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Abstract

The magnetic monopole is a hypothetical particle, which is an important field con-

figuration in many Grand Unified Theories, and whose mass may vary from 104 to

1018 GeV. The quantization of magnetic charge derived by Dirac in 1931 suggests the

heavy ionization nature of magnetic monopoles. The NOνA collaboration is using

the NOνA far detector – the largest scintillator detector in the world – to search for

signals of relic monopoles that might have been produced in the early universe. To

achieve this, we have simulated the propagation of non-relativistic monopoles with a

uniform distribution of velocity within the range 10−4 . β . 0.2 , and the correspond-

ing detector response. To record potential monopole-like events, we have developed a

data-driven trigger system with two monopole triggers (the fast monopole trigger and

the slow monopole trigger). This analysis focuses on the data recorded by the fast

monopole trigger, which is sensitive to monopoles with velocity β & 10−3. We have

performed a blind analysis on a total live time of 1628.2 hours of data recorded by the

fast monopole trigger. We present the updated flux limits with 90% CL (confidence

level) as a function of monopole mass and velocity.
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Chapter 1

Introduction to Magnetic

Monopoles

In this chapter we introduce the idea of the magnetic monopole starting from the

context of classical electrodynamics, and briefly review the most profound theoretical

concepts concerning magnetic monopoles in modern physics. Though they have never

been discovered, the properties of monopoles are constrained by different theories and

models, which determines the detection technologies that can be used to probe them.

A brief summary of the current upper limit on the flux set by different experiments

is also presented. Finally, we roughly calculate the acceptance of the NOνA detector

for monopoles with a simple model.

1.1 Magnetic Monopoles in Classical Electrodynamics

Though the idea of the magnetic monopole is permitted in the framework of classic

electrodynamics, the majority of physicists in 19th century ignored the possibility

despite a more symmetric (and beautiful) form of the Maxwell Equations:

2
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∇ · ~D = 4πρe , (1.1a)

∇ · ~B = 4πρm , (1.1b)

∇× ~H =
1

c

∂ ~D

∂t
+

4π

c
~Je , (1.1c)

−∇× ~E =
1

c

∂ ~B

∂t
+

4π

c
~Jm . (1.1d)

Here ρe is the electric charge density, ρm is the magnetic charge density, ~Je is the

electric current density, and ~Jm is the magnetic current density.

Now consider the following duality transform to the electromagnetic charge den-

sities: 

ρ′e

ρ′m


 =




cosθ −sinθ

sinθ cosθ






ρe

ρm


 . (1.2)

Correspondingly, the current densities should be transformed in the same way:




~J ′e

~J ′m


 =




cosθ −sinθ

sinθ cosθ







~Je

~Jm


 . (1.3)

If we apply the same transformation to the electromagnetic field as well, we find:



~E ′ ~D′

~H ′ ~B′


 =




cosθ −sinθ

sinθ cosθ






~E ~D

~H ~B


 . (1.4)

We find all the primed quantities still satisfy the generalized Maxwell Eqs. 1.1. The

invariance of the Maxwell equations to the duality transform illustrates that it is

a convention to set the charges of an electron to be qe = −e and qm = 0. Thus,

searching for magnetic monopoles is actually searching for another electromagnetic

charge dimension.
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Since ~B is odd under time reversal, ρm is a pseudo-scalar, which is revealed in

Eq. 1.1b. Given that ρe is a scalar, any particle carrying both electric and magnetic

charges, called a dyon, would naturally break symmetry under time reversal. This

argument is given by D. Jackson [1]. He also notes in his book that “future develop-

ments may link electromagnetic, weak, and perhaps strong, interactions and utilize

particles carrying magnetic charges as the vehicle for violation of space inversion and

time reversal symmetries”. At the same time (in 1974) when the second edition of this

textbook was published, Hooft [2] and Polyakov [3] showed that magnetic monopoles

are a necessary consequence of a class of theories, which are presently called Grand

Unified Theories (GUTs).

1.2 Quantization of Monopole Charge

The concept of charge quantization can be derived semi-classically with a simple

model. Consider a positron-monopole scattering problem in the framework of classical

electrodynamics. For convenience, we set the coordinate system as illustrated in

Fig. 1.1, and assume the impact parameter b is large enough that the positron is not

deflected throughout its trajectory.

Figure 1.1: Illustration of positron-monopole scattering. A positron coming from
(−∞, b) in the XY plane has an impact parameter b, with ~β = βêx. A stationary
magnetic monopole, with magnetic charge g, is sitting at the origin.

According to Eq. 1.1b, the magnetic field ~B generated by the magnetic monopole
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is:

~B = −g∇1

r
. (1.5)

The overall impulse I from the magnetic monopole to the positron is in the z direction,

with magnitude given by:

I =

ˆ ∞
−∞

eβBsinθdt =

ˆ π

0

eβgsinθ

bc
dθ =

2eg

bc
. (1.6)

Using the same assumption Bohr applied to his hydrogen model: any change of

angular momentum must occur in integral multiples of ~, we have

∆L = Ib = n~ . (1.7)

Plugging this result into Eq. 1.6, we obtain the Dirac quantization condition:

2eg = n~c . (1.8)

This argument was first given by A.S. Goldhaber [4], and is included in D. Jack-

son’s textbook [1] as well. The quantization condition was first derived by Dirac in

1931 by considering the phase change ∆α of the wave function of an electron circu-

lating around a infinitely long and infinitely thin solenoid, which is usually referred

to as a Dirac string [5]:

∆α =
e

~c

˛
~A · d~l =

e

~c
4πg . (1.9)

The phase change should be equal to 2nπ, which results in the same quantization

condition given in Eq. 1.7. From the Eq. 1.8, we notice the magnetic charge is

quantized in units of 1
2α
e ≈ 68.5e, which is usually referred to as the Dirac charge. A

particle carrying a magnetic charge of 1 Dirac charge and 0 electric charge is referred

to as Dirac monopole. This illustrates the fact that magnetic monopoles should be
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heavily ionizing as shown by Bethe-Bloch formula, which states that the energy loss

is proportional to the square of the charge of the particle. In the next section, we

present the monopole energy loss in matter in detail.

