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Abstract

We undertake a systematic investigation of U4(1) symmetry-breaking, C-,
P-, T-, and SUL(Ny) x SUp(Ny)-invariant effective fermion operators and
their consequences for pseudoscalar and scalar mesons. We construct four
types of such operators that exist for any number of flavours Ny > 2, two
of which can be identified with 't Hooft’s interaction and the quark self-
interaction leading to the Veneziano-Witten meson-interaction term. We iso-
late the U4(1) symmetry-breaking effect from the quark mass- and electro-
magnetic interaction-induced chiral symmetry-breaking effects and quantify it
as the deviation from zero of fgm%(l) = f:, mf}, + f2m2 — ff (m3, + mio) +
f2 (mfr+ - mfro), where mg, fs are the pseudoscalar ¢ meson mass and weak
decay decay constant, respectively. Then we use Dashen’s general formula to
evaluate the masses and the mixing angle of isoscalar pseudoscalar mesons
in the presence of the current quark masses and each one of these four types
of Ua(1) symmetry-breaking interactions. We find that both the ’t Hooft
and the Veneziano-Witten interaction push the sum of the 77/ and 7 masses
squared upward and the mixing angle to negative values, in accord with em-
pirical evidence. The other two types of U4(1) symmetry-breaking operators
do not influence the pseudoscalar meson spectrum to leading order in N¢, so
long as no new higher-order quark condensates are assumed. In an attempt
to determine which linear combination of the ’t Hooft and the Veneziano-
Witten operators is responsible for the observed U4(1) symmetry breaking,
we calculate the scalar meson masses in the three-flavor NJL model in the
presence of either of these two interactions. Presently available data do not
allow a definitive answer to that question, though they can be interpreted as
favouring the 't Hooft interaction.
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I. INTRODUCTION

The Ua(1l) problem [1,2] can be roughly stated as the lack of agreement between the
left- and right-hand side in the Up(3) x Ugr(3) symmetry mass relation mi, + m2 = 2mk.
Presently almost universally accepted solution postulates an explicit breaking of the Ua(1)
symmetry, believed to be induced by instantons in QCD, which raises the mass of the SU(3)
flavour-singlet and thus provides for the difference m? + m2 — 2m} ~ (855MeV)?%.

There is one significant exception to this universal faith: T. D. Lee has suggested that
a perturbative calculation based on the anomalous triangle graphs also solves the U(1)
problem [3]. This is a perfectly sound suggestion, but one that runs into certain technical
difficulties: (i) the diagram in question vanishes in the chiral limit (for implications of this
fact, see below); (ii) the same diagram is logarithmically divergent, thus requiring an infinite
renormalization with counterterms that are not a part of the QCD Lagrangian. These two
obstacles lead to a loss of predictive power. Therefore we shall not concern ourselves with
this option in the rest of this paper.

Although there have been many studies of instantons’ influence on the mass spectrum,
the mixing angle, and decay constants [4], possible CP-violation, etc. [53] in the pseudoscalar
nonet based directly on the divergence of the new anomalous axial baryon number cur-
rent that includes the “topological current” in QCD, there are, to this author’s knowledge,
no attempts in the literature at evaluating the U4(1) symmetry-breaking effects starting
from the 't Hooft-Kobayashi-Kondo-Maskawa (“’t Hooft”, for short) effective interaction
[6,7], with the exception of several calculations of the n' mass in effective quark models
[8-11]. Moreover, there are even fewer studies of an alternative (“Veneziano-Witten”) effec-
tive mechanism of U4(1) symmetry-breaking [12-14], but without indication as to if and how
this dilemma can be resolved. This absence of any systematic study of Us(1) symmetry-
breaking operators and their physical consequences stands in sharp contrast to the detailed
studies of the chiral SUL(3) x SUg(3) symmetry-breaking mechanisms conducted in the late
sixties and early seventies. Several symmetry-breaking models, going under the names of
(3,3) @ (3,3), or the Gell-Mann, Qakes and Renner (GMOR) model [15], the (8,1) & (8,1),
(6,6) @ (6,6) models, etc. have been examined and the GMOR model, equivalent in this
regard to QCD, was found to best fit the data [16-18].

In this paper we report our first steps in the direction of a systematic analysis of Ua(1)
symmetry-breaking effects among mesons. For pseudoscalar (ps) mesons this analysis is
based on Dashen’s current-algebraic formula relating the (would be) Goldstone meson mass
to the vacuum sigma term in the theory [16]. The latter is just the negative vacuum expec-
tation value of the double commutator of the relevant axial charge and the chiral symmetry-
breaking Hamiltonian density. We show that the 5, 7" masses obtained in this way from
the 't Hooft i nteraction coincide with those found in the Nambu-Jona-Lasinio (NJL) model
calculations [10]. It so happens, however, that another independent C-,P-, and T-conserving
Ua(l) symmetry-breaking operator exists, which also raises the sum of 7, 7 masses squared
and leads to the same negative mixing angle. Some indications have been given by Alkofer,
Nowak, Verbaarschot and Zahed, the first paper in Ref. [14], how such an operator might
arise from the instanton liquid approximation to QCD. One would like to know exactly to
what extent is either of these two interactions responsible for the observed U4(1) symmetry
breaking in Nature. Manifestly, no study of the pseudoscalar 7, " mesons’ masses alone can




resolve that issue. We offer a new test discriminating between the two interactions in effective
chiral quark models. Differences arise in the scalar mesons spectra between models with the
't Hooft- and the Alkofer-Nowak-Verbaarschot-Zahed-Veneziano-Witten (ANVZVW) Uy(1)
symmetry-breaking interaction: As shown in Refs. [10,11], the former interaction leads to
a mass shift within the scalar nonet that is identical in size, but opposite in sign to that
found in pseudoscalars, whereas the latter does not shift the scalar meson masses at all, as
we shall show below. One can find flavor-singlet scalar states in the Particle Data Group
tables that fit either model, though some of the states’ properties are not presently known.
On the basis of this limited evidence one could argue that there is some preference for the
’t Hooft model.

