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Abstract

In this dissertation we discuss about some progress on understanding in

super-conformal field theories and higher-spin theory.

We first study the basic properties of super-conformal symmetry in field

theory and their implications on physical quantity. We review the AdS/CFT

correspondence briefly and discuss the strong/weak nature.

Main part consist of three part. In terms of AdS/CFT correspondence,
we study the anomalous dimension of operators in N' = 4 SYM with
large spin and R-charge in the symmetric representaion. Explicit calcu-
lation of energy spectrum of D-branes in terms of spin and charge is
performed.

Secondly, we study the infra-red finiteness of scattering amplitude in
ABJM theory. In terms of Kinishita-Lee-Nauenberg theorem, we calcu-
lated soft radiations and check the cancellations of leading order diver-
gence between loop corrections and soft radiations.

Finally asymptotic symmetry in super-symmetric higher-spin theory in
AdS3. We found that shs®(N|2, R) symmetry enhanced to the Super-
W algebra.

keywords : Super-conformal theory, AdS/CFT, Anomalous dimen-

sion, Infra-red divergence, Asymptotic symmetry
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Chapter 1

Introductions

A quantum field theory has been a successful framework of describing nature of fun-
damental forces in physics. After establishing the Quantum Electro-dynamics(QED)
which describes electro-magnetic interactions between elementary particles, Other
two fundamental forces - Weak and Strong interactions - unified in terms of Non-
abelian Yang-Mills theory. These three fundamental forces are summarized in the
theory called Standard Model and every experimental tests and discovery of Higgs
particles support its validity.

Meanwhile, there are still remained problems in theoretical physics. Gravity the-
ory which is the one of four fundamental forces in nature doesn’t have any quantum
mechanical descriptions yet. Any attempt to include gravity forces in quantum field
theory framework has been unsuccessful. String theory is the one of the candidate
for a consistent theory of quantum gravity.

Recently, duality between quantum field theory and gravity found in the string the-
ory framework. It relates gauge theory with super-conformal symmetry and gravity
theory in ten-dimensional curved space. Comprehensive studies has been made to un-
derstand the nature of each theory. Also explicit calculations are performed to check
the duality called AdS/CFT correspondence. Super-conformal symmetry plays im-

portant role in these works.



Another issue is that because of confinement nature of strong forces, it is not easy
to study QCD theory quantitatively. Usual perturbative expansion is not possible,
so strong interaction phenomena in hadron energy scales has not solved yet. Super-
conformal field theory which is the gauge theory with additional symmetry can be a
simple toy model to overcome this difficulty. For example AN/ = 4 Super Yang-Mills
theory has similar structure to QCD. Although theory is not same exactly, many

aspect of QCD can be obtained from this super-conformal theory.

Along this line, we discuss the super-conformal field theory in this thesis. We discuss
the general feature of super-conformal symmetry and AdS/CFT duality, we present
three independent progress in super-conformal theories and higher-spin theory.

In terms of AdS/CFT correspondence, we study the anomalous dimension of op-
erators in gauge theory. We focused on operators in symmetric representation with
large spin and R-charge. Using duality, we calculated the scaling dimension by con-
sidering energy spectrum of spinning branes in AdSs x S° space. We conclude that
logarithmic scaling which was found in perturbative computations still holds in non-
perturbative regions.

Next topic is the infra-red finiteness of scattering amplitude in three dimensional
super-conformal theory. It is Chern-Simons-matter theory with gauge group U(N) X
U(N). We review the general feature of IR divergences in terms of Kinishita-Lee-
Nauenberg theorem. Then we calculated soft radiations explicitly and check the
cancellations of leading order divergence between 2-loop corrections and soft radia-
tions in ABJM theory.

Finally we study the asymptotic symmetry in super-symmetric higher-spin theory
in AdSs3. Asymptotic symmetry is the coordinate transformation which preserves
asymptotic boundary condition. We review the result of Brown-Henneaux original
derivation in pure gravity theory. And we extend to the super-symmetric theory in-
cluding higher-spin filds. We found asymptotic symmetry of super-symmetric higher-
spin theory is Super-W,, algebra.



This thesis is organized as follows. In section 2, we briefly discuss the general fea-
ture of super-conformal symmetry. we give the definition of conformal symmetry and
study its implications on field theory. We extend it to the super-conformal symmetry
and give two examples of super-conformal theory in four, three dimensions. In sec-
tion 3, we derive the AdS/CFT correspondence. Following the Maldacena’s original
argument, we study the strong/weak nature and AdS/CFT dictionary. In section 4,
we focus on calculations on anomalous dimension. We introduce the BMN limit and
correspondence between operators and spinning string(or branes). Explicit calcula-
tions of energy spectrum are performed. In section 5, we introduce the properties
of scattering amplitude and structure of IR divergence in loop corrections in ABJM
theory. From this we compute the IR divergence in soft emissions and verify the
cancellations in the leading order divergence. In section 6, we study the asymptotic
symmetry of higher-spin theory. We conclude the thesis by summarizing the results

in section 7.
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Chapter 2

(Super-)conformal field theory

In this section, we will review about basic properties of conformal field theories.
Conformal symmetry plays important role in quantum field theory- for example, in
the description of phase transitions in two-dimensional system and in string theory
which is conformal theory of two-dimensional world-sheets. It also takes important
role in the subject of AdS/CFT correspondence |15] or gauge/gravity duality which
is the one of the main theme in this thesis.

Conformal symmetries are global coordinate transformation preserving angle of
two vectors in spacetime. These transformations are represented by conformal group
which is isomorphic to rotational group in higher dimension. The group structure
is different according to the dimension of spacetime. For example in two dimension,
it has infinite number of generators while there are only finite generators in other
dimensions. In four dimensional theory which are relevant for particle physics, it has
15 generators.

Quantum field theory which have conformal symmetry can be roughly under-
stood as it has no particular energy scale. Classically, this is achieved by writing
the action of the theory with only dimensionless parameters. Classical field theory
with dimensionless parameter like massless ¢* theory or massless Quantum chromo-
dynamics can be conformal theory. But in quantum theory, those conformal sym-

metries of lagrangian are broken by quantum corrections. It is because of ultraviolet

11



divergence which introduces some energy scale and running coupling constant by
renormalization procedure. To maintain the conformal symmetry in quantum the-
ory, we need more constraints. With some other symmetry like super-symmetry, we
can construct theories which conformal symmetries are preserved even at quantum
level. In this section we will review two examples of those conformal theories - N' = 4
super Yang-Mills theory and ABJM theory. Each are in four, three dimension. These
two theories are also important in the studies of AdS/CFT duality.

2.1 (Super-)conformal symmetry

To study the conformal field theories, we first review about conformal symmetry,
their algebra structure and field representations. These are naturally extended to

supersymmetric version which forms much larger group - super conformal group.

2.1.1 Definition of conformal transformaions

Conformal transformation are defined in the following way. Consider d dimensional
spacetime with metric g,,,. Under coordinate transformation, conformal transforma-

tion leaves the metric up to a local scaling.
gt =2, g, (@) = Mz)gu(2) (2.1)

Geometrical meaning of above expressions is that angle of two vector are preserved.
We can easily see that in special case A(z) = 1, it is nothing but the usual Poincaré
transformations which preserve the angles trivially. So conformal group has Poincaré
group as a subgroup. We can find the other transformations by considering infinites-

imal transformation.
ot — 2 = 2P + e (z) (2.2)

The metric changes as gl’w = g — (Ou€y + Oy€,). So definition of conformal trans-

formation requires
Oper + 0vey = F () g (2.3)

12



where F(z) is arbitrary function related to A(x). By adding another derivative,
taking permutations of indices and taking linear combinations of those equations,

we can obtain one of the constraint equation
20%¢, = (2 — )9, F (2.4)

We can see that dimension 2 is special in the above constraint equation. In d=2,
any holomorphic functions can be solutions of generator , so it has infinite number
of symmetries. These properties are important in string theory, but in this section
we will focus on dimension other than 2. By deriving several conditions of ¢, from

above expressions, we can solve the most general solution of €, in d > 2 dimension
€ = ap +mua’ + Az, + 2(b,a" )z, — by’ (2.5)

There are four kinds of parameters each represent different transformations. Poincaré
transformation which are subgroup of conformal group is represented by parameters
ay, M. Each corresponds translation and rotations. A and b, correspond to dilation
and special conformal transformation, respectively. In four dimensional spacetime
where we are living in, conformal transformation has 15 generators - 4 translations,
6 rotations, 1 dilatation and 4 special conformal transforms.

The finite transformation can be obtained by exponentiate the above infinitesimal

transformations.
" = gt +at -Translation
b= At -Rotation
2= M T’ -Dilatation
, xh — bHa?
ot = -Special conformal transform (2.6)

1—2b- 2+ b222
For the comment, the last expression can be understood with the notion of inversion
transformation xz# — g—g The complicate expression of special conformal trans-
form can be made of inversion followed by translation and another inversion again.

Inversion transformation is not connected to identity transform, so it can not be

represented by infinitesimal transformations.
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To study the algebra structure of conformal group, let us derive the generators
of conformal transformation. We define the generators for the infinitesimal transfor-

mation as follows
' = (1 +ia" P, 4+ im" M, + i\D + ib" K, )z® (2.7)

Then from the solution of € in equation([2.5)), we can easily obtain the expressions

of generators of conformal group

P, = —id,
M, = i(x,0, —x,0,)

D = —izlo,

K, = —i(2z,2"0, —20,) (2.8)

These generator obey the commutation relations which define the conformal group.

The conformal algebra is written as follows [7]

[Py, P =0, (M Pyl = i(Mup Py — Mup )
[M/,Lw Mpa] = i(_nquyp + 771/0'M,up + nupMVa - nlxpM,uU) ) (29)
(D, Pu] =P, [Km MW] = i(’?puKu - npuKu) )

(D, K, =—iK,, Ky, P)| = 2i(nuD — M,,). (2.10)

Three relations in equation are usual commutation relations of Poincaré
algebra and other 4 relations in equation (2.10)) are algebras of Dilatation and special
conformal transformation.

To study further the structure of conformal group, it is better to combine the

generators into another form Jy;p,

Juw = M, J_10=D (2.11)
1 1
Joiu = §(Pu - Ku) Jou = Q(Pu + Ku) (2.12)
14



where Jyny = —Jyp and M, N € —1,0,1,....d. So The commutation relations of

these new generators can be summarized in simple form,

[JaB, Jep) = i(napJBc + necJap — nacJsp — NpJac) (2.13)

with diagonal metric in d + 2 dimension n4p =diag(-1,1,1,..1,-1). Above commuta-
tion relations are algebra of group SO(d,2). This shows that conformal group in d
dimension is isomorphic to rotational group SO(d,2) in d+2 dimension. SO(d,2) has
$(d+2)(d+1) generators which are 15 generators in 4 dimensions. This isomorphism

will be used in the study of gauge/gravity duality in the next chapter.

2.1.2 Field representations

So far we studied the definition of conformal symmetry and its action on coordi-
nates. In field theory, we also have to define its action on fields so we can say the

field theory is invariant under conformal symmetry.

Consider fundamental field ¢7(x) with conformal weight A and Lorentz index 1.

Acting of conformal generators to field gives

Ptor = 0'¢r
M"or = (249" —a"0")pr + (S*)7 6,
Dtor = a2"0"¢r + Ady
KMeor = (22M2"0, — 2°0")¢r + 22" Ay + 22, (S™) s

NN
— =
S Ot

where SH¥ is a spin generators. First 2 lines are familiar transformation of fields un-
der Poincaré transformations and next 2 lines are new expressions under Dilatation

and special conformal transformations.

In principle we can obtain the variation of fields under finite transformation.

But for simplicity, we shall give the result for scalar field under finite conformal
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transformation. Under a conformal transformation z — 2’ ,

—A/Jd

L P (2.18)

bla) > ¢ () = | 5

The Jacobian factor is related with scale factor A(z) as

or'

o= Aw)~4/2 (2.19)

The field which transformed like above expressions called primary field.

Variation of primary fields under conformal transformation is encoded in confor-
mal weight A. Usually, we can make the theory conformal if it has only dimensionless
parameters and conformal weight is equal to the mass dimension of fields. For ex-
ample, the usual massless ¢* theory is invariant under conformal transformation if
we choose the conformal weight A = 1. But these conformal symmetry holds in only
classical level and it start to be broken when we consider quantum corrections.

With the field representation of conformal symmetry we reviewed above, let us
see the implication of conformal symmetries for correlation functions. In conformal
theory, conformal covariance of primary fields give some restrictions on expression
of correlation functions. We will see the implication on two, three, and four point

functions respectively in the simple scalar fields case.

Two-point functions Consider two-point function of scalar primary operator
@1, ¢2 with conformal weight A1, Ag respectively. Under conformal transformation,
their two-point correlation function is transformed

Ay/d Ag/d

s (612, () (2.20)

82?1

81‘2

(p1(1), Pa(z2)) = ’

First if we specialize the transformation to a dilatation x — Ax

(D1(x1), da(w2)) = NATT22) 0y (A1), Bo(Aw2)) (2.21)

Second, from translation and rotation invariance, we can require

(@1(21), d2(2)) = f((21 — 22)%) (2.22)

16



From above two conditions, we can see that

Cr2
(P1(21), P2(22)) = |21 — 2| B1+52 (2.23)
with unconstrained coefficient C'2. The last transformation remained is special con-
formal transformation. Under special conformal transformation, distance between

two points is transformed as,

|z1 — 2|
Tl — 2| = 2.24
o 2 (1—2b-z1 + b223)V/2(1 — 2b - 21 + b222)1/2 ( )
which implies,
A +A
Ch2 () Cha (2.25)
|CC1 — 1:2|A1+A2 - ’YlAlfYZAQ |J,‘1 _ x2‘A1+A2 .

where v; = (1 — 2b- z; + b%z?). So we can arrive the result Ay = Ay that only fields
which have same conformal dimension is correlated. In conclusion, the functional

form of two point function of primary fields is completely fixed up to overall constant.

(91(21), P2(22)) = G (2.26)

- ‘:Bl — x2|2A1

Three-point functions A similar analysis can be performed in three-point func-
tions. Just as previous case, a translation and rotation transformation make the
functional form as function of Lorentz invariant distances xlgj = (z; — x;)?. And
covariance under dilatation transform implies

Chas
(P1(1), P2(22), 3(73)) = —— (2.27)
T12%23%13
with coefficient a,b,c such that
a+b+c=A1+ Ay + As (228)
Under special conformal transformation, eq (2.27) becomes
(1172)*2(1273)" 2 (113)*  Chas
ANBWAGSWAY:) a b ,.c (229)
12 T3 T12T23773
17



which leads to
a+c=2A1, a+b=2Ay, b+c=2A3 (2.30)

The solution of above equations are

a = A1+ Ay —Ajg (231)
b = Ag+ Az — Ay (2.32)
c = A3+A1—Ay (233)

So we arrived to conclusion that conformal symmetry also constrain the three-point
function completely up to coefficient as

Ci23
(p1(21), P2(2), p3(x3)) = Al+As—As AotAs—A; AstA—Ag (2.34)
Lo Lo L3

Four-point functions So far conformal symmetry determines the functional form
of two, three point function completely up to coefficient. But from four point corre-
lation function, it stops. This property comes from the possibility of construction of

conformal invariant cross-ratios,

2 .2
xix
ij vkl
g (2.35)
ikTie
which gives two independent cross-ratios in four point case.
2 .2 2 .2
12734 14723 (2.36)
2 .2 2 2 :
T13%24 13724

Any function of these two cross-ratios are conformal invariant and cannot be re-

stricted further. So the general form of four-point correlation function can be

2 2 2 2
(p1(21), P2(72), P3(w3), pa(z4)) = f (%2:[:34’ %) Hl“iAj/?)_AiAj (2.37)

L13Tog T13To4

As we have seen so far, in conformal theory, there is restrictions on correlation
functions. It is one aspect that conformal symmetry constrain the structure of the
theory. We can also find restrictions on correlation function made of fields other than

scalars. We will not list particular example here but one can see some result in [7]

18



2.1.3 Super-symmetric extension

One can extend the ordinary Poincaré group by including fermionic generators which

satisfies anti-commutation relations

{Qa, Qs} = —20%, P, (2.38)

The fermionic generators Qq, @, is transformed under (%,0),(0, %) representation
respectively and have roles of making connections between bosonic and fermionic
fields. With these fermionic generators, new algebra between bosonic and fermionic
generators arises and makes the larger group, Super-Poincaré group.

