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Abstract

Several excited states of Dy and B, mesons have been discovered in the last six years:
BaBar, Cleo and Belle discovered the very narrow states D7,(2317)* and Dj;(2460)*
in 2003, and CDF and D@ Collaborations reported the observation of two narrow B,
resonances, By1(5830)% and B, (5840)° in 2007. To keep up with experiment, meson
excited states should be studied from the theoretical aspect as well.

The theory that describes the interaction between quarks and gluons is quantum chro-
modynamics (QCD). In this thesis the properties of the meson states are studied using
the discretized version of the theory — lattice QCD. This allows us to perform QCD
calculations from first principles, and “measure” not just energies but also the radial dis-
tributions of the states on the lattice. This gives valuable theoretical information on the
excited states, as we can extract the energy spectrum of a static-light meson up to D
wave states (states with orbital angular momentum L = 2). We are thus able to predict
where some of the excited meson states should lie. We also pay special attention to the
order of the states, to detect possible inverted spin multiplets in the meson spectrum, as
predicted by H. Schnitzer in 1978. This inversion is connected to the confining potential
of the strong interaction.

The lattice simulations can also help us understand the strong interaction better, as
the lattice data can be treated as “experimental” data and used in testing potential
models. In this thesis an attempt is made to explain the energies and radial distributions
in terms of a potential model based on a one-body Dirac equation. The aim is to get
more information about the nature of the confining potential, as well as to test how well

the one-gluon exchange potential explains the short range part of the interaction.
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Chapter 1
Introduction

The topic of interest here is heavy-light mesons, i.e. particles that consist of a heavy quark
and a light anti-quark (or vice versa). We wish to study some properties of these mesons
starting from the underlying theory, quantum chromodynamics (QCD), that describes
the interactions of quarks and gluons. Although we approach the topic from a theoretical
viewpoint, such heavy-light mesons can be (and have been) observed in experiments: for
example in a B meson, the b quark is about 1000 times as heavy as the accompanying u
or d quark, and the meson can thus be considered as a heavy-light system. The suggested
qq quark-model assignments for some of the light-light and heavy-light mesons are given
in Table 1.1.

The heavy-light meson is one of the most fundamental systems in QCD (like the hy-
drogen atom in QED), but has interparticle correlations that are little understood. We
wish to use the properties of these meson states to gain some knowledge of the interaction
between the quarks. The excited B meson states also have important applications to CP
studies of neutral B mesons by the identification of their flavour (b versus b) through the
decay chain B* — B%r* ([6]). Hence narrow B* resonances will be valuable for this.
However, not many of these excited states have so far been observed in experiments.

In 2003 BaBar, Cleo and Belle discovered that the c5 states with JZ = 0% and 17 (where
J is total angular momentum and P is parity) have very narrow widths [7, 8, 9]. This
naturally raised the question of whether the corresponding b5 states will also be narrow.
The main reason for the narrow width of these D, meson states is that the transition
to DK is not energetically allowed (for the D7, (2317)* state) or the state is close to a
threshold (for the Dy;(2460)* state). Thus the only allowed hadronic decay proceeds via
isospin-violation (since m, # mqy) to Dym and so the state will have a very small width.

Likewise, if the equivalent bs states are close to or below the BK threshold, then they



Meson Quark structure I | Energy [MeV]
| ud, (ut—dd)/V?2,da| 1 135
p ud, (uii — dd)/v/2, du | 1 775
w cr(uii + dd) + ca(s8) | 0 783
¢ cs(utt + dd) + c4(s5) | 0 1019
K us, ds, su, sd 1/2 494
D cd, cii, dé, uc 1/2 1865
D, cS, sc 0 1968
B bd, bii, db, ub 1/2 5279
B, b3, sb 0 5366

Table 1.1: The suggested g§ quark-model assignments for some of the light-light and
heavy-light mesons. [ is the isospin of the meson, and “Energy” is the experimental

energy of the lowest lying state (to the nearest MeV) [5].

will be very narrow. In 2007 CDF and D@ Collaborations reported the observation of two
narrow B, resonances, that are associated with the J© = 2% and 17 states [10, 11, 12].
However, the other two P wave states with J© = 07 and 1* have not been observed yet.
Therefore, the main focus of this work is to use a theoretical approach and predict where
these bs states should lie and, in addition, extract the form of their radial structure. The
latter have not been studied before with the present approach.

Several properties of a given meson state, such as its energy, width and angular momen-
tum, can often be determined experimentally. However, usually the experiments give no
information of the structure of the state. For example, with B, states the experiments do
not tell whether the measured states are bs, bsuw or BK. Unfortunately, when theoreti-
cal models are constructed attempting to describe B, states, it usually has to be decided
beforehand which structure is used for the states. The models have often sufficient free-
dom to fit experimental data with any of the possible structures. Therefore, if — for
example — transition rates between states in a heavy-light meson (Qq) are calculated,
then the necessary radial wave functions are simply taken to have some convenient form,
or are calculated with a differential equation and interquark interaction that are not well
justified.

In an attempt to clarify the comparison between the experimental data and theory, we
suggest the use of lattice QCD. In practice, there are two ways to perform QCD calcula-
tions: use perturbation theory, or discretize the theory and do the calculations numerically

on a computer (lattice QCD). Perturbation theory is valid at high energies, and QCD has



been well tested in high energy scattering experiments. However, at low energies pertur-
bation theory is not applicable. Lattice QCD allows us to do QCD calculations from first
principles, and we can get information of the energy spectrum of the mesons as well as the
structure of the states. It gives us the possibility to do “measurements” and get lots of
data that can be treated as experimental data. This lattice data can then be used to test
theoretical models. We have chosen to study static-light mesons, i.e. mesons where the
heavy quark is static (infinitely heavy), as it provides a good test environment for model
building. The ultimate goal would be to be able to understand and describe multi-quark
systems: In [13, 14, 15, 16] A. M. Green, C. Michael and collaborators studied two and
four static quark systems on a lattice, and in [17] a system of two static-light mesons
was studied. The emphasis was in gaining knowledge of the multi-quark interactions.
However, it is beneficial to study the more simple Qg system first, and hopefully use this
information in future multi-quark studies.

This thesis is organized as follows: In Chapter 2 the basic concepts of lattice QCD are
introduced briefly. Our results are presented in Chapters 3 (energy spectrum and spin-
orbit splitting) and 4 (radial distributions and sum rules). In Chapter 5 we construct a
model based on a one-body Dirac equation that can be used to try to describe the data.

The conclusions in Chapter 6 close the thesis.



Chapter 2

Brief introduction to lattice QCD

Let us start by introducing the main ideas of lattice QCD very briefly. The basic La-
grangian of QCD is

»CQCD = »Cfermions + Egaugea (21)
where the gauge part (using Euclidean metric g = §#*)

1
Lgauge = —F5 FlY Fﬁu = aquLi - aUAZ + gfabcAZAlcﬂ (22)

4uua>

describes the propagation of gluons and their self-interactions, and the fermionic part
Licrmions = Y _ 7 (P +mf )/ (2:3)
f
with the covariant derivative

D= m’u(au - igAZT“) (24)

describes the propagation of quarks and their interaction with the gauge field A, = AL
Here a, b and ¢ are colour indices that run from 1 to N2 —1, if the colour group is SU(N,).
In the physical case the group is SU(3), as there are three colours. The T are the

generators of the group that satisfy
[T, T = if*eT° (2.5)

and are normalized as )
Te(T°T") = 55“5, (2.6)

where £ are the structure coeffcients. The p and v are Lorentz indices that identify the
spatial and temporal components of the vector gauge fields. f is the flavour index for the

quarks. Here the Dirac and colour indices of the spinors 1)/ have been suppressed.
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As the Lagrangian is known, we can in principle write down an expression for any
quantity we wish to compute. If, for example, we want to compute some property of a

bound state, we have to evaluate a path integral

(B) = %/DAM/YM/D&B e ¥, (2.7)

Zz :/DAM/Dw/Dz/? e (2.8)

S = /d4CC EQCD- (29)

The path integral is defined in Euclidean space, where the time ¢ — —it, to get a conver-

where

and the action is

gent measure. The operator B is given in terms of the fermion and gauge fields, and it
is defined by the property of the state we are interested in. A typical example would be
the energy of a bound state.

Even though the task has been reduced to evaluating the integral in Eq. (2.7), this
is easier said than done. In the study of high energy phenomena, the coupling g is
sufficiently small to justify an expansion in powers of g. However, in the study of the
properties of hadrons, e.g. their energies and radial distributions, as in the present study,
the coupling ¢ ~ 1. This rules out perturbative approach and necessitates the use of
purely numerical methods. Therefore, to calculate the integral in Eq. (2.7) the time and
space are discretized, so that we get a four dimensional grid. This discretization actually
simply gives a precise meaning to the path integrals. In field theory one has an infinite
number of degrees of freedom, so the integrals have to be regularized (by introducing
the lattice). This is the first step in the renormalization program [18]. The second step
is removing the lattice structure, i.e. studying the continuum limit to return to the real
world. The grid, or lattice, is typically of size 163 x 24 or even 243 x 48 in QCD calculations.
The gauge fields U, are on the links and the fermion fields ¢» on the sites of the lattice.
The connection between the two gauge fields, U, on the lattice and A, in the continuum

theory, is made via a path ordered integral

Uu(z) = Pexp {gz’ /Haéudy,,Ay(y)]. (2.10)
The lattice action can be written as
S\U$,9] = SalU] + Sr(U, ¥, ¥, (2.11)
where )
SglU] = 5; (1 — Rer UP> (2.12)

)



is the Wilson plaquette action for the gauge fields, and the fermionic part S is defined
by
SelU, 0, 9) = SH U, §, 9] — cswa Z V00 () s (2.13)
TN
Here SI¥ is the standard Wilson action for fermions and cgw denotes the improvement
coeflicient multiplying the Sheikholeslami—Wohlert term [19]. The standard Wilson action

for fermions is

S0, = X [ 5] B = D00 = B+ VUM |+ 21
« "

The action is named after K. G. Wilson, who introduced the idea of discretization (lattice)
in the 1970’s [20]. The purpose of the Sheikholeslami—Wohlert term is to remove the O(a)
lattice artifacts, so that the remaining effects are of second order (a?) or higher in the
lattice spacing a. This is important, as the calculations are done on a fixed, non-zero
lattice spacing, and ideally the results have to be extrapolated to the continuum limit.

