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Abstract: This is a review/research paper on anomalies applied in a bottom–up approach
to standard model and gravity. It is divided into two parts. The first consists of a proper
review of anomalies in quantum field theories. Anomalies are analyzed according to three
different methods: a perturbative one based on a Feynman diagram, a non-perturbative one
relying on the Schwinger–DeWitt approach, and, third, one hinging on the Atiyah–Singer
family’s index theorem. The three methods are applied both to chiral gauge anomalies
and trace anomalies. The fundamental distinction, which our presentation leads to, is
between obstructive (O) and non-obstructive (NO) anomalies. The former is tied to the
non-existence of fermion propagators, which fatally maim the corresponding theory. In
the second part, we apply this analysis to the SM and a variety of its extensions, which
are immersed in a gravitational background, and we find that they are all plagued by a
residual chiral trace anomaly. To completely eliminate all kinds of dangerous anomalies
in SM-like theories, we propose a somewhat unconventional scheme and exemplify it by
means of an explicit model. The latter is a left–right symmetric model. We embed it in a
Weyl geometry to render it a conformal invariant. We then deal with some of its quantum
aspects, particularly its even (NO) trace anomalies and the means to preserve its conformal
invariance at the quantum level. We briefly review renormalization and unitarity in the
framework of similar models discussed in the existing literature. Finally, we present a
possible (conjectural) application of the model to describe the junction between cosmology
and quantum field theory.

Keywords: particle physics; quantum gravity; conformal symmetry

1. Introduction

The quantum field theory, called the standard model (SM) of particle physics, describes
the 5% of the energy/matter of the universe as being made of baryons and light. Its neutrino
sector is still under construction; the dark matter and dark energy sectors are out of its
reach, but there is no doubt that the strong, weak and electromagnetic interactions of
standard matter can find a satisfactory explanation within it. This is fine as long as gravity
is ignored or, at least, recedes to a remote enough distance, which is assumed not to disturb
these interactions and forms a realm of its own, which, in turn, is described by the so-called
standard model of cosmology (ΛCDM). This situation is clearly unsatisfactory, and the
attempts at bridging the gap between the two pictures have abounded since earlier times:
clearly, it is, at present, the main theoretical physics puzzle, and it includes in particular,
the challenge of quantizing gravity. There are two general attitudes in this regard: the
top–down one (superstring theories being the prominent examples) and the bottom–up.
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For example, in the approach based on a given superstring theory, one starts from a ten-
dimensional geometric configuration, which possibly includes branes. One considers the
field theory (low energy) limit and compactifies to four dimensions. The final field theory
includes matter and gravity. The bet is to be able to carefully choose the compactification
in such a way as to reproduce the SM spectrum in the final theory. The latter turns out
to be automatically UV complete. A bottom–up approach means, instead, starting from
the SM and its classical interaction with gravity to build up, step by step, a larger effective
quantum theory that encompasses all the interactions. Here, the key word is ‘effective’. We
imagine the ultimate theory as a complete quantum field theory, which describes the four
basic interactions as being unitary—that is, it conserves probability—and renormalizable
(possibly finite), or more generically, predictive; but being also able to explain those aspects
of the universe which we are so far able to describe phenomenologically, but whose origin
and link with ordinary matter and gravity remain mysterious: big bang, inflation, dark
matter, dark energy, baryon asymmetry, etc. One such quantum field theory is not yet
available. And we have to make do with approximations of it, that is, with quantum field
theories larger than the SM, which is comprehended in some form gravity and is able to
explain one or more of the above mentioned pieces of cosmology.

The bottom–up approach in constructing such an effective field theory, starting from
the SM, parallels the inverted time evolution of the universe. The SM and classical gravity
are probably satisfactory descriptions of the universe below the TeV energy or after a time
of around 10−12 s from the beginning. While we do not know when the quantum regime of
gravity began, it must have been much earlier than this. There is a vast stretch in logarithmic
time where many phenomena must have taken place, such as baryogenesis, dark matter
generation, and inflation. This part of the history of the universe is still largely conjectural.
Trying to reconstruct it is like driving a car in reverse in a dark night while relying only on
the information gathered from the headlights. Any tiny bit of information is precious. The
purpose of the present paper, which is, in part, a review of the existing literature and, in
part, an original elaboration, is to direct the headlights to and scrutinize the conditions that
make a matter theory like the SM (or an extension thereof) consistent with the (minimal)
coupling to gravity. We will find information that has not been sufficiently considered so
far and will inject it in an attempt to construct an effective scheme (rather than a specific
model) of quantum matter in interaction with quantum gravity. This extra input comes
from the analysis of anomalies, which arise when matter like that of the SM couples to
gravity. As the title says, we wish to expose how anomalies can help us in the bottom–up
approach. In quantum field theories, there appear to be two large classes of anomalies,
which we, being short on imagination, dub type O (O stands for obstructive) and type
NO (non-obstructive). Type O is a dangerous kind of anomaly in that, when present, it
compromises renormalization and/or unitarity. In fact, as we shall see, the reason is very
down to earth: these anomalies appear in theories with Weyl fermions (with chiral fermions,
in general); they are all odd-parity and include the so-called consistent chiral gauge and
diffeomorphism anomalies and the consistent odd-parity trace anomalies. They signal
the fact that the corresponding fermion propagators do not exist. Type NO anomalies
are not dangerous; they do not signal any irreparable flaw of the theory and, in general,
need not be canceled. In particular, the relevant propagators do exist (possibly after gauge
fixing). They include the even parity trace anomalies and the ABJ anomalies in theories of
Dirac fermions.

The first main point stressed by this paper is that the minimal standard model (MSM),
along with its extensions (see below), is free of type O anomalies as long as we can disregard
gravity. But this is not true anymore if the MSM is coupled to gravity in a minimal way.
Some type O anomalies, which seem to have been disregarded so far, do not vanish. They
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are odd-parity (chiral) trace anomalies belonging to the type O group. The second main
purpose is to present a possible type O-anomaly-free scheme, which includes extensions of
the SM, and discuss in this setup the role of even-parity trace anomalies, which, instead,
belong to the set of type NO set. Accordingly, the paper is divided into two parts, I and II.

The distinction between type O and type NO anomalies is a basic one, particularly in
relation to the SM and its extensions. For this reason, we have felt the necessity to return
to the basics with a concise but (hopefully) thorough presentation of anomalies and their
calculations. This covers Sections 2–11. We first review the definitions and calculations of
the chiral gauge anomalies with perturbative methods based on Feynman diagrams, then
with non-perturbative methods, of which we present the SDW (Schwinger–DeWitt) one in
particular. But these two methods, which are fundamental for reasons that do not need to be
stressed, are unable to unmask the true nature of type O anomalies and explain why and in
what sense they differ from the type NO ones. A third approach is necessary, the one based
on the family’s index theorem. The latter tells us that type O anomalies are obstructions to
the existence of the relevant Weyl fermion propagators, and this reveals their true nature.
In particular, that is why they are ‘dangerous’: if the fermion propagators do not exist, the
concept of (perturbative) quantization does not make sense. Our subsequent analysis of the
SM and its extensions is based primarily on this fact and on the complementary fact that
type NO anomalies do not imply any lack of propagators. This second fact is sanctioned by
the family’s index theorem, in which Euclidean self-adjoint operators, which are the sources
of type NO anomalies, have vanishing family’s index and so do not represent obstructions.

This is the basic distinction to always keep in mind. It is, therefore, of paramount
importance to recognize type O and type NO anomalies. The well-known consistent gauge
anomalies in theories of chiral fermions are type O, and their absence in a theory is the
first requisite for its consistency. But there are other type O anomalies that correspond to
non-vanishing obstructions exposed by the family’s index theorem: they are the chiral trace
anomalies in the theories of Weyl fermions. We devote a sizable portion of the first part to
derive, by means of different methods, these kinds of trace anomalies. Once this is done,
we apply the results to the minimal version of the SM and to a set of its extensions, which
are minimally coupled to gravity. It turns out that in all these models, some residual chiral
trace anomalies survive; more precisely, the chiral trace anomalies generated by the SU(2)
gauge fields. This result concludes the first part.

In the second part of the paper (Sections 12–20), we propose a scheme in order to cancel
the above anomalies for SM extensions. The cancelation of all type O anomalies requires a
left–right symmetry of the spectrum of fermions, which is, however, quite different from the
L-R extension models present in the literature. The fermionic L-R symmetry is accompanied
by also doubling the SU(3) and U(1) gauge fields (but not of the SU(2) ones), by a doubling
of the scalars and also by a doubling of the metric (which, incidentally, makes it a bimetric
theory). The resulting theory is denoted T . Its formulation becomes remarkably simple if
one uses, as a bookkeeping device, the AE (axially extended) formalism, which is based on a
version of the so-called hypercomplex analysis. This is based on a doubling of the variables
analogous to the passage from the real to the complex numbers, with the imaginary unit i

being replaced by the matrix γ5. The action of T , without Yukawa couplings, is invariant
not only under diffeomorphisms and gauge transformations, like any ordinary extension
of the SM minimally coupled to gravity, but also under doubled AE diffeomorphisms, i.e.,
diffeomorphisms, which have two components: the ordinary one and the other represented
by the coefficient of γ5. The chiral symmetry of T splits it into two, T = TR ∪ TL, which are
formulated in terms of multiplets of right-handed and left-handed fermions, respectively,
and also on sets of ‘right’ and ‘left’ metrics and SU(3) and U(1) gauge fields and scalar
fields, respectively, with the only exception being the SU(2) gauge fields, which are in
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common to both TR and TL. It is important to bear in mind that the pervasive presence of
the chiral projectors does not allow the ‘right’ fields to interact directly with the ‘left’ fields,
except through the SU(2) gauge fields.

At this stage of the construction of an anomaly-free version of the SM coupled to
gravity, which is invariant under gauge transformations and diffeomorphisms, we face
a problem common to all analogous attempts. The SM above the electroweak symmetry-
breaking energy is formulated in terms of massless fermion and gauge fields, which, as
such, are naturally coupled to a metric. It is true that the scalars are massive, but at high
enough energy, these masses can be considered irrelevant. In this situation, the absence of
dimensionful parameters, the coupling to a metric and the addition of a very simple term
make the action invariant under local Weyl transformations. The question, therefore, is
whether Weyl invariance has to be subsumed under the local symmetry of the theory by
enlarging it beyond gauge transformations and diffeomorphisms. We believe that this has
to be decided in terms of the unitarity and renormalizability (predictivity) of the theory.
In that sense, we do not have a definite answer to the question. After formulating T as
T W , i.e., as a Weyl conformal field theory, which is a rather simple matter, we observe that
Weyl invariance is a rather peculiar gauge symmetry in that it admits a minimal realization
that does not require the presence of a corresponding vector gauge field; the function of
the latter can be carried out by a scalar field, which can be identified with the dilaton. We
perform the quantization without fixing the conformal gauge; there is no obstruction as
no propagator is missing without gauge fixing. Then, we study the Ward identity of the
Weyl symmetry and connect it with the study of trace anomalies. We determine, at least in
principle, all the latter and show that they can be canceled by means of Wess–Zumino terms.
The obstacles, however, come from renormalization and unitarity. If we want to oblige the
renormalization protocol, we must also introduce into the action terms like the square Weyl
tensor, which carries in the particle spectrum a physical ghost, i.e., a particle with a wrong
sign of the kinetic term, thus affecting unitarity. It would seem that Weyl invariance is an
excessive request for our theory T W , at least as it is formulated in this paper.

An alternative possibility is to consider the Weyl symmetry an accidental symmetry
that may appear in approximate form at some stage of the history of the universe, which, in
any case, is a non-necessary symmetry in the process of quantization. In this case, it seems
that the process of renormalization can go on while preserving unitarity.

But, perhaps, these two alternatives should be thought of in sequence, in the sense
that they describe two ranges of energies: First, at lower energy (anyhow, higher than the
electroweak symmetry breaking scale); second, at higher energy, which is a satisfactory
description. We have to resort to the first, which requires Weyl invariance. Its lack of
unitarity could signal that some degrees of freedom are missing for the theory to be
UV complete.

More research is certainly necessary for finding a precise answer. But if we do not
have an answer in the direction of higher energies, we can perhaps speculate further in the
opposite direction, that is, toward lower energies and the SM in its familiar form. First of
all, we fix the conformal gauge in the right part of the theory, i.e., in T WR, by fixing the
corresponding dilaton to a constant value. At this stage, the theory has the aspect of the SM
minimally coupled to gravity except for a couple of additional (non-minimal) couplings of
the Ricci tensor to the scalars. Next, we postulate an early breaking of the chiral symmetry
(a primitive chiral symmetry breaking) by means of a Higgs mechanism generated by the
non-zero vev (vacuum expectation value) of the real scalar field present in T WR. This
endows all the ‘right’ fermions and other ‘right’ fields with a large mass, while the T W L

remains with all the original symmetries. Clearly, this determines different evolutions for
the ‘left’ and ‘right’ theories, which are, however, not completely unrelated. The point is
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that they keep interacting, although weakly, via the common SU(2) gauge fields and Higgs.
The ‘right’ one becomes a theory of heavy quarks and leptons, while the ‘left’ evolves
toward a theory encompassing classical gravity and the SM, together with a real scalar
field, which can realistically play the role of inflation. Due to the weak interaction among
the two theories, it is natural to think of the ‘right’ as a candidate for the dark matter world.

As long as all the above are not supported by concrete calculations, they are nothing
more than speculations. But they are fascinating speculations, and they are not unreason-
able.

1.1. The Standard Model

In the absence of gravity, the world of (visible) matter and light is well described,
up to around the TeV energy, by the standard model (SM) of elementary particles. It is a
gauge theory with a gauge group SU(3)× SU(2)×U(1). The latter is the symmetry in the
unbroken phase when all the quarks and leptons are massless. The SU(3) gauge bosons
mediate the strong interactions. The SU(2)×U(1) ones carry the electroweak interactions.
In the symmetric phase, the spectrum of massless quarks and leptons is specified by three
families like the one below,

G/ f ields SU(3) SU(2) U(1)(
u

d

)

L

3 2 1
6

uR 3 1 2
3

dR 3 1 − 1
3(

νe

e

)

L

1 2 − 1
2

eR 1 1 −1

(1)

The second column specifies the relevant representations of SU(3), the third the ones of
SU(2) and the last is the list of U(1) representations, which are denoted by the correspond-
ing hypercharge eigenvalues [A frequent alternative notation is to use the Lorentz covariant
conjugates (uR)

c, (dR)
c and (eR)

c instead of uR, dR and eR, in order to collect all the fields
in a unique left-handed multiplet. In this case, one has to reverse the signs of their U(1)
charges and replace the representation 3 of SU(3) of uR, dR with the 3̄ of (uR)

c, (dR)
c]. We

recall that the hypercharge is defined by

Y = Q− T3, T3 =
1
2

(
1 0
0 −1

)
, (2)

here Q is the electromagnetic charge and T3 the third generator of SU(2) in the doublet
representation. The SM spectrum is completed by the sector of Higgs scalars.

The fermion spectrum in (1) is not the only possible one, it refers to the original
formulation of the SM, referred to as the minimal standard model (MSM), which is anyhow
the basis of the subsequent (attempted) modifications. We shall discuss several of the latter
in the course of the paper, but for the moment, we focus on (1). At suitable low energies,
the gauge symmetry of the model breaks down to the local U(1) of electromagnetism, and
this is achieved thanks to the presence in the model of the Higgs doublet of scalars, which
is responsible for the breakdown of symmetry and simultaneous generation of the fermion
masses. For the moment we restrict our consideration to the symmetric phase and to the
fermionic spectrum (1).

One of the most important criteria followed in the construction of the SM has been
the absence of chiral gauge anomalies. This is a well-known fact, and if we review here
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some well-known material, it is because it is necessary for a full appreciation of other
less known aspects. Needless to say, the subject of gauge anomalies, after more than fifty
years of analyses, papers and attempts, still seems to preserve a halo of mystery. But, as
anticipated in the introduction, the reason why anomalous theories, i.e., theories infected
by type O anomalies, are sick and cannot be taken into serious consideration is not due
to a mysterious spell or curse of some malignant jinn, the reason is instead very clear and
simple: in such theories, which are theories of Weyl fermions [The same problem also
exists for other chiral fermions, for instance for the gravitino, but in this paper, we limit
ourselves to spin 1/2 chiral fermions]: the corresponding fermion propagators do not
exist. Anomalies are simply an indirect manifestation of this fact. This is the origin of the
conundrum, which explains why the construction of consistent quantum field theories
in such cases is impossible. But let us proceed step by step. Needless to say, the reader
familiar with this subject may skip this part. Refs.: [1–15].

1.2. A Summary

The paper is divided into two parts. The first part is a review of anomalies in field
theories. Section 2 is devoted first to the simplest calculation of chiral gauge anomalies in
4d with perturbative methods (Feynman diagrams). In the next subsection we review the
method of Bardeen to arrive at the same result by introducing an auxiliary axial potential.
Then, we introduce the Wess–Zumino consistency conditions and the BRST cohomology.
In the final subsection, we show how the previously computed chiral anomalies cancel
in the SM. In Section 3 we obtain the same Bardeen’s anomaly derived before with a non-
perturbative method, the Schwinger–DeWitt (SDW) method. Section 4 is devoted to a third
method of computing the same chiral anomalies based on the Atiyah–Singer family’s index
theorem. We start with a geometrical presentation of anomalies relying on the geometry of
principal fiber bundles. We show that their full comprehension requires the introduction
of the relevant universal bundles and classifying spaces. Then, we introduce the Atiyah–
Singer theorem and the Atiyah–Singer family’s index theorem, which is required by the
geometry of gauge theories. Next, we apply this theorem to the problem of anomalies:
the latter turn out to be obstructions to the existence of fermion propagators in theories of
chiral fermions, as it clearly appears using the Quillen determinant. This section contains
the crucial results for our identification of the meaning of chiral anomalies (both gauge
and trace). Section 5 is an exposé of gravitational anomalies. In Section 6, we introduce
and compute gauge and gravity-induced odd-parity trace anomalies in theories of Weyl
fermions. This first computation is carried out with perturbative methods. At this stage,
in Section 7, we evaluate the odd-parity trace anomalies in the standard model minimally
coupled to gravity and show that the gauge-induced ones do not cancel completely. In
Section 8 we recalculate the same trace anomalies by means of the SDW method. To this
end, we introduce the MAT (metric-axial-tensor) formalism, wherein we redefine the usual
metric tensor gµν by adding to it another symmetric tensor fµν multiplied by γ5, which
makes use of the axial-complex analysis (a form of hypercomplex analysis), see Section 8.1
below. By this method, we compute various types of anomalies that may appear in matter
theories coupled to gravity. In Section 9, we return to the meaning of anomalies and explain
the difference between O (obstructive) anomalies and NO (non-obstructive) anomalies.
Section 10 is devoted to our critical assessment of the existing literature on trace anomalies.
The first part ends with the application of the previous results to the SM and its extensions
minimally coupled to gravity. In Section 11 we compute the (gauge and trace) anomalies
in some of the extensions of the SM and verify that while they are all free of chiral gauge
anomalies they all contain a residue of chiral trace anomalies.
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The second part begins with a summary of this problem and an enumeration of a
few way-outs, which are not, however, our preferred choice. In Section 13 we propose a
scheme, illustrated with a concrete left–right (or chirally or parity) symmetric model [We
use throughout left–right (L-R) and chirally symmetric as synonyms, with some abuse of
language because the latter should refer only to fermions, while the former refers to all
the fields], that completely cancels all the O anomalies. We then construct the full theory,
dubbed T , which includes the SM extension and gravity. It turns out convenient to use the
axial-complex calculus so that all pieces of the action are in the AE (axially extended) form,
i.e., left–right symmetric form. Section 14 is devoted to a short review of Weyl geometry
and Higgs mechanisms. In Section 15 we embed our model T in Weyl geometry and
render it Weyl invariant. Its conformal invariant action is called T W . In Section 16 we
start discussing aspects of T W as a quantum theory. Section 17 is devoted to a discussion
of even trace anomalies, an introduction of WZ terms and how to use the latter in order
to eliminate all trace anomalies and restore the conformal symmetry at a quantum level.
Section 18 is a short review based on the existing literature on renormalization and unitarity
in theories similar to T W . Finally, in Section 19, we argue about the fate of the two halves,
T W L and T WR, after a spontaneous L-R symmetry breaking and how we may recover
the familiar minimal SM at lower energy.

A few appendices concern the notations, our rules for the Wick rotation, gauge fixings,
an example of trace anomaly due to the scalar fields and a discussion concerning the dilaton.

2. Review of Anomalies (Without Gravity)

In order to study the chiral anomalies in the massless SM, it is not necessary to consider
the full Lagrangian. The fermion kinetic terms are enough. Since anomalies are additive,
it is enough to consider one type of fermion at a time. Let us consider, for instance, the
classical kinetic action for a right-handed Weyl fermion coupled to an external gauge
field Vµ = Va

µ Ta, Ta being Hermitean generators [Ta, Tb] = i f abcTc (in the Abelian case
T = 1, f abc = 0) in the fundamental representation of a compact group G:

SR[V] =
∫

d4xiψR(/∂ − i/V)ψR. (3)

Here, ψR is a right-handed Weyl spinor, which can be projected out from a Dirac spinor ψ by
means of the chiral projector PR, ψR = PRψ (see Appendix A for the notation). This action is
invariant under the gauge transformation δψR = −λψR and δλVµ = Dµλ ≡ ∂µλ− i[Vµ, λ],
where λ = λa(x)Ta, which implies the classical conservation of the non-Abelian current
Ja
Rµ = ψ̄RγµTaψR, i.e.,

(D·JR)
a ≡ (∂µδac + i f abcVbµ)Jc

Rµ = 0. (4)

This is, in general, not true after quantization. Our purpose here is to compute such
violations. This type of calculation has been performed in a number of different ways. First,
we focus on the perturbative method, in which we treat V as a perturbation and adopt the
Feynman diagram technique.

2.1. The Perturbative Approach

The quantum effective action for this theory is given by the generating functional of
the connected Green’s functions of such currents in the presence of the source Vaµ

W[V] = W[0] +
∞

∑
n=1

in−1

n!

∫ n

∏
i=1

d4xiV
aiµi (xi)⟨0|T J

a1
Rµ1

(x1) . . . Jan
Rµn

(xn)|0⟩c (5)
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and the full 1-loop 1-point function of Ja
Rµ is

⟨⟨Ja
Rµ(x)⟩⟩ = δW[V]

δVaµ(x)
=

∞

∑
n=0

in

n!

∫ n

∏
i=1

d4xiV
aiµi (xi)⟨0|T Ja

Rµ(x)J
a1
Rµ1

(x1)...J
an
Rµn

(xn)|0⟩c (6)

We wish to calculate the odd parity anomaly of the divergence D·⟨⟨Ja
R⟩⟩, where D represents

the covariant derivative defined in (4). The RHS of (6) contains an infinite series of current
amplitudes. The one-point amplitude vanishes because of translational invariance; the
two-point amplitude is non-vanishing but does not contribute to the odd-parity anomaly.
Therefore, the first non-trivial contribution comes from the three-point function, which, in
terms of Feynman diagrams, is represented by the famous triangle diagram, whereby each
side represents a fermion propagator and each vertex an interaction vertex.

Here comes the complication: The Weyl fermion propagator, the inverse of the kinetic
operator i/∂PR, simply does not exist. For PR is a projector and it is not invertible, while
i/∂ is, but contains both a right-handed and a left-handed part [It isworth spending a few
words to avoid misunderstandings on this issue: this is not the non-invertibility due to the
presence of some zero modes of the kinetic operator, a case which is anyhow relevant only
to nonperturbative calculations and can be handled by subtracting the zero modes; in the
present case, we have to do with an operator whose domain and image are different spaces
and for which the eigenvalue problem is not even defined].

We can dodge this obstacle by an escamotage: instead of i/∂PR we invert i/∂, i.e., we
replace the missing propagator with the Dirac propagator. We remark, however, that this
corresponds to adding a term iψL /∂ψL to the integrand of (3), which corresponds to adding a
free left-handed Weyl fermion. Whether we have to pay the price or not for this escamotage,
it allows us to proceed in the calculation. In momentum space, the propagator of a fermion
with momentum pµ is i

/p+iϵ , and the vertices have the form iγµPRTa. We associate an
entering momentum q to the current ja

RµTa to be differentiated and exiting momenta k1

and k2 to jb
RλTb and jc

RρTc; of course, q = k1 + k2. The three-current amplitude factorizes

into the Tr(TaTbTc) factor times the amplitude for three Abelian currents. We forget for the
moment the trace factor and proceed with the computation of the Abelian amplitude. In
momentum space, it is

qµ F̃
(R)
µλρ(k1, k2)=

∫
d4 p

(2π)4 tr
{

1

/p
γλ

1 + γ5

2
1

/p − /k1
γρ

1 + γ5

2
1

/p − /q
/q

1 + γ5

2

}
(7)

The integral over the momentum p running around the loop is UV divergent. It can be
dealt with, for instance, by transforming it into a Euclidean integral by means of a Wick
rotation, then dimensionally regularizing it and, finally, rotating it back to a Minkowski
expression (see Appendix B for our conventions concerning Wick rotations). All of this is
well known. Here, we limit ourselves to writing down the result for the odd parity part.

F̃
(R,odd)
λρ (k1, k2) + F̃

(R,odd)
ρλ (k2, k1) =

1
12π2 εµνλρk

µ
1 kν

2. (8)

where the second term in the LHS comes from the crossed diagram, which has to be added
according to the Feynman rules.

From (8), and ignoring again the group theoretical factor, we can obtain the final result
for the purely Abelian case. It is enough to Fourier anti-transform it and insert it in (6)
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∂µ⟨⟨JRµ(x)⟩⟩ =
∫

d4q

(2π)4 e−iqx(−iqµ)⟨⟨ J̃Rµ(q)⟩⟩

= − 1
24π2

∫
d4qd4k1d4k2

(2π)12

∫
d4yd4zei(qx−k1y−k2z)δ(q−k1−k2)εµνλρk

µ
1 kν

2Vλ(y)Vρ(z)

=
1

24π2 εµνλρ∂µVν(x)∂λVρ(x). (9)

In the Abelian case, the amplitudes (8) are all one needs in order to derive the complete
result. The analogous anomaly in the non-Abelian case would require the calculation of
the four-current correlators, but it can be obtained in a simpler way from the Abelian
term multiplied by the group-theoretical factor, by means of the Wess–Zumino consistency
conditions (see below). In the non-Abelian case, however, it is more expedient to use
anti-Hermitean generators, (Ta)† = −Ta and [Ta, Tb] = f abcTc, and from now on, we will
stick to this convention (although the Hermitean convention is more familiar in particle
physics) unless otherwise specified. As pointed out before, in the non-Abelian case, the
three-point correlators are multiplied by

Tr(TaTbTc) =
1
2

Tr(Ta[Tb, Tc]) +
1
2

Tr(Ta{Tb, Tc}) = f abc + dabc (10)

where the normalization used is Tr(TaTb) = δab. Since the three-point function is the sum
of two equal pieces with λ ↔ ρ, k1 ↔ k2, the first term in the RHS of (10) drops out and
only the second remains. For the right-handed current Ja

Rµ, we have

(D · ⟨⟨JR⟩⟩)a =
1

24π2 εµνλρTr
[

Ta∂µ

(
Vν∂λVρ +

1
2

VνVλVρ

)]
. (11)

Remark 1. If the fermion is left-handed, instead of right-handed, the anomalies (9) and (11) simply

change sign. It follows that for a Dirac fermion, which can be written as the sum of a left-handed

and a right-handed Weyl fermion, the consistent gauge anomalies vanish. The same is true for

a Majorana fermion, which can also be expressed as the sum of a left-handed and a right-handed

Weyl fermion.

These anomalies affecting Weyl fermions (the consistent chiral gauge anomalies) are dangerous,

in fact deadly, for a theory. A simple example of such a catastrophe is represented by a right-handed

fermion coupled to an Abelian gauge field, thus with the anomaly (9). To see it, recall that the

Lorentz invariant quantum theory of a gauge vector field inevitably involves a Fock space of states

with indefinite norm. In order to select a physical Hilbert subspace of the Fock space, a subsidiary

condition is necessary. In the Abelian case, when the fermion current satisfies the continuity

equation, the equation of motion leads to □(∂ ·V) = 0, so that a subspace of states of non-negative

norm can be selected through the auxiliary condition

∂ ·V(−)(x)|phys⟩ = 0 (12)

V(−)(x) being the annihilation operator, the positive frequency part of the quantum field. On the

contrary, in the above-mentioned chiral model, one finds

□(∂ ·V) ∼ εµνλρ∂µVν(x)∂λVρ(x) ̸= 0 (13)

This is an obstruction to selecting a physical subspace of states with non-negative norm.
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2.2. Bardeen’s Method

Equations (9) and (11) are the general form of the consistent Abelian and non-Abelian
chiral gauge anomalies in 4d. But before discussing the Wess–Zumino consistency condi-
tions, let us return to the question of the non-existence of the Weyl propagator, which we
have bypassed above by adding to the action of a right-handed Weyl fermion interacting
with a gauge potential the action of a left-handed non-interacting fermion. There is another
way to overcome this obstacle, Bardeen’s way. It consists of a stratagem often resorted to
in field theory: when a calculation is too contrived, one had better enlarge the parameter
space of the theory. Bardeen’s way, ref. [16], consists in adding new degrees of freedom
by considering a theory of Dirac fermions coupled to a vector potential as well as to an
axial one, making the calculation in such a larger setup and taking a specific limit to return
to the initial configuration. Thus, let us consider a theory of Dirac fermions coupled to
non-Abelian vector and axial potential

SB[V, A] =
∫

d4xiψ /Dψ. (14)

where /D = /∂ + /V + γ5 /A. The evident advantage is that now the propagator exists and,
perturbatively, corresponds to the usual Dirac propagator. Moreover, taking the limit
V → V/2, A→ V/2 in (14) we recover the action of a right-handed Weyl fermion coupled
to Vµ, plus the action of a free left-handed Weyl fermion.

The action (14) is invariant under the gauge transformations

δψ = −(λ + ργ5)ψ (15)

and

δVµ = ∂µλ + [Vµ, λ] + [Aµ, ρ], δAµ = ∂µρ + [Vµ, ρ] + [Aµ, λ] (16)

where the local functions λ and ρ are Lie algebra-valued, λ = λa(x)Ta, ρ = ρa(x)Ta. This
implies the classical conservation of the vector and axial current, ja

µ = iψ̄γµTaψ, ja
5µ =

iψ̄γµγ5Taψ

(D
µ
V jµ + [Aµ, j5µ])

a = 0, (D
µ
V j5µ + [Aµ, jµ])

a = 0 (17)

where DV denotes the covariant derivative with respect to the vector potential.
To compute the anomalies in this case, we can proceed as above, via Feynman dia-

grams, i.e., compute the triangle diagrams ⟨j5 jj⟩ and ⟨j5 j5 j5⟩ (the other distinct three-current
amplitudes cannot contribute to the odd parity anomaly), determine the lowest order con-
tribution to the anomaly and then use the consistency conditions to reconstruct its full
expression. It can be performed, but it certainly is not the quickest way. Another possibility
is to use a non-perturbative method, see below. Here, we anticipate the result. After
subtracting trivial terms, if need be, we obtain vector current conservation

(
D

µ
V⟨⟨jµ(x)⟩⟩+ [Aµ(x), ⟨⟨j5µ(x)⟩⟩]

)a
= 0 (18)

while the axial conservation equation is anomalous:

(
D

µ
V⟨⟨j5µ(x)⟩⟩+ [Aµ(x), ⟨⟨jµ(x)⟩⟩]

)a
=

1
4π2 εµνλρtr

[
Ta

(
1
4

F
µν
V F

λρ
V +

1
12

F
µν
A F

λρ
A

−1
6

F
µν
V Aλ Aρ − 1

6
Aµ AνF

λρ
V −

2
3

AµFνλ
V Aρ − 1

3
Aµ Aν Aλ Aρ

)]
(19)
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where F
µν
V = ∂µVν − ∂νVµ + [Vµ, Vν], and F

µν
A = ∂µ Aν − ∂ν Aµ + [Vµ, Aν] + [Aµ, Vν]. This

is Bardeen’s anomaly.
From this expression, we can derive two results in particular. Setting Aµ = 0, we

obtain the so-called covariant or ABJ anomaly

[D
µ
V j5µ]

a =
1

16π2 εµνλρtr
(

TaVµνVλρ
)

(20)

Taking the chiral limit V → V
2 , A→ V

2 , and summing (18) and (19), we obtain

[DVµ j
µ
R]

a =
1

24π2 εµνλρtr
[

Ta∂µ

(
Vν∂λVρ +

1
2

VνVλVρ

)]
(21)

where ja
Rµ = iψRγµTaψR with ψR = 1+γ5

2 ψ, which is the same consistent non-Abelian
gauge anomaly as (11).

Remark 2. It is worth recalling that both (19) and (21) satisfy the appropriate WZ consistency

conditions (see below), while (20) does not. The latter is called covariant because the RHS transforms

in the adjoint representation of the gauge Lie algebra. Of course, the two anomalies (21) and

(20) collapse to the same expression in the Abelian case, but the coefficients in front of them are

always different.

Bardeen’s anomaly, the covariant anomaly (20) and the consistent anomaly (21) are all propor-

tional to the third-order ad-invariant symmetric tensor dabc = 1
2 tr
(

Ta{Tb, Tc}
)

. Therefore, they

all vanish when the latter vanishes.

The covariant anomaly (20) is the anomaly of the chiral current ja
5µ in a theory of a Dirac

fermion coupled to a vector potential in response to the gauge variation δψ = ργ5ψ. This anomaly

cannot show up in the internal lines of Feynman diagrams; therefore, it cannot endanger unitarity

or renormalizability. [We reserve the term ABJ anomaly only to this type. It is rather frequent in the

literature (and a source of confusion) to use the ABJ tag for any kind of chiral anomaly, consistent

or covariant].

2.3. WZ Consistency Conditions and BRST Cohomology

At this point, we owe the reader a few explanations. We have already mentioned
several times consistent and covariant anomalies and their vanishing. It is time to clarify
this terminology. The gauge invariance of the effective action can be expressed by means of
the functional operator Xa(x) defined by

Xa(x) = ∂µ
δ

δVa
µ (x)

+ f abcVb
µ (x)

δ

δVc
µ(x)

, (22)

as follows

Xa(x)W[V] = 0 (23)

This is the full one-loop Ward identity (WI) for gauge symmetry. It can be obtained by
expressing the invariance of the effective action as follows

0 = δλW[V] =
∫

ddxδλVa
µ (x)

δ

δVa
µ (x)

W[V], (24)

where we integrate by parts and note that λa(x) are arbitrary functions. Equation (23) is
equivalent to the one-loop covariant conservation law

[Dµ⟨⟨jµ(x)⟩⟩]a = 0 (25)
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In a number of cases, the WI (23) is violated

Xa(x)W[V] = κ∆a(x) (26)

where ∆a(x) is a local expressions of the fields and κ is a small dimensionless expansion
parameter for the one-loop calculation. From now on, for simplicity, we shall set it = 1.

Applying Xb(y) to both sides of (26) and then inverting the order of the two operations,
we find a remarkable relation of group-theoretical nature

Xa(x)∆b(y)− Xb(y)∆a(x) + f abc∆c(x)δ(x− y) = 0, (27)

that ∆a(x) must satisfy. These are the Wess–Zumino (WZ) consistency conditions.
Now, it may happen that

∆a(x) = Xa(x)C (28)

where C is the spacetime integral of a local expression of Va(x), in short, a local counterterm.
In this case, we can redefine the effective action as W ′[V] = W[V]− C so that

Xa(x)W ′[V] = 0 (29)

and recover invariance. If (28) is not possible for any local counterterm, then ∆a(x) is a
true anomaly. Saturating ∆a(x) with λa(x) and integrating over spacetime, we obtain the
integrated anomaly

Aλ =
∫

ddxλa(x)∆a(x) (30)

where the sum over a is understood.
The WZ consistency condition (27) is not very simple to be verified in practice. It can,

however, be recast into a form that is easier to deal with and, at the same time, it establishes
a well-defined mathematical formulation by means of the BRST formalism. In QFT the BRST
formalism is formulated by promoting the gauge variables to anticommuting fields, the FP
ghosts. Here, we do the same by promoting the gauge parameters λa(x) to anticommuting
fields ca(x): δcVµ = ∂µc + [Vµ, c], and endowing them with the transformation properties

δcca = −1
2

f abccbcc, or δcc = −1
2
[c, c] (31)

Then it is easy to see that the functional operator

δc =
∫

ddx

(
δcVa

µ (x)
∂

∂Va
µ (x)

+ δcca(x)
∂

∂ca(x)

)
. (32)

is nilpotent

δ2
c = 0 (33)

Using this, we can rewrite the WZ consistency condition as follows

δcAc = 0 (34)
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In order to recover (27), one can simply differentiate (34) with respect to ca(x) and cb(y). In
this language, the anomalous WI (26) can be rewritten

δcW[V] = Ac, (35)

from which (34) is obtained by simply applying δc to both sides. Similarly, we can rewrite
the triviality condition (28) as

Ac = δcC (36)

What we have defined in this way is a cohomology problem. δc is the coboundary operator
of this problem. The cochain space is the space of local polynomials in Va

µ and ca and their
derivatives with the right canonical dimension. A cochain satisfying (35) is a cocycle, and
a cocycle satisfying (36) is a coboundary. In this way, we have transformed the anomaly
problem into a cohomology problem. Anomalies are non-trivial (non-exact) cocycles of the
operator δc.

This formulation has made it possible to solve the problem of finding all the non-trivial
solutions of Equation (34) for all dimensions and all gauge Lie groups.

To construct such solutions, we start from an order n symmetric polynomial in some
representation of the Lie algebra, Pn(Ta1 , ..., Tan), invariant under the adjoint transforma-
tions:

Pn([X, Ta1 ], ..., Tan) + . . . + Pn(T
a1 , ..., [X, Tan ]) = 0 (37)

for any element X of a Lie algebra g. In many cases, these polynomials are symmetric traces
of the generators in the corresponding representation

Pn(T
a1 , ..., Tan) = Str(Ta1 ...Tan) = da1 ...an (38)

(Str stands for symmetric trace). For instance

Tr(TaTb) = c2(R)δab (39)
1
2

Tr(Ta{Tb, Tc}) = c3(R)dabc (40)

where c2(R), c3(R) are representation-dependent numerical coefficients. As these two
examples show, the tensors da1...an are universal; they are characteristic of the Lie algebra;
changing the representation only modifies the numerical coefficients in front of them.