For the application in the following chapters, let us concentrate on N' = 4 super-
conformal group. This is the super-conformal symmetry of gauge theory in four
dimension which is called N/ = 4 Super Yang-Mills theory. This theory plays the
role of basic playground in the next two chapters. This theory is important because
it can be considered as simplified version of Quantum chromo-dynamics which in
not easy to solve directly. And it is also important as one of the concrete example
of AdS/CFT duality which is the main theme in the next chapter.

In the N' = 4 super-conformal group, there are sixteen super-charges and sixteen

super-conformal charges.
gm @dau Saa7 ggv (Oé,C'k - 1727 a = 1727374) (239>

The N = 4 super-conformal algebra which combine previous conformal algebra and

19



super-symmetry algebra is written in the followings. [8]

K", Q2] = (0),5¢77 52, (K", Qaa) = (")pa¢" S0, (2.40)
[P, Saa] = (0"),45¢" Q4 [P, 8] = (0")5ac™QS, (2.41)
L, Q%) = —i (6") s QL. (LM, Qua) = i (6") 3 Qua,  (2.42)
L4 Saa] = —i (") 05 €800, [LM, 58] = —i (a"), 47752, (2.43)
[D,Q%) = -£Q%, (D, Qéa) = —% Qéa (2.44)
[D, Saa] = +% Saa, [D,S%] = +% 84, (2.45)
{Qa: Qap} = (0"),50% Pu {Saa, S5} = (0)50a" K. (2.46)

{Q4 Sav} = (07)%eapRij + (0" )apd®s Ly — i€asd® D, (2.47)

{Qéas S‘Z} = —(0")a"eg5Rij +i(5") 500" Ly — i 584" D (2.48)

where the Pauli matrices are defines as

1 0 S
o= , o0°= , 0°= . ot 07 = deijro(2.49)
10 1 0 0 -1

ot =(-1,0"), o'=(-1-0"), a’“’zza[ﬂa”], EWZZE[HUL(]Q.E)O)

All other commutation or anti-commutation relations are vanish. In the commuta-
tion relations between Q% and SZ , new bosonic generators R;; appear. These are
SO(6) R-symmetry generators which means it has extended super-symmetry N = 4.
This R-symmetry is used to label the local operators in terms of corresponding R
charges.

The bosonic part of super-conformal symmetry are SO(2,4) ~ SU(2,2) which is
usual conformal symmetry and SO(6) ~ SU(4) which is R-symmetry. These makes
the full super-conformal group SU(2,2/4). In matrix representation, this can be

written schematically as

P,ua L,UJM Da K,u Qg?ggc

_ (2.51)
Qdaa Sazz Rz’j

20



Before finish this subsection, let us consider chiral primary operators which also

called BPS operators. If some operator satisfy the relations

Q0] = 0 for some « and a, (2.52)

(o2

[Saa; O] = 0 for all o and a (2.53)

we call this operator as chiral primary operator. According to the super-conformal
algebra, we can see that there is nice property on conformal dimension of this oper-

ator. Consider scalar operator in zero point which is chiral primary,
{Q&: Sev} O(0)] = [(0) veapRij + (0" )asd® Ly — i€apd®sD, O(0)]  (2.54)

Because the definition of chiral primary operators, left hand side is zero. Then be-
cause O(0) is a scalar, [L,,,0(0)] = 0. So scaling dimension of chiral primary
operator is directly determined from it R-symmetry charges. Because they do not
receive quantum corrections, their scaling dimension is just the same as their classical

values.

2.2 N =4 Super Yang-Mills theory in 4 dimension

So far we have been discussed about (super-)conformal symmetry of field theories.
As a example of conformal theory which is still invariant at quantum level, let us
introduce two maximally super-symmetric gauge theories. First one we will consider
in this section is maximally super-symmetric Yang-Mills theory in four dimension

which called N' = 4 Super Yang-Mills theory.

The natural way to derive A/ = 4 Super Yang-Mills theory is starting from AN/ = 1
SYM in ten dimensions and taking dimensional reduction [6]. The Lagrangian of

N =1SYM in ten dimensions is

1 g —
L=Tr (—4FMNFMN + ZgwrNDqu) (2.55)

21



where the index M,N run from 0 to 9. The Fjsy is field strength of ten-dimensional

gauge field Aps and I'ps, ¥ are Dirac matrices, Majorana-Weyl fermion respectively.

In dimensional reduction to four dimension, we split ten dimensional space into
four dimensional Minkowski space and six dimensional Euclidean space. We write
ten dimensional indices M,N into four dimensional indices p and six dimensional
one m. Then one can write the ten-dimensional I' matrices in terms of four and six

dimensional ones,

'y, = 7,01, uw=0,.,3 (2.56)
Ttz = 500m, m=1,..,6 (2.57)

where v, and 75 are ordinary four dimensional gamma matrices and I';, are Dirac

matrices in six dimensional Euclidean space,

T = (2.58)

m

QN

Now we require that fields depend only on four dimensions, i.e.

OmAy = (2.59)

O = m=4,5,..,9 (2.60)

In four dimensional point of view, six dimensional component of gauge field behaves

as scalars while other components are remained as vectors.

Ay = Au-, p=0,.,3 (2.61)
dm = Asgm m=1,.,6 (2.62)

With these decompositions and reduction, we obtain four dimensional action which

is /=4 SYM. Action for this in written as [7]

. . 2
L=Tr <1F3 +iXio DA + %(Dm)? +ighldg 6] +igX [V, 6] + L lo, duello”, ¢>’“]§z-63>
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N = 4 SYM is a Yang-Mills theory in four-dimension which is similar to QCD.
Because of asymptotic freedom and confinement, it is not easy to analyze QCD
quantitatively. By studying conformal theory in four-dimension, we can get many
insight about the general behavior of QCD. This theory is also important as a
concrete realization of AdS/CFT correspondence. We will study this aspect in the

next chapter.

2.3 N =6 Chern-Simons matter theory in 3 dimension

Another example of super-conformal theory is N’ = 6 Chern-Simons matter theory in
3 dimension which called ABJM theory [68]. It consists of two copies of Chern-Simons
action which coupled to scalars and fermion fields. Its gauge group is U(IN) x U(N).
Action for ABJM theory is

S = SCS(A“) - SCS(ZM) + Smatte'r + Sint (264>
k 21
Sos= [ Tr| ——AANdA+ —ANANA (2.65)
a7 3
A~uT . —A
Satter = [ T (D' D5 5 + iv200D, 5" (2:66)

Sint contains interactions between matters and gauge fields. Details of expression
for this can be found in [68].

Because the action for gauge field is Chern-Simons theory, degrees of freedom of
gauge fields are zero. They only participate as a interaction with matter fields. The

representations of each fields under gauge group U(N) x U(N) is the followings.

A, (adj, 1) A, (1, ady) (2.67)
¢t (N,N;4)  ¢4:(N,N,4) (2.68)
Ya: (N,N:D) 9" (N,N,4) (2.69)

Each matter fields is in bi-fundamental representation under gauge group. To make

a gauge invariant object, every fields and anti-fields come in alternate way. These
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properties constrains the structure of scattering amplitude. We will come to this
point in the next section.

Like N' =4 SYM theory, ABJM theory is also a example of AdS/CFT correspon-
dence. In this AdSy/C FT3 case, dual gravity is ITA string theory living in AdSy x CP?
and ABJM theory is world-volume theory of M2-branes. To study further, let us re-
view about AdS/CFT briefly.
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Chapter 3
Gauge gravity duality

In this chapter we briefly review about the gauge-gravity duality. This has been one
of the main theme in theoretical physics for last fifteen years. Gauge-gravity dual-
ity implies correspondence between two different theory. So studying the structure
of each theories and reveal their correspondence relation will improves our under-
standing of quantum field theory and quantum gravity theory. Meanwhile because
the physical observable in two different theories is related each other, gauge-gravity
duality is important not only in pure theoretical point of view but also in practical
point of view. If some physical quantity is hard to calculate in one theory, it could
be obtained in a alternative way from a dual theory.

Gauge-gravity duality is also known as holographic theory because it relates gauge
theory with gravity in higher dimension. There had been many argument about this
duality [1,/2] and concrete example was found by J.Maldacena. We will review his

derivation of AdS/CFT correspondence and briefly discuss about implication of it.

3.1 Large N expansion

Before we derive the AdS/CFT correspondence, let us review t’hooft large N planar
limit. Consider Yang-Mills theory with gauge group SU(N). Together with coupling

parameter gy s, we take N as a free parameter too. If we calculate the Feynman
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diagram in perturbative expansion, we can divide the diagrams according to the two
parameters gy s, N. Draw the Feynman diagram in the double line notation and
consider it two-dimensional surfaces. Then we can see any Feynman diagram can be
organized in terms of their topological nature. Generally, diagrams with vertices V,

propagators E and loops F has dependence on parameters as
(g NPV NTEHY (3.1)

where FF — E +V = 2 — 2¢g with genus number ¢g. Now, in the two parameter space

gy, N we take the limit
N — oo, g%MN = )\ = fixed (3.2)

This is called Large N limit or Planar limit [5]. In planer limit, we organize it
in the double expansion with g%, N and % We can easily check that % expansion
divide the diagram according to their topological property. The leading order in %
expansion can be seen a sphere and next sub-leading order becomes torus and so
on. This implies double expansion of physical qunatity.

o L) =% (1)292 S0 (3.3)

'NT AN - on

In the following chapters we will use this double expansion in large-N limit. In the

leading order of N, we can concentrate on only planar diagrams. This makes the

perturbative calculation simple.

3.2 AdS/CFT correspondence

Here we introduce the original derivation of AdS/CFT correspondence by J.Maldacena

[15]. From the two different point of view of D-brane dynamics, we briefly show how
correspondence arises. For detailed review, see [4].
Consider D3-branes in type IIB string theory in ten dimensional flat space time. We

set the N D3-branes stacked together and choose a coordinate system as
2¥ 2t 2% 23 : coordinate of coincident D3-branes, el =0 (I=4,5,.9) (3.4)

Now we analyze these D3-branes in two different point of view.
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Low-energy dynamic of D-branes

In this setup, we need to consider open strings attached to D3-branes and closed
strings living in ten dimensions. So this physical system can be divided into three
part, brane dynamics including open strings, closed string propagating ten dimen-
sional flat spacetime and interaction between brane and closed strings. Open string
mode contains gauge field A, fermion), scalar ® and higher massive modes. Closed
string also contains graviton g, dilaton ¢ and two, four form fields B,,,, C\., Crupo

and higher modes. Now consider low-energy and decoupling limit.
o — 0, gs = fixed (3.5)

In this limit every massive excitation modes get away. Open string on D3-branes
becomes N' = 4 SYM theory and closed string in the bulk becomes super-gravity.

Moreover because
Sint ~ 950/2 (36)

interaction between open and closed string switched off. Thus we have two decoupled

system in this limit.
e N =4 Super Yang-Mills theory in 4 dimensions

e Free super-gravity in ten dimension

Black branes geometry

N coincident D3-branes can be seen in a geometric point of view. Like black-hole
system, N d3-Dranes make the geometry curved. In this view point we can replace

the D3-branes with curved geometry solution called black 3-brane geometry.
ds? = H™2(r)da? + H2 (r)(dr? + r2d02) (3.7)

with the harmonic function

R4

H(r)=1+ -7, R = 4mg 0N (3.8)
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In the same limit we can see that two different region r < R, r > R is
decoupled. This can be understood by considering dilaton field going from r < R to
r > R region. Due to the redshift, any finite energy cannot reach to r > R region.
In 7 < R region, geometry becomes AdSs x S°

ds* — ﬁdfc2+R—2dr2 + R?d032 (3.9)
R274 T 42 5 '

and in r > R region, geometry becomes flat space. So we have also two decoupled

system in the limit.
e Type IIB superstring theory in AdSs x S°
e Free super-gravity in ten dimension

Now by comparing the result of two different view point, we can arrive to the con-
clusion that two theories, N’ = 4 Super Yang-Mills theory and Type PiB superstring
theory in AdSs x S° are same. This is the AdSs/CFTy correspondence.

3.3 Implications of Duality

Let us study more about the duality and see what is the implication of duality we

derived.

First we can compare the symmetry structure of both theory. In N' = 4 SYM

theory, there are two kinds of bosonic symmetry
SO(2,4) : conformal symmetry in 4d, SO(6) : R-symmetry (3.10)
These bosonic symmetries correspond isometry group of AdSs x S° spacetime.
SO(2,4) : isometry group of AdSs, SO(6) : isometry of S° (3.11)

Beside this bosonic symmetry we can check the correspondence of fermionic gener-

ators and the full global symmetry PSU(2,2|4).
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Now let us see how the parameters of both theories are identified. According to

the black p-brane solution, we can get the relation
2 R! 2
ATgs = 9y o2 Gy N = A (3.12)
In large N planar limit, N = 4 SYM theory has perturbative expansion with
parameter is 932, N = X . On the other hand, dual string theory has o/ expansion
which is in inverse relation with )\. If we keep the parpameter A small, we can
calculate perturbatively in field theory side, but cannot do it in gravity side, and
vice versa. Because of this property, AdS/CFT duality is also called strong/weak
duality.
This strong/weak nature of duality makes it difficult to test the duality. Because we
cannot access to the both perturbative region, it is hard to calculate the physical
quantity in both theory simultaneously. There has been many progress to overcome
this difficulties. We will study about this in detail in the next chapter and calculate
one physical quantity-anomalous dimension- explicitly to compare with dual theory

calculations.
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Chapter 4

Anomalous dimensions of N =4

SYM

So far, we studied the basic properties of super-conformal theories and general argu-
ment about gauge gravity duality. After discovery of concrete example of holographic
duality - the correspondence between AN/ = 4 Super Yang-Mills theory in 4 dimension
and type IIB string theory in AdS5 x S° , lots of explicit tests were delivered. One
way to check the correspondence is computing physical quantities explicitly on both
side and see if they agree each other. One of the object which is used to test the
duality is anomalous dimension of composite operators in gauge theory. This is main
theme of this chapter.

Let us see what kind of physical quantity in string side should be computed to
compare with the anomalous dimension in gauge theory. According to the AdS/CFT
dictionary, local operators in ' = 4 SYM correspond to string states. The AdS5

space where the string states live in can be written in global coordinate system,
ds®> = R?(dp* — cosh? pdt® + sinh? p dQ23) (4.1)

with p € [0,00],t € [—00,0]. The gauge theory which is dual to string theory is
supposed to live in the boundary space of AdSs. This correspond to space located

at p — oo. By conformal mapping, we can see that this boundary space is equal to
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R x S3,

sinh p = tan a, a € [0, g] (4.2)
2
ds* = 001:2 - (da? — dt* + sin® a dQs3) (4.3)

which corresponds to o — 7 in this coordinate system. So the boundary theory

which lives in R x S2 is mapped to A' = 4 SYM in R*. This is done by usual radial
quantization. In this conformal mapping, translation in time direction is mapped
to dilatation generator in R%. In other word, Energy of string state correspond to

conformal dimension of local operator.

