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We revisit radiative parton energy loss in deeply inelastic scattering (DIS) off a large nucleus within the
perturbative QCD approach. We calculate the gluon radiation spectra induced by double parton scattering
in DIS without collinear expansion in the transverse momentum of initial gluons as in the original high-
twist approach. The final radiative gluon spectrum can be expressed in terms of the convolution of hard
partonic parts and unintegrated or transverse momentum dependent (TMD) quark-gluon correlations. The
TMD quark-gluon correlation can be factorized approximately as a product of initial quark distribution and
TMD gluon distribution which can be used to define the generalized or TMD jet transport coefficient.
Under the static scattering center and soft radiative gluon approximation, we recover the result by Gylassy-
Levai-Vitev in the first order of the opacity expansion. The difference as a result of the soft radiative gluon
approximation is investigated numerically under the static scattering center approximation.
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I. INTRODUCTION

In high-energy heavy-ion collisions, an energetic parton
will undergo multiple scattering in hot quark gluon plasma
(QGP) and loses energy along its path. The parton energy
loss will lead to the suppression of final energetic jets [1]
and large transverse momentum hadrons [2] in heavy-ion
collisions as compared to proton-proton collisions. This
phenomenon known as jet quenching has been observed in
experiments at the Relativistic Heavy-ion Collider (RHIC)
[3,4] and the Large Hadron Collider (LHC) [5–7] and has
been used to extract properties of the QGP that is produced
in high-energy heavy-ion collisions [8]. Similar processes
of multiple parton scattering and parton energy loss also
occur in deeply inelastic scattering (DIS) off a large
nucleus. The phenomenon can also be used to study
properties of cold nuclear matter as probed by energetic
quarks [9,10]. For recent reviews on jet quenching theory
and phenomenology see Refs. [11–14].
Since the first attempt to calculate radiative energy

loss for a propagating parton in a dense QCD medium
[15], several studies based on perturbative QCD (pQCD)
have been carried out to calculate radiative parton
energy loss induced by multiple scattering. The studies

by Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov
(BDMPS-Z) [16–18] consider soft gluon radiation as a
result of multiple scatterings while Gyulassy-Levai-Vitev
(GLV) and Wiedemann [19–21] assumed the leading order
in the opacity expansion for medium-induced gluon radi-
ation. Both of these studies assume the medium as a series
of static scattering centers as in the Gyulassy-Wang (GW)
model [15]. Arnold, Moore, and Yaffe (AMY) [22,23]
employed the hard thermal loop improved pQCD at finite
temperature to calculate the scattering and gluon radiation
rate in a weakly coupled thermal QGP medium. The high-
twist (HT) approach [24–27] uses the twist-expansion
technique in a collinear factorized formalism in which
information of the medium is embedded in the high-twist
parton correlation matrix elements. In the latest SCETG
formalism [28,29], the standard soft collinear effective
theory (SCET) is supplemented with Glauber modes of
gluon exchange for parton interaction between a fast parton
and static scattering centers to study multiple parton
scattering and medium-induced gluon splitting. The rela-
tions between some of the above different studies of parton
propagation and energy loss have been discussed in detail
in Refs. [30–32] and numerically compared in Ref. [33].
In most of these approaches to parton propagation and

energy loss, there are several common approximations.
Under the eikonal approximation, energy of the propagat-
ing parton E and radiated gluon’s energy ω are considered
larger than the transverse momentum transfer k⊥ in the
scattering, E, ω ≫ k⊥. The energy of a radiative gluon is
often considered larger than its transverse momentum
ω ≫ l⊥ which is known as the approximation of collinear
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radiation. The mean free path for the propagating parton is
assumed larger than the Debye screening length,
λ ≫ 1=μD, which determines the range of interaction in
a thermal medium. In addition, a few other approximations,
for example soft radiated gluon approximation E ≫ ω in
BDMPS-Z and GLV studies and the large angle approxi-
mation l⊥ ≫ k⊥ in the HTapproach, are also made in some
of the approaches. Most of the studies except AMY take
into account both vacuum and medium-induced radiations
and their interference. In BDMPS-Z, the GLV study, and
the SCETG approach, the medium is modeled as a
collection of static scattering centers. Interactions between
the propagating parton and medium, therefore, do not
involve energy and longitudinal momentum transfer. In
these approaches, the elastic scattering, the radiative
processes, and the corresponding energy loss are calculated
separately. Attempts have been made to improve these
theoretical approaches. For example, GLV calculation has
been extended beyond soft radiation approximation [34]
and with a dynamic medium through the hard thermal loop
resummed gluon propagator [35] and beyond first order
in opacity expansion [36]. The HT approach has been
extended to include longitudinal momentum diffusion
[37,38]. Further improvements such as the effects of color
(de)coherence, angular order [39–41], and overlapping
formation time in sequential gluon emissions [42] have
also been studied.
In the HT formalism [24–27], the collinear expansion of

the hard partonic part in the transverse momentum k⊥ of the
initial gluon requires l⊥ ≫ k⊥. Here ⃗l⊥ denotes the trans-
verse momentum of the radiative gluon while k⃗⊥ is the
transverse momentum of the initial gluon or transverse
momentum transfer carried by the gluon exchange in the
parton-medium scattering. The scattering and radiation
amplitudes are then factorized. The initial transverse
momentum k⊥ can be integrated, giving rise to the collinear
factorized parton distributions and correlations. In this
study, we will consider multiple parton scattering and
medium-induced gluon radiation in DIS off a large nucleus
without collinear expansion in the transverse momentum
of the initial or exchanged gluons. The gluon radiation
spectrum due to multiple parton scattering can be expressed
in terms of hard partonic parts and the unintegrated or
transverse momentum dependent (TMD) quark-gluon cor-
relation functions. The dynamic picture of the parton-
medium interaction emerges explicitly with the energy and
longitudinal momentum exchange between the propagating
parton and medium.We denote this study as the generalized
high-twist (GHT) study in order to relate to the original HT
formalism [24–27] even though the concept of twist
expansion in this TMD approach is no longer valid.
Since only double and triple parton scattering amplitudes
are considered, this is very similar to the leading order
contribution of the opacity expansion in the GLV study. We
will study the similarity and difference between the GLV

result and ours. We will show that under soft gluon
radiation and static scattering center approximations, we
can recover the GLV results. We also study numerically the
effect of the soft gluon radiation and static scattering center
approximations. During the study presented in this paper, a
similar effort in extending the HT approach to a dynamic
medium has been completed in Refs. [43,44]. This study
assumes a static Yukawa potential model for an exchange
gluon field with longitudinal and transverse momentum
transfer. Using the light cone expression for four momen-
tum transfer, they assume the minus component of four
momentum transfer is of the same order as the transverse
component, and much larger than the plus component. In
our current study, we follow the high-twist approach and
assume the plus component and the transverse component
are much larger than the minus component. We describe the
gluon field from the nucleus in terms of a general TMD
quark-gluon correlation function which can be reduced to
the same result [Eq. (49) in Ref [43]] with the static
potential assumption.
The remainder of the paper is organized as follows. In

Sec. II, we lay out notations and conventions using the
single scattering in DIS as an example. The calculation of
the radiative gluon spectrum induced by multiple parton
scattering is described in Sec. III with details for one
example diagram. The full results of a complete list of
diagrams are provided in Appendix A. We also show how
to calculate the radiative gluon spectrum using the helicity
amplitude method with a soft gluon approximation in
Appendix B. The relation between the unintegrated gluon
distribution function ϕðx; k⃗⊥Þ and TMD jet transport
parameter q̂ðk⃗⊥Þ is also discussed. In Sec. IV, we discuss
the results on radiative gluon spectrum in our study under
various approximations and compare to the result from
the GLV calculation. A summary and some further remarks
are presented in Sec. V.

II. SINGLE SCATTERING

The cross section of the unpolarized semi-inclusive DIS
(SIDIS) process,

eðl1Þ þ AðpÞ → eðl2Þ þ hðlhÞ þ Z; ð1Þ

as shown in Fig. 1, can be expressed as

dσ ¼ e4

2s

P
qe

2
q

q4

Z
d4l2
ð2πÞ4 2πδðl

2
2ÞLμνWμν; ð2Þ

where the Mandelstam variable s ¼ ðl1 þ ApÞ2 is the total
invariant center of mass energy squared for the lepton-
nucleus system, p is the four-momentum per nucleon in a
large nucleus with atomic number A, and q is the four-
momentum of the intermediate virtual photon. The leptonic
tensor is
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Lμν ¼
1

2
Tr½γ · l1γμγ · l2γν�; ð3Þ

where 1=2 is the spin average factor of the initial lepton.
The unpolarized semi-inclusive hadronic tensor is

Elh

dWμν

d3lh
¼ 1

2

X
Z

hAjJμð0ÞjZ; hihh;ZjJνð0ÞjAi

× ð2πÞδ4ðAp − q − pZ − lhÞ

¼
Z

d4ye−iq·y
X
Z

hAjJμðyÞjZ; hihh;ZjJνð0ÞjAi;

ð4Þ

where the hadronic current is defined as Jμð0Þ ¼
ψ̄qð0Þγμψqð0Þ. This unpolarized semi-inclusive hadronic
tensor, which is also referred to as the leading-twist
hadronic tensor, can be illustrated diagrammatically
in Fig. 2.
The intermediate state Z has two parts, X and S, where

X represents the spectators in nuclei while S denotes the
remaining hadronic states from the hadronization of the
final quark. The four-momentum of the virtual photon
and the initial nucleon are q ¼ ½−Q2=2q−; q−; 0⃗⊥� and
p ¼ ½pþ; 0; 0⃗⊥�, respectively. The Bjorken variable is
defined as xB ¼ Q2=2pþq−. The momentum fraction of
the struck quark is x. The fraction of the light-cone
momentum carried by the observed hadron with momen-
tum lh is zh ¼ l−h =q

−. Under the collinear approximation,
one can expand the hard partonic part of the γ� þ q
scattering in the initial transverse momentum of the quark.
The leading term of the expansion gives rise to the leading

twist unpolarized semi-inclusive hadronic tensor in a
factorized form,

dWμν
Sð0Þ

dzh
¼

Z
dxfAqðxÞHμν

ð0ÞðxÞDq→hðzhÞ; ð5Þ

where the lower index Sð0Þ denotes that the quark
originated from the nucleus only undergoes a single
scattering with the virtual photon without corrections from
the strong interaction. The nuclear quark distribution
function is defined as,

fAqðxÞ ¼
Z

dy−

2π
e−ixp

þy− 1

2
hAjψ̄qðy−Þγþψqð0ÞjAi; ð6Þ

and the definition of the quark fragmentation function is

Dq→hðzhÞ ¼
z3h
2

X
S

Z
d4lq
ð2πÞ4

Z
d4yeilq·y

× Tr

�
γ−

2l−h
h0jψðyÞjh;SihS; hjψ̄ð0Þj0i

�

¼ zh
2

X
S

Z
dyþ

2π
eil

−
h y

þ=zh

× Tr

�
γ−

2
h0jψðyþÞjh;SihS; hjψ̄ð0Þj0i

�
: ð7Þ

The hard partonic part is

Hμν
ð0ÞðxÞ ¼

1

2
Tr½γ · pγμγ · ðqþ xpÞγν�2πδ½ðqþ xpÞ2�

¼ 1

2
Tr½γ · pγμγ · ðqþ xpÞγν� 2π

2pþq−
δðx − xBÞ:

ð8Þ

Soft eikonal gluons attached to the nucleus target and the
final state hadrons can be summed as gauge links in the
quark distribution function and parton fragmentation func-
tion. They are omitted here for brevity of the notation.
The next-to-leading (NLO) order corrections in the

strong coupling constant to the fragmentation process
in SIDIS are from the final state radiation, as shown in
Figs. 3 and 4.
If the identified final hadron comes from the quark, as in

Fig. 3, the NLO correction to the hadronic tensor is

dWμν
Sð1Þq

dzh
¼

Z
dxfAqðxÞHμν

ð0ÞðxÞ
αs
2π

CF

×
Z

1

zh

dz
z

Z
μ2

0

dl2⊥
l2⊥

1þ z2

1 − z
Dq→hðzh=zÞ; ð9Þ

where the lower index Sð1Þq denotes the NLO radiative
correction to the hadronic tensor from single photon-quark

FIG. 1. Semi-inclusive DIS process.