Now, it is convenient to use the differential form notation: V = Vµdxµ = Va
µ Tadxµ and

F = dV + V ∧V = 1
2 Fµνdxµ ∧ dxν, where d is the exterior differential operator d = ∂

∂xµ dxµ

and Fµν = ∂µVν − ∂νVµ + [Vµ, Vν]. Then, one can construct the 2n-form

∆2n(V) = Pn(F, F, . . . F) (41)

In this expression, the product of forms is understood to be the exterior product. It is easy
to prove [17], that

Pn(F, F, . . . F) = d

(
n
∫ 1

0
dtPn(V, Ft, . . . , Ft)

)
= d∆

(0)
2n−1(V) (42)

where we have introduced the symbols Vt = tV and its curvature Ft = dVt +
1
2 [Vt, Vt],

where 0 ≤ t ≤ 1. One can prove Equation (42) by noting that d
dt Ft = dV + [Vt, V] ≡ dVt

V
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and dVt
Ft = 0, and exploiting the symmetry of Pn and the graded commutativity of the

exterior product of forms.
Equation (42) is the first of a sequence of equations that can be shown to hold

∆2n(V)− d∆
(0)
2n−1(V) = 0 (43)

δc∆
(0)
2n−1(V)− d∆

(1)
2n−2(V, c) = 0 (44)

δc∆
(1)
2n−2(V, c)− d∆

(2)
2n−3(V, c) = 0 (45)

. . . . . .

δc∆
(2n−1)
0 (c) = 0 (46)

These are known as descent equations. All the expressions ∆
(p)
k (V, c) are polynomials of

c, dc, V, dV and their commutators, whose explicit forms are known. The lower index k is
the form degree, and the upper one p is the ghost number, i.e., the number of c factors. The

last polynomial ∆
(2n−1)
0 (c) is a 0-form and a function of c alone. What matters here is that

the ∆
(1)
2n−2(V, c) is the general expression of the consistent gauge anomaly in d = 2n− 2

dimensions; for integrating (45) over spacetime, one gets

δcAc[V] = 0 (47)

Ac[V] =
∫

ddx∆1
d
(c, V), where

∆
(1)
d

(c, V) = n(n− 1)
∫ 1

0
dt(1− t)Pn(dc, V, Ft, . . . Ft) (48)

Ac[V] identifies the anomaly up to an overall numerical coefficient. If n = 3, i.e., d = 4,
is chosen, the RHS of (48) is proportional to the RHS of (11) or (21) multiplied by ca and
summed over a. This is a sleek way to show that the chiral anomaly (21) satisfies the WZ
consistency conditions.

Thus, the existence of chiral gauge anomalies relies on the existence of the adjoint-
invariant symmetric polynomials Pn. The latter are completely classified. The space of
symmetric ad-invariant polynomials of the simple group G is usually denoted by I(G). It is
a commutative algebra. If G has rank r, then I(G) has r algebraically independent generators
of order m1, . . . , mr. In other words, we have r algebraically independent polynomials Pn,
or symmetric tensors da1 ...ar , of order m1, ..., mr. The values m1, . . . , mr for the simple Lie
algebras are as follows

Lie algebra m1, . . . , mr

Ar 2, 3, . . . r + 1

Br 2, 4, . . . , 2r

Cr 2, 4, . . . , 2r

Dr 2, 4, . . . 2r− 2, r

G2 2, 6 (49)

F4 2, 6, 8, 12

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30
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For product groups, we have simply to consider all possible products of the corresponding
symmetric polynomials. When the gauge group contains a U(1) factor, the general form (41)
can contain as factors any products of the Abelian curvature two-form F.

The previous table contains a lot of information about anomalies. If a symmetric tensor
is absent in this table, the corresponding cocycle, and thus the corresponding anomaly,
does not exist. This is the case, for instance, for SU(2) in 4d. The corresponding Lie algebra
is A1, which has only the second-order symmetric tensor, while in order to construct a
consistent chiral anomaly in 4d, one needs the third-order tensor. Analogously, the third-
order symmetric tensor does not exist for D2, which is the Lie algebra of SO(4), the compact
version of the Lorentz group in 4d. But the Lorentz Lie algebra generators are the same as
for SO(4), except that a few of them are multiplied by i. In fact, the local Lorentz symmetry
is not anomalous in 4d.

Other examples of vanishing anomalies may come up even when the adjoint-invariant
symmetric tensor in question is non-vanishing, but the fermion representations are real. If
a representation is real Ta† = −Ta. For instance in 4d, taking the hermitean conjugate of
dabc we find dabc = −dabc, therefore dabc = 0.

2.4. Gauge Anomaly Cancelation in the SM

At this point, we have enough information to discuss the cancelation of gauge anoma-
lies in the MSM Table 1.

Table 1. MSM gauge.

• Tsu(3) × Tsu(3) × Tsu(3): there are two left-handed and two right-handed triplets whose anomalies cancel one
another.

• Tsu(2) × Tsu(2) × Tsu(2), which vanishes because the tensor dabc vanishes in general for the Lie algebra su(2).
• Tsu(2) × Tsu(2) × Tu(1), in which case we have the trace of two su(2) generators in two doublet representations.

These traces are non-vanishing because tr(TaTb) ∼ δab, but they are multiplied by the corresponding u(1)

charges, whose total value is 6
(

1
6

)
− 2( 1

2 ) = 0.

• Tsu(3) × Tsu(3) × Tu(1), in which case we have the trace of two su(3) left triplet generators and two right triplet
generators. These traces are again non-vanishing, but they are multiplied by the corresponding u(1) charge,

whose total value is 3
(

2
(

1
6

)
− 2

3 + 1
3

)
= 0.

• Tu(1) × Tu(1) × Tu(1); in this case, the tensor is proportional to the overall sum of the charge products:

6
(

1
6

)3
− 3
( 2

3

)3 − 3
(
− 1

3

)3
+ 2
(
− 1

2

)3
− (−1)3 = 0.

As we know, the chiral consistent anomaly is determined by the tensor dabc =
1
2 tr
(

Ta{Tb, Tc}
)

, where Ta denotes the total antihermitean generator of the Lie algebra

su(3)⊕ su(2)⊕ u(1): dropping labels we can generically write T = Tsu(3) ⊕ Tsu(2) ⊕ Tu(1).
The tensor dabc decomposes into various independent components, which we list hereafter:

This completes the analysis of gauge anomalies in the standard model. There are no
local anomalies in a flat background theory.

The results illustrated so far are generally considered completely satisfactory: the SM is
anomaly-free, that is that, and let us move on to other things, notably to its renormalization
or to its physics. But there are aspects of the analysis carried out so far that deserve
more attention and, in view of the coupling of the SM to gravity, would be superficial to
ignore. First, as already promised, we need a non-perturbative method to justify the results
shown above beyond the perturbative level. This will turn out to be indispensable for
trace anomalies. Second, we need a deeper understanding of why consistent chiral gauge
anomalies are so deadly. The obstruction to selecting a physical Hilbert space for a quantum
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field in the quantization of a Weyl fermion coupled to a gauge potential is a consequence
rather than the origin of the problem. More insight is necessary. Refs.: [3,5,16,18–43].

3. Non-Perturbative Approach: The Heat-Kernel-Like Methods

There are several different non-perturbative (a.k.a. functional) methods to calculate
anomalies: Schwinger’s proper-time method, the Seeley–DeWitt and the zeta-function
regularization method and Fujikawa’s method. We comprise them under the term of
heat-kernel-like methods. The purpose of all of them is to represent in a mathematically
affordable way the path integral corresponding to the quadratic part of a theory, and in
particular of a fermionic theory, interacting with external potentials: the central object
is, therefore, the determinant of the full kinetic operator, let us call it D, (or the square
thereof in the case of Dirac-like operators). It is crucial for these methods to work that the
operator in question, after passing from a Minkowski to a Euclidean background metric, be
a quadratic elliptic self-adjoint operator. Below, we give a synthetic presentation of one of
them, which we call SDW (Schwinger–DeWitt).

Our problem is to represent log detD = Tr logD. We start with a familiar formula in
theoretical physics

i

D+ iϵ
=
∫ ∞

0
dseis(D+iϵ) (50)

with infinitesimal ϵ > 0. It certainly holds when D is a real number . We extend it to an
operator D by representing it via its eigenvalues. By formally integrating, we write

Tr logD = −i
∫ ∞

0

ds

is
Tr
(

eiDs
)
+ const (51)

where the iϵ prescription is understood, as we will do from now on for the s integrals.
The Dirac operator /D = iγµ∂µ, even after the addition of a vector and an axial potential,

in a Euclidean background, is an example of an elliptic operator, but the application of
the SDW method to it in the linear form is not known. The best we can do is to apply this
method to its square and extract the square root of the determinant. The choice of the square
Dirac operator is not always univocal and requires some care. The minimal precaution
is that it preserve the same symmetries as the linear operator and become a self-adjoint
operator after a Wick rotation, see below. Let us call F such a square Dirac operator.

We identify the effective action for Dirac fermions with

W = − i

2
Tr(lnF) (52)

Tr includes all the traces plus the spacetime integration. Any variation of (52) is given by

δW =
i

2
Tr(GδF) (53)

where, in symbols, FG = −1. Thus we can formally write

δW = −1
2
Tr

(∫ ∞

0
dseiFsδF

)
. (54)

and, like in (51), W can be represented as

W = −1
2

∫ ∞

0

ds

is
Tr
(

eiFs
)
+ const ≡

∫
ddxL(x) + const, (55)



Symmetry 2025, 17, 273 17 of 112

where

L(x) = −1
2

lim
x′→x

tr
∫ ∞

0

ds

is
K(x, x′, s), (56)

and the kernel K is defined by

K(x, x′, s) = ⟨x|eiFs|x′⟩ (57)

Inserted under the symbol Tr, (56) means integrating over x after taking the limit x′ → x.

Remark 3. We recall that in all the above s-integrals the iϵ prescription, i.e., the substitution

F → F+ iϵ, is understood. It is clear that such integrals converge only if F is a self-adjoint operator.

This is possible in a Euclidean background, i.e, after a Wick rotation. In the sequel, we make the

substitution F → F̃, where the tilde represents a Wick rotation, and anti-Wick-rotate is the final

result. However, for the sake of simplicity, we understand this substitution and continue with the

Minkowski notation.

The SDW method proceeds with the definition of the amplitude

⟨x, s|x′, 0⟩ = ⟨x|eiFs|x′⟩, (58)

which satisfies the (heat kernel) differential equation

i
∂

∂s
⟨x, s|x′, 0⟩ = −Fx⟨x, s|x′, 0⟩, (59)

Fx is a quadratic elliptic differential operator, typically, Fx = ηµν∂µ∂ν + . . ., where ellipses
denote non-leading terms.

The SDW method now introduces an ansatz for the amplitude (58)

⟨x, s|x′, 0⟩ = − lim
m→0

i

(4πs)
d

2
e

i

(
(x−x′)2

4s −m2s

)

Φ(x, x′, s), (60)

Φ(x, x′, s) is a function to be determined. The mass parameter m is introduced to guarantee
convergence for the s integration. In the limit s→ 0, the RHS of (60) becomes the definition
of a delta function multiplied by Φ. More precisely, since it must be ⟨x, 0|x′, 0⟩ = δ(x, x′)
and

lim
s→0

i

(4πs)
d

2
e

i

(
(x−x′)2

4s −m2s

)

= δ(d)(x, x′), (61)

we must have

lim
s→0

Φ(x, x′, s) = 1. (62)

Looking at (60), in dimension d, we can make the identification

K(x, x, s) =
i

(4πis)
d

2

√
ge−im2s[Φ](x, x, s). (63)

From now on, the symbol [H](x, . . .) will denote the coincidence limit limx′→x H(x, x′, . . .).
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The heat-kernel Equation (59) becomes a quadratic partial differential equation for Φ

in xµ and s. To find useful solutions, one has to expand Φ as a series of s:

Φ(x, x′, s) =
∞

∑
n=0

an(x, x′)(is)n (64)

so that (59) becomes a series of recursive differential relations for the coefficients an. Starting
with the position [a0] = 1 they permit us to compute the other coefficients up to the relevant
order (which, of course, depends on the dimension d).

Bardeen’s Anomaly with SDW

Let us apply the just illustrated method to the calculation of Bardeen’s anomaly in
d = 4. In this case, the relevant operator is the square of /D = /∂ + /V + γ5 /A, which has
the properties

/D† = γ0 /Dγ0,
(

/D2
)†

= γ0 /D2γ0, (65)

but after a Wick rotation (see Appendix B for conventions) we get

/̃D
†
= − /̃D ,

(
/̃D

2
)†

= /̃D
2

(66)

The relevant quadratic Dirac operator is

/D2 = −ηµν
DµDν − Σµν

(
Bµν +

(
Cµν + 2(Aν∂µ − Aµ∂ν)

)
γ5
)

(67)

where Σµν = 1
4 [γµ, γν], Dµ is Dµ with the change γ5 → −γ5, and

Bµν = FVµν − [Aµ, Aν], Cµν = ∂µ Aν − ∂ν Aµ + {Vµ, Aν} − {Aµ, Vν} (68)

We use also the notation

E = ΣµνBµν + γ5ΣµνCµν, (69)

with similar expressions for the Euclidean version.
Under the transformations (16), we find

δλ /D = [/D , λ], δρ /D = [/D , ρ] + 2γ5ρ /D (70)

The relevant operator is not invariant under the ρ transformation. Therefore an anomaly is
to be expected in the divergence of the chiral current. For taking the variation with respect
to ρ of the path integral Z, we obtain, formally,

δρ ln Z = 2iTr(γ5ρ) ≡ A(unreg), (71)

where Tr includes all traces plus spacetime integration. A(unreg) is the unregulated anomaly.
We regularize it with the Schwinger proper time approach. This means using the procedure
outlined before with F = −/D2 with regard in particular Equation (54) [The square Dirac
operator must respect the properties of the linear one. For instance, in the present case, an

alternative quadratic operator would be /D /D , with the transformation property δΥ

(
/D /D

)
=

[/D /D , Υ], with Υ = λ + γ5ρ, which is also an elliptic operator when turned Euclidean.
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This would exclude any anomaly. But this would contradict the linear transformation
δΥ /D = [/D , Υ] + 2γ5ρ /D],

A ≡ δρW =
1
2
Tr

(∫ ∞

0
dse−i /D2sδρ /D2

)
= 2iTr

(
ργ5

∫ ∞

0
dse−i /D2s /D2

)

= −2Tr
(

ργ5

∫ ∞

0
ds

∂

∂s
e−i /D2s

)
= 2Tr

(
ργ5e−i /D2s

)∣∣∣
s=0

(72)

In the last integration convergence at infinity is guaranteed by the factor e−im2s (with the
prescription m2 → m2 − iϵ). A remark is in order here: looking at Equations (70) and (72),
we note that these manipulations are possible because the operator /D in it commutes with

ei /D2s.
Now, we write (72) in coordinate representation

A = −2 lim
x′→x

Tr
(

ργ5⟨x|e−i /D2s|x′⟩
)∣∣∣

s=0
(73)

and insert

⟨x, s|x′, 0⟩ = lim
m→0

i

(4πs)2 e
i

(
(x−x′)2

4s −m2s

)

Φ(x, x′, s), (74)

Next, we expand Φ(x, x′, s) in powers of is, as in (64), and integrate over s. Setting
s = 0 suppresses all higher order terms in the expansion, except the 0-th, first and second
order term. The 0-th order term is annihilated by the trace over γ5. The first order term,
involving [a1], diverges for s → 0. [a1] can be explicitly calculated: its odd parity part
vanishes due to the gamma matrix trace, while the even parity part survives the tracing but
is trivial and can be subtracted with a counterterm.

Therefore, the finite part of (73) becomes

A = − 2i

16π2

∫
d4xTr(γ5ρ[a2](x)), [a2(x)] = lim

x′→x
a2(x, x′) (75)

To compute [a2], we resort to the above-mentioned recursive relation, which is obtained
from the heat-kernel equation:

(n+1)an+1 + (x−x′)µ
(
Dµan+1 + 2γ5Σµν Aνan+1

)
−D

µ
Dµan − 4γ5Σµν Aν∂νan − Ean = 0 (76)

Starting from [a0] = 1, one can derive [a1] and [a2]. The calculation is lengthy, but it is not
hard to extract the odd parity part of the trace in (75). It coincides with the RHS of (19)
saturated with ρa and integrated over spacetime (Alternatively, one can arrive directly
at the anomaly (21) by applying the SDW method to the operator (94) below, see [5]).
Refs.: [5,35,44–52].

4. Anomalies as Obstructions

Non-perturbative methods, like the one just illustrated, are very useful because they
yield the full expressions of consistent anomalies, not just their lowest-order approxima-
tions. This is extremely useful in cases where the lowest order terms are not enough to
unambiguously determine the anomalies. However, returning to the discussion on fermion
propagators after Equation (6), they do not differ substantially from the perturbative meth-
ods in that they rely on fermion propagators, which are obtained from the original Weyl
theory by adding a free Weyl fermion of opposite chirality (or resorting to Dirac fermions,
like in Bardeen’s approach). The aim of this section is to illustrate a different approach in
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which there is no need to introduce additional degrees of freedom. In this new approach,
anomalies appear as obstructions to the existence of fermion propagators. The method is
based on the family’s index theorem of Atiyah and Singer. The new approach requires
quite a lot of preliminary material. Here, we try to squeeze it into a few pages. In this
section, the framework is entirely Euclidean. We will assume that our conclusions can be
transferred to the corresponding Minkowski formulation.

4.1. A Geometrical Description of Anomalies

The first element we need is a geometrical description of consistent gauge anomalies.
The algebraic formalism of Section 2.3, from this point of view, is unsatisfactory. Looking at
Equation (42) we see that in the case n = 3, i.e., d = 4, both sides of the equation vanish
because they are forms of degree 6. One could suspect that the descent equations that
follow from this one are built on sand. It is not so, but an appropriate elaboration is no
doubt required. It is well known that the fitting framework for a gauge theory is provided
by the geometry of principal and associated fiber bundles. The underlying geometry of a
gauge theory on a spacetime M with gauge group G is grounded on a principal fiber bundle
P(M,G),

G
�

�

// P

π
��

M

π denotes the projection π : P→ M. The inverse image of a point in M is a fiber of P, and
is a copy of G. A gauge potential Vµ = Va

µ Ta, where Ta are the generators of g ≡ Lie(G),
represents a connection form V = Vµdxµ, with curvature is F = dV + 1

2 [V, V]. A connection
V splits the vector fields of P into vertical and horizontal ones [Vµ(x) comes from the pull-
back of σ∗UV = Vµdxµ by a local section σU : U → P, where π ◦ σU(x) = x for ∀x ∈ U ⊂ M],
and is properly defined on the total space P. Thus, the six-form polynomial P3(F, F, F) is
also defined on P, whose dimension is d times the group dimension. This, however, does
not prevent this form from vanishing because it is an invariant form that descends on M (a
basic form) and thus cannot but vanish.

The geometry of the total space is not yet enough. We have to enlarge our horizons.
In this setup, gauge transformations are represented by vertical automorphisms of

P. An automorphism is a diffeomorphism of P, ψ : P → P, such that ψ(pg) = ψ(p)g,
for any p ∈ P and any g ∈ G. Automorphisms form a group, which will be denoted
Aut(P). For any automorphism ψ, the map π ◦ ψ is a diffeomorphism of the base space,
i.e., ∈ Diff(M). Vertical automorphisms are those that do not move the base point. They
form a subgroup of Aut(P) denoted by Autv(P). The corresponding Lie algebras will be
denoted by aut(P) and autv(P), respectively; the latter are spaces of vector fields in P

generated by one-parameters subgroups of Aut(P) and Autv(P), respectively. For the time
being, we disregard diffeomorphisms of the base space and focus on Autv(P). The latter is
to be identified with the group G of gauge transformations, whose Lie algebra LieG is, in
turn, identified with autv(P), the Lie algebra of Autv(P). The reason for this identification
is clear from the way a connection transforms under vertical automorphisms. Let V be a
connection with curvature F and let ψ be a vertical automorphism: we can associate to it
a map γ : P → G defined by ψ(p) = pγ(p) satisfying γ(pg) = g−1γ(u)g. Then, one can
show that the pull-back by ψ is

ψ∗V = γ−1Vγ + γ−1dγ, ψ∗F = γ−1Fγ



Symmetry 2025, 17, 273 21 of 112

Thus, we set Autv(P) ≡ G and introduce the evaluation map

ev : P× G → P, ev(p, ψ) = ψ(p) (77)

P× G is a principal fiber bundle over M× G, with group G. This means, in particular, that,
by pulling back a connection V in P, we obtain a connection V = ev∗V in P× G. This
connection splits into a one-form in P plus a one-form in G and contains all the information
about the properties of the FP ghosts and BRST transformations. First, it can be shown that

V ≡ ev∗V = V + i(·)V (78)

where i is the interior product and i(·)V denotes the map Z → iZV, that associates to
every Z ∈ Lie(G) the map ξZ = V(Z) : P → Lie(G). ξZ is, in fact, an infinitesimal gauge
transformation since the action of Z over the connection V is given by the Lie derivative
LZ, which takes the following form:

LZV = dξZ + [V, ξZ] (79)

The symbol i(·)V has an anticommuting nature and plays the same role as the FP ghost
field c introduced in Section 2.3. For instance, if δ̂ represents the exterior differential in G,
one can show that

δ̂V = −di(·)V −
1
2
[V, i(·)V]− 1

2
[i(·)V, V] (80)

δ̂i(·)V =
1
2
[i(·)V, i(·)V] (81)

Therefore, if we identify δ̂ = (−1)kδc, where k is the degree of the form in P it acts on and
δc is the BRST nilpotent operator, we reproduce the BRST transformations introduced in
Section 2.3.

In other words, BRST transformations and coboundary coincide with gauge transfor-
mations along the fibers of P and de Rham differential in G. Next, let us apply these new
notions to gauge anomalies. Let Pn be an ad-invariant polynomial with n entries, n = d

2 + 1.
The expression

TPn(V) = n
∫ 1

0
dtPn(V, Ft, . . . , Ft) (82)

introduced in Section 2.3 is called transgression formula, and

dTPn(V) = Pn(F, . . . , F) = 0 (83)

because of dimensional reasons, for Pn(F, . . . , F) is a d+ 2 basic form in a d dimensional
base spacetime M. Let us pull back (83) through the evaluation map to P× G. We obtain

(d + δ̂)ev∗TPn(V) = (d + δ̂)TPn(ev∗V) = 0 (84)

This splits into a set of equations of decreasing degree

δ̂TPn(V) + di(·)TPn(V) = 0 (85)

δ̂i(·)TPn(V) + di(·)i(·)TPn(V) = 0 (86)

. . . . . .

. . . . . .
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These are the descent equations written in geometrical language, and, unlike the algebraic
descent equations of Section 2.3, they are all well defined in P. Focusing on iZTPn(V), it
can be rewritten

iZTPn(V) =−n(n− 1)
∫ 1

0
dt(t− 1)

(
Pn(diZV, V, Ft, . . . , Ft)− dPn(V, iZV, Ft, . . . , Ft)

)

The first term on the RHS is precisely, up to global sign, the anomaly (48) for d generic:

∆1
d
(i(·)V, V) = n(n− 1)

∫ 1

0
dt(t− 1)Pn(di(·)V, V, Ft, . . . , Ft). (87)

The second piece is a total differential which drops out upon spacetime integration.

A cocycle ∆
(1)
2n−2(V, c) is trivial when there are local cochains C

(0)
2n−2(V, c) and

C
(1)
2n−3(V, c) such that

∆1
d
(V, c) = δcC

(0)
2n−2(V, c) + dC

(1)
2n−3(V, c) (88)

where C
(p)
k (V, c) denotes a polynomial k-form of ghost number p, built with V, c, their

commutators, wedge products, and exterior differentials. If such local cochains do not exist,
the cocycle is said to be non-trivial and defines a non-trivial class of the BRST cohomology,
a true anomaly. The latter characterizes local quantum field theories: how does it relate to
the familiar de Rham cohomology of M and P ?

Let us return to the descent Equation (84) and, in particular, to the consistency con-
ditions (86). Since dTPn(V) = 0, anomalies are to be found among the representatives
of the de Rham cohomology group of order d+ 1 in P. But do they coincide with them?
Now, it is known that the de Rham cohomology group of order d+ 1 in P, Hd+1

deRham
(P), is

spanned by forms TPi(V) ∧ βi, where βi are basic and closed forms of order hi = 2(n− i),
such that 2i− 1 + hi = d + 1. The βi may be forms of the type Pn−i(F, . . . , F) (this is the case
of a reducible polynomial Pn(F) = Pi(F)Pn−i(F)), or of the type P′n−i(R, . . . , R), where R is
the Riemann (or spin) curvature 2-form on M, and P′i are the corresponding ad-invariant
symmetric polynomials. But the set of βi may also contain forms that cannot be written in
local form like in the previous examples. Such non-local βi do not give rise to anomalies in
local field theory.

On the other hand, let us suppose that χ = TPn(V) be cohomologically trivial,
i.e., TPn(V) = dη. Then, decomposing (84), we get, in particular,

i(·)TPn(V) = i(·)dη = −di(·)η + δ̂η (89)

Since δ̂η = −δcη, this is a triviality condition for the anomaly i(·)TPn(V) when compared
with (88). However, this does not correspond automatically to a trivial field theory anomaly.
The condition TPn(V) = dη means that TPn(V) is exact in the de Rham cohomology of
P . But this does not automatically mean that it is trivial with respect to the local BRST
cohomology. For this to be the case it must be that η is a local expression of V. If such a
local η does not exist, we are in the presence of a true non-trivial anomaly originating from
a cocycle dη in P, which is trivial (a coboundary) in the de Rham cohomology. On the same
footing, if χ and χ′ are two closed d+ 1 forms in P such that χ− χ′ = dη, we can say the
corresponding anomalies are the same only if η is a local form.

The previous rather lengthy and somewhat convoluted discussion is to stress the fact
that the BRST cohomology (i.e., the true anomalies of gauge field theories) does not coincide
with the ordinary cohomology of P, and even less with that of M. In fact, the topology of M
does not play a role in determining the local anomalies on it. To geometrically characterize
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the BRST cohomology of local quantum field theory a further effort is necessary. We need
to introduce the the concept of classifying space and universal bundle.

Given a compact Lie group G, any principal fiber bundle P(M,G) can be obtained as
the pull-back of the so-called universal principal bundle EG(BG,G),

G
�

�

// EG

π
��

BG

BG, the basis, is called a classifying space. An important property of EG, the total space, is
that it is a contractible space, that is, it is continuously deformable to a point. Therefore its
cohomology is that of a single point.

For any principal bundle P(M,G), there exist bundle morphisms ( f̂ , f ) such that the
following diagram is commutative

P

π
��

f̂
// EG

π
��

M
f

// BG

f is unique up to homotopy [Two maps f1, f2 are homotopic if there exists a continuous
map F : M× I → BG such that F(x, 0) = f1(x) and F(x, 1) = f2(x), ∀x ∈ m] and is called a
classifying map. Both EG and BG are generally infinite dimensional, but in many practical
applications, one can use finite-dimensional approximants for them.

A very important fact is the existence of a universal connection v in EG from which
any connection on P can be derived via pull-back: for any V in P there exists a bundle
morphisms ( f̂ , f ) such that V = f̂ ∗v. For convenience, we shall call, with some abuse of
language, universal the forms χ in P constructed with the connection form V if they can be
derived by pulling back an analogous form in EG constructed with v:

χ(V) = χ( f̂ ∗v) = f̂ ∗(χ(v)), (90)

for a bundle map f̂ . Therefore, forms like TPn(V) and Pn(F) are universal. But, of course,
in P, there may be non-universal forms. In particular, the forms βi that appear in the
cohomology of P, see above, may not be universal. We have already remarked that not all
the forms that span the nontrivial cohomology classes of Hd+1

deRham
(P) necessarily correspond

to local anomalies.
Let us now connect the anomalies in quantum field theory to their universal origin.

We pull-back v and forms constructed with it to P× G by combining the evaluation map
and bundle maps

P× G ev−→ P
f̂−→ EG (91)

Now, starting with local expressions of v in EG and pulling them back with ev ◦ f̂ , we create
universal expressions in P× G. We focus in particular on the universal forms of order
d+ 1 and state the result of the previous discussion: non-trivial local field theory anomalies are

identified by the quotient

closed universal(d+1)−f orms in P

di f f erentials o f universal d−f orms inP
(92)

For instance, consider TPn1(V)Pn2(F) and suppose that Pn2(F) = dη with η a basic form
in some manifold M of dimension d = 2(n1+n2)−2 . Then TPn1(V)Pn2(F) = d(TPn1(V)η)
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(because Pn1(F)η is basic and therefore vanishes on M for dimensional reasons). Never-
theless, the anomaly corresponding to TPn1(V)Pn2(F) is universal because, even though
Pn2(F) = dη in M, the form η cannot be universal. To explain the reason for this we need
the concept of Weil homomorphism.

Chern–Weil homomorphism. For any group G we have introduced earlier the space
of symmetric ad-invariant polynomials, usually denoted by I(G), which is a commutative
algebra. Given a principal fiber bundle P(M,G) there is a homomorphism w : I(G) →
H∗(M) between the algebra of ad-invariant symmetric polynomials and the de Rham
cohomology of M, which associates to any polynomial Pn a cohomology class w(Pn) =

Pn(F, . . . , F). The homomorphism is constructed by filling in the curvature F of P(M,G) in
all the entries of Pn, so as to build the forms Pn(F, . . . , F), which are closed in M. They may
or may not be exact according to the topology of M. But in the case when the bundle is the
universal one with compact group G and the base manifold is the classifying space, the
Weil homomorphism is an isomorphism, i.e., no form Pn(F, . . . , F) is exact.

Then, let us explain why the anomaly corresponding to the above-mentioned form
TPn1(V)Pn2(F) is universal. This is so because, even if Pn2(F) = dη in M, the form η cannot
be universal. The reason is that for BG the Weil homomorphism is an isomorphism when
the group G is compact. This means that Pn2(F) is not the differential of any universal form
and, thus, TPn1(V)Pn2(F) cannot be written itself as a differential of any universal form.
From the field theory point of view, this means that Pn2(F) cannot be written as the total
differential of a local expression in the fields. In other words, the anomaly originated from
TPn1(V)Pn2(F) is a true local field theory anomaly.

A comment is in order to explain this at first sight surprising correspondence. The
origin of it lies in the circumstance that standard perturbative field theory is formulated in
a local geometry. Propagators and vertices are evaluated on plane wave configurations of
fields, thus in a unique local patch isomorphic to a Minkowski (or Euclidean) spacetime. In
this way, the cohomological properties of the base space M, reflected also in the topology
of P, are irrelevant. Therefore, as far as local anomalies are concerned, the results of
perturbative field theories are independent of the topological features of the base manifold
M. The BRST cohomology of local field theories reflects the de Rham cohomology of the
classifying space, which is the same for all spacetimes of a given dimension. Once again,
the roots of local gauge anomalies in QFT are not in the topology of the spacetime M but in
the topology of the classifying space BG, [This is not anymore true if we consider global
anomalies, in which the topology of M may play a role. Global anomalies call into play the
global aspects of gauge transformations, i.e., the global aspects of G. We will not analyze
global anomalies in this paper. Enough is to say that the gauge transformations involved in
the various SMs considered here do give rise to global anomalies [5]].

Now, one step remains before closing the circle: what is the connection of this geometry
with the bugs of the corresponding theories? It is the lack of a fermion propagator, as is
made clear by the family’s index theorem.

4.2. The Atiyah–Singer Index Theorems

The family’s index theorem is the index theorem appropriate for consistent local chiral
anomalies. In general, an (ordinary) index theorem counts the difference between the
graded zero modes of an elliptic operator. For instance, zero modes of a Dirac operator
with a fixed potential and metric. [From now on, we also introduce in our analysis the
dependence on a non-trivial metric, which we have so far ignored]—they are labeled by
+ and −, which denote opposite chiralities—and the index counts the difference between
the + and the − zero modes. The family’s index theorem does the same, except that the
operator, in the case of gauge theories, varies on a Hausdorff space, the moduli space of
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connections (i.e., the space of orbits under the action of the gauge group). The index is
formally represented by the space of zero mode eigenvectors (kernel of the operator) of
one chirality minus the space of zero mode eigenvectors of the opposite chirality (cokernel).
The difference of two vector spaces varying from point to point of the parameter space can
be given a mathematical sense in terms of the K-theory of vector bundles. What really
matters to us in relation to the anomaly problem is not as much the number of zero modes,
but the existence or non-existence of the inverse of the Dirac operator. It is of paramount
importance that one appreciates the difference between the two situations. The presence of
even a finite number of zero modes for a Dirac operator with (twisted by) a fixed potential
or metric prevents its inversion, but this problem can be easily fixed by excluding the (finite
number of) zero modes from the spectrum. The problem, however, becomes unwieldy
when we face a continuous spectrum of gauge potentials (or, better, their orbit space). Only
K-theory can and does provide a sensible treatment.

We recall that this is the same problem we have already met in the perturbative
approach to anomalies, as well as in the non-perturbative approach à la Schwinger–DeWitt.
In those approaches, the inverse of the relevant elliptic operator (or, which is the same,
the existence of an effective action for Weyl fermions) is required, and one is obliged, for
instance, to replace the Dirac–Weyl operator

/D = i(/∂ + /V)P+, P± =
1± γ5

2
(93)

by

/D = i(/∂ + /VP+) (94)

in order to guarantee the invertibility of the kinetic operator, i.e., the existence of the fermion
propagator. In those approaches, anomalies show up as non-conservation of the chiral
gauge currents. The family’s index theorem, instead, calculates for us the obstructions
to the invertibility of the Dirac–Weyl operator. In other words it tells us what are the
topological conditions for the Weyl fermion propagator to exist.

Although these obstructions manifest themselves in different ways in the two ap-
proaches, their origin is the same and can be traced to the geometry of universal bundles
and classifying spaces. The added value of the family’s index theorem approach is that it
provides compact formulas of the obstructions for all dimensions in terms of ad-invariant
polynomials, gauge curvatures and/or Riemann curvatures, from which one can derive
the consistent gauge anomalies by the transgression formulas and the descent equations -
and not only those but also other anomalies, as we shall see. It also provides the numerical
coefficients (depending on the fermion field representations) in front of the anomalies,
based on which one can study the conditions for their cancelation in general.

In this limited presentation, it is, of course, impossible to expound all the mathematics
underlying the family’s index theorem, but we try to provide a summary presentation that
is hopefully enough to capture the essential points of the subject.

The family’s index theorem applies to elliptic operators. Given two vector bundles E
and F over a Riemannian manifold X and the corresponding spaces of sections Γ(E) and
Γ(F), respectively, an elliptic operator is a partial differential operator that maps sections of
Γ(E) to sections of Γ(F) in a way which is fiberwise invertible. In practice, we are interested
in sections representing matter fields and, in particular, spinors. For instance, an operator
with a local representative Aij∂xi

∂xj
is elliptic if the matrix Aij(x) is symmetric and positive

definite; a Euclidean Dirac operator is elliptic. With reference to field theory, a linear or
quadratic elliptic operator locally has an inverse.
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An elliptic operator P on a compact space X is endowed with an index (the analytic in-

dex)

indP = dim(kerP)− dim(cokerP) (95)

where the kernel of P is the space of its zero eigenvectors and the cokernel is formed by
the sections of the target bundle that do not belong to the image of P. Some remarkable
properties of an elliptic operator are as follows: the index of the operator depends on
its leading term; if P is self-adjoint (same source and target space) it has real discrete
eigenvalues with finite eigenspace consisting of smooth sections.

The Dirac operator is the central object for us now. In physics it is usually (but not
exclusively) defined on a Minkowski spacetime (a pseudo-Riemannian manifold), say X.
After a Wick rotation, i.e., in a Euclidean background, it is an example of a linear elliptic
operator. Dirac operators act on spinors, which are used in physics to represent fermions.
A spinor is a section of a vector bundle with two simultaneous properties: it belongs both
to a representation space of the appropriate Clifford algebra and a representation of the
appropriate spin group; in addition, it may also transform according to the representation
of some compact group (the gauge group), in which case the corresponding Dirac operator
is called twisted.

To be more precise, let TX be the tangent space of X. We call Cℓ(X) the Clifford
algebra, i.e., the gamma matrix algebra, constructed over TX on the basis of the metric
inherited from X. And let PSO(X) be the orthonormal tangent frame bundle over X, i.e., the
principal fiber bundle built with the orthonormal frames of TX. We need also the spin
bundle PSpin(X), which is the double covering of PSO(X) (a spin structure):

ξ : PSpin(X) −→ PSO(X)

where ξ(p, g) = ξ(p)ξ0(g), for any p ∈ PSpin(X) and any g ∈ Spinn, n = dim(X), and
ξ0 : Spinn −→ SO(n) is the universal covering map (fermions see a doubly ample world
with respect to us). A spinor bundle S is a bundle associated to PSpin(X)

In fact, we will deal with complex spinor bundles. A complex spinor bundle SC(X) is an
associated bundle

SC(X) = PSpin(X)×µ MC (96)

where MC is a left module of Cℓ(X)⊗C whose action is represented by µ.
In this context, the (Euclidean) Dirac operator, denoted by /D (we drop in this section

the /̃D notation), is

/D = iγµ(∂µ +
1
2

ωµ) (97)

where γµ = e
µ
a γa (eµ

a are the inverse vielbein, ηabe
µ
a eν

b = gµν) and ωµ = ωab
µ Σab is the spin

connection, with Σab = 1
4 [γa, γb].

If n is even, Cℓ(n)(X) posseses an element ωC (the chirality operator) such that

ω2
C
= 1, ωCe = −eωC (98)

for any element e ∈ Cℓ(n)(X). As a consequence, any SC splits according to

SC = S+
C
⊕ S−

C
, S±

C
=

1
2
(1±ωC)SC (99)
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Accordingly /D splits as

/D =

(
0 /D−

/D+ 0

)
(100)

Therefore, we have ker /D = ker /D+ ⊕ ker /D−. Now since /D is self-adjoint, it follows that
( /D±)† = /D∓. And since, for any elliptic operator T, cokerT = kerT†, it follows that

Ind /D+ = dim(ker /D+)− dim(ker /D−) (101)

In gauge field theory, we have to do with spinors that transform according to definite
representations of the gauge group G. In this case we generalize the previous setup and
consider the tensor product of a spinor bundle S±

C
with a vector bundle E corresponding to

a representation ρ of the structure group G of P(X,G): S±
C
⊗ E. The relevant connection will

be the spin connection plus a gauge connection V = Vµdxµ valued in the representation ρ

of the Lie algebra of G with antihermiten generators. The corresponding Dirac operator

/D = /D + i/V (102)

acts on the space of sections of S±
C
(E) ≡ S±

C
⊗ E and maps it to itself. In this case

Equation (99) is replaced by

SC(E) = S+
C
(E)⊕ S−

C
(E) (103)

and Equation (100) by

/D =

(
0 /D−

/D+ 0

)
(104)

with obvious replacements in the definition of the index.