R . A
E(ﬁ,gs) of string = A()\,N) of local operator (4.4)

Next let us consider other quantum numbers in NV = 4 SYM. As we discussed
earlier, underlying symmetry of N’ =4 SYM is SU(2,2|4) whose bosonic subgroup
is SO(2,4) x SO(6). So any local operators in gauge theory are labeled by six Cartan
generators of SO(2,4) x SO(6).

(A, S1, Sz, Ji, J2, J3) (4.5)

where S; are spins of Lorentz generators and J; are R-charges of bosonic SO(6)
symmetries. From this we can guess which string state correspond to given local
operator. Because the group SO(2,4) which is conformal symmetry in gauge theory
is realized as isometry group of AdSs space in string theory, operators with Lorentz
spin S; is related to string state rotating in AdSs5 space. And by the fact that R
symmetry SO(6) is isometry group of S°, operators with R-charge .J; correspond to
sting state with spin J; in S° space.

The strategy is now find the string state with given quantum numbers and com-

pute its energy E.

E(S1,8%,J1,J2, J3) (4.6)
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Then we compare it with the conformal dimension of operators in gauge theory side

with same quantum charges.

Unfortunately, it is not easy to compare directly and check the relation in
general. As we have seen before, strong/weak nature of duality makes it difficult to
check because we can not maintain both theory in perturbative regime. In gauge
theory side, we can obtain perturbative expansion of conformal dimension of local

operator in small-\ limit,
AN) = Ag +AAT +22A0 + A3A3. .. (4.8)
while in string theory side, energy of string state can be expanded in large-A limit.

1 1
E\) =VAEy+E\+ —FEy+ —FE5... (4.9)
vV \/X2

So unless we can calculate the all orders of perturbations and sum up to get exact
result, we can not compare both quantity in ordinary perturbation expansions.

To overcome this problem we consider new expansion parameter and take some
particular limit. This new region of parameter space was discovered by Berenstein,
Maldacena and Nastase [13] in 2002. They consider R-charge J as a new expansion

parameter and take it very large with certain conditions.
~ ‘ N )
J,N — oo, A= — : fixed, 2 fixed (4.10)

With this BMN limit, even in the large-A region which was not good perturbative
region for gauge theory side, we can take the R-charge J much larger than v/A and
have a new small expansion parameter A= % Therefore we can make both theories
in the perturbative region and have a chance to compare them. More precisely, we

expand the physical quantities in double expansion of %, %

A A2
AN = J (1 + g0 ot ) +0(J% (4.11)
AN 0
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and see if
o, =€ 7 k=1,2,3... (4.13)

So we compare the conformal dimension of long operator with large R-charge with
the energy of sting state which is rotating very fast in S° space. In gauge theory
side, such large R-charge limit is translated to thermodynamic limit of Bethe ansat
equations and makes one possible to compute conformal dimension explicitly.

We can generalize the situation by turning on other quantum number, Lorentz
spin S. Large spin S limit opens a new window of parameter space and make it
possible to consider various limit. In the large S and J region, the local operators we

consider takes the following forms
O(8) = Tr[V5¢’ ()] (4.14)

The corresponding string state is spinning string in both AdSs and S° with large
angular momentum S and J respectively. This is the main objet we will consider in
this chapter. By obtaining solution of spinning strings or D-branes and computing
their energy, we can compare them with conformal dimensions of corresponding
local operators in gauge theory. In this way we can check the AdS/CFT conjecture
explicitly. Another aspect of this study is that if we assume the duality hold, we
can study the non-perturbative properties of conformal dimension by string dual
method.

In the following sections, we will study how to compute the above physical quan-
tities explicitly. In the gauge theory side, diagonalization of dilatation operator can
be translated to spin chain problem and Bethe ansat equations. From this we can
compute conformal dimension of operators we concern. We will not see this gauge
theory aspect in details in this thesis. For reviews see [60,|61},/61/64] We will fo-
cus to string theory side and consider spinning string in AdSs and S°. By solving
equations of motion of string sigma model, we can get the expression of energy in
terms of angular momentum S and J. we will explore the various parameter region

and study several properties like logarithmic scaling on spin. We will conclude this
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section by considering generalize the result to operators in different representations
- especially in symmetric representation. This can be done by replacing the string

with D-branes.

4.1 Spinning strings in AdS; x S°

Local operator with Lorentz spin S and R-charge J corresponds to rotating string
in AdSs x S° with angular momentum S in AdSs and another angular momentum
J in S°. Here we will review the previous works of solving the string solution and
computations their classical energy spectrum of it in large A = ;—i limit. [14},16,65-
67)

We shall use the global coordinate metric for AdSs and S® as followings [16].

ds?gs, = R*(dp® — cosh? pdt® + sinh? pdQs) (4.15)
dQs = dB? + cos® B1(dB3 + cos® fadp?) (4.16)
dsgs = R*(dyi + cos® i (dy + cos” ¢z dQ23)) (4.17)
A = dip2 + cos? h3(dip? + cos? Padp?) (4.18)

The relevant bosonic part of Polyakov string action is given by
_ \/X d2 ab AdS5 ) Ma N S5 ) Ma N
§=—= [ dov=gg [GMN (X)0. XM XN + Gy (V)0 Y M8, Y ] (4.19)

where 0; = (1,0), M,N =0,1,..,4.
For the ansat XM (7,0),YM(7,0) for rotating closed string in AdSs and S°, we

take the following forms [16],

t=kKT, ¢o=wr, Y=VT (4.20)

with constants k,w, v. Now we need to solve p(o) configuration by varying the string

action. The result of equations of motion is
p" = (k* — w?)sinh pcosh p (4.22)
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with the constraint from conformal gauge fixing,

0 = k? cosh? p — w? sinh? p — 1/ (4.23)
The rotating closed string should satisfy the periodic condition p(o) = p(o + 27).
The simplest solution for this condition is considering folded string configuration
which splits into four segments. In 0 < o < § region, as ¢ increase from 0 to /2,
the sting stretches from 0 to its maximum reach pp. So we can obtain additional

equations.
(k* — %) cosh? pg — (w? —v?)sinh?py = 0 (4.24)

2m PO
/ do =4 / dp = 27 (4.25)
\/ — (w? — v?)sinh? p

cosh2

From these equations we have derived, we can obtain the solution of rotating string
configuration.
Next things we need are the expressions for the conserved charges E,S and J.

These can be obtained easily by Noether theorem and the results are [14}16]

2T do 9
E = \/XK,/ 2—cosh 0, (4.26)
0 m
27
d
S = \F/\w/ 2—Us,inh2 P, (4.27)
0 s

J = Vw / " do (4.28)
0

2T

Angular momentum J of S° is written trivially and other E and S are written in
integral equations of string configuration. We can solve the integrals analytically and
find the expression as
K 1 11 1
= — Iy < —, = 1; —) 4.29
VK2 — 1/2 n 2 n ( )

w 1 1 3 1
_ Dot 4.30
VK2 — 12 277\/5 ( 77) (4.30)

|
N Sle Sle

1 11 1
K2 = F21 < ) 15 _> (431)
ﬁ 272 n
36



with the parameter 1 which is defined as

w2—1/2

To study the meanings of this solution and compare with gauge theory side, now we

consider several parameter limits.

Short string Let us first consider short string which means py — 0. When spin S
is small, string can not be stretched in AdS space and shrink to point particle. To
compare with BMN limit in gauge theory side, we keep the angular momentum J is

large. In parameter space, this region is expressed as
n>1, v>1 (4.33)

Under this limit, we can have the relations among parameters

1 1
w14+ 1v2 4+ —, k24— (4.34)
Ui n

and get the expression for energy spectrum.

A S
EmJ+S+ 55+ (4.35)

In terms of conformal dimension of dual gauge theory side, first two terms are clas-
sical dimension which is trivial. For the next term, we can notice that this is exactly
the BMN expansion we have considered before. This is achieved because we
are considering large J limit. This result can be directly compared with perturbative

result of gauge theory side, and verified they agree. This is the one of the non-trivial

test of AdS/CFT correspondence.

Long string More interesting case is long string case which is opposite limit pg —
00. We take the angular momentum S in AdSs large, so makes the string stretches.

In this region (n < 1), we can get the parameter relations,

1 S 1
w o~ \/1/2+7T2(1+77)1n e (4.36)
K R u2+pln p (4.37)
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Interesting point here is we now have logarithmic function of n which was just the
polynomial in short string case. To go further in this large S region, we divide the

case whether J is large or not.

In small angular momentum J case which can be expressed precisely,

A < InS (4.38)

VA

we obtain the energy spectrum as

E%S’—l—@lni—f—... (4.39)

T A

This shows the famous logarithmic scaling in spin S of minimal twist operators in
gauge theory [14]. In ordinary gauge theory like Quantum Chromo-Dynamics or

N =4 SYM theory, twist 2 operators scales as
E=S+(mA+a)?+...)InS (4.40)

This behavior is first obtained by perturbative calculations. Its logarithmic scaling
is very non-trivial result - if we count naively In* S terms appear in each Feynman
diagram but they are canceled each other in the summation of diagrams. We obtained
same logarithmic scaling behavior in dual string theory side. Because we consider the
case of small J with large S, the corresponding operator approaches to the minimal
twist operator. Above result implies that even in the non-perturbative case (we keep
the coupling constant A large) logarithmic scaling continues to hold. This gives some
evidence to the conjecture that for all A value, scaling dimension of minimal twist

operator with large spin S is written
E=S+f(A)InS (4.41)
Next, in the large J region with large S,

s < - « £l (4.42)

AW
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We can obtain the BMN-like expansion of energy

2 2 +... (4.43)

ExS+J
+ +27r2J J

In this case, we can not see the large spin In S term. Because we keep the angular
momentum J is large enough(although it is still less than S) it doesn’t correspond
to minimal twist operators. Instead we can again compare the result with the con-

formal dimension of operators in gauge theory side, and see that it agrees again.

In the long string case, each result can be interpreted as follows. In considering
the large J region we can give the non-trivial test of AdS/CFT duality. And in small
J region, by just assuming the AdS/CFT duality, the non-perturbative calculation
of scaling dimension of minimal twist operator can be performed using sting theory

dual.

4.2 Spinning D-branes and higher representations

Fields in single trace operators which we considered so far was in fundamental rep-
resentation of SU(N) gauge group of N' =4 SYM. This can be generalized to higher

representation. In other word, we can consider the local operators of the form,

O =Tr(D%77) (4.44)
where Z = Z°T§, D =mn-(0+ AT}, +]) (4.45)

with large spin S and R-charge J. As we have seen so far, conformal dimension of
operators in fundamental representation can be related to the energy of rotating
fundamental string in AdSs x S° space. Then for operators in higher representation,
what kind of object in string theory would be the corresponding one?

There are several studies on this problem with Wilson lines in AdS/CFT [47,/48]
which originally correspond to macroscopic fundamental strings. When the macro-
scopic string is replaced by a D-brane with electric flux [47,49-52], it corresponds

to a Wilson line of a higher representation; a D3-brane corresponds to the k-th
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symmetric representation while a D5-brane corresponds to the k-th anti-symmetric
representation, where k is the string charge of the D-brane with electric flux.

Thus, replacing the rotating string by a rotating D3 or D5-brane, one could
analyze the spectrum of the local operators in the k-th symmetric or anti-symmetric
representation E The spectrum of twist two operators in the k-th anti-symmetric
representation is studied by Armoni [53| using rotating D5-brane.

In this section, we explicitly solve the equations of motion for D3 branes and
find the expressions for energy spectrum in terms of angular momentums S and J
of AdSs and S°. To use the holographic dictionary for Wilson lines and the more
symmetries, we study the D3-brane counterpart of the “long string”. In the “long
string” case, the folded string touches the boundary of AdSs (so it represents Wilson
lines) and one more symmetry is enhanced (translation in y. See the section .

As a result, we find following scaling behavior in certain parameter regime.

S
(B~ 8) — I = T3£(5. ) log? 5. (4.46)
J Vk N
h R =2r——, Th=—. 4.47
where, ﬁ T3 IOg 5 y M T N’ 3 272 ( )

Which is valid when
B,pfixed, S>J, N —o00, A— . (4.48)
In small 3 and p, the function f can be expanded as polynomial in 5% and 2.
F(By 1) = p® + ca,08* + c118%1? + coop® + higher order terms. (4.49)

Thus from (4.46)), the anomalous dimension v := E — S — J can be written as

y=TY B m(a?), (4.50)
m=0

T2 = 1) + 5320 +;ij 1260’29"4) +o(gh],  (451)

where, z := % = IM)\IE?;](S/J). (4.52)

'More precisely Tr in the fundamental representation is replaced by the character (or Schur

polynomial) of the symmetric or the anti-symmetric representation.
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Note that the double expansion in $? and 2? has same structure with the double
expansion in % and A in the gauge theory side. At planar order (zeroth in 42), the
anomalous dimension coincide with that of k£ noninteracting folded strings (compare
with (4.43)).

In some region in (3, i), there is no classical D3-brane solution. There exists a
critical value for p for each 8 above which the classical D3-brane solution does not
exist (see Figure . This seems to be a similar phenomenon as the phase transition

in a symmetric Wilson loop observed in [50,58,59].

4.2.1 Set up
Symmetry, ansatz and boundary condition

First we will consider the symmetries of “infinity strings” in [14] which are dual
to twist two operators with large spin, S > v/A. From those symmetries, we will
find the appropriate ansatz and boundary conditions for the D3-brane which wraps 4
dimensional submanifold in Ad.S5 and ends on the two light-like segments in the AdSs
boundary. Then we will generalize the ansatz by turning on the angular momentum
along S°.

The infinite string solution is given by [27] E|

X 1Xo—XoX1 =0, X3=X,=0. (4.53)

Here {X,} are the Cartesian coordinates of R** where the AdS; is embedded. In
the global coordinates {7, p, %}, (i = 1,2,3,4) for AdSs,

4
X _1=coshpcos7, Xg=coshpgsin7, X;=sinhpg();, ZQ? =1, (4.54)
i=1

the boundary is located at p — oo. The infinite string ends on the following two

2 Actually the folded string world-sheet covers (&.53)) twice. Thus quantum numbers of the folded
string should be doubled if one calculates them using (4.53). This two-foldedness should be taken

into account in calculating quantum numbers for folded D3-brane.
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light-like lines at the boundary.

Q
F=¢ or T=¢+n, Q2+0Q7=0. where $ = arctan Q—i (4.55)

These two light-like Wilson lines preserve three symmetries of SO(2,4). These sym-

metries are more manifest in the AdSs x S! foliation of AdSs.

(X_1,X0,X1,X3) = cosh(z_1, 20,21, 22), —ay —ai+at+23=—1,
(Xg, X4) = SinhC($3,$4), 1':2), + l’i =1,
ds®(AdSs) = cosh? (ds*(AdS3) + sinh? (dyp? + d¢?. (4.56)

We will use two coordinate systems for AdSs, {u, x,o0} and {7, p, p}. See Appendix
The infinite string stretches along u, x directions and located at ( = 0,0 =
0. And the three symmetries correspond to translations in u, y and 1 [26]. Besides
these continuous symmetries, there is an additional Zy symmetry, o <+ —o.

We will consider the D3-brane motion described by the DBI4+WZ action

Sp3 = Tg/d4yL = T3/d4y(LDBI +Lwz),

oYM gy N
Lppr = —V—det H, Haﬁ = GMN(Y)TWT?/B—FFQB, (4.57)
oyMi  gyMs 1
Lwz = —aCuy ..y Gy oy ! 4@7

where YM | (M = 0,...,9) denote the space-time coordinates and y®, (o = 0,1,2,3)
are the D3-brane world-volume coordinates. Fi,3 is the world-volume gauge flux. a
is 1 depending on the choice of the orientation. The D3-brane tension T3 is related
to N by T3 = 52 in our unit (AdS radius)= 1.