The parameters of the theory are the gauge coupling 3 = 2N./g? (g is the usual
coupling) and the hopping parameter k. The hopping parameter is a simple rescaling

factor that is related to the quark mass m, via

1
Sl F (2.15)

at tree level [21]. Typical values are 3 = 6.2, § = 5.2 and x = 0.141, k = 0.135, depending
on whether the lattice is quenched (no quark-antiquark loops) or unquenched (dynamical
fermions, i.e. quark-antiquark loops allowed). The nonperturbatively O(a) improved
Wilson action was determined in the quenched approximation in Refs. [22, 23], and first
results for ny = 2 flavors of dynamical quarks were reported in [24]. Some of the lattice
configurations used in this study use csyw = 1.76 for the improvement (clover) coefficient.
This was a preliminary estimate provided by the ALPHA Collaboration prior to their
final result csw = 2.017 at 3 = 5.2, presented in [24]. Note that the lattice spacing a is
not a free parameter, but depends on the coupling 3. The value of a is extracted from a
lattice measurement. Usually experimental input is used to set the scale: The mass of the
p meson can be calculated on the lattice, and matching that to the experimental result
can be used to set the lattice spacing. The masses of K, K* or ¢ mesons are often used
to calculate the strange quark mass [21].

It should also be noted that the discretization is not unambiguous or unique: different
discretizations can be used, and it depends on the task at hand what kind of discretization

is most convenient. However, in the continuum limit the discretized theory has to give



the correct continuum theory. In our work we use the above mentioned standard Wilson
action for the gauge fields and clover (Sheikholeslami-Wohlert improved Wilson) action
for the fermions. Also the discretization can be further improved by so-called fuzzing,
where the original link is replaced by a certain combination of the neighbouring links.
A very commonly used fuzzing simply sums the four “staples” that are connected to the

given link, i.e. the fuzzed link U, , is calculated as

Ui,;. = Projgy s [blUw b Y UigUien uUf |- (2.16)
En#p
Here U, ,, is the original, unfuzzed link at location ¢ and spatial direction p (also 7 is in
spatial direction). The coefficients b; and by can be tuned according to the task at hand.
Often several iterations of fuzzing are used. See also Section 3.2 (specifically Fig. 3.2 —
the APE smearing is essentially standard fuzzing in the time direction).

Lattice QCD calculations are nowadays a huge industry. It is impossible to cover all
topics here, and that is not the purpose of this thesis either. Interested readers can find
detailed introduction to lattice field theories in many text books, for example by Montvay
and Miinster [25] and Rothe [18]. Ref. [26] is a collection of five long articles on different
topics of lattice QCD, and the target audience is advanced undergraduates and graduate

students who have background in nuclear and/or particle physics.



Chapter 3
Energy spectrum

Our aim is to extract (i.e. measure) the energies of both angular and first radial excitations
of heavy-light mesons on the lattice. We use several different lattices to get as broad a
picture as possible. Quenched measurements are done on 123 x24 and 162 x 24 lattices,
and later unquenched measurements on 123 x 24, 163 x 24, 123 x 32 and 16> x 32 lattices
with two degenerate quark flavours. The quenched lattices are labelled as “Q17, “Q2”,
“Q3”, and the unquenched lattices (i.e. lattices with dynamical fermions) are labelled
as “DF1”, “DF2”, “DF3”, “DF4”, “DF5”. Quenched lattices have the gauge coupling
[ = 5.7, whereas the unquenched lattices have § = 5.2. The lattices have different

lattice spacings and light quark masses. Detailed information on the lattice parameters

B | csw K ro/a # of confs. | Size (L* x T')
Q1 | 57| 1.57 | 0.14077 2.94 20 123 %24
Q2 | 57| 1.57 | 0.13843 2.94 20 123 %24
Q3 | 57| 1.57 | 0.14077 2.94 20 163 x 24
DF1 |52 | 1.76 | 0.1395 | 3.43575%0? 20 123 x 24
DF2 | 5.2 | 1.76 | 0.1395 | 3.444110+26 78 16° x 24
DF3 | 5.2 | 2.017 | 0.1350 | 4.754(40)*2, 160 163 x 32
DF4 | 5.2 | 2.017 | 0.1355 | 5.041(40)*9, 119 163 x 32
DF5 | 5.2 | 2.017 | 0.1358 5.32(5) 139 16 x 32

Table 3.1: Lattice parameters (from [27, 28, 29, 30]). The Sommer scale parameter can
be taken to be rg = 0.525(25) fm. The error on ry/a for the quenched lattices is not given
in the publications. See Chapter 2 for definitions of 3, csw and s [Egs. (2.12), (2.13),

(2.15)]. The column “# of confs.” is the number of gauge configurations.



are given in Table 3.1, and lattice spacings, masses and other similar quantities are given
in Table 3.2. The parameters x and 3 are usually chosen so that one gets as small lattice
spacing and light quark masses as possible - the restricting factor being the computer
time. Our main results on the energy spectrum are published in [3, 4], whereas [1] and
[2] concentrate more on the radial distributions.

The lattice spacings range from approximately 0.17 fm to 0.1 fm, and the light quark
masses range from 1.1m, to 0.3m,, where m, is the strange quark mass. All lattice
configurations were generated by the UKQCD Collaboration. More details of the lattice
configurations used in this study can be found in Refs. [3, 27, 28, 29, 30]. Because our
light quarks are heavier than true v and d quarks, we have m, ranging from 810 MeV to
400 MeV.

3.1 Excited state operators and two-point correlation

functions

When the heavy quark is taken to be static (infinitely heavy), the Q¢ meson becomes the
“hydrogen atom” of QCD. Charge conjugation is not a good quantum number, because

the two quarks are not identical. Since the heavy quark spin does not play a role, we may

a[fm] | romy | my [MeV] | mz/m, | my
Q1 | 0.18 | 1.555(6) o84 0.715 | 0.9m;,
Q2 | 018 |2.164(6) | 813 0.757 | 1.8m,
Q3 | 0.18 | 1.555(6) 584 0.715 | 0.9m,
DF1| 0.15 | 1.92(4) 722 0.710 | 1.3m,
DF2 | 0.15 | 1.94(3) 730 0.719 | 1.3m,
DF3 | 0.11 | 1.93(3) 725 0.700 | 1.1m,
DF4 | 0.10 | 1.48(3) | 536 0.578 | 0.6m,
DF5 | 0.10 | 1.06(3) 398 0.440 | 0.3m;,

Table 3.2: Lattice parameters (from [27, 28, 29, 30]). The Sommer scale parameter can
be taken to be ro = 0.525(25) fm. Often the m,/m, is quoted to give a feeling of how
heavy or light the lattice quarks are. For comparison, if the m, and m, were made of
s-quarks, the ratio would be about 0.7. Here m, is the strange quark mass, which the
Particle Data Group [5] quotes as 104735 MeV.



label the states with j =L &+ % as Ly. Here L is the orbital angular momentum and i%
refers to the spin of the light quark. For example, the state with L=1 and anti-aligned
angular momentum and light quark spin is P_ = Py/5. The corresponding state with
aligned light quark spin and angular momentum is P, = Pjs;,. Going away from the
heavy quark static limit breaks the degeneracy to give the four states J© = 0%, 17 (P_)
and JP = 17 2% (P, ) seen in nature. In addition to the states labelled L., we also study
states that are mixtures of the two spin states. These are labelled L _.

We use the same lattice operators to construct these states that were used in [27]
and [31]. Nonlocal operators are used for the heavy-light meson, because that enables us
to study also the orbital excitations. The lattice operator is defined on a timeslice ¢ as

B, = Z Q(xa, ) Py(x1, %2)Tq (x4, 1). (3.1)
X1,%2
Here Q and q are the heavy and light quark fields respectively, the sums are over all space
at a given time ¢t. P, is a linear combination of products of gauge links U at time ¢ along
paths P from x; to X5, and I" defines the spin structure of the operator. For pseudoscalar
mesons, the only ones studied here, I' = 5. The Dirac spin indices and the colour indices
are suppressed for clarity.

The 2-point correlation function Cy(T) (see Fig. 3.1) is defined as B;Bi 7, i.e. the

meson is created at time ¢ and destroyed at time ¢t + 7. More explicitly, the 2-point

correlator is
Co(T) = Tr (PTGy(X'1,t + T, %1,t) Poyrl G (%o, t, X5, t + 1)) (3.2)

In the case of a static heavy quark, the heavy quark propagator G is

Go(xa,t, X9, t +T) = %(1 + ) U9 (x2,, )0 01, (3.3)
(x,t+T)
r
UQ R G,
r

(x,1)
Figure 3.1: Two-point correlation function.
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where

Qx,t,T) HU4xt+z (3.4)

In other words, if the heavy quark is infinitely heavy, the propagator is simply a product of
the gauge links Uy (x, t) from time ¢ to t+7". The light anti-quark propagator G, (x,t+1T,t)

is evaluated using stochastic methods (see [27] for more details) as

(Gij = Qi = ((Qutr)"¥y), (3.5)

where @ is the Wilson—Dirac fermion matrix [basically 1 — kM plus the Sheikholeslami—
Wohlert term, i.e. the fermion action given in Eq. (2.13)], ¢ are the fermion fields and

(...) denotes an average over the stochastic samples. Using these in Eq. (3.2) gives
1
Co(T) = Tr (PTY (X1, t + T)[Qup(x, t)]*RS+TFT§(1 +72)U® (%2, 1, 7)) . (3.6)

Here the trace is over Dirac and colour indices, and includes also the spatial sums.

The b quarks are usually described as heavy, as their mass is significantly greater than
the QCD scale: my, = 4.5 GeV compared to Aqep ~ 300 MeV. They are non-relativistic
in the bound states, and a(mg) is relatively small. The b quarks could, in principle, be
treated on the lattice the same way as the light quarks, but that would introduce a new
problem. The lattice spacing has to be small enough, a < 1/mg, or otherwise the size of
the quark is smaller than a, i.e. the quark would ”fall through the lattice grid”. Treating
the heavy quark as static avoids this problem, and gives us the meson properties in the
leading order in heavy-quark effective theories (expansions in 1/mQ). The results can
then be extrapolated or interpolated to mg = my.