FIG. 2. Leading twist hadronic tensor in the DIS process.
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scattering, with the final hadron from the fragmentation of
the quark. The fraction of momentum carried by the final
state quark lq is z ¼ l−q =q−. The factorization scale is μ2,
which separates the perturbative hard partonic part from
the nonperturbative fragmentation processes (fragmenta-
tion function).
When the identified final hadron comes from the

radiative gluon, as in Fig. 4, the NLO radiative correction
to the hadronic tensor is

dWμν
Sð1Þg

dzh
¼
Z

dxfAqðxÞHμν
ð0ÞðxÞ

αs
2π

CF

×
Z

1

zh

dz
z

Z
μ2

0

dl2⊥
l2⊥

1þð1−zÞ2
z

Dg→hðzh=zÞ: ð10Þ

Note that z ¼ l−=q− here is the momentum fraction of the
radiated gluon and the gluon fragmentation function is

Dg→hðzhÞ ¼
z2h
2

X
S

Z
d4l
ð2πÞ4

Z
d4yeil·y

× h0jAαð0Þjh;SihS; hjAβðyÞj0iϵαβðlÞ

¼ −
z2h
2l−h

X
S

Z
dyþ

2π
eil

−
h y

þ=zh

× h0jF−αðyþÞjh;SihS; hjF−
αð0Þj0i: ð11Þ

There are both infrared and collinear divergences in the
above radiative corrections to the hadronic tensor of SIDIS.

The infrared divergence is in the splitting function of the
hadronic tensor dWμν

Sð1Þq=dzh in Eq. (9) for identified

hadrons originated from the quark, when the momentum
fraction of the final quark z approaches 1. To deal with this,
one has to include the virtual corrections at NLO to the
hadronic tensor as shown in Fig. 5. These virtual correc-
tions from the sum of the two diagrams in Fig. 5 are

dWμν
SðvÞ

dzh
¼ −

Z
dxfAqðxÞHμν

ð0ÞðxÞ
αs
2π

CF

×
Z

1

0

dz
Z

μ2

0

dl2⊥
l2⊥

1þ z2

1 − z
Dq→hðzhÞ; ð12Þ

where each of the diagram contributes one-half. The lower
index SðvÞ denotes the virtual correction at NLO to the
hadronic tensor of DIS process which also has both infrared
and collinear divergences.
When summed together, the infrared divergences in the

radiative and virtual corrections cancel. The remaining
collinear divergences can be absorbed into the renormal-
ized fragmentation function Dq→hðzh; μ2Þ. The leading
twist hadronic tensor for the SIDIS process, including
the final state radiation and virtual correction, can be
written as

dWμν
S

dzh
¼

dWμν
Sð0Þ

dzh
þ
dWμν

Sð1Þq
dzh

þ
dWμν

Sð1Þg
dzh

þ
dWμν

SðvÞ
dzh

¼
Z

dxfAqðxÞHμν
ð0ÞDq→hðzh; μ2Þ; ð13Þ

and the renormalized quark fragmentation function is
defined as

FIG. 3. Next-to-leading order contribution to leading twist
hadronic tensor with quark fragmentation.

FIG. 4. Next-to-leading order contribution to leading twist
hadronic tensor with gluon fragmentation.

FIG. 5. Virtual correction at next-to-leading order.
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Dq→hðzh; μ2Þ ¼ Dq→hðzhÞ þ
αs
2π

CF

Z
1

zh

dz
z

Z
μ2

0

dl2⊥
l2⊥

×

��
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
Dq→hðzh=zÞ

þ CF
1þ ð1 − zÞ2

z
Dg→hðzh=zÞ

�
; ð14Þ

which satisfies the DGLAP equation [45–47].

III. MEDIUM INDUCED GLUON RADIATION

In the process of SIDIS off a nucleus target, the outgoing
quark may undergo secondary scatterings with another
parton in the nucleus which in turn can induce gluon
radiation. Such secondary scatterings are especially impor-
tant when the initial quark and the second medium parton
originate from two different nucleons inside the nucleus. In
this case, the corresponding contributions to the hadronic
tensor are enhanced by the size of the nucleus A1=3. We will
only consider contributions with nuclear enhancement and
neglect those without, for example, when the initial quark
and medium parton are from the same nucleon inside the
nucleus.

A. Double scattering

There are many contributions from gluon radiation
induced by double parton scattering to the hadronic tensor

of the SIDIS processes. We will focus on the processes that
have two gluon exchanges between the propagating quark
and the nucleus in the cut diagram. Processes with double
quark scattering have been discussed in detail in Ref. [27].
We first illustrate the procedures to calculate the semi-
inclusive hadronic tensor from medium induced gluon
radiation, using the central cut diagram in Fig. 6 as an
example. Calculations of other cut diagrams are given in
Appendix A.
We choose the covariant gauge for the gluon field

from the beam nucleus while the axial gauge (A− ¼ 0)
for the final radiated gluon. The semi-inclusive hadronic
tensor for the central cut diagram in Fig. 6 can be written
down as

WμνFig6
Dð1Þq ¼

Z
d4yeiq·y

Z
d4y1

Z
d4y2

Z
d4z1

Z
d4z2

Z
d4l
ð2πÞ4 2πδðl

2Þ
Z

d4lh
ð2πÞ4 2πδðl

2
hÞ
X
X ;S

hAjψ̄ðyÞ

× γμψðyÞψ̄ðy1Þð−igÞγσAσðy1Þψðy1Þψ̄ðz1Þð−igÞγαAαψðz1Þjl; lh;S; pX ihpX ;S; lh; ljψ̄ðz2Þ

× ðigÞγβAβψðz2Þψ̄ðy2ÞðigÞγρAρðy2Þψðy2Þψ̄ð0Þγνψð0ÞjAi
Tr½tatctcta�
NcðN2

c − 1Þ ; ð15Þ

where the lower index “Dð1Þq” denotes radiative corrections to the double scattering process and the identified hadron is
from the fragmentation of the final quark. One can carry out the integrations over z1 and z2 which lead to the energy-
momentum conservation at the vertices of gluon radiation. Factoring out the fragmentation function and noticing that the
dominant components of the initial gluon field in covariant gauge are Aσðy1Þ ≈ ðpσ=pþÞAþðy1Þ, Aρðy2Þ ≈ ðpρ=pþÞAþðy2Þ
[48], the hadronic tensor can be rewritten as,

dWμνFig6
Dð1Þq
dzh

¼
Z

1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π
dy−1 dy

−
2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥
Z

dx
dx1
2π

dx2
2π

× e−ix1p
þy−−ix2pþy−

1
−iðx−x1−x2Þpþy−

2 hAjψ̄ðy−Þ γ
þ

2
Aþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAi

×
Z

d4l
ð2πÞ4

1

2
Tr½p · γγμpσpρĤ

σργν�2πδðl2qÞ2πδðl2Þδ
�
1 − z −

l−

q−

�
; ð16Þ

where y⃗12⊥ ¼ y⃗1⊥ − y⃗2⊥,

FIG. 6. Central cut diagram of double scattering and induced
gluon radiation.
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Ĥσρ ¼ g4
CF

2Nc

γ · ðx1pþ qÞ
ðx1pþ qÞ2 − iϵ

γσ
γ · ðx1pþ x2pþ qþ k⊥Þ

ðx1pþ x2pþ qþ k⊥Þ2 − iϵ
γαγ · lqγβ

×
γ · ðx1pþ x2pþ qþ k⊥Þ

ðx1pþ x2pþ qþ k⊥Þ2 þ iϵ
γρ

γ · ðxpþ qÞ
ðxpþ qÞ2 þ iϵ

ϵαβðlÞ; ð17Þ

and the polarization sum tensor of the final gluon is

ϵαβðlÞ ¼ −gαβ þ
nαlβ þ nβlα

n · l
þ n2

lαlβ
ðn · lÞ2 ; ð18Þ

here one sum over the physical polarizations, where n ¼ ½1; 0−; 0⃗⊥� for the axial gauge. Using this polarization sum tensor,
the contribution from diagrams of initial gluon radiation is zero.
Following the notations in Ref. [25] for the high-twist approach to parton energy loss, the hadronic tensor can be

expressed as

dWμνFig6
Dð1Þq
dzh

¼
Z

1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π
dy−1 dy

−
2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥

×
1

2
hAjψ̄ðy−ÞγþAþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAiðH̄D

C11Þμν; ð19Þ

with the partonic hard part as

ðH̄D
C11Þμν ¼

Z
dx

dx1
2π

dx2
2π

e−ix1p
þy−e−ix2p

þy−
1 e−iðx−x1−x2Þpþy−

2

×
Z

d4l
ð2πÞ4 2πδðl

2Þ2πδðl2qÞ
1

2
Tr½p · γγμpσpρĤ

σργν�δ
�
1 − z −

l−

q−

�
: ð20Þ

Using the pole structure of the propagators in Ĥσρ under the contour integration and δðl2qÞ from the on-shell condition of
the cut quark line, one can carry out the integrations over x, x1, and x2 in IC,

IC ¼
Z

dx
dx1
2π

dx2
2π

e−ix1p
þy−−ix2pþy−

1
−iðx−x1−x2Þpþy−

2
1

ðx1pþ qÞ2 − iϵ
1

ðx1pþ x2pþ qþ k⊥Þ2 − iϵ

×
1

ðx1pþ x2pþ qþ k⊥Þ2 þ iϵ
1

ðxpþ qÞ2 þ iϵ
δðl2qÞ

¼ 1

ð2pþq−Þ5z
e−ixBp

þy−e−iðxLþxDÞpþðy−
1
−y−

2
Þ

ðxL þ xD − x0DÞ2
θðy−2 Þθðy−1 − y−Þ; ð21Þ

where

xL ¼ l2⊥
2pþq−zð1 − zÞ ; xD ¼ k2⊥ − 2k⃗⊥ · ⃗l⊥

2pþq−z
; x0D ¼ k2⊥

2pþq−
: ð22Þ

Under collinear approximation, one has

pσĤ
σρpρ ≈ γ · ðxpþ qÞ 1

4q−
Tr½γ−pσĤ

σρpρ�: ð23Þ

Taking the trace Tr½γ−pσĤ
σρpρ� and integrating over lþ and l−, we get the partonic hard part,

ðH̄D
C11Þμν ¼

Z
dxHμν

ð0ÞðxÞ
Z

dl2⊥
αs
2π

CF
1þ z2

1 − z
2παs
Nc

e−ixp
þy−e−iðxLþxDÞpþðy−

1
−y−

2
Þ

½⃗l⊥ − ð1 − zÞk⃗⊥�2
θðy−2 Þθðy−1 − y−Þ; ð24Þ
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where

Hμν
ð0ÞðxÞ ¼

1

2
Tr½p · γγμγ · ðxBpþ qÞγν� 2π

2pþq−
δðx − xBÞ: ð25Þ

The contribution to the hadronic tensor from this central cut diagram reads

dWμνFig6
Dð1Þq
dzh

¼
Z

1

zh

dz
z
Dq→hðzh=zÞ

Z
dxHμν

ð0ÞðxÞ
Z

dy−

2π

Z
dy−1

Z
dy−2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2

Z
dl2⊥

× eik⃗⊥·y⃗12⊥e−ixp
þy−e−iðxLþxDÞpþðy−

1
−y−

2
ÞhAjψ̄ðy−Þ γ

þ

2
Aþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAi

×
1

½⃗l⊥ − ð1 − zÞk⃗⊥�2
αs
2π

CF
1þ z2

1 − z
2παs
Nc

: ð26Þ

Following the same procedures, one can calculate contributions to the hadronic tensor from all the cut diagrams for
double parton scattering at α2s order whose results are given in Appendix A. Summing up these contributions, including
central, left, and right cut diagrams, the hadronic tensor from double parton scattering with hadrons from the fragmentation
of the final quark can be expressed as

dWμν
Dð1Þq
dzh

¼
Z

1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π
dy−1 dy

−
2

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥hAjψ̄ðy−Þ γ
þ

2
Aþðy−1 ; y⃗1⊥Þ

× Aþðy−2 ; y⃗2⊥Þψð0ÞjAi½ðH̄D
CÞμν þ ðH̄D

L Þμν þ ðH̄D
R Þμν�; ð27Þ

with partonic hard parts from central, left, and right cut diagrams,

ðH̄D
CÞμν ¼

Z
dxHμν

ð0ÞðxÞ
Z

dl2⊥
αs
2π

1þ z2

1 − z
2παs
Nc

HD
Cθðy−2 Þθðy−1 − y−Þ;

ðH̄D
L Þμν ¼

Z
dxHμν

ð0ÞðxÞ
Z

dl2⊥
αs
2π

1þ z2

1 − z
2παs
Nc

HD
Lθðy−2 − y−1 Þθðy−1 − y−Þ;

