EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

Analysis Tools for the VYPR Performance Analysis Frame-
work for Python

Joshua Heneage Dawes"2*, Marta Han?, Giles Regerl, Giovanni Franzoni?, and Andreas
Pfeiffer?

lUniversity of Manchester, Manchester, UK
2CERN, Geneva, Switzerland
3University of Zagreb, Zagreb, Croatia

Abstract. VyPR (http://pyvypr.github.io/home/) is a framework being devel-
oped with the aim of automating as much as possible the performance analy-
sis of Python programs. To achieve this, it uses an analysis-by-specification
approach; developers specify the performance requirements of their programs
(without any modifications of the source code) and such requirements are
checked at runtime. VyPR then provides tools which allow developers to per-
form detailed analyses of the performance of their code. Such analyses can
include determining the common paths taken to reach badly performing parts
of code, deciding whether a single path through code led to variations in time
taken by future observations, and more.

This paper describes the developments that have taken place in the past year
on VyPR’s analysis tools to yield a Python shell-based analysis library, and a
web-based application. It concludes by demonstrating the use of the analysis
tools on the CMS Experiment’s Conditions Upload service.

1 Motivation for Sophisticated Performance Analysis

Gaining a precise understanding of the performance of a program is an important problem,
especially when the program performs a critical activity or covers a diverse set of use cases.
In order to provide a good solution, there must first be a precise definition of performance
and such a definition depends strongly on the program being analysed. For example, if a
program communicates over a network often, one could characterise its performance by how
the network behaves as time and input vary. Alternatively, if a program performs a lot of
computation, one could characterise its performance by quantities that are internal to the
program such as values held in memory and timing information.

1.1 Existing Approaches to Performance Analysis

Existing approaches to checking the performance of a program, in particular with respect
to timing, tend to focus on profiling. Profiling tools, particularly in the Python setting, in-
clude cprofiler [1] and pyinstrument [2]. While profiling has been proven through years of

*e-mail: joshua.dawes @cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).


http://pyvypr.github.io/home/

EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

operational experience in industry to be a powerful tool, it can have shortcomings. For ex-
ample, if we consider a profiling technique that involves recording the time taken by some
function whenever it is called, then this is perfect for analysing this single quantity, perhaps
with respect to others, over time. A similar profiling technique would even be appropriate
for measuring the value held by some variable during some run of a function. The offline
analysis required to use such an approach to understand the performance of a program would
not be difficult; it would simply be a matter of plotting the recorded quantity with respect to
whatever parameters were also observed and then manually inspecting.

However, these methods can easily become infeasible if we want to check a constraint
that is a composite of constraints over multiple quantities. Performing a check like this could
require 1) more complex instrumentation and 2) more complex, possibly error-prone, manual
analysis performed by developers. In terms of instrumentation, standard profiling approaches
can already be quite intrusive, since common approaches to profiling Python code include 1)
developers decorating functions whose performance is interesting and 2) tracing the program
execution using the interpreter [3]. These approaches can also be unreliable, since a manual
approach may result in some edge cases not being identified. Finally, manual analysis of data
collected when it represents measurements made over many quantities can be difficult and
inefficient.

1.2 Analysis-by-Specification

This paper begins by describing the VYPR framework (http://pyvypr.github.io/home/), which
provides a way for developers to analyse the performance of their Python programs with
respect to multiple non-trivial constraints. To achieve this, VYPR takes inspiration from
Runtime Verification (RV) [[13]], which involves deciding whether a run of a program holds a
given property. Applying VYPR to a program involves 1) specifying the program’s expected
performance; 2) applying automatic instrumentation and monitoring to check agreement with
the specification; and 3) using VYPR’s analysis tools to obtain an in-depth understanding of
the program’s performance. While there is much work on specification of program behaviour
[SH7] and online monitoring [[8] from the RV community, VYPR distinguishes itself with its
low-level specification language [9]].