The paths P, we use in our work are specific combinations of a product of fuzzed
links in a straight line of length [. The rotations of the meson state are given by the
representations of Oy: since we are working on the lattice, we have to restrict the SU(2)
representations to the rotations allowed by the cubic symmetry and classify them under
Oy The representations (tabulated to L=4) are:

L=0 4

L=1 T

L=2 FET,
L=3 ATT
L=4 A FETT

11



For example, if we want to extract, say, the energy of an L=3 excited state, we should
construct a path that is in the A, representation.

To be more explicit, let us define the sum of two paths in direction i as s; = pl; + pl;_,
and the difference of the paths as p; = pl;w — pl;_. Here pl;y and pl;_ are the paths,
straight lines of length [, in the positive and negative direction ¢, respectively. Note that
the p; are in the T} representation. The combinations appropriate for the discrete group
of cubic rotations are then the A; symmetric sum S = s;+ 53+ s3 and the E combinations
of b; which can be taken as E(b;) = (by — by) and (2b3 — by — by)/v/3. The b; are different
for different states: ;p; (no sum on ) for the P, operator, and s; for the D, _ operator,
for example.

The appropriate operators for static-light mesons are then

S : Qv5Sq or Qv;Sq (3.7)
P_:Qlgor Y Quipig (3.8)
P, :QE(vip))g (no sum on i) (3.9)

D, : QvsE(si)q. (3.10)

Note that the D, _ operator gives an unknown mixture of the D wave states D_ and D,
since it does not probe the spin of the state.

The straight line paths are not enough, if one wants to study higher excited states.
Following [31], we consider L-shaped paths P; to access the D_ and D, states. We take
each side of the L-shape to have the same length. Taking linear combinations of these we
can now form paths in the T; representation (paths ¢; where 4 is the direction normal to
the plane of paths) and in the Ay representation (paths h). The paths h are constructed
by taking the sum with alternating sign of paths to the 8 corners of a spatial cube from
the centre. The path to each corner of the cube is a sum of the six shortest routes along
the axes from the centre of the cube to the corner, which then has to be projected onto
the SU(3) group.

We now have operators in the 75 representation, which allows us to separate the D_,

D, states since

D_:QE(vt;)g (nosum on i) (3.11)

and

D, : Q_Z(%‘ti)q (3.12)
We can also extract some information of the F-wave states, since the operator
Fi 1 Qyshg (3.13)

12



gives an L = 3,6, ... state. This operator does not fix the spin of the light quark, and
gives a mixture of both F-wave states, F_ and F_.
The energies (m;) and amplitudes (a;) are extracted by fitting the Cy with a sum of

exponentials,

Nmax
[Co(T)] .1, = Z aipe ™ a; s, where Nyay =2 — 4, T < 14. (3.14)

i=1
The fit is a simple least squares fit. In most of the cases 3 exponentials are used to try
to ensure the first radially excited states are not polluted by higher states. Also 2 and 4
exponential fits are used to cross-check the results wherever possible. Two different levels
of fuzzing (2 and 8 iterations of conventional fuzzing) are used in the spatial directions to
permit a cleaner extraction of the excited states — see Eq. (2.16). We set by = 2.5 and
by = 1 — the values used by UKQCD Collaboration earlier. Indices f; and f5 denote the
amount of fuzzing used at the vertices and both of them take two values, f; =F1, F2 and
fo =F1, F2, where (F1=2 iterations and F2=246 iterations). For S and P_ states we
have alternative operators (see [27]), so in all we get a 5 by 5 matrix (5 paths, because
one operator has two choices, F1 and F2, and the other operator has three choices, local,
F1 and F2) instead of just a 2 by 2 matrix (2 paths) given by the fuzzing choices. Here

“local” means the original, unfuzzed link.

3.2 Smeared heavy quarks

In most of the study we use a “plain” heavy quark, i.e. the original Eichten—Hill point
static source construction without smearing. However, especially in the excited state
radial distribution measurements, the signal gets easily overcome by the noise. To get
a better noise to signal ratio we introduce two types of smearing in the time direction:
APE smearing and hypercubic blocking. The effect of smearing is studied in [4].

In APE smearing the original links in the time direction are replaced by a sum over
the six staples that extend one lattice spacing in the spatial directions (in Fig. 3.2 on the
left). This smearing is called here “sum6” for short.

To smear the heavy quark even more we also use hypercubic blocking (called here “hyp”
for short). The smearing was first introduced by Hasenfratz and Knechtli in [32]. Here
we again use smearing only for the links in the time direction, as in the “sum6” smearing
above. A schematic picture of hypercubic blocking is in Fig. 3.2 on the right. In “hyp”
the staples (the red dashed lines in Fig. 3.2) are not constructed from the original, single

links, but from staples (the blue dash-dotted lines in Fig. 3.2). Hypercubic blocking takes

13
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cubic blocking (on the right). In both cases the original, unsmeared basic link is replaced

by the solid black link (a combination of neighbouring links as explained in the text).
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Figure 3.3: (Colour online) Noise (standard deviation) to signal ratio: S wave 2-point

correlation function Cy for the lattice “DF3”. Note the logarithmic scale.
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Figure 3.4: (Colour online) Noise (standard deviation) to signal ratio as in Fig. 3.3 but

for the P_ case.
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Figure 3.5: (Colour online) Noise (standard deviation) to signal ratio for the P case.

15



Figure

Noise to signal ratio

10

0.1

0.01

0.001

0.0001

10

E I T I T I T I T I T I T I L | 3
C o < 3
r O DF3plain o 7
= |0 DF3sum6 = B o© =
= |O DE3hyp o 8o -
i g i
o

3 o g§°¢ E
: og® :
B Om J
S e B ° ;
T g © .
I | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
0 2 4 6 8 10 12 14 16

E I T I T I T I T I T I T 0 T I E
- [O DF3plan o} g 8 :
i3 O DF3sum6 () (] -
= |© DF3hyp oo 8 3
5 i ]
E [ 0°m? ]
=  01f g % =
5 = (o) 3
z ¥ o g g ]
2 001F 8 13 -
o - =
Z o 8 .
- g @ i
0.001f E

] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

0.00015 2 4 6 8 10 12 14 16

Figure 3.7: (Colour online) Noise (standard deviation) to signal ratio for the D case.

16



into account the links within a “hypercube” (the edges of the “cube” are 2a in spatial
directions but only one lattice spacing in the time direction).
In analogy with the fuzzing described in Chapter 2 [Eq. (2.16)], we first construct the

links

. a3
Vi,uswp = Projsy(s) [(1 — @)Ut~ > Ui7nUi+ﬁaltUiT+ﬂ,n:| , (3.15)
tnFp, v, p

where U; ,, is the original thin link at location ¢ and direction p. There are no staples in

directions v or p — hence the notation VZ wivp- We then construct “fat” links

o

- ) ) _ _ _
Viiusw = Projgys) [(1 — )V + a1 Z ‘/ivp;V/t‘/:hLﬁ,ll;PV‘/;tLﬂ,p;V,u]7 (3.16)
tpF#v, p

where index v indicates that the link is not decorated with staples in that direction. The

last step is

Vi,u = Projgys [(1 —a)Ui i+ % Z ‘Z,U;p‘z-&-l},p;u‘zlﬂ’y;ﬂ} ) (3.17)
tv#p

where the “fat” links are again used to construct the new links. Here, as for “sum6”,
we only consider V; ,, with p in the time direction, and use conventional fuzzing for the
spatial directions. The coeflicients oy, s, a3 can be tuned to get maximal benefit of the
hypercubic blocking. In our study we use a3 = 0.5, as = 1 and a; = 1, because this
choice was found to be very good in reducing the noise to signal ratio in [33]. Note that
az =1, ag =0 and a; = 0 would give the “sum6” smearing.

Smearing the heavy quark really does improve the noise to signal ratio, as can be seen in
Figs. 3.3-3.7. We only considered smearing the heavy quark in the latest measurements,
that were done with dynamical fermions. The figures show the standard deviation to
signal ratio for the largest component of Cy, which is F2F2, for 160 lattice configurations
(lattice “DF3”). In all cases the “plain” signal is clearly inferior to the “sum6” and “hyp”
signals, whereas the “hyp” signal is also somewhat better than the “sum6” signal for the
larger values of T. This latter difference would be more apparent in a non-logarithmic
scale. Lattices “DF4” and “DF5” show similar trends as the “DF3” lattice.

3.3 The lattice results

The extracted energies can be considered from different viewpoints. Firstly Fig. 3.8 shows
the resulting energy spectrum for the lattice “DF3” as an example. The energies are from

the fit in Equation (3.14). We can only look at energy differences due to the unknown
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Figure 3.8: (Colour online) Energy spectrum of the heavy-light meson using lattice “DF3”.
Here L, (L_) means that the light quark spin couples to angular momentum L giving
the total j = L+ 1/2 (j = L — 1/2). The 2S is the first radially excited L= 0 state. The
D, _ is a mixture of the D_ and D, states, and likewise for the F,_. Energies are given
with respect to the S wave ground state (1S). Here ro/a = 4.754(40)"5, (from [29]) and
ro = 0.525 fm were used to convert the energy differences to physical units. The error

bars shown here contain only the statistical errors on the lattice energy fits.
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Figure 3.9: (Colour online) Energies of the two P wave states, [E(P_) — E(1S)] (filled
symbols) and [E(P,) — E(1S)] (open symbols) as a function of the lattice spacing a. Here
ro = 0.525 fm was used to convert the energy differences to physical units. These results

are from “plain” measurements, i.e. no smearing in the time direction.

self energy that is a constant for a given lattice for all L values and radial excitations.
Hence we give the energies with respect to the lowest energy 1S. Here we also compare
the different smearings: “plain”, “sum6” and “hyp”. Our preferred smearing is “hyp”,
because — in addition to being the most refined — it has the best signal to noise ratio,
with “sum6” as a close second (see [4] for more details). For some states, particularly the
P_ and D, states, all smearings give the same energy differences, but the “plain” results
have larger errors than the other two. However, the differences in the results between the
three smearings can be large, as can be seen for the P state. This is probably due to the
lattice spacing a being too far away from zero — it should be noted that the results for
the different smearings only need to agree in the continuum limit.

