity when ν → 1. This bound for the angular

velocity in S5 direction also exists for the folded string solution case [16].4

• The upper curve.

We cannot find analytic expression for this curve. Just below the curve there

are two solutions (1 stable + 1 unstable). The two solutions get closer to

each other when approaching the upper curve and disappear simultaneously

above the curve. This curve is mapped to the upper curve in the (β, µ) plane

via stable solutions. It suggests that there’s some phase transition across the

curve. This result requires further study to understand the phase transition in

the gauge theory side.

4 We fix ω
κ

= 1 and ν
κ

in [16] corresponds to ν in this paper.
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Expansion in small β, µ.

The energy spectrum (4.46), which is valid in the limit (4.48), is wholly determined

if we find expression f := α2 − β2 in terms of β, µ. Although we cannot find its full

analytic expression, we suggest the form of series expansion and obtain the exact

values of the coefficients at the lowest order. Higher order coefficients can be obtained

numerically.

Consider the limit (ν, b) approaching to the curve ν2 + b2 = 1. In the limit,

as mentioned above, the stable solution (and its β, µ) become smaller. From the

expression for α, β, µ in section 2 and the fact that ζ, σ is very small, one can see

that

f

µ2
=
α2 − β2

µ2
' 1− ν2

b2
→ 1 (4.81)

in the limit. This result gives

(E − S)2 − J2 = k2 λ

π2
log2(

S

J
) when β, µ→ 0. (4.82)

This is nothing but the spectrum of k noninteracting folded strings!(cf. (4.43)).

Assuming the f(β, µ) is analytic near the origin (β, µ) = (0, 0), we propose

following expansion

f(β, µ) =
∑
m,n

cm,nβ
2mµ2n, m, n ≥ 0. (4.83)

Here we use the fact that f(β, µ) is even function in both β and µ.5 And eq. (4.81)

imply that

c0,0 = 0, c1,0 = 0, c0,1 = 1. (4.84)

Numerically, we check the expansion (4.83) up to fourth power of β, µ and obtain

the value of c2,0, c1,1, c0,2.

5When ν ↔ −ν, e.o.m does not change and the stable solution remains same. So were α, µ. But

β changes its sign (4.72). Similar argument hold for the b ↔ −b case ( in this case, (α, β) remains

same but µ changes its sign. ).
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Figure 4.3: Along µ = 0.306857β we plot the graph. Its behavior agree with what

we expected from (4.83).

c2,0 = 0.0084 . . . , c1,1 = 0.0074 . . . , c0,2 = −0.023 . . . . (4.85)

For small (β, µ), f(β, µ) is well approximated by this expansion as shown in Figure

4.3.

Comments on gauge theory side

So far we have studied the properties of energy spectrum of spinning D3-brane.

We can see that logarithmic scaling on spin S is recovered in the limit of J �
√
λ log(S/J) which is related to minimal twist operators. And usual BMN expan-

sion is obtained in opposite limit. Also we can check the consistency by taking pla-

nar order and see the coincidence of our result with k non-interacting fundamental

strings.

Meanwhile if we are interested in the test of AdS/CFT correspondence, we

need to compute the gauge theory side also. In order to calculate this anomalous

dimension in the gauge theory side, one should consider the limit N → ∞ while

keeping β, µ finite and λ small finite instead of the limit (4.48). In this limit certain

kinds of non-planer diagrams also contribute to the result since µ kept finite.
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Chapter 5

Infra-red finiteness in 3

dimensions

In this chapter we consider infra-red divergences in 3 dimensional Chern-Simons the-

ory which called ABJM theory. As we have seen in section 2, ABJM theory is stud-

ied extensively because of it is another example of holographic duality-AdS4/CFT3.

In N = 4 case, we concentrated on local operators and their scaling dimensions.

These physical object is important in ABJM theory and have studied by many au-

thors [69,76–81]. Another important object in the study of field theory is scattering

amplitudes. It is important because it reveals hidden symmetries in the theory. For

examples, recursive structure in the loop amplitude can be made and connection

with Wilson-loop value can be shown. These properties come from the rich struc-

ture of symmetries in the theory.

In the following chapters we will first review about some basic properties of scatter-

ing amplitudes in ABJM theory. We consider the result of two-loop amplitude and

concentrate on Infra-red divergences. And we will see the implications from general

argument of Kinoshita-Lee-Naunenberg theorem, which gives the guideline to deal

with the IR divergences in ABJM theory. By calculating the four-point amplitude

case explicitly, we will sketch the procedure of how IR divergences can be canceled

and obtain the finite results.

50



5.1 Scattering amplitudes of ABJM theory

In section 2, we studied the general structure of ABJM theory. Field contents of

the theory are 2 kinds of vector fields Aµ, Aµ, four fermion fields ψA and four scalar

fields φA. Because there is no degree of freedom in Chern-Simons theory, gauge

fields Aµ does not participate as external particles. And because the matter fields

φA, ψA transform in the (N,N) representation of the gauge group U(N) × U(N),

external particles should come in pairs. So scattering amplitudes in ABJM theory

is composed of even number of matter field.

To go further in the study of scattering amplitudes, let us review some basic things

which is used widely in this field

Spinor-helicity formalism In mass-less theory, on-shell condition p2 = 0 gives

the simple representation of momentum p. This is called Spinor-helicity formalism.

Because the lorentz algebra in three dimension is SO(1, 2) which is isomorphic to

sl(2,R), we can express the momentum p as sl(2,R) bispinor [71]. If we expand the

momentum p in the basis of 2× 2 matrices σµ

pab = (σµ)abpµ (5.1)

σ0 =

 −1 0

0 −1

 σ1 =

 −1 0

0 1

 σ2 =

 0 1

1 0

 (5.2)

on-shell condition p2 = 0 is solved explicitly by 2 component spinor λa

pab = λaλb (5.3)

Because we have one constraint on 3 dimensional momentum, 2 degrees of freedom

is left. 2 component momentum spinor λa is the explicit solution of the constraint.

We can see that solution λa is unique up to a overall sign. So in the calculations

of scattering amplitudes, we use this spinor λa in the expressions of momentum

invariants

〈ij〉 = εabλ
aλb, pi · pj = −1

2
〈ij〉2 (5.4)

We can see in the following chapters that this representation makes the result simple.
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Color ordered amplitude In non-abelian gauge theory, each scattering ampli-

tudes carry color indices of external particles. In planar limit, this can be written in

single trace forms

An =
∑
a(i)

An(pa(1), pa(2), ..., pa(n))Tr[T
a(1)T a(2)...T a(n)] (5.5)

The summation runs in permutations of n external lines. Coefficient of each trace

of generators An is called color ordered amplitude. It doesn’t have color structure

anymore and represent the amplitudes in some fixed color ordering. Full amplitude

can be obtained easily by summing up the given color-ordered amplitudes.

Cross section which is physical object is obtained from the square of full amplitudes.

In general, there are cross-terms of color-ordered amplitudes with different color

structure. But in the large N planar limit, we can see that they are negligible

σn = |An(1, 2, ..., n)|2 = Nn−2(N2 − 1)
∑
color

|An(1, 2, ..., n)|2 +O(
1

N
) (5.6)

This is nice property. By computing color-ordered amplitudes, the cross-section in

planar limit is obtained by squaring the color-ordered amplitudes. In the following

chapters we will concentrate on how to compute the color-ordered amplitudes

5.1.1 Tree-level amplitudes

Tree level amplitude can be computed in various way. In Feynman diagram approach,

Super-conformal symmetry can be used to relate the amplitudes in different matter

contents. Because each external particles φA, ψA is related with R-symmetry, they

are combined to super-fields Φ(λ, η) [71]

Φ(λ, η) = φ4(λ) + ηAψA(λ) +
1

2
εABCη

AηBφC(λ) +
1

3!
εABCη

AηBηCψ4(λ)(5.7)

Φ(λ, η) = ψ
4
(λ) + ηAφA(λ) +

1

2
εABCη

AηBψ
C

(λ) +
1

3!
εABCη

AηBηCφ4(λ)(5.8)

where ηA is grassmann variables of N = 3 superspace. Using this super-field formal-

ism we can consider super-amplitudes and make a connections between component

amplitude of different external particles.
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In the works [70,71], four, six point amplitudes is computed in Feynman diagram ap-

proach. In four point case, by computing one component amplitude- say four bosons

amplitude - whole super-amplitude can be constructed. In six point case, they need

two kinds of component amplitudes.

There is another approach to compute tree-level amplitudes. It is based on Grass-

mannian integral [73]. This is manifest realizations of super-conformal symmetry and

it dual symmetry - Yangian symmetry. Compared to Feynman diagram method, this

approach is rather simple and gives more compact results. In the works of [72] they

computed eight-points amplitudes and gives recursion relations between tree-level

amplitudes.

We will not follow the whole computations of tree-level amplitudes but just list some

explicit four-point results for the use in the next chapters.

A4(φ4, φ4, φ
4, φ4) =

〈24〉3

〈21〉〈14〉
, A4(ψ4, ψ

4
, ψ4, ψ

4
) =

〈13〉3

〈21〉〈14〉
(5.9)

5.1.2 2-loop amplitudes

Now let us consider loop corrections of amplitudes in ABJM theory. One of the

important result in loop amplitudes is that one-loop corrections are trivial. One-loop

amplitude of four point amplitude vanishes [70]. In the six point case, they just gives

trivial sign functions coming from collinear configuration [82, 83]. This vanishing

properties in the one-loop order can be also found in local operators analysis [69]

and light-like Wilson loop computations [84].

So first non-trivial correction comes from two-loop order. The result of two loop

order of four-point amplitudes are [74,75]

A
(2)
4 = Atree4 ·

(
N

k

)2 [
−(s/µ2)−2ε

(2ε)2
− (t/µ2)−2ε

(2ε)2
+

1

2
ln2
(s
t

)
+ const

]
(5.10)

where s, t are usual Mandelstam variables and ε is dimensional regularization pa-

rameter. We can see that it has 1
ε2

IR divergences. This double poles (or double log

divergences) are general properties of IR divergences. There are two kinds of limit

which diverges.
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• Soft limit

If momentum goes to zero, denominators vanishes and amplitude diverges. In

tree level amplitude, this corresponds to soft bremsstrahlung emissions.

• Collinear limit

Although momentum is not small, two momentums which become collinear

make the divergences. In conformal theory, this collinear emissions should be

taken because there is no way to distinguish the parallel two particles state

from one particle state.

In physical observable, these IR divergence should be away. To see if these divergence

can be cured and get a finite observable, we need to review the general theorem about

IR divergences in field theory.