4.2.1. The Atiyah–Singer Index Theorem

In this context the Atiyah-Singer index theorem says:

Ind(/D+) =
∫

X
ch(E)Â(X) (105)

The symbol ch(E) indicates the Chern character of the E bundle, i.e., the rational character-
istic class given in terms of the curvature F of V by

ch(E) = r +
i

2π
trF +

i2

2(2π)2 trF2 + . . . +
in

n!(2π)n
trFn + . . . (106)

where r is the dimension of the representation ρ. The symbol Â(X) denotes the Â-genus,
which is the (rational) Pontryagin characteristic class of X. It can be expressed in terms of
the Riemann curvature R as follows

Â(X) = 1 +
1

(4π)2
1
12

trR2 +
1

(4π)4

[
1

288
tr(R2)2 +

1
360

trR4
]

+
1

(4π)6

[
1

10368
tr(R2)3 +

1
4320

trR2trR4 +
1

5670
trR6

]
+ . . . (107)

This famous theorem holds for a fixed background, i.e., for a fixed metric and a fixed
gauge potential. But, although it features in several physical applications, it is not what
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we need in relation to anomalies. As already pointed out, we are not interested in the
numerical counting of zero modes but in the invertibility of the Dirac operator over the
whole space of metric and potential backgrounds.

The field theory path integral is a functional of the fields, in particular of the potentials
or the metrics or both. Let us focus simply on a gauge theory defined on a principal
fiber bundle P(M,G), with a space A of connections and a symmetry group G of gauge
transformations. We denote by Z [V] the fermion determinant, i.e., the partial path integral
in which we suppose that only the quadratic part of the action is considered and that
fermions have been integrated out. Z [V] is a functional of the gauge potential, which can
be computed by means of perturbative and non-perturbative methods. But it also contains
the gauge degrees of freedom, which we have to get rid of since the relevant information for
physics is stored in the orbit space A/G. The full path integral is obtained by integrating
over the orbit space

Z =
∫

A/G
d[V]Z [V] (108)

Here [V] denotes the orbit passing through V, and G = Autv(P). The issue here is to
guarantee that Z [V] is a well-defined function, integrable over A/G.

The geometry is represented by the following bundle diagrams:

G � � // A

��

A/G

(109)

which is a principal fiber bundle with structure group G. Since the actions of G and G
commute, another relevant principal fiber bundle is

G
�

�

// P×A
G

��
M×A
G

(110)

with structure group G. In turn, M×A
G is a fiber bundle over AG with fiber M. Given a

complex vector space E, which is a representation space of G, we have also two associated
fiber bundles

E = P×G E, and E =
P×A
G ×G E (111)

From the above, we see that what is required in a gauge theory is an index theorem
over the entire orbit space because we have to deal with an operator that varies from point
to point in it. The dimensions of its kernel and cokernel may jump from point to point
in the parameter space provided by the orbit space. The relevant object in this case is the
difference between the kernel and cokernel, which are two vector spaces, as they vary from
point to point, i.e., the difference between two vector bundles over the parameter space.
The appropriate mathematical theory in this situation is K-theory. K-theory is precisely the
theory of formal differences of vector bundles. Denoting by [E] and [F] the classes of vector
bundles isomorphic to E and F, respectively, via the Grothendieck construction, K-theory
assigns a precise meaning to the difference [E]− [F]. Such objects are called virtual bundles.

Let us first define the index for families. The geometrical environment is the one
corresponding to (109) and (110). We have a Hausdorff space B which is the basis of a
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principal fiber bundle (like A/G in (109)). A continuous family V of smooth vector bundles
over X, which is parameterized by B, is a fiber bundle V → B whose fiber is a smooth
vector bundle V over X, which is associated to a principal fiber bundle P(X,G), on which
the group Autv(P) acts (V is like E, defined above). Now, let us consider two families V

and W with the respective spaces of sections Γ(V) and Γ(W) and a differential operator
P : Γ(V)→ Γ(W).

P defines a family of elliptic operators which associates at each point of B an elliptic
operator between Γ(E) and Γ(W). The kernel and cokernel of P are vector spaces that vary
from point to point in B. Therefore, their difference defines an element of K(B):

indP = [kerP]− [cokerP] ∈ K(B) (112)

Even though the dimensions of these vector bundles may vary in B, the definition makes
sense. Atiyah and Singer have provided a formula for it in terms of characteristic classes.

4.2.2. The Family’s Index and the Quillen Determinant

In the case outlined above, in which P is the Dirac operator /D+ between two families
of sections Γ(S+

C
⊗ V) and Γ(S−

C
⊗ V), the index theorem can be expressed in the form

ch
(

ind(/D+)
)
=
∫

M

ch(V) · Â(TQ) (113)

In this case, X = M is the spacetime manifold, Q ≡ AG is the orbit space of connections, TQ
is its tangent space and V is the gauge bundle. The Chern character of the index measures
the extent to which ker /D+ differs from coker /D+ = ker /D−. It is intuitive that, as long
as, ind(/D+) differs from 0, the inverse of /D+ cannot exist (see below for a more cogent
argument). Therefore, the only way to ensure the existence of this inverse (and, so, the existence

of the fermion propagator and, in turn, the existence of the fermion path integral) is that the RHS

of (113) corresponds to the 0 class. This is particularly visible with the first Chern class, i.e., the
first nontrivial term of the Chern character. Let us recall that, for a vector bundle V,

ch(V) = rank(V) + c1(V) +
1
2

(
c1(V)2 − 2c2(V)

)
+ . . . (114)

Therefore,

c1

(
ind(/D+)

)
=
∫

M
ch(V) · Â(TQ)

∣∣∣∣
d,2

(115)

where d = dim(M); in the RHS, we indicate the (d, 2) component in M×Q. The RHS is a
two-form in Q, therefore it belongs to a class in H2(Q,Z). It represents the first Chern class
of the so-called Quillen determinant bundle. Given the importance of the latter it is worth
spending some time to introduce it in more detail.

Let us focus on the case of a twisted Dirac operator, for instance /D considered above.
It is an elliptic operator on a compact space, and so a Fredholm operator, which splits
according to Equation (104). If we wish to define the determinant of either /D+ or /D−, as the
product of its eigenvalues, there may be obstacles. As pointed out in Section 2.1, the first
obstacle is the very definition of eigenvalues of a Dirac–Weyl operator. In perturbative and
SDW approaches we have bypassed this problem by modifying the Dirac–Weyl operator
like in (94). Here, instead, we consider the quadratic operator (/D+)† /D+. [We use this
operator only in order to discuss the eigenvalue splitting, not for a direct calculation—for
instance, by the SDW method—because, for that purpose, it is inapplicable for an obvious
reason: it is not invertible!] It has the same eigenvalues as (/D−)† /D−, which are the square
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of the eigenvalues of the Dirac operator /D, but of course the eigenvectors are different. More
precisely, the nonzero eigenvalues of (/D+)† /D+ are paired with the non-zero eigenvalues
of (/D−)† /D−, in the sense that to each common eigenvalue there correspond two distinct
eigenvectors of the two operators with the same multiplicity. But this may not be true
anymore for the zero eigenvalues. Of course this is the crucial point in regard to the index
theorem. But it is also crucial for defining the path integral of the two Dirac–Weyl operators.
If we wish to define the relevant path integrals as the square root of the product of their
eigenvalues, the non-zero eigenvalues do not pose a problem because they are gauge
invariant, but for the zero eigenvalues, this may not be true. Therefore, we have to settle
the question of the zero modes in such a way as to produce a well-defined integrable Z [V].

Let us denote by ψ1, . . . , ψr a basis for the zero modes of /D+. In field theory, a familiar
object, due to the Pauli principle, is the Slater determinant, i.e., wedge product ψ1 ∧ . . .∧ ψr.
It is a complex number (a determinant) that varies as /D+ varies over X ≡ M×A

G , but, in
general, does not form a complex line bundle over X . In the same way, one can construct
an analogous wedge product for coker /D+ = ker /D−, which also forms a complex line but,
in general, not a line bundle over Q. However, the formal difference of the two, i.e.

⨿
[V]∈X

dim ker /D+
V∧

ker(/D+
V )

† ⊗
dim coker /D+

V∧
coker(/D+

V ) (116)

where we have made explicit the dependence on the connection V, constitutes an element
of K(X ), which is called the Quillen determinant line bundle. This complex line bundle
has remarkable topological properties. For us, it is a fundamental object because it is trivial,
i.e., it has a global non-vanishing section, precisely when /D+ is invertible. [This is what D.
Quillen has proved for a Cauchy–Riemann operator over a Riemann surface. We are not
aware of a general proof of this theorem extending to all the cases considered here. We are,
therefore, assuming its validity in the present context, validity which is, on the other hand,
rather plausible [53], and heuristically supported by the results in quantum field theory].

In the case of the Dirac–Weyl operator /D+, the Quillen determinant bundle is a bundle
over the base space X ≡ M×A

G . It is a non-trivial bundle as long as H2(X ,Z) ̸= 0. Upon
integrating along the fiber M, the relevant cohomology group is H2(Q,Z) and coincides

with c1

(
ind(/D+)

)
. If the index vanishes, the Quillen bundle is trivial; that is, it has a global

section, which is a non-vanishing function overA/G and can be integrated over. Returning
now to the definition (108) of the path integral over the orbit space, we conclude that the
existence of this section implies that Z [V] is well defined.

The formal equation

δdetA = detA tr
(

A−1δA
)

. (117)

when applied to A = /D+, implies that, in order for Z [V] to be well defined, the inverse of
/D+, i.e., the fermion propagator, must be well defined. The inverse operator is represented
by the inverse eigenvalues. For the non-zero eigenvalues, invertibility is obvious. For
the 0 eigenvalue, the inverse is represented by the inverse of the global section of the
Quillen determinant bundle. We expect, therefore, that, if H2(Q,Z) is trivial, this global

section is invertible. On the contrary, a nonzero c1

(
ind(/D+)

)
, given by (115), is an ob-

struction to defining the inverse of /D+, i.e., the Weyl fermion propagator. The vanishing

of c1

(
ind(/D+)

)
is, therefore, a necessary condition for the existence of a well-defined

partition function.
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4.3. Closing the Circle: Obstructions and Anomalies

We have just seen that, in a Euclidean d-dimensional spacetime M, the obstructions
to the existence of a Weyl fermion propagator (i.e., the existence of the inverse of /D+, for
instance) is contained in the class

ch(V) · Â(TX ) (118)

where X ≡ M×A
G . The question is now: where is the connection, if any, between the

just outlined mathematical approach, based on the obstruction concept, and chiral gauge
anomalies? The answer is that the connection is in the topology of the classifying space. It
is now time to establish this relationship. The exposition becomes now inevitably more
abstract and we will have to assume some results without (even an attempt of a) proof.

For simplicity, we consider the pure gauge case. It corresponds to taking (118) with
Â(TX ) = 1. Then recall that G = Autv(P) in reference to the principal fiber bundle P(M,G),
that A → A/G is a principal fiber bundle with structure group G, (109), that P×A

G → M×A
G

is a principal fiber bundle with group G, (110), and, finally, that M×A
G is a fiber bundle

over Q = A
G with fiber M (in the case of G = Autv(P), the bundle M×A

G reduces to M× AG
because the basepoint is not moved by a vertical automorphism). Let us endow A with a
connection ω in the fiber bundle A → A/G (see Appendix 12A of [5] for further details).
Then we can define a connection η on the G bundle P×A over M×A as follows:

ηp,V(X, Y) = Vp(X) + V(ω(Y))p, X ∈ TpP, Y ∈ TVA (119)

where V is a connection in P and ω a connection in A → A/G. To render this construction
less abstract let us notice that, looking at the definition (119), if we restrict η to the orbit of G
we obtain η = ev∗V, where ev : P× G → P is the evaluation map introduced in Section 4.1.

This connection descends to a connection η′ on the fiber bundle (110)

G
�

�

// P×A
G

��
M×A
G

(120)

We can, therefore, introduce the curvature Fη′ of η′ and express ch(V) in terms of it. Since
the Chern character can be expressed as a polynomial in the curvature, the relevant piece
for dimension d will take the form Pn(Fη′ , . . . ,Fη′), where n = d

2 + 1 and Pn is an ad-
invariant (reducible or irreducible) polynomial for the group G. Now let us recall that, in
the definition (119) of the connection η, the connection V in P, can be obtained from the
universal connection v (with curvature Fv) via a map f̂ : P→ EG, V = f̂ ∗v. In the same way
also ω, the connection in A, can be pulled back from the same universal connection via a
map f̂ : A → EG: ω = f̂∗v. Therefore, there exists an overall map, f̂× = ( f̂ , f̂) : P×A → EG,
such that η = f̂ ∗×v (for a more detailed discussion of η and η′, see Appendix 12A of [5]).
Therefore,

Pn(Fη , . . . ,Fη) = f ∗×Pn(Fv, . . . , Fv) (121)

The LHS then descends to Pn(Fη′ , . . . ,Fη′) on (120). Remember that Pn(Fv, . . . , Fv) is a
closed form in EG that descends to a closed form in BG, which represents a nontrivial
cohomology class of the classifying space.
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Now, we know that, via the evaluation map and the transgression formula, we can
extract from this class a corresponding chiral anomaly, which is given by i(·)TPn(V). This
can be seen directly from the transgression formula ensuing from (121)

TPn(η) = n
∫ 1

0
dtPn(η,Fη , . . . ,Fη), (122)

which splits into components of order (2n− p− 1, p) in P andA. The (2n− 1, 0) is precisely
TPn(V). We also know that any local chiral anomaly takes this form and originates from a
class in BG. Therefore, we see that consistent gauge anomalies and obstructions to the existence

of a Weyl fermion propagator coming from the index theorem are rigidly connected. [The reader
should not be misled by the fact that the family’s index theorem is formulated for a compact
manifold M while local field theory is formulated in a local patch. As explained above
in Section 4.1, the link between the two is natural in the framework of classifying space.
The BRST cohomology, that is, the cohomology of anomalies, is the same as the deRham
cohomology of the classifying space, whose geometry encompasses all compact manifolds.]
The added bonus of the family’s index theorem is that it supplies the precise numerical
coefficients of the irreducible polynomials and the product of reducible ones (see (106)
for the case of spin 1/2 [For other cases, for instance, for spin 3/2, we need appropriate
modifications.]). This allows us to cope with the problem of anomaly cancelation in general.

4.4. Anomaly Cancelation: Another Look

In the light of the previous results it is worth at this point to return to the issue of
anomaly cancelation. In general, the absence or cancelation of local anomalies takes place:

• (A) In gauge field theories or sigma models in which the gauge group G has vanish-
ing ad-invariant tensors in the relevant representations. Consistent anomalies are
determined by ad-invariant polynomials Pn, or by the corresponding ad-invariant
tensors ta1 ...an with a specific coefficient depending on the representation of the matter
fields involved. In many simple groups, some of these tensors vanish identically. This
is the case, as far as the polynomial P3 is concerned, for all simple groups except
SU(N), for N ≥ 3. This cancelation occurs at the very origin, in the sense that the
form P3(F(v), F(v), F(v)), where v is the universal connection, identically vanishes
in the classifying space. Even in groups where these tensors are non-trivial it may
happen they vanish depending on the representation of the fundamental fields. A
well-known example is the case of matter in the adjoint representation in 4d.

• (B) In gauge field theories or sigma models with different species of fermion fields,
which are separately anomalous, but when put together in the same theory, the
coefficients of the various consistent anomalies sum up to 0. The standard model of
particle physics is an example (see above).
The absence of anomalies in the SM is due to a combination of (A) and (B).

• (C) There is also a third case, where chiral anomalies due to elementary fermion fields
do not cancel completely, but cancelation may take place thanks to other fields in the
theory. Such fields are endowed with transformation properties that allow them to
cancel the original anomalies of the theory. This is the case of the anomalies canceled
by Wess–Zumino terms or the case of the Green–Schwarz mechanism, which is vastly
used in target space field theories derived from superstrings.

Other Anomalies?

The family’s index theorem of an elliptic operator (like the Dirac–Weyl operator)
signals the obstructions to the existence of an inverse (the propagator). So far, we have
considered the obstructions related to the (d, 2) component in P×A, see (115). We have
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seen that this obstruction is linked to the non-triviality of the Quillen determinant. There
are other components in the RHS of (115). In (118) there are forms of any even degree 2, 4,
6, 8, . . . In d = 4 it is reasonable to disregard the forms of order 2, 8, 10, . . . for dimensional
reasons [But a careful investigation of this point is still lacking]. We know that chiral gauge
anomalies come from the form of degree 6. But what about the degree 4 forms? These forms
may, in principle, couple to the theory. What is their meaning? There is no literature on this
subject, but this does not mean that we are allowed to casually shrug off an explanation.

Then, let us focus on the (d, 0) component for d= 4. There are components coming
from the Â-genus and from ch(V). The first gives a term 1

192π2 tr(R2), the second (in the
non-Abelian case) a term 1

8π2 trF2. What can be the meaning of these two terms? The
geometrical meaning of the (d, 0) component in P×A could be the ‘virtual’ rank of the
index bundle, as one can deduce from the formulas (113) and (114). Let us elaborate a
bit on this argument. The index, (112), is a local mathematical object that represents an
asymmetry between the kernel of /D+ and the kernel of /D−. As long as this asymmetry is
non-vanishing, it represents a threat to the existence of the propagator (and the theory).
The above-mentioned densities (of the Chern and Pontryagin classes) are an additional
hazard besides the ones contained in the (d, 2) component (in P×A) of the index, which
give rise to the consistent chiral anomalies. [The integration over M in (113) should not
mislead the reader: for some M this integral may vanish, but, we should never forget that,
in the spirit of locality, such formulas as (113) hold for any M (see discussion after (92))].
This is the mathematical side of the problem. It is to be expected that such a problem will
show up also on the field theory side. A physical interpretation is needed.

In specific gauge field theories that couple to a metric, besides the gauge potentials,
there is a quantity that naturally couples to the above-mentioned odd parity densities: it is
the trace of the energy–momentum tensor of a theory of chiral fermions. The corresponding
trace anomalies are not obtained via the transgression formula from the universal bundle
like the chiral consistent anomalies (the way we have illustrated above), but are pulled
back directly to the spacetime M via the classifying map. On the basis of our experience
with quantum theories, the correspondence of quantum numbers (form degree, dimension,
parity, Lorentz covariance) is perfect, and, barring the presence of a symmetry that forbids
it, a non-vanishing coupling has to be expected.

This will be confirmed in the sequel, but before proceedings along this line of analysis,
we need an introduction to diffeomorphisms, Weyl transformations, and related anomalies.
Refs.: [53–59].

5. Gravitational Anomalies

When gravity comes into play, the main character becomes the metric gµν(x) and
a fundamental symmetry becomes the symmetry under diffeomorphisms. The latter
corresponds to the general coordinate transformations xµ → xµ + ξµ(x), where ξµ(x) are
generic infinitesimal smooth functions of the coordinates. They act on the metric as follows

δξ gµν = Dµξν + Dνξµ, ξµ = gµνξν (123)

Dµ is the covariant derivative: Dµξν = ∂µξν − Γλ
µνξλ, and Γλ

µν are the Christoffel symbols.
The basic covariant geometrical object in this context is the Riemann tensor

Rρ
λµν = ∂µΓ

ρ
νλ − ∂νΓ

ρ
µλ + Γ

ρ
µσΓσ

νλ − Γ
ρ
νσΓσ

µλ (124)

It is convenient to introduce a compact matrix-form notation for the Christoffel symbols

Γ ≡ {Γν
λ}, Γν

λ = dxµΓµν
λ (125)
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and for the Riemann curvature tensor

R = dΓ + Γ ∧ Γ, R = {Rρ
λ}, Rρ

λ =
1
2

dxµ ∧ dxνRµν
ρ

λ (126)

The product between adjacent entries is understood to be the matrix product.
The BRST transformations for the gravitational case are obtained by promoting the

parameters ξµ to anticommuting fields. The BRST transformations of gµν are the same as
above, (123), but now ξµ are anticommuting fields, which transform themselves as

δξ ξµ = ξλ∂λξµ (127)

It is not hard to show that, due to this transformation, δξ becomes a nilpotent operation:

δ2
ξ = 0 (128)

This is the coboundary operator for diffeomorphisms. It defines the corresponding coho-
mology problem, analogous to the one defined above for gauge theories.

In the sequel, we will be interested in fermions ψ interacting with gravity. The relevant
action is

S[g, ψ] =
∫

ddx
√

g iψγµ(Dµ +
1
2

ωµ)ψ (129)

where γµ = e
µ
a γa, and e

µ
a are the vielbein (µ, ν, . . . are world indices, a, b, . . . are flat indices).

ωµ is the spin connection:

ωµ = ωab
µ Σab

where Σab = 1
4 [γa, γb] are the Lorentz generators. In Equation (129), ψ is a generic fermion

(Dirac, Weyl or Majorana). A right-handed Weyl fermion will be more explicitly denoted
ψR = 1+γ∗

2 ψ, where ψ is a Dirac field and γ∗ denotes the chirality matrix (in 4d it is γ5).
A fermion field transforms, under diffeomorphisms, is

δξ ψ = ξµ∂µψ, (130)

and it is easy to prove that (129) is invariant under diffeomorphisms.
Classically, the energy–momentum tensor

Tµν =
2√
g

S[g]

δgµν =
i

4
ψγµ

↔
∇νψ + {µ↔ ν} − i

2
ηµνψγµ(Dµ +

1
2

ωµ)ψ, ∇µ = Dµ +
1
2

ωµ, (131)

is both conserved on shell and traceless, i.e.,

DµTµν(x) = 0, T
µ
µ (x) = 0 (132)

The first condition follows from diffeomorphism invariance, the second from invariance
of (129) under the Weyl transformation

δωgµν(x) = 2ω(x)gµν(x) (133)

where ω(x) is an arbitrary infinitesimal parameter.
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The presence of fermions in a theory carries in the game also another local symmetry,
the local Lorentz symmetry. Since it will play a marginal role in this review, we limit
ourselves to a short mention. Local Lorentz transformations on a spinor ψ are defined by

δΛψ = −1
2

Λψ, Λ = ΣabΛab (134)

where Λab(x) are arbitrary infinitesimal parameters, antisymmetric in a, b. This implies

δΛωµ = ∂µΛ +
1
2
[ωµ, Λ] (135)

On the vielbein ea
µ the transformation is δΛea

µ = Λa
beb

µ. Like for other symmetries, we will
also promote Λab(x) to an anticommuting field, which is denoted by the same symbol
and endowed with the transformation property δΛΛab = −Λa

cΛcb. With this property, δΛ

becomes a nilpotent operation: δ2
Λ = 0. Consistency requires that δξ Λab = ξµ∂µΛab and

δΛξµ = 0, which implies that

(δξ + δΛ)
2 = 0. (136)

A pause is necessary at this point to make an important recall. In quantum field theory,
we normally have to do with several symmetries of the action simultaneously, and it does
not make sense to analyze the anomalies of a single symmetry disregarding the others. For
the sake of simplicity, let us consider two symmetries, which we shall refer to as R and S

(for instance, vector and axial gauge transformations, or diffeomorphisms and local Lorentz
or Weyl transformations). Let δR and δS be the corresponding coboundary operators. They
are functional differential operators linear in the relevant ghost fields and satisfy

(δR + δS)
2 = 0 (137)

(see, for instance, (136)), which splits into

δ2
R = 0 δ2

S = 0, δRδS + δSδR = 0 (138)

A cocycle of δR + δS is, in general, an overall cocycle, i.e., the sum of two integrated local
expressions ∆R and ∆S such that

(δR + δS)W = ∆R + ∆S (139)

Therefore

(δR + δS)(∆R + ∆S) = 0 (140)

This equation splits into three distinct ones

δR∆R = 0, δS∆R + δR∆S = 0, δS∆S = 0 (141)

In all known cases so far, one can find a local expression of the fields (excluding ghosts), C,
such that, for instance, ∆R = δRC, and we can redefine W →W ′ = W − C so that

δRW ′ = ∆′R = 0 (142)

δSW ′ = ∆S − δSC ≡ ∆′S (143)
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That is, in all known cases, the anomaly cocycle can be cast in the form that violates only
one symmetry.

After the previous technical introduction, it is perhaps useful to give a glance at the
anomalies related to diffeomorphisms and Weyl transformations that are in store for us.

Consistent diffeomorphisms and local Lorentz anomalies have the same form as the
gauge anomalies introduced in Section 2.3, in particular in Formula (48), with V replaced
by Γ or ω, Ft replaced by Rt or Rt, and λ by Ξµ

ν = ∂νξµ or Λ, respectively [R is defined
by R = dω + 1

2 [ω, ω], it represents the matrix-form R = {Rab} and it is related to R by
Rµ

ν = e
µ
a Rabebν]. It is not worth spending more time on these anomalies because in 4d,

they almost all vanish due to the mechanism (A) explained above: the corresponding
irreducible ad-invariant symmetric polynomials vanish identically, as already pointed out
after Equation (49). When the relevant polynomial is reducible, however, we may come
across a non-trivial anomaly. This may happen with mixed gauge-gravity anomalies. We
shall deal with them in due time.

There is another type of diffeomorphism anomaly, which arises as follows. The
transformation of the Christoffel symbol can be written in the following compact form

δξ Γρ
λ = (iξ d + diξ)Γ

ρ
λ + dΞρ

λ + [Γ, Ξ]ρλ (144)

From this and similar formulas, it is evident that any diffeomorphism splits into two parts:
one looks like an ordinary gauge transformation, the other corresponds to the Lie derivative
Lξ = iξ d + diξ . The first transformation gives rise to the just mentioned consistent chiral
anomalies, formally similar to the gauge anomalies. The second can also give rise to
cocycles of the form

Ad[ξ, B] =
∫

ddx
√

g∂·ξB (145)

where B is a local expression of the fields that transforms like a scalar: δξ B = ξ · ∂B. This
cocycle is consistent and, usually, has a Weyl anomaly partner and forms with it a non-trivial
cocycle of the coupled cohomology; see below.

Finally, we have Weyl anomalies. We have already introduced the Weyl transfor-
mation, Equation (133). For instance, it induces the following transformation for the
Christoffel symbols

δωΓλ
µν = ∂µωδλ

ν + ∂νωδλ
µ − gµνgλρ∂ρω (146)

Promoting ω(x) to an anticommuting field the Weyl transformation becomes nilpotent,
δ2

ω = 0, and defines a coboundary operator with relative cohomology. We cannot tire
to stress again the utmost importance of studying the joint cohomology defined by the
coboundary operator δξ + δω.

The possible nontrivial cocycles of δω with vanishing diffeomorphism partners in 4d
are well-known; they take the form

∆[g, ω] =
∫

d4x
√

g ω T[g], δω∆[g, ω] = 0 (147)

where the density T[g](x) can be the quadratic Weyl density

W2 = RµνλρRµνλρ − 2RµνRµν +
1
3

R2, (148)
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the Gauss–Bonnet (or Euler) density,

E = RµνλρRµνλρ − 4RµνRµν + R2, (149)

and the Pontryagin density,

P =
1
2

(
εµνµ′ν′RµνλρRµ′ν′

λρ
)

. (150)

Other possible cocycles have densities

Te[V] = FµνFµν, (151)

and

To[V] = εµνλρFµνFλρ. (152)

where Fµν is an Abelian field strength, and analogous expressions for the non-Abelian
case (a gauge potential is invariant under Weyl transformations in 4d). Other even trace
anomalies will be introduced and discussed in Section 17.

A Weyl (or conformal) anomaly is the nonvanishing response of the path integral
under a Weyl variation:

δωW[g] = −Aω, Aω =
∫

ddx
√

gω(x)T(x) (153)

where T(x) is the trace of the energy–momentum tensor

T(x) = gµν(x)
δ

δgµν(x)
W[g]. (154)

Aω must take the form of a linear combination of the above cocycles.
In a theory like (129), all the above trace anomalies may show up. But in the sequel,

we are principally interested only in those that signal the non-existence of the fermion
propagator (the dangerous ones). For instance, the even parity anomalies show up in
many theories (for instance, in a Dirac fermion theory) in which no doubt the fermion
propagator exists. These anomalies are interesting for other reasons, but they do not
signal any breakdown of the well-definiteness of the theory. For the time being we will
focus only on the others, analogous to those that impair gauge theories. On the basis
of the above discussion on the family’s index theorem, we expect them to appear in
chirally asymmetric theories (because the family’s index for a self-adjoint operator vanishes
identically). Refs.: [56,60–62].

6. Trace Anomalies

Historically, chiral anomalies were born out of ambiguities. The conservation of a
chiral current turned out to be tied to an ambiguous integral. Finally it was decided that
it is not wise to freely shift an integration variable in a divergent integral. And the ABJ
anomaly was born. For trace anomalies, ambiguities are even more abundant and subtle
than in the chiral case. It is imperative to have them in mind and to try to resolve them
before plunging into calculations.

One first ambiguity is in the classical definition of the e.m. tensor. As an example,
consider the action of a Dirac fermion coupled to a metric and an Abelian vector field

S =
∫

d4x
√

giψγµ

(
Dµ +

1
2

ωµ − iVµ

)
ψ (155)
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with the usual notation. The vector current is jµ = ψγµψ and for the stress–energy tensor,
we may take

Tµν =
i

4
ψγµ

↔
∇νψ + {µ↔ ν}, ∇µ = Dµ +

1
2

ωµ − iVµ (156)

They are both conserved on shell, and Tµν is also traceless on shell. There is, in fact,
another definition of the e.m. tensor, which corresponds to the general formula

Tµν(x) =
2√
g

δS

δgµν , (157)

and, from the differentiation of the
√

g, in (155), this leads to

T̂µν =
i

4
ψγµ

↔
∇νψ + (µ↔ ν)− gµν

i

2
ψγλ

↔
∇λψ = Tµν − gµνTλ

λ, (158)

which is also conserved and traceless on shell. This ambiguity in the definition of the e.m.
tensor gives rise to an ambiguity in the definition of the trace anomaly (as well as of the
diffeomorphism anomaly). Such an uncertainty is, in fact, resolved by the definition (161)
below: thanks to it, the second term of T̂µν drops out. For this reason, in the sequel, we will
proceed with (156). But let us comment on (161).

The perturbative effective action corresponding to the classical action (129) is expressed
in terms of the metric fluctuation hµν, where gµν = ηµν + hµν:

W[g] = W[0] +
∞

∑
n=1

in−1

2nn!

∫ n

∏
i=1

ddxi

√
g(xi)h

µiνi (xi)⟨0|T Tµ1ν1(x1) . . . Tµnνn(xn)|0⟩ (159)

from which we can derive the full one-loop expression of the e.m. tensor

⟨⟨Tµν(x)⟩⟩ = 2
δW[h]

δhµν(x)
=

∞

∑
n=1

in

2nn!

∫ n

∏
i=1

ddxi

√
g(xi)h

µiνi (xi)⟨0|T Tµν(x)Tµ1ν1(x1) . . . Tµnνn(xn)|0⟩c

(160)

To eliminate the above ambiguity as well as others, our definition of trace anomaly in

the perturbative case will be the following: if Tµν is the stress–energy tensor of a theory, the
trace anomaly is given by the difference, [63,64],

gµν⟨⟨Tµν(x)⟩⟩ − ⟨⟨gµνTµν(x)⟩⟩ = T[g](x) (161)

Thanks to this formula, the second term of T̂µν drops out. In addition, the field operator
T

µ
µ (x) vanishes on shell, while in the case when a theory contains a conformal soft breaking

term (a mass term, for instance) T
µ
µ (x) ̸= 0 , even on shell. The second term of (161) is

certainly present in such a case and the subtraction in (161) is needed in order to exclude
this unwanted term from the anomaly.

This is also connected to a notation problem: the difference between the two defini-
tions of the e.m. tensor can be reproduced in the definition of the corresponding effec-
tive action by inserting or not the factor

√
g(xi) in the integral

∫
ddxi of such formulas

as (159) and (160) and similar ones. Precisely, when this factor is inserted, one should use
T̂µν, while, if it is not inserted, the definition is valid for Tµν. Henceforth, we shall be using
such a simpler version of the effective action.

But this is not all concerning the definition (161). As a matter of fact, as we shall see,
the just mentioned term is non-vanishing in many other instances and in subtler ways.
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The trace anomaly is a violation of the classical tracelessness condition T
µ
µ (x) = 0.

It should be kept in mind that these equations are all valid on shell, while off-shell, they
do not hold in general. Off-shell T

µ
µ (x) is a non-vanishing quantum operator. Another

important point to be kept in mind is that, in terms of representations of the Lorentz group,
Tµν(x) is a reducible tensor of which the trace T

µ
µ (x) is an irreducible component. In the ex-

pression of the effective action, the latter is coupled to the field h(x) = h
µ
µ(x). Likewise, the

amplitude ⟨0|T T
µ
µ (x)Φ(y)Ψ(z)|0⟩, where Φ and Ψ are generic Lorentz covariant fields, is

an irreducible component of ⟨0|T Tµν(x)Φ(y)Ψ(z)|0⟩. Much as we do in field theory when
we compute quantum form factors, the former amplitude cannot be computed as a partic-
ular case of the latter but must be computed independently. There are several examples
where, when calculated with Feynman diagrams, the amplitudes ⟨0|T T

µ
µ (x)Φ(y)Ψ(z)|0⟩

and ηµν⟨0|TµνΦ(y)Ψ(z)|0⟩ are different, see [5].
There are also other reasons that forbid us to merge the two terms of (161), due to the

connection with other amplitudes. For instance, the Feynman amplitude corresponding to
the second term is the same as the amplitude of the Kimura–Delbourgo–Salam anomaly,
which appears in the current divergence of chiral fermions. Therefore, we have to live with
the trace anomaly (perturbatively) defined (at the three-point level) by the difference

ηµν⟨0|T Tµν(x)Φ(y)Ψ(z)|0⟩ − ⟨0|T T
µ
µ (x)Φ(y)Ψ(z)|0⟩ (162)

This difference means in particular that the (regularized) effective action has discontinuities:
differentiating it with respect to hµν and then saturating the result with ηµν may not be the
same as differentiating it with respect to h(x) = h

µ
µ(x), which is the conjugate source of

T
µ
µ (x).

One may ask what its physical meaning is. The reason for taking the difference in
the LHS of (161) is that two correlators may, in general, contain extra terms, which have
nothing to do with the anomaly. These terms are as follows:

• Possible soft terms that classically violate conformal invariance.
• The term iηµνψ̄/∂ψ in the modified definition of the e.m. tensor.
• The semi-local terms in the conformal WI.
• Possible off-shell contributions to the anomaly: The derivative of the effective action

with respect to hµν contracted with ηµν, or the derivative with respect to h
µ
µ, do not

automatically vanish off-shell. In fact, the operator T
µ
µ identically vanishes on shell.

Therefore, its contribution can only be off-shell. This means that in Formula (161), the
off-shell contributions to the anomaly are subtracted away. In other words, the trace
anomaly (161) receives only on shell contributions.

All these extra terms cancel out in (161).
The definition (161) of the trace anomaly refers to the perturbative approach. In

the non-perturbative approaches of the heat kernel type, the trace anomaly is simply the
response of the effective action to a Weyl rescaling of the metric [In the heat kernel method,
we differentiate the square kinetic operator and ignore the

√
g factor in the action. Thus, the

e.m. tensor we are dealing with is (156)]. The connection of the two definitions is not simple,
in the non-perturbative cases it is hard if not impossible to separately evaluate the two terms
of this definition. However, at least intuitively, we know that the anomaly, if any, appears
precisely when the kinetic operator is not invertible, that is precisely when the theory is
exactly on shell, which corresponds to our previous interpretation. In all cases considered
the two approaches lead to the same (final) results. We may nevertheless ask: why is it
that in the perturbative calculation we need to compute two separate terms? As we have
noted before, the perturbative approach starts from the lowest order of the perturbative
cohomology because higher-order calculations are more difficult and often inaccessible.
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Now, the lowest-order perturbative cohomology is a much looser mathematical structure
than the full BRST cohomology. The former has plenty of nontrivial cocycles, while in the
latter, non-trivial cocycles are very limited in number. The definition (161) is designed to
channel the lowest order perturbative results in the right track so as to coincide with the
non-perturbative approaches. In a more formal language, one can say that in perturbative
cohomology, each term of (161) is separately unstable, while their difference is stable.

After this long introduction, let us show a few examples of odd-parity trace anomalies.

6.1. Gauge-Induced Odd Parity Trace Anomaly of a Weyl Fermion

We refer to the action (155) with the fermion ψ being a right-handed Weyl fermion,
ψ = ψR, coupled to an Abelian vector potential. This time we wish to compute the trace
of the quantum e.m. tensor on the basis of the definition (161). To this end, the relevant
objects are the classically conserved and traceless (on-shell) energy–momentum tensor

T
(R)
µν =

i

4
ψRγµ

↔
∇νψR + {µ↔ ν}, ∇µ = Dµ +

1
2

ωµ + Vµ (163)

and the classically conserved current JRµ = iψ̄RγµψR. For a quantum evaluation, we must
refer to the effective action

W[h, V] = W[0] +
∞

∑
n,r=1

in+r−1

2nn!r!

∫ n

∏
i=1

dxih
µiνi (xi)

r

∏
l=1

dyle
λl
al
(yl)Vλl

(yl)

·⟨0|T T
(R)
µ1ν1(x1) . . . T̂

(R)
µnνn(xn)j

a1
R (y1) . . . jar

R (yr)|0⟩ (164)

The one- and two-point functions do not contribute to the trace anomaly we wish to
compute. What we have to find, therefore, is the relation between the (odd parity) trace
ηµν⟨0|T TRµν(x)jRλ(y)jRρ(z)|0⟩ and the (odd parity) correlator ⟨0|T T

µ
Rµ(x)jRλ(y)jRρ(z)|0⟩.