We are going to find classical D3-brane solution which preserves the three sym-
metries and ends on the light-like segments at the R x S3 boundary. From three

continuous symmetries, the ansatz for D3-brane is ({u, x, v, y} are the world-volume

coordinates)

F=bdudyx, oc=o0(y), ¢=C((y). (4.58)
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To preserve the Zy symmetry (o <> —o), we impose the following.

ac _
do

When ¢ = 0 where the size of S' shrinks, there may be conical singularity. To avoid

0, when o =0. (4.59)

this, we impose the following condition.

d
CTZ =0, when ¢=0. (4.60)
In the AdS5x S foliation, the Rx S® boundary of AdSs is located at cosh? ¢ cosh? p —

00, or equivalently
p—>0o0 or (—oo. (4.61)
And the two light-like lines at the boundary (4.55) becomes

T=¢ Oor T=p+m,
X2+ X3 inh?
AL sohe (4.62)
X2, +X7  cosh”(cosh”p
Under the ansatz (4.58)), the D3-brane ends on the two segments (4.62)) at the bound-

ary (4.61) if and only if

o(y),¢(y) = finite. (4.63)

Equations (4.58]),(4.59)),(4.60)),(4.63) are the summary of ansatz and conditions for

D3-brane rotating in AdSs. These can be generalized by turning on the angular

momentum along S°:
0 = vu. (4.64)

Here 6 is the coordinate of a great circle of S°. Under these ansatz, the D3-brane

action (4.57) becomes

Sps = T3 / dudxdydyL, L= Lppr+ Lwz,

Lppr = —\/sinh2 ¢(cosh* ¢ cosh? 20 — b2 — 12 cosh? ¢)(cosh? (o' + ('2),
Lwz = —a(cosh® ¢ — 1) cosh200’.  (4.65)

Here a is £1 depending on the choice of the orientation. Under these ansatz, the

equation of motion for the world-volume gauge field is automatically satisfied.
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Quantum numbers

Here in this subsection we will obtain the expression of the conserved charges: the
energy F, the spin S, the R-charge J, and the string charge k. First three charges
E, S, J are calculated as the Noether charges from the spacetime isometry. Later we
will calculate k£ by taking variation by NSNS B-field.

For a Killing vector £M in AdS5x S® and a small parameter ¢, there is a symmetry
of the action . Since this isometry also preserves the RR5-form field strength

F3, the variation of 4-form potential should be written as
0Cy = edAs, (4.66)

where Ag is a 3-form. The variation of the Lagrangian becomes

1
5L:@1—%ﬁm%m%ﬂm%%w%%JM%%Mm4:m%RW (4.67)
The Noether current j¢ and the Noether charge () for this symmetry is written as
oL M
¢ = =" — R” 4.68
Q:E/qu (4.69)

We only need to consider DBI-term in the action because we are considering
folded D3-brane solution. Actually the terms in eq. (4.68) which come from the
WZ-term cancel since two D3-branes have the opposite sign of the WZ-term to each
other. The derivative of the DBI-term is given by

M = —1\apB N
a(aaYM) - \/W(Hsym) GMN@BY , (470)

where H, S_y}ﬂ is the symmetric part of the inverse matrix of H.
We take u as the world-volume time. For the R-charge J the Killing vector is
&y = 0/00. The Noether charge is given as

J:R/W/w/@ﬁzwﬂﬂ (4.71)
Bi= / dy dm(cosh® Go™ + ¢*) sinh ¢ cosh® ¢ . ()
\/(cosh4 ¢ cosh? 20 — b2 — 2 cosh? ¢)(cosh? ¢o’2 + (72)
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where o is the cut-off of the x integral; x is limited to —yo < x < x¢- As the same
way, the Killing vector for F — S is {g_g = —0/0T7 — 0/0p = —0/0u (see eqs.
and ), and the Noether charge is obtained as

E—-S= 2XOT304 (473)
o / dy 47 (cosh? (o + ¢'?) sinh ¢ cosh? ¢ cosh? 20
\/ cosh? ¢ cosh? 20 — b2 — 12 cosh? ¢)(cosh? Co’2 + (72)

(4.74)

On the other hand, for the spin S, the components of the Killing vector behave
as £ ~ €2X in large x (see eq. ) Thus the charge S after integral over x behaves

as

S ~ T30, or 2xg ~ log ? (4.75)

As a result we obtain the scaling behavior

2 S

(E—S)Q—J2 TS(a —52)log 7

(4.76)

Let us turn to the string charge k. For a variation of B-field 0 B, the variation
of the action and the string charge k are related as (o/ = % is the slope parameter

in our unit.)

k
=— By 4.
5SD3 ool /dudxd ux ( 77)

Hence the string charge k is expressed as

8L N

Yob 277\5”’
4mbsinh ¢ (cosh? (o’ + ¢7?)

dy .
/ \/(cosh4 ¢ cosh? 20 — b2 — 12 cosh? ¢)(cosh? (0’2 + ('2)

k =21/ Ty / ) (4.78)

(4.79)

The scaling function f(3,u) in eq. (4.46) is obtained from (4.76)) by expressing
a? — B2 in terms of B and p.
4.2.2 Numerical analysis

So far we describe the general procedure for obtaining a D3-brane solution which

is dual to the composite operator Tr(D®Z”) in symmetric representations. In this
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Figure 4.1: D3-brane example (v = 0.999,b = 0.1).

section, we will find numerical solutions and analyze its phase structure and energy

spectrum.

Phase structure

The equation of motion derived from the action (4.65]) is too complicated to solve
it analytically. Thus, we find solutions numerically. The solution which satisfies the

conditions (4.59)),(4.60)),(4.63]) looks like an ellipse in ((,o)-plane (see the Figure

4.1]). For some values of (v, b), there are several solutions. But if we impose stability
conditiorﬂ only one or no solution survives. And for some other values of (v,b),
there’s no solution (even unstable one). Figure shows the region in (v,b) where

the stable solutions exist. The region is surrounded by following three curves.

o 24+ b2=1.
To avoid the Lagrangian (4.65)) being an imaginary number, there’s a lower

bound for the size of solutions.

1
ri=+/C+o02> iarccosh(\/m) (4.80)

When 2+ b? approaches to 1, the bound becomes smaller and stable solutions

3We check the stability numerically. We consider several small fluctuations {d0,0¢} around a
solution. If the solution maximize the Lagrangian ded’l/deL under the fluctuations, then it is

considered as a stable one.
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Figure 4.2: left: the region stable solutions exit, right: (3, x) of the solutions fill the

colored region.

tend to shrink to the point r = 0. Accordingly, the physical quantities (53, )

of the solution become smaller.

o v—=1.

If v > 1, there’s no solution except unstable one. Stable solutions (and its 3, u)
in the colored region become infinity when v — 1. This bound for the angular

velocity in S° direction also exists for the folded string solution case [16]E|

e The upper curve.

We cannot find analytic expression for this curve. Just below the curve there
are two solutions (1 stable + 1 unstable). The two solutions get closer to
each other when approaching the upper curve and disappear simultaneously
above the curve. This curve is mapped to the upper curve in the (3, 1) plane
via stable solutions. It suggests that there’s some phase transition across the
curve. This result requires further study to understand the phase transition in

the gauge theory side.

4 We fix “ =1 and ¥ in [16] corresponds to v in this paper.
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Expansion in small 5, u.

The energy spectrum , which is valid in the limit , is wholly determined
if we find expression f := a? — 32 in terms of 3, u. Although we cannot find its full
analytic expression, we suggest the form of series expansion and obtain the exact
values of the coefficients at the lowest order. Higher order coefficients can be obtained
numerically.

Consider the limit (v,b) approaching to the curve v? 4+ b> = 1. In the limit,
as mentioned above, the stable solution (and its 3, ) become smaller. From the
expression for «, 8, v in section 2 and the fact that (, o is very small, one can see

that

f _a2_62wl_y2

2 12 b2

7= —1 (4.81)

in the limit. This result gives
9P 22— 12 1022
(E—S8)"=J"=k"=log (J) when 3, u — 0. (4.82)
T

This is nothing but the spectrum of k& noninteracting folded strings!(cf. (4.43)).
Assuming the f(5,u) is analytic near the origin (8,u) = (0,0), we propose

following expansion
FB) = cmnBu®", m,n > 0. (4.83)

Here we use the fact that f(/, ) is even function in both 5 and MH And eq. (4.81))
imply that

c0=0, cp0=0, co1=1 (4.84)

Numerically, we check the expansion (4.83) up to fourth power of 3, u and obtain

the value of ¢, ¢1,1, co2-

*When v <+ —v, e.0o.m does not change and the stable solution remains same. So were a, y. But
B changes its sign (4.72). Similar argument hold for the b <+ —b case ( in this case, («a, 8) remains

same but p changes its sign. ).
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Figure 4.3: Along p = 0.3068573 we plot the graph. Its behavior agree with what
we expected from (4.83)).

o0 =0.0084..., ¢11=0.0074..., cop=—0.023.... (4.85)

For small (8, 1), f(B,p) is well approximated by this expansion as shown in Figure

A3l

Comments on gauge theory side

So far we have studied the properties of energy spectrum of spinning D3-brane.
We can see that logarithmic scaling on spin S is recovered in the limit of J >
VAlog(S/.J) which is related to minimal twist operators. And usual BMN expan-
sion is obtained in opposite limit. Also we can check the consistency by taking pla-
nar order and see the coincidence of our result with k non-interacting fundamental
strings.

Meanwhile if we are interested in the test of AdS/CFT correspondence, we
need to compute the gauge theory side also. In order to calculate this anomalous
dimension in the gauge theory side, one should consider the limit N — oo while
keeping (3, i finite and A small finite instead of the limit . In this limit certain

kinds of non-planer diagrams also contribute to the result since u kept finite.
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Chapter 5

Infra-red finiteness in 3

dimensions

In this chapter we consider infra-red divergences in 3 dimensional Chern-Simons the-
ory which called ABJM theory. As we have seen in section 2, ABJM theory is stud-
ied extensively because of it is another example of holographic duality-AdS,/CFTs.
In N = 4 case, we concentrated on local operators and their scaling dimensions.
These physical object is important in ABJM theory and have studied by many au-
thors [69,76-81]. Another important object in the study of field theory is scattering
amplitudes. It is important because it reveals hidden symmetries in the theory. For
examples, recursive structure in the loop amplitude can be made and connection
with Wilson-loop value can be shown. These properties come from the rich struc-
ture of symmetries in the theory.

In the following chapters we will first review about some basic properties of scatter-
ing amplitudes in ABJM theory. We consider the result of two-loop amplitude and
concentrate on Infra-red divergences. And we will see the implications from general
argument of Kinoshita-Lee-Naunenberg theorem, which gives the guideline to deal
with the IR divergences in ABJM theory. By calculating the four-point amplitude
case explicitly, we will sketch the procedure of how IR divergences can be canceled

and obtain the finite results.
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5.1 Scattering amplitudes of ABJM theory

In section 2, we studied the general structure of ABJM theory. Field contents of
the theory are 2 kinds of vector fields 4,,, A, four fermion fields 14 and four scalar
fields ¢4. Because there is no degree of freedom in Chern-Simons theory, gauge
fields A, does not participate as external particles. And because the matter fields
¢4, 4 transform in the (N, N) representation of the gauge group U(N) x U(N),
external particles should come in pairs. So scattering amplitudes in ABJM theory
is composed of even number of matter field.

To go further in the study of scattering amplitudes, let us review some basic things

which is used widely in this field

Spinor-helicity formalism In mass-less theory, on-shell condition p? = 0 gives
the simple representation of momentum p. This is called Spinor-helicity formalism.
Because the lorentz algebra in three dimension is SO(1,2) which is isomorphic to
sl(2,R), we can express the momentum p as sl(2,R) bispinor [71]. If we expand the

momentum p in the basis of 2 x 2 matrices o*

P = (") "py (5.1)
-1 0 -1 0 01

o0 — ol — o? = (5.2)
0 -1 0 1 10

on-shell condition p? = 0 is solved explicitly by 2 component spinor A\
p® = Ao\° (5.3)

Because we have one constraint on 3 dimensional momentum, 2 degrees of freedom
is left. 2 component momentum spinor A% is the explicit solution of the constraint.
We can see that solution A? is unique up to a overall sign. So in the calculations
of scattering amplitudes, we use this spinor A% in the expressions of momentum

invariants

. o 1, ..
(ig) = e\ N, piepy = =5 (i)’ (5.4)

We can see in the following chapters that this representation makes the result simple.
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Color ordered amplitude In non-abelian gauge theory, each scattering ampli-
tudes carry color indices of external particles. In planar limit, this can be written in

single trace forms

An = An(Pa(1)s Pa@)s -+ Page)) T[T DT T (5.5)
a(i)

The summation runs in permutations of n external lines. Coefficient of each trace
of generators A, is called color ordered amplitude. It doesn’t have color structure
anymore and represent the amplitudes in some fixed color ordering. Full amplitude
can be obtained easily by summing up the given color-ordered amplitudes.

Cross section which is physical object is obtained from the square of full amplitudes.
In general, there are cross-terms of color-ordered amplitudes with different color

structure. But in the large N planar limit, we can see that they are negligible

on = [An(L,2,.,n)P = N"2(N? = 1) Y " |An(1,2,...,n)]> + O(%) (5.6)

color
This is nice property. By computing color-ordered amplitudes, the cross-section in
planar limit is obtained by squaring the color-ordered amplitudes. In the following

chapters we will concentrate on how to compute the color-ordered amplitudes

5.1.1 Tree-level amplitudes

Tree level amplitude can be computed in various way. In Feynman diagram approach,
Super-conformal symmetry can be used to relate the amplitudes in different matter
contents. Because each external particles ¢, 14 is related with R-symmetry, they

are combined to super-fields ®(\,n) [71]

DM = GO+ eal) + geasen 6 + geancn nPnCu(6.7)
— — — 1 — 1 —
SOm) = )+ 064N + geancn™ P (V) + geanenn"nCd,(N5.8)

where n? is grassmann variables of N = 3 superspace. Using this super-field formal-
ism we can consider super-amplitudes and make a connections between component

amplitude of different external particles.
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In the works [701/71], four, six point amplitudes is computed in Feynman diagram ap-
proach. In four point case, by computing one component amplitude- say four bosons
amplitude - whole super-amplitude can be constructed. In six point case, they need
two kinds of component amplitudes.

There is another approach to compute tree-level amplitudes. It is based on Grass-
mannian integral [73]. This is manifest realizations of super-conformal symmetry and
it dual symmetry - Yangian symmetry. Compared to Feynman diagram method, this
approach is rather simple and gives more compact results. In the works of [72] they
computed eight-points amplitudes and gives recursion relations between tree-level
amplitudes.

We will not follow the whole computations of tree-level amplitudes but just list some

explicit four-point results for the use in the next chapters.

3 3
A4(¢)47$47¢4754) - <2<12;4<>14>7 A4(¢47@47¢47@4) - <2<11>3<>14> (59>

5.1.2 2-loop amplitudes

Now let us consider loop corrections of amplitudes in ABJM theory. One of the
important result in loop amplitudes is that one-loop corrections are trivial. One-loop
amplitude of four point amplitude vanishes [70]. In the six point case, they just gives
trivial sign functions coming from collinear configuration [82,83]. This vanishing
properties in the one-loop order can be also found in local operators analysis [69]
and light-like Wilson loop computations [84].

So first non-trivial correction comes from two-loop order. The result of two loop
order of four-point amplitudes are 74, 75|

Af) — Atree. (JZ)2 [_ (8/(/;:))2_26 _ (t/(g:;;% 4 %1112 (;) + const] (5.10)

where s,t are usual Mandelstam variables and € is dimensional regularization pa-
rameter. We can see that it has E% IR divergences. This double poles (or double log
divergences) are general properties of IR divergences. There are two kinds of limit

which diverges.
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e Soft limit
If momentum goes to zero, denominators vanishes and amplitude diverges. In

tree level amplitude, this corresponds to soft bremsstrahlung emissions.

e Collinear limit
Although momentum is not small, two momentums which become collinear
make the divergences. In conformal theory, this collinear emissions should be
taken because there is no way to distinguish the parallel two particles state

from one particle state.