A second way to present the results is in Figs. 3.9 and 3.10, where we compare our
results from different lattices. All lattices use the “plain” configurations, i.e. no smearing
in the time direction, to compare like with like. On one hand, we can now compare
quenched and unquenched results. On the other hand, this plot can be used to check
how much the results change when the lattice spacing a changes, although for a proper
continuum extrapolation the lattices should be similar (aside from the lattice spacing).
The quenched results (“Q17, “Q2”, “Q3”, from [3]) are rather similar to those unquenched
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Figure 3.10: (Colour online) Energies of the two D wave states, [E(D_) — E(1S)] (filled
symbols) and [E(D4) — E(1S)] (open symbols) as a function of the lattice spacing a. Here
ro = 0.525 fm was used to convert the energy differences to physical units. These results

are from “plain” measurements, i.e. no smearing in the time direction.

results (“DF17, “DF2”, both “plain”, from [3]) that have larger lattice spacings (about
0.15 fm), but the unquenched lattices with smaller lattice spacings (a ~0.10-0.12 fm,
ie. lattices “DF3”, “DF4” and “DF5”, all “plain”, from [3] and [4]) give higher energy
differences E(P,) — E(1S), E(D_) — E(1S) and E(D;) — E(1S). All lattices should, of
course, give the same result in the continuum limit, but at a fixed, non-zero a the results
may differ considerably. To draw any definite conclusions smaller errors and a reliable
extrapolation to the continuum limit would be needed.

A third way to present the results is to check how they depend on the light quark mass.
To do this we plot the energies (i.e. energy differences with respect to the 1S state) as a
function of the pion mass squared, (m,)* — see Table 3.2. Figs. 3.11-3.16 show that P
and D wave state energies (using lattices “DF3”, “DF4” and “DF5” with smearing) do
not depend strongly on the light quark mass, although some dependence can be seen. In
most cases the errors are too large to make definitive conclusions. It is also interesting to
compare our results with twisted mass lattice calculations from [34] (European Twisted
Mass Collaboration). The results agree fairly well, except for the P_ and F states. This
can be, for example, due to different O(a?) effects.

We also compare our results to other static-light meson lattice calculations in Fig. 3.17.
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Figure 3.11: (Colour online) The energy difference [E(1P_) — E(1S)] as a function of the
pion mass squared. Our results show only a slight dependence on the light quark mass.
Here and in the following figures for P,, D_, D, Fy and 2S the “sum6” and “hyp”
results, from left to right, are from lattices “DF5”, “DF4” and “DF3”, respectively. The
European Twisted Mass Collaboration’s results (ETMC) are from [34].
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Figure 3.17: (Colour online) Comparison of different static-light lattice results. On the
left at @ = 0.0855 fm are the results from European Twisted Mass Collaboration [34],
at a = 0.11 fm our “DF3hyp” results from [4], at @ = 0.113 fm and a = 0.156 fm BGR
Collaboration’s results [35] and on the right at a = 0.17 fm TrinLat group’s results [36, 37].
A set of similar lattices with different lattice spacings is needed for going to the continuum

limit.

There it is seen that the P wave results do not change much between the different lattices
(except for the ETMC results), but the 2S — 1S and D wave energy differences vary a lot.
However, since the lattices and lattice spacings are different, the results should only agree
in the continuum limit. A set of similar lattices with different lattice spacings would be
needed to check this.

3.4 Interpolation to the b quark mass

Until now we have measured the two-point correlators on the lattice, and extracted the
energies of several excited states of the static-light mesons. However, if we want to
compare the lattice results to actual experimental results, we should try to predict where
the B, meson excited states lie. To obtain the predictions we can interpolate in 1/my,
where mg is the heavy quark mass, between the static-light lattice calculations and D;
meson experimental results, i.e. interpolate between the static quark (mg = co) and the

charm quark (mg = m.). We should, of course, go to the continuum limit before doing
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Figure 3.18: (Colour online) Interpolation to the b quark mass. The ratio m./my is
taken to be 0.30(2) (from [5]; shown by the vertical band). The D, meson experimental
results are from [5] (blue circles), and the By meson experimental results are from [5] (blue
circles) and [11, 12, 10] (green triangles). Our results (using “DF3hyp” configurations)

are marked with red squares.
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this, but due to the lack of suitable lattice configurations we have to settle for the fixed a
results. We thus use the “DF3hyp” results for the static-light energies, as it is our most
elaborate treatment of the system, and the light quark mass is close to the strange quark
mass.

When doing the interpolation we have to assume that the measured D, meson states are
simple Qg states, like our lattice states are (except for the contribution from the dynamical
fermions). This is not necessarily true: for example the mass of the D*;(2317,0") is much
lower than what is predicted by conventional potential models, and it has thus been
proposed that it could be either a four quark state, a DK molecule or a D7 atom. This
topic has been discussed a lot, and a short review on meson excited state spectroscopy and
the puzzles in interpreting the results is given for example in Ref. [38]. However, in [39]
Lee and Lee suggested that the inclusion of chiral radiative corrections could change the
potential model predictions considerably. In the following we assume that the states are
the usual Qg states.

As explained in [4] we use linear interpolation, i.e.

m Me

AE=A+B

£+ CF;
mq mq

(3.18)

The coefficient F; = 2[J(J + 1) — j,(jg + 1) — sq(sg + 1)], where J is the total angular
momentum, s = 1/2 is the heavy quark spin and j, is the combined spin and orbital
angular momentum L of the light quark (see Table 3.3). (At the beginning of Section 3.1,
the notation j = j, was used.) Constants A, B and C are fixed by fitting three data
points, for example the P_ lattice result (this fixes A, as m./mg = 0) and the two lowest
D, meson P wave states 07 and 17 (experimental results). The interpolation procedure
is shown in Fig. 3.18. It should be noted that this linear interpolation works perfectly
for the 1= S wave state, where the experimental energies are known for both B, and D,
mesons. The lattice result for this state is zero, because the two 1S states (J£ =07, 17)
are automatically degenerate at mg = oo. Note that we have to subtract the energy of
the lowest S wave state (07), as we have the unknown self energy in the lattice results.

Our predictions of the energy differences m(1P) —m(1S) for the By meson are given in
Table 3.4. For our preferred lattice “DF3hyp” these agree very well with the experimental
measurements of the energies of the 1T and 27 P wave states. Also we predict that the
two lowest P wave states (07, 17) lie a few MeV below the BK and B*K thresholds
(minus the 1S state energy) at 406 and 452 MeV respectively. We show the “DF3sum6”
results for comparison.

To compare with other lattice calculations, we can plot the heavy-light meson lattice

results as a function of 1/m¢. In Fig. 3.19 we show the P wave and 28 lattice results from
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cited states relative to the ground state (J¥ = 07) heavy-light meson with a heavy quark
of mass mg and light quark which is strange (i.e. Q5 mesons). For clarity we have dis-
placed some of the numbers on the z axis. The graph should be viewed as three clumps
of numbers with heavy quarks at static, bottom (Bs) and charm (Dy).
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Table 3.3: Coefficients F; = 2[J(J + 1) — j,(j, + 1) — sg(sg + 1)] (equation (3.18)).

7 L K| L F[17 L F]
ot 0 -3fot 1 —3[1t 1 -5
F 0 411t 1 412t 1 43

Jr DF3hyp DF3sum6 experiments
0" || 393£9 MeV | 384410 MeV -
17 || 44049 MeV | 432 £ 10 MeV -
1% || 466 &= 25 MeV | 538 &£ 21 MeV | 463 £ 1 MeV
27 || 482 425 MeV | 551 421 MeV | 473 & 1 MeV

Table 3.4: Our predictions for Bs meson mass differences, m(B?})-m(B;), for the P wave
states. The uncertainty in the ratio m./m; is not taken into account in the error estimates.

The experimental results are from [10, 11, 12].

various studies: At m./mg = 0 we have the static heavy quark results, at m./mg ~ 0.3
the heavy quark is close to a b quark (B, meson) and at m./m¢g = 1 the heavy quark
is a ¢ quark (D, meson). This Figure can be compared with Fig. 3.18, where we use
experimental results to do the extrapolation. The experimental results for the two lowest P
wave state of the Dy meson are m(07)—m(07) = 349 MeV and m(17)—m(07) = 491 MeV,
whereas the mg ~ m, lattice calculations give results in the range 375-575 MeV for
m(0T) —m(07).

Higher excitations can be extrapolated to mg = my in the same way as the P wave
states, if the energies of the corresponding D, meson states are known from experiments.
There is some experimental input available, as BaBar and Belle observed two new states,
D?,(2860) and D?;(2700), in 2006 [7, 8, 9]. Unfortunately it is not clear what the quantum
numbers of these states are. The D?;(2860) quantum numbers can be J” = 0%, 17, 2%,
etc., so it could be a radial excitation of the D?(2317) or a JF = 3~ D wave state.
The first interpretation is rather popular, but our lattice results favor the D wave JZ =
3~ assignment in agreement with Colangelo, De Fazio and Nicotri [46]. If this latter
assignment is assumed, the interpolation predicts the energy difference of the 3= D wave
B; meson state and the S wave ground state to be 932(18) MeV (see Fig. 3.20). Assigning
the D?;(2860) as a radial excitation of the D%,(2317) does not seem as natural, as the slope
of the interpolating line would be very steep. The second one of the measured excited
states, the D*;(2700), could be a radially excited S wave state or a D wave JF = 1~ state.

If we assume the latter identification, then a D wave J© = 1~ B, meson state is predicted
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Figure 3.20: (Colour online) Interpolation to the b quark mass for the “DF3hyp” lattice:
higher excited states. The lines illustrate what the interpolation would look like, assuming
the D; meson states were D wave states. The experimental results are from [7, 8, 9].
Interpolating to m./my predicts D wave JI = 17, 37 at 817(31) and 932(18) MeV

respectively.
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Figure 3.21: (Colour online) Mass differences Amsgy = ms —my for the “DF3hyp” data in
lattice units. This seems to be essentially constant for angular momentum L> 1 (given
the sizeable errors on the data). The lines give the Amg, = 0.234(46) that is used in this
study. Looking at the “DF3sum6” data gives a very similar picture (not shown here) and
an estimate of Amgy = 0.207(54). See section 3.5 for details.

to lie 817(31) MeV above the 18 state (also shown in Fig. 3.20).

3.5 Bayesian inspired analysis

All energies are extracted using the fit in Eq. (3.14). We would like to use 3 exponentials
to fit the Cy data to ensure the ground state and first excited state energies are not
polluted by the higher excited states. However, using 3 exponentials requires many fit
parameters, and the fits do not work very well in all cases. This is especially a problem
for some D and F wave states with those lattice configurations, where the signal is not
strong enough. Using only 2 exponentials in the fit would of course be one option, but
one can keep the third exponential by introducing some Bayesian ideas and using prior
knowledge of the energies to constrain the fit. Restricting the third energy in the fit to
a certain range guides the fit in the right direction and makes the fit more stable. This
improvement in the data analysis is introduced in [4].