The Feynman rule for the vector-fermion-fermion vertex Vv f f is iγµPR and the graviton-
fermion-fermion vertex Vh f f is

− i

8

[
(p− p′)µγν + (p− p′)νγµ

]
PR (165)

where p, p′ are the fermion momenta: one entering and the other exiting. The fermion
propagator is the usual one [It is understood that we have added to the action a free
left-handed fermion in order to have a well-defined propagator]. We have to compute a
triangle diagram in which we associate an incoming momentum q to T

µ
Rµ(x) and outgoing

momenta k1, k2 to the potentials coupled to the two chiral currents; thus, q = k1 + k2.
The expression for ⟨0|T T

µ
Rµ(x)jRλ(y)jRρ(z)|0⟩ is

T̃
(R)µ
µλρ (k1, k2) =

1
2

∫
d4 p

(2π)4 tr
[

1

/p
γλPR

1

/p − /k1
γρPR

1

/p − /k1 − /k2
(2/p − /q)PR

]
(166)

=
1
2

∫
d4 pdδℓ

(2π)4+δ
tr
{

/p
p2 − ℓ2 γλ

/p − /k1

(p− k1)2 − ℓ2 γρ
/p − /q + /ℓ

(p− q)2 − ℓ2 (2/p + 2/ℓ − /q)PR

}

The second line is the regularized integral obtained with the adjunction to p of a momentum
ℓ along δ extra dimensions. To it, the cross term must be added. Evaluating the integral
after a Wick rotation yields

T̃
(R)µ
µλρ (k1, k2) + T̃

(R)µ
µρλ (k2, k1)

∣∣∣
odd

=
1

24π2 εµνλρk
µ
1 kν

2, (167)

This is the result for ⟨0|T T
µ
Rµ(x)jRλ(y)jRρ(z)|0⟩. In an analogous way, we obtain
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1
2

∫
d4 pdδℓ

(2π)4+δ
tr
{

/p
p2 − ℓ2 γλ

/p − /k1

(p− k1)2 − ℓ2 γρ
/p − /q

(p− q)2 − ℓ2 (2/p − /q)PR

}∣∣∣∣∣
odd

+ cross

=
1

48π2 εµνλρk
µ
1 kν

2 (168)

which gives the odd parity part of ηµν⟨0|T TRµν(x)jRλ(y)jRρ(z)|0⟩. Therefore, after return-
ing to a Lorentzian background, we obtain

gµν⟨⟨TRµν(x)⟩⟩
∣∣∣
odd
− ⟨⟨gµνTRµν(x)⟩⟩

∣∣∣
odd

= − i

96π2 εµνλρ∂µVν(x)∂λVρ(x) (169)

The non-Abelian version of this result is

A(odd,R)
ω = − i

384π2 εµνλρtr(FµνFλρ) (170)

This is the gauge-induced odd parity trace anomaly for a right-handed Weyl fermion.
For a left-handed Weyl fermion, the only difference is the sign in front of γ5 in the initial
Formula (166). Therefore, the only change for the odd parity part is an overall sign:

A(odd,L)
ω =

i

384π2 εµνλρtr(FµνFλρ) (171)

In fact, we have not justified the cubic and quartic terms in (170) and (171), which would
require the evaluation of higher-order amplitudes. They will be derived more comfortably
with non-perturbative methods.

6.2. Gravity-Induced Odd Parity Trace Anomaly of a Weyl Fermion

Let us consider the case of the action (155) for a right-handed Weyl fermion ψ ≡ ψR

coupled only to a metric (Vµ = 0). The effective action is

W(R)[g] = W(R)[0] +
∞

∑
n=1

in−1

2nn!

∫ n

∏
i=1

ddxih
µiνi (xi)⟨0|T T

(R)
µ1ν1(x1) . . . T

(R)
µnνn(xn)|0⟩ (172)

Our task is to compute multi-point amplitudes of the e.m. tensor. To start with, from the
action we have to extract the Feynman rules. We write it down more explicitly as follows

S =
∫

d4x
√
|g|
[

i

2
ψRγµ

↔
∂ µψR −

1
4

εµabcωµabψRγcγ5ψR

]
(173)

where it is understood that the derivative applies to ψR and ψR only. We have used the
relation {γa, Σbc} = iεabcdγdγ5.

Now we expand

ea
µ = δa

µ + χa
µ + ..., e

µ
a = δ

µ
a + χ̂

µ
a + ..., and gµν = ηµν + hµν + ... (174)

and make a local Lorentz gauge choice by dropping the antisymmetric part of the vierbein.
Inserting these expansions in the defining relations ea

µe
µ
b = δa

b , gµν = ea
µeb

νηab, we find

χ̂
µ
ν = −χ

µ
ν and hµν = 2χµν. (175)

Let us expand accordingly the spin connection:

ωµabεµabc = −εµabc∂µχaλχλ
b + ... (176)
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Therefore, up to second order, the action can be written (by incorporating
√
|g| in a

redefinition of the ψR field.)

S ≈
∫

d4x

[
i

2

(
δ

µ
a − χ

µ
a +

3
2
(χ2)

µ
a

)
ψLγa

↔
∂ µψL +

1
4

εµabc∂µχaλχλ
b ψLγcγ5ψL

]

As a consequence, the Feynman rules are as follows (momenta are incoming, and the
external gravitational field is assumed to be hµν). The fermion propagator is the usual one
as before. The two-fermion-one-graviton vertex (Vf f h) is

− i

8

[
(p− p′)µγν + (p− p′)νγµ

]1 + γ5

2
(177)

There are two two-fermion-two-graviton vertices: Vf f hh

3i

64

[(
(p + p′)µγµ′ηνν′ + (p + p′)µγν′ηνµ′ + {µ↔ ν}

)
(178)

+
(
(p + p′)µ′γµηνν′ + (p + p′)µ′γνηµν′ + {µ′ ↔ ν′}

)]1 + γ5

2

and Vε
f f hh

1
64

tµνµ′ν′κλ(k− k′)λγκ 1 + γ5

2
(179)

where

tµνµ′ν′κλ = ηµµ′ ενν′κλ + ηνν′ εµµ′κλ + ηµν′ ενµ′κλ + ηνµ′ εµν′κλ (180)

and the graviton momenta k, k′ are incoming.
Let us come next to the explicit calculations. Like in the previous calculations, the

lowest order contribution to the odd-parity trace anomaly can be proven to come from
the three-point e.m. amplitude. In a careless approach, this does not seem to make sense
because a well-known result of CFT states that a conformal odd parity three-point function
⟨0|T Tµν(x)Tµ′ν′(y)Tαβ(z)|0⟩(odd) vanishes identically for algebraic reasons. Therefore, at
the lowest perturbative order, we can write

ηµν⟨⟨Tµν(x)⟩⟩(odd) = 0, (181)

as can be proven also by a direct calculation. However according to the definition (161) we
must compute also the second term with one insertion of a trace of the e.m. tensor.

Here, at variance with the previous examples in this review, the Feynman diagrams
to be calculated do not reduce to a single triangle diagram. Due to the existence of the
four-legs vertices (178) and (179), there are also two bubble diagrams. They are obtained by
joining two vertices, Vf f h (on the left) and Vε

f f hh or Vf f hh (on the right), with two fermion
propagators. The incoming graviton in Vf f h has momentum q and the two outgoing
gravitons in Vε

f f hh or Vf f hh are specified by k1, {µ, ν} and k2, {µ′, ν′}, respectively, with
q = k1 + k2. The two fermion propagators form a loop. However these diagrams turn out
to give a vanishing contribution to the anomaly. Therefore, let us focus on the triangle
diagram.

The triangle diagram with three e.m. insertions is constructed by joining three vertices
Vf f h with three fermion lines. The external momenta are q (incoming) with labels α and β,
and k1, k2 (outgoing), with labels µ, ν and µ′, ν′, respectively. Of course q = k1 + k2. The
internal momenta are p, p− k1 and p− k1 − k2, respectively.
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Employing the above Feynman rules of the chiral fermion coupled to an external
gravitational field, we can write down the Fourier transform of the three-point e.m. tensor

amplitude T̃
(odd)
µνµ′ν′αβ(k1, k2). Contracting α and β and moving PR to the rightmost posi-

tion [This is, in this case, the simplest prescription, but by no means the only one. In [5] it
is shown that the position of γ5 is irrelevant for the final result provided we use the same
prescription also in computing the diffeomorphism anomaly. In other words, its position is,
in general, irrelevant to the joint Weyl-diffeomorphism cohomology], the correlator we are
looking for is

T̃µνµ′ν′(k1, k2) ≡ T̃
(odd)α
µνµ′ν′α(k1, k2) = −

1
256

∫
d4 p

(2π)4 Tr
{[

/p
p2 (2p− k1)µγν + (µ↔ ν)

]
(/p − /k1)

(p− k1)2

×
[
(2p− 2k1 − k2)µ′γν′(µ

′ ↔ ν′)
] (/p − /k1 − /k2)

(p− k1 − k2)2 (2/p − /k1 − /k2)

(
1 + γ5

2

)}
. (182)

which is evidently divergent. We dimensionally regularize it in the usual way. The
calculation is lengthy. Finally, after adding the cross term, one obtains

T̂
(tot)
µνµ′ν′(k1, k2) = −

i

3072π2 kα
1k

β
2

((
k2

1 + k2
2 + k1 ·k2

)
tµνµ′ν′αβ − t

(21)
µνµ′ν′αβ

)
. (183)

where

t
(21)
µνµ′ν′κλ = k2µk1µ′ ενν′κλ + k2νk1ν′ εµµ′κλ + k2µk1ν′ ενµ′κλ + k2νk1µ′ εµν′κλ (184)

To simplify the derivation, we shall set the external lines on shell, k2
1 = k2

2 = 0. This
requires a comment.

Inserted in the formula for the effective action, the term kα
1k

β
2 (k

2
1 + k2

2)tµνµ′ν′αβ gives
rise to the cocycle ∆ω

∆ω ∼
∫

d4xωεµνλρ∂µ□hα
ν∂λhρα (185)

This is a consistent Weyl cocycle (at the lowest significant order), but it is not invariant
under diffeomorphism transformations, and, of course, there is no covariant extension of it
to all orders. In such kind of situation this usually means that there is a partner cocycle of
the diffeomorphisms, of the type (145), that, together with (185), form a complete cocycle
of the overall Weyl-diffeomorphism cohomology. When this happens, one can usually find
a local counterterm that cancels one of the two partner cocycles and modifies the other.
There are plenty of such examples. But, in this case, if we compute the odd parity part of
the divergence of the e.m. tensor, we find zero, as expected because of the remark around
Equation (181). We can also view the problem from another point of view; we can cancel
the cocycle (185) by subtracting from the effective action a counterterm

∼
∫

d4xhεµνλρ∂µ□hα
ν∂λhρα (186)

where h = h
µ
µ. But this counterterm is not invariant under diffeomorphisms, therefore it

would generate a diffeomorphism anomaly. This means that at the lowest perturbative
order, the cross-consistency conditions for diffeomorphisms and Weyl transformations are
not satisfied. This is not surprising because one can prove that on algebraic grounds, the
odd part of the three-point conformal amplitude of the e.m. tensor vanishes identically. In
other words, due to algebraic constraints, the usual cohomology machinery for the two joint
symmetries cannot work, at least at the lowest perturbative order (the three-point function).
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A way out is to compute higher order diagrams (the four-, five-, . . . point function
may have a nonvanishing odd part) or resort to a nonperturbative method. The first
alternative is rather impervious, the second more accessible, and, in fact, we will exhibit
a nonperturbative derivation of this trace anomaly later on. But there is also a way to
utilize the result (183) relying on the fact that should we be able to go beyond the lowest
order calculation the rupture of the machinery would disappear. What we have to do is
render the term (185) irrelevant for the derivation of the final result. This is the rationale
for putting the external lines on shell.

6.2.1. On Shell Conditions

Putting the external lines on shell means that the corresponding fields have to satisfy
the eom of Einstein–Hilbert gravity Rµν = 0. In the linearized form, this means

□χµν − ∂µ∂λχλ
ν + ∂ν∂λχλ

µ − ∂µ∂νχλ
λ = 0 (187)

We also choose the De Donder gauge: Γλ
µνgµν = 0, which at the linearized level becomes

2∂µχ
µ
λ − ∂λχ

µ
µ = 0. In this gauge (187) becomes

□χµν = 0 (188)

In momentum space, this implies that k2
1 = k2

2 = 0. But this is not simply an ad hoc trick.
We are, in fact, defining a restricted cohomology of the diffeomorphisms and the Weyl
transformations: a cohomology defined up to terms □hµν and □ξµ. This is a well-defined
cohomology, under which we have, in particular,

δξ

(
2∂µχ

µ
λ − ∂λχ

µ
µ

)
= 2 □ξλ ≈ 0 (189)

i.e., in this restricted cohomology, the De Donder gauge fixing is irrelevant. Similarly, the
term (185) remains null after a restricted diffeomorphism transformation, so it does not play
any role in cohomology. The restricted cohomology has the same odd class (the Pontryagin
one) as the unrestricted one, i.e., it completely determines it (this is not true, for instance,
for the even parity classes).

6.2.2. Overall Contribution

The overall one-loop contribution to the trace anomaly in momentum space, as far

as the parity-violating part is concerned, is given by (183). After returning to the Minkowski
metric and Fourier-anti-transforming it, we can extract the local expression of the trace
anomaly by replacing the results found so far in (160). The result, to the lowest order, is

⟨⟨Tµ
µ (x)⟩⟩(odd) ≈ − i

768π2 εµνλρ
(

∂µ∂σhτ
ν∂λ∂τhσ

ρ − ∂µ∂σhτ
ν∂λ∂σhτρ

)
(190)

The factor in front is due to a factor of 8 that comes from the coefficient 1
2nn! with n = 2

in the denominator and a factor of 8 in the numerator because the Fourier transform of
the three-point function of the e.m. tensor is 8 times T̃µνµ′ν′αβ(k1, k2); another factor of 4 in
the numerator is due to the symmetry of the tensors t and t(21) in (183), which yields four
times the same term. Comparing with the expansion

εµνλρRµν
στ Rλρστ = εµνλρ

(
∂µ∂σχa

ν∂λ∂aχσ
ρ − ∂µ∂σχa

ν∂λ∂σχaρ

)
+ ... (191)



Symmetry 2025, 17, 273 45 of 112

we obtain

⟨⟨Tµ
µ (x)⟩⟩(odd) = − i

768π2
1
2

εµνλρRµν
στ Rλρστ (192)

Now applying the definition (161) and recalling (181), we obtain the covariant expression
of the parity-violating part of the trace anomaly

T[g](x) =
i

768π2
1
2

εµνλρRµν
στ Rλρστ . (193)

It goes without saying that a left-handed Weyl fermion has the same anomaly with the
opposite sign in front.

Remark 4. On the basis of a not uncommon prejudice in the literature, the previous result sounds

unexpected. It is sometimes stated that the theory of gravity is chirally blind, meaning that the

relevant charge, the mass, is positive and is thus different from the typical case of a U(1) interaction.

However, this is based on a misunderstanding. The coupling between gravity and matter is given

by the juxtaposition of the metric and the energy–momentum tensor, and the energy–momentum

tensors of fermions with opposite chiralities are different. Therefore, it is to be expected that at

some stage, differences might emerge between fermions with opposite chiralities in their interaction

with gravity. An obvious place where such differences may show up are the anomalies, and in

particular, the trace anomaly, because it involves precisely the coupling between the metric and the

energy–momentum tensor.

Remark 5. Contrary to what may seem at first sight, the anomalies (271) and (273) violate parity

but, due to the imaginary coefficient in front, do not violate time reversal. Therefore, assuming

CPT invariance, they do not violate CP either. The imaginary coefficient means, however, that the

quantum effective Hamiltonian becomes complex, which thus becomes a source of possible violation

of unitarity.

6.3. The KDS Anomaly

It is not irrelevant to notice at this point a fact that has not been given the right
importance in the literature. Consider a Dirac fermion ψ coupled to a metric and vector
potential Vµ like in (155). It is invariant under the Abelian local transformation ψ→ eiγ5ηψ

and Vµ → Vµ + γ5∂µη. The corresponding axial current j5µ = ψγµγ5ψ is classically
conserved. Is it conserved in the quantum theory? Or is it violated due to the gravitational
interaction? To answer this question, one has to consider the amplitude ⟨∂· j5TT⟩. The
amplitude in question is the same as (182) with the factor (2/p − /q) replaced by /q and PR

replaced by γ5, and an overall coefficient 1
64 instead of 1

256 . If we rewrite /q = 2/p− (2/p− /q),
we see that the second term reproduces the calculation of the previous subsection multiplied
by a suitable coefficient, while the term corresponding to 2/p, once regularized, is easily
seen to vanish. Therefore, we can conclude that

∂µ j5µ =
1

768π2 εµνλρRµν
στ Rλρστ . (194)

This is the Kimura–Delbourgo–Salam anomaly, [65]. It is an anomaly of a Dirac fermion
theory, that is, of the ABJ type [ABJ-type anomalies appear in theories involving Dirac
fermions. A Dirac fermion can be decomposed into a sum of one left-handed and one
right-handed Weyl fermion. If the two Weyl fermions have consistent anomalies, the latter
have opposite signs. The consistent anomaly of the fermion is the sum of these two; thus, it
vanishes. The ABJ anomaly is instead the difference between the two (the right-handed
minus the left-handed one)]. This derivation of the KDS anomaly is an example of the rigid
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link that connects chiral ABJ-type anomalies to odd parity trace anomalies. The same holds
also for the gauge induced trace anomaly considered previously, see Section 6.1, in a Weyl
fermion theory, which is rigidly linked in the same way to the standard ABJ gauge anomaly.
Refs.: [65–70].

7. The Standard Model in a Metric Background Geometry

We can now analyze the overall panorama of the new anomalies in the SM due to
its immersion in a non-trivial metric background. As mentioned before, the dangerous
consistent diffeomorphism anomalies, which might occur in the divergence of the e.m.
tensor, vanish identically for group theoretical reasons. But, as already pointed out, there
may appear a mixed gauge-gravitational anomaly.

7.1. Mixed Gauge-Gravity Anomaly

The action (155), with ψ ≡ ψR, is invariant under the local U(1) transformation
Vµ → Vµ + ∂µλ. The relevant current jµ = ψ̄RγµψR is classically conserved, and to find the
corresponding anomaly, if any, we have to evaluate the amplitude ⟨∂· jRTRTR⟩. The latter
can be easily calculated with the usual Feynman diagram. The final result is

∂µ jRµ =
1

1536π2 εµνλρRµν
στ Rλρστ . (195)

Its integrated form is ∼ ∆G(λ, g) =
∫

d4xλεµνλρRµν
στ Rλρστ , which is a diffeomorphism

invariant (trivially) consistent Abelian gauge cocycle. This cocycle can take different forms,
for instance, ∆G(λ, g) is equivalent to

∆d(ξ, g, V) =
∫

d4x
√

gεµνλρtr
(
∂µΞΓν

)
Fλρ (196)

where Fµν = ∂µVν − ∂νVµ, Ξ represents the matrix Ξτ
σ = ∂τξσ and Γµ represents the matrix

Γτ
µσ. They can be obtained from each other by subtracting a suitable conterterm.

This anomaly can also take the form of a (gauge+diffeomorphism invariant) Lorentz
anomaly. The reason is that all these cocycles descend from the same 6-form tr(RR)F of the
classifying space of the group SO(4)×U(1).

Let us see the effect of these mixed anomalies in the SM Table 2. Adopting the style of
Section 2.4 and the notation Σ for the generic Lorentz generator, it is easy to see that the
only a priori non-vanishing possibility is

Table 2. MSM mixed.

• Σ× Σ× Tu(1), the trace tr
(

ΣabΣcd
)

is non-vanishing, but it is multiplied by the

total U(1) charge: 6
(

1
6

)
− 3
( 2

3

)
− 3
(
− 1

3

)
+ 2
(
− 1

2

)
+ 1 = 0.

The addition of sterile neutrinos to (1) does not alter this conclusion.

7.2. Do Odd-Parity Trace Anomalies Cancel?

Next, let us analyze the situation for trace anomalies in the SM. First, it is important
to clarify that these anomalies are relevant only when gravity is effectively coupled to the
model. For, looking at the effective action (164) one can see that any quantum contribution
to the trace of the e.m. tensor is multiplied by the metric fluctuation h = h

µ
µ. If the

latter vanishes, no quantum contribution from the trace anomaly can affect the effective
action. Therefore, the previous anomaly analysis is completely satisfactory if gravity can be
disregarded. On the other hand, if gravity is assumed to interact with the standard model
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via the minimal covariant couplings, odd trace anomalies may have significant fallouts, as
was pointed out before. Therefore it makes sense to study the conditions under which also
these anomalies cancel. Hereafter, we broach this subject.

For odd parity trace anomalies, the cancelation takes place in any case if there is a
perfect balance between opposite chiralities, between, say, left-handed and right-handed
components. From the above we see that in the multiplet (1) there is a balance between the
left-handed and right-handed components except for the left-handed νe.

This breakdown (Table 3) is naturally avoided if we add to the above SM multiplet
other Weyl fermions (for instance, a right-handed sterile neutrino) so as to produce a
chirally symmetric model without compromising the cancelation of the chiral gauge and
gravity anomalies.

Table 3. MSM trace-gravity.

• Therefore, the multiplet (1), when weakly coupled to gravity, will produce an
overall non-vanishing (imaginary) coefficient for the Pontryagin density in the
trace anomaly.

The analysis concerning gauge-induced odd trace anomalies, see (170), is more com-
plex. First of all, we have three types of such anomalies (Table 4), constructed with
SU(3), SU(2) and U(1) gauge fields, respectively.

Table 4. MSM trace-gauge.

• We have six units of the anomaly (170) with curvature F ≡ Fsu(3) and six units
with opposite signs. Therefore, the multiplet (1) is free of these anomalies.

• Instead, we have 4 units of the same anomaly with gauge field F ≡ Fsu(2) and
positive sign, see (171), computed in the doublet representation of su(2).

• Finally, we have a U(1) gauge-induced trace anomaly with a vanishing total

coefficient: 6
(

1
6

)2
− 3
( 2

3

)2 − 3
(
− 1

3

)2
+ 2
(
− 1

2

)2
− (−1)2 = 0

The addition of sterile neutrinos does not change these conclusions. The SU(2)
gauge-induced odd trace anomalies do not cancel in the MSM. Refs.: [5,15].

8. A Metric-Axial-Tensor Background

Before passing to the second part of the paper, we would like to complete our de-
scription of the anomalies relevant to the SM by showing how to compute the previous
trace anomalies in a non-perturbative way via the SDW method. To this end, we enlarge
the background geometry by introducing the metric-axial-tensor (MAT) gravity. It is a
generalization of Bardeen’s method for gauge fields to the gravitational environment. It
must be said that this extension is not strictly necessary to derive the final results, but, in
view of the ambiguities scattered in this type of computations, as pointed out before, this
expedient is a good bookkeeping device, certainly less exposed to blunders than the direct
method, and, anyhow, it introduces in gravity theories a richer formalism susceptible of
new unexplored applications, as we shall see in the second part of the paper.

8.1. Axial-Complex Analysis and Geometry

Axial-complex numbers are defined by

â = a1 + γ5a2 (197)
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where a1 and a2 are real numbers (a1 is called axial-real and a2 axial-imaginary). Arithmetic
is defined in the obvious way. We have a natural conjugation operation â = a1 − γ5a2.

We shall consider functions f̂ (x̂) of the axial-complex variable x̂ = x1 + γ5x2, as well
as functions of several axial-complex variables x̂µ = x

µ
1 + γ5x

µ
2 . We can easily define

derivatives:

∂

∂x̂µ =
1
2

(
∂

∂x
µ
1

+ γ5
∂

∂x
µ
2

)
,

∂

∂x̂
µ =

1
2

(
∂

∂x
µ
1

− γ5
∂

∂x
µ
2

)
(198)

Notice that for axial-analytic functions (that is, functions defined by their Taylor series ex-
pansion),

d

dx̂
=

∂

∂x1
≡ ∂

∂x̂
, (199)

whereas ∂
∂x̂

f̂ (x̂) = 0.
As for integrals, since we will always deal with fluctuating fields or parameters rapidly

decreasing at infinity, we define
∫

dx̂ f̂ (x̂) as the rapidly decreasing primitive ĝ(x̂) of f̂ (x̂).
Therefore, in particular, the property

∫
dx̂

∂

∂x̂
f̂ (x̂) = 0 (200)

follows immediately.
In this axial-spacetime we introduce an axial-Riemannian geometry as follows. We

generalize the metric ĝµν = gµν + γ5 fµν, by adding to the usual metric an axial symmet-
ric tensor. Their background values are ηµν and 0, respectively. So, we write as usual
gµν = ηµν + hµν. Likewise, for the vierbein we write êa

µ = ea
µ + γ5ca

µ and ê
µ
a = ẽ

µ
a + γ5 c̃

µ
a .

This implies

ηab

(
ea

µeb
ν + ca

µcb
ν

)
= gµν, ηab

(
ea

µcb
ν + ea

νcb
µ

)
= fµν (201)

The Christoffel symbols are defined by

Γ̂λ
µν =

1
2

ĝλρ

(
∂

∂x̂µ ĝρν +
∂

∂x̂ν
ĝµρ −

∂

∂x̂ρ ĝµν

)
(202)

They split as Γ̂
µ
νλ = Γ

(1)µ
νλ + γ5Γ

(2)µ
νλ , and are such that the metricity condition is satisfied

∂

∂x̂µ ĝνλ = Γ̂
ρ
µν ĝρλ + Γ̂

ρ
µλ ĝνρ, (203)

Proceeding the same way, one can define the MAT Riemann tensor via R̂
ρ
µνλ:

R̂
ρ
µνλ = −∂µΓ̂

ρ
νλ + ∂νΓ̂

ρ
µλ − Γ̂

ρ
µσΓ̂σ

νλ + Γ̂
ρ
νσΓ̂σ

µλ ≡ R
(1)
µνλ

ρ + γ5R
(2)
µνλ

ρ (204)

The MAT spin connection is introduced in analogy

Ω̂ab
µ = êa

ν

(
∂µ êνb + êσbΓ̂ν

σµ

)
= Ω

(1)ab
µ + γ5Ω

(2)ab
µ (205)

In a MAT background, one must also introduce axially extended (AE) diffeomorphisms.
They are defined by

x̂µ → x̂µ + ξ̂µ(x̂µ), ξ̂µ = ξµ + γ5ζµ (206)
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Operationally, these transformations act in the same way as the usual diffeomorphisms,
therefore, for the non-covariant part of the transformation

δ
(n.c.)
ξ̂

Γ̂λ
µν = ∂̂µ∂̂ν ξ̂λ (207)

where the derivatives are understood with respect to x̂µ and x̂ν. We also have

δ
ξ̂
ĝµν = D̂µ ξ̂ν + D̂ν ξ̂µ (208)

where ξ̂µ = ĝµν ξ̂ν and D̂µ is the covariant derivative with respect to Γ̂.
There are two types of Weyl transformations that can be compactly written as

ĝµν −→ e2ω̂ ĝµν, (209)

where ω̂ = ω + γ5η.
The SDW method is based on point-splitting along a geodesic. Therefore it is crucial

to define geodesics in a MAT background. Their defining equations are

¨̂x
µ
+ Γ̂

µ
νλ

˙̂x
ν ˙̂x

λ
= 0 (210)

where a dot denotes a derivative with respect to t̂ = t1 + γ5t2. Since ĝµν
˙̂x

µ ˙̂x
ν

is constant for
geodesics, we can write the following for the arc length parameter ŝ

dŝ

dt̂
=
√

ĝµν
˙̂x

µ ˙̂x
ν
, (211)

The quantity

σ̂(x̂, x̂′) =
1
2
(ŝ− ŝ′)2 (212)

is called the world function. It has remarkable properties, starting with

σ̂;µ = ∂̂µσ̂ = (t̂− t̂′)ĝµν
˙̂x

ν ≡ −ĝµνŷν (213)

ŷµ are the normal coordinates based at x̂. One can prove that

1
2

σ̂;µσ̂;µ = σ̂ (214)

Covariantly differentiating (214), we obtain

σ̂;ν = σ̂;µνσ̂;µ (215)

In the coincidence (x′ → x) limit, [σ̂;ν] = 0. Therefore (215) is trivial in the coincidence limit.
But differentiating further, one can show that

[σ̂;µλ] = ĝµλ (216)

Now the game consists of repeatedly differentiating these relations and computing the
coincidence limit. For instance, one can prove

[σ̂;νλρτ ] = −
1
3

(
R̂ντλρ + R̂νρλτ

)
(217)

and so on.



Symmetry 2025, 17, 273 50 of 112

In the sequel, we need the Van Vleck–Morette determinant

D̂(x̂, x̂′) = det(−σ̂;µν′) (218)

and the geodetic parallel displacer for spinors, Î(x̂, x̂′): the object Î(x̂, x̂′)ψ̂(x̂′) is the spinor
ψ(x̂) obtained by parallel displacing ψ̂(x̂′) along the geodesic from x̂′ to x̂. It is a bispinor
quantity satisfying

σ̂;µ Î;µ = 0, [ Î] = 1 (219)

Among its remarkable properties, we have the following concidence limit

[ Î(x, x′);[µ,ν]] = [ Î(x, x′);µν] = −
1
4
R̂µν (220)

where R̂µν = R̂µν
abΣab.

8.2. Fermions in a MAT Background

The action of a fermion interacting with a metric and an axial tensor is

Ŝ =
∫

d4 x̂

(
iψ

√
ĝγa ê

µ
a

(
∂µ +

1
2

Ω̂µ

)
ψ

)
(x̂) (221)

=
∫

d4 x̂

(
iψ

√
ĝγa(ẽ

µ
a + γ5 c̃

µ
a )

(
∂µ +

1
2

(
Ω

(1)
µ + γ5Ω

(2)
µ

))
ψ

)
(x̂) (222)

It must be noticed that this action takes on axial-real values. The field ψ(x̂) can be under-
stood, classically, as a series of powers of x̂ applied to constant spinors on their right, and
the symmetry transformations act on it from the left. The analogous definitions for ψ† are
obtained via hermitean conjugation.

Remark the position of the density
√

ĝ : it must be inserted between ψ and ψ, due to
the presence in it of the γ5 matrix. Of course one has to remember that the kinetic operator
contains a γ matrix that anticommutes with γ5.

Let us consider AE (axially extended) diffeomorphisms first, (206). It is not hard to
prove that the action (221) is invariant under these transformations, provided δξ̂ψ = ξ̂µ ∂ψ

∂x̂µ .
Also, for the axial complex Weyl transformation, one can prove that, assuming for the
fermion field, the transformation rule

ψ→ e−
3
2 (ω+γ5η)ψ, (223)

(221) is invariant.
Now, define the full MAT e.m. tensor by means of

Tµν =
2√

ĝ

←
δ Ŝ

δĝµν (224)

This formula needs a comment since
√

ĝ contains γ5. To give a meaning to it, we understand

that the operator 2√
ĝ

←
δ

δĝµν in the RHS acts on the operatorial expression, say O
√

ĝ, which is

inside the spinor scalar product, ψO
√

ĝψ. Moreover, the functional derivative acts from
the right of the action.

The explicit e.m. formula (on shell) is

Tλρ = − i

2
ψγ̂λ

(
∂ρ +

1
2

Ω̂ρ

)
ψ + (λ↔ ρ) = − i

2
ψγ̂λ∇̂ρψ + (λ↔ ρ) (225)
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where γ̂λ = γa êa
λ. This expression splits into a vector and an axial part, Tµν and T5µν, which

in the flat limit are given on shell by

Tµν ≈ T
( f lat)
µν = − i

4

(
ψγµ

↔
∂νψ + µ↔ ν

)
, (226)

and

T5µν ≈ T
( f lat)
5µν =

i

4

(
ψγ5γµ

↔
∂νψ + µ↔ ν

)
, (227)

Weyl invariance leads to the classical Ward identities:

T(x) ≡ Tµνgµν + T5µν f µν = 0, (228)

T5(x) ≡ Tµν f µν + T5µνgµν = 0, (229)

8.3. The Dirac Operator and Its Square

In the action (221) the Dirac operator is

F̂ = iγ̂·∇̂ = iγ̂µ∇̂µ = iγa ê
µ
a ∇̂µ ≡ γa F̂a (230)

where ∇̂ = D̂ + 1
2 Ω̂ and satisfies ∇̂µ êa

ν = 0.
Under AE diffeomorphisms, ψ transforms as follows: δ

ξ̂
ψ = ξ̂ ·∂ψ, while

δ
ξ̂

(
iγ̂·∇̂ψ

)
= ξ̂ ·∂

(
iγ̂·∇̂ψ

)
(231)

Under AE Weyl transformation, F̂ transforms as

δω̂ F̂ = −1
2

γa{F̂a, ω̂} (232)

and it has the following hermiticity property

F̂† = γ0 F̂γ0 (233)

where γ0 is the non-dynamical (flat) gamma matrix.
In order to be able to apply the SDW method we have to select the squared Dirac

operator. As pointed out earlier, see Section Bardeen’s Anomaly with SDW , there are a
priori a few possibilities. However, the request of respecting the basic (AE diffeomorphism)
symmetry of the theory [We recall once more that this invariance is needed for the point-
splitting technique, which underlies the SDW method, to work properly. We stress that
invariance under ordinary diffeomorphisms alone is not enough because, in the chiral
limit, a violation of the axial diffeomorphisms would precisely affect also the ordinary
diffeomorphism conservation] and the self-adjointness after the Wick rotation identifies it
uniquely. In ordinary gravity, from the diffeomorphism invariance of the fermion action,
we can extract the transformation rule

δξ

(
iγµ∇µψ

)
= ξ ·∂(iγ·∇ψ) (234)

while δξ ψ = ξ ·∂ψ. Therefore, it makes sense to apply γ·∇ to γ·∇ψ, because the latter
transforms as ψ. This allows us to define the square of the Dirac operator:

F2ψ = (iγ·∇)2ψ (235)
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The expression ψ̄F2ψ is well-defined and invariant, and it makes sense to extract the square
root of the path integral constructed by exponentiating it. If we want to preserve general
covariance, it is not possible to repeat the same for MAT because of (231), from which we

see that
(

iγ̂·∇̂ψ
)

does not transform like ψ, and an expression like
(

iγ̂·∇̂
)2

ψ would break
general covariance. Noting that

δξ̂

(
iγ̂·∇̂ψ

)
= ξ̂ ·∂

(
iγ̂·∇̂ψ

)
(236)

when δ
ξ̂
ψ = ξ̂ ·∂ψ, we are led to choose, instead, the covariant quadratic operator

F̂ =
(

iγ̂·∇̂
)(

iγ̂·∇̂
)

(237)

This is the first reason that justifies the choice of (237).
Let us come next to the Euclidean version of F̂. To deal with it it is easier to remark

that

(
i˜̂γ ˜̂∇

)†
= −i˜̂γ ˜̂∇ (238)

Therefore

(˜̂
F

)†
= ˜̂

F (239)

This is the second fundamental reason for using F̂.
The operator F̂ is the main intermediate result we need. It is natural to assume that

its inverse Ĝ exists. The differential operator F̂ (after a Wick rotation) is an axial-elliptic
operator. In fact its quadratic part can be cast in the form ∂i Aij(x)∂j, where Aij is an

invertible matrix and its leading term is symmetric and positive definite. Moreover ˜̂F is
self-adjoint. Therefore, the conditions for the application of the SDW method are satisfied.
As we have done before, we will always work with Minkowski quantities, paying attention,
however, that no relation is used that cannot be mapped from the Minkowski to the
Euclidean by a Wick rotation, and back by an inverse Wick rotation.

8.4. The SDW Method for the Trace Anomaly

There are significant changes with respect to the flat background application of Section
Bardeen’s Anomaly with SDW. Again, we define the amplitude

⟨x̂, ŝ|x̂′, 0⟩ = ⟨x̂|eiF̂ŝ|x̂′⟩ (240)

which satisfies the (heat kernel) differential equation

i
∂

∂ŝ
⟨x̂, ŝ|x̂′, 0⟩ = −F̂x̂⟨x̂, ŝ|x̂′, 0⟩ ≡ K(x̂, x̂′, ŝ) (241)

where F̂x̂ is the differential operator

F̂x̂ = ∇̂µ ĝµν∇̂ν −
1
4

R̂ (242)
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In Formula (240), as usual, we understand the iϵ prescription. But now, instead of (60), we
have the ansatz

⟨x̂, ŝ|x̂′, 0⟩ = − lim
m→0

i

16π2

√
D̂(x̂, x̂′)

ŝ2 e
i

(
σ̂(x̂,x̂′)

2ŝ −m2 ŝ

)

Φ̂(x̂, x̂′, ŝ) (243)

where D̂(x̂, x̂′) is the VVM determinant and σ̂ is the world function. Φ̂(x̂, x̂′, ŝ) is to be
determined. Since it must be ⟨x̂, 0|x̂′, 0⟩ = δ(x̂, x̂′) and instead of (61) we have

lim
ŝ→0

i

(4π)2

√
D̂(x̂, x̂′)

ŝ2 e
i

(
σ̂(x̂,x̂′)

2ŝ −m2 ŝ

)

=
√

ĝ(x̂)δ(x̂, x̂′), (244)

like before it follows that

lim
ŝ→0

Φ̂(x̂, x̂′, ŝ) = 1 (245)

Equation (241) becomes an equation for Φ̂(x̂, x̂′, ŝ):

i
∂Φ̂

∂ŝ
+

i

ŝ
∇̂µΦ̂∇̂µσ̂ +

1√
D̂
∇̂µ∇̂µ

(√
D̂Φ̂

)
−
(

1
4

R̂−m2
)

Φ̂ = 0 (246)

Again, we expand

Φ̂(x̂, x̂′, ŝ) =
∞

∑
n=0

ân(x̂, x̂′)(iŝ)n (247)

with the boundary condition [â0] = 1. The ân must satisfy the recursive relations:

(n + 1)ân+1 + ∇̂µ ân+1∇̂µσ̂− 1√
D̂
∇̂µ∇̂µ

(√
D̂ân

)
+

(
1
4

R̂−m2
)

ân = 0 (248)

Using these relations, it is possible to compute each coefficient an at the coincidence limit.
We are, in particular, interested in [â2], which turns out to be

[â2] =
1
2

m4 − 1
12

m2R̂ +
1

288
R̂2 − 1

120
R̂;µ

µ − 1
180

R̂µνR̂µν +
1

180
R̂µνλρR̂µνλρ

+
1
48
R̂µνR̂µν (249)

We recall that R̂µν = R̂µν
abΣab.

Next, we continue as in Section 2.1. In particular, Equations (55)–(57) remain the same
and lead to effective action

L̂(x)

µd
= − i

2
(4πµ2)tr

∫ ∞

0
dŝ(4πiµ2 ŝ)−

d

2−1
√

ĝe−im2 ŝ[Φ̂(x̂, x̂, ŝ)] (250)

where tr denotes the trace over gamma matrices. Our purpose is to analytically continue in
d. But we can do this only for dimensionless quantities. For this reason L̂ is multiplied by
µ−d, where µ is a mass parameter.

Now, we make the assumption that lims→∞ e−im2 ŝ[Φ̂(x̂, x̂, ŝ)] = 0. As a consequence,
we can integrate by parts

L̂(x)

µd
= − 4i

d(2− d)(4− d)

1
(4πµ2)2 tr

∫ ∞

0
dŝ(2πiµ2 ŝ)2− d

2

√
ĝ

∂3

∂(iŝ)3

(
e−im2 ŝ[Φ̂(x̂, x̂, ŝ)]

)
(251)
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Now we use [Φ̂(x̂, x̂, ŝ)] = 1 + [â1]iŝ + [â2](iŝ)
2 + . . ..