II. U4(1) SYMMETRY BREAKING EFFECTIVE OPERATORS
A. Classification of U4(1) symmetry-breaking operators

There are at least four C-, P-, T-, and SUL(Ny) x SUr(Ny) invariant, Us(1) symmetry-
breaking effective fermion (quark) interactions for any N; > 2,

LG = (S32) [dety (B +75)9) + dety (91 = 10)8)] (1a)
) = (e [aes (901 42218) - dets (50 = 2000)] (1)
0 = (53] [dety (901 +36)9) + dety (Yol = 1)9)] (o)
£ (;‘—-—) ety (o1 4 260) = dety (o= o) . (1

where, for example, det; (lZJO'm,(l + 75)7,/)), with Ny = 3, stands for

| &I

o/(1xv)u uo(1E£vs)d uo)(1+7s)s

“ _ _

(1l tv)u do*(1+7s)d do(1L£7s5)s| , (2)

det s (7,[7)0,“,(1 + 75)¢) =
o (lEvy)u 3o (1xv)d 3o (1l x7s)s

w2

and similarly for flavour determinants of the other two matrices, where there are no Lorentz
indices to be contracted. Here o,, = %[y,,7.], and we use Ref. [19] conventions for the
space-time metric and Dirac matrices.

The first two of Egs. (la),(1b) are the ’t Hooft- and the Veneziano-Witten effective
interactions, respectively, the third (1c) and the fourth one (1d) have not been discussed in
the literature heretofore, to our best knowledge. That leaves their derivation from QCD as
an open question, except in the special case Ny = 2 when they are related to the 't Hooft
and Veneziano-Witten interactions by a Fierz tranformation. One must emphasize, however,
that there is a relation (“Burgoyne identity” [10]) between Eqs. (la) and (1b) of the form

2 K3
[EE?{N”] - (ﬁ) Eg}le) = Ur(Ny) x Ur(Ny)—invariant operator , (3)
s




where the exact form of the operator on the right-hand side of Eq. (3) depends on the value
of Ny. An analogous relation between the “tensor” operators in Eqs. (1c) and (1d) holds, as
well. Moreover, for Ny > 4 there are new tensor interactions whose mathematical properties
have not been explored or classified, as yet. We shall treat the two interactions in each pair
[(1a), (1b)], [(1c), (1d)] as independent since the square root of an operator is ill-defined and

't Hooft actually derived the first power of ££}2{Nf ) from QCD [6].

Our normalization of the coupling constant %y, was chosen so as to facilitate comparison
with earlier papers on the subject, in particular with Ref. [20] where contact with the in-
stanton calculus results was established, see Eq. (7). The remaining constants /i;vf,,uNf,,U;vf
are normalized analogously. Since these coupling constants have dimension(s) of a mass to
negative integer powers it would seem natural to introduce a single energy scale M such
that [an] = [,uNf] = M4-3Ny), [’f}v,] = [,u}\,f} = M©=5Ns) where [a] = dim a. We shall
show in this paper that the scale M is just the cube root of the negative quark condensate,
i.e., M® = —(qq)o, at least for Ny = 3 ’t Hooft and Veneziano-Witten interactions. In such
a case a more natural normalization of the coupling constants would omit the additional
powers of 2"/ from the definitions (l1a-d). Yet, that would not ensure such “renormalized”
dimensionless couplings’ being of O(1) for higher values of N;, because the determinant
structure of the interaction may yet change the overall coefficient with changing N;. Per-
haps less importantly, the odd- Ny 't Hooft interaction coupling constants, as defined above,
are negative - that could be changed as well. At any rate, it seems too early to pronounce
general naturalness criteria for these interactions at this point.

All of the aforementioned interactions are current quark mass independent, i.e., they do
not change in the chiral limit. One can construct whole new families of U4(1) symmetry-
breaking operators that vanish in the chiral limit, i.e., which break both SUL(Ny)x SUr(Ny)
and U4 (1) symmetries. For a derivation of a set of such interactions from QCD, see Ref. [21];
for a phenomenological application see Ref. [9]. We shall not investigate such operators in
this paper since their effect seems equivalent, at least in second-order perturbation theory,
to the combined action of the above quoted SUL(Ny) x SUr(Ny) chiral invariants and the
current quark masses in the free fermion Lagrangian. It is important, however, not to forget
that this assumption has been made, and explore the consequences of its relaxation at some
later time.

B. Pseudoscalar meson mass shift due to U4(1) symmetry breaking

In this subsection we apply model-independent methods to the evaluation of pseudoscalar
mesons’ mass matrix. Here the only, albeit crucial, assumption is that of spontaneously bro-
ken chiral symmetry. This analysis is based on a single model-independent current-algebraic
formula derived from a chiral Ward identity and due to Dashen [16], (for a straightforward
derivation of this formula see e.g. [22])

(fm?f) , = famlfs = —(0](Q3, (@3, Hysn(0)]]] 0) - (4)

Here a,b are the flavour indices of the axial charges corresponding to the appropriate ps
meson(s). Formula (4) describes the lowest order correction to the (vanishing) pseudoscalar
meson mass squared as a consequence of chiral symmetry-breaking terms H, sg(0) in the
Hamiltonian density.




1. The ’t Hooft interaction
A straightforward calculation using the identity
|, dety (H(1 £ 75)%) | = F4/2N) bao dety (P(1 £ 75)9) (5)
leads to the following mass shift of the flavour-singlet meson
mo(tH) £7 = (0)[Q3, 1Q5, £ " (0)]]] 0)
= 2N; (2N ) (0]det; (B(1 +75)9) + dety ($(1 — 75))| 0)
= 2N, (0| £ (0)] 0)o (6)

where k3 = —8K in the Ny = 3 case, see Ref. [10], and an integral over the instanton density

D(p)(> 0) (for three colors) as follows
)" .

w =[5
where p is the instanton size, and « ( ) = 0.1458 in the dilute instanton gas approximation,
see [20]. The right-hand side (r.h.s) of Eq. (6) can be evaluated using the identity

1
2

det ($(1+5)0) + dety (B(1 — 35)9) = é{Dz‘jk(%f—"\Hﬁ)
x [(zzxz-w)(wm)— 3(hirs Aet)) (Bivs A 9)]
+ V(A f; [(Fishit)? — (BAw)?]

