

Observation of the oblate $g_{9/2}$ proton-hole band in ^{115}Sb

Shabir Dar^{1,2*}, S. Bhattacharyya^{1,2}, Soumik Bhattacharya¹, S. Chakraborty¹,
 Sneha Das^{1,2}, S. Basu^{1,2}, G. Mukherjee^{1,2}, S. Nandi^{1,3}, S. S. Nayak¹, R. Banik⁴,
 S. Basak^{1,2}, C. Bhattacharya^{1,2}, S. Chattopadhyay^{5,2}, S. Das Gupta⁶,
 A. Karmakar^{5,2}, S. S. Ghugre⁸, D. Kumar^{1,2}, Debasish Mondal¹,
 S. Mukhopadhyay^{1,2}, D. Pandit¹, S. Rajbanshi⁷, R. Raut⁸

¹Variable Energy Cyclotron Centre, Kolkata-700064, INDIA

²Homi Bhabha National Institute, AnushaktiNagar, Mumbai-400094, INDIA

³Physics Division, Argonne National Laboratory, Lemont, Illinois-60439, USA

⁴Institute of Engineering & Management, Kolkata-700091, INDIA

⁵Saha Institute of Nuclear Physics, Kolkata-700064, INDIA

⁶Victoria Institution (College), Kolkata-700009, INDIA

⁷Department of Physics, Presidency University, Kolkata-700073, INDIA

⁸UGC-DAE CSR, Kolkata Centre, Kolkata-700098, INDIA

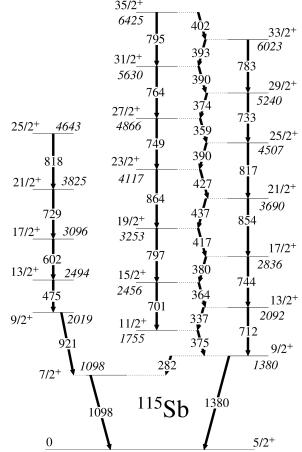
*email: phy.shabir@gmail.com

Introduction

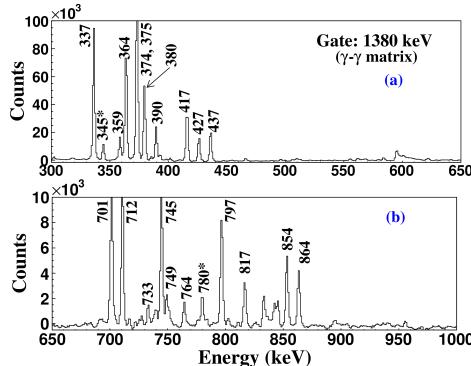
The nuclei near shell closures have provided a wealth of interesting physics and exhibit different collective structures that coexist with the single-particle structures. The Sb (Z=51) nuclei in A~110-120 region, with single proton above Z=50 core, provides the ideal condition to understand the competition between single-particle and collective degrees of freedom in these nuclei. The odd-A Sb isotopes in this region have dominant non-collective structure at low spin associated with the valence proton in the $d_{5/2}$, $g_{7/2}$ and $h_{11/2}$ orbitals. On the other hand, the collective structures are mainly observed at relatively higher spins [1-3]. It has been found systematically that, the proton 1p-1h excitation across the Z=50 shell gap gives rise to a strongly coupled ($\Delta J=1$) prolate deformed high-K $\pi g_{9/2}$ proton-hole bands in all these odd-A Sb isotopes [4]. In nearby odd-A $^{115-121}\text{I}$ nuclei, the oblate band structures based on high-K $\pi h_{11/2}$ orbital has been observed along with the strongly populated low-K $h_{11/2}$ prolate bands [5-7]. The presence of proton Fermi level near to the $g_{9/2}$ orbital makes it likely to see the low-K $g_{9/2}$ oblate band along with the already known high-K $g_{9/2}$ prolate band in this region, and for that, investigation needs to be done. The present paper reports first time the observation of low-K $\pi g_{9/2}$ oblate band in ^{115}Sb .

Experiment

The excited states of the ^{115}Sb have been populated using the reaction $^{115}\text{In}(\alpha, 4n\gamma)^{115}\text{Sb}$ at a beam energy of 52-MeV from the K-130 Cyclotron at


VECC, Kolkata. The $\gamma\gamma$ -coincidences were measured with a setup of 11 Compton suppressed clover HPGe detectors [10]. The Pixie-16 digitizer based digital data acquisition system [11] was used to acquire singles and 2-fold coincidence data. The data were sorted using BINDAS [12] and IUCPIX [11] package. Standard ^{152}Eu and ^{133}Ba sources were used for energy calibration, efficiency of the detectors and the polarization asymmetry correction factor measurements.