To expand around d = 4, we use 1
d(d−2)(d−4) ≈

1
8

(
1

d−4 − 3
4

)
. With reference to (251),

we differentiate twice [Φ̂(x, x, s)] and integrate the third derivative by parts. The result is

L̂(x̂) ≈ 1
32π2

(
1

d− 4
− 3

4

)
tr
(

m4 − 2m2[â1] + 2[â2]
)√

ĝ (252)

+
i

64π2 tr
∫ ∞

0
dŝ ln(4πiµ2 ŝ)

√
ĝ

∂3

∂(iŝ)3

(
e−im2 ŝ[Φ̂(x̂, x̂, ŝ)]

)

The last line depends explicitly on the parameter µ and represents a part, which cannot
contribute to the anomaly for dimensional reasons. In the first line of (252) one can ignore
m2 or m4 terms (they can be subtracted away because they are trivial). Therefore, we can
limit ourselves to

L̂ =
1

16π2

(
1

d− 4
− 3

4

) ∫
dd x̂tr

(
[â2]|m=0

√
ĝ

)
(253)

We now act with δω̂ =
∫

dd x̂2tr
(

ω̂ĝµν
δ

δĝµν

)
. An explicit calculation gives, for example,

δω̂tr
(√

ĝR̂µνR̂µν

)
= (d− 4)tr

(
ω̂
√

ĝR̂µνR̂µν

)
+ 2tr

(√
ĝR̂□̂ω̂

)
(254)

Finally, we obtain

δω̂tr
(√

ĝ[â2]|m=0

)
= (d− 4)tr

(√
ĝω̂[â2]|m=0

)
− d− 4

120
tr
(√

ĝR̂□̂ω̂

)
(255)

The second piece can be canceled, e.g., by a counterterm proportional to tr
(√

ĝR̂2
)

.
Now, the variation of the effective action under the ω̂ transformation defines the

integrated anomaly. Therefore, defining 2√
ĝ

δ
δĝµν L̂ = Θ̂µν and recalling the definition (153),

and using the fact that the second line of (252) is Weyl invariant, we obtain the following in
the d→ 4 limit

∫
d4 x̂tr

(
ω̂
√

ĝĝµνΘ̂µν

)
=

1
16π2

∫
d4 x̂tr

(√
ĝω̂[â2]|m=0

)
(256)

where the d− 4 factor in (255) has canceled the pole 1
d−4 in (253).

Clearly, the odd parity anomaly can come only from the term R̂µνR̂µν contained in
[â2]. For the odd part, we have

∫
d4 x̂tr

√
ĝω̂T̂ =

1
768π2

∫
d4xtr

√
ĝω̂R̂µνR̂µν

∣∣∣
odd

(257)

where we denoted T̂ = ĝµνΘ̂µν = ĝµν⟨⟨T̂µν⟩⟩.

8.5. The Chiral Limit and the Chiral Trace Anomaly

Let us return to the original problem, that is the trace anomaly of a Weyl tensor in a
chiral fermion theory coupled to ordinary gravity. To this end we need to take the chiral
limit. But before we rewrite the anomaly (257) by splitting it into the chiral and anti-chiral
parts. Setting P± = 1

2 (1± γ5) we can write

√
ĝ = P+

√
detg+ + P−

√
detg−, g±µν = gµν ± fµν (258)
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and

ω̂ = P+ω+ + P−ω−, R̂µν = P+R(+)
µν + P−R(−)

µν (259)

where

ω± = ω± η, R±µν = R(1)
µν ±R(2)

µν (260)

Then, we can rewrite (257) as follows

∫
dd x̂tr

√
ĝω̂T̂

∣∣∣
odd

(261)

=
1

1536π2

∫
d4xtr

(
P+
√

detg+ω+R(+)
µν R(+)µν + P−

√
detg−ω−R(−)

µν R(−)µν
)∣∣∣

odd

The chiral limit is defined by making the replacements

gµν → ηµν +
hµν

2
, fµν →

hµν

2
(262)

in the previous formulas. With this choice, one has

ĝµν = P−ηµν + P+gµν, gµν ≡ ηµν + hµν (263)

From this we see that the left-handed part couples to the flat metric, while the right-handed
part couples to the (generic) metric gµν. As a consequence, we also have

êa
m → δa

mP− + ea
mP+, êm

a → δm
a P− + em

a P+ (264)

as well as
√

ĝ→ P− + P+
√
g. Similarly, for the Christoffel symbols,

Γ
(1)λ
µν → 1

2
Γλ

µν, Γ
(2)λ
µν → 1

2
Γλ

µν, (265)

for the spin connections,

Ω
(1)ab
µ → 1

2
ωab

µ , Ω
(2)ab
µ → 1

2
ωab

µ , (266)

and for the curvatures,

R
(1)
µνλ

ρ → 1
2

Rµνλ
ρ, R

(2)
µνλ

ρ → 1
2

Rµνλ
ρ, (267)

where all the quantities on the RHS of these limits are built with the metric gµν.
As a consequence, the action (221) becomes

Ŝ → S′ (268)

S′ =
∫

d4xiψγaP−∂aψ +
∫

d4x
√
giψγae

µ
a

(
∂µ +

1
2

ωµ

)
P+ψ

where γa are the flat (non-dynamical) gamma matrices while the vierbein e
µ
a and the

connection ωµ are compatible with the metric gµν. The action S′ is the action of a right-
handed Weyl fermion coupled to ordinary gravity, except for the term that represents a
decoupled left-handed fermion in the flat spacetime.
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Moreover, in the chiral limit, we have R(−)
µν → 0,R(+)

µν → 2Rµν. Therefore (261)
becomes

∫
dd x̂tr

√
ĝω̂T̂ → − 1

768π2

∫
d4xtr

(
P+
√

gω+RµνRµν
)

=
i

2× 768π2

∫
d4x
√

gω+εµνλρRµναβRλρ
αβ (269)

Now, notice that an extended Weyl transformation split as follows

e2ω̂ ĝ = P+e2ω+ g+ + P−e2ω−g− (270)

therefore, in the chiral limit, and for consistency with (268), we must have that η coincides
with ω, ω → ω/2, η → ω/2. We conclude that in the chiral limit, the e.m. trace is

T(x) =
i

1536π2 εµνλρRµναβRλρ
αβ ≡ TR(x) (271)

which coincides with (193). If, instead of (262), we take the following chiral limit

gµν → ηµν +
hµν

2
, fµν → −

hµν

2
(272)

we obtain the Pontryagin Weyl anomaly for the left-handed Weyl fermion

TL(x) = − i

1536π2 εµνλρRµναβRλρ
αβ. (273)

8.5.1. The Full MAT Trace Anomalies

From Equation (261), it is easy to compute the T and T5 anomalies in the general MAT
background. They are the coefficients of ω and η, respectively.

T(x) =
i

1536π2 εµνλρ
(√

g+R
(+)
µναβR

(+)
λρ

αβ +
√

g−R
(−)
µναβR

(−)
λρ

αβ
)

(274)

T5(x) =
i

1536π2 εµνλρ
(√

g+R
(+)
µναβR

(+)
λρ

αβ −√g−R
(−)
µναβR

(−)
λρ

αβ
)

(275)

We have Wick-rotated back the result: this is the origin of i in the anomaly coefficient.
At this point, we can safely replace x̂µ with xµ everywhere.

8.5.2. Other Results

The previous trace anomalies can be obtained with different non-perturbative methods,
for instance, with the Seeley–DeWitt method, see [5]. In the wake of these derivations, one
can easily obtain other interesting results. For instance the even parity trace anomalies for
Weyl and Dirac fermions, which we do not report here.

Another interesting result is the analog of the ABJ anomaly, which is the response of the
effective action of a Dirac fermion ψ coupled to ordinary metric gµν under the transformation

δη gµν = 2γ5ηgµν, δηψ = −3
2

γ5ηψ (276)

This response can be extracted from (261) in the limit gµν → gµν, fµν → 0. In this limit

Γ
(1)λ
µν → Γλ

µν and Γ
(2)λ
µν → 0, R

(1)
µνλ

ρ → Rµνλ
ρ, R

(2)
µνλ

ρ → 0. Therefore g±µν → gµν and

R±µνλρ → Rµνλρ. As a consequence, the odd parity (ABJ-like) trace anomaly is

T5(x) =
i

768π2 εµνλρRµναβRλρ
αβ. (277)
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Contrary to the anomalies (271) and (273), the anomaly (277) is not a risk for the consistency
of a theory of Dirac fermions coupled to gravity. Rather, its absorbitive nature suggests
a possible phenomenological application to a decay of a neutral bound state into two
gravitons, similar to the one of the ABJ anomaly for a double photon decay of π0.

Finally, with a small supplementary effort, we can obtain the gauge-induced trace
anomaly, for instance, a Weyl fermion coupled to a vector potential Vµ. The kinetic operator,
in this case, is i/D with

D̂µ = D̂µ +
1
2

Ω̂µ + Vµ (278)

Proceeding exactly as in the gauge-less case, we find

δω L = − i

32π2

∫
d4x
√

gωtr(P+[a2](x)) (279)

The odd part of tr(P+[a2](x)) produces precisely the density −εµνλρ∂µVν∂λVρ. There-
fore, (279), together with the definition (153), yields a right-handed fermion

Aω = − 1
96π2

∫
d4x
√

gωεµνλρ∂µVν∂λVρ, (280)

which coincides with Equation (169).

9. Recap of Anomalies

The main subdivision of local anomalies is in two types (see Table 5):

• Type O comprises all the anomalies that correspond to the non-existence of a (fermion)
propagator. These anomalies show up only in theories of chiral fermions. These
anomalies are a threat to the consistency of the theory.

• Type NO includes all the others. They have nothing to do with the lack of any
propagator and do not signal by themselves any inconsistency of a theory.

Type O anomalies are odd-parity, they are present in parity violating theories of
fermions. They may appear as a violation of the classical conservation of the gauge
(example. Equation (21)) or diffeomorphisms symmetries, and of the conformal invariance
in the non-vanishing trace of the e.m. tensor (examples: (150) and (152)). From a formal
point of view, they satisfy WZ consistency conditions. In the physical approach and
mathematical approach, they appear in different, complementary ways. In the former
case one faces the problem of the lack of the propagator in a chiral fermion theory and
overcomes it by adding a free fermion of opposite chirality. The trick works in general,
but it fails if (in an originally classical conformal theory) the gauge current or the e.m.
tensor are non-conserved or traceful, in which case inconsistency may manifest itself as
a violation of unitarity (through a breakdown of the BRST symmetry in the first case,
and a complex effective Hamiltonian in the second). In the mathematical approach, type
O anomalies appear as obstructions to the existence of a chiral fermion propagator, as
represented by a non-trivial family’s index. Between the two approaches there is a perfect
correspondence. A non-trivial family’s index exactly signals anomalies that appear in the
divergence of the chiral gauge current or of the e.m. tensor and in the trace of the latter,
and vice-versa.

Type NO anomalies are, first, the even parity anomalies that appear in the trace of the
e.m. tensor (see, Equations (148), (149) and (151) and Sections 17 and 18 below). They satisfy
the appropriate WZ consistency conditions. But type NO also includes the odd-parity
anomalies of the ABJ type, for instance, the anomalies of a chiral current in a Dirac fermion
theory (example: Equation (20)), or, anyhow, in theories free of type O anomalies. They
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are usually called covariant anomalies and appear in the conservation of chiral currents
that do not propagate in the internal lines of the Feynman diagrams. Formally, they may
be viewed as anomalies of chiral currents coupled to auxiliary axial potentials that are
subsequently made to vanish. All type NO anomalies are generated from a (Euclidean)
self-adjoint kinetic operator and do not signal any absence of propagators (their family’s
index vanishes, thus no obstructions!). Therefore, they are no threat to the consistency of
the theory and usually play a role in phenomenological applications.

From the calculation point of view, the two types of anomalies in the perturbative
approach do not differ. As we have explained several times, the method based on the
Feynman diagram is the same, but one may face the difficulties pointed out in ref. [70]: the
perturbative calculations are rather accessible at one loop of approximation, but may be
quite unwieldy at higher loops, especially when gravitons are involved; this is a source of
trouble if the one loop calculation has problems like the ones pointed out in Section 6. For
this reason it is important to have at hand other methods, in particular non-perturbative
ones, like the SDW method. The advantage of these method is that it allows us to compute
in one stroke the full expression of the anomaly, non just the lowest perturbative orders.
There is a disadvantage with the SDW method: since it is based on the point splitting along
a geodesic, it is automatically diffeomorphism-invariant. Therefore, it cannot reproduce
the consistent diffeomorphism anomalies, but it reproduces all the anomalies that preserve
diffeomorphisms. This problem is irrelevant in 4d because such anomalies vanish identically.
The SDW method does not distinguish between O and NO anomalies, what makes a
difference between the two is the quadratic Dirac (or other) operator. When computing NO
anomalies, it is of tremendous help to enlarge the space of fields with the adjunction of an
axial gauge potential (Bardeen’s method) or an axial metric

The calculation of obstructions—corresponding to O anomalies—from the family’s
index theorem are straightforward. It is enough to consult a textbook such as [59] and
copy the formulas of the index there. As far as the chiral gauge anomalies are concerned,
one further step is needed. One must apply the appropriate transgression Formula (82)
to the polynomials provided by the family’s index theorem in order to obtain the descent
Equation (85) and companions. Instead, in what concerns the NO anomalies, the family’s
index theorem yields an identically vanishing result, meaning that there are no obstructions
to the existence of the relevant propagator.

A difference between the last and the previous two methods has to be mentioned.
In the latter, we start from a theory in a Minkowski metric background and carry on all
manipulations with this metric while we turn to a Euclidean background in order to give
meaning to divergent Feynman integrals or the s−integrals in the SDW method. The
family’s index theorem instead is entirely formulated in the Euclidean: the Dirac (or other)
operator is analyzed in Euclidean spacetime.

The O and NO anomalies are studied in quantum field theories for different purposes.
The obstructive ones need to be known in order to guarantee that in a well-defined theory,
they are absent. In this sense, the O anomalies do not have any physical application, but
they are crucial in determining the physical content of a theory. The NO anomalies, on the
contrary, make their appearance (also) in well-defined theories and may have important
physical applications. A typical example is the application of the ABJ anomaly of a chiral
current, such as (20) in the Abelian case, to the decay π0 into two γ’s. Another application
is in the strong U(1) problem, where the same current (20) in the non-Abelian case, but
with Ta = 1 has a crucial role.
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Table 5. Anomaly recap.

• Site of local anomalies:





divergenceofcurrentorofe.m.tensor

traceofe.m.tensor

• Local Anomalies are of two types:





typeO
{

preventexistenceofpropagators,
dangerous : mustbecanceled

typeNO
{

noobstructionforpropagators,
neednotbecanceled

• Where





typeO onlyinchiraltheories

typeNO inanytheory

• Examples:





typeO





gauge : Equations (11) and (21), cons.

trace : Equations (150), (152), (170), (192) and (271), cons.

typeNO





ABJ : Equation (20), cov.

trace : Equations (148), (149) and (151) and Sections 17 and 18, Equations (457) and (464), cons.

ABJ-liketrace : Equation (277), cons.

• Cancelation:





typeO





A : grouptheoretical(unavailablefortraceanomalies)

B : coefficientmatching(unlikelyfortraceanomalies)

C : Wess-ZuminotermsorGreen-Schwarzmechanisms

typeNO





ingeneralnotrequired

foreventraceanomalies





B : coefficientmatchingunlikely

C : withWess-Zuminoterms

cons. means they satisfy WZ consistency conditions, cov. means covariant.

As for the even trace anomalies, they share the same characteristics as all the NO
anomalies. Therefore, they do not endanger any theory free of O anomalies, and they might
have phenomenological applications similar to ABJ gauge anomalies. One has mentioned
after Equation (277). But this is a ground largely still to be explored. On the other hand
even trace anomalies have a special status, because, although they may appear in perfectly
well defined theories, they signal the breakdown of Weyl symmetry, therefore they pose the
problem of whether that symmetry have to be restored or not. We will discuss this issue at
length in the second part of the paper. Refs.: [5,48,60,71–76].

10. Comments

The results illustrated above concerning trace anomalies are not universally accepted.
Some research has led to the conclusion that the odd-parity trace anomalies do not show
up in field theory models. One must recognize that the calculation of these trace anomalies
is, in general, a subtle task, subtler than for other anomalies. This is not totally surprising
because field theory is not an axiomatic theory that allows one to deduce results by means of
a unique formalism. It is rather a theory under construction, which often requires different
approaches. In particular, for anomalies, it is important to use different methods and
compare them in order to obtain reliable results. Using one single method of calculation
may not be safe. One can, in fact, envisage procedures that yield zero when searching
for the odd part of the trace anomaly and even for ordinary chiral gauge anomalies—one
example is signaled in the footnote before Equation (72). But they are to be traced back to
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not infrequent wrong prejudices or misunderstood statements in the literature. Below are
some more examples.

• Type O anomalies may occur only in theories of Weyl fermions, not in theories of Majo-
rana fermions. A quick method for obtaining a vanishing odd parity trace anomaly is
searching for type O anomalies in the latter case. The wrong use of Majorana fermions
in the derivation of anomalies arises from a misunderstanding: the misplaced cre-
dence that massless Majorana fermions are equivalent to Weyl fermions. A Majorana
fermion can be represented as a superposition, satisfying the Majorana condition, of
two Weyl fermions of opposite chirality. We have repeated many times that Weyl
fermions of opposite chirality have opposite type O anomalies, with consequent null
overall result for Majorana fermions (no need to do any calculation) [On the other
hand, we are not aware of any attempt to formulate the SM in terms of Majorana
fermions alone].

• There are several ways to obtain a vanishing odd parity trace anomaly via a per-
turbative calculation, and the calculation in itself may be correct, depending on the
regularization procedure. The reason has been explained above. It does not make
sense to study conformal anomalies separately from diffeomorphism invariance. The
calculation of a conformal anomaly is safe when we can guarantee that diffeomor-
phisms are conserved. If diffeomorphisms are anomalous, their anomaly (in 4d) is, in
general, trivial and can be eliminated by a counterterm in the effective action, which,
in general, modifies the trace anomaly. This can be verified in a number of cases,
see [5]. But this mechanism does not work in the case of 4d odd trace anomalies at
the lowest perturbative order because the odd part of the conformal 3-point function
of the e.m. tensor vanishes identically for algebraic reasons, [77,78]; therefore, its
divergence also vanishes identically and no (trivial) diffeomorphism anomaly can
show up. In other words, this problem is undecidable at the lowest perturbative order;
one must go to higher orders or use non-perturbative methods.

• In the heat-kernel-like methods applied to, say, a right-handed Weyl fermion one
cannot simply use the Dirac kinetic operator /D multiplied by the chiral projector
PR, because the overall operator /DPR is not invertible: using formally this operator
invalidates all the manipulations necessary to derive anomalies. Its square is zero.
Then, one may be tempted to use in the SDW method its product with its adjoint,
making the (Euclidean) operator /D2PR, and inserting it, for instance, in Equation (73).
Using mechanically the SDW formulas one gets 0 for the odd parity trace anomaly.
However, the operator /D2PR is not invertible, therefore, in particular, not elliptic, and
cannot be used in the SDW (or in any heat kernel-like) approach.

• An often confusing issue is Wick rotation. In Appendix B, we explain our rules for
applying Wick rotation. In perturbative and non-perturbative (SDW) approaches it
does not make sense to start from a Euclidean action. Any attempt to Wick-rotate the
Minkowski action for Dirac fermions leads to a doubling of degrees of freedom, thus
changing the nature of the problem (in the approach with the family’s index theorem,
this difficulty is avoided because the action is not needed, one simply studies the
inversion of the linear Dirac–Weyl operator). The right attitude toward Wick rotation
is to consider it a way to make sense of perturbative Feynman diagram integrals or
the s-integrals in the SDW case.

• Another confusing issue is that of unitarity. A tenet in physics is that any calculation
has to guarantee unitarity. However, this is not the correct attitude when searching for
type O anomalies. The reason is that the latter are not physical quantities. As we know
from above, type O anomalies (contrary to type NO ones) are not only not physical
but, in fact, they disrupt unitarity. Type O anomalies signal a clash between correct



Symmetry 2025, 17, 273 61 of 112

mathematics and consistent physics (unitarity). As a consequence, requiring unitarity
in this case is nonsense: searching for type O anomalies means investigating possible
breakdowns of unitarity, and requiring unitarity from the start prevents the possibility
of finding out if there is any such breach. On the contrary, we have to proceed in the
most rigorous way to discover if any mathematical obstruction exists.

• The previous case may be connected with the choice of the square Dirac operator in the

SDW approach. It has been suggested that the choice should be F̂s =
(

iγ̂·∇̂
)(

iγ̂·∇̂
)
+

(
iγ̂·∇̂

)(
iγ̂·∇̂

)
, instead of our choice (237): F̂ =

(
iγ̂·∇̂

)(
iγ̂·∇̂

)
. The choice F̂s is

symmetric in the exchange γ5 ↔ −γ5, thus it excludes any odd-parity result. But it is
a forbidden choice because it breaks diffeomorphism invariance, which is the basis of
the SDW method and thus disrupts mathematical consistency. The choice of F̂s is a
perfect example of what one should not do when computing anomalies.

• However, above all, what is missing in all the ‘vanishing odd trace anomaly’ papers is
a plausible explanation of why these anomalies should be absent. The densities of the
Pontryagin and Chern classes have the right quantum numbers (dimensions, form
degree, odd parity, Lorentz covariance) to couple to the trace of the e.m. tensor in a
theory of Weyl fermions. Why should this coupling vanish? Usually, this requires a
protecting symmetry. For instance, a Dirac fermion is free of this anomaly (and of the
consistent gauge anomaly as well) because the trace of e.m. tensor (and the divergence
of the vector current) is protected by parity conservation. But in the case of a Weyl fermion
theory, parity is violated. What other reason is there for such terms not to couple?

• Our final consideration may sound paradoxical, but it is the gist of our anomaly
analysis: no doubt eventually an agreement will be reached about odd parity trace
anomalies, but the proof of their existence is only relatively important. The very
important issue is the obstructions they represent and are only a symptom of. As ex-
plained above, the obstructions are those defined by the family’s index theorem. Even
when not believing in the validity of the derivations we have presented, one stum-
bles anyhow against the existence of the obstructions signaled by the family’s index
theorem (not a minor result in modern mathematics). Only when these obstructions
are removed does the Weyl fermion propagator (and the theory) exist. The problem
represented by such obstructions exists independently of the anomaly problem.

Refs.: [5,79–89].

11. Extensions of the MSM

The vanishing of type O anomalies for the MSM (1) immersed in a gravitational
background have been analyzed in Table MSM gauge, mixed, trace-gravity and trace-gauge.
When gravity-fluctuating fields become relevant, one gravity-induced trace anomaly and
one SU(2) gauge-induced trace anomaly survive cancelation. This may change if we add
to the MSM spectrum a right-handed sterile neutrino: it cancels the gravity-induced trace
anomaly but leaves the gauge-induced one unaltered.

We would like to examine now various generalizations of the MSM, see [90], in relation
to the anomaly cancelation when in the presence of a non-trivial background metric. For
some of them, nothing changes because they do not involve modifications of the fermion
spectrum. This is the case of the multi-Higgs-doublet models or similar models in which only
the spectrum of scalars is modified with respect to the original SM. They have been introduced
mostly to describe explicit and spontaneous CP violation. The fermion spectrum is the same
as in the original SM. But plenty of extensions of the ordinary SM have been proposed which
involve modification of the fermion spectrum. Hereafter, we wish to examine some of them.
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11.1. Models with Vector-Like Quarks

Models with vector-like quarks have been proposed in order to produce non-vanishing
but naturally suppressed flavor-changing neutral currents and to simplify the mechanisms of
spontaneous CP violation. They also represent an attempt to solve the strong CP problem. The
quark spectrum, together with an ordinary lepton spectrum, are summarized in the following
table

G/ f ields SU(3) SU(2) U(1)

ng

(
u

d

)

L

3 2 1
6

ng uR 3̄ 1 2
3

ng dR 3̄ 1 − 1
3

nu UL 3 1 2
3

nd DL 3 1 − 1
3

ng + nu UR 3̄ 1 2
3

ng + nd DR 3̄ 1 − 1
3

ng

(
νe

e

)

L

1 2 − 1
2

ng eR 1 1 −1

(281)

where ng is the number of generations (that is, for instance, uL represents a set of fields
numbered from 1 to ng: uLi, i = 1, . . . , ng, and so on). Analogously nu and nd are the
numbers of left-handed singlets ULα, α = 1, . . . , nu, etc. These models are the old SM to
which a bunch of vector-like SU(2) singlet quarks have been added. By vector-like quarks
it is meant that they are quarks whose left- and right-handed components appear in a
symmetric form. In other words, the kinetic term of the left and right components of each
of them conjures up the kinetic term of a Dirac fermion.

On the basis of our previous conclusions, the addition of chiral symmetric fermions
does not add any type O anomaly, neither gauge nor trace. Therefore, the balance of anoma-
lies is the same as in the original MSM (with or without sterile neutrinos). Refs.: [6,91].

11.2. Left–Right (Parity) Symmetric Extensions of the SM Model

The MSM is CP invariant but P non-invariant. Some generalizations have been
considered with the aim of realizing parity invariant models. The models are built in
such a way that parity is spontaneously broken in the vacuum so that in the broken
phase, the original MSM turns up. A parity invariant SM can be realized by introducing
a second SU(2) group, realizing in this way a left–right symmetry. The gauge group is
SU(3)× SU(2)L × SU(2)R ×U(1) and the spectrum of fields is

G/ f ields SU(3) SU(2)L SU(2)R U(1)(
u

d

)

L

3 2 1 1
3

(
u

d

)

R

3 1 2 1
3

(
νe

e

)

L

1 2 1 −1
(

νe

e

)

R

1 1 2 −1

(282)
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The relation (2), in this case, is

Ỹ = Q− T3L − T3R, (283)

and Ỹ is interpreted as B−L
2 (B is the baryon, L thelepton number).

Warning: In this model, left and right fermions couple to different (left and right)
gauge fields, say WRµ and WLµ. To make this point more clear we notice that this situation
is the same as considered in connection with Bardeen’s method in Section 2.2. For the
action term

ψRiγµ
(
∂µ + WRµ

)
ψR + ψLiγµ

(
∂µ + WLµ

)
ψL (284)

can be easily rewritten in the form

ψiγµ
(
∂µ + Vµ + γ5 Aµ

)
ψ (285)

where WR/Lµ = Vµ ± Aµ.
The analysis of gauge and diffeomorphism anomalies in this model leads to the

following Table 6:

Table 6. LR gauge and mixed.

• Tsu(3) × Tsu(3) × Tsu(3): there are two left-handed and two right-handed triplet, whose
anomalies cancel one another.

• T
su(2)
L × T

su(2)
L × T

su(2)
L and T

su(2)
R × T

su(2)
R × T

su(2)
R both vanish because the tensor dabc

vanishes in general for the Lie algebra su(2).
• Tsu(3) × Tsu(3) × Tu(1), in which case we have the trace of two su(3) left triplet generators

and two right triplet generators. These traces are again non-vanishing, but they are

multiplied by the corresponding u(1) charge, whose total value is 3
(

2
(

1
3

)
− 2
(

1
3

))
= 0.

• T
su(2)
L × T

su(2)
L × Tu(1), in which case we have the trace of two su(2) generators in two

doublet representations. These traces are non-vanishing because tr(TaTb) ∼ δab, but they

are multiplied by the corresponding u(1) charges, whose total value is 6
(

1
3

)
+ 2(−1) = 0.

• Analogously, T
su(2)
R × T

su(2)
R × Tu(1) leads to the following: −6

(
1
3

)
− 2(−1) = 0

• Tu(1) × Tu(1) × Tu(1): in this case, the tensor is proportional to the overall sum of the charge

products 6
(

1
3

)3
+ 2(−1)3 − 6

(
1
3

)3
− 2(−1)3 = 0.

• Σ× Σ× Tu(1): the trace tr
(

ΣabΣcd
)

is non-vanishing, but it is multiplied by the total U(1)

charge: 6
(

1
3

)
+ 2(−1)− 6

(
1
3

)
− 2(−1) = 0.

The analysis of gravity and gauge-induced trace anomalies yields, Table 7.
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Table 7. LR trace-gravity and trace-gauge

• The multiplet (282), when weakly coupled to gravity, will produce (6 + 2) units of
trace anomaly with Pontryagin density with + sign and (6 + 2) units with - sign,
with vanishing total result.

• We have six units of the anomaly (170) with curvature F ≡ Fsu(3) and six units
with opposite sign. Therefore, the multiplet (1) is free of these anomalies.

• We have instead 4 units of the same anomaly with gauge field F ≡ F
su(2)
L and

positive sign, see (171), computed in the doublet representation of su(2).

• We also have 4 units of the same anomaly with gauge field F ≡ F
su(2)
R and negative

sign, see (171), computed in the doublet representation of su(2).
• Finally, we have a U(1) gauge-induced trace anomaly with vanishing total

coefficient: 6
(

1
3

)2
+ 2(−1)2 − 6

(
1
3

)2
− 2(−1)2 = 0

Refs.: [92–95].

11.3. Other Hypothetical Extensions of the MSM

All the extensions of the SM considered so far have a residual trace anomaly. Let us
try to realize a combination of elementary fields which are completely anomaly-free. To
this end, we start from the generation (1) and add doublets or singlets of leptons.

G/ f ields SU(3) SU(2) U(1)

1

(
u

d

)

L

3 2 1
6

1 uR 3 1 2
3

1 dR 3 1 − 1
3

1

(
νe

e

)

L

1 2 − 1
2

1 eR 1 1 −1

nL

(
ν

e

)

L

1 2 yL

nR

(
ν

e

)

R

1 2 yR

mL νL 1 1 0
mR νR 1 1 0

(286)

where nL, nR, mL, mR are integers and yL, yR are rationals to be determined. We notice that
the modifications involve only the leptonic sector. Therefore, all the data involving SU(3)
are unchanged. Below, we report only the differences ∆i with respect to the entries in Tables
MSM and the equations that have to be satisfied in order to cancel all anomalies, see Table 8

Table 8. Table of differences with MSM.

• Tsu(2) × Tsu(2) × Tu(1): ∆1 = 2(nLyL − nRyR), ∆1 = 0
• Tu(1) × Tu(1) × Tu(1): ∆2 = nL(yL)

3 − nR(yR)
3, ∆2 = 0

• Σ× Σ× Tu(1): ∆3 = nLyL − nRyR, ∆3 = 0
• Σ× Σ× numberofunits: ∆4 = nL − nR + mL −mR, ∆4 + 1 = 0
• Tsu(2) × Tsu(2) × numberofunits: ∆5 = nL − nR, ∆5 + 4 = 0
• Tu(1) × Tu(1) × numberofunits: ∆6 = nL(yL)

2 − nR(yR)
2, ∆6 = 0
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The simplest solution is nL = 0, nR = 4, yR = 0 and mR = 0, mL = 3. i.e., we should
add 4 right-handed U(1)-sterile doublets and 3 left-handed sterile neutrinos. yR = 0 means
that the two components of the doublet have charge 1/2 and −1/2, very exotic animals.

11.4. GUT Models

Among the extensions of the SM a particular role is reserved to the grand-unified
theories. They have the major merit of unifying strong, weak and electromagnetic inter-
actions. The most prominent among them is probably the SO(10) GUT. In what concerns
the problem of the anomaly analysis, it turns out to be particularly simple because all
fermions of the MSM of each family plus a right-handed neutrino are collected in one single
multiplet, the 16 irreducible representation of SO(10). Using the same notation as for the
MSM, the multiplet is as follows:

(uL, dL, (uR)
c, (dR)

c, νL, eL, (νR)
c, (eR)

c) (287)

where Xc represents the conjugate of X (and u and d carry three components each). This left-
handed multiplet is potentially anomalous for a consistent gauge anomaly, but such a gauge

anomaly is proportional to Str
(

Tso(10)Tso(10)Tso(10)
)

, the symmetric trace of three genera-

tors Tso(10) of the Lie algebra of SO(10). As is clear from the table (49) from the entry D5,
this trace vanishes identically. When we couple this model to gravity, the consistent diffeo-
morphism anomalies are absent for an analogous and usual reason. It is free of any mixed

gauge-gravity anomaly because the latter is proportional to either tr
(

Tso(10)Tso(10)
)

trΣ or

to tr
(

Tso(10)
)

tr(ΣΣ), where Σ denotes a generator of the Lorentz group.
The situation for the odd trace anomalies is different. They do not cancel completely.

We may have two types of trace anomalies, one proportional to the Pontryagin density

ϵµνλρRµν
στ Rλρστ and the other to the Chern class density ϵµνλρtr16

(
F
su(10)
µν F

su(10)
λρ

)
. There

are 16 units of the former and one of the latter (corresponding to the 16 representation of
SO(10)). The former cancels out; let us recall why: the symbol such as (ψR)

c (for instance
uR) in a generic metric can be rewritten as

(ψR)
c = γ0Cψ∗R = γ0CP∗Rψ∗ = PLγ0Cψ∗ = PLψc = (ψc)L. (288)

Inserted into the kinetic term, it gives

√
g(ψc)Lγµ(∂µ +

1
2

ωµ)(ψ
c)L =

√
g(ψR)cγµ(∂µ +

1
2

ωµ)(ψR)
c =
√

gψRγµ(∂µ +
1
2

ωµ)ψR (289)

where ωµ = ωab
µ Σab and Σab are anti-hermitean. The last passage requires an overall

transposition and a partial integration. Therefore, the kinetic term of the multiplet (287),
coupled only to the metric, splits into 16 independent Weyl fermion kinetic terms, 8 left-
handed and 8 right-handed, with opposite contributions to the trace anomaly.

As for the other anomaly, the Chern class one, this ‘sleight of hand’ is not possible
because the multiplet (287) couples to a unique potential valued in the Lie algebra of
SO(10), and it is not possible to split the kinetic term in individual components like in the
metric case.

12. What Should We Do Then?

The conclusion from the previous analysis is that it is possible to cancel all the anoma-
lies in the extended SMS only at the price of introducing new exotic particles, which make
up a rather unlikely spectrum. Barring these possibilities, which are all comprised in the
scheme (A) and (B) of Section 4.4, there remains the scheme (C), i.e., the introduction in the
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theory of fields with suitable transformation properties. The troubling anomalies are those
related to the densities of the Chern and Pontryagin classes:

Asu(2)
ω = i

∫
d4x
√

gωtr
(

Fsu(2) ∗ Fsu(2)
)
≡
∫

d4x
√

gωϵµνλρtr
(

F
su(2)
µν F

su(2)
λρ

)
(290)

and

Agrav
ω = i

∫
d4x
√

gωtr(R ∗R) ≡
∫

d4x
√

gωϵµνλρRµν
στ Rλρστ (291)

The latter can be canceled, for instance, by adding to the MSM a right-handed sterile
neutrino. The former anomalies are more ‘resistant’. In any case, both can be canceled by a
WZ term [For a discussion of WZ terms, see Section 17.2], that is a term proportional to

Csu(2)WZ = i
∫

d4x
√

gσtr
(

Fsu(2) ∗ Fsu(2)
)

(292)

and

Cgrav
WZ = i

∫
d4x
√

gσtr(R ∗R) (293)

respectively. σ is a scalar field which transforms as

δωσ = ω (294)

under a Weyl transformation. This scheme looks very much like the Peccei-Quinn solution
for the strong CP problem. But the two schemes refer to different energy scales. The Peccei-
Quinn solution applies at the electroweak scale (∼200 GeV), corresponding to 10−11 s in
the history of the universe when gravity was already classical. The cancelation of trace
anomalies by (292) and (293) should take place at much higher energies and earlier times.
But the trouble here is with the i which renders both counterterms imaginary. It is very
likely that this term may backreact and endanger unitarity.

This imaginary unit is important and it is worth spending a comment on it. It comes
out explicitly from the calculation. But there is also an indirect argument that supports its
presence. As was said above the i guarantees the invariance under time reversal. If the i

were not there, time reversal symmetry would be violated, together with parity. But while
parity violation is expected since the classical theory is not parity invariant, T symmetry
violation is totally unexpected because the classical theory is T symmetric, and there is no
time reversal violation in the process of deriving the anomaly by, for instance, dimensional
regularization.

This imaginary unit also marks the difference with the even parity trace anomalies,
where it is absent. As we have explained above, even trace anomalies do not affect unitarity,
and a WZ term, like above, can be easily implemented in order to restore conformal
invariance (but see below for a more accurate discussion).

It is perhaps not useless to recall once again the difference between type O and type NO
anomalies. The just mentioned odd parity anomalies are type O, they are a spy of the lack of
a Weyl fermion propagator, which hinders the idea itself of quantization. They are unveiled
by obstructions that manifest themselves in the family’s index theorem. However—this is
the important point—the corresponding anomalies are the symptoms of a disease, not the
disease itself. The topological obstructions are. We can suppress the symptoms, i.e., these
anomalies, with clever WZ terms, but they do not heal the disease.
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Resuming the previous discussion, one possible attitude is to assume that gravity
couples to matter in a non-minimal way, which does not give rise to anomalies. This implies
a reformulation of the SM and its coupling to gravity, which is not covered by this article.

Finally, a more radical possibility is that gravity is entirely classical. As explained
above the coupling of the anomalous e.m. trace in the effective action is via the fluctuating
field h = h

µ
µ. This field is ineffective if gravity is classical. As a consequence, the anomalies

in question can be disregarded.
Summarizing, we have the following alternatives for odd trace anomaly cancelation:

• Minimal coupling matter-gravity: cancelation by exotic SM spectrum;
• Minimal coupling matter-gravity: cancelation by WZ terms, unitarity in danger;
• Non-minimal coupling gravity-matter: to be investigated;
• Classical gravity: trace anomalies irrelevant.

Altogether, none of these possibilities is appealing. The present paper is clearly
inspired by a bottom–up attitude. It is an analysis of the consistency conditions that arise
as soon as we try to immerse the SM, in one of its versions, into a background of dynamical
gravity. In such a context, we meet new anomalies which are not present when gravity is
irrelevant. These new anomalies are both of type O and of type NO. As we have explained,
the former may endanger unitarity. Therefore, one has to make sure that they are absent.
The possibilities we have presented above are unconvincing. Even freely playing with the
still unknown SM sector of neutrinos, it does not seem possible to meet the requirement of
full freedom from type O anomalies by simply enlarging the spectrum of the MSM. If our
anomaly analysis is correct, it is clear that we have to change something in the previous
pictures of the SM. In the rest of this paper, we would like to present an (unconventional)
proposal in this direction. It certainly does not solve all the problems, but it is a hint of
where the anomaly analysis, if taken seriously, may lead to.