8
+ 3VB(Pirs Aot) S (birsA) (@A)}, (8)
=1

where the summation from 0 to 8 over repeated indices is implied and D; ;i are the symmetric
Gell-Mann SU(3) structure constants defined by

{2 A} =2DigeAs (9)
and extended ! to U(3) ¢.e. the ninth generator Ay = \/gl 1s included,

ik 51, k€ (1,2,3,...,8)
uk—{ ; ( (10)

Ve, =0, 4, ke (0,1,2,...,8) ,
as

'Our definition of D;j; Eq. (10) agrees with that of d,;; in Eq. (12.a.4) of B.W. Lee [22].




meo(tH) f§ = 6(0 | (0)]0)
= —12K(0|(49)°| 0) + O(1/N)
= —12K(qq)s + O(1/Nc) , (11)

where we assumed that the vacuum expectation value (v.e.v.) of the operator product is
saturated by the product of the individual operator v.e.v.’s, and good parity and SU(3)
symmetry of the vacuum, i.e., (¥ Asth)o = (PAsih)o = (WAiivsib)o = 0, for all ¢+ = 1,...8.
Various formal and explicit arguments about the size of corrections to the vacuum saturation
hypothesis have been put forward; it is fair to say that all we know for sure is their order
of magnitude as compared with the vacuum saturation contribution: they are suppressed
by a factor 1/N¢, where N¢ = 3 is the number of colors. The symbol O(1/N¢) on the
right-hand side of Eq. (11) serves to remind us that we have neglected all 1/N¢ suppressed
terms, not just the corrections to the vacuum saturation hypothesis. As an example of
the non-vacuum-saturation 1/N¢ corrections may serve the set of chirally invariant 1 /N¢
corrections to the Ny = 2 NJL model that was calculated in Ref. [23].

Equation (11) implies an upward mass shift of the flavour-singlet ps meson, as long as
the (negative) quark condensate does not vanish (Agth)o = \/g(d_)z,b)o = v6(Gg)o # 0 and
the coupling constant K is positive. As we shall show in Sec. III, the negative ps mixing
angle is explained by this feature, as well. This result tells us something about the proposed
“natural” mass scale M governing k3 via Ky, ~ MU=3N5) a5 well. We see that there is not
one, but three dimensional quantities in the new “definition” of x3 Eq. (11). This prevents
one from a positive identification of M before further analysis reveals a connection between
the left-hand side (L.h.s.) of Eq. (11) and observables.. Last, but not least, the equivalent of
Eq. (11) has been derived in an explicit chiral quark model calculation employing 't Hooft’s
interaction [10], as we shall show in Sect. IV.A.

2. The Veneziano- Witten interaction

In the ANVZVW model we find

!
ISZNf

mio(VW) f§ = 4N; (Q—N) <0\(detf (81 +75)) — dety (B(1 —75)9))’

0)

'
KNf

+ 4N (22Nf) (0| (dets (914 35)8) + dety (51 - 26)8))’| 0}, (12

which, for Ny = 3, turns into

meo(VW) £ = 12(0| (]| 0)

K3

12 (5?> (0 \(detf (901 +75)9) + dety (8(1 —35))) |0) , (13)

Now use the identity
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det; (%E(l + 75)¢) — dety (1/_’(1 — 75) ) '{ wk(l/”%/\k’/))
X [BEAD) @A) — (BinsAap)(BivsA)]

8

F oVB(Bivshot) Y [($i9sA)? - (A)]

=1

=]

— 3\/_ ¢‘A0¢ Zi: 1/”75Aﬂ/’ ¢Az¢)} (14)
to show that
12) “13
O]cv (2_) o
= (%) |detf ( (1 + 75)¢) — detf (1;(1 - 75)¢)| 0>2 + O(I/NC)
=0+ 0(1/Ng) (15)

[detf (;/;(1 + 75)¢) — det; (1;(1 —75)Y )]2

0)

where we used the vacuum saturation hypothesis once again and the same comments about
1/Ng corrections hold as for the ’t Hooft interaction result. Now use this result and Eq. (8)
to derive

3 (VW) 2 —3( ) (0|5 Dk (PAB)GABNBA)[0)7 +O(1/No)

= Zkald)s + O(1/Ne) . (16)
We see that, once again, the flavour-singlet pseudoscalar mass has been moved up, subject
only to the now standard assumption that {gg)o # 0. So long as the unknown coupling
constant ' is sufficiently large, the U(1) problem will be solved in this model. In Sec. IV we
shall show that in the NJL chiral quark model of Ref. [10], but with the Veneziano-Witten
interaction replacing 't Hooft’s one, the same result for the flavour-singlet mass, Eq. (16), is
obtained. Once again the proposed “natural” mass scale M governing x5 via £y =M (4-6Ny)
turns out to be related to three different quantities. And once again we shall relegate the
resolution of this question to Sect. III.C.

3. The “tensor” interactions
Due to the identities

(@3, dety (o (1 £ 75)0)| = F/2N; duo det; (o, (1 £ 75)0) (17)

the double commutators of the determinants of the “tensor” left- and right-hand chirality
matrices are formally identical to those of determinants of the “scalar” left- and right-hand
matrices (6),(12). For Ny =3 this turns into




mio(T1)f2 = (0|[Q3, 193, £ (0)]]] 0)
6 (gg-) (0] (dets ($0,u(1 +75)) + dety ($0,(1 —5)%))] 0)

= 2,00 |t (0)] 0) - (18)

Now use the identity
dets (B, (1+ 7)) + dety (b0 (1 —5)8) = é{Dijkw‘mmw (G0, Ap) (oA A;0)
— 3(bio, s Aet) (io s ;)]

8

+ VB0, Ao0) T (1o, 95 A0 (o oA

— (o AR) (P rA)]

8

+ 3V6(io, 15 Aot) 3 ($i0, s Aib)($oFAp) }, (19)

i=1
to evaluate the right-hand side in Eq. (18). It is clear that we cannot use the vacuum
saturation hypothesis here since Lorentz invariance demands that (0 ‘(J)au")\“gb)’ 0) = 0,
for arbitrary flavour matrix A*. Heretofore no one has considered condensates such as
{0 \(zﬁau”zb)(z/;ayalb)(@oa“zb)‘ 0) in print; moreover, such condensates certainly do not exist
in the leading order in 1/N¢ approximate solution to the chiral quark model employed in

Sec. IV of this paper. Hence we do not expect a shift of the flavour-singlet mass to leading
order in 1/Ng, i.e.,

moo(T1)fs =0+ O(1/Nc) , (20)

in all models with this kind of U4(1) symmetry-breaking interaction. The same holds for

meo(T2)f3 = (0][Q5, (@5, £57(0)]]] 0)

=12 (%,23) {0 ‘(detf (150“1,(1 + 75)@[)) — dety (1,[_)0#”(1 - 75)1/)))2} 0)

#12(42) (0| (dets (50 1-+305) + dety (1 =390

=0+0(1/Nc) , (21)
which follows from the tensor analog of Eq. (14)
det (8,01 -+ 200) — et (oul1 = 2000) = H{ Dot 2ehei 30, \0)
X (o A8) — (bio, s hap) (Bio 15 A)]
+ g\/é(&w;%'\w)i (0,25 A1)
X (Pio s Ap) — (z&;ﬁ)\iw)(w;w]
8

— 3V6(¥0,  Aot)) D (Pio,“ys Aip ) (o Aitp)
=1




In the special case of two flavors, one can define the Fierz transformation of the quartic
tensor self-interaction, which is 1/N¢ suppressed. That “new” interaction is nothing but
the 't Hooft interaction for Ny = 2. It is not clear how to extend the Fierz transformation
to 2Ny-point fermion self-interactions when Ny > 3.