1.3 Predictions of the Magnetic Monopole Mass

In the previous sections, we treated a magnetic monopole as a point magnetic

charge both in the realm of classical electrodynamics and under the framework of

quantum mechanics when deriving the Dirac’s quantization condition. One of the

most crucial questions remaining to be answered is: what is the mass of a monopole?

Figure 1.2: The upper limit of the cross section to produce magnetic monopoles at
95% CL measured by the ATLAS experiment, as a function of the monopole mass
assuming one Dirac magnetic charge [7].

Like how most elementary particles are discovered, physicists have been searching

for magnetic monopoles produced by colliders. The CDF collaboration performed

a direct search for pair productions of monopoles with one Dirac magnetic charge,

in pp̄ collisions at a center-of-mass energy
√
s=1.96 TeV. They claim at 95% CL
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that no monopoles with mass lower than 360 GeV exist, assuming a Drell-Yan pair-

production mechanism [6]. The ATLAS collaboration performed a search at a even

larger center-of-mass energy of
√
s=7 TeV [7]. Their result shown in Fig. 1.2, did not

produce any evidence of monopole production.

In 1974, G. ’t Hooft [2] showed that a magnetic monopole is a regular solution of

the field equations within the context of SU(2). He predicted the monopole mass to

be:

Mm =
4π

e2
MWC(ξ) = 137MWC(ξ) , (1.10)

where ξ =
M2

H

M2
W

, MH is the Higgs mass, and MW is the intermediate boson mass.

The function C is obtained numerically, and almost independent of the dimension-

less parameter ξ. This intuitive work inspired later theoretical works in predicting

monopoles in Grand Unified Theories.

The well-established, especially after the discovery of the Higgs boson, standard

model is based on the SU(3)C × [SU(2)L×U(1)Y ] where SU(3)C describes the gluon

structure of QCD, and [SU(2)L×U(1)Y ] describes the electroweak interactions. The

invention of Grand Unified Theories was greatly inspired by the famous Glashow-

Weinberg-Salam model which unifies the weak interaction and electromagnetic inter-

action via the breakdown of [SU(2)L × U(1)Y ]→ U(1)Q [8].

The basic idea of Grand Unified Theories (GUT) is very simple: try to find a

simple group that unites the strong, weak and electromagnetic interactions above a

sufficiently high mass scale MX with a single coupling constant αX . A typical Grand

Unified Theory breaks down to the SU(3)C × [SU(2)L × U(1)Y ] standard model at

the mass scale MX through the spontaneous symmetry breaking mechanism. Georgi

and Glashow came to a conclusion, in 1974, that SU(5) is “the gauge group of the
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world” [9], which is the only simple1 choice to be a Grand Unified Theory. Following

their footsteps, Dokos and Tomaras [10] came up with an SU(5) model with

SU5
MX−−→ SU(3)× SU(2)× U(1) , (1.11)

which has a monopole with charge g = e/(2α) and mass Mm ∼ 4πMX/αX . For a

unification scale of 1016 GeV, the monopole would have a mass Mm ∼ 1017 − 1018

GeV [11].

1.4 Magnetic Monopoles in Cosmology

As mentioned above, a GUT monopole could be far more massive than the energy

scale of any existing or foreseeable accelerators. However, monopoles could have been

produced in the early universe described by the big bang theory. This theory describes

the kinematics of the universe by the Robertson-Walker space-time metric and the

dynamic evolution of the universe is governed by the Einstein-Friedman equations.2

Immediately after the big bang, the universe went through a phase transition at a

temperature TC ∼ MX (the typical mass of the gauge bosons of GUT). The Higgs

field acquired vacuum expectation values pointed in different directions in the sym-

metry space in different domains within it that it remained correlated. The monopole

configuration arose at the intersection points of several such domains [12] as a stable

topological defect. Thus the number density of monopoles (nM) in the early universe

was of the order of:

nM ∼
1

d3
H

∼
T 6
C

m3
P

, (1.12)

where dH is the horizon, which corresponds to the maximum distance the light can

travel after t = 0, and the Planck mass mP = 1.22 × 1019 GeV/c2. As the universe

1A group is considered simple if it contains no non-trivial invariant subgroups.
2This theory is also known as the standard cosmology.
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expanded, the number density of monopoles should have dropped together with the

entropy density, s:

nM
s

∼
T 3
C

m3
P

. (1.13)

The value of entropy density today is about 103 cm−3 [13]. Meanwhile we can express

the monopole mass density mM in terms of the critical density ρcritical:

ρM = ΩMρcritical =
3H2ΩM

8πG
, (1.14)

where G is the gravitational constant and ΩM is the monopole mass fraction in the to-

tal matter mass of the universe. The Hubble constant H, characterizing the expansion

rate of the universe, is usually expressed as:

H =
100 km/s

Mpc
h . (1.15)

Plugging the numerical expression for the critical density in Eq. 1.14, we have:

ρcritical = 1.88× 10−29ΩMh
2(g/cm3) . (1.16)

The most recent measurement of the Hubble constant is from the Planck Collabora-

tion [14], suggesting the value of h is about 0.678, indicating ΩMh
2 < 0.46 which leads

to an upper limit of the monopole abundance. Since the mass of all the monopoles

should not exceed the entire present matter mass of the universe, we obtain:

nM . 0.5× 10−22

(
1017 GeV

mM

)
cm−3 . (1.17)

This implies an upper limit on the monopole flux as well. Assuming the monopole

flux is isotropic and every monopole is traveling with a same speed vm, we have a
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very simple relation between the monopole flux and the abundance:

FM =
nMvM

4π
. (1.18)

To determine the flux upper limit, we will need to estimate the velocity of monopoles.