13. A Chirally Symmetric Model

As pointed out above the L-R model is the one that comes closer to the cancelation of
all the anomalies. That would be the case if, instead of two SU(2) gauge fields, one left and
one right, we had a unique SU(2) gauge symmetry and a unique gauge field Vµ = Va

µ Ta.
However, this would lead to a theory of Dirac fermions, and at that point, we would not
have a mechanism to break parity and recover the MSM in the broken phase.

We would like to construct an L-R symmetric (or chirally symmetric, or parity invari-
ant) model, which is certainly anomaly-free. It is based on the same multiplet as the MSM
with the addition of a right-handed sterile neutrino. In the usual SM notation, it is

G/ f ields SU(3) SU(2) U(1)(
u

d

)

L

3 2 1
6

(uR)
c 3̄ 1 − 2

3
(dR)

c 3̄ 1 1
3(

νe

e

)

L

1 2 − 1
2

(eR)
c 1 1 1

(νR)
c 1 1 0

(295)

where Xc represents the Lorentz conjugate spinor of X, i.e., Xc = γ0CX∗. This multiplet
couples to a left gravitational metric and connection and to the SU(3)L × SU(2)×U(1)L

gauge fields. We have seen that all the anomalies cancel out except for 4 units of the trace
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anomaly due to the gauge field F ≡ Fsu(2), (171), computed in the doublet representation
of su(2).

The multiplet (295) describes left-handed particles and right-handed antiparticles.
There is also a right-handed multiplet

G/ f ields SU(3) SU(2) U(1)(
u′

d′

)

R

3 2 1
6

(u′L)
c 3̄ 1 − 2

3
(d′L)

c 3̄ 1 1
3(

ν′e
e′

)

R

1 2 − 1
2

(e′L)
c 1 1 1

(ν′L)
c 1 1 0

(296)

coupled to a right gravitational metric and connection. This multiplet couples to the
SU(3)R× SU(2)×U(1)R gauge fields. The anomaly analysis of this right-handed multiplet
is the same as for the left-handed one except for the sign of the trace anomaly due to the
gauge field F ≡ Fsu(2), see (171), which is opposite. Therefore the overall sum of the
anomalies of the system vanishes.

The multiplet (296) describes right-handed particles and left-handed antiparticles.
We shall call these two intertwined theories, with field content (295) and (296), TL and

TR, respectively. The overall theory is free of type O anomalies. We denote it simply by
T = TL ∪ TR.

Important. Both multiplets couple to the same SU(2) gauge fields. Only in this case
do all anomalies cancel! This is the reason why we use the symbol ∪ intead of +.

Let us see explicitly in the sequel the various possible pieces of the relevant actions.
The MAT (hypercomplex) formalism turns out to be a very effective bookkeeping device to
write them down and we will use it as broadly as possible.

13.1. The Quadratic Fermion Action

The quadratic fermionic action is modeled on the one already introduced above, (221),

Ŝ f =
∫

d4 x̂

(
iψ

√
ĝγa ê

µ
a

(
Dµ +

1
2

Ω̂µ

)
ψ

)
(x̂) (297)

=
∫

d4 x̂

(
iψ

√
ĝγa(ẽ

µ
a + γ5 c̃

µ
a )

(
Dµ +

1
2

(
Ω

(1)
µ + γ5Ω

(2)
µ

))
ψ

)
(x̂)

where ψ is a 16 component spinor field, which encompasses the two left and right-handed
multiplets above, as will be explained shortly. In (297), we have introduced the covariant
derivative D̂µ = ∂̂µ + Vµ, where ∂̂µ here and below has to be understood as ∂

∂x̂µ , and Vµ is
valued in the Lie algebra SU(3)L × SU(3)R × SU(2)×U(1)L ×U(1)R in the relevant fun-
damental representations of SU(3) and SU(2) and in the representations of U(1) specified
by their hypercharges. Now let us recall that

ĝ = {ĝµν} = g + γ5 f , ĝµν = gµν + γ5 fµν = g+µνP+ + g−µνP−, g±µν = gµν ± fµν (298)

and

ĝ−1 = {ĝµν}, ĝ−1 = g + γ5f, ĝ−1 ĝ = 1, ĝµλ ĝλν = δ
µ
ν (299)
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so that [Careful! gµν, fµν are not the inverse of gµν, fµν, respectively, while g
µν
± is the inverse

of g±µν.]

ĝµν = gµν + γ5fµν = g
µν
+ P+ + g

µν
− P−, g

µν
± = gµν ± fµν, g

µλ
± g±λν = δ

µ
ν (300)

Moreover
√

ĝ =
√

det(g+)P+ +
√

det(g−)P−, (301)

êa
µ = e

(+)a
µ P+ + e

(−)a
µ P−, e

(±)a
µ = ea

µ ± ca
µ, e

(±)a
µ e

(±)ν
a = δν

µ

ê
µ
a = ẽ

(+)µ
a P+ + e

(−)µ
a P−, e

(±)µ
a = eµ

a ± cµ
a , e

(±)µ
a e

(±)b
µ = δb

a (302)

Ω̂ab
µ = Ω

(+)ab
µ P+ + Ω

(−)ab
µ P−, Ω

(±)ab
µ = Ω

(1)ab
µ ±Ω

(2)ab
µ (303)

Using these we can split Ŝ f into Ŝ f = S
(+)
f + S

(−)
f where

S
(±)
f =

∫
d4 x̂

(√
g±iψP∓γae

(±)µ
a P±

(
D

(±)
µ +

1
2

Ω
(±)
µ P±

)
ψ

)
(x̂) (304)

In more detail,

S
(+)
f ≡ S f R =

∫
d4 x̂

(√
g+iψ′Rγae

(+)µ
a

(
D

(+)
µ +

1
2

Ω
(+)
µ

)
ψ′R

)
(x̂) (305)

where ψ′R represents the right-handed multiplet (296), and

D
(+)
µ = ∂µ + g+X X

(+)
µ + gWWµ + g+B B

(+)
µ (306)

while

S
(−)
f ≡ S f L =

∫
d4 x̂

(√
g−iψLγae

(−)µ
a

(
D

(−)
µ +

1
2

Ω
(−)
µ

)
ψL

)
(x̂) (307)

where ψL represents the left-handed multiplet (295), and

D
(−)
µ = ∂µ + X

(−)
µ + Wµ + B

(−)
µ (308)

The symbols X
(±)
µ , Wµ, B

(±)
µ refer to the SU(3)R/L, SU(2) and U(1)R/L potentials, respec-

tively. Of course, each potential has its own distinct coupling to the fermions, which can
be made explicit through a rededinition.

Remark 6. Here and below, once the hypercomplex variable x̂ has performed its job as a bookkeeping

device, we can safely replace it everywhere with x.

Since parity (see Appendix A) exchanges g±µν with g
µν
∓ , X±µ with X∓µ, B±µ with B∓µ

and ψL/R with ψR/L, and Wµ with Wµ, the sum S
(−)
f + S

(+)
f is parity invariant.
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13.2. The Gauge Field Action

The action for the gauge fields is

Ŝg = −1
8

∫
d4 x̂Tr

(
1
ĝ2

√
ĝĝµµ′ ĝνν′FµνFµ′ν′

)
, Fµν = Fa

µνTa (309)

where Tr denotes the trace over all matrices, including γ5, and Ta are the generators of the
overall gauge Lie algebra. The coupling constant can be split into left and right parts. This
can be made explicit in the action as follows: define

ĝ = g+ γ5h = g+P+ + g−P−, g± = g± h (310)

then the factor ĝ−2 inside the round brackets of (310) becomes

1
ĝ2 =

1
g2
+

P+ +
1
g2
−

P− (311)

Therefore, (309) splits as follows

S
(±)
g = − 1

4g2
±

∫
d4 x̂
√

g±tr
(

g
µµ′
± gνν′

± FµνFµ′ν′
)

(312)

The action Ŝg is appropriate for the SU(2) gauge fields, which are the same both for
TL and TR.

13.3. AE Gauge Field Action

We can generalize the previous action by extending it to a field V̂µ = Vµ + γ5 Aµ

Ŝaeg = −1
8

∫
d4 x̂Tr

(
1
ĝ2

√
ĝĝµµ′ ĝνν′ F̂µν F̂µ′ν′

)
, F̂µν = F̂a

µνTa (313)

where F̂ = d̂V̂ + 1
2 [V̂, V̂], and Tr and Ta are as above. The action (313) splits as

S
(±)
aeg = − 1

4g2
±

∫
d4 x̂
√

g±tr
(

g
µµ′
± gνν′

± F
(±)
µν F

(±)
µ′ν′

)
(314)

where F
(±)
µν = d̂V(±) + 1

2 [V
(±), V(±)] and V

(±)
µ = Vµ ± Aµ, and ĝ = g + γ5h = g+P+ +

g−P−. As an example, in the case of SU(2)R × SU(2)L considered in Section 11.2 above,

V
(±)
µ has been denoted WR/Lµ.

In the case of T = TL + TR, the action Saeg is appropriate for the groups SU(3)L ×
SU(3)R and U(1)L ×U(1)R, each with its own coupling ĝ, since we have distinct left and

right potentials. As before, the action splits in the sum S
(+)
aeg + S

(−)
aeg with

S
(±)
aeg = − 1

4g2
±

∫
d4 x̂
√

g±tr
(

g
µµ′
± gνν′

± F
(±)
µν F

(±)
µ′ν′

)
(315)

where F± denote the curvatures of the SU(3)R and U(1)R, and SU(3)L and U(1)L poten-
tials, respectively. Of course, the factors g−2

± can be absorbed, as usual, in a redefinition of
the gauge potentials.

Ŝg and Ŝaeg are parity invariant.
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13.4. AE Real Scalar Field

We will also need the action for an axially extended (AE) real scalar field Φ̂ = ϕ + γ5π,
where ϕ is an ordinary real and π a pseudoreal scalar field. We write the action as

Ŝaes =
∫

d4 x̂tr

[√
ĝ

(
ĝµν∂µΦ̂∂νΦ̂− m̂2Φ̂2 − λ̂

4
Φ̂4

)]
(316)

We can decompose Φ̂ as Φ̂ = Φ+P+ + Φ−P− where Φ± = ϕ± π, as well as m̂2 = m2
+P+ +

m2
−P− and λ̂ = λ+P+ + λ−P−. Then we have the splitting Ŝaes = S

(+)
aes + S

(−)
aes , with

S
(±)
aes =

∫
d4 x̂
√

g±

(
g

µν
± ∂µΦ±∂νΦ± −m2

±Φ2
± −

λ±
4

Φ4
±

)
(317)

13.5. AE Scalar Doublet Action

We will employ later also an AE complex scalar field Ĥ = h± γ5k which couples to a
metric ĝµν and is a doublet under SU(2). The action is

Ŝaed =
∫

d4 x̂tr

[√
ĝ

(
ĝµνDµĤ†DνĤ − M̂2Ĥ†Ĥ − λ̂

4

(
Ĥ†Ĥ

)2
)]

(318)

where Dµ = ∂µ − igWµ, and Wµ is an SU(2) gauge field (notice that Wµ is not AE). We can
decompose Ĥ as Ĥ = H+P+ + H−P− where H± = h± k, as well as M̂2 = M2

+P+ + M2
−P−

and λ̂ = λ+P+ + λ−P−. Then Ŝaed splits as Ŝaed = S
(+)
aed + S

(−)
aed with

S
(±)
aed =

∫
d4 x̂
√

g±

[
g

µν
± Dµ H†

±Dν H± −M2
±H†
±H± −

λ±
4

(
H†
±H±

)2
]

(319)

S
(+)
aes + S

(−)
aes and S

(+)
aed + S

(−)
aed are parity invariant.

13.6. The EH-Like Action

The Einstein–Hilbert-like action in this context takes the form

ŜEH =
1
4

∫
d4 x̂Tr

(
1
κ̂

√
ĝR̂

)
, (320)

where R̂ is the Ricci scalar, obtained from (204) by contracting ν with ρ to obtain the Ricci
tensor

R̂µλ = R
(+)
µλ P+ + R

(−)
µλ P−, R

(±)
µλ = R

(1)
µλ ± R

(2)
µλ (321)

and then

R̂ = ĝµλR̂µλ = ĝµλ
(

R̂
(1)
µλ + γ5R

(2)
µλ

)
= R(+)P+ + R(−)P− (322)

where R(±) = g
µν
± R

(±)
µλ . Moreover 1

κ̂ = 1
κ+

P+ + 1
κ− P−.

The action (320) splits as ŜEH = S
(+)
EH + S

(−)
EH with

S
(±)
EH =

1
2κ±

∫
d4 x̂
√

g±R(±) (323)
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Remark 7. The action S
(+)
EH + S

(−)
EH is parity invariant. The previous formalism works even if there

is only one metric, that is g+ = g−. Here and in the sequel, we wish to keep track of the more

general possibility of a bimetric theory.

13.6.1. AE Diffeomorphisms

Axially extended diffeomorphisms, see Section 8.1, are defined by

x̂µ → x̂µ + ξ̂µ(x̂µ), ξ̂µ = ξµ + γ5ζµ = ξ
µ
+P+ + ξ

µ
−P−, ξ

µ
± = ξµ ± ζµ (324)

The way the various fields transform under these transformations is formally the same as
for the corresponding ordinary fields, for instance,

δ
ξ̂
ψ = ξ̂µ∂µψ, δ

ξ̂
Φ̂ = ξ̂µ∂µΦ̂, δ

ξ̂
ĝµν = D̂µ ξ̂ν + D̂ν ξ̂µ, etc. (325)

In particular
√

ĝ has the basic property that, under AE diffeomorphisms:

δξ̂

√
ĝ = ξ̂λ∂̂λ

√
ĝ +

√
ĝ∂̂λ ξ̂λ (326)

Since the form of the actions (297), (309), (316) and (320) above are formally the same as
that of the corresponding ordinary actions, it follows that the former are invariant under
the extended diffeomorphisms.

In turn, we have

δξ±ψ = ξ
µ
±∂µψ, δξ±Φ± = ξ

µ
±∂µΦ±, etc. (327)

It follows that the actions S
(±)
f , S

(±)
g , S

(±)
aeg , S

(±)
aes and S

(±)
EH are invariant under the (ordinary)

diffeomorphisms spanned by the parameters ξ
µ
±, respectively.

A system invariant under AE diffeomorphisms is automatically chirally symmetric, but
need not be parity invariant because parity invariance also requires the equality of the left
and right couplings. The systems defined by the actions (297), (309), (318), (316) and (320)
are chirally symmetric.

The actions (309) and (318) deserve a special comment. Since they involve an SU(2)
gauge field, say Wµ, valued in the Lie algebra su(2), and a complex scalar field H, both
without any axial counterpart, it would seem inappropriate to consider the transformations

δ
ξ̂
Wµ = ξ̂λ∂̂λWµ + ∂̂µ ξ̂λWλ (328)

because ξ̂λ splits according to Equation (324). But, first, one should recall that Wµ are
functions of x̂, and, second, the operation (328) is akin to a similar and very familiar
operation in quantum field theory when, in an ordinary theory of Dirac fermions coupled
to an Abelian vector potential Vµ, we consider a chiral transformation δVµ = iγ5∂µλ. This
transformation formally does not make any sense because Vµ is not a 4× 4 matrix, but it is
accepted with the understanding that we can slyly introduce a phantom axial companion
of Vµ and eventually drop it, as we have explained several times.

13.6.2. AE Weyl Transformations

The axially extended Weyl transformations are defined by

ĝµν −→ e2ω̂ ĝµν, ω̂ = ω + γ5η = ω+P+ + ω−P− (329)
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where ω± = ω± η. Under these transformations, we have

δω̂

√
ĝ = dω̂

√
ĝ (330)

δω̂ R̂ = −2ω̂R̂− 2(d− 1)□̂ω̂ (331)

δω̂ R̂µνλ
ρ = −δ

ρ
ν D̂µD̂λω̂ + δ

ρ
µD̂νD̂λω̂ + D̂µD̂σω̂ĝρσ ĝνλ − D̂νD̂σω̂ĝρσ ĝµλ (332)

The fermions transform as

ψ→ e−
3
2 (ω+γ5η)ψ, (333)

the scalars as

Φ̂→ e−ω̂Φ̂, (334)

while the gauge fields are invariant

V̂µ → V̂µ. (335)

Under AE Weyl transformations, the actions (297), (309) and (313) are invariant, while (318),
(316) and (320) are not.

S
(±)
f , S

(±)
g , S

(±)
aeg are invariant under the Weyl transformations with parameter ω±,

respectively.

13.7. Yukawa Couplings

The Yukawa coupling between a fermion ψ, an AE complex scalar Φ̂ and another
fermion χ is defined as follows. Set

ŜY = SY + SY (336)

Then

SY =
∫

d4 x̂

(
ψŷ

√
ĝΦ̂χc

)
(337)

where ŷ is the Yukawa coupling constant. Recall that Φ̂ = ϕ − γ5π denotes the axial
conjugate; therefore,

δ
ξ̂
Φ̂ = ξ̂

µ
∂̂µΦ̂ (338)

Moreover,

δ
ξ̂
χc = (ξµ − γ5ζµ)γ0C∂̂µχ∗ = ξ̂

µ
∂̂µχc (339)

Therefore,

δ
ξ̂

(
ψ

√
ĝΦ̂χc

)
= ∂̂µ

(
ψ

√
ĝξ̂

µ
Φ̂χc

)
(340)

Thus, (336) is invariant under AE diffeomorphisms. Its Hermitean conjugate is

S
′
Y =

1
2

∫
d4 x̂

(
χc
√

ĝΦ̂†ψ

)
(341)



Symmetry 2025, 17, 273 74 of 112

Proceeding as above, one can prove that

δ
ξ̂

(
χc
√

ĝΦ̂†ψ

)
= ∂̂µ

(
χc ξ̂µ

√
ĝΦ̂†ψ

)
(342)

which proves that (341) is invariant under AE diffeomorphisms.
Similarly, applying the transformation rules (333) and (334), one can prove that

both (336) and (341) are invariant under AE Weyl transformations.

Remark 8. Notice that such terms as
∫

d4 x̂

(
ψ
√

ĝΦ̂χ

)
and the conjugate are not AE diffeomor-

phism invariant.

Now, we specify the previous results for our case. If ψL is the (reducible) left multiplet
of TL, then we define

SYL =
1
2

∫
d4 x̂

(
ψLŷ

√
ĝΦ̂(ψL)

c

)
=

y−
2

∫
d4 x̂
√

g−ψLΦ−(ψL)
c (343)

Its hermitean conjugate is

SYL =
y∗−
2

∫
d4 x̂
√

g−(ψL)cΦ†
−ψL (344)

In much the same way as before, we can introduce the Yukawa couplings for the
model TR, i.e, for the multiplet (296):

SYR =
y+
2

∫
d4 x̂
√

g+ψ′RΦ+(ψ
′
R)

c, SYR =
y∗+
2

∫
d4 x̂
√

g+(ψ′R)
cΦ†

+(ψ
′
R) (345)

In the sequel, we shall need these formulas in particular in the case where Φ± are real fields.
We shall denote them with the symbol

SY = SYL + SYR + h.c. (346)

13.7.1. Symmetry Properties of Yukawa Couplings
Local Lorentz Invariance of Yukawa Terms

An infinitesimal local Lorentz transformation of ψ is defined by

δLψ = ΛabΣabψ, Σab =
1
4
[γa, γb] (347)

It follows that

δLψc = ΛabΣabψc, δLψ
c
= −ψΛabΣab, (348)

therefore, (336) is unchanged.

Gauge Invariance of Yukawa Terms

Suppose ψ is a (reducible) multiplet that transforms under a local U(1) group with
Hermitean generator Y:

ψ→ eiα̂Yψ, α̂ = α + γ5β (349)

Then

ψc → eiα̂Yψc, ψ→ ψe−iα̂Y. (350)
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In order for (336) to be invariant under this transformation, Φ̂ must be invariant too

Φ̂→ Φ̂ (351)

which holds in the case of the AE scalar field case we shall need below. The same holds in
the case of SU(2) or SU(3) gauge transformations. Let the Hermitean generators be Ta. A
local gauge transformation on ψ is

ψ→ eiαaTa
ψ (352)

which implies

ψc → eiα̂aTa
ψc, ψ→ ψe−iα̂aTa

(353)

Thus, if Φ̂ is invariant, (336) does not change.

Discrete Symmetry Properties of Yukawa Terms

The above Yukawa couplings are symmetric under AE diffeomorphisms, local Lorentz
transformations and also under AE Weyl transformations. We have not yet examined their
properties under C, P and CP transformations. Using the formulas of Appendix A, we see
that they are not invariant under C and P, but this is in line with all the terms quadratic in
the spinors, which have the same lack of C and P invariance, see (297), but are CP invariant.
On the contrary the above Yukawa’s may not be CP invariant. If we disregard the phases
of the P and C transformations the sum S′YL + S

′
YL is neither parity nor charge conjugation

invariant, and changes sign under CP. Analogously, the sum S′YR + S
′
YR is neither parity

nor charge conjugation invariant and reverses its sign under CP. Of course, we can arrange
the transformation phases β̂p, β̂c of ψ in such a way as to absorb this minus sign and restore
CP invariance, for instance, setting βp + βc = π. This choice does not affect the fermion
kinetic terms or the Yukawa couplings of the next subsection. With this choice the total
action (346) is parity invariant. However, the above Yukawa couplings do not reproduce
the SM Yukawa terms. For this reason, we resort to other Yukawa couplings, which are
CP invariant but oblige us to sacrifice in part the overall symmetry of the theory, see next
subsection.

Mass Terms

Let us finally add a comment that will be useful later on. Yukawa couplings of
scalar and fermions are, in particular, designed to produce fermion masses via the Higgs
mechanism. Here we consider the one illustrated in Section 14.2 below. Let us consider
as an example the mass terms produced by the vev v of the field Φ+ in S′YR + h.c., (345).

We take y+ real, and we limit ourselves to the doublet

(
dR

uR

)
and the singlets (dL)

c, (uL)
c.

Plugging them in S′YR + h.c. the integrand turns out to be proportional to (disregarding√
g+)

vy+
2

(
dL(dL)

c + (dL)cdL + dR(dR)
c + (dR)cdR

)
(354)

and the same expression for u. It is well-known that the kinetic terms in S
(+)
f , Equation (305),

constitute the kinetic terms of a massless Dirac spinor ψ′d = dL + dR and ψ′u = uL + uR.
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The terms (354) form the Majorana mass term of that spinor, so the complete eom is the
Majorana equation, which in the free case takes the form

/∂ψ′d/u + mψ′cd/u = 0 (355)

13.8. SM Yukawa Couplings

To reproduce the SM couplings (at least in the left part of our theory), we must use

SYdL =
y−Hd

2

∫
d4 x̂
√

g−
(
ψdL Hd−χsR

)
+ h.c. (356)

where ψdL is a left-handed SU(2) doublet, Ĥd− is also an SU(2) doublet, conjugate to the
ψdL one in the inner product of the SU(2) doublet representation space, while χsR is a
right-handed singlet, all of them belonging to TL. Similarly, for TR,

SYdR =
y+Hd

2

∫
d4 x̂
√

g+
(

χ′dR Hd+ψ′sL

)
+ h.c. (357)

Equations (357) and (356) are (separately) invariant under diffeomorphisms parametrized
by ξ

µ
± and conformal transformations parametrized by ω±, respectively. They are invariant

under SU(2) gauge transformations and the other SM gauge transformations and are CP

invariant. Again, it is not possible to write them in a compact form in terms of Ĥ and ĝµν

as in the previous actions, that is, by means of the full-fledged hypercomplex formalism.
We stress that this does not spoil the L-R symmetry.

We shall denote the set of Yukawa couplings introduced in this subsection by

SYd = SYdL + SYdR (358)

and its Hermitean conjugate by SYd. An example of Yukawa coupling of SYdL is

y−Hd

2

∫
d4 x̂
√

g−
(
QL Hd−χsR

)
(359)

where QL =

(
uL

dL

)
, Hd =

(
ϕ1

ϕ2

)
and χsR = uR or dR. Due to the breakdown of the

electroweak symmetry the term (359) gives rise to a mass term proportional to the vev of

Hd and to
y−Hd

2 , see Section 14.3. Together with the kinetic terms in S
(+)
f , Equation (305), it

forms a Dirac fermion action, for instance for ψd = dL + dR, whose free eom is the ordinary
massive Dirac equation:

/∂ψd + mψd = 0 (360)

13.9. The Overall T Model

The action of the chirally symmetric model is

Ŝch−sym = Ŝ f + Ŝg + Ŝaeg + (SY + SYd + h.c.) + Ŝaes + Ŝaed + ŜEH (361)

where Ŝg has gauge group SU(2), while Ŝaeg has gauge group SU(3)L× SU(3)R×U(1)L×
U(1)R. Concerning the discrete symmetries, with the choice made in Section Discrete
Symmetry Properties of Yukawa Terms, T is P, C and so CP and T invariant. This theory is
chirally symmetric and non-anomalous. It is, in particular, a bimetric theory [For a review
see [96]. In general, a bimetric theory is introduced in order to realize a ghost-free massive
spin 2 particle, see [97], a motivation different from the present one]. Since the fermion
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spectrum is L-R symmetric by construction, it is completely free of type O anomalies.
Excluding the term SYd + h.c., the action (361) is invariant under AE diffeomorphisms.
SYdL + h.c. and SYdR + h.c. are separately invariant under ξ

µ
− and ξ

µ
+. Concerning the

Weyl transfomations: Ŝ f + Ŝg + Ŝaeg + (SY + h.c) are invariant under AE transformations.
SYdL + h.c. and SYdR + h.c. are invariant under Weyl transformations with parameters ω−
and ω+, respectively.

But the scalar plus gravity action, Ŝaes + Ŝaed + ŜEH is not invariant under AE Weyl
transformations, only the remaining part is. We should add that, in addition, ŜEH is
not renormalizable. We need an enhancement of symmetry in this part of the action, a
formulation that preserves AE Weyl symmetry and, hopefully, achieves renormalizability.
This is indeed possible by embedding the model in the so-called Weyl geometry, [98]. All
this constitutes a very well-known subject. We are moving in a considerably explored
ground and we do not have anything new to say about it. We limit ourselves to a short
summary of a rather vast literature, see [99–104], and apply it to our context. The resulting
model will be called T W . Refs.: [96,98,101,103,105].

14. The Weyl Geometry and Gravity Embedding

In an ordinary gravitational background geometry, the Weyl transformation is given by

gµν → e2ωgµν (362)

The Christoffel symbols transform as

Γλ
µν → Γλ

µν + δλ
µ ∂νω + δλ

ν ∂µω− gµνgλρ∂ρω (363)

We can construct Weyl invariant Christoffel symbols as follows

Γ̃
(1)λ
µν = Γλ

µν −
(

δλ
µ ∂ν φ + δλ

ν ∂µ φ− gµνgλρ∂ρ φ
)

(364)

where the field φ (a dilaton) under Weyl transforms as

φ→ φ + ω (365)

The field φ is dimensionless.
Alternatively, other Weyl invariant Christoffel symbols are

Γ̃
(2)λ
µν = Γλ

µν − q
(

δλ
µ Cν + δλ

ν Cµ − gµνgλρCρ

)
(366)

where the vector field Cµ transforms as

Cµ → Cµ +
1
q

∂µω, (367)

and q is a dimensionless parameter. Still, another set of equivalent Christoffel symbols is

Γ̃λ
µν = Γλ

µν − α
(

δλ
µ ∂ν φ + δλ

ν ∂µ φ− gµνgλρ∂ρ φ
)
− q(1− α)

(
δλ

µ Cν + δλ
ν Cµ − gµνgλρCρ

)

= Γλ
µν − α

(
δλ

µDν φ + δλ
ν Dµ φ− gµνgλρDρ φ

)
− q
(

δλ
µ Cν + δλ

ν Cµ − gµνgλρCρ

)
(368)

where α is a dimensionless parameter and we have introduced the Weyl invariant derivative

Dµ φ = ∂µ φ− qCµ (369)
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We can use these Christoffel symbols to build the Riemann and Ricci tensors. For instance,

R̃µν = Rµν + 3DνSµ − DµSν + gµνD · S + 2SµSν − 2gµνS · S (370)

and

R̃ = R + 6(D · S− S · S), (371)

where

Sµ = α∂µ φ + (1− α)qCµ (372)

The conformal Weyl formalism also allows another decomposition of R̃µν. Summing R̃

with α = 1 multiplied by ϵ to R̃ with α = 0 multiplied by 1− ϵ, one can write

R̃ = R + 6ϵ(D · ∂φ− ∂φ · ∂φ) + 6(1− ϵ)
(

qD · C− q2C · C
)

, (373)

where ϵ is a new dimensionless parameter (not to be confused with α).
Notice that, from (370),

R̃[µ,ν] =
1
2

(
R̃µν − R̃νµ

)
= 2(DνSµ − DµSν) = 2(∂νSµ − ∂µSν) = 2q(∂νCµ − ∂µCν) (374)

By construction, R̃µν is conformal invariant, but

R̃ = gµνR̃µν → e−2ω R̃ (375)

Thus we can construct a Weyl invariant gravitational action as follows. The first piece is the
conformally enhanced EH action

S
(c)
EH =

1
2κ

∫
d4x
√

ge−2φ
(

R̃ + ce−2φ
)

(376)

To it we can add

S
(c)
C = −1

4

∫
d4x
√

gCµνCµν, Cµν = ∂µCν − ∂νCµ (377)

Finally there is also the following

S
(c)
W = − 1

η

∫
d4x
√

gCµνλρCµνλρ (378)

where Cµνλρ is the Weyl tensor, which also is Weyl invariant, and η is a dimensionless
constant. If we can disregard total derivatives in the action, (378) can be replaced by

S
(c′)
W = − 2

η

∫
d4x
√

g

(
−RµνRµν +

1
3

R2
)

(379)

These have to be understood as interacting terms, while the kinetic terms are contained
in (376) and (377).

We can easily embed also matter in Weyl geometry. For instance, consider a real scalar
field Φ: the action

S
(c)
s =

1
2

∫
d4x
√

g

[
gµνDµΦDνΦ−m2e−2φΦ2 − λ

4
Φ4
]

(380)
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is Weyl invariant provided Φ transform as

Φ→ e−ωΦ (381)

In general, Dµ is the Weyl covariant derivative of the scalar Φ

DµΦ =
(
∂µ + α∂µ φ + q(1− α)Cµ

)
Φ (382)

Putting together (376) and (380), we can write down the conformal invariant scalar-
gravity action

S
(c)
EH+s+C =

1
2κ

∫
d4x
√

g
(

e−2φ + ζΦ2
)(

R̃ + ce−2φ
)

+
1
2

∫
d4x
√

g

[
gµνDµΦDνΦ−m2e−2φΦ2 − λ

4
Φ4
]

−1
4

∫
d4x
√

gCµνCµν − 1
η

∫
d4x
√

gCµνλρCµνλρ, (383)

where ζ is a constant that measures the non-minimal coupling of the scalars to gravity, and
R̃ is given by (373), that is

R̃ = R + 6ϵgµν
(

Dµ∂ν φ− ∂µ φ∂ν φ
)
+ 6(1−ϵ)gµν

(
qDµCν − q2CµCν

)
, (384)

with ϵ a constant to be determined.
It should be clear that ζ, κ−1 and c all have the dimension of a mass square, while λ

and η are dimensionless.

14.1. Weyl Geometry: Other Field Theory Formulations

Another formulation of Weyl geometry in field theory is possible in terms of a scalar
field χ of physical dimension 1. Instead of (376), the basic action is

S′cEH =
1

2ξ

∫
d4x
√

gχ2
(

R̃ + cχ2
)

(385)

where ξ is a dimensionless constant, while c is as before (Of course χ cannot be identi-
fied with eqφ because they have different physical dimension, 1 and 0, respectively). χ

transforms as

χ→ eωχ (386)

The relation between χ and φ can be written

φ = log(ℓχ) (387)

where ℓ has the dimension of a length. Using this, one can translate all the above formulas
in terms of χ (Cµ does not undergo any change). In the sequel we will use the formulation
in terms of φ. It should be noted that we need a dimensional scale to relate χ to the
Weyl geometry.

Returning to the main subject of the embedding in a Weyl geometry, the embedding
of fermions is automatic because the corresponding kinetic term is Weyl invariant. The
corresponding action term does not need the introduction of either φ or Cµ. As a conse-
quence the anomalies remain the same as before the Weyl geometry embedding. No new
anomalies are generated due to fermions.
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The embedding of the gauge kinetic terms and of the Yukawa couplings does not
require any modifications because they are Weyl invariant.

Remark 9. Concerning the (local) Weyl symmetry, there are two possible attitudes. The first is to

consider it as an ordinary gauge symmetry, characterized not only by a local parameter ω(x) but

also by an associated (independent) gauge field Cµ with relevant curvature and covariant derivatives,

as we have done above (in this case, we understand α = ϵ = 0 in all the previous formulas). Another

attitude is to drop Cµ and consider the resulting theory as an unusual gauge theory symmetric under

a local parameter but without a corresponding gauge field. This means we set Cµ = 0, α = ϵ = 1 [It

is actually not necessary to set Cµ = 0, it suffices to require Cµ∼∂µ φ, which defines an integrable

Weyl structure]. Both attitudes are legitimate. But it is worth remarking that, contrary to what

occurs in ordinary gauge theories, it is not necessary to introduce a vector gauge potential Cµ in

order to guarantee the gauge invariance of the action; ∂µ φ can do the same job. But, in such a case,

we do not introduce new degrees of fredom (say Cµ); the field φ has the same number of degrees of

freedom as the gauge parameter.

The most frequent approach in the literature consists in introducing Cµ and treating it in the

usual way as in gauge theories with a Higgs mechanism, which makes it a massive vector field by

absorbing a scalar. It is worth recalling the latter mechanism, although it is extremely well known

because it plays a prominent role in the sequel. We consider the two cases that will appear below: a

real singlet and a doublet Higgs mechanism with complex scalars.

Refs. [106–111], for early applications of Weyl geometry to the SM,
see [112–121].

14.2. The Real Singlet Higgs Mechanism

In a theory like (383), the Higgs mechanism is realized as follows. We single out
the action

Ss =
1
2

∫
d4 x̂
√

g

(
gµνDµΦDνΦ + m2Φ2 − λ

4
Φ4
)

(388)

where

DµΦ =
(
∂µ + qCµ

)
Φ (389)

and the term m2 is produced, for instance, by the gauge choice φ = 0, i.e., m2 = ζc
κ .

Setting Φ = v + ρ, where ρ is a real field and v =
√

2m2

λ , a real number, denotes the
minimum of the potential, we have

DµΦDµΦ =
(
∂µ + qCµ

)
(v + ρ)(∂µ + qCµ)(v + ρ) (390)

The quadratic terms in 1
2DµΦDµΦ− V (V is the potential) are

1
2

∂µρ∂µρ +
1
2

q2CµCµv2 − 1
2

λv2ρ2 (391)

The result is a massive scalar ρ as well as a massive vector field Cµ.
Including this case among the Higgs mechanisms is somewhat of an abuse of language

because there is no gauge field eating a scalar, but we can consider it as a sort of limiting
case. A massive Cµ produced by a Higgs mechanism, is often considered in the literature,
see [99,100,102].

Finally, the Yukawa coupling (345), for Φ real, when ⟨Φ⟩ = v, produce mass terms
proportional to v such as those in Equation (354).
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Remark 10. If ψ denotes a singlet or a multiplet, it transforms under a gauge transformation

ψ→ eiαaTa
ψ, (Ta)† = Ta, (392)

then

ψc → eiαaTa
ψc, ψ→ ψe−iαaTa

(393)

Therefore a mass term like (354) remains gauge invariant after the breaking.

14.3. The Doublet Higgs Mechanism

Suppose Φ is a complex doublet field transforming as

Φ→ eiαaTa
Φ, Φ† → Φ†e−iαaTa

(394)

under a local SU(2) transformation, a = 1, 2, 3. The relevant terms of the action are

S
(c)
d =

∫
d4x
√

g

[
gµνDµΦ†DνΦ + M2Φ†Φ− λ

4

(
Φ†Φ

)2
]

(395)

where

DµΦ =
(
∂µ − igVµ + qCµ

)
Φ (396)

The symmetry breaking is determined by the decomposition

Φ =

(
ϕ

v + h+iχ√
2

)
⟨Φ⟩ =

(
0
v

)
(397)

where ϕ is a complex scalar field, h and χ are real scalar fields. ϕ and χ are Goldstone
bosons destined to become components of the three SU(2) gauge fields while h is bound to
become the massive Higgs field. The three Goldstone degrees of freedom represented by ϕ

and χ can be absorbed by an SU(2) gauge transformation. So with a suitable choice of the
parameters αa, Φ can be represented as

Φ = eiαaTa
Φh, Φh =

(
0

v + h√
2

)
(398)

We recall that if M2 is the mass of Φ and λ, the strength of the quartic coupling in the action,
v is given by

v2 =
2M2

λ
(399)

Under this SU(2) gauge transformation, the covariant derivative of Φ,

DµΦ =
(
∂µ − igWµ + qCµ

)
Φ, Wµ = Wa

µTa (400)

becomes

DµΦ→ eiαaTa
D′µΦh (401)

where, in the covariant derivative, igWµ is replaced by

igXµ = e−iαaTa(−∂µ + igWµ

)
eiαaTa

(402)
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In this way χ and the two components of ϕ are absorbed into Xµ. Disregarding for simplicity
Cµ, we have

DµΦ†DµΦ→ 1
2

∂µh∂µh +
g2

2
Xa

µXaµ

(
v +

h√
2

)2

(403)

summed over a. Since the kinetic term in the action is gauge invariant, this assigns a mass
square v2g2 to the three gauge bosons Xa

µ.
On the other hand

Φ†Φ→ Φ†
hΦh =

(
v +

h√
2

)2

(404)

The scalar potential V becomes

V = −1
2

M2v2 + M2h2 +O(h3) (405)

This gives the mass of the Higgs field h. Via the Yukawa term SYd also the fermions
coupled to Φ acquire a mass proportional to v.

In the sequel, we shall indeed consider two types of scalar field actions. In one, Φ is a
real scalar field in T denoted Φ̂. In the second case, Φ is a complex SU(2) multiplet, which
in the AE case will be denoted Ĥ. The first action will be denoted Ŝaes and the second Ŝaed.

The next step consists of embedding T in the AE Weyl geometry, see [99,101–103].