5.2 Kinoshita-Lee-Nauenberg Theorem

Kinoshita-Lee-Nauenberg Theorem [85] gives general way to solve the IR diver-

gences. Main result of it is we need to consider cross-sections and including addi-

tional soft or collinear radiations. Because the finiteness is required only in physical

observable, scattering amplitude itself doesn’t need to be finite. In the UV diver-

gence case, scattering amplitude or even in the off-shell correlation function level,

we can have UV finiteness. But IR divergence can not be canceled in the amplitudes

level.

Cancellations of IR divergence of loop correction is achieved by including additional

emissions in tree level amplitudes. In other word, to get a finite one-loop corrections

of n-point scattering cross-sections, we need to consider n+1 tree-level amplitudes.

σ0
n+1 = |λA(soft)

n+1 |
2 = λ2σsoftn+1 (5.11)

σ(2)
n = |A(0)

n + λA(1)
n |2 = σ(0)

n + λ2σ(2)
n +O(λ3) (5.12)

Those λ2σsoftn+1 and λ2σ
(2)
n are canceled each other, we can get finite loop corrections.

In conformal field theory, all particles are mass-less and there is no energy scales.
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So asymptotic states cannot be defined properly and one-particle state becomes

ambiguous. In other word, we cannot distinguish two parallel particles state from

one particles. So, we have to consider additional externals in both initial states and

final states carefully.

5.3 IR finiteness of ABJM theory

One interesting point of ABJM theory is that only even number of external particles

are possible. So unlike the usual quantum field theory, we need to consider two parti-

cle emissions when considering IR cancellations. We can guess that this is related to

the fact that first non-trivial corrections start from two loop order in ABJM theory.

Technically two particle emissions imply double phase space integral. In this section

we will carry explicit calculations of IR correction in the four-point amplitude. First

by considering a few Feynman diagrams, we will show how double phase space inte-

gral give usual double pole divergences and the structure of cancellation procedure

with loop correction diagrams. Next we will consider full four-point amplitude using

spinor-helicity formalism, and check the finiteness of full four-point cross-sections.

5.3.1 Feynman diagram approach

Soft Bremsstrahlung

Consider the process that scalar particle with momentum p interact through gauge

boson and then scattered with momentum p′. There are 2 types of diagrams emitting

before interaction and emitting after interaction.

Ms = [i(2p− p1 − p2)µ]
−i

(p− p1 − p2)2
M0(p− p1 − p2, p

′)

(
−2π

k

)
εµνρ(p1 + p2)ρ

(p1 + p2)2
[i(p2 − p1)ν ]

+M0(p, p′ + p1 + p2)
−i

(p′ + p1 + p2)2
[i(2p′ + p1 + p2)µ]

(
−2π

k

)
εµνρ(p1 + p2)ρ

(p1 + p2)2
[i(p2 − p1)ν ]
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Figure 5.1: Bremsstrahlung diagrams

Since we are interested in the case of soft scalar limit |p1|, |p2| � |p′− p| , so we can

treat

M0(p− p1 − p2, p
′) ∼M0(p, p′ + p1 + p2) ∼M0(p, p′) (5.13)

and ignore the quadratic term of p1, p2 in the denominator

(p− p1 − p2)2 = −2p · (p1 + p2) + (p1 + p2)2 ∼ −2p · (p1 + p2) (5.14)

Under these soft scalar limit, the amplitude becomes

Ms =

(
−i2π

k

)
M0(p, p′)

[
εµνρp

µpν1p
ρ
2

p · (p1 + p2)(p1 · p2)
− (p↔ p′)

]
(5.15)

and the cross-section has the following expression

dσs(p, p
′, p1, p2) = dσ0(p, p′) ·

∫
d2p1

(2π)2

d2p2

(2π)2

1

2p1

1

2p2

4π2

k2

∣∣∣∣ εµνρp
µpν1p

ρ
2

p · (p1 + p2)(p1 · p2)
− (p↔ p′)

∣∣∣∣2
Above correction term can be simplified as

dσ(1)
s =

1

8π2k2

∫
d2p1d

2p2
1

p1p2

[ (p · p1)(p · p2)

(p · p1 + p · p2)2(p1 · p2)
+

(p′ · p1)(p′ · p2)

(p′ · p1 + p′ · p2)2(p1 · p2)

−(p · p1)(p′ · p2) + (p · p2)(p′ · p1)− (p · p′)(p1 · p2)

(p1 · p2)(p · p1 + p · p2)(p′ · p1 + p′ · p2)

]
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There can be a soft fermion emission also. Along the same procedure we get the

result as

Mf =

(
−i2π

k

)
M0(p, p′)

[
εµνρp

µ(p1 + p2)ρ[u(p2)γνv(p1)]

2p · (p1 + p2)(p1 · p2)
− (p↔ p′)

]
(5.13)

And after some Dirac matrices algebra, we get a fermion correction in cross-section

dσ
(1)
f (p, p′) = −dσ(1)

s +
1

8π2k2

∫
d2p1d

2p2
1

p1p2

[
p · p′

(p · p1 + p · p2)(p′ · p1 + p′ · p2)

]
(5.14)

So the cancelation occurs between scalar and fermion part, the total cross-section

becomes

dσ(p, p′) = dσ0(p→ p′) · 1

8π2k2

∫
d2p1d

2p2
1

p1p2

[
p · p′

(p · p1 + p · p2)(p′ · p1 + p′ · p2)

]
(5.15)

We can see that there are well-known regions of integration which give IR divergence.

• Soft limit p1, p2 → 0 (5.16)

• Collinear limit p1 + p2 → αp or αp′ (5.17)

Let’s compute this correction term exactly. Using feynman parameter method, we

can combine the denominator as

1

8π2k2

∫
d2p1d

2p2
1

p1p2

∫ 1

0
dα

[
p · p′

(pα · p1 + pα · p2)2

]
(5.18)

where pα = αp+ (1−α)p′. Let the θi be the angles between pα and pi. Then (5.3.1)

becomes

1

8π2k2

∫ 1

0
dα

∫ Λ

0
dp1dp2

∫ 2π

0
dθ1dθ2

[
p · p′

(p1(Eα − pα cos θ1) + p2(Eα − pα cos θ2))2

]
By setting p1 = p cosφ, p2 = p sinφ, we can rewrite above expression as

1

8π2k2

∫ 1

0
dα

∫ Λ

0
dp

1

p

∫ π
2

0
dφ

∫ 2π

0
dθ1dθ2

[
p · p′

(cosφ(Eα − pα cos θ1) + sinφ(Eα − pα cos θ2))2

]
Integral of p variable gives well-known log divergence coming from soft radiation.

And performing φ, θi integrals, we can get a simple result

1

8π2k2

∫ Λ

0
dp

1

p

∫ 1

0
dα

∫ 2π

0
dθ1dθ2

[
p · p′

(Eα − pα cos θ1)(Eα − pα cos θ2)

]
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=
1

4k2

(∫ 1

0
dp

1

p

)(∫ 1

0
dα

1

α(1− α)

)
(5.16)

which gives double log divergence. Because we have 4 kinds of matters, there are

4 possibilities of emitting soft matter particles. So final result for Bremsstrahlung

correction is

dσ(p→ p′ + p1 + p2) = dσ0(p→ p′) · 1

k2

(∫ 1

0
dp

1

p

)(∫ 1

0
dα

1

α(1− α)

)
(5.17)

Vertex corrections

Now consider the correction of vertex form factor. One loop correction gives finite

result and divergence occurs from two loop diagram.

Figure 5.2: loop correction diagrams

M(2) = i

(
2π2

k2

)∫
d3`

(2π)3

[
Num

[`2 + xyq2]
5
2

z−
1
2 Γ(5

2)

Γ(1
2)

− (2p+ q)µ

`3

]
(5.18)

where Num = (k2 + 2k · p′ − q2)(2k + q)µ with k = `− yq + zp.

We can see that second term in bracket gives UV and IR divergence which goes
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as Log function. Because ABJM theory is UV finite, this UV divergence will be

canceled with other diagrams. So we will just drop all UV divergence term in this

calculations and concentrate on IR divergent terms.

Now take a look at the Num in the first term in bracket. From the symmetry of `

variable in integral, we can see that there can be `2 and `0 term in Num. Because

the `2 term gives UV divergence, we only concentrate on `0 term.

Num = (y2q2 − 2yzq · p− 2yq · p′ + 2zp · p′ − q2)((1− 2y)qµ + 2zpµ) +O(`2)(5.19)

Performing the ` variable integral, we obtain

M(2) =

(
i

4k2

)∫
dxdydz

(y2q2 − 2yzq · p− 2yq · p′ + 2zp · p′ − q2)((1− 2y)qµ + 2zpµ)

z
1
2xyq2

(5.20)

Most divergent part comes from the region of x, y → 0 and z → 1. So leading term

is

M(2) ∼
(

i

4k2

)∫
dxdydzδ(x+ y + z − 1)

(2p · p′ − q2)(2pµ + qµ)

xyq2
(5.21)

=

(
− 1

2k2

)
[i(2pµ + qµ)]

∫ 1

0
dz

∫ 1−z

0
dy

1

y(1− y − z)
(5.22)

=

(
− 1

2k2

)
[i(2pµ + qµ)]

∫ 1

0
dβ

1

β

∫ 1

0
dα

1

α(1− α)
(5.23)

So the form factor has loop correction as

M =

(
1− 1

2k2

∫ 1

0
dβ

1

β

∫ 1

0
dα

1

α(1− α)

)
[i(2pµ + qµ)] (5.24)

and gives correction on cross-section by

dσ = dσ0

(
1− 1

k2

∫ 1

0
dβ

1

β

∫ 1

0
dα

1

α(1− α)

)
(5.25)

As a result we can see that 2 double log IR divergences each from soft Bremsstrahlung

and loop correction are canceled each other.
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5.3.2 Cross-section

Consider n point scattering cross-sections in ABJM theory. Because this is a physical

observable, it should be IR finite if we calculate it properly.As we have seen in

previous feynman diagram approach, we can predict that IR divergence coming

from loop corrections would be canceled by including 2 soft particle emissions.

The cross-sections can be obtained by squaring well-known Color ordered am-

plitudes.

An(1, 2, ..., n) =
∑
color

Tr[T a1T a2 ..T an ]An(1, 2, ..., n) (5.26)

σn = |An(1, 2, ..., n)|2 = Nn−2(N2 − 1)
∑
color

|An(1, 2, ..., n)|2 +O(
1

N
) (5.27)

In large N limit, the cross terms of different color order are negligible. So by com-

puting the square of color-ordered amplitude |An(1, 2, ..., n)|2 with soft emission, we

can study the IR finiteness of cross sections.

4 scalar scattering Cross-section

Let’s see the most simple example - 4 point amplitude of bosons. In 2 loop order, it

has the IR divergence of 1
ε2

order.