The third mass, ms, would be the mass of the second radial excitation, if there was no

pollution from higher states. If the 3 exponential fit is unstable, we restrict the ms to be
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nLy | m3 3 exp M3, prior mgs Bayes my 3 exp ms Bayes
P 1.46(2) 1.52(6) 1.471(15) 1.28(3) 1.29(3)
D_ 1.63(5) 1.74(6) 1.67(4) 1.51(3) 1.52(2)
D, 1.84(12) 1.79(5) 1.80(2) 1.559(11) 1.558(8)
F._| 1.96(43) 1.89(5) 1.89(1) 1.66(2) 1.657(5)

Table 3.5: Comparison of the mg iy With the results from the full 3 exponential fit and
the Bayesian fit for “DF3hyp” configurations. See Section 3.5 for definition of ms prior-
Here “mg 3 exp” and “mg Bayes” are the results of a full 3 exponential fit and a Bayesian
(fixed mss) fit, respectively — likewise for the my. The P, “Bayes” fit is merely to check

that the Bayesian ideas work well and does not restrict the analysis too much.

nLy | m3 3 exp M3, prior mgs Bayes my 3 exp ms Bayes
Py 1.59(2) 1.61(5) 1.59(2) 1.39(2) 1.393(15)
D_ 1.80(9) 1.79(5) 1.79(3) 1.578(11) 1.577(8)
D, 2.1(2) 1.82(5) 1.84(2) 1.604(12) 1.596(11)
F,_ 2.6(9) 1.94(6) 1.950(11) 1.72(2) 1.721(8)

Table 3.6: Comparison of the mg iy With the results from the full 3 exponential fit and
the Bayesian fit for “DF3sum6” configurations. Again, the prior ms values are in fairly
good agreement with the mg results from the full 3 exponential fits. Fixing ms —ms does

not change the first excited state mgy. See Table 3.5 for notation.
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in the range ms, prior = AMg, prior by adding a term

(m3 - Tn‘37 prior)2

3.19
(AmS, prior)2 ( )

to the x2. Unlike fixing ms to a given value, this is not a very strict constraint, since it only
softly limits the parameter to a given range. The values of mg, prior and Amg prior have
to be determined beforehand. We choose to determine these prior values by estimating
the difference Amsy = m3 — msy from full 3 exponential fits. This mass difference seems
to be almost constant for states that have L = 1 or higher, as can be seen in Fig. 3.21.
Therefore we use the P_ state to set the Amg, for D wave and F wave states. The mg, prior
for D wave and F-wave states is then calculated by adding Ams, to the ms from the full
3 exponential fit for the state in question (see Tables 3.5, 3.6). The prior mg values are
in fairly good agreement with the mg results from the full 3 exponential fits, and fixing
mg — ms does not change the first excited state mo. The P, “Bayes” fit are used to check

that the Bayesian ideas work well and does not restrict the analysis too much.

3.6 Spin-orbit splitting

The spin-orbit splitting, E(Ly) — E(L_), and the order of the states in a spin multiplet
are of great interest, as that can tell us something about the interaction between quarks.
In a Coulombic spectrum the L, state lies higher than the L_, whereas the multiplets
should become more and more inverted as L increases if a pure scalar confining potential
is present [47, 48]. Experimentally this inversion is not seen for P wave mesons, and
lattice measurements are now used to study whether the inversion could be seen in the D
wave multiplet.

We extract this energy difference of the 1P, and 1P_ states in two different ways:

1. Indirectly by simply calculating the difference using the energies given by the fits in
Eq. (3.14), when the P, and P_ data are fitted separately.

2. Combining the P, and P_ data and fitting the ratio C2(P..)/Cq(P_), which enables
us to go directly for the spin-orbit splitting, m(1P;) — m(1P_).

In the latter case, the expression (for a given fuzzing) is

C2 (P+) A —Am1 T 1 + b;r e_Am; r + b; e_Am; r
= Ae€

- — |, 3.20
CQ (P,) 1+ b2* e—Amy T + b; e—Amy T ( )
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where

Amy =m(1P,) —m(1P_),
Amf = m(2P,) — m(1P,),
Amy =m(2P_) —m(1P_),
Amg =m(3P;) — m(1P,) and
Amz =m(3P_) — m(1P_)

We get the best results by fitting the energy differences Amy, Am3, Am; and the coeffi-
cients A, b and by, but fixing the Amd, Ams and the corresponding coefficients b3, by
from the individual two-point correlator fits (equation (3.14)). Thus

p = @n(Peas s (Py) ag,g, (P-)as,z,(P-)
ar,g, (Pi)ay g (Py) ar,f, (P-)ay,z,(P-)

for given values of fuzzing indices f1, fo. The D wave spin-orbit splitting is also extracted

(3.21)

and by =

in a similar manner.

Our most detailed study of the spin-orbit splitting is done with the dynamical lattices
“DF3”, “DF4” and “DF5”. The results of the fits are given in Tables 3.7, 3.8 and in
Figs. 3.22-3.27 (from [4]). One interesting point to note here is that the spin-orbit splitting
of the P wave states is small, almost zero, for the preferred “hyp” smearing. The smearing
affects the results a lot, as the P wave SOS is clearly positive and non-zero for “plain”
and “sum6”. This could be due to different O(a) effects. In all cases the errors on the
direct estimates are much smaller than those on the indirect ones. Also in most cases
the direct and indirect estimates are consistent with each other — the only exception
being the P wave “sum6” estimates. There the direct value is somewhat lower than the
indirect estimate and thus lending support to the most elaborate “hyp” estimate. The D
wave spin-orbit splitting (SOS) results are more varied, but the “DF3hyp” lattice suggests
clearly a positive, non-zero D wave SOS. However, the “DF4hyp” and “DF5hyp” estimates
are considerably smaller, becoming negative for the “DF4hyp”. At present it is not clear
whether this is a lattice artifact due to, say, not being in the continuum limit, or that
indeed the D wave results are more dependent on m, than in the P wave case.

In contrast to our results, another lattice group finds the P wave SOS to be positive
(about 35 MeV) and the D wave SOS to be slightly negative (see [36, 37]). This suggests
that there is a scalar linear rising potential present, as they seem to observe the famous
inversion [47, 48]. However, the European Twisted Mass Collaboration finds the P wave
SOS to be negative and the D wave SOS to be small [34]. One clearly needs to go to the

continuum limit before any definite conclusions can be made.
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Figure 3.22: (Colour online) The Spin-Orbit splittings of P wave states for the “DF3”

lattice.

In [39] Lee and Lee suggest that the absence of spin-orbit inversions can be explained by
chiral radiative corrections in the potential model. Small spin-orbit splittings throughout
the meson spectrum could be explained by a relativistic symmetry in the Dirac Hamilto-
nian discussed in [49]. This would indicate that there is a vector linear rising potential

that is comparable in strength to the usual scalar linear rising potential.
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Figure 3.23: (Colour online) The Spin-Orbit splittings of P wave states for the “DF4”
lattice.
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Figure 3.24: (Colour online) The Spin-Orbit splittings of P wave states for the “DF5”
lattice.
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Figure 3.25: (Colour online) The Spin-Orbit splittings of D wave states for the “DF3”

lattice.
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Figure 3.26: (Colour online) The Spin-Orbit splittings of D wave states for the “DF4”
lattice.
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Table 3.7: P wave spin-orbit splitting r0AE = ro[m(1P,)
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online) The Spin-Orbit splittings of D wave states for the “DF5”

Lattice ‘ Direct ‘ Indir. ‘
DF3plain | 0.26(4) | 0.41(12)
DF3sum6 | 0.15(4) | 0.32(9)
DF3hyp | 0.00(4) | 0.00(11)
DF4plain | 0.69(4) | 0.75(14)
DF4sum6 | 0.07(5) | 0.27(12)
DF4hyp | 0.03(5) | -0.06(17)
DF5plain | 0.50(6) | 0.7(2)
DF5sum6 | 0.13(6) | 0.40(16)
DF5hyp | 0.07(7) | 0.0(2)

lattices. To get AFE in GeV requires a factor 0.38(2).
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Lattice ‘ Direct ‘ Indir. ‘
DF3plain | 0.13(9) | 0.1(3
DF3sum6 | 0.13(3)
DF3hyp | 0.28(5) | 0.27(14)
(9)
(6)

DF4plain | 0.64
DF4sum6 | 0.17(6
DF4hyp -0.18(7) 0.2(4
DF5plain | 0.20(10)
DF5sum6 | 0.43(5)
DF5hyp | 0.12(6) | 0.1(5

Table 3.8: D wave spin-orbit splitting reAE = ro[m(1D;) — m(1D_)] for the different
lattices. To get AE in GeV requires a factor 0.38(2).
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Chapter 4

Radial distributions

4.1 Three-point correlation functions

In addition to the energies of the heavy-light meson states, we can also measure radial
distributions on the lattice by adding a probe at distance R from the heavy quark. Two
of our publications, [1] and [2], concentrate on these measurements.

We define the three-point correlation function as
C3(R,T) = (TTU°TG10(R)G ). (4.1)

We have now two light anti-quark propagators, G, and Gy, and O(R) is the probe —
see also Fig. 4.1. We have used two probes: -, for the vector (charge) and 1 for the scalar
(matter) distribution. U% is the heavy quark propagator and I' gives the spin structure

of the state, as in the two-point correlator in Eq. (3.2).