III. PSEUDOSCALAR MESON MASSES AND MIXING ANGLE
A. Preliminaries

In this section we incorporate our results form Sect. II into the Gell-Mann-Qakes-Renner
(GMOR) relations [15] for the flavour-singlet ps meson and the off-diagonal elements of
the mass matrix. That allows us to express the unknown coupling constant of the Ujz(1)
symmetry-breaking effective interaction in terms of observables, which, in turn, leads to a
formula for the ps mixing angle 6, expressed as a function of well-known masses of the
ps meson and of their less well-known weak decay constants. We discuss the role of the
uncertainties in our knowledge of ps decay constants in the determination of the ps mixing
angle.

Formula (4) describes the lowest order correction to the otherwise vanishing pseudoscalar
meson mass squared as a consequence of chiral symmetry-breaking terms H, sg(0) in the
Hamiltonian density. There are three known sources of chiral Ur(3) x Ur(3) symmetry break-
ing in QCD: (i) current quark masses, (ii) electro-weak interactions, (iii) U4(1) symmetry-
breaking effective interaction. The first two have been dealt with long ago [16], and the
third was the subject of our Sect. II. When one inserts the current quark mass Hamiltonian
into Eq. (4), one finds the celebrated GMOR relations

m?(mech) f2 = — [m%{Gu)o + m(dd)o] (232)
m3+(mech) fz = — [mg(ﬂu)g + mS(Es)O] (23b)
m2.(mech) f} = — [mS( Id)o + mS(gs)o] (23c¢)

between the “mechanical” pseudoscalar mass my(mech) and the decay constant f, on one
hand and the current quark mass mJ and the respective quark condensate (gq)o on the
other. Here (gq)o = (0|g(z)q(z)|0) is the interacting vacuum expectation value of the local
product of two Heisenberg fermion fields. This object is related to the trace of the ezact quark
propagator via {0|gq|0) = —ilim, o+ TrSg(y), which, is a function of the constituent quark
mass: A non-zero value of the condensate is a sign of a nonvanishing effective (“constituent”)
quark mass. Equations (23a-c) are easily solved for m%(uu)y, m%(dd)o and m%(3s)o, thus
allowing the determination of the current quark mass ratios. That, however, requires the
knowledge of the “mechanical” muyen(®), or equivalently of the EM part mgm(¢) of the

observed ps meson mass m(¢), since
m = mj(mech) + m3(EM).

This is where Dashen’s theorem enters.
Dashen applied his mass formula (4) to the EM interaction as a source of chiral symmetry
breaking to derive his celebrated theorem [16]

9




m7o(EM) = m¥o(EM) = m2(EM) = m% (EM) = 0 (24a)
m2:(EM) = m%+(EM) = O(a) a~1/137 . (24b)

It is important to remember that these results were derived as a small correction to the
chiral limit, and that, strictly speaking, they are not valid in a situation where the chiral
symmetry is broken, e.g. by the current quark masses to begin with. This is true in particular
when the “initial” chiral symmetry breaking is not small, such as in the case(s) when the
strange quark is present. Then the O(m°) cross-terms become non-negligible. Corrections
of this “mixed” kind to Dashen’s theorem for the neutral kaon(s) are a subject of lively
investigation, see references in [24], precisely because they are model dependent. They have
been calculated in the NJL model [25], but only with two flavours, i.e., for charged pions.
The approximations made in that calculation are not readily extendable to kaons due to the
much larger kaon mass. Henceforth we shall disregard them.

B. Us(1) symmetry breaking

Next we turn to the calculation of the principal U4 (1) symmetry-breaking effects using
the 't Hooft interaction. This leads to the following (mass f4)* (sub-)matrix

(fmzf)ab _ ( mgofo mgsfofs) ’ (25)

mgstfs m?ssfsz

(the GMOR relations (23a-c) for the pions and kaons are unchanged to leading order)

2 r2 22
Mmgofo = fomU(l)

2

-3 [ (@Yo + mi(dd)o + m2(5s)o] (26a)
meg fofs = —? [m{@u)o + mi(dd)o — 2m3(ss)o] (26b)
miaf? = — [mau)o + m3{dd)o + 4m{ss)] | (26¢)

which can be written in terms of known ps meson masses using the solutions mQ(gq)o to
Eqgs. (23a-c), as follows

2 r2 2.2
mofo = meU(l)

+ % [m?nech(ﬂ-)fz + (m?nech(Ki) + m?nech(l(o)) fIz\] (27&)
m(2)8f0f8 = _\g__i [menech(ﬂ)f;‘: - (mftlech(l{i) + m?nech(KO)) f?\] (27b)
TngSfS2 = % [_mfnech(ﬂ)fz +2 (mrznech(l(t) + m?nech(l(o)) f?&'] 9 (27C)

which can be further rewritten in terms of observed meson masses and decay constants using
Dashen’s theorem (24a,b). The masses of the two ps mesons that contain an admixture
of the flavor-singlet (ninth) ps state are further shifted by the U4(1) symmetry-breaking
interaction.

10




The mass matrix (25) is diagonalized by the rotation (in the (0-8) flavor plane) matrix

_ (cosaps —smOPS) ’ (28)

sinfps  cos O

where
(2v2/3) &5,
tan 20ps = —— TG
fimss — famao
__ ) (29)
(1/3) Al - fOZm%J(l) ,
and
A2 = fZ (mho + mks ) — 2 (m2 +m?2,) (30a)
famby = Faml + fim2 — fE (mier + mho) + f2 (m2s —m%) (30b)

where we have also taken into account the minuscule EM correction for completeness’ sake.
We disregarded the O(m°a) cross-terms, however. The quantity fgm%(l) defined in Eq.
(30b) is also known in the literature as the topological susceptibility {12].

This completes our formal manipulations — all objects of interest are expressed in terms
of observables. We are now ready to evaluate several key ingredients of the present model(s)
and compare them with theoretical predictions, where available. In the process we shall also
make two self-consistency checks.