ðH̄D
R Þμν ¼

Z
dxHμν

ð0ÞðxÞ
Z

dl2⊥
αs
2π

1þ z2

1 − z
2παs
Nc

HD
Rθðy−1 − y−2 Þθðy−2 Þ; ð28Þ

where

HD
C ¼

��
CA

ðl⊥ − k⊥Þ2
ei

z
1−zxDp

þðy−
1
−y−

2
Þe−iðxþxLþxD

1−zÞpþy− −
CA

l2⊥
e−i

z
1−zxDp

þðy−
1
−y−

2
Þe−iðxþxLÞpþy−

�

þ
��

CF

l2⊥
þ CA

k⃗⊥ · ⃗l⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CF

½⃗l⊥ − ð1 − zÞk⃗⊥�2
þ 1

Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

− CA
ð⃗l⊥ − k⃗⊥Þ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
ðl⊥ − k⊥Þ2 ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
e−iðxLþxDÞpþðy−

1
−y−

2
Þe−ixpþy−

�

þ
��

−
CA

ð⃗l⊥ − k⃗⊥Þ2
þ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

2

ð⃗l⊥ − k⃗⊥Þ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
ðl⊥ − k⊥Þ2 ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�

× e−iðxLþxD;k⃗⊥Þpþðy−
1
−y−

2
ÞeiðxLþ

xD
1−zÞpþy−

1 e−iðxþxLþxD
1−zÞpþy−

�

þ
��

−
CA

ð⃗l⊥ − k⃗⊥Þ2
þ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

2

ð⃗l⊥ − k⃗⊥Þ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
ðl⊥ − k⊥Þ2 ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�

× ei
z

1−zxDp
þðy−

1
−y−

2
Þe−iðxLþ

xD
1−zÞpþy−

1 e−ixp
þy−

��
; ð29Þ
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HD
L ¼

��
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

e−i
z

1−zxDp
þðy−

1
−y−

2
Þei

xD
1−zp

þy−
1 e−iðxþxLþxD

1−zÞpþy−

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ei
z

1−zxDp
þðy−

1
−y−

2
Þe−i

xD
1−zp

þy−
1 e−iðxþxLÞpþy−

�

þ
�
−
�
CF

1

l2⊥
þ 1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
e−iðx0D−xLÞpþðy−

1
−y−

2
Þe−ixLpþy−

1 e−ixp
þy−

þ CA

2

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

e−iðx0D−xLÞpþðy−
1
−y−

2
Þe−ixLpþy−

1 e−ixp
þy−

�

þ
�
−
�

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

þ CF

l2⊥
−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−iðxLþxDÞpþðy−

1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−

þ
�
−
CA

2

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

l2⊥

�
e−i

z
1−zxDp

þðy−
1
−y−

2
Þe−ixLpþy−

1 e−ixp
þy−

��
; ð30Þ

HD
R ¼

��
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

eixDp
þðy−

1
−y−

2
Þe−i

xD
1−zp

þy−
1 e−iðxþxLÞpþy−

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

e−ixDp
þðy−

1
−y−

2
Þei

xD
1−zp

þy−
1 e−iðxþxLþxD

1−zÞpþy−
�

þ
�
−
�
CF

1

l2⊥
þ 1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
e−ix

0
Dp

þðy−
1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−

þ CA

2

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

e−ix
0
Dp

þðy−
1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−
�

þ
�
−
�

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

þ CF

l2⊥
−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−ixDp

þðy−
1
−y−

2
Þe−ixLpþy−

1 e−ixp
þy−

þ
�
−
CA

2

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

l2⊥

�
e−iðxLþ

z
1−zxDÞpþðy−

1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−
��

: ð31Þ

In order to organize the above contributions, we have reversed the sign of the initial transverse momentum k⃗⊥ in some
diagrams. See Appendix A for details. One can also get the hadronic tensor using helicity amplitude approximation, which
is the same as the full result from the cut diagrams in the soft gluon approximation z → 1, as was also studied in the high-
twist approach in Ref. [25]. Details of the helicity amplitude calculations are given in Appendix B. One can also obtain
virtual corrections from the unitarity requirement which will cancel the infrared divergence in the radiative corrections
listed above.
In addition to the above listed contributions, there are also contact contributions that are not enhanced by the nuclear size

due to path ordered integration. They are negligible as compared to contributions listed above. There are two sources of
contact contributions. One type of contact contributions comes from the combination of central, left, and right cut diagrams
with a common hard partonic part,

dWμν
contact1

dzh
¼

Z
1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π
dy−1 dy

−
2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥hAjψ̄ðy−Þ

×
γþ

2
Aþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAi

Z
dxHμν

ð0ÞðxÞ
Z

dl2⊥
αs
2π

1þ z2

1 − z
2παs
Nc

×HD
contact1½θðy−2 Þθðy−1 − y−Þ − θðy−1 − y−2 Þθðy−2 Þ − θðy−2 − y−1 Þθðy−1 − y−Þ�; ð32Þ

with
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HD
contact1 ¼

CF

l2⊥
e−ixDp

þðy−
1
−y−

2
Þe−iðxþxLÞpþy− þ CA

l2⊥
e−i

z
1−zxDp

þðy−
1
−y−

2
Þe−iðxþxLÞpþy−

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ei
z

1−zxDp
þðy−

1
−y−

2
Þe−i

xD
1−zp

þy−
1 e−iðxþxLÞpþy−

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

e−ixDp
þðy−

1
−y−

2
Þei

xD
1−zp

þy−
1 e−iðxþxLþxD

1−zÞpþy−

þ
�
−
CF

l2⊥
−

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

þ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−iðxLþxDÞpþðy−

1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−

þ
�
−
CF

l2⊥
−

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

þ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−ixDp

þðy−
1
−y−

2
Þe−ixLpþy−

1 e−ixp
þy− : ð33Þ

The combination of θ functions in these contact terms leads to path-ordered integration,

Z
dy−1 dy

−
2 ½θðy−1 − y−Þθðy−2 Þ − θðy−2 − y−1 Þθðy−1 − y−Þ − θðy−1 − y−2 Þθðy−2 Þ� ¼ −

Z
y−

0

dy−1

Z
y−
1

0

dy−2 ; ð34Þ

that limits the range of both coordinates in the integration within one single nucleon, 0 < y−1 < y−2 < y−. These
contributions are not enhanced by the nuclear size and therefore are negligible compared to other terms that are enhanced by
the nuclear size. In the Glauber limit k⊥ → 0 the above contact term becomes a part of the gauge link for the NLO correction
to the single scattering. Other terms in the collinear expansion of these contact contributions lead to higher-twist terms that
are not enhanced by the nuclear size.
The second type of contact contributions come from the integration region of right cut diagrams. The integration regions

of y−; y−1 ; y
−
2 for central, left, and right cut diagrams are

θC ≡
Z

dy−
Z

dy−1

Z
dy−2 θðy−1 − y−Þθðy−2 Þ ¼

Z
dy−

Z
∞

y−
dy−1

Z
∞

0

dy−2

¼
Z

dy−
Z

∞

y−
dy−1

Z
y1

−∞
dy−12;

θL ≡
Z

dy−
Z

dy−1

Z
dy−2 θðy−2 − y−1 Þθðy−1 − y−Þ ¼

Z
dy−

Z
∞

y−
dy−1

Z
∞

y−
1

dy−2

¼
Z

dy−
Z

∞

y−
dy−1

Z
0

−∞
dy−12;

θR ≡
Z

dy−
Z

dy−1

Z
dy−2 θðy−1 − y−2 Þθðy−2 Þ ¼

Z
dy−

Z
∞

y−
2

dy−1

Z
∞

0

dy−2

¼
Z

dy−
Z

∞

0

dy−1

Z
y1

0

dy−12; ð35Þ

respectively, where y−12 ¼ y−1 − y−2 . If the integration region for jy−12j < rN is limited by the size of the nucleon rN , the three
integration regions become

θC ¼
Z

dy−
Z

∞

y−
dy−1

Z
rN

−rN
dy−12;

θL ¼
Z

dy−
Z

∞

y−
dy−1

Z
0

−rN
dy−12;

θR ¼
Z

dy−
Z

∞

0

dy−1

Z
rN

0

dy−12

¼
Z

dy−
Z

∞

y−
dy−1

Z
rN

0

dy−12 þ
�Z

dy−
Z

y−

0

dy−1

Z
y−
1

0

dy−2

�
; ð36Þ
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respectively. The integration in the square brackets for the contributions from the right cut diagrams is path-ordered
0 < y−1 < y−2 < y− for the second type of contact contribution,

dWμν
contact2

dzh
¼

Z
1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π

Z
y−

0

dy−1

Z
y−
1

0

dy−2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥ 1

2
hAjψ̄ðy−Þ

× γþAþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAi
Z

dxHμν
ð0ÞðxÞ

Z
dl2⊥

αs
2π

1þ z2

1 − z
2παs
Nc

HD
R : ð37Þ

The summation of these two types of contact contributions reads

dWμν
contact

dzh
¼

Z
1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π

Z
y−

0

dy−1

Z
y−
1

0

dy−2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥ 1

2
hAjψ̄ðy−Þ

× γþAþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAi
Z

dxHμν
ð0ÞðxÞ

Z
dl2⊥

αs
2π

1þ z2

1 − z
2παs
Nc

HD
contact; ð38Þ

where

HD
contact ¼ HD

R −HD
contact1

¼ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

eixDp
þðy−

1
−y−

2
Þe−i

xD
1−zp

þy−
1 e−iðxþxLÞpþy−
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2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ei
z

1−zxDp
þðy−

1
−y−

2
Þe−i

xD
1−zp

þy−
1 e−iðxþxLÞpþy−

−
CF

l2⊥
e−ixDp

þðy−
1
−y−

2
Þe−iðxþxLÞpþy− −

CA

l2⊥
e−i

z
1−zxDp

þðy−
1
−y−

2
Þe−iðxþxLÞpþy−

−
�
CF

1

l2⊥
þ 1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
e−ix

0
Dp

þðy−
1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−

þ CA

2

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

e−ix
0
Dp

þðy−
1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−

þ
�
−
CA

2

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

l2⊥

�
e−iðxLþ

z
1−zxDÞpþðy−

1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy−

þ
�
CF

l2⊥
þ 1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−iðxLþxDÞpþðy−

1
−y−

2
ÞeixLpþy−

1 e−iðxþxLÞpþy− : ð39Þ

B. Quark-gluon correlation function and TMD jet transport parameter

Before we continue to calculate radiative gluon spectra and parton energy loss, we pause to discuss the quark-gluon
correlation function in the contributions to the hadronic tensor from double scattering. The generic quark-gluon correlation
function in every term in Eq. (27) has the form

TA
qgðx; x1; x2Þ ¼

Z
dy−

2π
dy−1 dy

−
2

Z
d2y⃗12⊥e−ixp

þy−e−ix2p
þðy−

1
−y−

2
Þeiðx−x1Þpþy−

1 eik⃗⊥·y⃗12⊥

× hAjψ̄ðy−Þ γ
þ

2
Aþðy−1 ; y⃗1⊥ÞAþðy−2 ; y⃗2⊥Þψð0ÞjAiθðf1Þθðf2Þ; ð40Þ

where the θ functions are different for contributions from central, right, and left cut diagrams,
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θðf1Þθðf2Þ ¼

8>><
>>:

θðy−2 Þθðy−1 − y−Þ∶ central;

θðy−2 − y−1 Þθðy−1 − y−Þ∶ left;

θðy−1 − y−2 Þθðy−2 Þ∶ right:

ð41Þ

If we neglect the correlation between parent nucleons of
initial quark and medium gluon, and define the effective
impact-parameter-dependent nuclear quark distribution
function fAqðx; y⃗⊥Þ as

fAqðxÞ ¼
Z

dy−

2π
e−ixp

þy−hAjψ̄ðy−Þ γ
þ

2
ψð0ÞjAi

≡ 1

A

Z
dy−d2y⃗⊥ρAðy−; y⃗⊥ÞfAqðx; y⃗⊥Þ; ð42Þ

the correlation function can be factorized as

TA
qgðx; x1; x2Þ ¼

C
A

Z
dy−d2y⃗⊥ρAðy−; y⃗⊥ÞfAqðx; y⃗⊥Þ

Z
∞

y−
dy−1

Z
dp0þd2p0⊥
ð2πÞ32p0þ fAðp0þ; p⃗0⊥; y−1 ; y⃗⊥Þ

Z
rN

−rN
dy−12

×
Z

d2y⃗12⊥e−ix2p
þy−

12
þik⃗⊥·y⃗12⊥hp0jAþðy−1 ; y⃗12⊥ÞAþðy−2 ; 0⃗⊥Þjp0ieiðx−x1Þpþy−

1 ; ð43Þ

where the overall factor C depends on the integration
region of y−1 and y−2 [see Eq. (36)] with C ¼ 1 for the
central cut diagram and C ¼ 1=2 for the left and right cut
diagrams, fAðp0þ; p⃗0⊥; y−1 ; y⃗1⊥Þ is the single nucleon phase
space density distribution [49,50], and the nucleon density
is given by