(X7 tl)
r
r Gy
U?R e
rls” Ce
(X> _t2)

Figure 4.1: Three-point correlation function Cj.
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Figure 4.2: (Colour online) S wave ground state vector and scalar radial distributions
' (R) and discretized exponential fits using “DF2plain” configurations. Here lattice

units are used (a ~ 0.15 fm).
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Figure 4.3: (Colour online) P_ ground state vector and scalar radial distributions z'!(R)
and discretized exponential fits using “DF2plain” configurations. Here lattice units are

used (a =~ 0.15 fm). The sign of the matter distribution is changed for clarity.
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Figure 4.4: (Colour online) S wave ground state radial distributions #''(R). The quenched
results (here scaled) are from [1] and the dynamical results are from [2]. The R is in lattice

units (R/a) and a &~ 0.15 fm. The lines are discretized exponential fits as in Fig. 4.2.
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Figure 4.5: (Colour online) S wave ground state vector and scalar radial distributions
R%*zM(R) from the “DF2plain” lattice. The solid lines are from a model (based on a
one-body Dirac equation with a standard one-gluon exchange and confining potential —
see Chapter 5) that is solved numerically. R is given in lattice units (a & 0.15 fm). Here

the sign of the matter distribution has been changed for clarity.
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Figure 4.6: (Colour online) P_ ground state vector and scalar radial distributions
R%*z"(R) from the “DF2plain” lattice. The solid lines are from a model (based on a
one-body Dirac equation with a standard one-gluon exchange and confining potential —
see Chapter 5) that is solved numerically. R is given in lattice units (a ~ 0.15 fm). The

sign of the matter distribution changed for clarity.
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Figure 4.7: (Colour online) S wave radial distributions 2*2(R)/2'(R) containing the first
radially excited state using “DF2plain” configurations (Refs. [1, 2]). R is in lattice units
(a ~0.15 fm).
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Figure 4.8: (Colour online) P_ radial distributions z'2(R) containing the first radially
excited state using “DF2plain” configurations R is in lattice units (a a 0.15 fm). The

sign of the matter distribution changed for clarity.

The radial distributions, £ (R)’s, are then extracted by fitting the C3 with

Nmax
C3(R,T) = Z cie’mi“:pij(R)e*mﬂzcj. (4.2)
ij=1
Here T = t; + t, and the m;’s and ¢;’s are from the best fit to Cy (Eq. (3.14)). Here 2!t
is the ground state distribution and z'2, for example, is the overlap between the ground
state and the first excited state. The results are shown in Figs. 4.2 —4.15. These radial
distributions as well as the energy differences can be treated as “experimental data” that
needs understanding.

Figs. 4.2 — 4.8 compare the vector (charge) distribution with the scalar (matter) dis-
tribution. The S wave ground state matter distribution seems to drop off faster than the
charge distribution (Fig. 4.2). However, at R = 0 the vector and scalar distributions are
roughly equal, for both the S wave and the P wave ground state respectively. Note that
the P wave matter distribution changes its sign (Fig. 4.3).! (Hence the logarithmic scale in
the S wave plot but a linear scale in the P wave plot.) Now that we have the distributions,
we would like to parametrize them, as the parametrized distributions would be easy to use
in theoretical considerations and models. The solid lines in Figs. 4.2, 4.3 are discretized

exponential fits to the “DF2plain” lattice data: we assume the radial distribution to be

IThese general features have a natural explanation in terms of Dirac equation wave functions — see
Chapter 5
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of a simple form, say, an exponential a® exp[—r/rF], and see how well that fits the data.
However, it is seen that the data is not smooth, but discretization (lattice) is easily seen
in the distribution. Hence we prefer to use a discretized form of the exponential. It can
be obtained by simply replacing in the usual Fourier transform the ¢? factors by their

lattice equivalent % S°7_ sin®(ag;/2). This results in

77"/1"LE COS Ir- q 4
[e ]LE TLELSZ [D + (a/rME)2 /4% (4.3)

where D = 37 sin®(ag;/2). Using two exponentials in the fit, i.e.
3(r) &~ ¢ e’T/”LE] 4.4
G~ 3 e (4.4)
we get ranges ri®/a = 1.37(6), ri¥/a = 0.116(15) for the charge distribution and
ri¥/a = 0.938(39), rI¥/a = 0.099(11) for the matter distribution (here lattice spacing
a = 0.15 fm). See [2] for more details.

Seeing that we have two light quark propagators (G and Gy in Eq. 4.1) and two
propagator-like terms D + (a/r"¥)%/4 in Eq. 4.3, the exponential could be interpreted
as a product of two non-interacting quark propagators, when viewed from the t-channel.
If the momentum of the probe is divided equally between the propagators, then the
appropriate momentum transfer in each propagator becomes ¢/2. If we now go to the
continuum limit, the terms D + (a/r“F)?/4 give the masses of the propagating particles
as 1/(2rLE). In the case of the charge (vector) distribution the lowest mass would thus be
about 0.48 GeV. Therefore, one interpretation would be that the constituent quark mass
is about 480 MeV, leading — in a naive description where the meson consist of two non-
interacting quarks — to a vector meson mass Myector ~ 0.96 GeV. Similarly the matter
(scalar) distribution would predict a scalar meson of mass mgeaar &~ 1.4 GeV. These vector
and scalar meson masses have also been measured directly on the same lattice “DF2plain”
by the UKQCD Collaboration. Their results are amyector = 0.7852 (from [28]), which is
~ 1.05 GeV in physical units, and amgearar = 1.18(8) (from [50]), ~ 1.55 GeV in physical
units. The two ways of extracting the masses give consistent results. Unfortunately, it is
not straightforward to identify the above particles and their masses directly with physical
particles, since our light quarks are degenerate u, d quarks with a mass m,; ~ m;. In
addition, we do not include contributions from disconnected correlators in our lattice
measurements. Fortunately the latter has been shown in Ref. [51] to be only a small effect
for vector mesons. Since the light quark mass used in our calculations is approximately
the strange quark mass, the closest equivalent in nature would be the ¢(1020) vector

meson.
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Charge Matter
Form (F) LE LY LG LE LYt LG
ch 0.0245(21) | 0.066(3) | 0.0075(7) || 0.0345(26) | 0.186(23) | 0.0101(16)
ry 1.37(6) 1.78(7) | 3.07(12) || 0.938(39) | 0.92(6) 2.14(11)
cF 0.373" -0.060* | 0.019(4) 0.561* —0.207* | 0.034(10)
r¥ 0.116(15) | 1.12(11) | 0.99(15) | 0.099(11) | 0.71(12) | 0.70(12)
X2/ Mot 0.81 0.94 0.93 1.16 1.11 1.00

Table 4.1: Fits to the S wave radial distributions from the “DF2plain” lattice with dis-
cretized exponential (LE), Yukawa (LY) and Gaussian (LG) forms. Two exponentials (or
Yukawa or Gaussian functions) are used in the fit. The entries marked with an asterisk
are fixed in the minimization. In LY the R = 0 data point is not fitted. The values are

given in lattice units (i.e. r/a, with lattice spacing a ~ 0.15 fm).

In addition to exponentials, discretized Gaussian,

LG 3
= ) S eosr- ) (4.
and Yukawa,
-/ cos(r - q)
4.6
[ r ]LY aL3ZD+ (a/rtY)2 /47 (46)

forms do also give good fits to the data. The values of the fit parameters are given in
Table 4.1, and more details can be found in Ref. [2].

only in the S wave case and tested in the P_ case.

This simple approach was used
The discretized exponential fit to
= 0.147, r§¥/a = 0.726, CLE = —0.178
= —0.025,

P_ charge data in Fig. 4.3 uses the values ¢f¥ =
and r+E/a = 0.454. The parameters for the corresponding matter fit are c§
r§B/a = 1.234, & = 0.062 and r+F/a = 0.686. See [2] for more details.

In Fig. 4.4 the S wave radial distributions from a quenched lattice (“Q3”, here scaled)
are compared with the same distributions from the “DF2plain” lattice. It is seen that
in this particular case the effect of the dynamical fermions is negligible. The same
“DF2plain” distributions are shown in Figs. 4.5 and 4.6, but now multiplied by R2.
This shows where the peaks are: the peak is expected to move further away from the
heavy quark, as we move from the S wave ground state to higher angular momentum
states. The solid lines are from our model based on one-body Dirac equation — see
Chapter 5. In Figs. 4.7 and 4.8 the charge and matter first excited state distributions are
compared. As expected, a node is clearly seen in these excited state distributions. The

radial distributions shown in Figs. 4.2 — 4.8 are for “DF2plain”.
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Figure 4.9: (Colour online) Radial distributions: S wave ground state R*z''(R).
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Figure 4.10: (Colour online) Radial distributions: S wave 1st excited state R%z'?(R).
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Figure 4.11: (Colour online) Radial distributions: S wave 2nd excited state R%z'3(R).

Figure 4.12: (Colour online) Radial distributions: P wave ground state R?z''(R).
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Figure 4.13: (Colour online) Radial distributions: P wave ground state R%*z''(R).
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Figure 4.14: (Colour online) Radial distributions: D wave ground state R?z''(R).
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Figure 4.15: (Colour online) Radial distributions: D wave ground state R*z''(R).

Results for the charge distribution from different lattices and with different smearings
are compared in Figs. 4.9 — 4.15. The S wave radial distributions do not change much, as
the light quark mass changes from m, =~ m, to m,; ~ 0.3m,, as can be seen in Figs. 4.9,
4.10 and 4.11. Fig. 4.9 shows the ground state, and Figs. 4.10 and 4.11 show the first
and second radial excitations. Again the node of the first radial excitation is clearly seen,
and in Fig. 4.11 we see a hint of two nodes, as expected for the second radial excitation.
These results have been published only in conference reports [52, 53, 54].

Figs. 4.12 and 4.13 show the P wave charge distribution for our preferred lattice “DF3”.
In Fig. 4.12 it can be seen that the peak of the P_ distribution is closer to the heavy quark
than the peak of the P, distribution. In Fig. 4.13 we check how much smearing in the
time direction affects the distribution. For the P, ground state the “sum6” smearing gives
smaller errors than the “plain” configurations for some R values (mostly around the peak),
whereas for higher R the results with “plain” configurations can actually have slightly
smaller errors than the “sum6” results. Overall the “sum6” distribution is smoother than
the “plain” one.

As the D wave radial distributions are more difficult to extract than the S wave and
P wave distribution, we use our smeared lattices to get as strong signal as possible. The
results are shown in Figs. 4.14 and 4.15. The “sum6” and “hyp” smearings give the same
results, i.e. we do not seem to benefit here from using the more elaborate “hyp” smearing.
We are able to extract the distribution of the D_ state, but the D, signal is too weak —
we get either zero or some signal with very large errors. In Figs. 4.9 — 4.15 the solid lines

are predictions from the model in Chapter 5.
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Figure 4.16: Radial distributions as wave functions: the separable form from Eq. 4.7 and
comparison with Bethe-Salpeter wave functions (from [27]). R is given in lattice units
(a ~ 0.15 fm).
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In [2] also a separable fit is tried, i.e. assuming
2*(R) = ya(R)ys(R) (4.7)

in Eq. (4.2). If the distributions 2*?(R) were to be interpreted in terms of wave functions
Yo as 2%%(R) = 1103, the separable form arises naturally. Then y; would be the ground
state wave function and y, would be the wave function of the first radial excitation.
However, such an interpretation can only have phenomenological justification. This seems
to work for S wave distributions using lattices “Q3” and “DF2plain”, but a reasonable
fit can not be found for distributions from better lattices (e.g. “DF3”) or higher excited
states (P wave, D wave).