A
(2)
4 = Atree4 · λ2

[
−(s/µ2)−2ε

(2ε)2
− (t/µ2)−2ε

(2ε)2
+ finite

]
(5.28)

This should be regularized by 4 point amplitude with additional 2 soft emissions. By

considering 6 point amplitude with 2 momentum goes soft limit, we can obtained IR

corrections. In 6 point amplitude, we checked every possible cases of soft emissions

and concluded that divergence occurs only in the case that 2 soft momentums

are in adjacent points.

Let the 5,6 particles are soft matter in 6 point color-ordered amplitude.

|p5|, |p6| � Λ ∼ |pi| (5.29)

60



|A6(1, 2, 3, 4, 5, 6)|2 = |A4(1, 2, 3, 4)|2 ·R2(1, 4, 5, 6) +O(
1

Λ3
) (5.30)

R(1, 4, 5, 6) =
2π

k
〈14〉

(
〈51〉〈54〉 − 〈61〉〈64〉

(〈51〉2 + 〈61〉2)(〈54〉2 + 〈64〉2)

)
(5.31)

This result works in both 2 boson, 2 fermion soft emissions with the same R(1, 4, 5, 6)

functions. The R2 term diverge as 1
Λ4 . Because we will perform 2 particle phase space

integral which goes Λ3dΛ, terms of O( 1
Λ3 ) become negligible in soft limit.

So our 4 point amplitude with 2 soft emissions becomes the following expression.

|Asoft(56)
4 |2 = 2 · 4 · |A4|2 ·

4π2

k2
〈14〉2

∫
d2p5

(2π)2

d2p6

(2π)2

1

2p5

1

2p6

(
〈51〉〈54〉 − 〈61〉〈64〉

(〈51〉2 + 〈61〉2)(〈54〉2 + 〈64〉2)

)2

(5.31)

where factor 2 is coming from the fact we have also fermions emissions and 4 is we

have 4 kinds of matter related to R symmetry.

For given massless momentum p in 3 dimension, λα can be chosen uniquely up

to overall sign.

p0 =
(λ1)2 + (λ2)2

2
, p1 =

−(λ1)2 + (λ2)2

2
, p2 = λ1λ2 (5.32)

∫ ∞
−∞

d2p

2p0
=

∫ ∞
−∞

dλ1

∫ ∞
0

dλ2 (5.33)

Interval for dλ2 was chosen to positive region due to the overall sign ambiguity.

Because integrand R2 is symmetric under the λ → −λ, interval can be written as

1
2

∫∞
−∞ dλ

1dλ2

|Asoft(56)
4 |2 = |A4|2 ·

1

2π2k2
〈14〉2

∫ ∞
−∞

d2λ5d
2λ6

(
〈51〉〈54〉 − 〈61〉〈64〉

(〈51〉2 + 〈61〉2)(〈54〉2 + 〈64〉2)

)2

(5.33)

To perform the above integral, we use the coordinate transformation in following

way.

X = (x1, x2), Y = (y1, y2) (5.34)
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
x1

x2

y1

y2

 =


λ2

1 −λ1
1 0 0

0 0 λ2
1 −λ1

1

0 0 λ2
4 −λ1

4

λ2
4 −λ1

4 0 0

 ·


λ1
5

λ2
5

λ1
6

λ2
6

 (5.35)

In this coordinate, integral expression can be written in simple form.∫ ∞
−∞

d2λ5d
2λ6

(
〈51〉〈54〉 − 〈61〉〈64〉

(〈51〉2 + 〈61〉2)(〈54〉2 + 〈64〉2)

)2

=
1

〈14〉2

∫
d2Xd2Y

(
X × Y
X2Y 2

)2

(5.36)

We can easily see that above integral gives double logarithm divergence. To

regularize this, we perform the integral in d = 3− 2ε dimension. (ε < 0)

µ4ε

〈14〉2

∫
d2−2εXd2−2εY

(
~X × ~Y

X2Y 2

)2

(5.37)

where µ is the mass scale of dimensional regularization. Because we are performing

soft particle phase integral, |X|, |Y | should be less then ordinary energy scale of

scattering. If we are considering the leading order of divergence, we can set the

cutoff Λ2 ∼ 〈14〉2 because momentums participating are p1, p4. So we can obtain the

following result.

|Asoft(56)
4 |2 = |A4|2 ·

1

2π2k2
· 2π2 (t/µ2)−2ε

(2ε)2
(5.38)

For final expression of 4 point cross-section, we have to sum over all possible

color permutation. Because 2 soft emissions should be in adjacent positions, there

are 4 possible permutations in given ordered external particles. It is related to the

possible insertions of soft matters between i, i+ 1 external particles.

σsoft
4 = N4(N2 − 1)

∑
6 color

|Asoft(56)
4 |2 (5.39)

= N2(N2 − 1)
∑

4 color

[
|A4|2 · 2

(
N2

k2

)
(s/µ2)−2ε

(2ε)2
+ |A4|2 · 2

(
N2

k2

)
(t/µ2)−2ε

(2ε)2

]
(5.40)

= σtree
4 ·

(
2λ2 (s/µ2)−2ε

(2ε)2
+ 2λ2 (t/µ2)−2ε

(2ε)2

)
(5.41)
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2 loop corrections in cross-section is

A4 = Atree4

[
1− λ2

(
(s/µ2)−2ε

(2ε)2
+

(t/µ2)−2ε

(2ε)2

)
+O(λ3)

]
(5.42)

σ4 =
∑

4 color

|Atree4 |2
[
1− λ2

(
(s/µ2)−2ε

(2ε)2
+

(t/µ2)−2ε

(2ε)2

)
+O(λ3)

]2

(5.43)

= σtree
4 ·

[
1− 2λ2

(
(s/µ2)−2ε

(2ε)2
+

(t/µ2)−2ε

(2ε)2

)
+O(λ3)

]
(5.44)

So we can see that 4 point cross-sections is IR finite in λ2 order. We want to empha-

size that this result is valid only in the leading order of divergence 1
ε2

. To consider the

next sub-leading order 1
ε , we need to be careful in picking up the effective integrand

and setting the momentum cutoff.
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Part III

Studies on Higher-spin theories
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Chapter 6

Asymptotic symmetry of

higher-spin gravity

In the context of holographic duality which usually relates gravity theory and con-

formal field theory, asymptotic symmetry of given gravity system plays central role.

Asymptotic symmetry is a residual symmetry which preserves asymptotic boundary

conditions. Studying asymptotic symmetry reveals some hint of symmetry structure

of dual conformal field theory.

For three dimensional AdS gravity, Brown-Henneaux [92] found that asymptotic

symmetry is enlarged from SO(2, 2) isometry group to Virasoro algebra. According

to AdS/CFT duality, AdS3 gravity correspond to two dimensional CFT. As we have

seen in chapter 2, conformal symmetry in two dimension has infinite generators and

becomes Virasoro algebra.

In this chapter, we will study the asymptotic symmetry of three dimensional AdS

gravity including higher-spin fields. Higher-spin(HS) theory is the extension of mass-

less spin 2 gauge theory - gravity - including fields with spin higher than 2. HS theory

in important in several reasons. It provides consistent framework of gravity system

with arbitrary spin particles. It is also related to tension-less string theory which

naturally contains higher-spin fields. If we consider HS gauge symmetry as unbro-

ken symmetry, string theory can be taken as a theory under spontaneous symmetry

65



breaking.

By no-go theorem [165–169], extension to HS fields in flat space is impossible. By

series of works of Vasiliev [170–179], this difficulty can be overcome by consider-

ing curved space. In this chapter we will consider HS theory in AdS space in three

dimension. In three dimension, there is a nice formulation for HS theory with two-

copies of Chern-Simons actions.

We will first review of derivation of asymptotic symmetry in pure gravity. And then

we will extend to AdS HS theory or super-symmetric HS theory and find the algebra

of asymptotic symmetry is super W∞ algebra.

6.1 Pure gravity in 3 dimension

Three-dimensional gravity with negative cosmological constant have vacuum solu-

tion of AdS3 space. Isometry group of AdS3 is SO(2, 2) ∼ SL(2, R)× SL(2, R). Let

us see how this isometry group is enlarged in asymptotic boundary condition. The

metric of AdS3 is written as

ds2 = `2(− cosh2 ρdτ2 + sinh2 ρdφ2 + dρ2) (6.1)

and asymptotic boundary space where ρ is large becomes

ds2 ∼ `2(−e2ρdτ+dτ− + dρ2) (6.2)

Here, ± is the light-cone coordinate τ± = τ±φ. Asymptotic symmetry is the general

coordinate transformation which preserve this boundary form. Under the general

coordinate transformation gµν → gµν +∇µξν +∇νξµ, solutions for ξ which preserve

(6.2) are [4]

ξ+ = f(τ+) +
e−2ρ

2
g”(τ−) +O(e−4ρ) (6.3)

ξ− = g(τ−) +
e−2ρ

2
f”(τ+) +O(e−4ρ) (6.4)

ξρ = −f
′(τ+)

2
− g′(τ−)

2
+O(e−2ρ) (6.5)

66



where f(τ+), g(τ−) are arbitrary holomorphic and anti-holomorphic functions. From

this, we can easily see that asymptotic symmetry forms Virasoro algebra. Brown-

henneaux [92] calculated explicitly and found that result is Virasoro algebra with

central charge

c =
3`

2G
(6.6)

As we explained before, this Virasoro algebra implies that boundary theory is 2

dimensional conformal field theory.

For the extension to HS theory, let us review about Chern-Simons formulation of

three-dimensional AdS gravity [100, 101]. For the vielbein eµa and spin connection

ωµa , we can construct SL(2, R) gauge field Aaµ as

Aaµ = ωµa +
eµa
`
, Ãaµ = ωµa −

eµa
`

(6.7)

where ` ia a radius of AdS curvature. Then Einstein-Hilbert action of three dimen-

sional gravity with negative cosmological constant can be written as

S[A, Ã] = SCS [A]− SCS [Ã] (6.8)

SCS [A] =
k

4π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(6.9)

This is the two copies of Chern-Simons action of each gauge group SL(2, R) with

k = `
4G . We will use this formulation to extend to HS gravity and super-symmetric

HS gravity.

6.2 Higher-spin super-gravity

6.2.1 The shsE(N |2,R)⊕ shsE(M |2,R) super-algebras

Extended supergravities and higher spins in 2 + 1 dimensions

As we have seen in the last section, three-dimensional Einstein gravity with a

negative cosmological constant (AdS3 gravity) can be reformulated as a Chern-

Simons gauge theory whose gauge connection take values in the isometry algebra
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sl(2,R)+k ⊕ sl(2,R)−k. Here ±k denotes the Chern-Simons levels of the chiral and

anti-chiral sectors and is related to the gravitational coupling constant through for-

mula (6.7) below.

The reformulation can be generalized to N = (N,M)-extended AdS3 supergrav-

ity [100], where M,N refer to the supersymmetry of the two gauge factors. Recall

the isomorphism

sl(2,R) ' sp(2,R) ' so(2, 1) ' su(1, 1). (6.10)

Then, AdS3 supergravity theories are obtainable by taking an appropriate superal-

gebra containing (6.10) as a bosonic subalgebra.