In physical observable, these IR divergence should be away. To see if these divergence
can be cured and get a finite observable, we need to review the general theorem about

IR divergences in field theory.

5.2 Kinoshita-Lee-Nauenberg Theorem

Kinoshita-Lee-Nauenberg Theorem [85] gives general way to solve the IR diver-
gences. Main result of it is we need to consider cross-sections and including addi-
tional soft or collinear radiations. Because the finiteness is required only in physical
observable, scattering amplitude itself doesn’t need to be finite. In the UV diver-
gence case, scattering amplitude or even in the off-shell correlation function level,
we can have UV finiteness. But IR divergence can not be canceled in the amplitudes
level.

Cancellations of IR divergence of loop correction is achieved by including additional
emissions in tree level amplitudes. In other word, to get a finite one-loop corrections

of n-point scattering cross-sections, we need to consider n—+1 tree-level amplitudes.

0% = NASHIIR = N2 (5.11)
c@ = |AD £ 2ADPR =60 4 X262 4 0(N3) (5.12)

Those )\QUfl(ff and )\207(12) are canceled each other, we can get finite loop corrections.

In conformal field theory, all particles are mass-less and there is no energy scales.
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So asymptotic states cannot be defined properly and one-particle state becomes
ambiguous. In other word, we cannot distinguish two parallel particles state from
one particles. So, we have to consider additional externals in both initial states and

final states carefully.

5.3 IR finiteness of ABJM theory

One interesting point of ABJM theory is that only even number of external particles
are possible. So unlike the usual quantum field theory, we need to consider two parti-
cle emissions when considering IR cancellations. We can guess that this is related to
the fact that first non-trivial corrections start from two loop order in ABJM theory.
Technically two particle emissions imply double phase space integral. In this section
we will carry explicit calculations of IR correction in the four-point amplitude. First
by considering a few Feynman diagrams, we will show how double phase space inte-
gral give usual double pole divergences and the structure of cancellation procedure
with loop correction diagrams. Next we will consider full four-point amplitude using

spinor-helicity formalism, and check the finiteness of full four-point cross-sections.
5.3.1 Feynman diagram approach

Soft Bremsstrahlung

Consider the process that scalar particle with momentum p interact through gauge
boson and then scattered with momentum p’. There are 2 types of diagrams emitting

before interaction and emitting after interaction.

. —i 21\ €uvp(P1 +p2)? .
o= li(2p —p1 — po)H]———— —pr—po, ) [ —ZE ) GpwelPL T P2 oV
M =1i2p = p1 =) ](p—pl —pz)QMO(p PL=P2P) ( k ) (p1 + p2)? (> =)’
, —1 et 2 6,ullp(p1 +p2)? . v
T2 w20 ) ZHvp AL T L) _
+Mo(p, 0" + 1 +p2)(p,+p1+p2)2[2< P+ p1+p2) ]( k) (01 £ p2)? [i(p2 — p1)"]
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p2 b1 p2

Figure 5.1: Bremsstrahlung diagrams

Since we are interested in the case of soft scalar limit |p], |p2| < |[p’ — p| , so we can

treat
Mo(p —p1 — pa, ') ~ Mo(p, 0" + p1 + p2) ~ Mo(p,p') (5.13)
and ignore the quadratic term of pp, p2 in the denominator
(p—p1—p2)° = =2p- (p1 +p2) + (1 +p2)° ~ —2p- (p1 + p2) (5.14)

Under these soft scalar limit, the amplitude becomes

_(_F / cwpPPiPs )
Ma = ( k ) Molp.7) [p' (pﬁfpz)(pl - p2) porp )} (5:15)

and the cross-section has the following expression

pr dPpy 1 1 4x?

(2m)? (2m)? 2p1 2py K2

€ pD' DY Ph
p-(p1+p2)(p1-p2

das(pvp/7p17p2) - dUO(p7p/) /

Above correction term can be simplified as

1
1
dof) = Gope

/2p1d2p2 1 [ (p-p1)(p-p2) (0" -p1) (@ - p2)
pip2 L(p-p1+p-p2)?(p1-p2) (0 -p1+p - p2)?(p1-p2)
@)@ p2) +(p-p2)@ - p1) —(p-P) 'p2)}

(p1-p2)(P-p1+p-p2) (P p1+P - p2)

o6

)—(p<—>p')




There can be a soft fermion emission also. Along the same procedure we get the

result as

= _Z‘Ql | €uppt (p1 + p2)P[a(p2)y"v(p1)] B .
M= ( k > Molp,) { - 2p - (p1 + p2)(p1 - p2) v Hp)] (5.13)

And after some Dirac matrices algebra, we get a fermion correction in cross-section

1 1 p-p
N =—d0§1)+/d2 & [ f}5-14
(p,p') 8m2k?2 P o Lo prtp - p)@ Lty pa) )

So the cancelation occurs between scalar and fermion part, the total cross-section

1)
daf

becomes

1 1 o
do(p,p') = doo(p — p') - /d2p1d2p2 [ PP (}5.15)
pip2 | (

8m2k? p-pi+p-p2)p-p1+p - p2)

We can see that there are well-known regions of integration which give IR divergence.

e Soft limit p1,p2 — 0 (5.16)

e (ollinear limit p1+p2s —ap or ap (5.17)

Let’s compute this correction term exactly. Using feynman parameter method, we

can combine the denominator as

S K e
—— | d*p1d°py—— do 5.18
8m2k? P, e Jo (Pa - P1 + pa - p2)? (5.18)
where p, = ap+ (1 —a)p’. Let the 6; be the angles between p,, and p;. Then (5.3.1])

becomes

b ld Ad d %dede -y
87T2k:2/0 a/o P p2/0 ! 2[(p1(Ea—pa60591)+p2(Ea—pa00592))2]

By setting p; = pcos ¢, ps = psin ¢, we can rewrite above expression as

L 1d Adl %d 2ﬂd9d0 Py
i J, e [ [T [ | e

Integral of p variable gives well-known log divergence coming from soft radiation.

And performing ¢, 0; integrals, we can get a simple result

1 A 1 1 2 pp/
—_ dp— d dfdo
8w2k2/o pp/o O‘/o ! 2{(Ea—pacoselea—pacosea)]
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-5 ([ ) (] o) 619

which gives double log divergence. Because we have 4 kinds of matters, there are

4 possibilities of emitting soft matter particles. So final result for Bremsstrahlung

correction is

do(p — p' + p1 + pa) = doo(p — p') - % </01 dp;) </01 daa(ll_a)> (5.17)

Vertex corrections

Now consider the correction of vertex form factor. One loop correction gives finite

result and divergence occurs from two loop diagram.

p-k

Figure 5.2: loop correction diagrams

Num z_%F(%) _(@2pt+g*
2+ zyg?)s T(3) e

(5.18)

o2 d3¢
@ _ . (27"
M Z<k2>/(2w)3

where Num = (k% + 2k - p' — ¢®)(2k + ¢)* with k = £ — yq + zp.

We can see that second term in bracket gives UV and IR divergence which goes
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as Log function. Because ABJM theory is UV finite, this UV divergence will be
canceled with other diagrams. So we will just drop all UV divergence term in this
calculations and concentrate on IR divergent terms.

Now take a look at the Num in the first term in bracket. From the symmetry of £
variable in integral, we can see that there can be ¢? and £° term in Num. Because

the £? term gives UV divergence, we only concentrate on 0 term.
Num = (y*¢* = 2yzq-p — 2yq -’ + 22p - ' — ¢*)((1 = 2y)¢" + 2zp") + O(£*)5.19)

Performing the ¢ variable integral, we obtain

' 2q% — 2yz2q - p—2yq - p' +22p- p' — @) (1 — 2y)q" + 22p”
M(2)=<4;2>/dmyd3(yq v2q-p =2y ¢ + 22p- ¢ — ) (L= 2)¢" + 2P o

z%acyq2
Most divergent part comes from the region of =,y — 0 and z — 1. So leading term
is

2p-p' — ¢ (2p" + ¢")
Tyq?

MP ~ ( > /dwdydzé(ﬂc +y+z—1) (5.21)

i
e [ C Rl ARy p——— (5.2
2k 0 0 y(l—y—=z)

= (~g ) w0 [ a5 [t (5.23)

So the form factor has loop correction as

M= <1 - % /01 dﬁ; /01 daa(ll_a)> (20" + ) (5.24)

and gives correction on cross-section by

IS B 1

As aresult we can see that 2 double log IR divergences each from soft Bremsstrahlung

and loop correction are canceled each other.
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5.3.2 Cross-section

Consider n point scattering cross-sections in ABJM theory. Because this is a physical
observable, it should be IR finite if we calculate it properly.As we have seen in
previous feynman diagram approach, we can predict that IR divergence coming
from loop corrections would be canceled by including 2 soft particle emissions.

The cross-sections can be obtained by squaring well-known Color ordered am-

plitudes.

An(1,2,.n) = Y Tr[T T T Ap(1,2, .., n) (5.26)

color

On = An(1,2, )2 = NP 2(N2 = 1) Y [ 40(1,2, ) 2 + 0(%) (5.27)

color

In large N limit, the cross terms of different color order are negligible. So by com-

puting the square of color-ordered amplitude |A, (1,2, ...,n)|?> with soft emission, we

can study the IR finiteness of cross sections.
4 scalar scattering Cross-section

Let’s see the most simple example - 4 point amplitude of bosons. In 2 loop order, it

has the IR divergence of %2 order.

AP = Alree )2 |- (S/(’;:)); - (t/(gg; ‘. finite (5.28)

This should be regularized by 4 point amplitude with additional 2 soft emissions. By
considering 6 point amplitude with 2 momentum goes soft limit, we can obtained IR
corrections. In 6 point amplitude, we checked every possible cases of soft emissions
and concluded that divergence occurs only in the case that 2 soft momentums
are in adjacent points.

Let the 5,6 particles are soft matter in 6 point color-ordered amplitude.

ps|, [ps| < A ~ [pi (5.29)
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1
[A6(1,2,3,4,5,6)* = [44(1,2,3,4)* - F*(1,4,5,6) + O(3) (5.30)

o (51)(54) — (61)(64)
r0.45.0 =00 (Gt e s w) 6

This result works in both 2 boson, 2 fermion soft emissions with the same R(1,4,5,6)
functions. The R? term diverge as %. Because we will perform 2 particle phase space
integral which goes A3dA, terms of (’)(%) become negligible in soft limit.

So our 4 point amplitude with 2 soft emissions becomes the following expression.

d2p5 d2p6 1 1

soft(56) 2 47T2
AP =2 0 [ (i e

where factor 2 is coming from the fact we have also fermions emissions and 4 is we
have 4 kinds of matter related to R symmetry.
For given massless momentum p in 3 dimension, A* can be chosen uniquely up

to overall sign.

1\2 2\2 _(y1)2 2\2
p0:w7 plz(”;(”’ P2 = ALy2 (5.32)

0 d2 [e%} [e%}
/ ngz/ d/\l/o N2 (5.33)

Interval for dAs was chosen to positive region due to the overall sign ambiguity.
Because integrand R? is symmetric under the A — —), interval can be written as

5 [0 dAtdA?

soft(56) 2 1 > <51><54> - <61><64> ?
AP < A a0 [ g <<<51>2 T L5021 <64>2>>

(5.33)

To perform the above integral, we use the coordinate transformation in following

way.

X = (.’L’l,xg), Y = (y1,y2) (5'34)

61

(51)(54) — (61)(64) )2
64)%)

(5.31)



T Moo o AL

T 0 0 A -\ A2
2l = e (5.35)
o 0 0 A2 -\ ¥:
Yo Ao-M0 0 A2

In this coordinate, integral expression can be written in simple form.

oy (51)(54) - (61)(64)  \?
/ FAsdA <<<> T {612 ><<54>2+<64>2>>

We can easily see that above integral gives double logarithm divergence. To

X2Yy?2

regularize this, we perform the integral in d = 3 — 2¢ dimension. (e < 0)

- N\ 2
4e
M 2-2y 22y, [ X XY

where p is the mass scale of dimensional regularization. Because we are performing

soft particle phase integral, |X|,|Y| should be less then ordinary energy scale of
scattering. If we are considering the leading order of divergence, we can set the
cutoff A% ~ (14)2 because momentums participating are pi1, p4. So we can obtain the

following result.

2\—2e¢
AT S A -%Q(t/&;g (5.38)
For final expression of 4 point cross-section, we have to sum over all possible
color permutation. Because 2 soft emissions should be in adjacent positions, there
are 4 possible permutations in given ordered external particles. It is related to the

possible insertions of soft matters between i, + 1 external particles.

ot = NYNZ —1) Y AP0 (5.39)

6 color

— NN 1)4;@ [1A4|2 2 (1;2) (s /( )) AP 2<k2 ) %&}0)
— ol <2A2(5/(g€)) +2)° t/(’;i ) (5.41)
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2 loop corrections in cross-section is

s 2\—2¢ 2\—2¢
e (Y R

o/ 2) -2 2)—2e 2
o1 = 4§JY|AE{“|2 [1 -\ (( /(ge))Q + (t/(’Q‘E;Q ) +(’)()\3)} (5.43)

s 2\ —2¢ 2\ —2e¢
o o (]

So we can see that 4 point cross-sections is IR finite in A? order. We want to empha-

size that this result is valid only in the leading order of divergence 6% To consider the
next sub-leading order %, we need to be careful in picking up the effective integrand

and setting the momentum cutoff.
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Chapter 6

Asymptotic symmetry of
higher-spin gravity

In the context of holographic duality which usually relates gravity theory and con-
formal field theory, asymptotic symmetry of given gravity system plays central role.
Asymptotic symmetry is a residual symmetry which preserves asymptotic boundary
conditions. Studying asymptotic symmetry reveals some hint of symmetry structure
of dual conformal field theory.

For three dimensional AdS gravity, Brown-Henneaux [92] found that asymptotic
symmetry is enlarged from SO(2,2) isometry group to Virasoro algebra. According
to AdS/CFT duality, AdSs gravity correspond to two dimensional CFT. As we have
seen in chapter 2, conformal symmetry in two dimension has infinite generators and
becomes Virasoro algebra.

In this chapter, we will study the asymptotic symmetry of three dimensional AdS
gravity including higher-spin fields. Higher-spin(HS) theory is the extension of mass-
less spin 2 gauge theory - gravity - including fields with spin higher than 2. HS theory
in important in several reasons. It provides consistent framework of gravity system
with arbitrary spin particles. It is also related to tension-less string theory which
naturally contains higher-spin fields. If we consider HS gauge symmetry as unbro-

ken symmetry, string theory can be taken as a theory under spontaneous symmetry
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breaking.

By no-go theorem [165-169], extension to HS fields in flat space is impossible. By
series of works of Vasiliev [170H179], this difficulty can be overcome by consider-
ing curved space. In this chapter we will consider HS theory in AdS space in three
dimension. In three dimension, there is a nice formulation for HS theory with two-
copies of Chern-Simons actions.

We will first review of derivation of asymptotic symmetry in pure gravity. And then
we will extend to AdS HS theory or super-symmetric HS theory and find the algebra

of asymptotic symmetry is super W, algebra.