The main contribution of this paper is a description of one of VYPR’s analysis tools,
designed to enable developers to easily perform in-depth analyses of their programs’ perfor-
mance. In particular, we describe an offline analysis library for Python that allows:

e Straightforward querying of the detailed information VYPR stores while monitoring a run
of a program.

e Program path analysis in order to identify potentially problematic regions of code.
e Value analysis in order to identify problematic inputs to certain events observed at runtime.

We conclude by describing further work that is now underway. This will include extensions of
the analysis tools and a web-based application to provide a visual approach to offline analysis.

2 Building Performance Specifications
Performance requirements are specified using the PyCFTL library for Python that VYPR
provides. A specification written using PyCFTL is in two parts:

e Point of interest selection, which involves the developer giving a criteria to select points at
which to check a constraint during a single run of a function.

o Constraint building, which involves the developer giving a constraint, built up using func-
tions provided by PyCFTL, to check at each point of interest.


http://pyvypr.github.io/home/

EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

2.1 A Simple Example

We first describe the simple requirement that a call of the function func within a single
scope never exceeds 2 seconds. We begin with the point of interest selection. In this case,
our points of interest are every call to the function func, which we select using the code
Forall(call = calls(’func’)). VYPR will find every explicit call to func that is statically de-
terminable; calls of the same function under other names must be captured using precisely
those names. We must then define the requirement that each of the calls, which is bound to
the variable call by this call to Forall, should take no more than 2 seconds. We can do this
by building a lambda expression which takes call, a PyCFTL object representing a function
call, as a variable: lambda call : call.duration() <= 2. To put this all together, we have the
code:

Forall(call = calls(’func’)).Check(lambda call : call.duration() <= 2)

2.2 More Complex Constraints

We can build more complex specifications in multiple ways; by making point of interest
selection more complex and by making the constraint we apply at each such point more
complex. Our next example shows a more complex constraint.

Suppose that we require that, whenever a variable n is changed, the next call to a function
process should take no more than n*16 seconds. We first select our points of interest using
Forall(state = changes(’n’)) and then define the constraint to take the variable state and
constrain the next call to process found after it using

lambda state : state.next_call(’process’).duration() <= state(’'n’)*10

Putting this together, we have

Forall(state = changes(’n’)).Check(lambda state : (
state.next_call(’process’).duration() <= state(’n’)*10

)

From these examples, one can see that PyCFTL supports comparison of quantities with con-
stants and other quantities measurable at runtime. It also supports arithmetic on measured
numerical quantities (with the requirement that the arithmetic is performed on the right).

We now briefly show two final properties. The first captures the requirement that “every
time construct is called, the time until the next call to commit should be no more than 1
second”.

Forall(call = calls(’construct’)).Check(lambda call : (
timeBetween(call.result(), call.next_call(’commit’).input()) <= 1

»

The final property shows a different way to build constraints along with how point of interest
selection can use different criteria. In this case, we require that “when line 10 is traversed, if
the value of type immediately after is a, every call to the function query after it should leave
the list res containing at least 2 results.”

Forall(q = state_after_line(10)).Forall(c = calls(’query’, after="q’)).\
Check (lambda q, c : (
If(q(C’type’).equals(’A’)).then(
c.result()(’res’).length() >= 2
D)
)



EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

2.3 Instrumentation and Monitoring

Given any specification that is written in PyCFTL, VYPR can automatically instrument the
program under scrutiny (so that a conservative amount of data is taken at runtime) and ef-
ficiently monitor for agreement with the specification at runtime [9, [10]. Instrumentation is
performed by:

e Reading into memory the code of the function to which a particular property applies.
e Using Python’s ast library to construct the abstract syntax tree (AST) of the code.

e Inserting instrumentation code at a conservative set of program points identified by static
analysis.