15. Embedding in AE Weyl Geometry

The embedding in axially extended (AE) Weyl geometry is straightforward. The
embedding of the fermion kinetic terms and of Yukawa couplings does not require modifi-
cations. We can write

Ŝ
(c)
f = Ŝ f , Ŝ

(c)
g = Ŝg, Ŝ

(c)
aeg = Ŝaeg, SY

(c) = SY, S
(c)
Yd = SYd (406)

For the gravitational part we can write

Ŝ
(c)
EH =

1
4

∫
d4 x̂tr

[
1
κ̂

√
ĝe−2φ̂

(˜̂R + ĉe−2φ̂
)]

(407)

where φ̂ = φ + γ5ϖ, κ̂ = κ+P+ + κ−P−, and

˜̂R = R̂ + 6
(

D̂ · Ŝ− Ŝ · Ŝ
)

(408)

where [Here and below, we treat the two Ŝµ as separate cases. One could just as well
consider a combination of the two with coefficients α and 1 − α, respectively, as was
done before.]

Ŝµ = ∂µ φ̂, or Ŝµ = qĈµ, Ĉµ = Cµ + γ5Eµ (409)

We can, of course, easily write down the splitting in + and − part of the actions. To
start with

Ŝ
(c)
EH = S

(c+)
EH + S

(c−)
EH (410)



Symmetry 2025, 17, 273 83 of 112

where

S
(c±)
EH =

1
2κ±

∫
d4x
√

g±e−2φ±
(

R̃(±) + ĉe−2φ±
)

(411)

which is invariant both under diffeomorphisms with parameters ξ± and under Weyl
transformations with parameters ω±. Here

R̃(±) = R(±) + 6
(

D(±) · S(±) − S(±) · S(±)
)

(412)

where

S
(±)
µ = qC

(±)
µ or S

(±)
µ = ∂µ φ(±) (413)

and

φ± = φ±ϖ, C
(±)
µ = Cµ ± Eµ (414)

Similarly,

Ŝ
(c)
C = −1

8

∫
d4 x̂tr

[√
ĝĝµµ′ ĝνν′ ĈµνĈµ′ν′

]
= S

(c+)
C + S

(c−)
C (415)

where Ĉµν = ∂̂µĈν − ∂̂νĈµ, and

S
(±)
C = −1

4

∫
d4x
√

g±g
µµ′
± gνν′

± C
(±)
µν C

(±)
µ′ν′ , (416)

For a real AE scalar Φ̂:

Ŝ
(c)
aes =

1
2

∫
d4 x̂tr

{√
ĝ

[
ĝµνD̂µΦ̂D̂νΦ̂ + m̂2e−2φ̂Φ̂2 − λ̂

4
Φ̂4

]}
= Ŝ

(c+)
aes + Ŝ

(c−)
aes (417)

where D̂µ = ∂µ + qĈµ or D̂µ = ∂µ + ∂µ φ̂, Φ̂ = ϕ + γ5π and m̂2 = m2
+P+ + m2

−P− . Finally

S
(c±)
aes =

1
2

∫
d4x
√

g±

[
g

µν
±
(
D±µ Φ±

)(
D±ν Φ±

)
+ m2

±e2φ±Φ2
± −

λ±
4

Φ4
±

]
(418)

with D±µ = ∂µ + qC
(±)
µ or D±µ = ∂µ + ∂µ φ(±) and Φ± = ϕ± π.

Finally, for an SU(2) doublet Ĥ:

Ŝ
(c)
aed =

∫
d4 x̂tr

{√
ĝ

[
ĝµν
(
D̂µ Ĥ

)†(
D̂νĤ

)
+ M̂2Ĥ† Ĥ − λ̂h

4

(
Ĥ† Ĥ

)2
]}

= Ŝ
(c+)
aed + Ŝ

(c−)
aed (419)

where D̂µ = ∂µ + qĈµ − igWµ or D̂µ = ∂µ + ∂µ φ̂− igWµ , Wµ being a gauge field valued in
the SU(2) Lie algebra representation to which Ĥ belongs (beware, Wµ is not split).

S
(c±)
sm =

∫
d4x
√

g±

[
g

µν
±
(
Dµ H±

)†
(DνH±) + M2

±H†
±H± −

λh±
4

(
H†
±H±

)]
(420)

with D±µ = ∂µ + qC
(±)
µ − igWµ or D±µ = ∂µ + ∂µ φ(±) − igWµ.

Putting everything together, we can write down the most general AE scalar plus
gravity action
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Ŝ
(c)
EH+aes+aed+C =

1
2

∫
d4 x̂tr

[
1
κ̂

√
ĝ
(

e−2φ̂ + ζ̂h Ĥ† Ĥ + ζ̂Φ̂2
)(˜̂R + ĉe−2φ̂

)]

+
∫

d4 x̂tr

{√
ĝ

[
ĝµν
(
D̂µĤ

)†(
D̂ν Ĥ

)
+ M̂2Ĥ† Ĥ − λ̂h

4

(
Ĥ†Ĥ

)2
]}

+
1
2

∫
d4 x̂tr

{√
ĝ

[
ĝµνD̂µΦ̂D̂νΦ̂ + m̂2e−2φ̂Φ̂2 − λ̂

4
Φ̂4

]}

−1
4

∫
d4 x̂tr

[√
ĝĈµνĈµν

]
−
∫

d4xtr
[

1
η̂

√
ĝĈµνλρĈµνλρ

]
, (421)

where

˜̂R = R̂ + 6ϵĝµν
(

D̂µ∂̂ν φ̂− ∂̂µ φ̂∂̂ν φ̂
)
+ 6(1−ϵ)ĝµν

(
qD̂µĈν − q2ĈµĈν

)
, (422)

and

ĈµνĈµν = ĝµµ′ ĝνν′ ĈµνĈµ′ν′ , etc.

We have also added the non-minimal coupling strenths ζ̂h and ζ̂, with ζ̂h = ζh+P+ + ζh−P−,
ζ̂ = ζ+P+ + ζ−P−, etc.

It is also possible to replace Φ̂ with a complex field. The action has the same terms as
the field Ĥ, by replacing it with Φ̂ and Wµ with a U(1) gauge field Vµ.

In conclusion, the overall conformal invariant model T W is defined by the action

Ŝ
(c)
ch−sym = Ŝ f + Ŝg + Ŝaeg + (SY + SYd + h.c.) + Ŝ

(c)
EH+aes+aed+C (423)

It splits into

S
(c−)
ch−sym = S

(−)
f + S

(−)
g + S

(−)
aeg + (SYL + SYdL + h.c.) + S

(c−)
EH+aes+aed+C (424)

and

S
(c+)
ch−sym = S

(+)
f + S

(+)
g + S

(+)
aeg + (SYR + SYdR + h.c.) + S

(c+)
EH+aes+aed+C (425)

The label (−/+) stands for left/right.
To summarize, T W is a theory of massless fields, which is not only classically symmet-

ric under the already mentioned symmetries, i.e., under diffeomorphisms, local Lorentz and
Weyl transformations, as well as the SU(3)L × SU(3)R × SU(2)×U(1)L ×U(1)R gauge
transformations, but also has the right interaction terms to be classified as renormalizable.
However, we have no guarantee about its unitarity. This is due, in the perturbative ap-
proach, to the possible appearance in the gravity propagators of ghosts (wrong sign of the
quadratic kinetic operator).

Therefore let us proceed to illustrate some consequences of the quantization of T W .

16. T W as a Quantum Theory

The T W theory has several local symmetries: diffeomorphism symmetries, local
Lorentz invariance, Weyl invariance, besides the symmetries under SU(3)L × SU(3)R ×
SU(2)×U(1)L ×U(1)R gauge transformations. Quantization requires gauge fixing. The
reason is that the gauge degrees of freedom are unphysical and have to be eliminated. But
there is also another reason: if the gauge is not fixed, the propagators of the gauge fields
and of the metric are not defined (the corresponding kinetic operators are not invertible),
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and, therefore, quantization is impossible. The two things are connected: gauge invariance
means that, in the space of field configurations, besides the physical degrees of freedom,
we have a set of unphysical configurations of infinite volume (in the path integral sense).
This infinity is the origin of the non-invertibility of the relevant kinetic operator, being
related to the (infinite volume) space of its zero modes. An educated guess for gauge fixing,
accompanied by the introduction of FP ghosts in order to fix the mismatch between the
unphysical degrees of freedom and the dofs eliminated by the gauge fixing, can lead to
the solution of both problems. If we now look at the Weyl invariance we see a difference:
in Section 14 we have already noticed that the introduction of a vector gauge field Cµ is
not required in order to implement a Weyl symmetry, the scalar field φ alone can do the
job. In T W , we would like to exploit this possibility and explore the formulation where
the vector gauge potential Ĉµ is absent. In such a case, the propagator of φ̂ exists even
when the gauge has not been fixed and there is a perfect matching between the unphysical
dofs and those eliminated, for instance, by the gauge choice φ̂ = 0 (thus, no FP ghosts are
necessary). This seems to suggest that the nature of Weyl symmetry is different from that of
ordinary gauge symmetries. In the sequel, therefore, we would like to explore an unusual
possibility: we will not fix this gauge but keep it unfixed (in particular, therefore, there
will be neither a ghost nor a BRST symmetry corresponding to it), but much like we do
for rigid symmetries we wish to preserve this local symmetry throughout the process of
quantization. In the literature, the attitude is generally different, and the Weyl symmetry
is treated as an ordinary gauge symmetry and quantized with gauge fixing, ghost and
corresponding BRST symmetry; see notably [122–124]. In the last reference the authors
signal the difficulty of producing compatible BRST Weyl, diffeomorphism and Stückelberg
gauge symmetry fixings, see Section 18 for a further comment. In our approach, this
problem is avoided, and it should be recalled that we are not violating orthodoxy: solving
a gauge theory without fixing the gauge is not in itself so heretical, it is simply extremely
complicated and perhaps even impossible when gauge invariance implies the lack of a
propagator; but, we repeat, in our case the relevant φ propagator exists and, so, it makes
sense to preserve Weyl gauge invariance through (the perturbative) quantization.

Our choice to ignore the field Ĉµ is tantamount to setting Ĉµ = ∂µ φ̂, which, in the
literature, defines an integrable Weyl structure. This structure, among other things, has the
virtue of avoiding the SCE (the second clock effect), which revives an objection raised by
Einstein against non-metricity, [105]: the parallel transport of a unit vector along curves
with the same initial and final point would lead to different results, involving both space
and time intervals. In particular the time difference (SCE) would be given by the integral of
Cµν over the surface comprised between the two curves, which, of course, in the integrable
Weyl structure vanishes. For more details and references, see [100,125–127].

Summarizing, the quantum T W theory is dealt with by fixing the gauge for diffeomor-
phism and gauge invariance, introducing the corresponding FP ghosts and recovering the
appropriate BRST symmetries, while trying to preserve Weyl symmetry. But quantization
gives rise to a new problem involving precisely the preservation of Weyl symmetry due to
even trace anomalies.

17. The Problem of Even Trace Anomalies

The object of this section is the problem of even trace anomalies in T W in its symmetric
phase (i.e., before the primitive chiral symmetry breaking, see below).

Trace anomalies have been discussed above at various stages, and especially in
Section 6. The analysis was limited there to theories of free fermions coupled to back-
ground potentials (metric or gauge fields) and mostly to odd parity anomalies. Now, we
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have to make do with a fully interacting theory, not only for matter fields but also for the
gauge potentials, the metrics and the dilatons.

In general, trace anomalies for matter fields interacting with background potentials
arise as a response to the effective action to a Weyl variation of the metric gµν → e2ωgµν for
a local parameter ω. The classical definition of the e.m. tensor for matter fields interacting
with a background metric is

Tµν =
2√
g

δS

δgµν (426)

S being the classical action. If the latter is Weyl invariant, the e.m. tensor is traceless. This
follows from the classical WI

δωS =
∫

ddx

(
δS

δgµν δωgµν + ∑
i

δS

δ fi
δω fi

)
= 0 (427)

where fi denote generic matter fields, and, for infinitesimal ω, δωgµν = −2ωgµν, δω fi =

−2yiω fi (where yi is 0 for gauge fields, d−2
2 for scalars and d−1

4 for fermions, etc.). If the
matter fields are on shell, i.e., δS

δ fi
= 0, it follows that Tµνgµν = 0 due to the arbitrariness

of ω.
When the metric is dynamical, the interpretation of (426) changes for δS

δgµν does not
represent the e.m. tensor of the metric field, but the LHS of its equation of motion. It is well
known that in the EH gravity, this leads to the Einstein equation

Rµν −
1
2

gµνR + Λgµν = −κTµν (428)

where Λ is the cosmological constant and Tµν is the e.m. tensor of the matter fields.
Therefore, in an interacting theory like T W [In this section, we refer to a general

abstract theory with the same general features as T W . For this reason, we use a generic
notation for the fields and couplings, dropping, in particular, the ± labels, but the following
discussion applies as well to T W , and to T W L or T WR separately or in conjunction, in
the symmetric phase] the WI for Weyl transformations has the same form as (427), but the
interpretation of e.m. tensor of Equation (426), while it still holds for matter fields, is not
valid for the metric itself. If we refer, for instance, to (376) we recall that, since we have
dropped Cµ, the tilded Ricci scalar is

R̃ = R + 6□φ− 6∂φ·∂φ (429)

Therefore the equation of motion for the metric is

Rµν −
1
2

gµν

(
R + ce−2φ

)
= −κe2φT

(m)
µν (430)

where T
(m)
µν denotes the e.m. tensor of all the matter fields (including the dilaton) coupled

to the metric. Let us recall that this equation is a Weyl covariant.
Taking the trace of (430), we get that, when all the other fields are on shell, the equation

R + 2ce−2φ = κe2φT(m), T(m) = gµνT
(m)
µν (431)

should hold as a consequence of (427) (since ω is arbitrary).
It must be remarked that, as required by (427), we obtain a dynamical equation for gµν

that does not automatically imply the vanishing of the trace of T
(m)
µν . That is, in order to

preserve Weyl invariance, it is, in general, not necessary for the matter e.m. tensor to be
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traceless. There may exist situations of this type, but in view of the discussion that follows,
they fall in the realm of non-perturbative solutions. For simplicity, we exclude them from
our analysis.

Now, the matter e.m. tensor T
(m)
µν contains the contributions from the e.m. tensors of

all the fields, including φ, except the metric. However, in general, T
(m)
µν is not simply the

direct sum of the e.m. tensors of the various fields coupled only to the metrics (like, for
instance, in (158)), because there are also interaction terms that mix different fields beside
the metrics. This means that the problem we face with the trace of the RHS of (430) is
not simply the sum of the distinct problems of computing the trace of each field species
separately [For the same reason we cannot factor the overall path integral of the theory
as a product of separate path integrals, each of them involving the quadratic action of
each field species interacting with other fields treated as external sources]. When dealing
with a free field interacting with external potentials, we have the possibility to use either a
perturbative or a non-perturbative approach. The latter consists in resorting to a one-loop
quantum energy–momentum tensor ⟨⟨Tµν⟩⟩, which, for matter fields, is defined by

⟨⟨Tµν⟩⟩ =
2√
g

δW

δgµν (432)

where W is the effective action, and then using the WI

δωW = −
∫

ddx
√

gω⟨⟨Tµν⟩⟩gµν (433)

in order to identify a possible trace anomaly.
But this approach is not available when dealing with a fully interacting theory like

T W . We must turn to the perturbative method, which consists in general in fixing the
gauges and introducing the corresponding ghosts, in determining the Feynman rules and,
in particular, writing down propagators and vertices, and, finally, after introducing an
appropriate external source for each elementary field, writing the appropriate Slavnov–
Taylor identity for each BRST symmetry (this will be commented further on in Section 18).
However, rewriting (427) as a Slavnov–Taylor identity would obscure the role of the e.m.
tensors, which are composite operators (not elementary fields). In order to highlight this
role, we will proceed in another way. Concerning Weyl anomalies, the available quantum
results at present are (perturbative and/or non-perturbative) local expressions of trace
anomalies obtained by integrating out in each separate path integral various matter fields,
for instance, fermions, scalars, etc., which feature quadratically in expressions where they
interact with other fields considered as background. The question is whether these results
are of any use when we consider a fully interacting theory such as T W . In the sequel, we
would like to discuss how they can, in fact, be brought to bear in a perturbative approach.

The T W action contains terms coming from the quadratic kinetic terms of the various
dynamical fields coupled to the metric, the dilaton and the gauge potentials, but also
several interaction terms: non-Abelian gauge fields interacting among themselves, scalar
fields interacting with fermions, gauge fields and the dilaton, gravitons interacting with the
other fields and among themselves. The perturbative approach singles out kinetic terms,
each being quadratic in one species of fields, from which the propagators are extracted, and
deals with all the other terms as interaction terms from which the vertices are derived. It is
important to recall that in the perturbative approach, the fields we consider are fluctuations
around a background; for most fields (fermions, vectors and also scalars in the symmetric
phase) the fluctuating fields are usually identified with the fields themselves, while for
the metric the fluctuating field is hµν with gµν = ηµν + hµν [The dilaton could be expanded
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around a non-vanishing value φ0, but in the present discussion we set φ0 = 0]. In the
following discussion, we set, for the moment, c = 0.

Next, we proceed as follows. We expand both sides of (431) in series of hµν and
forget the interaction terms of all the other fields. The 0-th order term on the LHS van-
ishes [Because its lowest order is linear in hµν, for, at the lowest order, R = ∂µ∂νhµν −□h

µ
µ].

Therefore, at the lowest order, the RHS, which is the sum of the traces of the e.m. tensors
of the various species of fields, must vanish too. But since the e.m. tensors of the various
species are non connected by interaction terms, this implies that they must be separately
traceless. This is all classical.

To quantize (430) and (431), the perturbative approach allows us to start from the
classical zeroth order expression of the matter e.m. tensor or its trace, which is the sum of the
free e.m. tensors for each distinct field species and treat all the other terms as interactions.
To extract explicit formulas we expand the full action in terms of the fluctuating fields
and forget their interactions, the action becomes a free field action (and the equations of
motion are the free ones). From it, we can extract the lowest order (on shell conserved and
traceless) e.m. tensor for each species via the canonical formulas. Alternatively we can
use (426) by coupling every single species with the metric gµν in such a way as to realize
Weyl invariance, using (426) and eventually setting the metric equal to the flat one. Said
another way, we expand the full action in series of hµν: the 0-th order term is made of
the free actions while the coefficient of hµν in the first order term identifies the on-shell
conserved and traceless e.m. tensors.

The zeroth order e.m. tensors obtained in this way are

T
( f )
µν =

i

4
ψγµ

↔
∂νψ + (µ↔ ν)− ηµν

i

2
ψγλ

↔
∂λψ, (434)

for fermions (which, in particular, may be chiral), and

T
(g)
µν = − 1

g2

(
∂µ Aλ∂ν Aλ + ∂λ Aµ∂λ Aν −

1
2

ηµν∂λ Aρ∂λ Aρ

)
(435)

for Abelian gauge fields. This is obtained after fixing the Lorenz gauge. The non-Abelian
formula differs from it only for the trace symbol in front of the RHS, the trace being applied
to the gauge Lie algebra generators.

The above e.m. tensors are (on shell of the free equations of motion) conserved and
traceless. At variance with these examples, the derivation of the e.m. tensors for scalar
fields via Formula (426) applied to the scalar fields in (421) does not automatically lead to
conservation and tracelessness. However, if we now return to Formula (431) in the spirit of
perturbation theory, we have seen that at the lowest order, the LHS vanishes. Therefore, as
already pointed out, the matter e.m. tensor must indeed be traceless at this order. It follows
that also each e.m. tensor for scalars must be separately traceless.

Therefore, for the complex scalar field Φ, we expect

T
(s)
µν = ∂µΦ†∂νΦ + ∂νΦ†∂µΦ− ηµν∂λΦ†∂λΦ +

1
3

(
ηµν□− ∂µ∂ν

)
Φ†Φ (436)

and an analogous formula for H. In analogy, we expect a similar expression for the dilaton

T
(φ)
µν =

6
κ

(
∂µ φ∂ν φ− 1

2
ηµν∂φ·∂φ +

1
6

(
ηµν□− ∂µ∂ν

)
φ2
)

(437)

These expressions are known as improved e.m. tensors. But what do they have to do with
the action of T W and in particular with (421)?
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Consider a free scalar field ϕ in dimension d. Its improved (on-shell conserved and
traceless) e.m. tensor is

T
(s)
µν = ∂µϕ∂νϕ− 1

2
ηµν∂λϕ∂λϕ +

d− 2
4(d− 1)

(
ηµν□− ∂µ∂ν

)
ϕ2, (438)

assuming the free equation of motion is □ϕ = 0. It can be derived with the improved
canonical formula. But it can also be derived from the action

Sϕ =
1
2

∫
ddx
√

g

(
∂µϕ∂µϕ +

d− 2
4(d− 1)

Rϕ2
)

(439)

where R is the Ricci scalar. This action is conformal invariant. Applying (426) to it,
integrating by parts and setting gµν = ηµν one obtains (438). Now, what we do is the
following: to the free action of ϕ, we add and subtract a term

∫
d4x
√

gRϕ2 (with the
appropriate coefficient). The expansion in hµν gives

2
∫

d4xhµν
(
ηµν□− ∂µ∂ν

)
ϕ2 +O(h2) (440)

from which one can derive (438). Adding and subtracting the same term of course does not
change anything, but while the lowest order approximant (440) allows us to write (438),
the term with the opposite sign will remain and contribute an interaction term, which was
not present in the original action, and must be taken into account when computing the
trace anomaly. All the terms of higher order in (440) cancel one another. Said another way,
we expand the metric in the RHS of (439): the 0-th order term is the free action of ϕ and
is left unchanged by the addition of

∫
d4x
√

gRϕ2, the coefficient of hµν in the first order
term identifies the on-shell conserved and traceless e.m. tensor (438); the first order term
of −

∫
d4x
√

gRϕ2 is accounted for as an interaction term. All the higher-order terms of∫
d4x
√

gRϕ2 disappear. On the other hand, if in the original action, there are mass terms
like in ((388) and (395)) and ((420) and (419)), these terms are to be accounted for among
the interaction terms.

This procedure can be adopted for the scalar fields φ, Φ and H.
Finally we have to consider also the contribution to the total trace anomaly due to the

Faddeev-Popov ghosts. There are two types of these ghosts: those coming from the gauge
fixing of non-Abelian gauge symmetries, denoted ca and ca and those derived from fixing
the diffeomorphism symmetry, denoted by ξµ and ξ

µ
.

A gauge fixed and FP ghost action for the former can be found in Appendix C below.
The ghost action to the 0-th and first order in hµν, excluding all the other interaction terms,
can be extracted from

Sc,c̄ =
∫

d4x
√

ggµν∂µca∂νca (441)

summed over a. But the e.m. we obtain in this way

T
(c,c̄)
0µν = ∂µca∂νca + ∂νca∂µca − ηµν∂λca∂λca (442)

is neither conserved nor traceless, in other words we face the same problem as with the
scalar field when trying to extract a conserved and traceless e.m. tensor ((441) is not Weyl
invariant). Therefore we proceed as in the scalar field case and add to the Lagrangian term
in (441) the term 1

3
√

gRcaca. In this way, the corresponding lowest order e.m. tensor is

T
(c,c̄)
µν = ∂µca∂νca + ∂νca∂µca − ηµν∂λca∂λca +

1
3

(
ηµν□− ∂µ∂ν

)
caca (443)
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which is conserved and traceless.
For diffeomorphisms we use the DeDonder gauge, whose lowest order form is as

follows: 2∂µh
µ
λ − ∂λh

µ
µ = 0. Proceeding as in the gauge case we find a ghost action (see

Appendix C, below),

S(ξ,ξ̄) = −
∫

d4x
√

ggµνξλ∂µ∂νξλ (444)

Equation (444) is not Weyl invariant. Adding, as in the scalar field case, a term∫
d4x
√

gRξλξλ to this action, at the lowest order, we find the traceless e.m. tensor

T
(ξ,ξ)
µν = ∂µξλ∂νξλ + ∂νξλ∂µξλ − ηµν∂λξρ∂λξρ +

1
3

(
ηµν□− ∂µ∂ν

)
ξλξλ (445)

Comment. Other backgrounds

In the perturbative approach described so far, we have started from the background
gµν = ηµν, c = 0 and φ = 0. This is the simplest background. Other more general
backgrounds are possible, gµν = g0µν ̸= ηµν, c ̸= 0 and φ = φ0 ̸= 0 and even Vµ = V0µ ̸=
0, Wµ = W0µ ̸= 0. They are supposed to satisfy the background Equation (430)

R0µν −
1
2

g0µν

(
R0 + ce−2φ0

)
= −κe2φ0 T

(m)
0µν (446)

whose trace is

R0 + 2ce−2φ0 = κe−2φ0 T
(m)
0 (447)

The new fluctuating fields are hµν = gµν − g0µν and φ− φ0, Vµ −V0µ and Wµ −W0µ. Now,
we expand (430) in terms of the fluctuating fields around the classical solution of (446), in
the same way we have done before around the trivial flat solution. As before, the 0-th order
term of the expansion of the full action in hµν provides the free field equations of motion
and the first order one the free e.m. tensors. The quantization is carried out as before,
except that e.m. tensors and vertices will contain insertions of the background fields. We
will not pursue this here. We only notice that since the calculation of the trace anomalies
must be carried out according to the Formula (161), the two sides of Equation (447), will
drop out of the final result. Refs.: [128,129].

17.1. Even Trace Anomalies: Further Examples

The previous argument allows us to conclude that the first perturbative level of the
RHS of Equation (431) can be computed for each species separately. To this end, we have
to single out the propagators and vertices. The propagators are well-known; some have
already been written down. We summarize them for the reader’s convenience, they are as
follows: i

/p
for fermions, − i

p2 ηµνδab for gluons (in the Lorenz gauge), i
p2 for real or complex

scalars, i
p2 δab for FP gauge ghost. The propagator between hµν and hαβ has a complicated

form depending on the classical action we start from and on the gauge fixing conditions.
For the present purposes, enough is to know that the generic form of this propagator in
the UV limit is i

2κp2 tµναβ, where the constant tensor t is constructed out of the flat Lorentz
metric ηµν. This simplified form is sufficient to recognize at a glance the order of divergence
of a Feynman diagram. The propagator for the dilaton φ is iκ

6
1
p2 .

The relevant vertices for fermions have been introduced earlier, for instance, the vertex
Vf f h, of two fermions and one hµν gravity fluctuation field in Equation (165). The fermion–
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fermion–gluon vertex is Vf f g : igγµTa. A fermion–fermion–scalar vertex generated by a
Yukawa term with coupling y takes the simple form

Vf f s : iy (448)

Similarly the scalar–scalar–hµν-graviton vertex is given by

Vssh : − i

2

(
ηµν p·p′ −

(
pµ p′ν + pν p′µ

))
(449)

where p′ is an entering scalar particle momentum and p an exiting one. The subtraction of
the term (440) entails the addition of another scalar–scalar–graviton vertex

V′ssh :
i

6

(
ηµν p·p′ −

(
pµ p′ν + pν p′µ

))
(450)

The complex scalar–complex scalar–gluon vertex Vssg is

Vssg : iTag
(

pµ − p′µ
)

(451)

where the gluon leg is represented by Va
µ Ta and g is the relevant gauge coupling. The

gluon–gluon–graviton vertex is

Vggh :
i

2
δαβ

[
(pα p′β + pβ p′α)ηµν − p·p′

(
ηαµηβν + ηανηβµ +

1
2

ηαβηµν

)]
(452)

referring to the legs hαβ, Va
µ Ta, Vb

ν Tb with p entering, p′ exiting for the last two. Here, we
have assumed the normalization Tr(TaTb) = δab. The triple gluon coupling, Vggg, can be
found in any gauge field theory textbook.

The ghost–ghost–Vµ-gluon vertex is

Vcc̄g : −g f abc pµ (453)

The ghost–ghost–hµν-graviton vertex is

Vcc̄h : − i

2
(pµ p′ν + pν p′µ − ηµν p·p′) (454)

The vertex Vξξ̄h is

Vξξh : − i

2
(pµ p′ν + pν p′µ − ηµν p·p′)ηλρ (455)

where the legs are hµν, ξ
λ

, ξρ with momenta q, p, p′ respectively (q + p + p′ = 0).
As for the dilaton φ, Vφφh is the same as Vssh multiplied by 3

κ . Then

VH† Hφ : ip·p′ (456)

where p is the momentum of H† and p′ is the momentum of φ. The vertex VΦ†Φφ is the
same. The mass terms of scalar fields such as those in (388), (420) and (419) originate
interaction terms proportional to the square mass.

There are also vertices due to terms like (440) and higher order vertices. But the ones
shown above are sufficient to illustrate the main point.

Thus, at least at the lowest loop order, we can compute the overall anomaly of T W
using the results and methods presented in the first part of this article. As for the odd parity
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(i.e., type O) trace anomalies in T W this confirms what has already been said above: they
cancel out by construction. But in T W there are even (type NO) trace anomalies. It is worth
recalling the difference between the two types of anomalies we are talking about here.

Odd trace anomalies are produced in models of chiral fermions coupled to a back-
ground metric or gauge field. They are a consequence of the lack of the corresponding
fermion propagators. With this kind of anomaly, a theory simply does not make sense.
Even trace anomalies, on the contrary, do not correspond to a lack of propagator, and the
corresponding theory is well-defined. It is true that, for instance, in the calculation of the
even trace anomaly in a theory of a Maxwell field coupled to a metric, the propagator is
ill-defined because the kinetic operator is not invertible due to gauge invariance, but this
fact is remedied by suitably fixing a gauge (and taking into account the contribution of
the appropriate FP ghosts). Once the relevant propagator is defined the calculation is not
unlike the odd parity case we have seen above. The results are anomalies taking the form
of Equation (147). The most well-known have density T[g] given by (148) and (149). In
perturbation theory, their lowest order terms are found from the triangle diagram contri-

bution of the one-loop e.m. tensor ⟨⟨T( f )
µν ⟩⟩, according to the prescription (161). But there

are others, perhaps less well-known or plainly ignored, anomalies. They are characterized
by the fact that their densities are covariant pieces of actions. An example is represented
by Equation (151). Its explicit computation can be found in [5]. Here, we summarize the
main facts. It shows up, for instance, in a theory of Dirac fermions coupled both to an
external metric and to an external Maxwell potential. At the lowest level, it is again born

out of ⟨⟨T( f )
µν ⟩⟩, but from a triangle diagram amplitude formed by joining a lowest level

chiral e.m. tensor to two Vf f g vertices and joining each other by means of three fermion
propagators, with the addition of the crossed amplitude. These amplitudes are divergent,
and by extracting the finite part, one finds

A(g)
ω = − 1

12π2

∫
d4xω

(
−∂νVλ∂νVλ + ∂νVλ∂λVν

)
=

1
24π2

∫
d4xωFνλFνλ (457)

This is the lowest order result. The all-order expression invariant under both diffeomor-
phisms and gauge transformations is

A(g)
ω =

1
24π2

∫
d4x
√

gωFνλFνλ, (458)

Its non-Abelian extension is

A(g)
ω =

1
24π2

∫
d4x
√

gωtr
(

FνλFνλ
)

. (459)

From this example it is clear what has to be done in order to identify the trace anomalies
of this type. We must construct all possible divergent triangle diagrams formed by joining
a zeroth order e.m. tensor with two vertices and the latter with each other by means of
three suitable propagators; the e.m. tensor carries an incoming momentum, and the other
two outgoing lines represent particles created by the same field (two fermions, two scalars,
etc.). Then, we must regularize the associated integral and extract its finite part. It is
easy to see that the triangle diagrams with two outgoing fermions always vanish [This
is true at any loop order, therefore is an exact result. It is due to the fact that all vertices
involve either two fermions or none. Therefore, in order to form a triangle diagram with
one bosonic and two fermionic external legs, we need either an even number of fermion
vertices and an odd number of fermion propagators or vice versa. In both cases the number
of γ matrices involved in the diagram is odd; thus, the gamma matrix trace vanishes.]
Therefore, we cannot have an even trace anomaly of the above type whose density T[g]
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is the Lagrangian density of the fermion kinetic term. Analogous considerations hold for
anomalies with density T[g] corresponding to the Lagrangian density of ghosts, although
the vanishing mechanism is different: it is easy to see that there are potentially divergent
triangle diagrams with two outgoing ca and cb legs, but the corresponding amplitude
vanishes when summed with the crossed amplitude due to anticommutativity and the
lack of an appropriate tensor antisymmetric in a↔ b. The same holds for diffeomorphism
ghosts. However, this is not the case for scalars.

Consider, for instance, the triangle diagram very similar to the one that gives rise to the
familiar ABJ anomaly, except that the two outgoing legs represent real scalars, say Φ. It is

formed by joining the zeroth order fermion e.m. tensor T
( f )
µν to two fermion-fermion-scalar

vertices V
(s)
f f s, and these to each other, by means of three fermion propagators. The only

difference with the ABJ calculation is the absence of a γ5 matrix and the trace of four γ

matrices instead of six. The integral is divergent; it must be regularized, and the trace
anomaly must be calculated according to (161). The result is

A(s)
ω =

1
48π2

∫
d4xω

(
8Φ□Φ− ∂µΦ∂µΦ

)
(460)

This is the triangle diagram result. It does not satisfy the WZ consistency conditions. The
all-order expression is either [In the perturbative context of this analysis, the expressions
of trace anomalies we need involve only the orders of approximation relevant for the
perturbative order we are considering. However, the identification of all-order expressions
is both a simple way to check the WZ consistency conditions and a practical way to find all
the orders of approximation]

∆
1s)
ω ∼

∫
d4x
√

gωgµνDµΦDνΦ (461)

or

∆
(2s)
ω ∼

∫
d4x
√

gω

(
∂µΦ∂µΦ +

1
6

RΦ2
)

(462)

or

∆
(3s)
ω ∼

∫
d4x
√

gω

(
Φ□Φ− 1

6
RΦ2

)
(463)

They all satisfy the WZ consistency conditions. What combination of the three is the
appropriate one in any specific case can come only from the explicit calculation. In the case
of trace anomaly due to the scalar Φ, which involves interacting with a Dirac fermion, the
final result is

A(s)
ω =

1
48π2

∫
d4xω

(
8Φ□Φ− ∂µΦ∂µΦ− 9RΦ2

)
(464)

The difference between this last expression and Equation (462) is due to higher-order
diagram contributions, see Appendix D.

In the round brackets of Equations (461) and (462) we can add also a term Φ4, which
form a consistent cocycle by itself and can appear at higher orders of the calculation, but
for our present discussion the above formulas are sufficient.

Similar expressions also hold with the obvious replacements for a complex doublet H

instead of the real scalar Φ.
As for the dilaton, we can have
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A(φ)
ω ∼

∫
d4x
√

gω

(
∂µ φ∂µ φ +

1
3

Rφ2
)

or ∼
∫

d4x
√

gω

(
φ□φ +

1
6

R
(

φ2 − 3φ
))

(465)

Both terms satisfy the WZ consistency conditions. Other consistent expressions are possible.

A similar result is obtained from the triangle diagram constructed by joining T
(g)
µν , by

means of two gluon propagators, to two vertices Vssg and the latter by means of a scalar
propagator, the two outgoing legs being scalars.

There are many other similar examples. The anomalies (148) and (149) may come not

only from the triangle diagrams of ⟨⟨T( f )
µν ⟩⟩ but also from those of ⟨⟨T(g)

µν ⟩⟩ and ⟨⟨T(s)
µν ⟩⟩ both

for Φ and H, and ⟨⟨T(φ)
µν ⟩⟩, as well as in ⟨⟨T(c,c̄)

µν ⟩⟩ and ⟨⟨T(ξ,ξ)
µν ⟩⟩, provided we construct the

triangle with the right vertices. Each of the corresponding anomalies will have its own
coefficient.

The anomalies of the type (458) can be produced not only in the triangle diagram of

⟨⟨T( f )
µν ⟩⟩ but also in ⟨⟨T(g)

µν ⟩⟩, ⟨⟨T(c,c̄)
µν ⟩⟩ and ⟨⟨T(s)

µν ⟩⟩, both for Φ and H.

Anomalies of the type (461)–(463) can be produced in triangle diagrams of ⟨⟨T( f )
µν ⟩⟩,

⟨⟨T(s)
µν ⟩⟩ and ⟨⟨T(g)

µν ⟩⟩. And so on.
It is out of the scope of this article to explicitly calculate these potential anomalies.

They are not really challenging but rather lengthy calculations, where for completeness,
one should also consider other diagrams besides the ones mentioned before. For instance,

in the case of ⟨⟨T( f )
µν ⟩⟩, one should also consider bubble diagrams involving two fermion

propagators and a 2-fermion–2-graviton vertex. Although there are no known explicit
examples of nontrivial contributions to anomalies of this type, it is still necessary to examine
them.

The examples already shown should, however, be enough to illustrate the problem.
We have plenty of trace anomalies that break Weyl invariance. Considering the wide
randomness of their rational coefficients, a mutual cancelation, like in the case of the odd
trace anomalies (mode (B)), looks impossible in any reasonable theory. There is, however,
another method for that, and we would like now to focus on it: the breaking of conformal
invariance by even trace anomalies can be repaired by adding to the effective action suitable
WZ terms. Let us briefly discuss them. Refs. [3,5,51,63,64,130–139].

17.2. WZ Terms

Any trace anomaly can be written in the form

Aω [g, f ] =
∫

ddx
√

gωF[g, f ] (466)

where g = {gµν} is the metric, ω is the Weyl transformation parameter δωgµν = 2ωgµν,
f denotes any other field and F is a local function of g and f . Assuming ω to be an
anticommuting Abelian field, the anomaly must satisfy the consistency condition

δωAω = 0 (467)

which expresses simply the fact that two subsequent Weyl transformations made in reverse
order yield the same result. This is, in fact, an integrability condition. It means that, with
the help of an auxiliary field σ, which transforms as δωσ = −ω, we can construct a local
functionalWWZ[σ, g, f ] such that

δωWWZ[σ, g, f ] = −Aω [g, f ] (468)
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The construction parallels the analogous one for chiral anomalies [5]. Introduce the param-
eter t, 0 ≤ t ≤ 1 and the interpolating metric

gµν(t) = e2σtgµν (469)

such that

δωgµν(t) = 2(1− t)ωgµν(t), (470)

as well as an interpolating field

f (t) = e−ytσ f , δω f (t) = −y(1− t)ω f (t) (471)

where y = 0 for a gauge field, y = d−2
2 for a scalar field. We have also

d

dt
gµν(t) = 2σgµν(t),

d

dt
f (t) = −yσ f (t) (472)

For the field φ we put f (t) ≡ φ(t) = φ + σt, thus

δω φ(t) = ω(1− t),
d

dt
φ(t) = σ (473)

Then, we construct the functional

WWZ[σ, g, f ] =
1
8

∫ 1

0
dt
∫

ddx
√

g(t)F[g(t), f (t)]g−1(t)
d

dt
g(t)

=
∫ 1

0
dt
∫

ddx
√

g(t)F[g(t), f (t)]σ (474)

Now we notice that the t derivatives of the interpolating fields coincides with their
Weyl variation except for the replacement of σ with (1− t)ω.