In Fig. 4.16 we compare the separable fits for “DF2plain” and Bethe-Salpeter wave
functions from Ref. [27]. The Bethe-Salpeter wave functions were extracted by fitting the
ground state contribution [assumed to be of the form w,(R1)ws(R2) exp (—m,T')] to the
hadronic correlator Cy oq(R1, R, T'). Here m, is the mass (energy) of the state and the
sink and source operators are of spatial size Ry and Ry. The correlations are measured
for a range of spatial extents R of the lattice operators used to create and destroy the
meson (Eq. 3.1). The w, from [27] have been normalized here so that the wave functions
are equal at R = 0, i.e. wa(0) = y,(0). These two types of wave function do bear some
similarities, but it should be noted that there are several reasons why they should not
agree in detail with each other. Firstly, the [w,(R)]*> can not be identified as a charge
(vector) or matter (scalar) distribution. Secondly, the Bethe-Salpeter wave functions are
not independent of the operator, i.e. they depend on the path choices. Also the w,
were measured using a quenched lattice, whereas the “DF2plain” lattice that was used to

measure the y, is unquenched. More details can be found in [2].

4.2 Sum rules

In addition to measuring the three-point correlation function C3(R,T') for various values
of R, the correlation where R is summed over the whole lattice is also obtained. This
leads to the charge (or matter) sum rule as discussed in Ref. [1]. The actual values of this
sum rule, CCgR, are extracted using

Numax
C3(T) ~ Z cie Mgl et ey (4.8)
ig=1
where the 2/ are now independent of R. Otherwise this is the same fit as in Eq. (4.2). The

result for the charge ground state sum rule, 24k, should be unity after the lattice vertex
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Figure 4.17: (Colour online) Sum rules for the “DF3” lattice.

correction (Zy) is included. Here Zy = 0.7731(10) is used [55] — the value appropriate
for this particular lattice. The outcome is shown in Fig. 4.17. The measured sum rule is
consistent with unity only for the S wave state, the P state on the “DF3plain” lattice and
the Dy on the “DF3hyp” lattice. The sum rule tends to be somewhat smaller than unity
for the states with higher orbital angular momentum. Possible reasons for this could be
due to the fact we are too far from the continuum limit or that the numerical signals for
the contributions from large R configurations are simply too poor. However, the mgg with
« # [3 are, in general, much smaller than the main charge sum rules 2} — in many cases
the off-diagonal elements are consistent with zero, as expected in the continuum limit.
Some examples from 3 exponential fits using the “DF3” lattice (different smearings):
z§h = —0.16(10) for the S wave state, 0.4(3) for P_, —0.05(9) for P, —0.06(11) for D_
and —0.03(9) for D, (lattice vertex correction included). The interpretation of x2% is less
clear (see [2, 53]).

Since we have extracted the radial distributions, we can also calculate the sum rule
indirectly, i.e. add up explicitly all lattice measurements, say x'!(x,y,z) (the 2¥(R)
from Eq. 4.2), with the proper weighting factors f(x,y,z) up to some chosen R = 7yax
(R= \/m is the distance from the heavy quark):

Tmax

vl = a(x,y, 2) f(x,y, 2). (4.9)

T,Y,2
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This can then be compared with the direct sum rule estimates from Eq. 4.8. We show
this comparison for the “DF3plain” S wave and P wave ground states in Figs. 4.18, 4.19
and 4.20. As we can only extract the radial distributions up to a certain R (depending
on the size of the lattice and the strength of the signal), the indirect estimate falls short
of the direct sum rule. For example for the “DF3plain” S wave distribution the indirect
charge sum rule is 0.80(1) (up to R = 6a ~ 0.66 fm) compared with the direct estimate of
1.02(7). Therefore we try to estimate the contribution of the missing tail to the indirect
sum rule by adding an exponential, Yukawa or Gaussian tail to the radial distribution. We
match the tail to the distribution at (x,y,z)=(4,4,2) (R=6) — the largest value of R where
we can measure the distribution reliably — and integrate over the tail. The total indirect
sum rule becomes 0.97(4) with the exponential tail and 0.91(3) with the Gaussian tail —
much closer to the direct estimate. The tail contributions can be estimated in the same
way for higher excited states. Our results are given in Table 4.2. The study presented
here is only exploratory.

Calculating the indirect sum rule may not seem to be very useful. However, it serves
two purposes. Firstly, the observation that the direct and indirect sum rules (with tails)
agree within errors is a consistency check. Secondly, the fact that — for higher partial
waves — both the direct and indirect sum rules tend to be less than unity shows that
contributions are being underestimated for some values of R. A comparison with the
radial distributions predicted by the Dirac equation indeed suggest that for large R the
P, and D_ lattice distributions appear to be smaller than expected from an understanding
in terms of the Dirac equation (see Fig. 4.12 and Chapter 5).

The previous paragraphs have dealt with the charge sum rule, where the operator ©
in Eqgs. 4.1, 4.8 is 4 for probing the charge distribution. We now look at the matter sum
rule with © = 1. The matter sum rule can be estimated by employing data from different
hopping parameters £ and using the identity [56, 57]

11 o dml
'rSR, matter —

- (4.10)
where m; is the ground state energy and m, the valence quark mass. Using the values of
my:s from Ref. [27] where the light quark is of about one and two strange quark masses
to estimate the value of Eq. 4.10 give 0.62(14). Our results from the “DF2plain” lattice
(from [2]) vary in the range 0.66-1.1 (not including the lattice vertex correction). There
are indications that the vertex correction could be sizeable — from ~ 0.5 (Ref. [58]) to
~ 0.8 (Ref. [59]). The fact that 28y e < 1 can be understood in terms of a potential

approach using the Dirac equation (see Chapter 5).
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Figure 4.18: (Colour online) Indirect sum rule for the “DF3plain” S wave without the tail
correction to include contributions beyond R = 6a. The horizontal lines show the direct

sum rule and its errors.

The conclusion to this Chapter is as follows: We have extracted the radial distributions
at fixed values of R, and fitted these results with discretized forms (Eqgs. (4.3)-(4.6)). The
parameters needed in these forms are then shown to be consistent with the corresponding
vector and scalar s§ mesons measured on the lattice and experiments [¢(1020)]. However,
an alternative R-dependent approach is to extract the radial distributions directly in the
form of some simple parametrization f(R) and not as above, at fixed values of R. These
forms could then be compared directly with the Dirac distributions (see Chapter 5). Also
these would lead to a consistent inclusion of distributions tails needed in the indirect sum

rule.
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Figure 4.19: (Colour online) Indirect sum rule for the “DF3plain” P_ wave without the
tail correction to include contributions beyond R = 6a. The horizontal lines show the

direct sum rule and its errors.
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Figure 4.20: (Colour online) Indirect sum rule for the “DF3plain” P, wave without the
tail correction to include contributions beyond R = 6a. The horizontal lines show the

direct sum rule and its errors.
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Direct sum rule S P_ P, D_ D,
DF3plain 1.02(7) | 0.84(10) | 0.86(20) - -
DF3sum6 — - 0.89(10) | 0.70(17) | 0.80(15)
DF3hyp - - - 0.75(9) | 1.00(18)

Indirect sum rule S P_ P, D_ D,
no tail 0.80(1) | 0.69(1) - - -
with exponential tail | 0.97(4) | 0.94(8) - - -

with Yukawa tail 0.88(5)

with Gaussian tail | 0.91(3)

Table 4.2: Direct and indirect charge sum rules for the lattice “DF3”. The indirect sum

rules are for “DF3plain”. The entries marked with a dash are not available.
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Chapter 5

Modelling

5.1 A model based on the Dirac equation

Since the mass of the heavy quark is infinite, the static-light system provides an excellent
testbed for modelling. For a potential description we have essentially a one-body problem.
Therefore we use a simple model based on the Dirac equation to try to describe the lattice
data (see [4]). The potential is not known, but we can try different potentials in the Dirac
equation, solve it numerically, fit the energy differences to the lattice data and see which
one of the potential choices gives the best fit. We can also use the radial distributions
from the lattice as input, or we can fit only lattice energies and use the resulting wave
functions as predictions that can be compared to the lattice radial distribution results.

We use the QQ potential, which is usually taken to be of the form
e
V=—-——=+4bR 5.1
<+ (5.1

(see e.g. [60]), as a starting point. We want to keep the potential fairly simple, but it has
to be also flexible to be able to describe the lattice data. Therefore we choose to include
a vector confining potential, b7, in addition to the usual linearly rising scalar potential,

bser, in our model. We also have a one gluon exchange term, apgg - Vogg, where

4ay(R
Voge = ~3 é ), (5.2)
with the running coupling constant a4(R) given by
au(R) = 2 /Oodk sin(kR) | (k) (5.3)
T Jo k
and
a(k2) = 227 ! . (5.4)

27 In[(k2 + 4m2)/(Adcp)]
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Here, guided by fits to various meson masses using the Blankenbecler—Sugar equation,
we fix Agep = 260 MeV and the dynamical gluon mass m, = 290 MeV (see [61] for
details). The potential also has a scalar term mwZL(L + 1), which seems to be needed
to increase the energy of D wave states. This type of term arises in flux tube models,
where a flux tube’s rotational energy is proportional to L(L + 1) (as in the Isgur—Paton
flux tube model, [62]). This potential is inserted into a one-body Dirac equation, which is
then solved numerically. The free parameters (e.g. the coefficients of the different terms)
in the potential are fixed by doing a least squares fit to the lattice results.