For example, N = (1, 1) AdS3 supergravity can be reformulated as a Chern-

Simons super-gauge theory whose gauge super-connection takes values in the Lie

superalgebra

osp(1|2,R)+k ⊕ osp(1|2,R)−k.

Likewise, N = (N,M)-extended supergravity is based on a super-connection taking

values in the Lie superalgebra1

osp(N |2,R)+k ⊕ osp(M |2,R)−k.

In all these cases, either chiral copy contains sp(2,R) as a bosonic subalgebra.

The bosonic subalgebra of osp(N |2,R) is actually of the form sl(2,R)⊕ G, where G

is here so(N). The fermonic generators transform as spinors of sp(2,R) and vectors

of so(N).

More generally, one can take the gauge superalgebra to be a direct sum of two

simple superalgebras AL,AR:

AL ⊕AR, (6.11)

with the conditions that (i) each superalgebra contains any of (6.10) as a bosonic

subalgebra; and (ii) the fermionic generators transform in the 2 of (6.10). It has

1In what follows, we shall omit the Chern-Simons level specification in the gauge superalgebras.

They can be reconstructed from the context.
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A G ρ D

osp(N |2,R) so(N) N N(N−1)
2

su(1, 1|N) (N 6= 2) su(N) ⊕ u(1) N + N N2

su(1, 1|2) / u(1) su(2) 2 + 2 3

osp(4∗|2M) su(2) ⊕ usp(2M) (2M,2) M(2M + 1) + 3

D1(2, 1;α) su(2) ⊕ su(2) (2,2) 6

G(3) G2 7 14

F(4) spin(7) 8s 21

Table 6.1: Superalgebras of extended anti-de Sitter supegravities in 2 + 1 dimensions. Here, A is

the (extended) superalgebra, G is the internal subalgebra, ρ is the representation of G in which the

spinors transform, and D is the dimension of G. The first four superalgebras belong to the osp(m, 2n)

and spl(m,n) infinite families, while the last three are the “exceptional” Lie superalgebras.

been shown [102–104] that this condition is satisfied in only seven classes, which are

listed in Table 1. Thus, the most general (N,M)-extended AdS3 supergravity can

be defined as the Chern-Simons gauge theory whose gauge super-connections in the

chiral and anti-chiral sectors take values in any two of the seven Lie superalgebras

of Table 1.

Just as extended AdS3 supergravity can be formulated as a Chern-Simons super-

gauge theory, consistent higher-spin AdS3 supergravity theories can also be formu-

lated as Chern-Simons super-gauge theories [88]. This time, however, the gauge su-

peralgebras AL,AR are infinite-dimensional. Since the standard AdS3 supergravity

ought to be a consistent truncation of these theories, it must be that these infinite-

dimensional gauge superalgebras contain the simple superalgebras in Table 1 as

subalgebras. In other words, the higher-spin superalgebras are infinite-dimensional

extensions of these simple superalgebras.

We shall mostly concentrate on the osp(N |2,R) class, since this is the class

that encompasses uniformly all extended supersymmetries on each chiral sector.

We first need an infinite-dimensional extension of osp(N |2,R) ⊕ osp(M |2,R) to a

69



suitable higher-spin superalgebra. Fortunately, the construction of the relevant su-

peralgebras were worked out already in [87, 88]. These superalgebras are denoted

shsE(N |2,R) ⊕ shsE(M |2,R)2. In a nutshell, the higher-spin superalgebra so con-

structed corresponds to the universal enveloping superalgebra of the underlying

finite-dimensional sub-superalgebras osp(N |2,R)⊕ osp(M |2,R) quotentized by cer-

tain ideals. This fits also with the requirement that the standard AdS3 supergravity

be a consistent truncation of the higher-spin AdS3 supergravity.

In this section, we explain the higher-spin superalgebra shsE(N |2,R) and its

simplest realization in terms of “super-oscillators”. In this realization, the minimal

N = 1 case is special since it admits another equivalent formulation with a smaller

number of oscillators. We shall mention this aspect along the way as we discuss the

general N cases.

Polynomial realization of shsE(N |2,R)

In this part, we realize the Lie super-algebra shsE(N |2,R) in terms of “oscillator”

polynomials.

General N Consider the following N + 2 Grassmann variables: two commuting

ones, qα (α = 1, 2), together with N anticommuting ones, ψi (i = 1, . . . , N). Adapt-

ing to the terminology used in the literature, we refer to the index i as the ‘color’

index. As such,

qαqβ = qβqα ∀ α, β = 1, 2

ψiψj = −ψjψi ∀ i, j = 1, . . . , N

qαψi = ψiqα ∀ α = 1, 2 & i = 1, . . . , N.

These variables are all taken to be real, q∗α = qα, ψ∗i = ψi. We construct polynomials

in these N + 2 variables, with coefficients that can be themselves commuting or

anticommuting, i.e., that belong also to a different Grassmann algebra G. Thus, we

2The two simple algebras describes each chiral sector and can be analyzed separately. From now

on we shall focus on the first chiral piece
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formally consider the (graded) tensor product A = G ⊗P of the polynomial algebra

P in qα, ψi with the Grassmann algebra G. The sign in the commutation relations

for the multiplication of elements in the graded tensor product is dictated by the

total grading, so that odd elements of G and P anticommute. The Grassmann parity

used below will always be the total grading. A complex conjugation is assumed to

be defined in G, and can be extended to A taking into account that qα and ψi are

real. We systematically use the convention (ab)∗ = b∗a∗.

Let AE be the subalgebra of Grassmann-even polynomials in qα, ψi containing

only monomials of even degree and no constant term. Thus, a general element of

AE reads

f = fαβqαqβ + fα,iqαψi + f ijψiψj

+ fαβγδqαqβqγqδ + fαβγ,iqαqβqγψi + fαβ,ijqαqβψiψj + . . .

+ fαβγδεηqαqβqγqδqεqη + . . .

+ . . . ,

(6.12)

with finitely many terms. The coefficients in this expansion are completely symmet-

ric (respectively, antisymmetric) in the Greek (respectively, Latin) indices. They are

commuting (respectively, anticommuting) whenever they multiply an even (respec-

tively, odd) number of ψ’s. When we formulate higher-spin AdS3 supergravity as a

Chern-Simons super-gauge theory, the gauge super-connection will be taken to be

of the form (6.12). The coefficients in the expansion will then be identified with

commuting or anticommuting spacetime fields.

A ?-product is defined on A as follows:

(f ? g)(z′′) ≡ exp

(
i εαβ

∂

∂qα

∂

∂q′β
+ δij

←−
∂

∂ψi

−→
∂

∂ψ′j

)
f(z)g(z′)

z=z′=z′′
, (6.13)

where f(z) ≡ f(qα, ψi) and so on. In this expression, f(z)g(z′) is the standard

Grassmann product. The operation (6.13) is called the ?-product. Left and right
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derivatives with respect to the anticommuting variables are defined by

δf = δψi

−→
∂ f

∂ψi

δf =

←−
∂ f

∂ψi
δψi.

(6.14)

The epsilon symbol is explicitly taken to be

(εαβ) ≡ (εαβ) ≡

 0 1

−1 0

 , α, β ∈ {1, 2}. (6.15)

The above ?-product is well known to be associative. However, it does not pre-

serve the reality condition, in the sense that f ? g is not real even if f and g are

so. On the other hand, one can check that if f and g are both real elements of AE ,

or both pure imaginary elements of AE , of respective order 2n and 2m, then the

homogenous polynomials appearing in the expansion of f ? g,

f ? g =
m+n∑
j=0

h2(m+n−j) , (6.16)

are alternatively real and imaginary. More precisely, the homogeneous polynomial

h2(m+n−j) of degree 2(m+ n− j) in qα, ψi is:

• real and symmetric for the exchange of f and g when j is even;

• imaginary and antisymmetric for the exchange of f and g when j is odd.

We then define the ?-commutator (also called “?-bracket”),

[f, g]? ≡ f ? g − g ? f , (6.17)

which fulfills the Jacobi identity since the ?-product is associative. From what we

have just seen, [f, g]? is pure imaginary whenever f and g are both real or both pure

imaginary.

The Lie superalgebra shsE(N |2,R) is the real subspace of pure imaginary ele-

ments of AE equipped with the ?-bracket3. A general element of shsE(N |2,R) is

3One could equivalently insert a factor of i in the definition of the ?-bracket, which would

no longer coincide with the star commutator, and define shsE(N |2,R) as the subspace of real

polynomials equipped with that alternative bracket. Either convention has its own advantages.
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thus of the above form

f = fαβqαqβ + fα,iqαψi + f ijψiψj

+ fαβγδqαqβqγqδ + fαβγ,iqαqβqγψi + fαβ,ijqαqβψiψj + . . .

+ fαβγδεηqαqβqγqδqεqη + . . .

+ . . . ,

(6.18)

but the coefficients are further restricted so as to make f imaginary. So, for instance,

the coefficient fαβ is imaginary while fα,i and f ij are real.

One can rewrite alternatively (6.17) as

[f, g]?(z
′′) =

(
2i sin

(
εαβ

∂

∂qα

∂

∂q′β

)
cosh

(
δij

←−
∂

∂ψi

−→
∂

∂ψ′j

)

+ 2 cos

(
εαβ

∂

∂qα

∂

∂q′β

)
sinh

(
δij

←−
∂

∂ψi

−→
∂

∂ψ′j

))
f(z)g(z′)

z=z′=z′′
.

(6.19)

It should be stressed that the polynomial [f, g]? starts at highest polynomial

degree 2(n + m − 1). Note also that the lowest polynomial degree term in the ex-

pansion (6.16) is h2(|m−n|) so that there is a term of degree zero in (6.16) only if

n = m, in which case j = 2m is even, which implies that the term of degree zero

(when present) is symmetric for the exchange of f with g. This implies in particular

that the constant term (when present in f ?g) drops from the ?-commutator so that

[f, g]? has indeed no constant term and belongs to shsE(N |2,R).

Supertrace and scalar product The supertrace of a polynomial in the q’s and

the ψ’s is defined by its component of degree zero:

STrf(q, ψ) = 8f(0). (6.20)

The normalization is chosen to match standard conventions in the normalization of

the action below. Thus, elements in shsE(N |2,R) all have zero supertrace.

Although STrf = 0 ∀f ∈ shsE(N |2,R), it turns out that STr(f ? g) may dif-

fer from zero even if f, g ∈ shsE(N |2,R). One thus defines a scalar product on

shsE(N |2,R) by

(f, g) ≡ STr(f ? g). (6.21)

73



The scalar product is evidently bilinear, real and symmetric (given our discussions

in the previous subsection). Using the symmetry together with the associativity of

the ?-product, we further conclude that it is also invariant:

([f, g]?, h) = (f, [g, h]?). (6.22)

In addition, it is non-degenerate. It is non-zero only when f and g have same degree

in both the ψi’s and the qα’s. It is this scalar product that will be used to define the

Chern-Simons action below.