C. Results and Discussion

The Ua(1) symmetry-breaking mass my;) was evaluated as 855 MeV in Ref. [10], where
it was called myy, assuming equality of all pseudoscalar decay constants, which is a fair
approximation to the model used there, but not nearly as good in Nature: The two well-
known ps decay constants are f, = 93 MeV, fx = 113 MeV. The 5,7  decay constants are
substantially more uncertain: Older estimates placed them at f, = f = 110 £ 10 MeV
leading to my(y = 830 £ 60 MeV, whereas PDG96 [26] quote f, = 93 £ 9 MeV, f, =
83 £ 7 MeV leading to my() = 600 £ 135 MeV, where fy = 88 £ 5 MeV was used. The
former set of numbers is based on older analysis of experimental data [27] and various
theoretical calculations of f, and f,/, whereas the latter set is based on two recent “direct”
measurements, see p. 320 in PDG96 [26]. The two experiments are in agreement with each
other, and their results for the ratios fo/f, and fs/fr are consistent with older estimates.
But, their absolute values are roughly 10% smaller than the standard estimates. For example
the overall scale is set by the neutral pion decay constant which is evaluated as f,o =
84 + 3 MeV, which is more than two standard deviations (20) away from the conventional
value. For this reason one might, perhaps, consider the second set as a tentative one.

Both the 't Hooft and the Veneziano-Witten model predict a nonvanishing value of
fémiqy, given by Eq. (11) and Eq. (16), respectively, as long as their respective coupling
constants are non-zero. The said coupling constants can then be adjusted so as to fit the
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right-hand side of Eq. (30b). This procedure amounts to little more than a phenomenological
description of experience, although 't Hooft’s model actually predicts the (very) wide range of
values (1.4 GeV™')® < |k3| < (6.8 GeV™') for the (negative) coupling constant k3 = —K/8
in the dilute instanton gas approximation [20]. The whole range of the phenomenologically
extracted k3 ~ —(4 £ 2 GeV™!)’, easily fits within the bounds of the above prediction.
Roughly one half of the uncertainty in the “empirical” value of «3 is due to the uncertainty
in the quark condensate which was taken to be (gg)o = —(250 £ 50 MeV)3. Hence we may
say that the mass scale M determining &3 via [k3] = M*73Ns is given by M® = —(gq)o.
This is perhaps somewhat fortuitous since it depends on fgm%(l) falling within the range
(250 £ 50 MeV)* which it does: fimf, ;) = (260 £ 40MeV)*. We suspect that a calculation
of k3 can be extended to the instanton liquid approximation [28], although we are not aware
of anyone having carried it out as of the time of writing. What has been done instead, by
Alkofer et al. [14], also under the name of instanton liquid approximation, is a calculation of
the Veneziano-Witten effective interaction. Though they do not present their results in terms
of a coupling constant equivalent to 4, but rather in terms of ps meson masses and the quark
condensate, we can nevertheless translate the latter information into x} ~ (4.2 GeV ™)1,
The empirically extracted value is x4 ~ (4 £ 1 GeV™')!*, where the (huge) “error” band is
again dominated by the uncertainty in the quark condensate. A better way of estimating
the “quality” of the theoretical prediction is the comparison of the calculated value of the
Ua(1) symmetry-breaking mass my(;) = 1077 MeV versus its “empirical” value of 855 MeV.
The reader is once again advised to recall the spread induced in the latter number by the
uncertainties in the ps meson decay constants.

It is manifest from Eq. (29) that the explicit breaking of the U4(1) symmetry is essential
to the exact value of the n — 5’ mixing angle. Choosing one or the other parameter set for
muy(y and the 7,7’ decay constants, one finds 8, = —(25 + 10) deg, or 8, = (54 37) deg,
respectively. This ought to be compared with 8, = —18 deg obtained from Eq. (29) under
the assumption of SU(3) symmetric, i.e., equal ps decay constants. There are, of course,
other independent measures of 8, e.g., from the ps — 27 decays, which yield - 20 deg,
see p. 100 in Ref. [26]. We see that in all of the cases discussed our extracted values are
consistent with the ps — 27 number. The final word on the subject of ps mixing angle
will have to wait until the 7 and 5" decay constants are better known. This was our first
consistency check. '

Note that so far we have considered only one, the trace, of two independent invariants of
the mass matrix (25) under the rotation Eq. (28). The second invariant is the mass matrix
determinant, which leads to the so-called Schwinger sum rule [29]

(mil + mi) (4m§\ — mfr) - 3m3’,m§ = 8m?% (m% - mfr) +3m? . (31)

If one evaluates the left- and the right-hand sides of Eq. (31), one finds .344 GeV* vs. .447
GeV?,, i.e., a discrepancy of 23 %. If we evaluate the determinant of the fm?f matrix Eq.
(25), Schwinger’s sum rule (31) turns into the identity

1 1 8 2
5 (1ffemi — f7m}) [fé’m%(l) + 5 (2/kmi + fﬁmi)] = fAm2 fim? + = (fiml — fim?)".

9

This is our second consistency check.
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These two examples (self-consistency checks) illustrate the range of variation in two
observables of interest due to the inclusion of the ps meson decay constants into mass
formulas based on Dashen’s equation (4). In the following we make an extended comment
on the effects of SU(3) symmetry-breaking in the ps decay constants on the current quark
mass ratios.

Weinberg included both the quark mass terms (26a-c) and the EM corrections, while
neglecting the SU(3) symmetry-breaking in the ps decay constants, in the pseudoscalar
mass GMOR relations [30] which led him to the now widely accepted current quark mass
ratios 2

my _ mi(rt)—miK*) 4 miKY) )
b D) ()4 ) - (o) ~ (332)
md _ mA(K®) + mA(K0) = mx*) )

mY  m?(xt) — m?(K%) + m?(K°)

and, with additional assumptions, to the absolute values of current quark masses. The
justification for setting fr = fx is that the difference would lead to higher-order (in the cur-
rent quark masses) corrections, which can be neglected in the leading-order approximation.
This statement makes another tacit assumption, however: that the expansion of f,, fx
is an analytic one. This assumption has been proven incorrect in the meantime in chiral
perturbation theoretic calculations. Then the following question arises: is it “better” to
calculate these symmetry-breaking corrections, or to take them from experiment? The same
comments hold for the quark condensates, which are not observable, however.