ρAðy−; y⃗⊥Þ ¼
Z

dp0þd2p0⊥
ð2πÞ3 fAðp0þ; p⃗0⊥; y−; y⃗⊥Þ; ð44Þ

which is normalized as

Z
dy−d2y⃗⊥ρAðy−; y⃗⊥Þ ¼ A:

By converting k2⊥AþAþ into gluon field strength Fα
þFþα

through integration by part and defining the unintegrated
gluon distribution function ϕðx; k⃗⊥Þ as

ϕðx; k⃗⊥Þ ¼
Z

dy−12
2πpþ

Z
d2y⃗12⊥e−ixp

þy−
12
þik⃗⊥·y⃗12⊥hpjFα

þðy−12; y⃗12⊥ÞFþαð0; 0⃗⊥Þjpi; ð45Þ

one can simplify the quark-gluon correlation function as

TA
qgðx; x1; x2Þ ¼

C
A
π

Z
dy−dy⃗⊥ρAðy−; y⃗⊥ÞfAqðx; y⃗⊥Þ

Z
dy−1 ρðy−1 ; y⃗⊥Þeiðx−x1Þp

þy−
1
ϕðx2; k⃗⊥Þ

k2⊥
; ð46Þ

where we assume the nucleon size jy−2 − y−1 j is much
smaller than the nucleus size, ρðy2Þ ≈ ρðy−1 Þ, and the
averaged momentum of the single nucleon is p0 ≈ p.
The unintegrated or TMD gluon distribution function

ϕðx; k⃗⊥Þ in the factorized quark-gluon correlation function
can also be related to the TMD jet transport parameter. The
jet transport parameter is defined as the averaged transverse
momentum broadening squared per unit length,

q̂R ¼
�
ρ

Z
dk2⊥

d2σR
dk2⊥

k2⊥
	
; ð47Þ

where ρ is the density of the color source, while hdσRi is the
differential cross section for scattering between a jet parton
in color representation R and medium partons from the
color source averaged over the color source momentum.

For the DIS process, the medium color source is the
nucleon inside a nucleus.
In order to relate the medium TMD gluon distribution

function to the jet transport parameter q̂, we consider jet
parton scattering off the medium color source as illustrated
in Fig. 7. For unpolarized jet parton and medium color

FIG. 7. Scattering between jet parton and medium color source.
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source, the initial spin is averaged and the final spin is
summed. For color fields from the medium color source,
the dominant component is Aþ and therefore, Aμ ≈
ðpμ=pþÞAþ. The momentum of the medium color con-
stituent is p0 ¼ ½p0þ; 0; 0⃗⊥�, the jet parton momentum
is l ¼ ½0; l−; 0�, and the momentum transfer of the scatter-
ing is xp0 þ k⊥. Note that we consider energy and

longitudinal momentum transfer between the jet parton
and the medium. The medium color source is therefore
dynamic rather than static as in the GW static color-
screened Yukawa potential model. Given the above kin-
ematics and assumptions about the medium, the differential
cross section for scattering between the jet parton and
medium is

dσR ¼
Z

dxδ

�
x −

k2⊥
2p0þl−

�
C2ðRÞ
N2

c − 1

g2

2p0þ

Z
d2k⊥
ð2πÞ2

Z
dy−1 e

−ixp0þy−
1
þik⃗⊥·y⃗1⊥hp0jAþðy−1 ; y⃗1⊥ÞAþð0Þjp0i; ð48Þ

where the quadratic Casimir of the jet parton is denoted as
C2ðRÞ [CA ¼ Nc for a gluon and CF ¼ ðN2

c − 1Þ=2Nc for a
quark], the colors of the jet parton and the medium gluon
are both averaged. Averaging over the momentum of the
color source, we assume the momentum of the color source
can be approximated by its average value p0 ≈ hp0i≡ p.
According to the definition of the jet transport parameter in
Eq. (47), one obtains from the above cross section

q̂RðyÞ ¼
Z

d2k⊥
ð2πÞ2 q̂Rðk⃗⊥; yÞ;

q̂Rðk⃗⊥; yÞ ¼
Z

dxδ

�
x −

k2⊥
2pþl−

�
4π2αsC2ðRÞ

N2
c − 1

ρðyÞϕðx; k⃗⊥Þ;

ð49Þ

where the unintegrated or TMD gluon distribution ϕðx; k⃗⊥Þ
[50] is defined in Eq. (45). The TMD jet transport
parameter q̂ðk⃗⊥Þ should depend on the jet parton energy
l− and the average momentum of the color source pþ
through x in ϕðx; k⃗⊥Þ. It is also proportional to the local
density of color source ρðyÞ. In the limiting case when the
energy transfer is small, i.e., x ≈ 0, the jet transport
parameter becomes

q̂RðyÞ ≈
4π2αsC2ðRÞ

N2
c − 1

ρðyÞ
Z

d2k⊥
ð2πÞ2 ϕð0; k⃗⊥Þ: ð50Þ

Under small angle scattering approximation, the elastic
cross section for jet and medium parton scattering, shown
in Fig. 8 for quark-quark and quark-gluon scattering as an
example, can be written as

dσ ¼ C2ðRÞC2ðTÞ
N2

c − 1

4πα2s
t2

dt; ð51Þ

where C2ðRÞ and C2ðTÞ are the quadratic Casimirs for
jet and medium parton, respectively, and t ¼ ðp − p0Þ2 ¼
ðk − k0Þ2 is one of the Mandelstam variables. Including the
Debye screening mass μ2D in the exchange gluons, it can be
related to the transverse momentum t ≈ −k2⊥ − μ2D if one
neglects the energy and longitudinal momentum transfer.
According to Eq. (47), the jet transport parameter q̂ for the
jet parton scattering with a medium of partons with density
ρ in color representation T is

q̂R ¼ ρ

Z
dk2⊥

C2ðRÞC2ðTÞ
N2

c − 1

4πα2s
ðk2⊥ þ μ2DÞ2

k2⊥: ð52Þ

The corresponding unintegrated gluon distribution
function with zero longitudinal momentum and energy
transfer is

ϕð0; k⃗⊥Þ
k2⊥

¼ C2ðTÞ
4αs

ðk2⊥ þ μ2DÞ2
: ð53Þ

C. Radiative gluon spectrum

With the factorized quark-gluon correlation function,
one can express the differential hadronic tensor from
double parton scattering in the SIDIS processes in terms
of the TMD medium gluon distribution function or jet
transport parameter asFIG. 8. Elastic quark-quark and quark-gluon scattering.
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dWμν
Dð1Þ

dzh
¼

dWμν
Dð1Þq
dzh

þ
dWμν

Dð1Þg
dzh

;

dWμν
Dð1Þq
dzh

¼ 1

A

Z
dx

Z
dy−d2y⃗⊥ρAðy−; y⃗⊥ÞfAqðx; y⃗⊥ÞHμν

ð0ÞðxÞ
Z

dz
z
Dg→hðzh=zÞ

Z
dl2⊥

dNq

dl2⊥dz
;

dWμν
Dð1Þg

dzh
¼ 1

A

Z
dx

Z
dy−d2y⃗⊥ρAðy−; y⃗⊥ÞfAqðx; y⃗⊥ÞHμν

ð0ÞðxÞ
Z

dz
z
Dq→hðzh=zÞ

Z
dl2⊥

dNg

dl2⊥dz
: ð54Þ

One can interpret the above as the hadronic tensor for hadron production from quark or gluon fragmentation in which the
quark was first knocked out from the nucleus at position ðy−; y⃗⊥Þ and scatters again with another gluon from the nucleus at

ðy−1 ; y⃗⊥Þ with induced gluon radiations. The radiative gluon spectrum dNq

dl2⊥dz
and dNg

dl2⊥dz
has a relation

dNg

dl2⊥dz
¼ dNq

dl2⊥dz
ðz → 1 − zÞ: ð55Þ

The radiative gluon spectrum dNg=dl2⊥dz, which depends on the initial production position of the quark ðy−; y⃗⊥Þ, is

dNg

dl2⊥dz
¼ π

fAqðxÞ
αs
2π

1þ ð1 − zÞ2
z

2παs
Nc

Z
d2k⊥
ð2πÞ2

Z
∞

y−
dy−1 ρAðy−1 ; y⃗⊥Þ

�
H̃D

C þ 1

2
H̃D

L þ 1

2
H̃D

R

�
; ð56Þ

with

H̃D
C ¼

���
CA

ð⃗l⊥ − k⃗⊥Þ2
fAq

�
xþ xL þ xD

1 − z

�
−
CA

l2⊥
fAqðxþ xLÞ

�
ϕðxD; k⃗⊥Þ

k2⊥

�

þ
��

CF

l2⊥
þ CA

k⃗⊥ · ⃗l⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CF

ð⃗l⊥ − zk⃗⊥Þ2
þ 1

Nc

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

− CA
ð⃗l⊥ − k⃗⊥Þ · ð⃗l⊥ − zk⃗⊥Þ
ðl⊥ − k⊥Þ2ð⃗l⊥ − zk⃗⊥Þ2

�
ϕðxL þ z

1−z xD; k⃗⊥Þ
k2⊥

fAqðxÞ
�

þ
��

−
CA

ð⃗l⊥ − k⃗⊥Þ2
þ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

2

ð⃗l⊥ − k⃗⊥Þ · ð⃗l⊥ − zk⃗⊥Þ
ðl⊥ − k⊥Þ2ð⃗l⊥ − zk⃗⊥Þ2

�

×
ϕðxL þ z

1−z xD; k⃗⊥Þ
k2⊥

eiðxLþ
xD
1−zÞpþy−

1 fAq

�
xþ xL þ xD

1 − z

��

þ
��

−
CA

ð⃗l⊥ − k⃗⊥Þ2
þ CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

2

ð⃗l⊥ − k⃗⊥Þ · ð⃗l⊥ − zk⃗⊥Þ
ðl⊥ − k⊥Þ2ð⃗l⊥ − zk⃗⊥Þ2

�

×
ϕðxD; k⃗⊥Þ

k2⊥
e−iðxLþ

xD
1−zÞpþy−

1 fAqðxÞ
��

; ð57Þ

H̃D
L ¼

��
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
ei

xD
1−zp

þy−
1 fAq

�
xþ xL þ xD

1 − z

�
− e−i

xD
1−zp

þy−
1 fAqðxþ xLÞ

�
ϕðxD; k⃗⊥Þ

k2⊥

�

þ
�
−
�
CF

1

l2⊥
þ 1

2Nc

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

�
ϕðx0D − xL; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fAqðxÞ

þ CA

2

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

ϕðx0D − xL; k⃗⊥Þ
k2⊥

e−ixLp
þy−

1 fAqðxÞ
�
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þ
�
−
�

1

2Nc

⃗l⊥ · ½⃗l⊥ − zk⃗⊥�
l2⊥ ½⃗l⊥ − zk⃗⊥�2

þ CF

l2⊥
−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
ϕðxL þ z

1−z xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fAqðxþ xLÞ

þ
�
−
CA

2

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

l2⊥

�
ϕðxD; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fAqðxÞ

��
; ð58Þ

H̃D
R ¼

��
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−i

xD
1−zp

þy−
1 fAqðxþ xLÞ − ei

xD
1−zp

þy−
1 fAq

�
xþ xL þ xD

1 − z

��
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

�

þ
�
−
�
CF

1

l2⊥
þ 1

2Nc

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

�
ϕðx0D; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fAqðxþ xLÞ

þ CA

2

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

ϕðx0D; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fAqðxþ xLÞ
�

þ
�
−
�

1

2Nc

⃗l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

þ CF

l2⊥
−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

e−ixLp
þy−

1 fAqðxÞ

þ
�
−
CA

2

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

−
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

þ CA

l2⊥

�
ϕðxL þ xD; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fAqðxþ xLÞ

��
: ð59Þ

Note that the 1=2 factor before H̃D
R and H̃D

L is from the constant C in the quark-gluon correlation function. One can find the
corresponding expression of H̃ for each cut diagram in Appendix A.
The radiative parton energy loss can be expressed in terms of the gluon radiation spectrum as

ΔE ¼ E
Z

μ2

0

dl2⊥
Z

1

0

dz
dNg

dl2⊥dz
z: ð60Þ

IV. SOFT AND STATIC APPROXIMATIONS

In order to simplify the final results for the radiative gluon spectrum in this study and compare to past results, we will
consider three approximations: static scattering center approximation, soft radiative gluon approximation, and the
combination of these two. At the end of this section, we will also numerically compare results under these approximations.