Analysis and Results


The coincidence relations between different γ -rays were carried out using symmetric matrix and the cube. An angle-dependent asymmetric matrix, between 90° and 125° detectors was made to determine the multipolarity of the γ -rays. For the polarization asymmetry measurements of the γ -rays, matrices corresponding to the parallel and perpendicular scattering in 90° detectors were generated. All the matrices and the cube were analysed using Radware software package [13].

In this work, significant extension to the structure of ^{115}Sb has been made by placing approximately eighty newly observed γ -rays. Figure 1, represents the partial level scheme of ^{115}Sb , showing one of its band structures based on $\pi g_{9/2}$ orbital. The spin and parity assignments to the energy levels has been done by the DCO and PDCO measurements. The high-K $\pi g_{9/2}$ band sequence above 1380 keV, reported earlier [4], has also been observed in the present work. Figure 2, represents the coincidence spectrum corresponding to

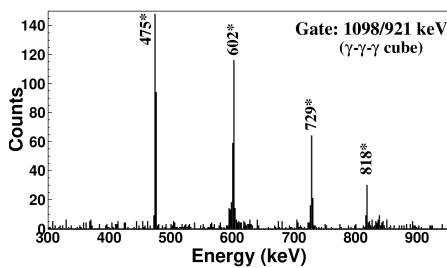

this band and shows all the transitions present in the band.

Fig.1: Bands based on $\pi g_{9/2}$ orbital in ^{115}Sb .

Fig.2: Gated spectra of 1380 keV: (a) lower energy and (b) higher energy part. The newly observed transitions are marked by '*'.

Fig.3: Double-gated spectrum corresponding to 1098 & 921 keV transitions. The newly observed transitions are marked by '*'.

On the left of level scheme, a new sequence: 475, 602, 729 and 818 keV of E2 transitions above 921 keV

transition has been observed for the first time in ^{115}Sb . Figure 3, represents the coincidence spectrum corresponding to double gates of 1098 & 921 keV transitions and shows clearly the newly observed rotational band in ^{115}Sb .

Discussion

Due to the presence of the $g_{9/2}$ orbital near the proton Fermi level, the strongly coupled high-K $\pi g_{9/2}$ band with prolate deformation has already been found in ^{115}Sb . A decoupled band has been observed in the present work, as shown in the level scheme (on left) and is due to weak coupling of the valence $\pi g_{9/2}$ proton-hole with the core. This band can be explained as the low-K $\pi g_{9/2}$ oblate band in ^{115}Sb . The coexistence of prolate and oblate bands based on $\pi h_{11/2}$ orbital have been observed already in the neighbouring odd-A $^{115-121}\text{I}$ nuclei.

Summary

The excited states of ^{115}Sb have been investigated using α induced fusion evaporation reaction and an array of Compton-suppressed Clover detectors at VECC. A sequence of E2 transitions based on $\pi g_{9/2}$ orbital with oblate deformation has been observed first time in ^{115}Sb .

Acknowledgment

The sincere efforts from the members of VECC, SINP, UGC-DAE CSR, Kolkata and INGA collaboration for setting up the array are highly acknowledged. The Cyclotron operators of VECC are thanked for providing a good quality Alpha beam. S. Dar acknowledges the financial support from UGC.

References

- [1] D. R. LaFosse *et al.*, PRC 56, 760 (1997).
- [2] R. Banik *et al.*, PRC 101, 014322 (2020).
- [3] R. S. Chakrawarthy *et al.*, PRC 54, 2319 (1996).
- [4] A. K. Giagalas *et al.*, PRL 35, 555 (1975).
- [5] E. S. Paul *et al.*, JPG: NP 18, 837 (1992).
- [6] S. Juutinen *et al.*, ZPA 344, 223 (1992).
- [7] E. S. Paul *et al.*, JPG: NP 18, 971 (1992).
- [8] J. Bron *et al.*, NPA 279, 365-384 (1977).
- [9] Yu. N. Lobach *et al.*, PRC 57, 2880 (1998).
- [10] Shabir Dar *et al.*, DAE SNP 65, 52 (2021).
- [11] S. Das *et al.*, NIM A 893, 138 (2018).
- [12] S. S. Nayak *et al.*, submitted to DAE symp.(2022).
- [13] D. C. Radford, NIM A 361, 297 (1995).