Note that it appears as inconsistent to quote these numbers to three significant figures, as
is commonly done, because terms of (’)(mga) and higher, were neglected in this analysis, and
they are likely to contribute at the 1% level. Such “mixed” term corrections are enhanced
in the ratio: as an illustration of this point remember that the inclusion of the model-
independent lowest-order EM corrections changes the m}/m? ratio by about 15% (see the
first footnote on p.188 in [30] and p. 270 of [31]), substantially higher than the nominal
estimate of 1% ~ O(a).

The SU(3) symmetry-breaking differences between the kaon and pion decay constants
need not be a source of uncertainty, for they are observable and have been measured to at
least two, and arguably to three significant figures as f, = 93 MeV, fx = 113 MeV [26].
® Quark condensates, on the other hand, are not observable, so one needs theory to divine
their ratios. Whereas (@iu)o = {dd)o certainly seems a reasonable assumption, {@u)s = (3s)o
and (dd)o = (8s), are very likely subject to significant corrections. It ought to be clear that
for this reason the second (s/d) current quark mass ratio is far less reliable than the first
(d/u) one. Inclusion of the ps decay constants leads to

21t is perhaps interesting to note that Nambu obtained these ratios a few years earlier [32], but
not knowing Dashen’s theorem [16] neglected the EM effects which led him to somewhat different
results — see below.

3Even the exact value of the charged pion decay constant is a subject of controversy: Holstein [33]
claims 92.4 MeV after separation of EM radiative corrections, whereas PDG96 claims 93.3 MeV.
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M Peet) - (K - RY) .
mg Iz (2m2(7r0) m2(7ri)) -|-f2 (m2(ﬁ'i) 2(K0)) = 2.28 (34 )
md _ fE (mA(K*) + m¥(K°)) - frm?(x*)

mg 2m?(x%) — f2 (m2(K*) — m2(K0)) =27.9 (34b)

These numbers ought to be also compared with the “canonical” values shown in Eqgs.
(33a,b): the differences are striking. To be sure, there is little surprise in the change of the
s/d ratio, since the relevant quark condensates are certainly not equal and the uncertainties
are expected to be large. In the u/d case, however, two essentially identical condensates
cancel in the ratio, causing the surprisingly large shift from 1.80 to 2.28. This ought to
be compared with the latest re-evaluation of the current quark mass ratios including the
state-of-the-art corrections leads to m9/m® = 1.82 + 0.14, m%/m§ = 18.9 £ 0.8 [24]: The
discrepancy is greater than three standard deviations (30) in the supposedly reliable case
of u/d ratios and even bigger for the s/d ratio! When quoting the current quark mass
ratios, it is clear that one ought not only specify the estimated uncertainties, but all of one’s
assumptions as well. Moreover, the said uncertainties have to be assigned more liberally.
We would guess the theoretical uncertainty in the u/d ratio as the difference between the
central values in this and Leutwyler’s analysis, for example, and perhaps even larger for the
s/d ratio.

Returning now to the main line of argument, we have shown that the Us(1) symmetry-
breaking term leads to a particularly large (on the scale of ps meson masses) symmetry
breaking mass my() = 855 MeV which leads us to believe that its cross terms with the
current mass and/or the EM Hamiltonian might also be rather large. We shall not attempt
an evaluation of these cross terms, which would be model-dependent, in the present paper,
but rather point out their existence, which has hitherto been neglected, to the best of our
knowledge. This leads us to conclude that the current quark mass ratios can be determined
in a model-independent way up to at most two, but more likely only to one significant figure.

We have seen that the two types of U(1) symmetry breaking are indistiguishable as
far as the pseudoscalar meson spectrum is concerned. Hence we are forced to look for
other observables which might discriminate between them. One such set of observables was
identified in Refs. [10,11]: the isoscalar scalar meson mass spectrum, but only the 't Hooft
interaction case was examined there. In the following we shall examine the scalar meson
spectrum with the Veneziano-Witten interactions in the hope that it will distinguish between
the two models.

IV. EFFECTIVE THREE-FLAVOR CHIRAL QUARK MODELS

In the following we shall use an effective chiral field theory of quarks and spinless mesons
with a non-trivial ground state characterized by a finite quark condensate and various effec-
tive U4(1) symmetry-breaking interactions, following Nambu and Jona-Lasinio (NJL) [34].
This model has turned out to be a reliable laboratory for testing the lightest spinless meson
mass relations induced by U4(1) symmetry-breaking, as is best seen from the comparison
between the NJL model results [10] and a confining potential model’s predictions [11]. The
close agreement of the spectra is the best, albeit ez post facto justification of the NJL model.
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A. ’t Hooft interaction

The following is to serve as a proof of the claim made in Sect. II.B.1 that explicit
calculation in the NJL model agrees with the general result Eq. (11), as well as reminder of
results pertaining to the scalar meson sector. The flavour-singlet meson mass shift due to
the 't Hooft interaction in the NJL model has been established in Ref. [10] as

mq)(Ny = 3) = (39%;—%6;2) +O(1/Ng) . (35)

Now use the definitions
Gy = 2G (36)
Gy = —éK('/;dJ)o = —K(qq)o . (37)

and the gap equation

m, = mg — 4G(qq)o + 2K {Gq);
~ —4G(qq)o + O(1/Nc) . (38)

This leads to the following result

my(Ny = 3) -g,m( ) O(1/N2)
o (253 ) 4 001/

( ) £ O(UN2)
= —12K{ qq>of +O(1/NE) (39)

which is in agreement with the general result (11), as anounced earlier.
Next we remind the reader that the sum rule

m?2 + m?f — mir —mio = mi,g+ + mszo —m} — mf,é . (40)
relating the ps and scalar meson masses has been derived in Ref. [10], and equivalent results
were found in a different model in Ref. [11], as a primary effect of the 't Hooft Ujx(1)
symmetry breaking interaction. The same result was also found by L. Burakovsky [35] on
apparently different grounds. The derivation of Eq. (40) shown in Ref. [10] is based on a
calculation of scalar and pseudoscalar gq states’ masses using the Bethe-Salpeter equation
and the three-flavor NJL. Lagrangian including the 't Hooft interaction.

The sum rule (40) shifts the masses of the physical iso-singlet scalar states fo, f from
their simple quark model positions. The masses of other members of the ps and scalar octets
are unchanged. In particular, the ordering of the meson masses in the octet, specifically the
ordering of the isovector scalar ag presently placed at 1450 MeV - up from 1320 MeV - by
the 96 Particle Data Group [26] and of the scalar kaon K;(1430) is completely independent
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of any U4(1) symmetry breaking and/or mixing with other states due to their nonvanishing
isospin and strangeness, respectively. The ordering of these two states is governed by the
strange - up/down quark mass difference in accord with the (simplest) quark model. In that
light it is clear that the new mass assignment for a¢ places it outside of the ¢gq octet. On
the other hand, the old assignment fits perfectly.