6.1 Pure gravity in 3 dimension

Three-dimensional gravity with negative cosmological constant have vacuum solu-
tion of AdS3 space. Isometry group of AdSs is SO(2,2) ~ SL(2,R) x SL(2, R). Let
us see how this isometry group is enlarged in asymptotic boundary condition. The

metric of AdSs is written as
ds® = (*(— cosh? pdr? + sinh? pdp* + dp?) (6.1)
and asymptotic boundary space where p is large becomes
ds® ~ C(—e*Pdrrdr™ + dp?) (6.2)

Here, =+ is the light-cone coordinate 7+ = 74 ¢. Asymptotic symmetry is the general
coordinate transformation which preserve this boundary form. Under the general

coordinate transformation g, — g, + V& + V€, solutions for £ which preserve

62 are @

o2

£ = [0+ g () 0™ (63)
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£ = o)+ P o) (6.4)

A (e B Lo B

¢ =~y 5 H0l 20) (6.5)
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where f(77), g(77) are arbitrary holomorphic and anti-holomorphic functions. From
this, we can easily see that asymptotic symmetry forms Virasoro algebra. Brown-
henneaux [92] calculated explicitly and found that result is Virasoro algebra with

central charge

3
- 2G

C

(6.6)

As we explained before, this Virasoro algebra implies that boundary theory is 2
dimensional conformal field theory.

For the extension to HS theory, let us review about Chern-Simons formulation of
three-dimensional AdS gravity [100}/101]. For the vielbein e and spin connection
wh', we can construct SL(2, R) gauge field A as

e ~ el

where ¢ ia a radius of AdS curvature. Then Einstein-Hilbert action of three dimen-

sional gravity with negative cosmological constant can be written as

S[A, A] = Scs[A] - Scs|A] (6.8)

k 2
Scs[A] = 47T/Tr (A/\ dA + §A/\ A/\A) (6.9)

This is the two copies of Chern-Simons action of each gauge group SL(2, R) with
k= %. We will use this formulation to extend to HS gravity and super-symmetric

HS gravity.

6.2 Higher-spin super-gravity
6.2.1 The shs®(N|2,R) @ shs®(M|2,R) super-algebras
Extended supergravities and higher spins in 2 + 1 dimensions

As we have seen in the last section, three-dimensional Einstein gravity with a
negative cosmological constant (AdSs gravity) can be reformulated as a Chern-

Simons gauge theory whose gauge connection take values in the isometry algebra
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sl(2,R) 4 @ sl(2,R)_. Here £k denotes the Chern-Simons levels of the chiral and
anti-chiral sectors and is related to the gravitational coupling constant through for-
mula below.

The reformulation can be generalized to N' = (N, M )-extended AdSs3 supergrav-
ity |100], where M, N refer to the supersymmetry of the two gauge factors. Recall

the isomorphism
sl(2,R) ~ sp(2,R) ~ s0(2,1) ~ su(1,1). (6.10)

Then, AdS3 supergravity theories are obtainable by taking an appropriate superal-
gebra containing as a bosonic subalgebra.

For example, N' = (1,1) AdS;3 supergravity can be reformulated as a Chern-
Simons super-gauge theory whose gauge super-connection takes values in the Lie
superalgebra

OSp(l‘Q, R)Jrk S OSp(1‘2a R)*k

Likewise, N' = (N, M)-extended supergravity is based on a super-connection taking

values in the Lie superalgebraﬂ
0sp(N|2,R) 41 ® osp(M|2,R)

In all these cases, either chiral copy contains sp(2,R) as a bosonic subalgebra.
The bosonic subalgebra of osp(N|2,R) is actually of the form sl(2,R) @& G, where G
is here so(IN). The fermonic generators transform as spinors of sp(2,R) and vectors
of so(N).

More generally, one can take the gauge superalgebra to be a direct sum of two

simple superalgebras Ay, Ag:
AL @ Ag, (6.11)

with the conditions that (i) each superalgebra contains any of (6.10) as a bosonic
subalgebra; and (ii) the fermionic generators transform in the 2 of (6.10). It has

'In what follows, we shall omit the Chern-Simons level specification in the gauge superalgebras.

They can be reconstructed from the context.
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A g p D
osp(N|2,R) so(NV) N N(V1)

su(1,1|N) (N #2) | su(N) & u(1) N+N N?

su(1,1)2) / u(1) su(2) 2+2 3
osp(4*|2M) su(2) @ usp(2M) | (2M,2) | M(2M +1) +3

D(2,1; ) su(2) @ su(2) (2,2) 6

G(3) Qs 7 14

F(4) spin(7) 8 21

Table 6.1: Superalgebras of extended anti-de Sitter supegravities in 2 + 1 dimensions. Here, A is
the (extended) superalgebra, G is the internal subalgebra, p is the representation of G in which the
spinors transform, and D is the dimension of G. The first four superalgebras belong to the osp(m, 2n)

and spl(m,n) infinite families, while the last three are the “exceptional” Lie superalgebras.

been shown [102-104] that this condition is satisfied in only seven classes, which are
listed in Table 1. Thus, the most general (N, M)-extended AdSs supergravity can
be defined as the Chern-Simons gauge theory whose gauge super-connections in the
chiral and anti-chiral sectors take values in any two of the seven Lie superalgebras

of Table 1.

Just as extended AdSs supergravity can be formulated as a Chern-Simons super-
gauge theory, consistent higher-spin AdSs supergravity theories can also be formu-
lated as Chern-Simons super-gauge theories [88]. This time, however, the gauge su-
peralgebras Ay, Ar are infinite-dimensional. Since the standard AdS3 supergravity
ought to be a consistent truncation of these theories, it must be that these infinite-
dimensional gauge superalgebras contain the simple superalgebras in Table 1 as
subalgebras. In other words, the higher-spin superalgebras are infinite-dimensional
extensions of these simple superalgebras.

We shall mostly concentrate on the osp(/V|2,R) class, since this is the class
that encompasses uniformly all extended supersymmetries on each chiral sector.

We first need an infinite-dimensional extension of osp(NN|2,R) & osp(M|2,R) to a
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suitable higher-spin superalgebra. Fortunately, the construction of the relevant su-
peralgebras were worked out already in [87,88]. These superalgebras are denoted
shs®(N|2,R) @ shs®(M \2,IR{ In a nutshell, the higher-spin superalgebra so con-
structed corresponds to the universal enveloping superalgebra of the underlying
finite-dimensional sub-superalgebras osp(N|2,R)@® osp(M|2,R) quotentized by cer-
tain ideals. This fits also with the requirement that the standard AdSs supergravity
be a consistent truncation of the higher-spin AdSs supergravity.

In this section, we explain the higher-spin superalgebra shs”(N|2,R) and its
simplest realization in terms of “super-oscillators”. In this realization, the minimal
N =1 case is special since it admits another equivalent formulation with a smaller
number of oscillators. We shall mention this aspect along the way as we discuss the

general N cases.

Polynomial realization of shs®(N|2,R)

In this part, we realize the Lie super-algebra shs®(/N|2,R) in terms of “oscillator”

polynomials.

General N Consider the following N + 2 Grassmann variables: two commuting
ones, ¢ (o =1,2), together with N anticommuting ones, ¢; (i = 1,...,N). Adapt-
ing to the terminology used in the literature, we refer to the index ¢ as the ‘color’

index. As such,

7098 = 484a Va,B=1,2
Yy = =iy Vi, j=1,...,N
dai = Yiqa Va=1,2 & i=1,...,N.

These variables are all taken to be real, ¢}, = qn, ¥; =

* = 1p;. We construct polynomials

in these N + 2 variables, with coefficients that can be themselves commuting or

anticommuting, i.e., that belong also to a different Grassmann algebra G. Thus, we

2The two simple algebras describes each chiral sector and can be analyzed separately. From now

on we shall focus on the first chiral piece
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formally consider the (graded) tensor product A = G ® P of the polynomial algebra
P in g, ¥; with the Grassmann algebra G. The sign in the commutation relations
for the multiplication of elements in the graded tensor product is dictated by the
total grading, so that odd elements of G and P anticommute. The Grassmann parity
used below will always be the total grading. A complex conjugation is assumed to
be defined in G, and can be extended to A taking into account that g, and 1; are
real. We systematically use the convention (ab)* = b*a*.

Let AP be the subalgebra of Grassmann-even polynomials in ¢, 1; containing

only monomials of even degree and no constant term. Thus, a general element of

AE reads

f = 1q0q5 + [“lqathi + FI0:0;

+ 0 40g80v05 + FO7 datpay i + PV qagpiiitty + - (6.12)

+ PN G a5y a5 qedy + - - -
+...,

with finitely many terms. The coefficients in this expansion are completely symmet-
ric (respectively, antisymmetric) in the Greek (respectively, Latin) indices. They are
commuting (respectively, anticommuting) whenever they multiply an even (respec-
tively, odd) number of ¢’s. When we formulate higher-spin AdS3 supergravity as a
Chern-Simons super-gauge theory, the gauge super-connection will be taken to be
of the form . The coefficients in the expansion will then be identified with
commuting or anticommuting spacetime fields.
A x-product is defined on A as follows:
—~ =

(Fxg)(=") = exp ( s 555}) Fal)
where f(z) = f(qa,%;) and so on. In this expression, f(z)g(z’) is the standard
Grassmann product. The operation is called the x-product. Left and right

. (6.13)

z=z'=2z"
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derivatives with respect to the anticommuting variables are defined by

of = 5%@

- O (6.14)
9f
of = %Mh'
The epsilon symbol is explicitly taken to be
0 1
(e*P) = (€aB) = , a, p € {1,2}. (6.15)
-1 0

The above x-product is well known to be associative. However, it does not pre-
serve the reality condition, in the sense that f x g is not real even if f and g are
so. On the other hand, one can check that if f and g are both real elements of A¥,
or both pure imaginary elements of A, of respective order 2n and 2m, then the

homogenous polynomials appearing in the expansion of f x g,

m+n

fxg= Z h2(m+n—j)7 (616>
=0

are alternatively real and imaginary. More precisely, the homogeneous polynomial
ho(m+n—j) of degree 2(m +n — j) in qq, ; is:

e real and symmetric for the exchange of f and g when j is even;

e imaginary and antisymmetric for the exchange of f and g when j is odd.

We then define the x-commutator (also called “x-bracket”),

[fag}*zf*g_g*fa (617)

which fulfills the Jacobi identity since the *x-product is associative. From what we
have just seen, [f, ], is pure imaginary whenever f and g are both real or both pure
imaginary.

The Lie superalgebra shsE(N |2,R) is the real subspace of pure imaginary ele-
ments of AF equipped with the *—bracke A general element of shs®(N|2,R) is

30me could equivalently insert a factor of i in the definition of the %-bracket, which would
no longer coincide with the star commutator, and define shs®(N|2,R) as the subspace of real

polynomials equipped with that alternative bracket. Either convention has its own advantages.
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thus of the above form
f=1"qaqs + ' qati + [P 0it)
+ 1 40q30405 + F*7 " qaqaas i + FPY qagatinds + - 618
+ [0 050, 45Gctn + - - - '
+...,
but the coefficients are further restricted so as to make f imaginary. So, for instance,
the coefficient f*? is imaginary while f® and f¥ are real.

One can rewrite alternatively (6.17)) as

(_
" ) Q] 8 8 8 3
[f, gl(2") = (27, sin (60"8%8%) cosh <5”81/JZ(9¢3>

—
o 0 0
e ¢ J

It should be stressed that the polynomial [f,g],. starts at highest polynomial

(6.19)

z=z'=z"

degree 2(n +m — 1). Note also that the lowest polynomial degree term in the ex-
pansion 18 Ng(jm—n|) SO that there is a term of degree zero in only if
n = m, in which case j = 2m is even, which implies that the term of degree zero
(when present) is symmetric for the exchange of f with g. This implies in particular
that the constant term (when present in f *g) drops from the x-commutator so that

[f, g]x has indeed no constant term and belongs to shs®(N |2, R).

Supertrace and scalar product The supertrace of a polynomial in the ¢’s and

the ¥’s is defined by its component of degree zero:

STrf(q,v) = 8f(0). (6.20)

The normalization is chosen to match standard conventions in the normalization of

the action below. Thus, elements in shs™(N|2,R) all have zero supertrace.
Although STrf = 0 Vf € shs®(V|2,R), it turns out that STr(f % g) may dif-

fer from zero even if f,g € shs®(N|2,R). One thus defines a scalar product on

shs®(N|2,R) by
(f,9) =STx(f > 9). (6.21)
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The scalar product is evidently bilinear, real and symmetric (given our discussions
in the previous subsection). Using the symmetry together with the associativity of

the x-product, we further conclude that it is also invariant:

([f, g%, 1) = (f, 19, h]+). (6.22)

In addition, it is non-degenerate. It is non-zero only when f and g have same degree
in both the ;’s and the g, ’s. It is this scalar product that will be used to define the

Chern-Simons action below.

Basis A basis of shs®(V, 2|R) is given by the monomials

ﬁqg’qgw? RS (6.23)

Xp,q; 11,82, IN =

where p,q € N and i, € {0,1}. The degree of Xy, 4.4, iy, in, Which is p + ¢ + K,
must be even and positive, where K = Zszl i, is the degree in the 1’s. The power
of ¢ has been inserted in such a way that the elements of even Grassman parity are
imaginary, while those of odd Grassman parity are real.

With this choice, a general element of shs®(N|2,R) is of the form

D5g5 61,582, IN o )
ZM o Xpgirsia, o in (6.24)

where the coefficients pP% 12 iN are real and of Grassman parity (—1)% = (—1)P+4.

osp(N|2,R) sub-superalgebra The subspace of quadratic polynomials is a sub-
algebra isomorphic to osp(IN|2,R), as it is known from the familiar oscillator realiza-
tion of osp(N |2, R) [104]. Renormalizing and relabelinﬁﬂ the quadratic basis elements
as

1

Yop 5

1 1
daqp, Xai = §qa¢z‘, Xij = 5%‘%’ (6.25)

4Note that we have changed the letter X to Y for the generators with no 1’s since these differ

from the corresponding X'’s by a factor.

74



one finds that the non-zero Lie superbrackets read explicitly

Yag, Yy5] = €0y Yas + €a5Y3y + €3y Yas + €85 Yary
[Xais Y] = €apXqi + €ay X
{Xai, Xpj} = i (eapXij — 0ijYap) (6.26)
[(Xijs Xak] = 0jpXai — 0iXaj
(Xij, Xut] = 0aXjn + 06X — 6 X1 — 65 X

Hence, one goes from shs®(N|2,R) to osp(N|2,R) by restricting the *-algebra of
polynomials of even degree in the ¢’s and the ’s to the x-subalgebra of polynomials
of second degree. Conversely, one goes from osp(N|2, R) to shs™(N |2, R) by relaxing
the condition that the polynomials should be quadratic, i.e., by allowing arbitrary
(pure imaginary) polynomials of even degree modulo zero-degree term.

The osp(N|2,R) subsuperalgebra can also be realized in terms of matrices. In a
matrix representation where imaginary elements are represented by anti-hermitian
matrices for an appropriate (indefinite) hermitian product, the Y,z are elements of
su(1,1) ~ sl(2,R). Though we shall primarily use the oscillator polynomial realiza-
tion, for comparison and completeness we collect the relevant results on the matrix
representation in Appendix B.

As already mentioned, the infinite-dimensional higher-spin superalgebra corre-
sponds to the universal enveloping superalgebra of the underlying finite-dimensional
sub-superalgebra quotientized by certain ideals. The latter being generated by quadratic
polynomials .A®, this means that the polynomials of A can be reexpressed as poly-

nomials in the generators of the finite-dimensional sub-superalgebra A®).

hs(2,R) subalgebra and internal subalgebra The polynomials that contain
no ; (degree K equal to zero) form a subalgebra, which is nothing but the algebra
hs(2,R) that has been used for the description of the integer higher-spin gravity
theory [88]. It is a subalgebra of the bosonic subalgebra containing the polynomials
of even K-degree.

Another interesting subalgebra is the finite subalgebra of polynomials involving
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only 9’s and no ¢’s. We call it the internal subalgebra U. The internal subalgebra U
contains so(V,R) as the subalgebra generated by the quadratic monomials X;;. To
identify U completely, we recall that the ¢;’s are the generators of a Clifford algebra.