A. Static scattering center approximation

For static scattering center approximation, we consider the energy transfer in the scattering between jet and medium
parton negligible as compared to the hard scattering energy scale, xB ≫ xL, xD=1 − z orQ2 ≫ l2⊥=½zð1 − zÞ�, k2⊥=½zð1 − zÞ�
and y−1 − y−2 ≈ y−. Under these approximations,

ϕðxL þ xD; k⃗⊥Þ ≈ ϕ

�
z

1 − z
xD; k⃗⊥

�
≈ ϕðx0D; k⃗⊥Þ ≈ ϕð0; k⃗⊥Þ;

fAq

�
xB þ xL þ xD

1 − z

�
≈ fðxB þ xLÞ ≈ fAqðxBÞ: ð61Þ

The radiative gluon spectrum is

dNstatic
g

dl2⊥dz
¼ π

αs
2π

1þ ð1 − zÞ2
z

2παs
Nc

Z
d2k⊥
ð2πÞ2

Z
dy−1 ρAðy−1 ; y⃗⊥Þ

�
ðH̃D

CÞstatic þ
1

2
ðH̃D

L Þstatic þ
1

2
ðH̃D

R Þstatic
�
ϕð0; k⃗⊥Þ

k2⊥
: ð62Þ
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Summing up contributions from central, right, and left cut diagrams, one finds that many terms cancel and gets the final
gluon spectrum as

dNstatic
g

dl2⊥dz
¼ π

αs
2π

1þ ð1 − zÞ2
z

2παs
Nc

Z
d2k⊥
ð2πÞ2

Z
dy−1 ρðy−1 ; y⃗1⊥Þ

�
CF

�
1

ð⃗l⊥ − zk⃗⊥Þ2
−

1

l2⊥

�

þ CA

�
2

ð⃗l⊥ − k⃗⊥Þ2
−
⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

−
ð⃗l⊥ − k⃗⊥Þ · ð⃗l⊥ − zk⃗⊥Þ
ðl⊥ − k⊥Þ2ð⃗l⊥ − zk⃗⊥Þ2

��
1 − cos

��
xL þ xD

1 − z

�
pþy−1

��

þ 1

Nc

�⃗
l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

−
1

l2⊥

�
ð1 − cos½xLpþy−1 �Þ

�
ϕð0; k⃗⊥Þ

k2⊥
: ð63Þ

B. Soft radiative gluon approximation

Under the soft gluon approximation z ≪ 1, one only keeps the leading terms when z → 0. The splitting function becomes
PqgðzÞ ¼ ½1þ ð1 − zÞ2�=z ≈ 2=z. The radiative gluon spectrum is

dNsoft
g

dl2⊥dz
¼ π

fAqðxÞ
αs
2π

PqgðzÞ
2παs
Nc

Z
d2k⊥
ð2πÞ2

Z
dy−1 ρAðy−1 ; y⃗⊥Þ ×

�
ðH̃D

CÞsoft þ
1

2
ðH̃D

L Þsoft þ
1

2
ðH̃D

R Þsoft
�
; ð64Þ

where

ðH̃D
CÞsoft ¼

���
CA

ð⃗l⊥ − k⊥Þ2
fAq

�
xþ xL þ xD

1 − z

�
−
CA

l2⊥
fAqðxþ xLÞ

�
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

�

þ
�
CA

k2⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðxL þ z
1−z xD; k⃗⊥Þ
k2⊥

fAqðxÞ
�

þ
�
−CA

k⃗⊥ · ⃗l⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðxL þ z
1−z xD; k⃗⊥Þ
k2⊥

eiðxLþ
xD
1−zÞpþy−

1 fAq

�
xþ xL þ xD

1 − z

��

þ
�
−CA

k⃗⊥ · ⃗l⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðxD; k⃗⊥Þ
k2⊥

e−iðxLþ
xD
1−zÞpþy−

1 fAqðxÞ
��

; ð65Þ

ðH̃D
L Þsoft ¼

��
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
ei

xD
1−zp

þy−
1 fAq

�
xþ xL þ xD

1 − z

�
− e−i

xD
1−zp

þy−
1 fAqðxþ xLÞ

�
ϕðxD; k⃗⊥Þ

k2⊥

�

þ
�
−
CA

2

1

l2⊥
ϕðx0D − xL; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fAqðxÞ þ

CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðx0D − xL; k⃗⊥Þ
k2⊥

e−ixLp
þy−

1 fAqðxÞ
�

þ
�
−
CA

2

k2⊥ − ⃗l⊥ · k⃗⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðxL þ z
1−z xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fAqðxþ xLÞ þ CA
k2⊥ − ⃗l⊥ · k⃗⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðxD; k⃗⊥Þ
k2⊥

e−ixLp
þy−

1 fAqðxÞ
��

;

ð66Þ

ðH̃D
R Þsoft ¼

��
CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
e−i

xD
1−zp

þy−
1 fAqðxþ xLÞ − ei

xD
1−zp

þy−
1 fAq

�
xþ xL þ xD

1 − z

��
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

�

þ
�
−
CA

2

1

l2⊥
ϕðx0D; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fAqðxþ xLÞ þ

CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðx0D; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fAqðxþ xLÞ
�

þ
�
−
CA

2

k2⊥ − ⃗l⊥ · k⃗⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕð z
1−z xD; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fAqðxÞ þ CA

k2⊥ − ⃗l⊥ · k⃗⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ϕðxL þ xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fAqðxþ xLÞ
��

:

ð67Þ
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C. Static scattering center+ soft gluon approximation

Under the static scattering center þ soft gluon approximation, the radiative gluon spectrum is

dNstaticþsoft
g

dl2⊥dz
¼ π

αs
2π

PqgðzÞ
2παs
Nc

Z
d2k⊥
ð2πÞ2

Z
dy−1 ρAðy−1 ; y⃗⊥Þ

�
ðH̃D

CÞstaticþsoft þ
1

2
ðH̃D

L Þstaticþsoft þ
1

2
ðH̃D

R Þstaticþsoft

�
ϕð0; k⃗⊥Þ

k2⊥
;

ð68Þ

Similarly as in the static scattering center approximation, many terms in the central, right, and left cut diagrams cancel.
One can get a simple expression for the radiative gluon spectrum,

dNstaticþsoft
g

dl2⊥dz
¼ π

αs
2π

PqgðzÞ
2παs
Nc

Z
d2k⊥
ð2πÞ2

Z
dy−1 ρAðy−1 ; y⃗⊥ÞCA

2k⃗⊥ · ⃗l⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

�
1 − cos

��
xL þ xD

1 − z

�
pþy−1

��
ϕð0; k⃗⊥Þ

k2⊥
:

ð69Þ

The above result is very similar to the GLV result under the first opacity approximation [19,20]. To have an exact
comparison, we also consider a static screened potential model for scattering between the jet and medium parton. Under this
model, we will substitute the unintegrated gluon distribution with zero longitudinal momentum and energy transfer ϕð0; k⃗⊥Þ
from Eq. (53) in the above expression and obtain

dNstaticþsoft
g

dl2⊥dz
¼ 8πα3s

C2ðTÞCA

Nc
PqgðzÞ

Z
d2k⊥
ð2πÞ2

Z
dy−1 ρAðy−1 ; y⃗⊥Þ

×
k⃗⊥ · ⃗l⊥

l2⊥ð⃗l⊥ − k⃗⊥Þ2
�
1 − cos

��
xL þ xD

1 − z

�
pþy−1

��
1

ðk2⊥ þ μ2DÞ2
: ð70Þ

The radiative gluon number distribution from the GLV result in the first order opacity approximation can be cast in a
similar expression [51],

dNGLV
g

dzdl2⊥
¼ 8πα3s

C2ðTÞCA

Nc
PqgðzÞ

Z
d2k⊥
ð2πÞ2

N
A⊥

Z
dy10ρ̄ðy10Þ

k⃗⊥ · ⃗l⊥
l2⊥ð⃗l⊥ − k⃗⊥Þ2

ð1 − cos½ω1y10�Þ
1

ðk2⊥ þ μ2DÞ2
; ð71Þ

where the scattering kernel in the static color-screened
Yukawa potential is

vðk⃗⊥Þ ¼
4παs

k2⊥ þ μ2D
: ð72Þ

The arguments in the cosine function are

ω1 ¼
El2⊥

2wðE − wÞ −
l2⊥
2w

þ ð⃗l⊥ − k⃗⊥Þ2
2w

¼ l2⊥
2 q−ffiffi

2
p zð1 − zÞ þ

k2⊥ − 2⃗l⊥ · k⃗⊥
2 q−ffiffi

2
p z

¼
ffiffiffi
2

p
ðxL þ xDÞpþ ≈

ffiffiffi
2

p �
xL þ xD

1 − z

�
pþ; ð73Þ

y10 ¼ y1 − y0 ≈
y−1ffiffiffi
2

p ;

cos½ω1y10� ≈ cos

��
xL þ xD

1 − z

�
pþy−1

�
: ð74Þ

The density ρ̄ðy10Þ in the GLV result is the normalized
distribution of N number of scattering centers over the
transverse area A⊥. It can be related to the color source
density in our calculation as

N
A⊥

Z
dy10ρ̄ðy10Þ ¼

Z
dy−1 ρAðy−1 ; y⃗⊥Þ: ð75Þ

Under these approximations, our result in Eq. (70)
recovers that of GLV in Eq. (71) in the first order opacity
approximation.

D. Numerical comparisons of soft and static
approximation

To investigate the effect of soft gluon and static scatter-
ing center approximations numerically, we define a
dimensionless scaled spectrum N g for the induced gluon
radiation per mean-free path,
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dNg

dl2⊥dz
¼

Z
∞

y−
dy−1

�
ρAðy−1 ; y⃗⊥Þ

2παs
Nc

π

Z
dk2⊥
ð2πÞ2

ϕð0; k⃗⊥Þ
k2⊥

�
π
αs
2π

PqgðzÞ
CA

l2⊥
N g; ð76Þ

where the azimuthal angle φ between the transverse momentum k⃗⊥ of the initial medium gluon and ⃗l⊥ of
the radiated gluon is averaged in N g. According to Eq. (50), the integrant inside the square brackets in the
first line in the above equation is the inverse of the mean-free path of the quark-medium interaction or the
scattering rate.
Under the static scattering center approximation, the scaled spectrum is

N static
g ¼

Z
dφ
2π

l2⊥
CA

�
CA

�
2

ð⃗l⊥ − k⃗⊥Þ2
−
⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
l2⊥ð⃗l⊥ − k⃗⊥Þ2

−
ð⃗l⊥ − k⃗⊥Þ · ð⃗l⊥ − zk⃗⊥Þ
ðl⊥ − k⊥Þ2ð⃗l⊥ − zk⃗⊥Þ2

��
1 − cos

��
xL þ xD

1 − z

�
pþy−1

��

þ 1

Nc

�⃗
l⊥ · ð⃗l⊥ − zk⃗⊥Þ
l2⊥ð⃗l⊥ − zk⃗⊥Þ2

−
1

l2⊥

�
ð1 − cos½xLpþy−1 �Þ þ CF

�
1

ð⃗l⊥ − zk⃗⊥Þ2
−

1

l2⊥

��
: ð77Þ

With both static scattering center and soft gluon approximations (GLV result in the first order opacity expansion), the
scaled gluon spectrum is