Assuming that the well-established fo(1500) is one of the two isoscalar scalar states,
the sum rule (40) predicts the mass of the other. That second scalar state mass is 1000
MeV to an accuracy of about 5% if the lefthand side (l.h.s.) of the sum rule is taken to be
830+ 60 MeV, or 200-300 MeV higher with the l.h.s. at 600+ 135 MeV. Since there are two
iso-singlet scalar states fo in the Particle Data tables [26] with their mass(es) very close to
1 GeV, the f5(980) and (“Pennington’s”) fo(¢(1000)), one is presented with an unexpected
choice. Pennington’s fo(¢(1000)) was chosen in Ref. [10] on account of its large width as
demanded by the model used there, and f,(980) was chosen in Ref. [11] so as to conform
with the predictions of that model. It ought to be kept in mind that neither of these two
models were unitary as of the time of writing, and new kinds of phenomena, such as images,
or reflections of poles on unphysical sheets of the coupled channel scattering amplitudes near
the KK threshold have been claimed to arise as a consequence of a proper unitarization
[36,37,26]. This means that one “bare” ¢q state can appear as two observed resonances. It
is not clear, however, if that situation applies to the two states at 1 GeV. Manifestly, much
more work will have to be done before one can claim understanding of this problem. The
case of fo(1500) is in much better agreement with theory: Ritter et al. [11] have recently
explained the puzzling absence of K K pairs from the f3(1500) two-body decay products as
a consequence of the 't Hooft interaction ¢. This explanation depends crucially on the scalar
mixing angle 6 being small and positive, where

(1v2/3) (mi; = ms,)

tan 20, = 5 ; Y
mi ) + (2/3) (ng - mag)

(41)

It is hence clear that the said condition is met only when the correct quark model ordering
of the ag, K states takes place, i.e., when MKz > Mg, In view of these facts and of the
discussion earlier in this subsection, one is lead to the conclusion that ag(1450) cannot be a
member of the scalar ¢q octet in this model.

B. Veneziano-Witten interaction

We shall start from an Ny =3 NJL Lagrangian

4In this regard I would like to correct Eqs. (46a,b) in Ref. [10], where the contributions of the
-1
't Hooft interaction to the effective s-ps-ps couplings, e.g. ¢t = —sin8,m%; (2\/(‘3f,r) and

form
-1
g;,?m = cos f,m?y (2\/6 fﬂ) , were inadvertently omitted and the quark-loop contribution ought

to be divided by 4. The numerical results remain unchanged, however.
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L) = 9l — my + GZ [(PA)? + (PivsAitd)’]
+K [det (81 +75)¢) — det (B(1 = 1)), (42)

consisting of the free quark Lagrangian and the U(3); x U(3)gr symmetric quartic self-
interaction terms (the first line), the same as in Eq.(23) of Ref. [10], and the U(1) 4 symmetry-
breaking Veneziano-Witten (VW) determinant interaction term (second line), which is now
of 12th order in the quark fields. There are at present no readily available nonperturbative
methods in the literature, to the present author’s knowledge, for a direct approach to the
12-point operator in Eq. (42). Therefore we proceed to construct an “effective mean-field
quartic self-interaction Lagrangian” L'S:f) from Eq. (12) following the procedure employed
on theN; = 3 't Hooft interaction in Refs. [8,10,38]. We shall closely follow the method
used in Ref. [10]. That procedure leads to consistent chiral dynamics in the sense that
the Goldstone theorem and other chiral Ward-Takahashi identities pertainin to the ps octet
remain intact in the chiral limit. The procedure that turns the 12th-order interaction into a
4th-order one can be characterised in several apparently different ways: (a) By “averaging”
of the interaction over the ground state (“vacuum”) of the system, analogous to making the
mean-field approximation in statistical mechanics, reduces the number of fermi fields left
in the interaction by two and multiplies the appropriate coupling constant by one power
of the quark condensate at a time. Only the leading terms in the 1/N; expansion are
kept, and of those only the vacuum expectation values of scalar, flavour-matrix-diagonal
operators are non-zero, all others vanish. One must be careful to properly count the allowed
possibilities when the original interaction term is a higher power of a single Dirac bilinear.
Four repetitions of this step reduce the 12-point Lagrangian to a 4-point one. This procedure
is the same as the so-called “linearization of the equations of motion” method used in
quantum many-body physics, see in particular Sect. 3.2. in Hatsuda and Kunihiro [38].
(b) Mathematically the above is completely equivalent to taking a quark and an antiquark
external line and closing them into a loop using Feynman rules for the Lagrangian (42) in
all possible ways while taking into account the proper symmetry number of the diagram,
e.g. see Fig. (1). After closing up eight of 12 external lines one ends up with a four-fermi

interaction. Thus we find in the SU(3)-symmetric limit, i.e., with ()Ao%)o = \/2(1/51#)0 +#
0; (PAsh)o = (YAs¥)o = 0, the following effective four-point interaction Lagrangian

Lvw = —4K’<0\ (#20%)” { == (@A) (PirsAotd)

e
\/— Z Dijo(db i) ($ivsA;1b)

_ _\/gz (PivsAi(PAit)) } 0) + O(1/Nc). (43)

Simplify this further using Eq.(10)
Lw = ——<(¢Ao¢) {(BAo¥)(Pivs Aott)
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~23 (i Aab) (A } Yo + O(1/Ne)

t=1

2K’

= — S (V) (irsAo) + O(1/No). (44)

and then insert the result Eq. (44) into Eq. (42) to find

8
L8, = lig— mp + [Ké‘)(wxozmz s AQ-‘*’(zz?mA,w)“’]

=1

8
+ [K(g+)(1/)i75/\01/))2 +3° K,-“’(miw)?] , (45)
=1
where
K =K®P =G, i=1,...,8; (462)
K$Y =G~ 6K'(gg)s , (46b)

where the quark condensates are defined as follows

_ . . d* m
(qq)o = —chtrS%(z',x) = —4:ZNC/ (27.‘_;)’4 p2 — m(; n Z_E’ q= U,d,S ; (47&)
(@Etﬁ)o = (au)o + (Jd)o + (3s)o = —tNetrSp(z,z) . (47b)