When N is even, the internal subalgebra is therefore the direct sum

-2 -2

U=su(27z )®su(27 2 )du(l) (N even), (6.27)
while when N is odd, one gets

U=su(2 2) (N odd). (6.28)

6.2.2 Higher-Spin Chern-Simons Super-Gauge Theory

We now turn to the dynamics. The starting point is a doubled Chern-Simons gauge
theory, whose super-connection one-forms are T' taking values in shs”(N|2,R) and

T taking values in shs® (M |2, R):

[(z:q,%) = > daTI N () X iy i (6.1)
mM,M,t1, iN
C(zgy) = Y AT @) X iag (6.2)

MNyE, ST

They can be decomposed further according to the spinor parity:

s in (x) _ AZ%n;iL... AN (x) (m +n= even>
iz \Ilzlvn;n,.-- AN (1-) (m +n= Odd)
fm,ﬂ;il,"- i B ZT,n;ih"' M (33) (m +n= even) 6.2
® (JU) o MMM : ( : )
v, (z) (m +mn = odd)

The even parity components are real spacetime Bose fields, while the odd parity
components are real spacetime Fermi fields.
The super-gauge transformations of these super-connections are given in terms

of a super-gauge 0-form A(zx;q,):

oAl (z;q,¢) = dA(25¢,9) + T(x;4,9) x AMw; ¢, %) — A(w;¢,9) *T(x59,9).  (6.3)
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In accordance with the super-connection 1-form, the super-gauge 0-form is expand-
able as
Awiqp) = Y AN X (6.4)
m,mn,i1, AN

where the real coefficients

. ) AL AN (g m + n = even
Am,n,zl,---,zN (.73) — ' . ( ) ( ) (65)
QT AN () (m +n = odd)
parametrize respectively the bosonic and the fermionic gauge transformations.

The theory is defined by the action

Sus[I', T'] = Ses[I] — Ses[I]- (6.6)

with a relative minus sign. The first part is referred to as the “chiral sector” whereas
the second part is the “anti-chiral sector”. The Chern-Simons action is given for the

chiral part by

k 2
Sell] = Str(F/\d*I‘—i—gF/\*F/\*I‘)

4 S

_ [Tr(AAdA+gA/\A/\A)+iTr(@Ad\1/+@AA/\\IJ)(}6.6)
4m M3 3

and similarly for the anti-chiral part. The coeflicient k is a dimensionless, real-
valued coupling constant of the theory. In the gravitational context considered here,
it is related to the three-dimensional Newton’s constant G and the AdS radius of

curvature £ through

l
k= ek (6.7)
The cosmological constant is A = —Z%. With k real, the action is real-valued.

As discussed in the previous section, the gauge algebra shs” (N |2, R)@shs® (M |2, R)

contains various finite-dimensional subalgebras. When the gauge algebra is restricted
to the so(1,2,R) @ so(1,2,R) bosonic algebra, the theory is reduced to the Chern-
Simons formulation of the three-dimensional Einstein gravity with negative cosmo-

logical constant. When the gauge algebra is restricted to the osp(1]2, R)@osp(1|2,R)
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superalgebra, this theory is reduced to the Chern-Simons formulation of three-
dimensional N' = (1,1) Einstein supergravity with negative cosmological constant.
When the gauge algebra is truncated to sl(3,R) @ sl(3,R) (which is not a subalge-
bra, but one can proceed along the lines explained in [86]), the theory is reduced
to the Chern-Simons formulation of three-dimensional spin-3 gravity with negative
cosmological constant, which describes the consistent interaction of a spin-3 field
with Einstein gravity. In all these cases, the vacuum is the three-dimensional anti-de
Sitter space. It is important to note that the isometry algebra sl(2, R)@sl(2, R) of the
vacuum configuration coincides with the gravitational subalgebra sl(2, R) & sl(2, R)
of the respective gauge algebras. When Killing spinors are included in the context of
(2+1)-supergravities [105], this gravitational algebra is enlarged to the correspond-
ing superalgebras.

Though containing an infinite number of components, the Chern-Simons super-

gauge theory has no propagating field degrees of freedom. The field equations

FI)=dl'+T A«['=0
FT)=dl'+TA+[=0 (6.7)

assert that the super-connections I', T are flat. This means that locally the connec-

tions can be put into a pure-gauge configuration:

D@, =U '@, xdU(z,§)  and  T(@,&) =T (@, xdU(z,€). (6.8)
The configuration can still leave degrees of freedom describing global charges or
holonomies, depending on the geometry and topology of the three-manifold M3 over
which the theory is defined. Unraveling the global charges in the asymptotically AdS
background is one main task of this paper.

6.2.3 Asymptotics symmetries

Asymptotics of shs®(N|2,R) connection

The spacetime manifold M3 is assumed to have topology RxD, where R parametrizes

the time coordinate and D is a two-dimensional spatial manifold, which we assume
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to have at least one boundary that we call “asymptotic infinity” or more loosely
“infinity”. This boundary is assumed to correspond to r — oo, where spacetime

approaches AdSs,
62
ds? — 2 [—dztdz™ + d7“2] , (6.9)

We impose asymptotic conditions on the connection that simultaneously gener-
alize those of [86] for higher spin bosonic models and those of [99}/106] for simple
and extended supergravities.

In the case of minimal AdSs supergravity, the boundary conditions were [106]
(after an appropriate gauge transformation that simplifies the form of the connection

and its r-dependence [96])
T(z) = [~1- Xoo + BL(z¥,27) Xy + B (2T, 27) Xqq]da™ (6.10)
T(z) = [+1- X171 + §2(er, )Xo+ §2_2($+, 7 ) Xoo|dz ™. (6.11)
In the case of higher-spin AdS3 gauge theory, the boundary conditions were [86]

D(z) = [-1- X+ A (2T, 27) Xy + A (2T 27) X110 + - -]d2™(6.12)

f(az) — [+1 - X171+ Z22($+, x_)XQQ + Z2222(33‘+, .CI}_)XQQQQ —+ .- ]dl’_(6.13)

Combining these two limiting situations, it is fairly obvious that the correct bound-

ary conditions for the shs(1]2, R)-valued gauge connections of simple supergravity

are
T(z) > [—1-Xpo+ Y AU (@" 27)X (0 ]dat (6.14)
/=1
f($) — [-i- 1-X11+ ZZ(O’Z) (SL‘+, $_)X(07g)]d$_. (6.15)
/=1

The boundary conditions for the theories with extended supersymmetry are simi-
lar but one does not impose a highest-weight or lowest-weight type of gauge condition
along the internal symmetry algebra. Indeed, it was found in [99] that the boundary

conditions for extended supergravities took the form
F(x) — [—1 - Xo9 + B}:(I'+, :C*)Xli + Bil(.%'Jr, x*)Xll + Bfg($+, xi)X”K(ﬂiL'I'G>
T(z) = [+1- X0 + B2 (et 27 )Xoy + B (2", 27) Xag + B (27, 27) Xy |l 7)
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with no restriction on the internal indices occurring asymptotically. Therefore, we

impose

D(z) = [-1- Xog + > AP N (h 7)) X) 04y iy Jdz ™ (6.18)
T(x) = [+1- Xu + > A" ™ (@, 07) Xo gy iy Jdz™ (6.19)

where we sum on repeated indices over all their possible values (note in particular
that the values p = 0 and ¢ = 0 occur when the degree K =41 4+ i3+ --- 4+ i)y does
not vanish).

Even though there is no asymptotic restriction on the weights of the represen-
tations of the internal algebra, we continue to call the boundary conditions
and the “highest-weight”, respectively, the “lowest-weight” gauge boundary

conditions, in analogy with the non-extended cases (N =0 or N = 1).

Hamiltonian reduction The above boundary conditions on the currents coincide
with the constraints that implement the familiar Drinfeld-Sokolov (DS) Hamiltonian
reduction [94,95] of WZWN models [97,/98,107H110] — to which the Chern-Simons
theory reduces on the boundary |111]. As it has been demonstrated in those ref-
erences, the Virasoro algebra (or one of its appropriate extensions) emerges in the
reduction procedure from the current algebra of the unreduced theory.

That the AdSs boundary conditions implement the DS Hamiltonian reduction
was pointed out first in the case of pure AdSs gravity in [96], where the Virasoro
algebra is generated from the affine sl(2,R) current algebra (one in each chiral sec-
tor). This was then extended to the case of N = 1 supergravity, where one gets
after reduction the N = 1 superconformal algebra [106], and further to extended su-
pergravity models in [99]. In that latter case, the extended superconformal algebras
that arise contain nonlinearities in the Kac-Moody currents, realizing the algebraic
structures uncovered in [112-117].

In all these cases, the conformal dimensions of the generators of the boundary
superconformal algebras are < 2 because the underlying bosonic algebras in the bulk

are of the form sl(2,R) @ G and the sl(2, R)-representations involve only spins < 1.
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The analysis was more recently generalized to include higher conformal dimensions

in [86] and [91] with respective bulk algebras hs(2,R) and sl(/V,R).

Because the boundary conditions (6.18]) and (6.19) are precisely those that im-

plement the Hamiltonian reduction of affine superalgebras, one can proceed along
the well known DS reduction lines [94] to derive the corresponding asymptotic sym-
metry algebras. The precise steps adapted to an infinite number of AdS spins have
been given in [86]. We shall follow this reference here, stressing the conceptual points
rather than giving explicit formulas, which are rather cumbersome indeed. [The ma-

chinery to derive systematically the formulas will be, however, explained.]

Residual gauge transformations

Given the AdS boundary conditions (6.18]) and (6.19), the next step is to look for

the residual gauge transformations that act nontrivially at asymptotic infinity while
leaving the boundary conditions intact. With gauge parameter A(x), the infinitesimal

gauge transformation of I' reads
[ - T =T+, where ' =dA+ [T, Al (6.20)

We see that, in order for IV to retain the given asymptotics, A cannot possibly depend
on r or z~ to leading order at infinity. Moreover, the gauge transformations should
not generate any other components than the highest-weight ones already present.
A similar argument goes for I'. With gauge parameter A(z), the infinitesimal gauge

transformation of T reads
ToT —T+6T, where oF = dA+[T,A] (6.21)

Again, in order for T" to retain the boundary condition , A cannot possibly
depend on r or x". Furthermore, the gauge transformations should not generate
any other components than the lowest-weight ones already present in . Sum-
marizing, we found that the gauge transformations A(z ") and A(z~) must be chiral,
respectively, antichiral at the least. These functions must be subject to further condi-

tions in order to retain the boundary conditions. This is the task we will undertake
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next, treating explicitly for definiteness the positive chirality sector (the negative
chirality sector is treated similarly).

To proceed further, we find it convenient to decompose the gauge transformations
in stacks of successively higher sl(2,R)-spin layers. This is because, for each spin,
the highest-weight or the lowest-weight components are the only ones that appear

in the boundary conditions for the gauge connection. We thus write

Aa) = Y0 AT X i
M,M,e1, N
= AW 1)\ (6.21)
with
AP = Z A070;i17m7iN(x+>X0,0;i17"',iN+ Z AO,l;il,m7iN($+)X0,1;i17"'7iN
P14ty >2 i1+-+in>1
oo
Y D AT @) X gy iy (6.21)
=211, iN
and
. . > . .
A = Z ALO;“’W’ZN(x—‘r)Xl,O;il,---,iN+Z Z Al’g_lm’m’ZN(ZE+)X17£_1;Z‘17...7¢N

i1t tin>1 £=211, N

(o]
tY Y ATERTIN @) X i

=211, iN

00
bt Z Z As,ffs;h,--- AN (x+)Xs,£—s;i1,~~- in 4+ (620)

0>5 01, iN
In plain words, we collected all the lowest-weight states, which are the states in-
volving X sy, iy in ALW. At the same time, all higher weight states, involving
Xmnin, iy With m > 0, are packaged together in A\. We should also stress that,
although this is not written explicitly, the sums in the above expressions are always
restricted to total even degree. So, for instance, i1 4 - - - + ¢ must be even in the

ALW

first term in the right-hand side of the expression for , while it must be odd in

the second term. Such a convention will always be adopted in the sequel.
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The reason for proceeding in that manner is that the requirement that the asymp-
totic boundary conditions be preserved determines X in terms of AXW. Indeed, let

us compute 0" = dA + [I', A]. Structurally,

oI = Z 7m7n;i17m’m (x+)Xm,n;i1,“-,iN (6.21)

M,M5e1, "IN

where
,ym:”§i17"’7iN ($+) — 8+Am7n§i17"'7’iN + [F’A]mm;il,"wiz\r‘ (6.22)

Since the only non-vanishing components of I at infinity are ™%~ (apart from
70200 " which is fixed to be equal to —1), the requirement that these global gauge

transformations do not alter the boundary conditions is that
ML N AN — =0 for m=0,1,2, - (6.23)
or, equivalently,

78’678;1'17“. N — 0 for l > s+ ]-7 s = 07 ]-7 27 U (624)

mzo;il )"t

The highest-weight terms -~y "IN are not constrained to be zero and are equal

to A™t N gecording to (6.18)).

Now, since
[Xa2, Xmnsiy,oin] ~ Xm—1 41500, in - (M 21)

one may solve recursively the conditions for the higher-weight coefficients A1 i
A2t N oiven the lowest-weight ones A0V | along exactly the same lines
as developed in [86]. One starts from the lowest-weight conditions %4t +iN =
(¢ > 1) to determine the level-one coefficients ALf~1% N Then one proceeds to
solving the level-one conditions y1#~1511»+iN = ( (¢ > 2)) to determine the level-two
coefficients A2¢~2%+iN One walks one’s way up step by step in this fashion. The
last set of conditions v/~ = ( (¢ > 1) determine the highest-weight coef-

ficients A6 2N Tt should be stressed that the higher-weight coefficients depend
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not only on the lowest-weight coefficients but also on their derivatives. To emphasize
this feature, we shall say that the higher-weight coefficients are functionals of the
lowest-weight ones. The solutions depend also on the (non-zero) coefficients of the
connection and their derivatives.

Collecting the results of the above structure analysis, we conclude that the gauge
transformations that leave the boundary conditions intact are completely specified
by the lowest-weight components A% N of the gauge function, while all higher
weight components are determined functionally in terms of these lowest-weight com-
ponents of the gauge function and the highest-weight components of the original
gauge connection. Notice that, as in the higher-spin bosonic case as well as in the
extended supergravity models, the solution for the higher-weight components of the
gauge function A in terms of the lowest-weight ones, the free gauge potential com-
ponents A™1N and their derivatives is nonlinear. It is this feature that will render

the resulting asymptotic algebra also nonlinear.

Asymptotic symmetry superalgebra

To identify the asymptotic symmetry superalgebra, one needs to extract the commu-
tation relations for the superalgebra of asymptotic gauge transformations induced
by the gauge function A. In the canonical formalism, these commutation relations
are realized as the Poisson brackets of the generators of these asymptotic symmetries
(up to possible central charges [118]), and we shall focus on these here.

Consider a phase-space observable O. Under the global gauge transformation

parametrized by A, this observable transforms according to
O —0+60 with 60 ={0,G[A]}pB. (6.25)
On an equal-time slice 39, the functional of gauge transformation G[A] is given by

G[A] = /E Z Am’n;il’m’iNgm,n;i1,~~~,iN + SOO; (626)
2 mn,it, AN

where Gy, niiy .. iy are the Gauss law constraints and S is a boundary term at

asymptotic infinity defined by the requirement that G[A] must have well-defined
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functional derivatives with respect to the connection components, i.e., G[A] must
be such that dG[A] contains only undifferentiated field variations under the given
boundary conditions for I" [119].