The average galactic magnetic field B ∼ 3µG would accelerate the monopoles to

the following speed vM depending on the monopole mass mM [11]:

vM ∼





c, mM . 1011 GeV ,

10−3c

(
1017 GeV
mM

)1/2

, mM & 1011 GeV .
(1.19)

This relation can be understood qualitatively by considering a very simple case. As-

sume a monopole with mass mM and magnetic charge g = 2e/α was initially at rest

and then accelerated by the galactic magnetic field B. The velocity of the monopole

after traveling a distance of L would be:

vM =

√
2gBL

mM

∼ 10−3c

(
L

1021 cm

1017 GeV

mM

)1/2

. (1.20)

We can give an upper flux limit estimation by combining Eq. 1.17, Eq. 1.18, and

Eq. 1.20 for monopoles with mass of 1017 GeV:

FM(mM = 1017 GeV) . 1.2× 10−16( cm−2 s−1 sr−1) . (1.21)

This result is very close to the result obtained by Parker [15] in 1970:

FM <





10−15 cm−2 s−1 sr−1, mM . 1017 GeV ,

10−15

(
mM

1017 GeV
cm−2 s−1sr−1

)
, mM & 1017 GeV .

(1.22)
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which is known as the Parker bound. Parker obtained this limit by comparing the

energy loss rate of the galactic field consumed in accelerating the monopoles to the

regeneration rate of the galactic field. Considering the evolution of the galactic field,

a tighter bond has been obtained [16]:

FM <

(
mM

1017 GeV
+ 3× 10−6

)
× 10−16( cm−2s−1sr−1

)
. (1.23)

Equation 1.23, known as the extended Parker bound, is coincidentally even closer to

the result in Eq. 1.21 obtained by our naive model.

1.5 Magnetic Monopole Detection Techniques

Given the properties of magnetic monopoles (see Table 1.1 ) which have been briefly

discussed in previous sections, physicists have designed various techniques to search

for them. A lot of effort has been spent in the search of possible super massive big

bang relics.

Table 1.1: Summary of predicted magnetic monopole properties.

Property Quantity Description

Magnetic Charge g = n
2αe n is an integer.

Electronic Charge m · e m is an integer. A particle carrying
both electric and magnetic charges is
usually referred to as a dyon.

Mass Mm = 1.4 ∼ 1015 TeV The lower mass limit is set by collider
experiments while the upper mass
limit varies in different models.

Velocity Unknown Possible to be any velocity below the
speed of light and heavily dependent
on mass.
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All searches fall into three major categories: induction, ionization and proton de-

cay catalysis, based on the detection techniques. These three categories correspond

to three levels of model-dependence, from low to high respectively. Induction exper-

iments search for any particles possessing magnetic charge, thus they are not model

dependent. Most experiments searching for monopoles via their ionization assume

the ionization energy loss of monopoles is significantly larger than minimum ionizing

energy loss, due to the large magnitude of the magnetic charge which is suggested by

the Dirac quantization condition. Those that do not require large ionization require

a penetrating track that is subluminal. Experiments based on the assumption that

magnetic monopoles can catalyze the proton decay (and of course, assuming pro-

tons do decay), are the most heavily model dependent. If a slowly moving monopole

catalyzes proton decay, such experiments would observe a number of proton decays

producing π0s along the trajectory in sequential order, from which the velocity of the

monopole can be reconstructed by the time-of-flight inside the detector.

1.5.1 Induction

This detection technique is based on the long-range electromagnetic interaction

of the monopole with the microscopic state of a superconducting ring. Consider

a magnetic monopole with magnetic charge g moving at velocity v along the axis

perpendicular to and through the center of a superconducting ring of radius r, as

illustrated in Fig. 1.3.

Applying the generalized Maxwell Eq. 1.1 and integrating over the area in the

ring, ¨

S

(−∇× ~E) · d~S =

¨

S

(
1

c

∂ ~B

∂t
+

4π

c
~Jm

)
· d~S . (1.24)

Assume at t = 0, the monopole passes through the ring center and applying Stokes’s
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Figure 1.3: Illustration of the induced current from a magnetic monopole passing
through a loop wire.

theorem to Eq. 1.24, we have:

−
˛

l

~E ·~l =
1

c

∂φ

∂t
+

4π

c
gδ(t) . (1.25)

Being superconducting, the electric field ~E should vanish in the ring. Integrating

Eq. 1.25 over the time period (−∞, t], gives the total flux through the ring as a

function of time:

∆φ(t) = −4π

c
gθ(t) , (1.26)

where θ(t) is the step function. The flux ∆φ consists of two parts: the monopole’s

contribution ∆φg and the contribution from the induced current I, which is ∆φs =

−IL, where L is the self-inductance of the ring. The monopole’s contribution can be

obtained by integrating the magnetic field generated by its magnetic charge over the
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time interval:

φg(t) = 2πg

[
1− 2θ(t) +

γvt√
(γvt)2 + r2

]
. (1.27)

Subtracting this part from the total flux through the ring at time t, we obtain the

induced current as a function of time (see Fig. 1.4):

I(t) =
2πg

L

[
1 +

γvt√
(γvt)2 + r2

]
. (1.28)

Figure 1.4: The quantity of IL/(2πg) as a function of the monopole’s distance from
a superconductive ring with radius 2.5 cm.