Eq. (45) is just the “effective quartic Lagrangian” in the exact SU(3), for the VW interaction
(42). The SU(3) gap equations now read

my = mg — 4G(qq)o - (48)

The meson masses are read off from the poles of their propagators, which in turn are con-
strained by the gap Eq. (38). The reader will easily convince himself that the effective
Lagrangian Eq. (45) preserves the Goldstone theorem for the pseudoscalar meson octet in
the chiral limit. We use Eq.(45) to derive the 5’ meson mass. where, To leading order in
N¢ we find the following relations between the meson masses

K _
- 1, (m) (q0)5 + O(1/N2)

= 48/,5 K (aq)5 + O(1/NE) | (49)
in agreement with the general result Eq. (16). Upon introducing explicit chiral symmetry
breaking in the form of non-zero current quark masses m?, we find the standard GMOR
relation (26a) correction to Eq. (48), as well. The remaining GMOR relations (26b,c) are
independent of U4(1) symmetry breaking and are well-established in the NJL model.

Next we seek scalar states in the PDG96 tables [26] that fit predictions of this model.

It turns out that, in the absence of flavour singlet-octet mass splitting in the scalar sector,
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the flavour-singlet scalar mesons mix ideally, as can be seen from Eq. (41), but with m%(l)
omitted from the denominator, and one finds one non-strange and one purely strange state,
split roughly by two strange-nonstrange quark mass differences, i.e., normally by about 300
MeV. This ideal mixing is independent of the ag — K ordering and predicts that the lower
(nonstrange) state be degenerate with the isovector scalar mesons. That means that it ought
to be at 1320 MeV according to this model, or at 1450 MeV according to PDG96. Curiously,
there is an fp state at 1370 MeV. Then the heavy scalar meson ought to be near 1600 MeV.
The only candidate state in the vicinity is the familiar fo(1500), at least 100 MeV below the
prediction and with a puzzling absence, for an s5 state, of the KK decay mode which has
already prompted suggestions that it is not an ordinary ¢q octet member, as the Veneziano-
Witten model predicts. This evidence and the apparent success of the 't Hooft model at
explaining the fp(1500) decay pattern [11] seem to rule out the Veneziano-Witten model,
though it would certainly not harm if the decays of the f3(1370) and the mass of the ap were
better established before the definitive verdict. It must be stated that, independently of
other details of the VW model, it does not allow an isovector state scalar other than around

1300 MeV.

C. Tensor interactions

A straightforward application of the “tensor” operators (1c,d) in conjunction with the
Ur(3) x Ur(3) symmetric NJL Lagrangian readily leads to the conclusion that neither pseu-
doscalar nor scalar meson masses are affected by it, to leading order in 1/Ny. The ps and
s meson spectra are unaffected by either of these U4(1) symmetry-breaking operators, to
leading order in 1/N¢.

Thus we confirm in explicit model calculations the general results pertaining to these
two interactions based on Dashen’s double commutator relation (Sect. 11.B.3). The scalar
meson sector 1s unaffected by these interactions and hence raises doubts about the proper
identification of the @y meson. Nontrivial consequences of these two operators are yet to be
found. They are to be sought among the properties of antisymmetric tensor mesons - an
entirely unexplored field, at least within the realm of NJL-like models. Of course there is
a connection between antisymmetric tensor fields and spinless (Klein-Gordon) ones, as first
pointed out by Kalb and Ramond [39], though this connection is very difficult to see from
the point of view of explicit model calculations, such as the present one. The said connection
can be gleaned in the special case of two-flavours where the Fierz rearrangement of the 't
Hooft interaction

1 1
Flel (N =2)] = 5L (N =2)+ L0 (N, =2) (50)

2
(51)

where we have set kKx =2 = pun,=2- This equals a linear combination of the 't Hooft- and the
(linear) tensor U(1) symmetry-breaking interactions. Since the “fierzing” of an interaction
in the NJL model corresponds to the addition of the Fock self-energy, which is an 1/N¢
correction to the Hartree self-energy, we conclude that the Kalb-Ramond relation is to be
sought among the 1/N¢ corrections to the present tensor interaction model(s). The 1/N¢
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corrections to NJL-type of models [23] form a topic far beyond the scope of this paper;
therefore we stop the discussion at this point.

V. CONCLUSIONS

In summary, we have investigated the scalar and pseudoscalar meson mass spectra for
four different U4(1) symmetry-breaking interactions using the model-independent Dashen
ps mass formula and explicit calculations in the three-flavor version of the appropriately
extended NJL model. We have found perfect agreement, to leading order in 1/N¢, between
the general and the specific model calculation results for the ps masses, which leads us to
believe that the NJL model used here is a reliable one in these kinds of calculations. Then
we use our model calculations in search of other observables sensitive to Us(1) symmetry
breaking interactions. The flavour-singlet scalar meson masses were identified in Refs. [10,11]
as one such observable sensitive to the presence of the 't Hooft interaction. Scalar meson
states in agreement with the masses predicted by this model interaction have been found.
Their definitive identification will have to await a better decay analysis, however.

An analogous analysis of the Veneziano-Witten U4(1) symmetry-breaking interaction
showed no response in the scalar meson sector. Scalar states can be found in the latest
Particle Data Group tables [26] that are in agreement with the predictions of this model.
Their decay properties have not been measured as yet, so we cannot make a definitive
statement about their viability in this instance either.

Perhaps the most surprising result of this work is that two of the four interactions
examined do not shift either the pseudoscalar or the scalar flavour-singlet meson masses,
to leading order in 1/N¢, despite their Us(1) symmetry-breaking nature. This leaves the
(following) scenario open where the “true” U(l) symmetry-breaking force in Nature is
N¢ = 3 times larger than previously thought, albeit it manifests itself only in an 1/N¢
suppressed form, at least in the observables studied here.

One prediction all four of these models share is that ¢¢(1450) cannot be a gg state.

In conclusion, it is clear that our study has opened more questions than it has answered.
More work is called for.
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FIGURES

FIG. 1. An “elementary” 't Hooft six-point vertex (a), and an effective four-point interaction
produced from (a) by closing a quark and an anti-quark external line into a loop (b). In order to
complete the effective quartic interaction Lagrangian one must include all of such “closures”. The
construction of an effective Lagrangian for the Veneziano-Witten interaction proceeds analogously,
the main difference being that there are 12 external lines (for Ny = 3) to begin with so that it
takes four closed loops to reduce it to a quartic interaction (see text).
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