Basis A basis of shsE(N, 2|R) is given by the monomials

Xp,q; i1,i2,··· ,iN ≡
ib
K+1

2
c

2 i p! q!
qp1q

q
2ψ

i1
1 . . . ψiNN , (6.23)

where p, q ∈ N and ik ∈ {0, 1}. The degree of Xp,q; i1,i2,··· ,iN , which is p + q + K,

must be even and positive, where K =
∑N

k=1 ik is the degree in the ψ’s. The power

of i has been inserted in such a way that the elements of even Grassman parity are

imaginary, while those of odd Grassman parity are real.

With this choice, a general element of shsE(N |2,R) is of the form∑
µp,q; i1,i2,··· ,iNXp,q; i1,i2,··· ,iN (6.24)

where the coefficients µp,q; i1,i2,··· ,iN are real and of Grassman parity (−1)K = (−1)p+q.

osp(N |2,R) sub-superalgebra The subspace of quadratic polynomials is a sub-

algebra isomorphic to osp(N |2,R), as it is known from the familiar oscillator realiza-

tion of osp(N |2,R) [104]. Renormalizing and relabeling4 the quadratic basis elements

as

Yαβ = − i
2
qαqβ, Xαi =

1

2
qαψi, Xij =

1

2
ψiψj (6.25)

4Note that we have changed the letter X to Y for the generators with no ψ’s since these differ

from the corresponding X’s by a factor.
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one finds that the non-zero Lie superbrackets read explicitly

[Yαβ, Yγδ] = εαγYβδ + εαδYβγ + εβγYαδ + εβδYαγ

[Xαi, Yβγ ] = εαβXγi + εαγXβi

{Xαi, Xβj} = i (εαβXij − δijYαβ)

[Xij , Xαk] = δjkXαi − δikXαj

[Xij , Xkl] = δilXjk + δjkXil − δikXjl − δjlXik.

(6.26)

Hence, one goes from shsE(N |2,R) to osp(N |2,R) by restricting the ?-algebra of

polynomials of even degree in the q’s and the ψ’s to the ?-subalgebra of polynomials

of second degree. Conversely, one goes from osp(N |2,R) to shsE(N |2,R) by relaxing

the condition that the polynomials should be quadratic, i.e., by allowing arbitrary

(pure imaginary) polynomials of even degree modulo zero-degree term.

The osp(N |2,R) subsuperalgebra can also be realized in terms of matrices. In a

matrix representation where imaginary elements are represented by anti-hermitian

matrices for an appropriate (indefinite) hermitian product, the Yαβ are elements of

su(1, 1) ' sl(2,R). Though we shall primarily use the oscillator polynomial realiza-

tion, for comparison and completeness we collect the relevant results on the matrix

representation in Appendix B.

As already mentioned, the infinite-dimensional higher-spin superalgebra corre-

sponds to the universal enveloping superalgebra of the underlying finite-dimensional

sub-superalgebra quotientized by certain ideals. The latter being generated by quadratic

polynomials A(2), this means that the polynomials of AE can be reexpressed as poly-

nomials in the generators of the finite-dimensional sub-superalgebra A(2).

hs(2,R) subalgebra and internal subalgebra The polynomials that contain

no ψi (degree K equal to zero) form a subalgebra, which is nothing but the algebra

hs(2,R) that has been used for the description of the integer higher-spin gravity

theory [88]. It is a subalgebra of the bosonic subalgebra containing the polynomials

of even K-degree.

Another interesting subalgebra is the finite subalgebra of polynomials involving
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only ψ’s and no q’s. We call it the internal subalgebra U. The internal subalgebra U

contains so(N,R) as the subalgebra generated by the quadratic monomials Xij . To

identify U completely, we recall that the ψi’s are the generators of a Clifford algebra.

When N is even, the internal subalgebra is therefore the direct sum

U = su(2
N−2

2 )⊕ su(2
N−2

2 )⊕ u(1) (N even), (6.27)

while when N is odd, one gets

U = su(2
N−1

2 ) (N odd). (6.28)

6.2.2 Higher-Spin Chern-Simons Super-Gauge Theory

We now turn to the dynamics. The starting point is a doubled Chern-Simons gauge

theory, whose super-connection one-forms are Γ taking values in shsE(N |2,R) and

Γ taking values in shsE(M |2,R):

Γ(x; q, ψ) =
∑

m,n,i1,··· ,iN

dxµΓm,n;i1,··· ,iN
µ (x)Xm,n;i1,··· ,iN (6.1)

Γ(x; q, ψ) =
∑

m,n,i1,··· ,iM

dxµΓ
m,n;i1,··· ,iM
µ (x)Xm,n;i1,··· ,iM . (6.2)

They can be decomposed further according to the spinor parity:

Γm,n;i1,··· ,iN
µ (x) =

 Am,n;i1,··· ,iN
µ (x) (m+ n = even)

Ψm,n;i1,··· ,iN
µ (x) (m+ n = odd)

,

Γ
m,n;i1,··· ,iM
µ (x) =

 A
m,n;i1,··· ,iM
µ (x) (m+ n = even)

Ψ
m,n;i1,··· ,iM
µ (x) (m+ n = odd)

. (6.2)

The even parity components are real spacetime Bose fields, while the odd parity

components are real spacetime Fermi fields.

The super-gauge transformations of these super-connections are given in terms

of a super-gauge 0-form Λ(x; q, ψ):

δΛΓ(x; q, ψ) = dΛ(x; q, ψ) + Γ(x; q, ψ) ? Λ(x; q, ψ)− Λ(x; q, ψ) ? Γ(x; q, ψ). (6.3)
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In accordance with the super-connection 1-form, the super-gauge 0-form is expand-

able as

Λ(x; q, ψ) =
∑

m,n,i1,··· ,iN

Λm,n;i1,··· ,iN (x)Xm,n;i1,··· ,iN (6.4)

where the real coefficients

Λm,n;i1,··· ,iN (x) =

 λm,n;i1,··· ,iN (x) (m+ n = even)

ηm,n;i1,··· ,iN (x) (m+ n = odd)
(6.5)

parametrize respectively the bosonic and the fermionic gauge transformations.

The theory is defined by the action

SHS[Γ,Γ] = Scs[Γ]− Scs[Γ]. (6.6)

with a relative minus sign. The first part is referred to as the “chiral sector” whereas

the second part is the “anti-chiral sector”. The Chern-Simons action is given for the

chiral part by

Scs[Γ] ≡ k

4π

∫
M3

Str
(

Γ ∧ d ? Γ +
2

3
Γ ∧ ?Γ ∧ ?Γ

)
=

k

4π

∫
M3

[
Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
+ iTr

(
Ψ ∧ dΨ + Ψ ∧A ∧Ψ

)]
(6.6)

and similarly for the anti-chiral part. The coefficient k is a dimensionless, real-

valued coupling constant of the theory. In the gravitational context considered here,

it is related to the three-dimensional Newton’s constant G and the AdS radius of

curvature ` through

k =
`

4G
. (6.7)

The cosmological constant is Λ ≡ − 1
`2

. With k real, the action is real-valued.

As discussed in the previous section, the gauge algebra shsE(N |2,R)⊕shsE(M |2,R)

contains various finite-dimensional subalgebras. When the gauge algebra is restricted

to the so(1, 2,R) ⊕ so(1, 2,R) bosonic algebra, the theory is reduced to the Chern-

Simons formulation of the three-dimensional Einstein gravity with negative cosmo-

logical constant. When the gauge algebra is restricted to the osp(1|2,R)⊕osp(1|2,R)
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superalgebra, this theory is reduced to the Chern-Simons formulation of three-

dimensional N = (1, 1) Einstein supergravity with negative cosmological constant.

When the gauge algebra is truncated to sl(3,R) ⊕ sl(3,R) (which is not a subalge-

bra, but one can proceed along the lines explained in [86]), the theory is reduced

to the Chern-Simons formulation of three-dimensional spin-3 gravity with negative

cosmological constant, which describes the consistent interaction of a spin-3 field

with Einstein gravity. In all these cases, the vacuum is the three-dimensional anti-de

Sitter space. It is important to note that the isometry algebra sl(2,R)⊕sl(2,R) of the

vacuum configuration coincides with the gravitational subalgebra sl(2,R)⊕ sl(2,R)

of the respective gauge algebras. When Killing spinors are included in the context of

(2+1)-supergravities [105], this gravitational algebra is enlarged to the correspond-

ing superalgebras.

Though containing an infinite number of components, the Chern-Simons super-

gauge theory has no propagating field degrees of freedom. The field equations

F (Γ) ≡ dΓ + Γ ∧ ?Γ = 0

F (Γ) ≡ dΓ + Γ ∧ ?Γ = 0 (6.7)

assert that the super-connections Γ,Γ are flat. This means that locally the connec-

tions can be put into a pure-gauge configuration:

Γ(x, ξ) = U−1(x, ξ) ? dU(x, ξ) and Γ(x, ξ) = U
−1

(x, ξ) ? dU(x, ξ). (6.8)

The configuration can still leave degrees of freedom describing global charges or

holonomies, depending on the geometry and topology of the three-manifoldM3 over

which the theory is defined. Unraveling the global charges in the asymptotically AdS

background is one main task of this paper.

6.2.3 Asymptotics symmetries

Asymptotics of shsE(N |2,R) connection

The spacetime manifoldM3 is assumed to have topology R×D, where R parametrizes

the time coordinate and D is a two-dimensional spatial manifold, which we assume
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to have at least one boundary that we call “asymptotic infinity” or more loosely

“infinity”. This boundary is assumed to correspond to r → ∞, where spacetime

approaches AdS3,

ds2 → `2

r2

[
−dx+dx− + dr2

]
, (6.9)

We impose asymptotic conditions on the connection that simultaneously gener-

alize those of [86] for higher spin bosonic models and those of [99, 106] for simple

and extended supergravities.