N staticþsoft
g ¼

Z
dφ
2π

2k⃗⊥ · ⃗l⊥
ð⃗l⊥ − k⃗⊥Þ2

�
1 − cos

��
xL þ xD

1 − z

�
pþy−1

��
: ð78Þ

The first term in Eq. (77) comes from the induced
gluon radiation off the initial gluon (with three-gluon
vertex). The spectrum inside the square brackets has a
collinear divergence at ⃗l⊥ ¼ k⃗⊥ when the intermediate
gluon (gluon propagator) is collinear to the initial quark.
Note that

xL þ xD
1 − z

¼ ð⃗l⊥ − k⃗⊥Þ2
2pþq−zð1 − zÞ : ð79Þ

The cosine function from the Landau-Pomeranchuk-
Migdal (LPM) interference [52,53] in this term regularizes
the divergence at ⃗l⊥ ¼ k⃗⊥ when the formation time
of the intermediate gluon τf¼1=½xLþxD=ð1−zÞ�pþ¼
2q−zð1−zÞ=ðl⃗⊥− k⃗⊥Þ2 becomes infinite.
Similarly, the second term in Eq. (77) comes from gluon

radiation off the quark lines (both initial and final) during
the quark-gluon interaction. The divergence of the spec-
trum inside the square brackets at ⃗l⊥ ¼ 0 is also regularized
by the cosine function from LPM interference when
the formation time of the final gluon τf ¼ 1=xLpþ ¼
2q−zð1 − zÞ=l2⊥ is infinite.
In general, terms with 1=l2⊥ arise when the final gluon

from the initial state radiation during the quark-
gluon scattering is emitted from the struck quark after
photon-quark scattering. When ⃗l⊥ ¼ 0, the radiated gluon
is collinear to the struck quark. Similarly, terms with
1=ð⃗l⊥ − zk⃗⊥Þ2 come from the final state gluon radiation

of quark-gluon scattering. When ⃗l⊥ ¼ zk⃗⊥, gluon’s
momentum l¼½l2⊥=ðzq−Þ;zq−; l⃗⊥�¼ ½zk2⊥=q−;zq−;zk⃗⊥� is

collinear to the final quark which has a momentum lq¼
½ðk⃗⊥− l⃗⊥Þ2=ðð1−zÞq−Þ;ð1−zÞq−;k⃗⊥− l⃗⊥�¼½ð1−zÞk2⊥=q−;
ð1−zÞq−;ð1−zÞk⃗⊥�¼ð1−zÞl=z. These terms cancel with
each other when z ¼ 0. One is left with gluon spectra in
Eq. (78) from gluon radiation off the three-gluon vertex
and its interference with gluon radiation off quark lines.
For finite gluon momentum fraction z, contributions
from gluon radiation off the quark lines do not vanish.
The collinear divergencies at ⃗l⊥ ¼ 0 and ⃗l⊥ ¼ zk⃗⊥ may
be regularized through renormalization of the quark-
gluon correlation function and the final quark fragmen-
tation function.
Since the azimuthal angle between k⃗⊥ and ⃗l⊥ is

averaged over in N g, the dimensionless scaled
spectrum should be a function of the scaled transverse
momentum

k̃⊥l ≡ k⊥=l⊥; ð80Þ

scaled propagation length

ỹτ ≡ y−1 l
2⊥

2q−zð1 − zÞ≡
y−1
τf

; ð81Þ

and momentum fraction z, where τf ¼ 2q−zð1 − zÞ=l2⊥ is
the gluon formation time.
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We plot in Figs. 9(a) and 9(b) the scaled GHT gluon
spectrum N g with static scattering center approximation
(dashed lines) and static scattering center þ soft gluon
approximation or GLV result (solid lines) as a function
of k̃⊥l for fixed propagation length ỹτ ¼ 4, 8 and
different momentum fractions z ¼ 0.1, 0.2, 0.5. The
staticþ soft approximation or GLV result for fixed
scaled propagation length ỹτ does not depend on
momentum fraction z as shown by the solid lines.
One can see the difference between GLV and GHT
results with static scattering center approximation is
very small for small momentum fraction z ≪ 1. The
difference becomes appreciable for large values of z as
the scaled transverse momentum k̃⊥l approaches 1=z, the
location of the collinear divergence in the final state
radiation when the radiated gluon becomes collinear to
the final quark. The oscillatory behavior comes from the
cosine function in the spectrum due to the LPM
interference. We also show in Figs. 10(a) and 10(b)
the scaled gluon spectrum N g as a function of the

scaled propagation length ỹτ for fixed k̃⊥l ¼ 0.2, 0.8,
and different momentum fractions z ¼ 0.1, 0.2, 0.5. The
difference between GLV and GHT results with static
scattering center approximation again becomes appreci-
able at a large momentum fraction.

V. SUMMARY

We have revisited parton energy loss in the eA deeply
inelastic scattering process. In our study, one does not
carry out collinear expansion of the hard partonic part of
the parton-medium scattering and induced gluon radia-
tion as in the collinear factorized approach. The final
radiative gluon spectra induced by multiple parton
scattering can be expressed in terms of a convolution
of the hard partonic part and TMD gluon distribution
density inside the nucleus. In general, the final GHT
results on radiative gluon spectra can include the effect
of a dynamic medium with both energy and transverse
momentum transfer between the propagating parton and

FIG. 9. The scaled gluon spectrumN g in GHT calculation with
static scattering center approximation (dashed, dot-dashed, and
dotted lines) and with staticþ soft gluon approximation (solid
lines) with different momentum fraction z as a function of the
scaled transverse momentum k̃⊥l with fixed scaled propagation
length (a) ỹτ ¼ 4 and (b) 8.

FIG. 10. The GHT scaled gluon spectrumN g in this study with
static scattering center approximation (dashed, dot-dashed, and
dotted lines) and with staticþ soft gluon approximation (solid
lines) with different momentum fraction z as a function of the
scaled propagation length ỹτ with fixed scaled transverse mo-
mentum ðaÞk̃⊥l ¼ 0.2 and (b) 0.8.
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the medium. We have considered several limits of the
final results under the static scattering center approxi-
mation, the soft gluon approximation, and the recombi-
nation of the two. Under static scattering center þ soft
gluon approximation, we recover the GLV result in the
first opacity approximation. We have also examined
numerically the effect of the soft gluon approximation
and find the difference between GHT and GLV results
with static scattering center approximation appreciable
at moderately large momentum fraction and long propa-
gation length.
The TMD gluon distribution density can be related to the

TMD jet transport parameter and encodes the properties of
the nuclear medium as probed by the propagating parton.
This general feature of our study can be used to incorporate
different models of the dynamicmedium in the calculation of
parton energy loss and the jet quenching observables. It can
also be incorporated in the Monte Carlo simulation of jet
transport and propagation such as the linear Boltzmann
transport (LBT) model [54–56] for both cold and hot QCD
medium.

ACKNOWLEDGMENTS

We thank Feng Yuan and Bowen Xiao for helpful
discussions. This work is supported by the Director,
Office of Energy Research, Office of High Energy and
Nuclear Physics, Division of Nuclear Physics, of the U.S.
Department of Energy (DOE) under Grant No. DE-AC02-
05CH11231, by the U.S. National Science Foundation
under Grant No. ACI-1550228 within JETSCAPE
Collaboration, and by the National Science Foundation
of China under Grants No. 11861131009, No. 11775095,
No. 11890711, and No. 11890714.

APPENDIX A: HARD PARTS OF MULTIPLE
PARTON SCATTERING AND GLUON

RADIATION

In this Appendix, we list contributions to the SIDIS
hadronic tensor from all cut diagrams for gluon radiation
induced by multiple scattering. We categorize the diagrams
according to the position of the cutline: central, left, and
right cut diagrams. The kinematics for the SIDIS process in
our convention are

p ¼ ½pþ; 0; 0⃗⊥�;

q ¼
�
−

Q2

2q−
; q−; 0⃗⊥

�
;

l ¼
�

l2⊥
2ð1 − zÞq− ; ð1 − zÞq−; ⃗l⊥

�
;

ϵðlÞ ¼
�

ϵ⃗⊥ · ⃗l⊥
ð1 − zÞq− ; 0; ϵ⃗⊥

�
; ðA1Þ

where the last line is the polarization vector for radia-
tive gluon.
With the above kinematics, the final gluon radiation

spectrum is given as in Eq. (56), except that here the
momentum fraction are defined as z ¼ l−q =q− carried by
the final quark [z ¼ l−=q− in Eq. (56) is the momentum
fraction carried by the gluon]. We list H̃D

C , H̃
D
L , and H̃D

R
from each cut diagram labeled by the type of radiation
amplitudes it contains according to the convention given
in Appendix B.

1. Central cut diagram

The H̃D
C of central cut diagram 11 and 22, see Fig. 11

H̃D
C11 ¼

CF

½⃗l⊥ − ð1 − zÞk⃗⊥�2
ϕðxL þ xD; k⃗⊥Þ

k2⊥
fAqðxÞ; ðA2Þ

FIG. 11. (a) Central cut 11 and (b) central cut 22.
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H̃D
C22 ¼

CF

l2⊥

�
ϕðxD; k⃗⊥Þ

k2⊥
fðxþ xLÞ

−
ϕðxL þ xD; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fðxþ xLÞ

−
ϕðxD; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fðxÞ þϕðxL þ xD; k⃗⊥Þ

k2⊥
fðxÞ

�
.

ðA3Þ

The H̃D
C of central cut diagram 33, see Fig. 12

H̃D
C33 ¼

CA

ð⃗l⊥ − k⃗⊥Þ2
�
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

f

�
xþ xL þ xD

1 − z

�
−
ϕðxL þ xD; k⃗⊥Þ

k2⊥
eiðxLþ

xD
1−zÞpþy−

1 f

�
xþ xL þ xD

1 − z

�

−
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

e−iðxLþ
xD
1−zÞpþy−

1 fðxÞ þ ϕðxL þ xD; k⃗⊥Þ
k2⊥

fðxÞ
�
. ðA4Þ

The H̃D
C of central cut diagram 12 and 21, see Fig. 13

H̃D
C12 ¼

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
⃗l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
ϕðxL þ xD; k⃗⊥Þ

k2⊥
fðxÞ − ϕðxL þ xD; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fðxþ xLÞ

�
; ðA5Þ

H̃D
C21 ¼

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
⃗l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
ϕðxL þ xD; k⃗⊥Þ

k2⊥
fðxÞ − ϕðxD; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fðxÞ

�
. ðA6Þ

The H̃D
C of central cut diagram 13 and 31, see Fig. 14

H̃D
C13¼

CA

2

ðl⃗⊥− k⃗⊥Þ · ½l⃗⊥− ð1−zÞk⃗⊥�
ðl⃗⊥− k⃗⊥Þ2½l⃗⊥− ð1− zÞk⃗⊥�2

�
ϕðxLþxD; k⃗⊥Þ

k2⊥
eiðxLþ

xD
1−zÞpþy−

1 f

�
xþxLþ

xD
1− z

�
−
ϕðxLþxD; k⃗⊥Þ

k2⊥
fðxÞ

�
; ðA7Þ

H̃D
C31 ¼

CA

2

ð⃗l⊥ − k⃗⊥Þ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
ð⃗l⊥ − k⃗⊥Þ2 ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

e−iðxLþ
xD
1−zÞpþy−

1 fðxÞ − ϕðxL þ xD; k⃗⊥Þ
k2⊥

fðxÞ
�
. ðA8Þ

The H̃D
C of central cut diagram 23 and 32, see Fig. 15

FIG. 12. Central cut 33.

FIG. 13. (a) Central cut 12 and (b) central cut 21.
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H̃D
C23 ¼ −CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2l2⊥

�
ϕðxD; k⃗⊥Þ

k2⊥
ei

xD
1−zp

þy−
1 f

�
xþ xL þ xD

1 − z

�
−
ϕðxL þ xD; k⃗⊥Þ

k2⊥
eiðxLþ

xD
1−zÞpþy−

1 f

�
xþ xL þ xD

1 − z

�

−
ϕðxD; k⃗⊥Þ

k2⊥
e−ixLp

þy−
1 fðxÞ þ ϕðxL þ xD; k⃗⊥Þ

k2⊥
fðxÞ

�
; ðA9Þ

H̃D
C32 ¼ −

CA

2

⃗l⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2l2⊥

�
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

e−i
xD
1−zp

þy−
1 fðxþ xLÞ −

ϕðxL þ xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fðxþ xLÞ

−
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

e−iðxLþ
xD
1−zÞpþy−

1 fðxÞ þ ϕðxL þ xD; k⃗⊥Þ
k2⊥

fðxÞ
�
: ðA10Þ

2. Right cut diagram

The H̃D
R of right cut diagram 1 and 2, see Fig. 16

H̃D
R1 ¼ −CF

1

l2⊥
ϕðx0D; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fðxþ xLÞ; ðA11Þ

H̃D
R2 ¼

1

2Nc

⃗l⊥ · ½⃗l⊥ − ð1 − zÞk⃗⊥�
l2⊥ ½⃗l⊥ − ð1 − zÞk⃗⊥�2

�
ϕðxL þ xD; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fðxþ xLÞ −

ϕðx0D; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fðxþ xLÞ
�
. ðA12Þ

The H̃D
R of right cut diagram 3 and 4, see Fig. 17

H̃D
R3 ¼ CF

1

l2⊥

�
ϕðxL þ xD; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fðxþ xLÞ −

ϕðxD; k⃗⊥Þ
k2⊥

fðxþ xLÞ
�
; ðA13Þ

H̃D
R4 ¼

CA

2

⃗l⊥ · ½⃗l⊥ − zk⃗⊥�
l2⊥ ½⃗l⊥ − zk⃗⊥�2

�
ϕðx0D; k⃗⊥Þ

k2⊥
eixLp

þy−
1 fðxþ xLÞ −

ϕðxL þ z
1−z xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fðxþ xLÞ
�
. ðA14Þ

FIG. 15. (a) Central cut 23 and (b) central cut 32.