The modified AST is then compiled to bytecode and the original source file is renamed to
prevent recompilation and subsequent loss of instrumented bytecode. Monitoring is triggered
by importing the VYPR package and instantiating a VYPR object which also starts a separate
thread in which the monitoring algorithm runs. The instruments placed send information to
this thread in order for the monitoring algorithm to decide whether the program run satisfied
the specification given by the developer.

3 Prototype Analysis Tools

The data captured by VYPR has a complex structure that is closely related to the frame-
work’s mathematical foundations. The offline analysis tools being developed so far in-
clude a Python library and a web application. The Python library operates in separa-
tion from VYPR, with most operations being possible simply by querying VYPR’s ver-
dict server and some currently requiring the source code of the relevant parts of the ser-
vice that was monitored. In-depth documentation of the analysis library can be found at
http://pyvypr.github.io/home/analysis-library/. Finally, the development of the web applica-
tion is underway.

3.1 Object-Oriented Analysis Library

VYPR’s current principle analysis tool is the VYPRANALyss library, which provides meth-
ods that communicate with the verdict server via HTTP. The benefit of all data being stored
on a central server (currently in a relational database) and accessible via an API that the
server provides is that end-points can be defined to cover cases for which otherwise complex
queries would be required. Such queries would make offline analysis time-consuming and
error-prone, so we took the approach of developing an analysis library that takes common,
complex queries and wraps them in single functions. This simplicity allows scripts written by
developers using the analysis library to be written without thinking of the underlying (often
heavy) computation that must happen to answer certain questions.

3.2 Some Simple Queries

Once the analysis library has been imported, some basic knowledge of the information col-
lected by VYPR is useful. Given the simple specification

Forall(call = calls(’func’)).Check(lambda call : call.duration() < 2)

the information stored will allow the developer to:

e Select an HTTP request/transaction.


http://pyvypr.github.io/home/analysis-library/

EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

o Select a specific function and specification over that function.
o Select a call of the function.

e For a given point of interest (in this case, a call of func), see whether the constraint given
was satisfied there, what the observations were that led to this verdict, and which parts
of the code generated them. For example, in the specification we consider, a measure-
ment is needed to decide whether call.duration() < 2 holds. We call this measurement an
observation.

Since all of this information is stored in a relational database, one can query in multiple
directions. For example, by selecting a statement in code, a developer can see all results
during monitoring that used a measurement from it.

We now give some examples of Python code using the analysis library. First, we list all
of the failed verdicts generated by func violating the constraint defined by the specification
above:

function = analysis.list_functions()[0]

prop = function.get_properties()[0]

call = function.get_calls()[0]

failed_verdicts = call.get_verdicts(property=prop, value=0)

Then, we can select a verdict and get the list of observations that were needed to reach it:

verdict = failed_verdicts[0]
observations = verdict.get_observations()

After the execution of this code, observations will hold a list of Observation objects, each of
which containing the value observed, the part of the specification for which that value was
observed and an indication of the point of code from which the measurement was taken.

3.3 Explaining a Verdict

Given a result concerning the satisfaction of a specification by a run of a program, it is natural
to ask for an explanation of this result. One of the main examples of more complex queries
for such explanation is path comparison [4]. This requires additional instrumentation by
VYPR which results in small overhead; measurements have shown an additional 1% runtime
overhead for our IO-heavy use cases. Path comparison is a powerful technique that can be
used in different ways, so we present a case here in which it would be useful. Consider the
specification

Forall(call = calls(’construct’)).Check(lambda call : (
timeBetween(call.result(), call.next_call(’commit’).input()) <= 1

)

Based on this, it would be reasonable to select a call of construct to assign to call
and then ask what the differences were (usually) between paths from call.result() to
call.next_call(’commit’).input () across multiple runs of the function over which this spec-
ification was written. The path comparison machinery provided by VYPR would enable the
developer to identify regions of disagreement among multiple paths between the two points.
For example, if the code between the two points contained an if-statement, VYPR would be
able to detect whether the paths agreed before and after the if-statement, but not during it.
Ultimately, this facility allows developers to identify paths through their code that are less
performant. Section[4.3]shows this working in practice.



EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

4 Application of VYPR at the CMS Experiment

‘We now describe the application of VYPR to an upcoming version of the CMS Upload Service
for Alignment and Calibrations data [[11]. This service is responsible for uploading constants
describing the alignment and calibration of the CMS detector [12]] to a central database. The
upload process involves frequent communication with other machines on a network in order
to correctly validate proposed constants. We refer to a single execution of the upload process
as a Conditions upload.

4.1 Using VYPR for the CMS Conditions Upload Service

The first step in applying VYPR is to write a specification. One approach to this process,
especially when the code base is already written, is to start with approximate constraints over
high-level parts of the code base being analysed and iteratively refine the specification.

Using this iterative process, which is the one that has been favoured during use at CMS
so far, more intuition can be gathered about the expected values of measurements taken and
the relationship between quantities measurable at runtime.

Once a specification is written, VYPR’s instrumentation process is currently accessible
to developers via the instrument.py script deployed with the main VYPR source code. This
reads the specification, determines the relevant parts of the service code and finally performs
instrumentation.

Monitoring at runtime is triggered by importing the Monitor class from VyPR. Instantia-
tion of this class starts up a monitoring thread that consumes from a queue to which instru-
mentation code pushes messages.

4.2 Previous Results

The application of the first prototype of VYPR to the CMS Conditions Upload Service yielded
two instances of interesting behaviour [10]. One was an unexpectedly large amount of time
taken by one query, and another was that the times taken by many repetitions of a particular
query seemed to be inversely proportional to the time between the queries. This first applica-
tion allowed us to identify initial performance problems with critical infrastructure, but also
showed the feasibility of using an approach inspired by Runtime Verification [[13]].

4.3 New Results

The first application of the newly developed path comparison machinery was to construct

plots of the time taken for the CMS Conditions Upload Service to reach one statement from

another during calls of a specific function. Our specification was similar to the one discussed

earlier:

Forall(call = calls(’tag_in_destination’)).Check(lambda call : (
timeBetween(call.result(), call.next_call(’commit_iovs’).result()) <= 1.2

))

In this case, the value tested by an if-statement to decide on which path to take from
call.result() tO call.next_call(’commit_iovs’).result() was a non-trivial object. This meant
that storing the value and using that to determine the branch in offline analysis was not feasi-
ble. Further, we could have modified the code being monitored to give some indication of the
branch via a boolean variable, but this was not appropriate because 1) we aim for minimal
intrusion and 2) for more complex control-flow, this can become difficult.

In order to construct the plots that we needed with VYPR’s analysis library, we took the
following steps:



EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

Observed times along subpath with index 1

20.0{ =W Main path
mmm Insert 10Vs call
17.5+ mmm Process IOVs call

15.01

12.54

Time taken (s)

0 100 200 300 400 500 600 700 800
Measurement index

Observed times along subpath with index 0

B Main path
B Insert 10Vs call
8- WM Process IOVs call

Time taken (s)
o
s

IS
s

0 20 40 60 80 100
Measurement index

Figure 1. Plots of the time taken to get from one statement in code to another. Each plot contains
measurements taken along a distinct path. The measurement index is the index of the measurement in
the set derived for the particular path.

1. Select the relevant function and specification over that function.

N

Get the list of calls of that function.
For each call, get the pair of observations generated by the two statements of interest.
For each pair of observations, reconstruct the path between them.

Determine the region of disagreement of the resulting set of paths.

A

For each path taken through the region of disagreement, construct a plot of the time
elapsed between the two observations. In our case, there were two paths taken through
the region of disagreement, so we got two plots.