Ideally, with a monopole traveling along the axis, one can check the Dirac quan-

tization condition and measure the velocity of the monopole by measuring the in-

duced current. Blas Cabrera and collaborators at Stanford University set up this

kind of experiment with a four-turn, 5 cm-diameter loop, positioned with its axis

vertical, connected to the superconducting input coil of a SQUID (superconducting

quantum interference device) magnetometer [17]. He reported a single candidate

event during the 151 days of running of his experiment in 1982, which was not con-
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firmed. If this candidate event is considered to be spurious, his data set an upper

limit of 6.1 × 10−10 cm−2 s−1 sr−1, which is much larger than the Parker bound.

This fact illustrates the largest difficulty in searching for monopoles with induction

technology: it is hard to implement the demanding superconductive devices and

technologies on large scales. The best limit given by an induction detector was ob-

tained by the second generation Stanford detector. After running with 214 days as

of Oct 4th, 1983, Blas Cabrera’s group obtained a 90% CL limit on monopole flux of

2.1× 10−11 cm−2 s−1 sr−1 [18].

1.5.2 Catalysis of Proton Decay

In the standard model protons are theoretically stable due to baryon number con-

servation. Some grand unified theories explicitly break baryon number conservation,

and the rate of decay can be significantly increased by magnetic monopole, as illus-

trated in Fig. 1.5.

Figure 1.5: Illustration of a proton decay into a positron and a neutral pion catalyzed
by a GUT monopole [19].

The possible capability of monopoles to catalyze proton decay would lead to striking

experimental signatures. The IceCube experiment, using the detection of Cherenkov

light from secondary charged particles, has performed a non-relativistic monopole
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Figure 1.6: Illustration of the signature of a non-relativistic magnetic monopole
(green) catalyzing nucleon decays (red) along its track in the IceCube experiment.
The resulting nucleon decays are symbolized by orange rays [19].

search based on this assumption. If monopoles can catalyze proton decay, it will

leave a track of neutral pions, as shown in Fig. 1.6.

Based on this assumption, the IceCube collaboration set a monopole flux upper

limit to a level of 10−18(10−17) cm−2 sr−1 s−1 at 90% CL for catalysis cross sections

of 10−22(10−24) cm2 [19].

1.5.3 Ionization

Having discussed the most straightforward means of detecting magnetic monopoles

by induction detectors, as well as the detection relying on the assumption that

monopoles catalyze proton decay, we turn to the third means of detection: ioniza-

tion. Any charged particle carrying electromagnetic charge will deposit some amount

of energy by the ionization process and excitation of atoms when it is moving in

matter. Thus scintillator, gas detectors, and nuclear track detectors, are sensitive to

monopoles, as all fall into this category of detection technology. One disadvantage
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of this detection technique is that it is difficult to tell whether a charged particle

possesses magnetic charge solely from the energy deposit information. So a careful

review of the theoretical models is necessary to predict the energy loss of monopole

through matter and the light yield in the scintillator. And care must be taken in the

analysis of the data to eliminate all other possible sources of such signatures.

To calculate the energy loss of monopoles passing through matter, we need to

consider how the energy of the monopole is transferred to the surrounding medium.

There are basically three ways where the energy can be dissipated:

• Ionization – The energy is transferred to the production of free electrons;

• Atomic Excitation – The energy is transferred to atoms of higher energy

states;

• Elastic Collisions with Atoms – The energy is transferred to the kinematic

momenta of atoms or nuclei.

The fraction of the energy loss of the three types depends only on the velocity of

the monopole, assuming the mass of the monopole is very large compared to electrons

or atoms. The ionizing energy dominates the total energy loss when the monopole

is relativistic. At slower monopole speeds, atomic excitation starts to dominate the

energy loss. If the monopole is very slow (β < 10−4), it cannot excite atoms, and the

energy loss is due to atoms (nuclei) recoiling. However, the cross section for atomic

recoils is negligible and hence the energy loss is small. Few theoretical models predict

monopoles with velocity β < 10−4, thus we don’t take the last type of energy loss

into account.
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Case 1: Relativistic Magnetic Monopoles

Consider the ionization energy loss for relativistic monopoles passing through mat-

ter. To simplify the problem, ignore the binding energy of electrons, and assume all

the ionization energy loss is transferred to the kinetic energy ω of electrons. The

electron production spectrum per unit length per unit energy is given by

dn

dωdx
=

4πNel

ωm

dσ

dΩ
, (1.29)

where Nel is the electron density, ωm = 2mec
2β2γ2, is the classical kinematic limit of

energy transfer, and dσ
dΩ

is the total differential cross section in the ionization process.

The ionization energy loss is given by

−dE
dx

=

ˆ ω(bmin)

ω(bmax)

ω
dn

dωdx
dω , (1.30)

where b is the impact parameter. The de Broglie wavelength of the electron in the

center-of-momentum frame is the minimum value of b: bmin = ~/meγβc. The maxi-

mum impact parameter is determined by the adiabatic limit: bmax = γβc/ω.