The lines in the energy spectrum plot (Fig. 5.1) show three Dirac model fits from
Table 5.1 with m = 560 MeV (the constituent quark mass, from [61]) and apgr = 1.00.
We have to fix apgr, as attempts to vary it (along with other parameters) easily lead to
instabilities. The solid line, labelled “fit 17, is a fit to three “DF3hyp” energy differences:
1P_ and 1D_ with respect to the ground state, and the P wave spin-orbit splitting (direct
estimate) SOS(1P) [i.e. E(1P,) — E(1P_)]. The fit to these energies is acceptable with
total x? = 1.83. However, as soon as a fourth state [e.g. SOS(D)] is added a good x*
can no longer be achieved. The dashed line, “fit 2", shows an attempt to fit “DF3hyp”
1P_, SOS(1P), 1D_ and SOS(1D). The x? is very poor, and letting aogr vary does not
help, only leading to unphysical values for the parameters. Using a different constituent
quark mass, say m = 490 MeV from [47, 48], gives basically the same fits (the changes
are minimal). “Fit 3” is a fit to “DF3sum6” 1P_, SOS(1P), 1D_ and SOS(1D), and
gives a much better x2 (x? = 2.1) than “fit 27. It is shown in the figure for comparison.
The fits to “DF3sum6” energies are also shown in Table 5.1. In Fig. 5.2 the same Dirac
model fits are shown as predictions for the excited states. Here it can be seen that the
fit is about 500 MeV lower than the lattice results, and the shift seems to be constant
for both lattices (“DF3sum6” and “DF3hyp”) for all states, except the 2S. There is no
obvious reason why the Dirac model should underestimate the first radial excitations by
a constant amount, but a term of the form 0.5(n —1) GeV could be included in the model
to improve the fit to excited states and be interpreted as a flux tube effect in the same
philosophy as the wL(L 4 1) term. However, as the fit to the ground state energies is not
good, this improvement is not pursued.

The earlier fits to “DF2plain” data shown in Figs. 4.5 and 4.6 are with a simple potential

(&
Vvector = 7?7 ‘/scalar =bR. (55)

Here e = 0.6 - fic, b = 1.27 MeV/fm and m = 100 MeV. The fits shown in Figs. 4.12 —
4.15 are also not the most recent ones: the fits do use the more sophisticated potential

described earlier in this Chapter, but the fit parameters m = 88 MeV, apoqrg = 0.81,
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bse = 1.14 GeV/fm, by = 1.12 GeV/fm and w = 0.028 have not been optimized to the
latest data. Even though these Dirac model fits are not perfect fits to the lattice energies
quantitatively, they have several good features. In particular the Dirac model wave func-
tions show qualitative agreement with the lattice distributions, and can reproduce their
general key features as follows. If the light quark is treated as a particle in a potential
generated by the heavy quark, as here, then its wave function will be of the form (F, G),
where F is the upper (usually large) and G is the lower (usually small) component of the

Dirac wave function. The charge density can then be expressed as

z&(R) = F*(R) + G*(R) (5.6)
and the matter density as
3 (R) = FA(R) — G*(R). (5.7)

This gives a natural explanation to the fact that the matter distribution drops off faster
than the charge distribution (Fig. 4.2), as |F(R)| > |G(R)| for small R, whereas |F(R)| ~
|G(R)| for large R (see Fig. 5.3). Note that the |G(R)| being much smaller than |F(R)|
for small R also means that z{} ~ x}} at R = 0, which is also seen in the lattice data.
Also the node in the P_ matter distribution in Fig. 4.3 is easy to understand in terms of
the Dirac wave functions, as the expression in Eq. 5.7 has a minus sign. For the P_ state
G is larger than F for small R, but as R increases G goes to zero and F'(R) > G(R) (see
Fig. 5.4). No node is seen in the P_ lattice charge distribution, as expected. In Fig. 5.5
the wave functions F’ and G for the P, state are shown for comparison. These Dirac wave
function plots are predictions from “fit 3” in Table 5.1, and are meant as examples.
The sum rules can also be expressed in terms of the Dirac wave functions The charge
of the ¢ is simply
k:m/wﬁ@%ﬁuﬂmL (5.8)

which by the normalisation used here will be unity. However, when the charge operator

(74) is replaced by the matter operator (unity), then the corresponding integral is
Iy =A4r /dRR2 [F*(R) — G*(R)]. (5.9)

In the non-relativistic limit I = Ij;, but as relativistic effects enter (i.e. G? increases
from zero), then Ip; becomes less than I, i.e. less than unity. This is clearly seen in
Section 4.2.
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Case bse byec w total x? Fit
DF3sum6

P_, SOS(1P) 1.168(2) 0.0 0.0 7.8

P_, SOS(1P) 0.86(13)  0.57(18) 0.0 0.0

P_, SOS(1P), D_ 0.372(14) 0.0  0.0916(14) 4.5

P_, SOS(1P), D_, SOS(1D) | 0.265(4) 0.571(13) 0.0696(11) 2.1 3
DF3hyp

P_, SOS(1P) 1.294(10) 0.0 0.0 0.54

P_, SOS(1P) 1.40(18)  -0.2(2) 0.0 0.00

P_, SOS(1P), D_ 0.763(9) 0.0  0.0554(9) 183 1
P_, SOS(1P), D_, SOS(1D) | 0.48(5)  0.26(2)  0.066(5) 343 2

Table 5.1: Dirac model fits for “DF3”. Here apgeg = 1.0 and constituent quark mass
m = 560 MeV. The by and by, are given in GeV/fm. Fits are attempted for “DF3sum6”
and “DF3hyp”. A “perfect” fit (2 fit parameters, 2 data points) can be found for P_
and the P wave spin-orbit splitting, if both scalar and vector linear potentials are used.
However, all P and D wave data [P_, SOS(1P), D_, SOS(1D)] can not be fitted using

the two linear rising potentials and adding a scalar term mwL(L + 1) still does not give

a good x2.
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Figure 5.1: (Colour online) Energy spectrum of the heavy-light meson and three Dirac
model fits. “Fit 1”7 is a fit to “DF3hyp” 1P_, SOS(1P) and 1D_, whereas “fit 2”7 is an
attempt to fit “DF3hyp” 1P_, SOS(1P), 1D_ and SOS(1D). “Fit 3” is a fit to “DF3sum6”
1P_, SOS(1P), 1D_ and SOS(1D) (see Table 5.1), and is shown here for comparison.
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Figure 5.2: (Colour online) Energies of the first radial excitations of the heavy-light meson

and the same Dirac model fits shown in Fig. 5.1.

wave function

Figure 5.3: (Colour online) Dirac wave functions F and G for the S wave ground state
from “fit 3” in Table 5.1. This is just an example what the Dirac wave functions look
like.
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Figure 5.4: (Colour online) Dirac wave functions F' and G for the P_ ground state from

“fit 3”7 in Table 5.1. This is just an example what the Dirac wave functions look like.
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Figure 5.5: (Colour online) Dirac wave functions F' and G for the P, ground state from

“fit 3” in Table 5.1. This is just an example what the Dirac wave functions look like.
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Chapter 6
Conclusions and outlook

In this thesis we have presented a study of the heavy-light meson energy spectrum and
radial distributions of the ground state and several excited states. The calculations were
done using lattice QCD, as computer simulations are the best tool available for such low
energy QCD systems.

The key results are the energies of the P wave states, the spin-orbit splittings and
the new radial distribution data. Firstly, we predict that the two lowest By meson P
wave states with J” = 07 and 17 are very near the BK threshold, indicating that these
resonances should be narrow. They have not been observed experimentally yet. The
extracted energies of the two higher P wave states, J© = 17 and 2%, are in agreement
with the experimental results, which demonstrates again that lattice QCD succeeds as an
effective tool in QCD studies. We are also able to extract the energies of several other
excited states, including D wave states and their radial excitations.

Secondly, we have paid a lot of attention to extract the P wave and D wave spin-orbit
splittings, i.e. m(Py) — m(P-) and m(D;) — m(D_). We get the P wave SOS to be
consistent with zero, whereas some other lattice groups get clearly positive or negative
results (see discussion in Section 3.6). Also the D wave SOS results differ: we get a
positive SOS, but for example the TrinLat group sees the famous inversion (i.e. SOS is
negative — namely the L_ state being higher in energy than the L, state). The spin-
orbit splittings can tell us a lot about the interaction between the quarks, as they are
rather sensitive to the confining potential. For example, the inversion is expected for
higher angular momentum states, if the potential has a scalar linearly rising potential
in addition to the 1/r-type one-gluon exchange term. On the other hand, if a linearly
rising vector confining potential is added, and if these two confining potentials (vector and

scalar) are similar in strength, then the spin-orbit splittings are expected to be very small
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throughout the energy spectrum. For example, the perturbative approach in Ref. [47]

would predict the spin-orbit term to be

1 (4da, 1
Hgo {

S —b-o-} x [L-8], (6.1)

- 5 -
mQ>mgq 2m(21 T

when one of the quarks is much heavier than the other. Here b, ¢ are the strengths of
the scalar and vector confining potentials respectively. We see that if ¢ ~ b, the contri-
butions from the two linear rising potentials cancel leaving only the one-gluon exchange
contribution. However, more precise lattice calculations are needed before any definitive
conclusions can be made.

Thirdly, we have extracted the radial distributions of the S wave state (ground state
and radial excitations) and some orbitally excited states (P wave and D wave). So there
is now an abundance of data that can be used for example in model building. A model
based on a one-body Dirac equation with one-gluon exchange and confining potentials
can reproduce the main features of the distributions at a qualitative level. More precise
calculations are needed, as well as a better parametrization of the data. A more refined
potential description can hopefully help in understanding the underlying interaction bet-
ter. However, it should be noted that the one-body Dirac equation model presented in
this thesis (with the potentials that were used here) is not good enough to describe the
entire lattice energy spectrum at a quantitative level. Therefore, one should be very care-
ful in using such simple potentials to describe the interaction between quarks in general.
Perhaps, a less ambitious view is to consider the Dirac equation approach as simply a con-
densed way of parametrizing the abundance of heavy-light meson data without expecting
a deeper understanding of the potentials needed.

We are still far away from the ultimate goal of understanding multi-quark systems and
potentials. The study of heavy-light mesons provides a good stepping stone, but the
calculations should be extended to three-quark and four-quark systems. A natural con-
tinuation to this heavy-light meson study would be, for example, measuring the energy
spectrum and the radial distribution of the light quark in a Q@Qq baryon (a baryon con-
sisting of two heavy quarks and one light quark) on a lattice. To our knowledge these
lattice measurements have not been done before, and the results could be used in mod-
elling baryon decay and scattering experiments. The closest equivalent in nature would
be the doubly-charmed =(cc) baryon (seen in some experiments at 3518.9 £ 0.9 MeV —

see [5]), unless a bbu, bbd or a bbs baryon is discovered in some future experiment.
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