The plots constructed after replaying 4000 Conditions uploads and applying this analysis
procedure (while throwing away observations for which the time taken violated our specifi-
cation) are given in Figure[T] It is clear that one path is often less performant than the other.
In an effort to determine the root cause of the erratic performance, we used VYPR to measure
the time taken by calls lying on the two paths. We see that calls to the Insert IOVs function
seem to be problematic.

5 Future Plans

Further work on the analysis library involves writing a set of prebuilt scripts to deploy along-
side VYPR. Using this approach, we can provide automated analysis in the background. Fi-



EPJ Web of Conferences 245, 05013 (2020) https://doi.org/10.1051/epjconf/202024505013
CHEP 2019

nally, ongoing work on the web-based analysis tool will allow visualisation of path compari-
son data and exploitation of the data generated by our prebuilt analysis scripts.

6 Conclusion

In this paper we have briefly described the VYPR performance analysis framework for Python
programs. Our main contribution was the set of analysis tools that are currently in the proto-
type stage, whose first application to critical infrastructure at CMS was described.

References

[1] cProfiler, https://docs.python.org/2/library/profile.html#module-cProfile

[2] pyinstrument - a Statistical Profiler for Python, https://github.com/joerick/
pyinstrument

[3] trace - the Python tracing tool, https://docs.python.org/2/library/trace.html

[4] J.H. Dawes, G. Reger, Explaining Violations of Properties in Control-Flow Temporal
Logic, in Runtime Verification - 19th International Conference, RV 2019, Porto, Por-
tugal, October 8-11, 2019, Proceedings (2019), pp. 202-220, https://doi.org/10.
1007/978-3-030-32079-9_12

[5] A. Pnueli, The temporal logic of programs, in 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977) (1977), pp. 4657, ISSN 0272-5428

[6] H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-Based Runtime Verification, in
Verification, Model Checking, and Abstract Interpretation, edited by B. Steffen, G. Levi
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2004), pp. 44-57, ISBN 978-3-540-
24622-0

[7] S. Hallé, S. Varvaressos, A Formalization of Complex Event Stream Processing (2014),
Vol. 2014, pp. 2-11

[8] A. Bauer, M. Leucker, C. Schallhart, ACM Trans. Softw. Eng. Methodol. 20, 14:1
(2011)

[9] J.H. Dawes, G. Reger, Specification of temporal properties of functions for runtime
verification, in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC 2019, Limassol, Cyprus, April 8-12, 2019 (2019), pp. 22062214, https:
//doi.org/10.1145/3297280.3297497

[10] J.H. Dawes, G. Reger, G. Franzoni, A. Pfeiffer, G. Govi, VyPR2: A Framework for Run-
time Verification of Python Web Services, in Tools and Algorithms for the Construction
and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II (2019), pp. 98-114,
https://doi.org/10.1007/978-3-030-17465-1_6

[11] J.H. Dawes, C. Collaboration, Journal of Physics: Conference Series 898, 042059
(2017)

[12] T.C. Collaboration, Journal of Instrumentation 3, SO8004 (2008)

[13] E. Bartocci, Y. Falcone, A. Francalanza, M. Leucker, G. Reger, in Lectures on Runtime
Verification - Introductory and Advanced Topics (2018), Vol. 10457 of LNCS, pp. 1-23


https://docs.python.org/2/library/profile.html#module-cProfile
https://github.com/joerick/pyinstrument
https://github.com/joerick/pyinstrument
https://docs.python.org/2/library/trace.html
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1007/978-3-030-17465-1_6

	Motivation for Sophisticated Performance Analysis
	Existing Approaches to Performance Analysis
	Analysis-by-Specification

	Building Performance Specifications
	A Simple Example
	More Complex Constraints
	Instrumentation and Monitoring

	Prototype Analysis Tools
	Object-Oriented Analysis Library
	Some Simple Queries
	Explaining a Verdict

	Application of VyPR at the CMS Experiment
	Using VyPR for the CMS Conditions Upload Service
	Previous Results
	New Results

	Future Plans
	Conclusion