The cross section is calculated using Y. Kazama, C. N. Yang and A. S. Goldhaber’s

study [20] of the scattering of a spin-1
2

fermion by a fixed magnetic monopole. By

using the tabulated values for the KYG (Kazama-Yang-Goldhaber) cross section,

Ahlen [21] worked out the explicit form:

−dE
dx

=
4πNele

2g2

mec2

[
ln

(
2mec

2β2γ2

I

)
− K(|g|)

2
− 1

2
− δ

2
−B(|g|)

]
, (1.31a)

B(g) =





0.248, |g| = 137e/2

0.672, |g| = 137e

K(|g|) =





0.406, |g| = 137e/2

0.346, |g| = 137e

. (1.31b)

I is the mean ionization potential, me is the electron mass and δ is the density
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effect correction. This equation is consistent with the conjecture raised in the end of

previous section, with the analogy to the Bethe-Bloch formula.

Case 2: Subluminal Magnetic Monopoles

Determining the energy loss of slow (β � 1/137) charged particles is much harder

than calculating the energy loss of relativistic particles. One important reason for

this is one can no longer neglect the binding energy of electrons and treat them as

free, a basic approximation which was adopted by Beth [22] and Bloch [23]. Despite

the difficulty, Fermi and Teller [24] first established a very simple model in 1947 to

calculate the energy loss of a slow charged particle passing through matter, by model-

ing matter as a degenerate Fermi gas. To calculate the energy loss of slow monopoles,

Ahlen and K. Kinoshita [25] further developed an approach by Lindhard [26] which

uses the generalized Maxwell’s equations to describe a degenerate Fermi gas. Another

approach was taken in 1972 by Martem’yanov and Khakimov [27], who used a variant

of a method given in Landau’s textbook [28], and obtained the stopping power of slow

monopoles in a conductor. These two independent (thanks to the cold war) and very

different approaches surprisingly came to a good agreement.

Almost every theoretical calculation of the energy loss of slow charged particles

leads to the following proportional relation to the velocity of the particle:

dE

dx
= Cg2β . (1.32)

where the C is a material dependent constant and g is the electromagnetic charge the

particle carries. This is what we use in the simulation for slow monopoles.

Instead of going through their detailed derivations, I present a very simple model to

calculate magnetic monopoles energy loss in a conductor, as was first done by Ahlen
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Figure 1.7: Illustration of simple model used to calculate the magnetic monopole’s
energy loss in conductor.

and K. Kinoshita [25]. Assume a magnetic monopole is traveling along the z axis

with constant velocity ~v inside an infinite conducting medium with conductivity σ,

as illustrated in Fig. 1.7. Consider the electric field the magnetic monopole generates

at the moment when the magnetic monopole is passing through the origin. With the

analogy to the Biot-Savart law, we obtain the electric field at the wire at radius ρ:

E(θ, ρ) =
gvρ

cρ3/ sin3 θ
=
gβ sin2 θ

ρ2
. (1.33)

The energy dissipated in the wire is then obtained by applying Ohm’s Law:

dε = σE22πρ dρ dz dt =
1

v
σE22πρ dρ dz dz . (1.34)
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Integrating over all space, we get the total energy dissipation per unit length:

dE

dx
=

˚
V

dε

dz
dV =

ˆ π

0

dθ

ˆ ∞
Λ

2πσE(θ, ρ)2ρ2

v sin2 θ
dρ =

π2σ

Λc
g2β . (1.35)

The parameter Λ in Eq. 1.35 is just a lower cut-off distance needed to avoid a singular-

ity. However it has its own physical meaning as one of the parameters characterizing

the properties of the material.

Thus we obtain the form given in Eq. 1.32 via a very simple but intuitive model.

The Ahlen and Kinoshita result [25] rigorously derived from generalized Maxwell’s

Equations is:

−dE
dx

=
2πNeg

2e2β

mecvF

[
ln

(
2mevFΛ

~

)
− 1

2

]
, (1.36)

where the Fermi velocity vF = ~
me

(3π2Ne)
1
3 . For conductors, Λ is the mean free path

between the magnetic monopole and electrons; for nonconductors, Λ equals r0 (Bohr

radius). This result is only valid for monopoles in the speed region of 10−4 < β < 0.01.

1.5.4 Summary of Monopole Energy Loss Calculations

We have briefly discussed the monopole energy loss in two different cases: ionization

dominates when the monopole is fast, atomic excitation dominates when the monopole

is sufficiently slow. In both regions, the energy loss is well described, as shown in

Fig. 1.8. However, in the intermediate velocity region β ∼ 10−2 − 10−1, the situation

becomes complicated and neither ionization nor atomic excitation is negligible. In

that region what is typically done is to perform a polynomial interpolation of Eq. 1.31

and Eq. 1.36 between the two separated well understood velocity regions, which is

implemented in our simulation (to be discussed in detail in Chapter 3).
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Heavy ionization is one of the most distinguishable features for the monopole signals

we are relying on to carry out this analysis, so estimating the uncertainty of this energy

loss is crucial. For monopoles with β ≥ 0.1, the uncertainty in the dE/dx formula

(Eq. 1.31) is estimated to be 3% [21]. For slower monopoles with β < 0.01, no solid

estimation of the uncertainty exists in the theoretical literature. Hence we adopt an

estimate of 100% upper error and 40% lower uncertainty, based on an estimate made

by Groom [29] for the energy loss in silicon shown in Fig. 1.8.