A simple evaluation yields

δωWWZ[σ, g, f ] =
∫ 1

0
dt

d

dt

(∫
ddx
√

g(t)F[g(t), f (t)]

)
(1− t)ω

−
∫ 1

0
dt
∫

ddx
√

g(t)F[g(t), f (t)]ω = −Aω [g, f ] (475)

The WZ terms have the same formal expression as the anomaly with ω replaced by σ,
gµν replaced by gµν(t) and f with f (t). For instance, the WZ term for the anomaly with
density ∼ FµνFµν takes the extremely simple form

WWZ[σ, g, V] ∼
∫

d4x
√

gσFµνFµν (476)

This is the case also for the anomaly (461) and for the square Weyl tensor anomaly (148).
Refs. [5,21,62].

Application of WZ Terms to T W
From the previous subsection, we can see all the even trace anomalies present in T W

can be canceled by adding to the effective action the corresponding WZ term constructed
by replacing σ in the above formulas with φ+ or φ− according to whether we refer to T W+

or T W−. For instance, the WZ term (476) takes the form

W (±)
WZ [φ±, g±, V] ∼

∫
d4x
√

g±φ±tr
(

FµνFµ′ν′
)

g
µν′
± gνν′

± (477)
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to cancel the even trace anomaly induced by the (common to both sides) SU(2) gauge field.
These are new interaction terms in the quantum action.

A remark is in order should one use, instead of φ±, the field χ±, see Equation (385).
The WZ term would be

W (±)
WZ [χ±, g±, V] ∼

∫
d4x
√

g± log(ℓχ±)tr
(

FµνFµ′ν′
)

g
µν′
± gνν′

± (478)

To write it down one must introduce a scale of length ℓ, which may create problems for
renormalization (see a discussion in Appendix E).

17.3. Conformal Symmetry Restoration

As stressed before, our way to deal with conformal symmetry is not the traditional
way of treating gauge symmetries. As pointed out several times, in T W there are several
other local symmetries, notably the two diffeomorphism symmetries and the SM gauge
symmetries. Our approach to quantization consists in gauge fixing the latter symmetries
while leaving free the conformal symmetry during quantization. This allows us to apply the
perturbative approach as outlined above. This, in turn, requires introducing the FP ghosts
for the former symmetries in order to vindicate the existence of relevant metric and gauge
boson propagators and recover the corresponding BRST symmetries, an indispensable
implement for unitarity and renormalization. It is important to highlight the different
standing of local conformal symmetry on one side and diffeomorphism and/or gauge
symmetry on the other. The latter are absolutely needed for renormalization; they are
the fundamental symmetries that one has to restore in the form of (mutually compatible)
BRST symmetries at every step of the perturbative renormalization of the relevant theory.
The former does not have the same status—it is not strictly required to fix the gauge (the
relevant propagator exists anyhow). It may, however, be violated by even trace anomalies
without compromising the consistency of the theory. It is nevertheless possible to restore
conformal invariance by adding suitable WZ terms.

The way to proceed with (one loop) renormalization of T W is, therefore, the following.
In T W at one-loop, we meet divergent integrals (in diagrams with a low enough number of
legs), and one has to regularize them and carefully define their infinite parts. Let us suppose
that this has been done without meeting obstacles. The next step consists of absorbing such
infinities by means of field and coupling constant renormalizations. The one-loop trace
calculations of the various matter, e.m. tensors, are not affected by this procedure, but, as
we have seen, they also give rise to infinities whose finite parts generate trace anomalies.
To recover the conformal invariance of the one-loop action, we have to add the relevant
WZ terms. The price is the addition to the quantum action of new interaction terms that
involve the dilaton, such as (476) and, in general, (475).

At this stage, we would like to stress an important point. As has been noted, see for
instance [140], any classical local field theory is implicitly conformal invariant. To make the
invariance explicit, it is enough to use a dilaton field and introduce suitable expressions
of it in the local terms of the action, which are not already conformal invariant. This is
the procedure we have adopted above to immerse T in the Weyl geometry. To this end,
we have introduced dilaton fields, represented by the symbols φ, φ̂, φ+, φ−. What we are
considering now is different, we are checking if Weyl symmetry can survive quantization.
Once the effective action has been one-loop renormalized, the Weyl invariance turns out
to be broken by several trace anomalies. However, as we have seen, such trace anomalies
can be canceled by suitable WZ terms, which restore in this way Weyl invariance. It
should not be forgotten that this cancelation cannot be carried out for arbitrary local
field expressions. It can be done for trace anomalies because the latter satisfies the WZ
consistency conditions. Now, introducing WZ terms entails introducing new interaction
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terms in the action. Considering T W+ and T W−, this operation can be carried out by
identifying σ with φ+ and φ−, respectively, in the WZ terms of the previous section. In this

way, we end up with two one-loop conformal invariant theories, T W (1)
+ and T W (1)

− .
The previous one may hardly be considered a grand result—WZ terms are more than

fifty years old—although it is remarkable that the overall cost is the use of a unique AE field
φ̂, which is already there in the classical theory. However things become more interesting
if we can proceed with the two-loop quantization. At two loops, there are many more
interaction terms and diagrams to be considered than at one loop. Due to the number of
fields and interactions, and so of diagrams involved, a direct computational approach is
simply daunting. What saves our day are the WZ consistency conditions. For we know
that the trace of the matter, e.m. tensor, must satisfy these conditions at every perturbative
order. Now, given the fields at hand, the quantum numbers and the dimensions, there exist
only certain local expressions of the fields that satisfy the WZ conditions. In our specific
case, they are the same cocycles that appear at one loop, i.e., the Gauss–Bonnet and square
Weyl tensor anomalies and those in Equations (458), (459), (461), (462) and (465). None else;
in particular, there are no anomalies whose density T[g] is the fermion or ghost part of the
action. The only change at two loops can lie in the renormalization of their coefficients. But,
altogether, the result will be again conformal invariant. And this argument can be repeated
at higher orders. So, we expect the quantum action to be Weyl invariant. Of course, it
remains to examine unitarity, and for this, see the next section and Appendix E.

Finally, let us return to Equation (431). Its validity guarantees conformal invariance.
We have seen that expanding in hµν, the 0-th order term vanishes on the LHS and implies
that also the RHS must vanish. On the other hand, quantizing the RHS we have argued
that, by using WZ terms, it is possible to preserve Weyl invariance, which implies a
vanishing quantum RHS. We, therefore, expect that the quantum version of the LHS
should also be vanishing. Proceeding as in the RHS, the result should be obvious because
the starting operator to be quantized is simply zero. This seems to be confirmed by the
Formula (161), because the LHS corresponds to gµν⟨⟨Rµν⟩⟩ − ⟨⟨R⟩⟩. However, we interpret
this expression; it does not seem to give rise to ambiguities such as those that generate
known anomalies. But no doubt a direct check is necessary in terms of explicit calculations.
See refs. [101,103,112,113,140–143], for other examples of conformal symmetry restoration.

18. Renormalization and Unitarity—A Lightning Review

Like in any theory also involving gravity in T , one cannot avoid the problem of
renormalizability and unitarity. In this paper, we do not intend to tackle these huge
problems. We do not have anything original to add to what can be found in the literature.
But we would like to present anyhow a quick summary to put our proposed theory in
perspective against the backdrop of current and past research.

In T , we have two basic ingredients, the SM and gravity. As for the first, an Abelian
and non-Abelian gauge theory coupled to matter, the problem of renormalizability and
unitarity has been solved long ago in various stages and by various people [24–26,144].
A detailed proof of renormalization for the GWS model of electroweak interactions can
be found in [145], where one can also find the relevant literature. Instead, the problem is
still open for gravity. As compared with an enormous amount of literature on the classical
aspects of gravity, the one concerning its quantum aspects is, perhaps understandably,
rather limited and lacking undisputed conclusions. In fact, it became clear from the very
beginning that gravity in the form of the EH action is not renormalizable due to the
presence of a dimensionful coupling constant. However, it was realized that this initial
obstacle can be circumvented by introducing in the action other terms quadratic in the
curvature [146,147]. This renders the theory formally renormalizable but raises another
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problem: the gravitational propagator contains a massive component with the wrong
overall sign (corresponding to a negative norm state) that renders it a physical ghost.

Such physical ghosts are the thorn in the side of any gravitational theory as long as
one cannot exclude that they do not contribute to the internal lines of a Feynman diagram,
thus possibly compromising unitarity. We cannot illustrate here all the proposals presented
to overcome this difficulty. We choose to illustrate two of them, which are particularly
fitting to our case. The first [148,149], studies the renormalization of a gravitational model
where two more square curvature terms have been added to the EH action, each with its
own coupling constant. The authors choose as variable the metric fluctuation hµν, fix the
DeDonder gauge, introduce the FP ghosts and determine the BRST symmetry of the model.
Then, they write down the corresponding ST (Slavnov–Taylor) identities and apply the
BPHZL (Bogoliubov–Parasiuk–Hepp–Zimmermann–Lowenstein) renormalization scheme.
They analyze the double pole in the propagator of hµν, which splits into a massless simple
pole and a massive unphysical one, as usual. This is the situation at the tree level. However
the authors’ claim is that in higher loops the massive component of hµν does not develop
poles, therefore it does not correspond to particles. In this way, the S-matrix unitarity turns
out to be violated only at the tree level. One of the authors [150], has pushed the analysis
further by coupling the previous model to a scalar field with quartic interaction, arriving at
the same conclusion: the negative norm state shows up only at the tree level.

The second proposal is due to Oda and collaborators [122–124,151–153]. In [123]
the author focuses on a theory defined by the classical action (439) in d = 4, which, as
we noted, is Weyl invariant and is called Weyl invariant scalar-tensor gravity. They fix
both the diffeomorphism and the Weyl gauge and work out the corresponding BRST
symmetries. Unlike the previous example, the quantization is carried out in the canonical
way. The author determines the equal time (anti)commutation relations among all the
fields and their conjugates. On this basis, applying a formalism originally developed by
Nakanishi [154,155], he proves the existence of a global symmetry the ‘choral’ symmetry,
which is spontaneously broken at the quantum level. Its Nambu-Goldstone bosons are
the graviton and the dilaton, which are consequently massless. The author is also able to
analyze the physical S-matrix using the method introduced by Kugo and Ojima [156,157]
and prove that it is unitary.

The authors of ref. [151] consider a somewhat related conformal invariant model (the
third proposal). They deal with the Weyl symmetry as a gauge symmetry and introduce
the corresponding gauge field (which we called Cµ above). Simultaneously, they add to the
action (439) the kinetic term for Cµ, and three more terms, each with its own independent
coupling: a Weyl covariant kinetic term, a quartic coupling for ϕ and a term ϕ2R̃2, where R̃

is the same as in (373) with ϵ = 0. They fix both gauges in a mutually compatible way and
develop a parallel analysis to [123]. They show that the S-matrix in this model is unitary,
and its physical spectrum consists of the two components of a massless graviton and the
three components of a massive Proca field, which comes from Cµ having absorbed ϕ via
the Higgs mechanism.

The other side of these positive results is that they do not seem to be unitary. Once
we declare that they are Weyl invariant, renormalization demands to be introduced in the
action of all terms with the right dimensions that are Weyl invariant, hence the term (378).
It is known that this term is likely to carry in the spectrum a massive ghost. This is precisely
what is analyzed in ref. [124], where the term (378) is added to the action (439). In order
to apply the canonical quantization the presence of four derivatives requires the introduc-
tion of an auxiliary (Stückelberg) vector field, which entails an additional (Stückelberg)
symmetry. There are, therefore, three symmetries, and it turns out to be impossible to find
mutually compatible (i.e., mutually anticommuting) BRST transformations for all three.
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Therefore, the authors choose two BRST operators, which correspond to diffeomorphisms
and to a mixture of the other two. Then, they proceed to the canonical quantization to
extract the equal time commutators and to analyze the asymptotic states. The particle
spectrum is made of a massless graviton and a massive ghost with negative norm, together
with zero norm states, which form a quartet. Since all these states satisfy the Kugo–Ojima
criterion for physicality, this means that unitarity is explicitly violated.

Let us return now to the T W theory. We can see that several of its features are con-
tained in the previous examples. Therefore, we can try to apply some of the previous results
to it, well conscious, however, that an ad hoc careful analysis is still missing. Nevertheless,
we believe it sensible to expect that this theory is, at least formally, renormalizable, but
with the presence in its particle spectrum of negative norm states, unless we exclude by
hand a term like (378), which renders the theory non-unitary (see also the discussion in
Appendix E). Squeezed between the almost unreasonable perfection of the SM, which is
renormalizable and unitary, and the promised land of superstring theories that lure us
with the ultimate goal of UV finiteness, we can only recognize that T W is far away from
both; it looks like a simple, effective field theory, defective from the point of view of UV
completeness and unitarity.

To be more precise, looking at the second option above, one would be induced to give
up Weyl invariance in favor of renormalizability and unitarity. In this perspective, Weyl
invariance would be an accidental symmetry that manifests itself in approximate form only
at the classical level. If, instead, we consider the first and third options, we would be led
to conclude that Weyl symmetry imposes too strong conditions for them to be compatible
with unitarity in T W . From this point of view, therefore, there is no happy news. On
the other hand, the contrary would be quite surprising. It is a rather common belief, and
there are arguments in support, that a consistent quantum field theory, including quantum
gravity, cannot be constructed with a finite number of fields [158–160].

On the other hand, the right attitude is perhaps to consider these two alternatives
not as excluding each other but in physical sequence: they would refer to different ranges
of energy, the first to lower and the second to higher energy, the lack of unitarity of the
second denoting a UV incompleteness, that is signaling missing degrees of freedom in
the spectrum of T W . In this regard, a reference to [140] is not out of context. In that
paper, the authors argue that in the space of field configurations encircling a conformal
field theory, there exists a trajectory of the renormalization group, which is entirely made
of conformal theories from the UV to the IR. At first glance, this seems to contradict our
previous conclusions. But this may not be the case. The theories along a renormalization
group trajectory do not necessarily have always the same form (same fields, same couplings,
. . . ), but may undergo transitions to differet forms with different elementary degrees of
freedom.

Leaving this issue unprejudiced, we believe it makes sense to explore the physical
implications of T W . After all, it is constructed on the basis of coherence between the SM
and gravity, and it is perhaps not unreasonable to hope that the incompleteness that affects
it can be disregarded at least in a limited region of energy. Although very conjectural, the
following does not seem to us totally unreasonable. See also [161–163].

19. Reduction and Gauge Fixing

The action (423) is a rather general (even though not the most general) chirally sym-
metric and Weyl invariant action for T W . In the sequel, we somewhat simplify it in order
to limit ourselves to a contained, though hopefully still meaningful, discussion. The first
simplification is to set H+ = H− = H. That is, not only the SU(2) gauge bosons are
common to the left and right sectors, but also the Higgs field. All the formulas introduced
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above for H± are still valid with the simple substitution of symbols. Next, we remark
that (423) brings in new fields besides the ones of gravity and SM, i.e., Ĉµ and φ̂. As we
have already remarked, there is no compelling reason to introduce Ĉµ, thus, as before, in
order to somewhat simplify the discussion, we will drop it, i.e., we set Ĉµ = 0, Ĉµν = 0 and
α = 1, ϵ = 1. The field φ̂ is sufficient to implement AE Weyl invariance. The degrees of
freedom contained in it are the same as the dofs in ω̂. There is no mismatch, unlike with
gauge fixing in the SM, for instance. Consequently, fixing the gauge φ̂ = 0 does not require
any FP ghosts. Choosing the gauge φ̂ = 0 produces a mass term for H = H± and Φ± given
by

M2
h = M2

h± = M2
± +

c±ζh±
κ±

and M2
Φ± = m2

± +
c±ζ±

κ±
, (479)

We will do this operation in two steps. First, we consider a partial breaking of the AE Weyl
symmetry by setting

φ+ = 0 (480)

but leaving φ− free. This will leave T W L unchanged and symmetric under the Weyl
transformations parametrized by ω−, while the Weyl symmetry of T WR is broken. This
operation produces masses only for H and Φ+,

M2
h = M2

± +
c±ζh±

κ±
and M2

Φ+ = m2
+ +

c+ζ+
κ+

, (481)

respectively.
From now on the two theories T W L and T WR, split. After the partial Weyl gauge

fixing they are not anymore AE conformal invariant, so that we call them T W L and TR,
respectively. What is more important, they have two different evolutions.

19.1. The Fate of the Two Halves

The Right-Handed TR Model and Its Breaking

We postulate an early (i.e., high energy) breakdown of the chiral symmetry in the right
theory, according to the pattern described in Section 14.2 with the scalar field identified
with Φ+[Actually, in order to determine the minimum of the action we should analyze
the global potential involving all the scalar fields. But since the Φ+, Φ− and H do not
have mixed interaction terms and their minima are supposed to differ by several order of
magnitude], we think we can analyze them separately.

Setting Φ+ = v+ + ρ+, where ρ+ is a real field and v+ =

√
2M2

+
λ+

, a real number,

denotes the minimum of the potential, we have

DµΦ+DµΦ+ = ∂µ(v+ + ρ+)∂
µ(v+ + ρ+) (482)

The quadratic terms in 1
2 DµΦDµΦ− V (V is the potential) are

1
2

∂µρ+∂µρ+ −
1
2

λv2
+ρ2

+ (483)

The result is a massive scalar ρ+.
Finally, the Yukawa couplings introduced in Section 13.7, see Equation (345),√

g+
y+
2 ψ
′
RΦ+(ψ′R)

c + h.c., when ⟨Φ+⟩ = v+, produces a mass term proportional to v+,
see Equation (354). Here ψ′R is a concise notation for the multiplet (296). As we have
explained in Section 13.7, see Equation (354), ψ′R are fermion that satisfy the Majorana
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equation, see (355). Since all these masses, as well as the mass of ρ+, are proportional to
v+, they can be made as large as we wish. This allows us to suppose that the energy at
which this Higgs mechanism takes place can be very high, between the Planck and the
Grand Unification scales. We can call it the primitive spontaneous chiral symmetry breaking

scale. We recall that the just illustrated breaking does not affect the other gauge symmetries.
As for the symmetry under the AE diffeomorphisms ξ̂µ, it is broken by the Yukawa terms
and by the gauge fixing, but a symmetry remains with respect to the diffeomorphisms
parametrized by ξ

µ
− on the left and ξ

µ
+ on the right. The SU(2) gauge fields Wµ (valued in

the Lie algebra su(2)) are in common to both theories and, up to this stage, untouched by
the gauge fixing (the SU(2) gauge symmetry survives the previous breaking). The actions

S
(+)
aeg and S

(−)
aeg are certainly invariant under the diffeomorphisms parametrized by ξ

µ
+ and

ξ
µ
−, respectively, as long as we consider them separate theories; but, since Wµ belong to both,

only the invariance under the ordinary diffeomorphisms ξµ survives.
The AE Weyl symmetry is also limited to the transformations parametrized by ω, it is

broken by the gauge fixing in T WR, but a Weyl symmetry under the ω transformations
survives in the T W L, whose fields remain massless.

At this stage, all the gauge bosons are massless. But there is room for a breakdown
of the electroweak symmetry SU(2)×U(1)L, which generates masses for the three SU(2)
gauge bosons and for H. We recall that the masses of the gauge bosons and the Higgs
field are, of course, the same on both sides M2

W = g2
+v2

+ = g2
−v2
− (g± are the SU(2) gauge

couplings in the two sides) and M2
h = M2

± +
c±ζh±

κ± . In this process, both the SU(3) and the
U(1)R symmetries remain unbroken.

Let us summarize the situation. Before the chiral symmetry breaking, we have a theory,
T W , split into two halves, with a different particle spectrum and each with its own gravity
(mediated by g+µν and g−µν, respectively) but having in common the SU(2) vector bosons
and H scalars. They communicate through the exchange of these particles: the relative
terms in the action that produces this interaction are the fermion-fermion-boson vertices
on the two sides and the cubic and quartic self-interaction terms for the vector bosons, as
well as the potential interaction terms involving the H scalars. Other direct interactions
between the two halves are not permitted by the ubiquitous presence of the projectors P±.
Of course, there remains the possibility of indirect interactions: for instance, the metric
g+µν can interact with an SU(2) vector boson, the latter with another SU(2) vector boson,
and this with g−µν. These and similar interactions are likely to be extremely weak, except
at extremely high energies, if grand unification of forces is allowed in this theory.

If this is so, then we may suppose that the right and left-handed theories evolve
almost independently because the links between them are represented by the exchange
of weak interacting SU(2) bosons and scalars. After the spontaneous symmetry breaking,
the right-handed fermions become very massive, and the interaction with the left-handed
model is even less important. Needless to say, an analogy with what we know about SM
does not make sense under these different boundary conditions, and an ab initio analysis
is necessary for the right-handed model. Perhaps, however, some general features can
be guessed; for instance, since the right-handed quarks and leptons are very heavy, any
nucleation is unlikely, leaving us with a gas of these massive particles. We could say that
while TR becomes almost ‘fossil’ theory, T W L is in full evolution, except for the exchange of
weak interacting SU(2) bosons, which can be treated as a perturbation. This ‘misconceived’
TR theory, however, has many properties (heavy particles, weak interaction with luminous
matter, coupled to its own gravity) that can help describe the dark matter. Refs.: [164–166]
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19.2. The Left-Handed T W L Model and the SM

After the spontaneous chiral symmetry breaking, the left side theory T W L almost
decouples from the right side one and evolves almost autonomously. Its particle spectrum
is that of the MSM plus a right-handed neutrino and a massive Φ− scalar with a quartic
potential, coupled to a gravity described by the g−µν metric. We recall that it is described
by the action

S
(c−)
ch−sym = S

(−)
f + S

(−)
g + S

(−)
aeg + (SYdL + h.c.) + S

(c−)
EH+aes+aed+C (484)

It is invariant under diffeomorphisms spanned by ξ
µ
− and under SU(3)L × SU(2)×U(1)L

gauge transformations. It is also invariant under Weyl transformations spanned by ω−.
As long as we can treat the interaction with the right-handed half as a disturbance, it would
seem that we cannot repeat straightaway what we said for the entire T W model, for T W L

in isolation has an overall nontrivial odd parity trace anomaly. However remember that
this anomaly is a topological fact, it is related to the family’s index theorem. From the
theory and recent experiments of entangled systems we learn that topological features may
survive separation. It is, therefore, likely that the cancelation of these anomalies in T W is
not suppressed by the splitting into T W+ and T W− due to the chiral breaking. We take it
as a plausible hypothesis.

At this stage, we can fix the gauge φ− = 0, which exhibits the SM coupled to EH
gravity carried by the metric g−µν. In the course of this evolution, it is to be expected that
at a certain stage, the gravity quanta become irrelevant and the gravitational field starts
behaving entirely classically. From that stage on the theory is a renormalizable one on a
classical gravitational background (odd trace anomalies have become irrelevant). After
a while (in the cosmological evolution), the scale of electroweak breaking is reached, the
SU(2)×U(1)L symmetry breaks down to the U(1) of electromagnetism. A story we already
know, apart from the fate of the real Φ− scalar field, is still to be explored. Needless to say,
it is a natural candidate for the inflaton field. To allow such an interpretation, however, we
have to arrange the parameters in such a way that M2

Φ− is negative, see Equation (479), and
in combination with λ−, this satisfies the conditions of slow-roll inflation.

What has been said so far in this section is a conjectural, very qualitative picture of the
evolution of the T W theory. This paper intends to highlight the role of anomalies in the
bottom–up construction of a theory that enlarges the SM to include gravity. Now, starting
from the above results and conjectures, explicit calculations and quantitative checks are
necessary to confirm or refute them. An entirely new chapter opens up. But, perhaps
a comment is necessary from the start concerning the presence in T W of two metrics.
We have already remarked that our entire construction works even if we consider only a
unique metric g+µν = g−µν. But we have maintained throughout the more general setting
of two distinct metrics. In this more general case it would seem that we have two ways
of measuring distances and times. In a sense, this is true, but not for us. We, as observers,
see only one metric, the other is seen only by a right-handed observer, if it can exist. The
interaction between the two metrics is extremely feeble, although one cannot exclude that
it may lead to observable consequences.

20. Conclusions

In the construction of the SM, chiral gauge anomalies have played a prominent role.
In a theory constructed with Weyl fermions, the absence of consistent chiral anomalies was
one of the basic principles, and looking at how it has been realized, one cannot but feel
admiration for its creators. But once we immerse this jewel in a background of gravity, it
seems that the fortune that accompanied them in their endeavor has abandoned us. New
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anomalies appear, and what we prove in this paper is that it is impossible to get rid of them
with the spectrum of fields offered by the SM. We have to be more specific. The anomalies
we are talking about, the dangerous ones, which we have named type O (O stands for
obstruction), are not only the traditional consistent chiral gauge anomalies, which vanish
in the MSM, but also those generated by the diffeomorphisms and the mixed ones, which
fortunately also vanish in the MSM. But among the type O anomalies, there is another kind
of anomalies, which have apparently been disregarded in the literature. They are the chiral
trace anomalies, which appear in general in models of Weyl fermions coupled to a metric or
a gauge potential. Like all the type O anomalies, they signal the fundamental drawback of
these models; the corresponding Weyl propagators are missing. This is due to a topological
obstruction (a non-perturbative fact) guaranteed by the family’s index theorem.

Once the appropriate anomaly hygiene is applied to the SM and its extensions, which
are minimally coupled to a background gravitational field, we found out that none of them
are free of these anomalies. In fact, the more ‘resistant’ ones are the chiral trace anomalies
induced by the SU(2) gauge fields of the SM. These are the results of the first part of our
paper. In the second part, we have proposed a scheme for overcoming these difficulties.
We have noticed first that a left–right symmetric model is fit for taming this problem. If it is
not absolutely the only way, it is certainly the simplest and most elegant. Therefore, we
proposed, as an example, an L-R model, which is free of all type O anomalies and can be,
in fact, enlarged to an entire family of similar models; this is the reason why we prefer to
call it a scheme. This model has a left–right symmetry, which we named primitive chiral
symmetry. It almost splits into two models, one with left-handed fermions, the other with
right-handed ones, each of which almost a copy of an enlarged MSM. By almost, we mean
that the SU(2) gauge potentials have commonalities with both of them. Each of them is
coupled to a different gravity theory, which is characterized by its own metric. At this stage,
we came across a dilemma: to be or not to be conformal.

As it is well known by now, it is rather simple to make a local field theory Weyl
invariant by simply adding a new field, a dilaton, to the spectrum. Then, the problem
is twofold: Is this enlargement required by physics? Is it compatible with quantization?
We do not have definite answers to either question. Tentatively, we are oriented to think
that it would be quite natural (and even experimentally supported by the Bjorken scaling
limit) that at very high energies, such as those of the very early universe, the physics
would be insensitive to a dimensionful scale. This is what an approach, à la Wilson, would
suggest, if we are allowed to be inspired by the analogy with low energy statistical model:
the high energy limit of the universe regressing toward the beginning should be a UV
fixed point, most likely a conformal fixed point. On the other hand, it should be in accord
with quantization. Here, we have found a real difficulty: while it is possible to figure
out conformal models that are similar to ours and are renormalizable, there are some
indications that unitarity is not respected, which suggests a likely incompleteness of the
spectrum of fields.

Notwithstanding these difficulties, we believe that our scheme, constructed on the
basis of mathematical consistency, should be able to describe at least a limited stretch of
the evolution of the universe. We have envisaged an early breaking of the primitive chiral
symmetry, which should have split the history of the two L and R models. The latter
describes the physics of a gas of very massive quarks and leptons; the former evolves
toward a model of ordinary classical gravity coupled to the ordinary SM; and the two keep
in touch, so to speak, via the weak interacting SU(2) gauge fields.

Several aspects of the above scheme are still too crudely described or incomplete.
For instance, we do not have an explanation for the mechanism that can trigger the early
chiral symmetry breaking, but from this perspective, we are in good company with many
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phenomena, which we can describe but not explain. In this paper, we have not considered
the consequences of our model involving the cosmological constants as well as other
cosmological aspects. Neither have we analyzed the evolution of the right model. Needless
to say, many explicit checks and calculations are needed. At the same time, though, this
scheme is not only mathematically consistent (it is anomaly-free), it may describe the
‘strange’ chiral asymmetry of the SM by exhibiting it as the existence of the other face, the
dark matter world, and leads naturally at low enough energy to the SM, which is coupled
to classical gravity equipped with inflation. Refs.: [2,167–172].
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Appendix A. Gamma Matrices in Flat Spacetime

In the absence of gravity, we refer to theories on a flat Minkowski spacetime with flat
metric ηµν with mostly (−) signature. The gamma matrices satisfy {γµ, γν} = 2ηµν and

γ†
µ = γ0γµγ0.

The charge conjugation operator C is defined to satisfy

γT
µ = −C−1γµC, CC∗ = −1, CC† = 1. (A1)

The chiral matrix γ5 = iγ0γ1γ2γ3 has the properties

γ†
5 = γ5, (γ5)

2 = 1, C−1γ5C = γT
5 .

and

tr(γ5γµγνγλγρ) = −4iεµνλρ (A2)

The chiral projectors

PL ≡ P− =
1− γ5

2
, PR ≡ P+ =

1 + γ5

2
, with P+ + P− = 1, P2

± = P±. (A3)

In terms of a Dirac fermion ψ Weyl fermions are defined by ψL,R = PL,Rψ.
The generators of the Lorentz group in the ‘anti-hermitean’ version are Σµν =

1
4 [γµ, γν].

Under parity, a Dirac spinor transforms as

Pψ(x⃗, t)P−1 = eiβp γ0ψ(−x⃗, t) (A4)

Under charge conjugation, it transforms as

Cψ(x⃗, t)C−1 = eiβc γ0Cψ∗(x⃗, t) (A5)
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and for a complex scalar field, we have

Pϕ(x⃗, t)P−1 = eiαp ϕ(−x⃗, t), Cϕ(x⃗, t)C−1 = eiαc ϕ†(x⃗, t) (A6)

where αp, αc, βp, βc are arbitrary phases, which we usually set equal to zero.
A vector field Vµ transform as

PVµ(x⃗, t)P−1 = Vµ(−x⃗, t), CVµ(x⃗, t)C−1 = −Vµ(x⃗, t) (A7)

and for a pseudovector field Aµ

PAµ(x⃗, t)P−1 = −Aµ(−x⃗, t), CAµ(x⃗, t)C−1 = Aµ(x⃗, t) (A8)

A metric gµν transforms as

Pgµν(x⃗, t)P−1 = gµν(−x⃗, t), Cgµν(x⃗, t)C−1 = gµν(x⃗, t) (A9)

while

P fµν(x⃗, t)P−1 = − f µν(−x⃗, t), C fµν(x⃗, t)C−1 = − fµν(x⃗, t) (A10)

Appendix B. Euclidean Field Theory Calculations

Most classical and quantum field theories, such a the SM, are formulated in a
Minkowski metric (both flat and non-flat). However, true calculations with Minkowski
metrics are often not available and in order to extract concrete results, theoretical physicists
have been obliged to sell their souls to the Euclidean devil. This is done via Wick rotations.
At the end of the calculations, the results are turned Minkowski via inverse Wick rotations.

A Wick rotation means: x0 → x̃0 = ix0, k0 → k̃0 = ik0 and γ0 → γ̃0 = iγ0, while
xi, ki, γi remain unchanged. A tilde on top of an object represents its Wick-rotated corre-
spondent. We have, in particular,

{γ̃µ, γ̃ν} = 2η̃µν ≡ −2δµν (A11)

and

γ̃†
µ = −γ̃µ (A12)

The chiral matrix γ5 changes sign under a Wick rotation, γ̃5 = −γ5.
In this article, Wick rotations are used for perturbative and non-perturbative calcu-

lations (via the SDW method) in the intermediate steps. A particular caution has to be
employed with Weyl fermions. It is not possible to write down a full Euclidean action
for Weyl fermions using the Osterwalder-Schrader prescription [173–177]. The attempt
to Wick rotate a Lagrangian like iψγµ∂µψ, where ψ is Dirac, ends up in a doubling of
fermionic degrees of freedom: ψ can only be a spinor independent of ψ. More elaborated
approaches where a Wick rotation of a Weyl spinor ψ is accompanied by a rotation of the
same cannot comply with the hermiticity, see [5]. In summary, it is nonsense to make a
Euclidean calculation for Weyl fermions starting from an action formulated in terms of
Euclidean Weyl fermions proper, because this would change the nature of the problem. The
best we can do is use the Wick rotation to make sense of the Feynman and path integrals
wherever they are met in the course of the calculations. In perturbative calculations we set
up the Feynman diagram calculations in Minkowski terms and switch to Euclidean when
evaluating the Feynman integrals. In the SDW method, we Wick-rotate the square Dirac
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operator to transform it into a self-adjoint operator and make sense of the s-integrals. In
both cases, we use Wick rotations only in such junctures, without any attempt to identify
the Euclidean field theories underlying them, which is impossible.

Finally, in the third approach we use, which is based on the family’s index theorem, we
start at the very beginning from the Euclidean formulation of the Dirac operator because a
proof of that theorem in a Lorentzian metric is not available. Anyhow, this does not meet
the just mentioned difficulties because what we analyzed is the invertibility of the Dirac
operator in isolation, without reference to a particular action it is inserted in. We assume
that the results of the theorem are true also for the Minkowski version.

Appendix C. Gauge Fixing and Ghosts

The gauge fixing and ghost action for a non-Abelian YM theory coupled to a metric in
the Lorenz gauge is

Sc,c̄
g. f . =

∫
d4x
√

g
(

ba∇̃µVa
ν gµν +

α

2
baba − gµν c̄a∇̃µ(Dνc)a

)
(A13)

summed over a, where ∇̃ denotes the metric covariant derivative with Christoffel symbols
Γ̃, (368) with α = 1, and Dµc = ∂µc+ [Vµ, c]. This action is invariant under diffeomorphisms
and also under Weyl transformations, provided we assign Weyl weight -2 to ba and ca, and
0 to ca. Equation (A13) is, of course, invariant under the gauge BRST transformations (31)
and δcca = ba, δcba = 0.

A full gauge fixing and ghost action for diffeomorphisms in the DeDonder gauge is

S
(ξ,ξ̄)
g. f . =

∫
d4x
√

g
(

bλΓ̃λ
µνgµν +

α

2
bλgλρbρe2φ − ξλgµν∂µ∂νξλ

)
(A14)

which is BRST invariant. For the gµν and ξµ BRST transformations see (123) and (127), for
ξλ: δξ ξλ = −bλ + ξ ·∂ξλ + ∂λξρξρ, while bλ transforms as an ordinary covariant vector.
Equation (A14) is also Weyl invariant provided we assign Weyl weight -2 to bλ and ξλ and
weight 0 to ξµ.

Appendix D. Consistency of Scalar Cocycles

Let us consider, for instance, the cocycle (462). To understand its origin from the
second term in (460), which comes from an explicit triangle diagram calculation, and its
relation with other diagrams, we must abandon the identification of Φ as the fluctuating
field and write instead Φ = Φ0 + ϕ, where Φ0 is a classical constant background and ϕ is
the fluctuating field. We split the cocycle (462) in a series expansion based on the number i

of fluctuating (infinitesimal) fields:

∆ω =
∞

∑
i=0

∆
(i)
ω (A15)

where

∆
(0)
ω = 0, ∆

(1)
ω =

1
3

∫
d4xω

(
∂µ∂νhµν −□hλ

λ

)
Φ2

0,

∆
(2)
ω =

∫
d4xω

(
ηµν∂µϕ∂νϕ +

2
3

∂µ∂νhµνΦ0ϕ− 2
3
□hλ

λΦ0ϕ

)
, etc. (A16)
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In parallel, we must change the Weyl transformation in accordance with this series expan-
sion

δ
(0)
ω hµν = ωηµν, δ

(1)
ω hµν = 2ωhµν, δ

(2)
ω hµν = 0, ... (A17)

δ
(0)
ω ϕ = −ωΦ0, δ

(1)
ω ϕ = −ωϕ, δ

(2)
ω ϕ = 0, ... (A18)

and expand the WZ consistency condition δω∆ω = 0. The first two non-trivial terms are

δ
(0)
ω ∆

(1)
ω + δ

(1)
ω ∆

(0)
ω = 0

δ
(1)
ω ∆

(1)
ω + δ

(0)
ω ∆

(2)
ω = 0 (A19)

It is not hard to prove that they hold true. The series goes on with

δ
(1)
ω ∆

(2)
ω + δ

(0)
ω ∆

(3)
ω = 0, . . . (A20)

but in this case we must introduce new approximation terms for ∆ω, which we dispense

with here. It is interesting to notice that, apart from the first terms of ∆
(2)
ω , all the other

terms do not come from the triangle diagram calculation mentioned before Equation (460).
They are, in fact, higher order terms, which can be obtained from the fourth point diagrams
where the fermion e.m. tensor is attached to three vertices (Vf f h, Vf f ϕ, Vf f Φ0

) by means
of four fermion propagators. This is another example of a trace calculation, which is
undecidable at the lowest perturbative order.

Appendix E. Dilaton and Dimensions

The field φ (the dilaton), introduced in Section 14, is not the only possible choice. We
could have set φ = ℓϕ, where ℓ is a constant with the dimension of a length and ϕ is a
dimension one field. In this case ϕ becomes an ordinary real scalar field with a canonical
kinetic term (after normalization). The problem with this choice is its identification with
the field σ in the WZ terms: σ = ℓϕ. It transforms the WZ term into a five-dimensional
operator expression multiplied by ℓ. In the framework of renormalization theory such a
term renders the theory formally non-renormalizable.

A similar problem arises also with the identification σ = log(ℓχ), as already pointed
out in Section Application of WZ Terms to T W . The choice σ = φ seems the most logical,
but it is itself not exempt from problems in subsequent developments. Once we have
introduced a dimensionless field φ in a theory, we must, upon renormalization, allow for
the appearance of all the terms with the right dimensions and symmetries, which also
involve φ. In our case, we can construct, for instance, the expression

Q = □φ− ∂µ φ∂µ φ +
1
6

R (A21)

Under a Weyl transformation it transforms as Q→ e−2ωQ. Therefore

∫
d4x
√

gQ2 (A22)

is Weyl invariant, has the right dimensions and, thus, it can arise in the renormalization
process. Unfortunately, it contains a quartic kinetic term, which, when added to the
quadratic kinetic term, splits the propagator into a massless plus a massive one, the latter
representing either a tachyon or a ghost, thus possibly affecting unitarity.
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