FIG. 14. (a) Central cut 13 and (b) central cut 31.
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The H̃D
R of right cut diagram 5 and 6, see Fig. 18

H̃D
R5 ¼

CA

2

⃗l⊥ · ½⃗l⊥ − k⃗⊥�
l2⊥ ½⃗l⊥ − k⃗⊥�2

�
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

e−i
xD
1−zp

þy−
1 fðxþ xLÞ −

ϕðxL þ xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fðxþ xLÞ
�
; ðA15Þ

H̃D
R6 ¼

CA

2

⃗l⊥ · ½⃗l⊥ − k⃗⊥�
l2⊥ ½⃗l⊥ − k⃗⊥�2

�
ϕðxD; k⃗⊥Þ

k2⊥
e−i

xD
1−zp

þy−
1 fðxþ xLÞ −

ϕðxL þ z
1−z xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fðxþ xLÞ
�
. ðA16Þ

The H̃D
R of right cut diagram 7, see Fig. 19

H̃D
R7 ¼ CA

1

l2⊥

�
ϕðxL þ z

1−z xD; k⃗⊥Þ
k2⊥

eixLp
þy−

1 fðxþ xLÞ −
ϕð z

1−z xD; k⃗⊥Þ
k2⊥

fðxþ xLÞ
�
: ðA17Þ

We reverse the sign of k⃗⊥ for right cut diagrams 4, 6, and 7.

FIG. 16. (a) Right cut 1 and (b) right cut 2.

FIG. 17. (a) Right cut 3 and (b) right cut 4.

FIG. 18. (a) Right cut 5 and (b) right cut 6.
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3. Left cut diagram

One can obtain contributions from left cut diagrams from
the hard parts for right cut diagrams by the following
variable changes,

HD
L ¼ HD

R ðy−1 → y− − y−2 ; y
−
2 → y− − y−1 Þ: ðA18Þ

APPENDIX B: HELICITY AMPLITUDE

In this Appendix, we calculate the hadronic tensor
within the helicity amplitude approach in which the helicity
of the propagating quark is conserved in the scattering
amplitude when the transverse momentum of the fast quark
is neglected as compared to its longitudinal momentum.
Assuming the dominant component of a fast quark’s

momentum is the minus component, lq ≈ ½0; l−q ; 0⃗⊥�, we
have under the helicity amplitude approximation,

ūrðlqÞγμusðl0qÞ ≈ 2
ffiffiffiffiffiffiffiffiffiffi
l−q l0−q

q
δrsnμ;

where r and s are helicities of quarks, and n ¼ ½0; 1; 0⃗⊥�.
In the calculation of the scattering amplitude in this

helicity amplitude approach, we assign initial quark and
gluons from the nucleus as

initial quark → uðpÞ
Z

dxi
2π

eixip
þy−i −ik⃗⊥·y⃗i⊥ ;

initial gluon → pσ

Z
dxi
2π

eixip
þy−i −ik⃗⊥·y⃗i⊥ : ðB1Þ

The normal Feynman rules apply in the rest of the
calculation of the scattering amplitude. We also take the
soft radiative gluon approximation, z → 1.
There are three kinds of diagrams for double scatter-

ing. We calculate the amplitude of the double scattering
in Fig. 20 in detail as an example. The black dot in
Fig. 20 denotes the off-shell parton before the radiation
vertex. One can write down the scattering amplitude
according to the Feynman rules defined for this helicity
amplitude method,

iMν
D1ðy; y1Þ ¼

Z
dx3
2π

eix3p
þy−

1
−ik⃗⊥·y⃗1⊥

Z
dx
2π

eixp
þy− ūs½ðxþ x3Þpþ qþ k⊥ − l�

× ðigÞγαTcϵα
i½ðxþ x3Þ=pþ =qþ =k⊥�

½ðxþ x3Þpþ qþ k⊥�2 þ iϵ
ðigÞγβTa1

iðx=pþ =qÞ
ðxpþ qÞ2 þ iϵ

ð−iγνÞus0 ðpÞ: ðB2Þ

Using the approximation mentioned in the helicity amplitude approach and the final quark on-shell condition
δð½ðxþ x3Þpþ qþ k⊥ − l�2Þ ¼ 2zpþq−δðxþ x3 − xB − xL − xDÞ, one can simplify the amplitude as

Mν
D1ðy; y1Þ ¼ 2ð ffiffiffi

z
p Þ3g ϵ⃗⊥ · ⃗l⊥

l2⊥
TcTa1e

iðxBþxLÞpþy−eixDp
þy−

1 eixLp
þðy−

1
−y−Þe−ik⃗⊥·y⃗1⊥igθðy−1 − y−Þ ū

sðxBpþ qÞγνus0 ðpÞ
2π

: ðB3Þ

Under the soft gluon approximation z → 1, one can rewrite the amplitude as

Mν
D1ðy; y1Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞūsðxpþ qÞγνus0 ðpÞM̄D1ðy; y1Þ;

M̄D1ðy; y1Þ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

TcTa1e
ixpþy−eix3p

þy−
1 e−ik⃗⊥·y⃗1⊥igθðy−1 − y−Þ

¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

TcTa1e
ixBpþy−eiðxLþxDÞpþy−

1 e−ik⃗⊥·y⃗1⊥igθðy−1 − y−Þ: ðB4Þ

FIG. 19. Right cut 7.

FIG. 20. Double scattering 1 with x ¼ xB, x3 ¼ xL þ xD.
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Contribution to the hadronic tensor of SIDIS from the above amplitude is

dWμν
Dð1Þq
dzh

¼
Z

1

zh

dz
z
Dq→hðzh=zÞ

Z
dy−

2π
dy−1 dy

−
2

Z
d2y⃗12⊥

Z
d2k⊥
ð2πÞ2 e

ik⃗⊥·y⃗12⊥hAjψ̄ðy−Þ γ
þ

2
Aþðy−1 ; y1⊥Þ

× Aþðy−2 ; y2⊥Þψð0ÞjAiHμν
Dð1Þq; ðB5Þ

where the hard partonic part is

Hμν
Dð1Þq ¼

1

2

1

NcðN2
c − 1Þ

X
spin;color

Z
d4l
ð2πÞ4 2πδðl

2ÞMμ
D1ð0; y2ÞMν†

D1ðy; y1Þδðxþ x3 − x1 − x2Þ2πδð½ðxþ x3Þpþ qþ k⊥ − l�2Þ

¼ 1

2

1

NcðN2
c − 1Þ

X
spin;color

Z
d4l
ð2πÞ4 2πδðl

2Þ
Z

dx
2π

2πδ½ðxpþ qÞ2�ūs0 ðpÞγμusðx1pþ qÞūsðxpþ qÞγνus0 ðpÞ

× M̄D1ð0; y2ÞM̄†
D1ðy; y1Þ

¼
Z

dxHμν
ð0Þ

Z
dz

1 − z

Z
dl2⊥

2ð2πÞ2
1

2

1

NcðN2
c − 1Þ

X
spin;color

M̄D1ð0; y2ÞM̄†
D1ðy; y1Þ

¼
Z

dxHμν
ð0Þ

Z
dz

2

1 − z

Z
dl2⊥e−ixBp

þy−e−iðxLþxDÞpþðy−
1
−y−

2
Þ 1
l2⊥

αs
2π

CF
2παs
Nc

: ðB6Þ

In the above calculation, the initial spin and color indices
are averaged and the final state spin/color indices are
summed. In the soft gluon approximation z → 1,

1þ z2

1 − z
≈

2

1 − z
;

1

½⃗l⊥ − ð1 − zÞk⃗⊥�2
≈

1

l2⊥
; ðB7Þ

the above contribution to the hadronic tensor in the helicity
amplitude approach is the same as the complete result
Eq. (26) from the cut diagram in Fig. 6. In this work, we use
results from the helicity amplitude approach to cross-check
the complete result calculated from cut diagrams. Below we
list the helicity amplitude for single, double, and triple
scattering.

1. Single scattering amplitude

The amplitude for single scattering in Fig. 21:

Mν
SðyÞ ¼

Z
dx
2π

δðx − xB − xLÞūsðxpþ qÞγνus0 ðpÞM̄SðyÞ;

M̄SðyÞ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

TceiðxBþxLÞpþy− : ðB8Þ

FIG. 21. Single scattering with x ¼ xB þ xL.

FIG. 22. Double scattering 2. (a) Double scattering 2a with x ¼ xB, x3 ¼ xL þ xD. (b) Double scattering 2b with x ¼ xB þ xL,
x3 ¼ xD.
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2. Double scattering amplitude

(1) Double scattering 1 in Fig. 20:

Mν
D1ðy; y1Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞūsðxpþ qÞγνus0 ðpÞM̄D1ðy; y1Þ;

M̄D1ðy; y1Þ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

TcTa1e
ixBpþy−eiðxLþxDÞpþy−

1 e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ: ðB9Þ

(2) Double scattering 2 in Fig. 22:

Mν
D2aðy; y1Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞūsðxpþ qÞγνus0 ðpÞM̄D2aðy; y1Þ;

M̄D2aðy; y1Þ ¼ −2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta1TceixBp
þy−eiðxLþxDÞpþy−

1 e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ;

Mν
D2bðy; y1Þ ¼

Z
dx
2π

δðx − xB − xLÞ
Z

dx3δðx3 − xDÞūsðxpþ qÞγνus0 ðpÞM̄D2bðy; y1Þ;

M̄D2bðy; y1Þ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta1TceiðxBþxLÞpþy−eixDp
þy−

1 e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ;

M̄D2ðy; y1Þ ¼ M̄D2aðy; y1Þ þ M̄D2bðy; y1Þ

¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta1Tc½eiðxBþxLÞpþy−eixDp
þy−

1 − eixBp
þy−eiðxLþxDÞpþy−

1 �e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ: ðB10Þ

(3) Double scattering 3 in Fig. 23:

Mν
D3aðy; y1Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞūsðxpþ qÞγνus0 ðpÞM̄D3aðy; y1Þ;

M̄D3aðy; y1Þ ¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

½Ta1 ; Tc�eixBpþy−eiðxLþxDÞpþy−
1 e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ;

Mν
D3bðy; y1Þ ¼

Z
dx
2π

δ

�
x − xB − xL −

xD
1 − z

�Z
dx3δ

�
x3 þ

z
1 − z

xD

�
ūsðxpþ qÞγνus0 ðpÞM̄D3bðy; y1Þ;

M̄D3bðy; y1Þ ¼ −2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

½Ta1 ; Tc�eiðxBþxLþxD
1−zÞpþy−e−i

z
1−zxDp

þy−
1 e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ;

M̄D3ðy; y1Þ ¼ M̄D3aðy; y1Þ þ M̄D3bðy; y1Þ

¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

½Ta1 ; Tc�½eixBpþy−eiðxLþxDÞpþy−
1 − eiðxBþxLþxD

1−zÞpþy−e−i
z

1−zxDp
þy−

1 �e−ik⃗⊥·y⃗1⊥igθðy− − y−1 Þ:

ðB11Þ

FIG. 23. Double scattering 3. (a) Double scattering amplitude 3awith x ¼ xB, x3 ¼ xL þ xD. (b) Double scattering amplitude 3bwith
x ¼ xB þ xL þ xD

1−z, x3 ¼ − z
1−z xD.
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The sum of the double scattering amplitude is

M̄Dðy;y1Þ¼ M̄D1ðy;y1Þþ M̄D2ðy;y1Þþ M̄D3ðy;y1Þ:
ðB12Þ

3. Triple scattering amplitude

(1) Triple scattering 1 in Fig. 24:

Mν
T1ðy; y1; y2Þ ¼

Z
dx
2π

δðx− xBÞ
Z

dx3δðx3 − x0DÞ
Z

dx2δðx2 − x0D þ xLÞūsðxpþ qÞγνus0 ðpÞM̄T1ðy; y1; y2Þ;

M̄T1ðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · l⃗⊥
l2⊥

TcTa2Ta1e
ixBpþy−eix

0
Dp

þy−
1 e−iðx0D−xLÞpþy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ; ðB13Þ

where x0D ¼ k2⊥
2pþq−.