Figure 1.8: Energy loss for monopoles with g =±137e/2 in silicon as a function of the
velocity of the magnetic monopole, which is adapted from Groom’s review paper [29].
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1.6 Acceptance of Magnetic Monopoles In Surface Detectors

In this section we calculate the acceptance for monopoles of a surface detector, like

the NOνA far detector, with a qualitative method in estimating the energy loss of

monopoles through the atmosphere and Earth.

We adopt a simplified geometry model for Earth and its atmosphere as illustrated

in Fig. 1.9. The acceptance depends on whether monopoles have sufficient energy to

reach the detector after penetrating air and the earth. Denote L the path length in

the earth and ∆L as the path length in the atmosphere that a magnetic monopole has

to go through to reach the NOνA far detector. Applying Eq. 1.36, we can obtain a

rough estimation of the energy loss (δEearth(L) + δEair(∆L)) of a magnetic monopole

of a given velocity. The kinetic energy Ep of the magnetic monopole must be greater

than the total energy loss for it to reach the NOνA far detector.

With the approximation that the monopole velocity remains constant (so we have

a constant energy loss) throughout its path to the far detector, we can derive the

effective acceptance solid angle (Ω) of magnetic monopoles with a certain mass and

velocity.

The minimum path a monopole can take through the atmosphere is ∆R when it

is vertically incident. If Ep 6 dE
dx air

∆R, the monopole cannot penetrate the atmo-

sphere to reach the detector. The longest path the monopole can have through the

atmosphere without penetrating the earth is ∆L =
√

(R + ∆R)2 −R2 when it is

horizontal. If Ep 6 dE
dx air

√
(R + ∆R)2 −R2, the magnetic monopole cannot come up

from below (L = 0 and θ < π
2
).

Ω = Max

(
0, 2π

E2
p + 2REp

dE
dx air

− (2R + ∆R)∆RdE
dx

2

air

2REp
dE
dx air

)
. (1.37)
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(a) (b)

Figure 1.9: Geometry used to determine the effective acceptance solid angle, which
is shown as the light green area. (a) θ 6 π

2
: atmosphere magnetic monopoles that

do not penetrate the earth; (b) θ > π
2
: Earth-penetrating monopoles. The NOνA far

detector is shown in red, the atmosphere is blue, and the earth is yellow. R is the
radius of Earth and ∆R is the effective thickness of the atmosphere. L is the path
length through the earth and ∆L is the path length through the atmosphere.

Otherwise, the monopole has sufficient kinetic energy to make it through part of

Earth, like the case shown in Fig. 1.9 (b). We obtain the largest possible acceptance

solid angle Ω = 2π(1− cos θmax), when

cos θmax = −(L+ ∆L)2 +R2 − (R + ∆R)2

2R(L+ ∆L)
. (1.38)

If Ep > dE
dx air

∆R+ 2dE
dx earth

R, the monopole has enough energy to reach the detector

from any direction. In this case θmax = π and we have a total acceptance solid angle

of 4π.

The acceptance angle shown in Fig.1.10 is calculated for monopoles that only carry

a unit Dirac magnetic charge. With this assumption, a GUT magnetic monopole with

mass of 1016 GeV and β = 10−3 will completely penetrate Earth. For monopoles with
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more magnetic charge or additional electronic charge, more kinetic energy is needed

for them to penetrate through the atmosphere and the earth due to the increased

energy loss.

Figure 1.10: The magnetic monopole solid angle acceptance of the NOνA far detector
as a function of monopole mass and velocity. We have assumed monopoles of a single
Dirac charge (gD) and no additional electronic charge.

1.7 Present Limits on Magnetic Monopoles Searches

To date there is no experimental evidence for magnetic monopoles, only limits on

their flux as a function of mass and velocity. Present limits are shown in Fig. 1.11.

The IceCube [30] collaboration is searching for extra-galactic neutrinos with a large

detector under the ice surface at the South Pole. Taking advantage of its enormous

effective detector surface area, they have the most sensitive upper flux limit: 3.0 ×

10−18 cm−2s−1sr−1 with 90% CL, for relativistic monopoles with β & 0.8.
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For searches below β = 0.8, Fig. 1.11 shows a rough sketch of the best (lowest)

upper flux limits at the 90% CL set by different experiments searching for cosmic

magnetic monopoles without the assumption that monopoles may catalyze proton

decay.3

Table 1.2: Limits on the cosmic magnetic monopole flux from the MACRO experi-
ment. The limits depend on the magnetic monopole mass and on its velocity [31].

Flux (cm−2s−1sr−1) Mass (GeV/c2) Velocity (β)

≤ 1.4× 10−16 & 1010 > 10−1

≤ 1.4× 10−16 & 1016 > 10−4

≤ 2.8× 10−16 & 106 > 10−1

≤ 2.8× 10−16 & 1010 > 10−4

MACRO [31] has the best limits for super heavy GUT monopoles, shown in Ta-

ble 1.2, and their sensitivity covers most of the phase space in Fig. 1.11. However,

due to the underground location of the MACRO detector, they are not sensitive to

lower-energy monopoles, which are blocked by the earth. The SLIM detector [32],

built at a high altitude (5230 m a.s.l), covers a blind region for low mass monopoles

which do not have enough energy to penetrate the entire atmosphere.

There remains a “virgin land” in the phase space map, which NOνA is uniquely

sensitive to, as shown in the blue region of Fig. 1.11.