In the case of minimal AdS3 supergravity, the boundary conditions were [106]

(after an appropriate gauge transformation that simplifies the form of the connection

and its r-dependence [96])

Γ(x)→ [−1 ·X22 +B1
+(x+, x−)X1 +B11

+ (x+, x−)X11]dx+ (6.10)

Γ(x)→ [+1 ·X11 +B
2
(x+, x−)X2 +B

22
− (x+, x−)X22]dx−. (6.11)

In the case of higher-spin AdS3 gauge theory, the boundary conditions were [86]

Γ(x)→ [−1 ·X22 + ∆11(x+, x−)X11 + ∆1111(x+, x−)X1111 + · · · ]dx+(6.12)

Γ(x)→ [+1 ·X11 + ∆
22

(x+, x−)X22 + ∆
2222

(x+, x−)X2222 + · · · ]dx−.(6.13)

Combining these two limiting situations, it is fairly obvious that the correct bound-

ary conditions for the shs(1|2,R)-valued gauge connections of simple supergravity

are

Γ(x)→
[
− 1 ·X22 +

∞∑
`=1

∆(`,0)(x+, x−)X(`,0)

]
dx+ (6.14)

Γ(x)→
[

+ 1 ·X11 +
∞∑
`=1

∆
(0,`)

(x+, x−)X(0,`)

]
dx−. (6.15)

The boundary conditions for the theories with extended supersymmetry are simi-

lar but one does not impose a highest-weight or lowest-weight type of gauge condition

along the internal symmetry algebra. Indeed, it was found in [99] that the boundary

conditions for extended supergravities took the form

Γ(x)→ [−1 ·X22 +B1i
+ (x+, x−)X1i +B11

+ (x+, x−)X11 +Bij
+(x+, x−)Xij ]dx

+(6.16)

Γ(x)→ [+1 ·X11 +B
2i
−(x+, x−)X2i +B

22
− (x+, x−)X22 +B

ij
−(x+, x−)Xij ]dx

−(6.17)

79



with no restriction on the internal indices occurring asymptotically. Therefore, we

impose

Γ(x)→ [−1 ·X22 +
∑

∆pi1···iN (x+, x−)Xp,0;i1···iN ]dx+ (6.18)

Γ(x)→ [+1 ·X11 +
∑

∆
qi1···iN (x+, x−)X0,q;i1···iN ]dx− (6.19)

where we sum on repeated indices over all their possible values (note in particular

that the values p = 0 and q = 0 occur when the degree K = i1 + i2 + · · ·+ iN does

not vanish).

Even though there is no asymptotic restriction on the weights of the represen-

tations of the internal algebra, we continue to call the boundary conditions (6.18)

and (6.19) the “highest-weight”, respectively, the “lowest-weight” gauge boundary

conditions, in analogy with the non-extended cases (N = 0 or N = 1).

Hamiltonian reduction The above boundary conditions on the currents coincide

with the constraints that implement the familiar Drinfeld-Sokolov (DS) Hamiltonian

reduction [94, 95] of WZWN models [97, 98, 107–110] – to which the Chern-Simons

theory reduces on the boundary [111]. As it has been demonstrated in those ref-

erences, the Virasoro algebra (or one of its appropriate extensions) emerges in the

reduction procedure from the current algebra of the unreduced theory.

That the AdS3 boundary conditions implement the DS Hamiltonian reduction

was pointed out first in the case of pure AdS3 gravity in [96], where the Virasoro

algebra is generated from the affine sl(2,R) current algebra (one in each chiral sec-

tor). This was then extended to the case of N = 1 supergravity, where one gets

after reduction the N = 1 superconformal algebra [106], and further to extended su-

pergravity models in [99]. In that latter case, the extended superconformal algebras

that arise contain nonlinearities in the Kac-Moody currents, realizing the algebraic

structures uncovered in [112–117].

In all these cases, the conformal dimensions of the generators of the boundary

superconformal algebras are ≤ 2 because the underlying bosonic algebras in the bulk

are of the form sl(2,R)⊕ G and the sl(2,R)-representations involve only spins ≤ 1.

80



The analysis was more recently generalized to include higher conformal dimensions

in [86] and [91] with respective bulk algebras hs(2,R) and sl(N,R).

Because the boundary conditions (6.18) and (6.19) are precisely those that im-

plement the Hamiltonian reduction of affine superalgebras, one can proceed along

the well known DS reduction lines [94] to derive the corresponding asymptotic sym-

metry algebras. The precise steps adapted to an infinite number of AdS spins have

been given in [86]. We shall follow this reference here, stressing the conceptual points

rather than giving explicit formulas, which are rather cumbersome indeed. [The ma-

chinery to derive systematically the formulas will be, however, explained.]

Residual gauge transformations

Given the AdS boundary conditions (6.18) and (6.19), the next step is to look for

the residual gauge transformations that act nontrivially at asymptotic infinity while

leaving the boundary conditions intact. With gauge parameter Λ(x), the infinitesimal

gauge transformation of Γ reads

Γ→ Γ′ = Γ + δΓ, where δΓ = dΛ + [Γ,Λ]. (6.20)

We see that, in order for Γ′ to retain the given asymptotics, Λ cannot possibly depend

on r or x− to leading order at infinity. Moreover, the gauge transformations should

not generate any other components than the highest-weight ones already present.

A similar argument goes for Γ. With gauge parameter Λ(x), the infinitesimal gauge

transformation of Γ reads

Γ→ Γ
′
= Γ + δΓ, where δΓ = dΛ + [Γ,Λ]. (6.21)

Again, in order for Γ
′

to retain the boundary condition (6.19), Λ cannot possibly

depend on r or x+. Furthermore, the gauge transformations should not generate

any other components than the lowest-weight ones already present in (6.19). Sum-

marizing, we found that the gauge transformations Λ(x+) and Λ(x−) must be chiral,

respectively, antichiral at the least. These functions must be subject to further condi-

tions in order to retain the boundary conditions. This is the task we will undertake
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next, treating explicitly for definiteness the positive chirality sector (the negative

chirality sector is treated similarly).

To proceed further, we find it convenient to decompose the gauge transformations

in stacks of successively higher sl(2,R)-spin layers. This is because, for each spin,

the highest-weight or the lowest-weight components are the only ones that appear

in the boundary conditions for the gauge connection. We thus write

Λ(x+) =
∑

m,n,i1,··· ,iN

Λm,n;i1,··· ,iN (x+)Xm,n;i1,··· ,iN

= ΛLW + λ (6.21)

with

ΛLW =
∑

i1+···+iN≥2

Λ0,0;i1,··· ,iN (x+)X0,0;i1,··· ,iN +
∑

i1+···+iN≥1

Λ0,1;i1,··· ,iN (x+)X0,1;i1,··· ,iN

+

∞∑
`=2

∑
i1,··· ,iN

Λ0,`;i1,··· ,iN (x+)X0,`;i1,··· ,iN (6.21)

and

λ =
∑

i1+···+iN≥1

Λ1,0;i1,··· ,iN (x+)X1,0;i1,··· ,iN +
∞∑
`=2

∑
i1,··· ,iN

Λ1,`−1;i1,··· ,iN (x+)X1,`−1;i1,··· ,iN

+

∞∑
`=2

∑
i1,··· ,iN

Λ2,`−2;i1,··· ,iN (x+)X2,`−2;i1,··· ,iN + · · ·

+ · · ·+
∞∑
`≥s

∑
i1,··· ,iN

Λs,`−s;i1,··· ,iN (x+)Xs,`−s;i1,··· ,iN + · · · . (6.20)

In plain words, we collected all the lowest-weight states, which are the states in-

volving X0,s;i1,··· ,iN in ΛLW . At the same time, all higher weight states, involving

Xm,n;i1,··· ,iN with m > 0, are packaged together in λ. We should also stress that,

although this is not written explicitly, the sums in the above expressions are always

restricted to total even degree. So, for instance, i1 + · · · + iN must be even in the

first term in the right-hand side of the expression for ΛLW, while it must be odd in

the second term. Such a convention will always be adopted in the sequel.
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The reason for proceeding in that manner is that the requirement that the asymp-

totic boundary conditions be preserved determines λ in terms of ΛLW . Indeed, let

us compute δΓ = dΛ + [Γ,Λ]. Structurally,

δΓ =
∑

m,n;i1,··· ,iN

γm,n;i1,··· ,iN (x+)Xm,n;i1,··· ,iN (6.21)

where

γm,n;i1,··· ,iN (x+) = ∂+Λm,n;i1,··· ,iN + [Γ,Λ]m,n;i1,··· ,iN . (6.22)

Since the only non-vanishing components of Γ at infinity are γm,0;i1,··· ,iN (apart from

γ0,2;0,··· ,0, which is fixed to be equal to −1), the requirement that these global gauge

transformations do not alter the boundary conditions is that

γm,1;i1,··· ,iN = γm,2;i1,··· ,iN = · · · = 0 for m = 0, 1, 2, · · · (6.23)

or, equivalently,

γs,`−s;i1,··· ,iN = 0 for ` ≥ s+ 1, s = 0, 1, 2, · · · . (6.24)

The highest-weight terms γm,0;i1,··· ,iN are not constrained to be zero and are equal

to ∆mi1···iN according to (6.18).

Now, since

[X22, Xm,n;i1,··· ,iN ] ∼ Xm−1,n+1;i1,··· ,iN (m ≥ 1)

one may solve recursively the conditions for the higher-weight coefficients Λ1,n;i1,··· ,iN ,

Λ2,n;i1,··· ,iN , ..., given the lowest-weight ones Λ0,k;i1,··· ,iN , along exactly the same lines

as developed in [86]. One starts from the lowest-weight conditions γ0,`;i1,··· ,iN = 0

(` ≥ 1) to determine the level-one coefficients Λ1,`−1;i1,··· ,iN . Then one proceeds to

solving the level-one conditions γ1,`−1;i1,··· ,iN = 0 (` ≥ 2)) to determine the level-two

coefficients Λ2,`−2;i1,··· ,iN . One walks one’s way up step by step in this fashion. The

last set of conditions γ`−1,1;i1,··· ,iN = 0 (` ≥ 1) determine the highest-weight coef-

ficients Λ`,0;i1,··· ,iN . It should be stressed that the higher-weight coefficients depend

83



not only on the lowest-weight coefficients but also on their derivatives. To emphasize

this feature, we shall say that the higher-weight coefficients are functionals of the

lowest-weight ones. The solutions depend also on the (non-zero) coefficients of the

connection and their derivatives.

Collecting the results of the above structure analysis, we conclude that the gauge

transformations that leave the boundary conditions intact are completely specified

by the lowest-weight components Λ0,k;i1,··· ,iN of the gauge function, while all higher

weight components are determined functionally in terms of these lowest-weight com-

ponents of the gauge function and the highest-weight components of the original

gauge connection. Notice that, as in the higher-spin bosonic case as well as in the

extended supergravity models, the solution for the higher-weight components of the

gauge function Λ in terms of the lowest-weight ones, the free gauge potential com-

ponents ∆mi1···iN and their derivatives is nonlinear. It is this feature that will render

the resulting asymptotic algebra also nonlinear.

Asymptotic symmetry superalgebra

To identify the asymptotic symmetry superalgebra, one needs to extract the commu-

tation relations for the superalgebra of asymptotic gauge transformations induced

by the gauge function Λ. In the canonical formalism, these commutation relations

are realized as the Poisson brackets of the generators of these asymptotic symmetries

(up to possible central charges [118]), and we shall focus on these here.