(2) Triple scattering 2 in Fig. 25:

Mν
T2aðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞ
Z

dx2δðx2 − xDÞūsðxpþ qÞγνus0 ðpÞM̄T2aðy; y1; y2Þ;

M̄T2aðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta2TcTa1e
ixBpþy−eiðxLþxDÞpþy−

1 e−ixDp
þy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

Mν
T2bðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − x0DÞ
Z

dx2δðx2 − x0D þ xLÞūsðxpþ qÞγνus0 ðpÞM̄T2bðy; y1; y2Þ;

M̄T2bðy; y1; y2Þ ¼ −2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta2TcTa1e
ixBpþy−eix

0
Dp

þy−
1 e−iðx0D−xLÞpþy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

M̄T2ðy; y1; y2Þ ¼ M̄T2aðy; y1; y2Þ þ M̄T2bðy; y1; y2Þ

¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta2TcTa1 ½eixBp
þy−eiðxLþxDÞpþy−

1 e−ixDp
þy−

2 − eixBp
þy−eix

0
Dp

þy−
1 e−iðx0D−xLÞpþy−

2 �

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ: ðB14Þ

FIG. 25. Triple scattering 2. (a) Triple scattering 2a with x ¼ xB, x3 ¼ xL þ xD, x2 ¼ xD. (b) Triple scattering 2b with x ¼ xB,
x3 ¼ x0D, x2 ¼ x0D − xL.

FIG. 24. Triple scattering 1 with x ¼ xB, x3 ¼ x0D,
x2 ¼ x0D − xL.
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(3) Triple scattering 3 in Fig. 26:

Mν
T3aðy; y1; y2Þ ¼

Z
dx
2π

δðx − xB − xLÞ
Z

dx3δðx3 − xDÞ
Z

dx2δðx2 − xDÞūsðxpþ qÞγνus0 ðpÞM̄T3aðy; y1; y2Þ;

M̄T3aðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta2Ta1TceiðxBþxLÞpþy−eixDp
þy−

1 e−ixDp
þy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

Mν
T3bðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞ
Z

dx2δðx2 − xDÞūsðxpþ qÞγνus0 ðpÞM̄T3bðy; y1; y2Þ;

M̄T3bðy; y1; y2Þ ¼ −2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta2Ta1TceixBp
þy−eiðxLþxDÞpþy−

1 e−ixDp
þy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

M̄T3ðy; y1; y2Þ ¼ M̄T3aðy; y1; y2Þ þ M̄T3bðy; y1; y2Þ

¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

Ta2Ta1Tc½eiðxBþxLÞpþy−eixDp
þy−

1 e−ixDp
þy−

2 − eixBp
þy−eiðxLþxDÞpþy−

1 e−ixDp
þy−

2 �

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ: ðB15Þ

(4) Triple scattering 4 in Fig. 27:

Mν
T4aðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − x0DÞ
Z

dx2δðx2 − x0D þ xLÞūsðxpþ qÞγνus0 ðpÞM̄T4aðy; y1; y2Þ;

M̄T4aðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

½Ta2 ; Tc�Ta1e
ixBpþy−eix

0
Dp

þy−
1 e−iðx0D−xLÞpþy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

Mν
T4bðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δ

�
x3 − xL −

z
1 − z

xD

�

×
Z

dx2δ

�
x2 −

z
1 − z

xD

�
ūsðxpþ qÞγνus0 ðpÞM̄T4bðy; y1; y2Þ;

M̄T4bðy; y1; y2Þ ¼ −2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

½Ta2 ; Tc�Ta1e
iðxBpþy−eiðxLþ

z
1−zxDÞpþy−

1 e−i
z

1−zxDp
þy−

2 e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þ

× ð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;
M̄T4ðy; y1; y2Þ ¼ M̄T4aðy; y1; y2Þ þ M̄T4bðy; y1; y2Þ

¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

½Ta2 ; Tc�Ta1 ½eixBp
þy−eix

0
Dp

þy−
1 e−iðx0D−xLÞpþy−

2 − eixBp
þy−eiðxLþ

z
1−zxDÞpþy−

1 e−i
z

1−zxDp
þy−

2 �

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ: ðB16Þ

We have made the variable change k⃗ → −k⃗ in the above.

FIG. 26. Triple scattering 3. (a) Triple scattering 3a with x ¼ xB þ xL, x3 ¼ xD, x2 ¼ xD. (b) Triple scattering 3b with x ¼ xB,
x3 ¼ xL þ xD, x2 ¼ xD.
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(5) Triple scattering 5 in Fig. 28:

Mν
T5aðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δðx3 − xL − xDÞ
Z

dx2δðx2 − xDÞūsðxpþ qÞγνus0 ðpÞM̄T5aðy; y1; y2Þ;

M̄T5aðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

Ta2 ½Ta1 ; Tc�eixBpþy−eiðxLþxDÞpþy−
1 e−ixDp

þy−
2

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

Mν
T5bðy; y1; y2Þ ¼

Z
dx
2π

δ

�
x − xB − xL −

xD
1 − z

�Z
dx3δ

�
x3 þ

z
1 − z

xD

�Z
dx2δðx2 − xDÞ

× ūsðxpþ qÞγνus0 ðpÞM̄T5bðy; y1; y2Þ;

M̄T5bðy; y1; y2Þ ¼ −2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

Ta2 ½Ta1 ; Tc�eiðxBþxLþxD
1−zÞpþy−e−i

z
1−zxDp

þy−
1 e−ixDp

þy−
2

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;
M̄T5ðy; y1; y2Þ ¼ M̄T5aðy; y1; y2Þ þ M̄T5bðy; y1; y2Þ

¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

Ta2 ½Ta1 ; Tc�½eixBpþy−eiðxLþxDÞpþy−
1 e−ixDp

þy−
2

− eiðxBþxLþxD
1−zÞpþy−e−i

z
1−zxDp

þy−
1 e−ixDp

þy−
2 �e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ: ðB17Þ

FIG. 28. Triple scattering 5. (a) Triple scattering 5a with x ¼ xB, x3 ¼ xL þ xD, x2 ¼ xD. (b) Triple scattering 5b with
x ¼ xB þ xL þ xD

1−z, x3 ¼ − z
1−z xD, x2 ¼ xD.

FIG. 27. Triple scattering 4. (a) Triple scattering 4a with x ¼ xB, x3 ¼ x0D, x2 ¼ x0D − xL. (b) Triple scattering 4b with x ¼ xB,
x3 ¼ xL þ z

1−z xD, x2 ¼ z
1−z xD.
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(6) Triple scattering 6 in Fig. 29:

Mν
T6aðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δ

�
x3 − xL −

z
1 − z

xD

�Z
dx2δ

�
x2 −

z
1 − z

xD

�

× ūsðxpþ qÞγνus0 ðpÞM̄T6aðy; y1; y2Þ;

M̄T6aðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

Ta1 ½Ta2 ; Tc�eixBpþy−eiðxLþ
z

1−zxDÞpþy−
1 e−i

z
1−zxDp

þy−
2

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

Mν
T6bðy; y1; y2Þ ¼

Z
dx
2π

δ

�
x − xB − xL −

xD
1 − z

�Z
dx3δðx3 þ xDÞ

Z
dx2δ

�
x2 −

z
1 − z

xD

�

× ūsðxpþ qÞγνus0 ðpÞM̄T6bðy; y1; y2Þ;

M̄T6bðy; y1; y2Þ ¼ −2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

Ta1 ½Ta2 ; Tc�eiðxBþxLþxD
1−zÞpþy−e−ixDp

þy−
1 e−i

z
1−zxDp

þy−
2

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;
M̄T6ðy; y1; y2Þ ¼ M̄T6aðy; y1; y2Þ þ M̄T6bðy; y1; y2Þ

¼ 2g
ϵ⃗⊥ · ð⃗l⊥ − k⃗⊥Þ
ð⃗l⊥ − k⃗⊥Þ2

Ta1 ½Ta2 ; Tc�½eixBpþy−eiðxLþ
z

1−zxDÞpþy−
1 e−i

z
1−zxDp

þy−
2

− eiðxBþxLþxD
1−zÞpþy−e−ixDp

þy−
1 e−i

z
1−zxDp

þy−
2 �e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ: ðB18Þ

We have made the variable change k⃗ → −k⃗ in the above.

FIG. 29. Triple scattering amplitude 6. (a) Triple scattering amplitude 6a with x ¼ xB, x3 ¼ xL þ z
1−z xD, x2 ¼ z

1−z xD. (b) Triple
scattering amplitude 6b with x ¼ xB þ xL þ xD

1−z, x3 ¼ −xD, x2 ¼ z
1−z xD.

FIG. 30. Triple scattering 7. (a) Triple scattering 7a with x ¼ xB þ xL, x3 ¼ z
1−z xD, x2 ¼ z

1−z xD. (b) Triple scattering 7b with x ¼ xB,
x3 ¼ xL þ z

1−z xD, x2 ¼ z
1−z xD.

PARTON ENERGY LOSS AND THE GENERALIZED JET … PHYS. REV. D 100, 074031 (2019)

074031-29



(7) Triple scattering 7 in Fig. 30:

Mν
T7aðy; y1; y2Þ ¼

Z
dx
2π

δðx − xB − xLÞ
Z

dx3δ

�
x3 −

z
1 − z

xD

�Z
dx2δ

�
x2 −

z
1 − z

xD

�

× ūsðxpþ qÞγνus0 ðpÞM̄T7aðy; y1; y2Þ;

M̄T7aðy; y1; y2Þ ¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

½Ta1 ; ½Ta2 ; Tc��eiðxBþxLÞpþy−ei
z

1−zxDp
þy−

1 e−i
z

1−zxDp
þy−

2

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;

Mν
T7bðy; y1; y2Þ ¼

Z
dx
2π

δðx − xBÞ
Z

dx3δ

�
x3 − xL −

z
1 − z

xD

�Z
dx2δ

�
x2 −

z
1 − z

xD

�

× ūsðxpþ qÞγνus0 ðpÞM̄T7bðy; y1; y2Þ;

M̄T7bðy; y1; y2Þ ¼ −2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

½Ta1 ; ½Ta2 ; Tc��eixBpþy−eiðxLþ
z

1−zxDÞpþy−
1 e−i

z
1−zxDp

þy−
2

× e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ;
M̄T7ðy; y1; y2Þ ¼ M̄T7aðy; y1; y2Þ þ M̄T7bðy; y1; y2Þ

¼ 2g
ϵ⃗⊥ · ⃗l⊥
l2⊥

½Ta1 ; ½Ta2 ; Tc��½eiðxBþxLÞpþy−ei
z

1−zxDp
þy−

1 e−i
z

1−zxDp
þy−

2

− eixBp
þy−eiðxLþ

z
1−zxDÞpþy−

1 e−i
z

1−zxDp
þy−

2 �e−ik⃗⊥·ðy⃗1⊥−y⃗2⊥Þ
× ð−g2Þθðy−1 − y−2 Þθðy− − y−1 Þ: ðB19Þ

We have made the variable change k⃗ → −k⃗ in the above.
The sum of triple scattering amplitudes is

M̄Tðy; y1; y2Þ ¼ M̄T1ðy; y1; y2Þ þ M̄T2ðy; y1; y2Þ þ M̄T3ðy; y1; y2Þ þ M̄T4ðy; y1; y2Þ
þ M̄T5ðy; y1; y2Þ þ M̄T6ðy; y1; y2Þ þ M̄T7ðy; y1; y2Þ: ðB20Þ

The hard partonic part of the hadronic tensor is

Hμν
Dð1Þq ¼

Z
dxHμν

ð0Þ

Z
dz

1 − z

Z
dl2⊥

2ð2πÞ2
1

2

1

NcðN2
c − 1Þ

X
spin;color

½M̄Dð0; y2ÞM̄†
Dðy; y1Þ

þ M̄Tð0; y2; y1ÞM̄†
SðyÞ þ M̄Sð0ÞM̄†

Tðy; y1; y2Þ�; ðB21Þ

where M̄Dð0; y2ÞM̄†
Dðy; y1Þ contains all central cut diagrams, while left cut diagrams are in M̄Sð0ÞM̄†

Tðy; y1; y2Þ and right
cut diagrams are in M̄Tð0; y2; y1ÞM̄†

SðyÞ.
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