3The energy loss is adopting the simplified model described in the previous section.
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Figure 1.11: The upper flux limits at 90% CL of searches for non-relativistic (β <
0.8) monopoles as a function of monopole mass and velocity, set by MACRO (I and
II: 2.8 × 10−16 cm−2s−1sr−1; III: 1.4 × 10−16 cm−2s−1sr−1 ) and SLIM (1.3 × 10−15

cm−2s−1sr−1). The limits are calculated for monopoles with a single Dirac magnetic
charge and no additional electric charge, without the assumption of catalyzing proton
decay. The region which has not been covered by previous experiments, and which
NOνA has no sensitivity is blank.



Chapter 2

The NOνA Far Detector at Ash

River

NOνA is a currently active long-baseline neutrino oscillation experiment using the

recently upgraded NuMI beam at Fermilab to measure νµ → νe and νµ → νe oscilla-

tions [33]. A 300 ton near detector is at Fermilab where the NuMI neutrino beam is

produced, and a 14 kiloton far detector is located 810 kilometers away in Ash River,

MN to observe the oscillated beam. The detectors are highly active and finely grained

tracking calorimeters consisting of planes of extruded plastic (PVC) cells filled with

scintillator-doped mineral oil. The far detector, due to its surface location, size, and

excellent granularity, has been chosen for the search of cosmic magnetic monopoles.

Thus for the remainder of this thesis, we focus on the far detector.

2.1 Detector Design

The NOνA far detector consists of 896 planes of extruded highly reflective polyvinyl

chloride cells, alternating between horizontal and vertical orientations to provide

three-dimensional tracking. A loop of wavelength-shifting fiber runs the length of

each cell, with both ends of the fiber terminating at one pixel of a 32-pixel avalanche

28
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Figure 2.1: The two NOνA detectors. The inset figure shows that each detector has
an identical alternating plane structure composed of vertical and horizontal cells.

photon-diode (APD) array, which is amplified and read out by a front-end board

(FEB). Sixty four FEBs (2048 cells) feed into a data concentrator module (DCM)

which groups the data into time-ordered packets to be sent to a computer buffer

farm for further processing and triggering. Power to the APDs, FEBs, and DCMs

is provided by the University of Virginia designed and fabricated power distribution

system.

Each plane of the NOνA far detector has 384 cells, giving a total number of 344,064

cells. The detector coordinate system is the following: the positive X axis points

roughly west and is parallel to the horizontal cells, the positive Y axis points up

and is aligned with the vertical cells, the positive Z axis points roughly north and is

normal to the PVC planes. The origin of the coordinate system is centered on the

upstream face of the first (most southerly) plane. The geometry parameters of the
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(a) (b)

Figure 2.2: A NOνA extrusion module constructed from two side-by-side 16-cell PVC
extrusions and capped at both ends to contain the liquid scintillator. The manifold
end routes the 64 fiber ends to a cookie which couples to the avalanche photodiode
array and associated electronics. The length L with the end plate and manifold is
15.7 meters for all the modules at the far detector [33].

Table 2.1: The summary of the far detector geometry.

Quantity Value

Number of Planes 896

Cells per Plane 384

Cell Depth 5.64 cm

Cell Width 3.60 cm

Size (X) [-758, 765] cm

Size (Y) [-749, 765] cm

Size (Z) [0, 5962] cm
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far detector are summarized in Table 2.1.

Assuming an isotropic flux of magnetic monopoles, a larger surface area leads to a

larger acceptance. As illustrated in Table 2.2, the NOνA far detector has the largest

surface area among all the previous monopole search experiments, except IceCube.

Table 2.2: The surface area of the NOνA far detector, MACRO detector, SLIM
detector and OHYA detector.

Experiment NOνA MACRO [31] SLIM [32] OHYA [34]

Surface Area (m2) 4082 3482 427 2000

2.2 Photodetector

When a particle deposits energy in the scintillating oil (whose components are

listed in Table 2.3), light is created. Some of this light gets into the 0.7-mm diameter

optical fiber from where it is absorbed and re-emitted, and then part is captured

via total internal reflection and transported to an avalanche photo-diode (APD) [33].

The APD has 32 pixels, each 2 × 1 mm2, in order to read out both ends of a cell’s

fiber. The APD quantum efficiency is about 80% for the spectrum of light delivered

by the fiber. It converts the light into an electric signal and amplifies it by roughly

a factor of 100. This signal is proportional to the energy deposited until saturation.

The NOνA APDs typically operate between 350V - 450V with a standing current of

approximately 1 nA per 32-channel APD array. They are cooled to −15 C to reduce

their noise.

2.3 Front End Electronics

A front-end board was developed that: (1) amplifies and shapes the signals from

the APDs; (2) digitizes the signals; (3) zero-suppresses the data; (4) formats and

time stamps the data and sends it to a DCM; and (5) hosts the circuits that cools
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Table 2.3: The composition of the NOνA liquid scintillator [36].

Component Purpose Mass Fraction

mineral oil (CH2.02) solvent 94.63%

pseudo-cumene (C9H12) scintillant 5.23%

PPO (C15H11NO) wavelength shifter 0.14%

bis-MSB wavelength shifter 0.0016%

Stadis-425 antistatic dopant 0.001%

Vitamin E antioxidant 0.001%

the APD. A custom low-noise ASIC was developed for NOνA to amplify the small

signals from the extremely long fibers in the far detector [33]. A schematic of the

ASIC is shown in Fig. 2.3. Signals from individual APD pixels are processed through

individual amplifier and pulse-shaping stages before being multiplexed to a 12-bit

ADC in sets of 8 channels. The 8:1 multiplexing of the APD channels results in each

APD channel being sampled every 500 ns.