Consider a phase-space observable O. Under the global gauge transformation

parametrized by Λ, this observable transforms according to

O → O + δO with δO = {O, G[Λ]}PB. (6.25)

On an equal-time slice Σ2, the functional of gauge transformation G[Λ] is given by

G[Λ] =

∫
Σ2

∑
m,n,i1,··· ,iN

Λm,n;i1,··· ,iNGm,n;i1,··· ,iN + S∞, (6.26)

where Gm,n;i1,··· ,iN are the Gauss law constraints and S∞ is a boundary term at

asymptotic infinity defined by the requirement that G[Λ] must have well-defined
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functional derivatives with respect to the connection components, i.e., G[Λ] must

be such that δG[Λ] contains only undifferentiated field variations under the given

boundary conditions for Γ [119].

In the present case, the on-shell configuration is

G = 0, (6.27)

so that the generator reduces on-shell to the surface term S∞. On the other hand,

S∞ just follows from straightforward integration by part and is proportional to the

angular components of the connection along the highest weight basis vectors times

the components of the gauge parameters along the lowest weight basis vectors (to

leading order), as it was already found for supergravity [99,106]. Explicitly,

S∞ =

∮ ∑
s,i1,··· ,iN

Λ0,s;i1,··· ,iN∆s
i1,··· ,iN , (6.28)

where we have redefined the ∆’s through the absorption of the factors that appear

in front of the integral, which we denote by αs,0;i1,··· ,iN ,

∆s;i1,··· ,iN = Γs,0;i1,··· ,iNαs,0;i1,··· ,iN .

We thus see that (up to those factors) the generators of the asymptotic symmetries

are indeed nothing but the leading terms in the asymptotic expansion of the highest-

weight components Γs,0;i1,··· ,iN of the gauge connection.

The algebra of the asymptotic symmetry generators ∆s;i1,··· ,iN can be read off by

equating their variations under an arbitrary asymptotic symmetry transformation,

computed in two different ways. First, δ∆s;i1,··· ,iN can be derived from the gauge

variation formula,

δ∆s;i1,··· ,iN (θ) = δΓs,0;i1,··· ,iN (θ)αs,0;i1,··· ,iN =
(
∂Λs,0;i1,··· ,iN + [Γ,Λ]s,0;i1,··· ,iN

)
αs,0;i1,··· ,iN ,(6.29)

with the Λm,n;i1,··· ,iN determined from the lowest-weight Λ0,s;i1,··· ,iN along the lines

explained in the previous subsection. Second, δ∆s;i1,··· ,iN can be obtained directly

from the Hamiltonian expression (6.25),

δ∆s;i1,··· ,iN (θ) = {∆s;i1,··· ,iN (θ),

∮ ∑
s′,j1,··· ,jN

Λ0,s′;j1,··· ,jN∆s′
j1,··· ,jN (θ)}PB . (6.30)
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Here, θ denotes the angular coordinate of the asymptotic infinity. Comparison of

these two ways of computing δ∆s;i1,··· ,iN yields the Poisson brackets

{∆s;i1,··· ,iN (θ),∆s′;j1,··· ,jN (θ′)}PB for s, s′ ∈ N . (6.31)

It is evident that this algebra is closed, since the variations δΓs,0;i1,··· ,iN =

γs,0;i1,··· ,iN , determined through the recursive procedure explained above, are func-

tionals of Γs,0;i1,··· ,iN ∼ ∆s;i1,··· ,iN only (in addition to depending linearly on the in-

dependent gauge parameters Λ0,s;i1,··· ,iN ). The functional dependence of γs,0;i1,··· ,iN

on ∆s;i1,··· ,iN is nonlinear, which implies that the algebra of the ∆’s is nonlinear.

The terms independent of ∆ and linear in the gauge parameters corresponds to the

central charges. Although nonlinear, the algebra obeys of course the Jacobi identity

since the Poisson bracket does5.

6.2.4 Nonlinear Super-W∞ Algebra

The actual computation of the algebra SW of the ∆s;i1,··· ,iN ’s is rather cumbersome

but it can be identified to be a super-W∞ by following a general argument similar

to the one given in [86] for the bosonic case. We consider first the N = 1 case, i.e.,

shsE(1|2,R):

1. By computing the general solution to the equations for the Λ(m,n)’s (m > 0)

when only the free gauge parameter Λ(0,2) is non zero, one observes (i) that

the generators L ≡ ∆2 form a Virasoro algebra with central charge k/4π:

{L(θ), L(θ′)}PB =
k

4π
δ′′′(θ − θ′)−

(
L(θ) + L(θ′)

)
δ′(θ − θ′); (6.0)

and (ii) that the generators M j
2

+1 ≡ ∆j have conformal dimension ( j2 + 1):

{L(θ),M j
2

+1(θ′)}PB = −
(
M j

2
+1(θ) +

j

2
M j

2
+1(θ′)

)
δ′(θ − θ′) . (6.0)

5Upon gauge fixing, the Poisson algebra becomes the Dirac algebra. However, the asymptotic

algebra does not depend on the gauge choice because the constraints of the theory are all first class.
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2. By computing the general solution to the equations for the Λ(m,n)’s (m > 0)

when only the free (fermionic) gauge parameter Λ(0,1) is non-zero, one observes

that the generator Q ≡M 3
2
≡ ∆1 is the supercharge,

i{Q(θ),M s
2

+1(θ′)}PB = −k
π
δs,1δ

′′(θ − θ′)

+ (s+ 1)M s+3
2

(θ) (s odd) (6.0)

and

{Q(θ),M s
2

+1(θ′)}PB = −δ′(θ − θ′)
(

1

s
M s+1

2
(θ) +M s+1

2
(θ′)

)
(s even). (6.1)

The relations are linear at these levels. They start displaying the nonlinear struc-

ture of the algebra at higher levels. For instance, one finds explicitly

{M 5
2
(θ),M 5

2
(θ′)}PB =

α3

6
δ′′′′(θ − θ′) +

α3

12α6
(N6(θ) +N6(θ′))δ(θ − θ′)

+
3α3

2(α2)2
L(θ)L(θ′)δ(θ − θ′)− 5α3

6α2
δ′′(θ − θ′)(L(θ) + L(θ′))

− α3

3α2
δ′(θ − θ′)(L′(θ)− L′(θ′)) +

iα3

6(α1)2
Q(θ)Q(θ′)δ′(θ − θ′)(6.0)

and

{M3(θ),M3(θ′)}PB =
α3

24
δ′′′′′(θ − θ′)− 5α3

12α2
(L(θ) + L(θ′))δ′′′(θ − θ′)

+
α3

6α6
(N6(θ) +N6(θ′))δ′(θ − θ′) +

2iα3

3(α1)2
Q(θ)Q(θ′)δ′′(θ − θ′)

− iα3

2(α1)2
(Q′(θ)Q(θ) +Q′(θ′)Q(θ′))δ′(θ − θ′)

+
α3

(α2)2
δ′(θ − θ′)(L2(θ) +

2L(θ)L(θ′)

3
+ L2(θ′))

+
α3

4α2
δ′′(θ − θ′)(L′(θ′)− L′(θ)). (6.-3)

The numerical factors αi appearing in these expressions read

αi =
k(−)n+1in

πn!
. (6.-3)

In the extended case, the derivation proceeds in the same way. The salient new

features that arise are:
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1. There are now fields ∆0;i1,··· ,iN of conformal dimension 1. These are the cur-

rents of the internal symmetry, and they form an affine subalgebra. Their

brackets with the other generators reflect how these other generators trans-

form under the internal symmetry. Indeed, the solution for Λ when the only

non-vanishing lowest-weight free components are Λ0,0;i1,i2,··· ,iN (i1 + · · · iN ≥ 2)

is easily seen to be simply Λ = ΛLW =
∑

i1+···iN≥2 Λ0,0;i1,··· ,iNX0,0;i1,··· ,iN .

2. A Sugawara redefinition of the Virasoro generator L must actually be per-

formed, as already found in [99] (see that reference for details).

3. While there is a single generator Mj at each conformal dimension > 1 for

N = 1, this is not any more the case for extended models. The degeneracies

of each conformal dimension > 1 is equal to 2N−1, while the degeneracy of

conformal dimension 1 is 2N−1−1. In particular, the Virasoro generator is not

the only field with conformal dimension 2 for extended models.

We stress that our construction guarantees automatically that the brackets among

the generators fulfill the Jacobi identity since these are just Poisson brackets (or

Dirac brackets if one fixes the gauge). This is worth emphazising since other meth-

ods for constructing super W -algebras met with difficulties with the Jacobi identity.

Although there is no consistent truncation of shs(N |2,R) to finite dimensional

superalgebras that can be made beyond osp(N |2,R), the Hamiltonian reduction pro-

cedure is very similar to that encountered for the finite-dimensional super-algebras

sl(n + 1|n), which yields N = 2 models with generators Ms of higher conformal

dimensions up to s = 2n+1
2 [120–123].
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Conclusions and outlook
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Chapter 7

Conclusions

We discussed the progress in several topics in super-conformal field theory and

higher-spin theory. Let us summarize the main result of each topic we discussed

in the last chapters.

In N = 4 SYM theory, we calculated anomalous dimensions of local operators using

spinning D3-branes. In ordinary perturbative calculations it has been known that

anomalous dimension of twist 2 operator scales logarithmic way. This is not trivial

but is the general feature in Yang-Mills theories. By studying spinning D-branes we

can verified that even in the non-perturbative region, logarithmic scaling still holds.

By considering large R-charge limit we can compare the result with gauge theory side

in BMN limit. This can be a consistent check or non-trivial test of AdS/CFT duality.

In N = 6 Chern-Simons matter theory, we focused on infra-red divergence in scat-

tering amplitude. In ABJM theory one-loop correction gives trivial result and first

non-trivial corrections arise in the two-loop order. The IR divergence in the two loop

order gives 1
ε2

pole. Due to the gauge group structure, any scattering amplitude has

even number of external particles and this implies soft emission of two particles.

We performed explicit double phase space integral in spinor-helicity formalism. We

checked that two-particles emissions give 1
ε2

pole and canceled exactly with 2-loop
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corrections. This guaranteed the infra-red finiteness of cross-sections at least in the

leading order of ε. It would be nice if one can show that divergences are cancelled

in 1
ε2

order.

Asymptotic symmetry of super-symmetric higher-spin theory was calculated. Like

AdS gravity has sl(2, R) ⊕ sl(2, R) symmetry, super-symmetric higher-spin theory

has original symmetry shsE(N |2, R)⊕ shsE(N |2, R). Under the AdSboundary con-

dition, we found the general transformation preserving boundary. It turned out the

super-W∞ algebra. We can summarize the symmetry extension in each AdS theory.

In pure gravity case, sl(2, R) ⊕ sl(2, R) extends to Virasoro algebra which is con-

formal algebra in two dimension. In higher-spin theory, hs(2, R)⊕hs(2, R) becomes

W∞ algebra. So our result is the natural super-symmetric extension of higher-spin

gravity case.