In the present case, the on-shell configuration is
G =0, (6.27)

so that the generator reduces on-shell to the surface term So,. On the other hand,
Soo just follows from straightforward integration by part and is proportional to the
angular components of the connection along the highest weight basis vectors times
the components of the gauge parameters along the lowest weight basis vectors (to
leading order), as it was already found for supergravity [99,|106]. Explicitly,

S = 7{ D ADERINAS (6.28)

8,01, N

where we have redefined the A’s through the absorption of the factors that appear

in front of the integral, which we denote by v 0.iy ... in»

AS N — 805 iN .
- 870;Z17... 7ZN.

We thus see that (up to those factors) the generators of the asymptotic symmetries
are indeed nothing but the leading terms in the asymptotic expansion of the highest-
weight components I'$%%1iN of the gauge connection.

The algebra of the asymptotic symmetry generators A% Ncan be read off by
equating their variations under an arbitrary asymptotic symmetry transformation,
computed in two different ways. First, A%+~ can be derived from the gauge

variation formula,

SASHL T HIN (9) — ST, iN (9) 5.0y iy = (8A5,02i1:”‘7iN + [F, A]370§i17"'7iN) s.0siy -

with the AN determined from the lowest-weight A%%%>+N along the lines
explained in the previous subsection. Second, §A%> N can be obtained directly

from the Hamiltonian expression (|6.25|),

5A8;i1,~~~,iN(9) — {As;z’1,~~-,z‘N (9)’ Z A07S/;j1’m’jNA8/j1

3l7j17"' WJN

s (®)er. (6.30)

)
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Here, 6 denotes the angular coordinate of the asymptotic infinity. Comparison of

these two ways of computing 6A%" N yields the Poisson brackets
{ASTN (), ASI0IN @) }pB for s, €N. (6.31)

It is evident that this algebra is closed, since the variations oI'®0:in —
#0585 - determined through the recursive procedure explained above, are func-
tionals of ['®:0i# N ~ ASiLiN only (in addition to depending linearly on the in-
dependent gauge parameters A%V The functional dependence of * %1 in
on AS#5iN i nonlinear, which implies that the algebra of the A’s is nonlinear.
The terms independent of A and linear in the gauge parameters corresponds to the

central charges. Although nonlinear, the algebra obeys of course the Jacobi identity

since the Poisson bracket doed’]

6.2.4 Nonlinear Super-W,, Algebra

The actual computation of the algebra SW of the A% “N’s is rather cumbersome
but it can be identified to be a super-Wy, by following a general argument similar
to the one given in [86] for the bosonic case. We consider first the N =1 case, i.e.,

shs®(1]2, R):

1. By computing the general solution to the equations for the A("")g (m > 0)

(0,2)

when only the free gauge parameter A is non zero, one observes (i) that

the generators L = A? form a Virasoro algebra with central charge k/4:

k

{L(0), L0 }on = 18"

(0—0)~ (LO+LE) IO -0):  (6.0)

and (i) that the generators M; , = A/ have conformal dimension (2 +1):
2

{L(0). M, (9o = - (M%H(e) + % M;-H(e/)) YO—0) .  (6.0)

SUpon gauge fixing, the Poisson algebra becomes the Dirac algebra. However, the asymptotic

algebra does not depend on the gauge choice because the constraints of the theory are all first class.
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2. By computing the general solution to the equations for the A™™)’s (m > 0)
when only the free (fermionic) gauge parameter A1) is non-zero, one observes

that the generator Q = M3 = A! is the supercharge,
2

HQO), My ()}os = —6,.8"(0 — 0
+ (s+1)Mass(6) (s odd) (6.0)

and

QO My @ = =50~ 8) (SMa(0) 4 Dpa(6) (s even). (61

The relations are linear at these levels. They start displaying the nonlinear struc-

ture of the algebra at higher levels. For instance, one finds explicitly

o

3
/ % ey

(N°(0) + N°(¢))é(0 — ')

+ 2(325)2L(0)L(6’)5(0 — ) - ;:25”(0 —0)(L(O) + L))
- SO0 - L0 + 5 Q000 - 060)
and
(L (0) M) hon = S 0"(0— 8 — 2 (L(0) + L))" (0~ )
b+ N0~ 0+ Q00— 0)
- @ OQ0) + Q-0
+ 55)25’(9 —0')(L*(0) + 2LOLE) | L*(0))
4 ;325”(9 — 0L — L (0)). (6.-3)

The numerical factors o’ appearing in these expressions read
) k(_)n—f—l L
ol = ——— 6.-3
wn! (6-3)
In the extended case, the derivation proceeds in the same way. The salient new

features that arise are:
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1. There are now fields A%+~ of conformal dimension 1. These are the cur-
rents of the internal symmetry, and they form an affine subalgebra. Their
brackets with the other generators reflect how these other generators trans-
form under the internal symmetry. Indeed, the solution for A when the only
non-vanishing lowest-weight free components are A%%11:2, N (4 ... > 2)

is easily seen to be simply A = AMW = Zi1+-~-iN>2 AOGsin, ’iNngo;ih... AN

2. A Sugawara redefinition of the Virasoro generator I must actually be per-

formed, as already found in [99] (see that reference for details).

3. While there is a single generator M; at each conformal dimension > 1 for
N =1, this is not any more the case for extended models. The degeneracies

2N71

of each conformal dimension > 1 is equal to , while the degeneracy of

2N—1

conformal dimension 1 is — 1. In particular, the Virasoro generator is not

the only field with conformal dimension 2 for extended models.

We stress that our construction guarantees automatically that the brackets among
the generators fulfill the Jacobi identity since these are just Poisson brackets (or
Dirac brackets if one fixes the gauge). This is worth emphazising since other meth-
ods for constructing super W-algebras met with difficulties with the Jacobi identity.

Although there is no consistent truncation of shs(/V|2,R) to finite dimensional
superalgebras that can be made beyond osp(N|2,R), the Hamiltonian reduction pro-
cedure is very similar to that encountered for the finite-dimensional super-algebras
sl(n + 1|n), which yields N = 2 models with generators M, of higher conformal

dimensions up to s = 2%t [120-123].
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Part IV

Conclusions and outlook

89



Chapter 7

Conclusions

We discussed the progress in several topics in super-conformal field theory and
higher-spin theory. Let us summarize the main result of each topic we discussed

in the last chapters.

In N'=4 SYM theory, we calculated anomalous dimensions of local operators using
spinning D3-branes. In ordinary perturbative calculations it has been known that
anomalous dimension of twist 2 operator scales logarithmic way. This is not trivial
but is the general feature in Yang-Mills theories. By studying spinning D-branes we
can verified that even in the non-perturbative region, logarithmic scaling still holds.
By considering large R-charge limit we can compare the result with gauge theory side

in BMN limit. This can be a consistent check or non-trivial test of AdS/CFT duality.

In A/ = 6 Chern-Simons matter theory, we focused on infra-red divergence in scat-
tering amplitude. In ABJM theory one-loop correction gives trivial result and first
non-trivial corrections arise in the two-loop order. The IR divergence in the two loop
order gives E% pole. Due to the gauge group structure, any scattering amplitude has
even number of external particles and this implies soft emission of two particles.
We performed explicit double phase space integral in spinor-helicity formalism. We

checked that two-particles emissions give E% pole and canceled exactly with 2-loop
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corrections. This guaranteed the infra-red finiteness of cross-sections at least in the
leading order of €. It would be nice if one can show that divergences are cancelled

n 6% order.

Asymptotic symmetry of super-symmetric higher-spin theory was calculated. Like
AdS gravity has sl(2, R) @ sl(2, R) symmetry, super-symmetric higher-spin theory
has original symmetry shs?(N|2, R) @ shs®(N|2, R). Under the AdSboundary con-
dition, we found the general transformation preserving boundary. It turned out the
super-W, algebra. We can summarize the symmetry extension in each AdS theory.
In pure gravity case, sl(2, R) @ sl(2, R) extends to Virasoro algebra which is con-
formal algebra in two dimension. In higher-spin theory, hs(2, R) @ hs(2, R) becomes
Woo algebra. So our result is the natural super-symmetric extension of higher-spin

gravity case.

So far we discussed the progress on super-conformal field theory and string the-
ory. Our goal is understanding the nature of real world. We believe that studying
this theories would give hints on unraveling the mysteries of nature. Let us end this
thesis with the hope that our results on each topics could be small blocks of future

progress in theoretical physics.
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Appendix A

Coordinates of AdS;3

We mainly use the coordinates of the AdS; x S' foliation of AdSs (4.56). The
coordinates of AdS3 appeared in [26] is convenient for our purpose. We summarize

its relation to the usual global coordinates. The coordinates (u, x, o) are given by

x_1 = cosucosh o cosh y — sin u sinh o sinh
2o = sinu cosh o cosh x + cosu sinh o sinh x;,
x1 = cos u cosh o sinh x — sin u sinh o cosh x;,

22 = cos u sinh o cosh x + sin w cosh o sinh .

The metric in this coordinates is written as
ds*(AdS3) = —du® + dx* — 2sinh 20 dudy + do”.
On the other hand, the global coordinates (7, p, ¢) parametrize the AdSs as

x_1 = cosh pcosT, xo = cosh psin T,
(A.0)

x1 = sinh p cos ¢, 9 = sinh psin ¢.

The metric in this global coordinates is written as

ds*(AdSs) = — cosh? pdr? 4 dp? + sinh? pdp?.
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These two coordinate systems are related as

sinh p = \/ cosh? o sinh? y + sinh? o cosh? y,

tanu + tanh o tanh x
tan7T = )
1 — tanu tanh o tanh x
tanh o + tan u tanh x
tan p =

tanh Y — tanutanho’
or

sinh 20 = sinh 2psin(p — 7),
sinh 2p cos(p — 7)

\/1 + sinh? 2psin?(¢ — 7)

siu _ 2i(r+p) COS(¢ — 7) —icosh2psin(p — 1)

sinh 2y =

il

e =€

The Killing vectors corresponding to the energy and the angular momentum are

given in the (u, x, o) coordinates as

cosh 20 2

h2 1 1
O (1 + cos X) Oy + - cosh 2x tanh 200, — 3 sinh 2x0,,

1
2
1 h2 1 1
Dy =5 (1 _ o8 X) Oy — - cosh 2y tanh 200, + 3 sinh 2x0,-.

cosh 20 2
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Appendix B

Asymptotic symmetry in HS
theory

B.1 Conventions and Notations

e sl(2,R)

A commuting spinor ¢ of sl(2,R) is a two-component, real-valued column vector

1
q(q%(q ) (a=1,2). (B.1)

<ea5><ea5>( ’ “>, (.8 =1,) (B.2)
-1 0

in the North-West/South-East convention:
Ay = APeg,, A= ePAg (B.3)

o AdSs3
Denote AdSs radius as £. We adopt the global coordinates of AdSs:

(z) = (20, 21, 2%) = (£, 40, 7). (B.4)

95



in which the metric reads

ds® = — (1 + <i>2> (dz°)2 + (1 + <x;>2> N (dz?)? + <x;>2 (dz")? (B.5)

To leading order at infinity, the “1” is negligible and one can replace asymptotically

the metric by that of the zero mass black hole [164],
22\ 22\ 2 22\ ?
ds® = — <£> (dx®)? + (g) (dz?)* + <€> (dz')? (B.6)
The light-cone coordinates are defined by

(z) = (aF,2%) = (t £ 10,7). (B.7)

B.2 Matrix realization of osp(/V|2,R) superalgebra
We collect useful result for matrix realization of osp(NN|2,R) superalgebra.

B.2.1 The non-extended case

The orthosymplectic osp(1, 2|R) superalgebra can be realized as the real vector space
of even (grading-preserving) 3 x 3 supermatrices acting on 1 commuting real Grass-
mann variable z and 2 anticommuting real Grassmann variables #' and 62 and which

preserve the quadratic form
2? + 2001012 = 22 +ic,30°0° (B.7)
as well as the real character of the coordinates, with the usual Lie bracket
[, =TT - I'T, (B.7)

where the multiplication is the matrix multiplication. Such supermatrices have the

form
0 ip —iA
A oa b (B.7)
nw o oc  —a
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with a, b, ¢ real and commuting and A, p real and anticommuting. We identify the

generators:
00 O 000 000
H=|o1 0|, E£=|00 1|, F=]0 o0 0],
00 —1 000 010
(B.7)
0 ¢ 0 0 0 —2
Rf=loo0oo0f, R =|10 0],
1 00 0 0 O
according to which we find the supercommutators
[H,E] =2F, [H,F] = —2F, [E,F|]=H,
[H,RT] = R", [E,R*] =0, [F,R"]=R",
[H,R"]=—-R", [E,R"]=R", [F,R™] =0,
{R"R"} = —-2iE {R,R }=2iF {RY",R}=iH
where the supercommutator is defined in the usual way
O,y =TT — (=)™ ™' 'T. (B.7)
The supertrace and scalar product are defined as
STr(T') = 'y — Tr(Lp2)) = T — Ta2 — gz = —T'ag — Is3, (B.7)
(T, 1) = STr(I'T), (B.7)

where I'yp2) is the submatrix generated by F, F and H (“spacetime” algebra),
and there is no internal algebra because N = 1. In our representation, the fermionic
sector is thus encoded in the F}, and F,; components of the matrices and the sp(2|R)

subalgebra of osp(1,2|R) thus lies in the Fy;, components, with a,b =1,2.

B.2.2 The extended case

The orthosymplectic osp(V,2|R) superalgebra can be realized as the real vector

space of even (grading-preserving) (N + 2) x (N + 2) supermatrices acting on N
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commuting real Grassmann variables z° and 2 anticommuting real Grassmann vari-
ables #' and 6? and which preserve the quadratic form

N
S (@)? + 20007 = §;ja'a7 + ieab0” (B.7)

=1

as well as the real character of the coordinates, with the usual Lie bracket
0, =TT —T'T, (B.7)

where the multiplication is the matrix multiplication. Such supermatrices have the
form
iy —iA
O;j
IUN  —IAN (B.7)
Al - AN a b

H1 - UN c —a
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with O;; = —0j; and a, b, c real and commuting and \;, y; real and anticommuting.

We identify the generators:

0 0 0 0 00
0 0 0
H= 0o o |, E= 0 0], F= 0 0],
0---0 1 0 0---0 0 1 0---0 0 0
0---0 0 —1 0---0 0 0 0---0 1 0
0 0 0 0
0 0 —i 0 i 0
Rjz , R = ,
0 0 0 0
0---1---0 0 0 0---0 0 0 0
0---0---0 0 0 0---1---0 0 0
0 1 0 0
Jii =11 00 0],
0---0 0 0
0---0 0 0
(B.7)

where in R and R; (odd generators) the i factors sit in the i-th line and the 1
factors in the i-th column, and in J;; the 1 (resp. —1) factors sit in the position (i, j)

(resp. (j,7)). We find the supercommutators

[H,E] = 2F, [H, F] = —2F, [E,F] = H,
[H,R] = R/, [E,R] =0, [F, R[] =R,
[H,R;]=—-R;, [E,R; ] =R, [F,R;] =0,

iR, R} =20;FE i{R;,R;} =—26;F i{R],R;}=Jiy—o;H
[Jij, E] = 0, [Jij, F] =0, [Jij, H =0
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[Jij, Rif] = 6 R — 5ikR;r [Jij, By, ] = 6 Ry — 0l
[Jij> Ji] = bkt + dunTjk — diwJji — Ojidin,
where the supercommutator is defined in the usual way
[} =TT — (=)™ ' I'T.
The supertrace and scalar product are defined as
STr(I') = Tr(Lso(vy) — Tr(Tgp2)),

(T, 1) = STr(I'T),

(B.7)

(B.7)

(B.7)

where 'y, is the submatrix of I' generated by the J;; basis elements (internal

algebra) and Iy, (o) is the submatrix generated by £, F' and H (“spacetime” algebra).
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