So far we discussed the progress on super-conformal field theory and string the-

ory. Our goal is understanding the nature of real world. We believe that studying

this theories would give hints on unraveling the mysteries of nature. Let us end this

thesis with the hope that our results on each topics could be small blocks of future

progress in theoretical physics.
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Appendix A

Coordinates of AdS3

We mainly use the coordinates of the AdS3 × S1 foliation of AdS5 (4.56). The

coordinates of AdS3 appeared in [26] is convenient for our purpose. We summarize

its relation to the usual global coordinates. The coordinates (u, χ, σ) are given by

x−1 = cosu coshσ coshχ− sinu sinhσ sinhχ,

x0 = sinu coshσ coshχ+ cosu sinhσ sinhχ,

x1 = cosu coshσ sinhχ− sinu sinhσ coshχ,

x2 = cosu sinhσ coshχ+ sinu coshσ sinhχ.

(A.0)

The metric in this coordinates is written as

ds2(AdS3) = −du2 + dχ2 − 2 sinh 2σ dudχ+ dσ2.

On the other hand, the global coordinates (τ, ρ, ϕ) parametrize the AdS3 as

x−1 = cosh ρ cos τ, x0 = cosh ρ sin τ,

x1 = sinh ρ cosϕ, x2 = sinh ρ sinϕ.
(A.0)

The metric in this global coordinates is written as

ds2(AdS3) = − cosh2 ρdτ2 + dρ2 + sinh2 ρdϕ2.
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These two coordinate systems are related as

sinh ρ =

√
cosh2 σ sinh2 χ+ sinh2 σ cosh2 χ,

tan τ =
tanu+ tanhσ tanhχ

1− tanu tanhσ tanhχ
,

tanϕ =
tanhσ + tanu tanhχ

tanhχ− tanu tanhσ
,

or

sinh 2σ = sinh 2ρ sin(ϕ− τ),

sinh 2χ =
sinh 2ρ cos(ϕ− τ)√

1 + sinh2 2ρ sin2(ϕ− τ)
,

e4iu = e2i(τ+ϕ) cos(ϕ− τ)− i cosh 2ρ sin(ϕ− τ)

cos(ϕ− τ) + i cosh 2ρ sin(ϕ− τ)
.

The Killing vectors corresponding to the energy and the angular momentum are

given in the (u, χ, σ) coordinates as

∂τ =
1

2

(
1 +

cosh 2χ

cosh 2σ

)
∂u +

1

2
cosh 2χ tanh 2σ∂χ −

1

2
sinh 2χ∂σ,

∂ϕ =
1

2

(
1− cosh 2χ

cosh 2σ

)
∂u −

1

2
cosh 2χ tanh 2σ∂χ +

1

2
sinh 2χ∂σ.
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Appendix B

Asymptotic symmetry in HS

theory

B.1 Conventions and Notations

• sl(2,R)

A commuting spinor q of sl(2,R) is a two-component, real-valued column vector

q ≡ (qα) =

 q1

q2

 (α = 1, 2). (B.1)

The spinor indices are raised and lowed with the spinor metric

(εαβ) = (εαβ) =

 0 +1

−1 0

 , (α, β = 1, 2) (B.2)

in the North-West/South-East convention:

Aα = Aβεβα, Aα = εαβAβ. (B.3)

• AdS3

Denote AdS3 radius as `. We adopt the global coordinates of AdS3:

(x) = (x0, x1, x2) = (t, `θ, r). (B.4)
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in which the metric reads

ds2 = −

(
1 +

(
x2

`

)2
)

(dx0)2 +

(
1 +

(
x2

`

)2
)−1

(dx2)2 +

(
x2

`

)2

(dx1)2 (B.5)

To leading order at infinity, the “1” is negligible and one can replace asymptotically

the metric by that of the zero mass black hole [164],

ds2 = −
(
x2

`

)2

(dx0)2 +

(
x2

`

)−2

(dx2)2 +

(
x2

`

)2

(dx1)2 (B.6)

The light-cone coordinates are defined by

(x) = (x±, x2) = (t± `θ, r). (B.7)

B.2 Matrix realization of osp(N |2,R) superalgebra

We collect useful result for matrix realization of osp(N |2,R) superalgebra.

B.2.1 The non-extended case

The orthosymplectic osp(1, 2|R) superalgebra can be realized as the real vector space

of even (grading-preserving) 3× 3 supermatrices acting on 1 commuting real Grass-

mann variable x and 2 anticommuting real Grassmann variables θ1 and θ2 and which

preserve the quadratic form

x2 + 2iθ1θ12 = x2 + iεαβθ
αθβ (B.7)

as well as the real character of the coordinates, with the usual Lie bracket

[Γ,Γ′] ≡ ΓΓ′ − Γ′Γ, (B.7)

where the multiplication is the matrix multiplication. Such supermatrices have the

form 
0 iµ −iλ

λ a b

µ c −a

 (B.7)
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with a, b, c real and commuting and λ, µ real and anticommuting. We identify the

generators:

H ≡


0 0 0

0 1 0

0 0 −1

 , E ≡


0 0 0

0 0 1

0 0 0

 , F ≡


0 0 0

0 0 0

0 1 0

 ,

R+ ≡


0 i 0

0 0 0

1 0 0

 , R− ≡


0 0 −i

1 0 0

0 0 0

 ,

(B.7)

according to which we find the supercommutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H,

[H,R+] = R+, [E,R+] = 0, [F,R+] = R−,

[H,R−] = −R−, [E,R−] = R+, [F,R−] = 0,

{R+, R+} = −2iE {R−, R−} = 2iF {R+, R−} = iH

where the supercommutator is defined in the usual way

[Γ,Γ′} ≡ ΓΓ′ − (−)πΓπΓ′Γ′Γ. (B.7)

The supertrace and scalar product are defined as

STr(Γ) ≡ Γ11 − Tr(Γsp(2)) = Γ11 − Γ22 − Γ33 = −Γ22 − Γ33, (B.7)

(Γ,Γ′) ≡ STr(ΓΓ′), (B.7)

where Γsp(2) is the submatrix generated by E, F and H (“spacetime” algebra),

and there is no internal algebra because N = 1. In our representation, the fermionic

sector is thus encoded in the F1a and Fa1 components of the matrices and the sp(2|R)

subalgebra of osp(1, 2|R) thus lies in the Fab components, with a, b = 1, 2.

B.2.2 The extended case

The orthosymplectic osp(N, 2|R) superalgebra can be realized as the real vector

space of even (grading-preserving) (N + 2) × (N + 2) supermatrices acting on N
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commuting real Grassmann variables xi and 2 anticommuting real Grassmann vari-

ables θ1 and θ2 and which preserve the quadratic form

N∑
i=1

(xi)2 + 2iθ1θ2 = δijx
ixj + iεαβθ

αθβ (B.7)

as well as the real character of the coordinates, with the usual Lie bracket

[Γ,Γ′] ≡ ΓΓ′ − Γ′Γ, (B.7)

where the multiplication is the matrix multiplication. Such supermatrices have the

form 

iµ1 −iλ1

Oij
...

...

iµN −iλN
λ1 · · · λN a b

µ1 · · · µN c −a


(B.7)
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with Oij = −Oji and a, b, c real and commuting and λi, µi real and anticommuting.

We identify the generators:

H ≡



0 0

0
...

...

0 0

0 · · · 0 1 0

0 · · · 0 0 −1


, E ≡



0 0

0
...

...

0 0

0 · · · 0 0 1

0 · · · 0 0 0


, F ≡



0 0

0
...

...

0 0

0 · · · 0 0 0

0 · · · 0 1 0


,

R+
i ≡



0 0
...

...

0 0 −i
...

...

0 0

0 · · · 1 · · · 0 0 0

0 · · · 0 · · · 0 0 0


, R−i ≡



0 0
...

...

0 i 0
...

...

0 0

0 · · · 0 · · · 0 0 0

0 · · · 1 · · · 0 0 0


,

Jij ≡



0 1 0 0

. . .
...

...

1̄ 0 0 0

0 · · · 0 0 0

0 · · · 0 0 0


,

(B.7)

where in R+
i and R−i (odd generators) the i factors sit in the i-th line and the 1

factors in the i-th column, and in Jij the 1 (resp. −1) factors sit in the position (i, j)

(resp. (j, i)). We find the supercommutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H,

[H,R+
i ] = R+

i , [E,R+
i ] = 0, [F,R+

i ] = R−i ,

[H,R−i ] = −R−i , [E,R−i ] = R+
i , [F,R−i ] = 0,

i{R+
i , R

+
j } = 2δijE i{R−i , R

−
j } = −2δijF i{R+

i , R
−
j } = Jij − δijH

[Jij , E] = 0, [Jij , F ] = 0, [Jij , H] = 0
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[Jij , R
+
k ] = δjkR

+
i − δikR

+
j [Jij , R

−
k ] = δjkR

−
i − δikR

−
j (B.7)

[Jij , Jkl] = δjkJil + δilJjk − δikJjl − δjlJik, (B.7)

where the supercommutator is defined in the usual way

[Γ,Γ′} ≡ ΓΓ′ − (−)πΓπΓ′Γ′Γ. (B.7)

The supertrace and scalar product are defined as

STr(Γ) ≡ Tr(Γso(N))− Tr(Γsp(2)), (B.7)

(Γ,Γ′) ≡ STr(ΓΓ′), (B.7)

where Γso(N) is the submatrix of Γ generated by the Jij basis elements (internal

algebra) and Γsp(2) is the submatrix generated by E, F and H (“spacetime” algebra).
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요약 (국문 초록)

이 논문에서는 초대칭 등각장론과 3차원 중력 이론에 대한 세 가지 분야의 연구

를 한다.

4차원시공간의초대칭등각장론에서국소적연산자의 scaling-dimension을홀로그

래피 대응성을 이용하여 계산한다. 이를 통하여 섭동적 전개를 통해 발견된 스핀에

대한 로그 스케일링이 비섭동적 영역에서도 여전히 유효함을 확인한다.

또한 천-사이먼즈 초대칭 등각장론의 산란 진폭에 대한 발산 문제를 다룬다. 섭동

전개의 보정항에서 나타나는 적외선 영역에서의 발산이 Soft-Bremsstrahlung 의 보

정항과 서로 상쇄되는 과정을 보인다.

마지막으로 높은 스핀 입자를 가지는 3차원의 중력이론에서 점근적 대칭성이 확장

됨을 보인다. 안티 드 시터 공간에 대한 경계조건을 통해 점근적 대칭성이 수퍼-W

대칭성으로 주어짐을 확인한다.

주요어 : 초대칭 등각장론 , 중력/장론 대응성, 적외선 발산, 점근적 대칭성

학번 : 2006-20330
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