The front-end electronics board (FEB) is connected to an APD carrier board

through a short ribbon cable. In addition to the ASIC and ADC, the front-end

board contains a connector for communication to the DCM, the thermoelectric cooler

controller circuitry, DACs and ADCs for control and monitoring, and an FPGA for

digital signal processing, I/O functions, and general board monitoring.

The amplified signal A is described by the function:

A = Norm · exp[−(t− t0)/F ]{1− exp[−(t− t0)/R)]}+B , (2.1)

where the rise timeR is 382 ns, the fall time F is 7000 ns, t0 is the cell hit time (residual

time), B is the noise baseline of the channel, and Norm is an overall normalization

constant proportional to the energy deposition of the cell hit and related to the

position of the hit in the cell.
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Figure 2.3: Schematic of the ASIC and ADC used in the FEB [33].
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Equation 2.1 is valid for all fast charged particles whose energy deposit occurs in a

time less than the rise time of the amplifier. For slowly moving exotic particles, this

equation has to be modified, as will be discussed in detail in the next chapter. As

shown in Fig. 2.4, the amplifier response can be used to get finer timing resolution,

than by simply using the 500 ns ADC sampling time interval. This is done by per-

forming a fit to the ADC samples: to determine the pulse-height N , the baseline B

and the residual time t0. Given the three degrees of freedom, at least 4 sample points

are needed to perform the fit. More samples are preferred, but DAQ bandwidth and

storage limitations preclude reading out any more samples. The four samples are

chosen to be one baseline sample and three following samples on the ASIC curve, as

illustrated in Fig. 2.5.

Figure 2.4: A simulation (with noise turned off) of the FEB response from a cell hit
caused by a muon. Zero-suppression has been disabled. The red crosses correspond
to each ADC sample every 500 ns and the green line is the best fit response curve
given by Eq. 2.1.
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As mentioned above, the pulse-height is proportional to the energy deposit in the

cell, as well as the actual position of the hit due to the light attenuation in the fiber.

The final calibrated time of the cell hit is corrected by the time of flight of the photons

in the fiber. Note that the longitudinal position of a hit cannot be determined from

the cell itself, but requires additional hits from the other view. Cell hits in X (vertical)

planes only provide the information of X and Z coordinate information, and similarly

for the Y (horizontal) planes. For the remainder of this thesis, the longitudinal (X)

coordinates in Y planes or the Y coordinates in X planes are referred to as W positions.

The W position is crucial for both time and energy calibration of a single cell hit, but

can be only obtained from matched tracks in both the X and Y views.

Raw	  ADC	  1	  

Raw	  ADC	  2	  

Raw	  ADC	  3	  

Raw	  ADC	  4	  

TDC	  

AD
C	  

Figure 2.5: A typical digitized pulse taken with zero-suppression disabled. The four
labeled points are what would be read out in DCS mode.
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2.4 The Data Acquisition System

NOνA uses a novel data acquisition (DAQ) system based on a continuous dead-

time-less readout of the front-end electronics, extended buffering of the data stream

and asynchronous software triggering. The DAQ system, shown schematically in

Fig. 2.6, is composed of four main components: a timing and command distribution

system, an array of Data Concentrator Modules (DCM), a Gbit Ethernet network,

and a buffer farm. Timing synchronization and command packets for the DCMs come

from the timing and command system consisting of one Master Timer Unit and 28

Slave Timing Distribution Units (STDU) that act as a separate network backbone for

these signals. Digitized data from up to 64 front-end boards are routed through CAT5

cables to a DCM. The DCMs send data to the buffer farm, so that each processor of

the farm has access to a time slice of all of the channels in the far detector. This is

done using commercial switches and a Gbit Ethernet network. The buffer farm and

DCMs are under the control of a Run Control Computer [33].

The FEB collects nanoslices from its 32 channels and sends them on to the Data

Concentrator Module (DCM). The DCM collects data from 64 FEBs and assembles

their nanoslices into a collection called a mircroslice that has a duration of 50 µs. The

DCM also expands the relative 32 bit time stamp of the nanoslices with an additional

24 bits stored in the microslice header to form a 56 bit absolute time stamp. With

a 64 MHz clock, this allows us to encode 35 years worth of ticks (15.625 ns between

two consecutive ticks) without rolling over. The DCM prepares the data for network

transfer by assembling microslices into a millislice. A millislice contains 5 ms of data,

about the optimal data size for network transfer. Gathering the information of every

millislice, we then have a milliblock: the information of the entire detector in 5 ms.

Each data-driven trigger (to be discussed in details in Chapter 4) decision is made

based on analysis one milliblock of data.
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Figure 2.6: Topology of the NOνA data acquisition system.

2.4.1 Dual-Correlated-Sampling Triggering Algorithm

In the front-end board a so-called “dual-correlated-sampling” (DCS) algorithm is

used to decide whether a hit has occurred in a particular cell, where by hit we mean a

number of photoelectrons greater than a threshold, typically greater than about 1/5

MIP. Although the fundamental clock period of 1 tick is 15.625 ns, the multiplexing in

the front-end board is such that each channel is sampled once every 32 ticks, or 500 ns.

The ADC values and corresponding times (TDC) can be regarded as two long arrays

of integers, which are denoted as ADCi and TDCi in the remainder of the thesis. The

difference between ADC values that are 1500 ns apart (DCSi = ADCi+3 − ADCi),

referred to as the dual-correlated-sampling value, is calculated. If DCSi is above a

threshold (which varies from 40-50 ADC for a typical channel), this channel’s data

are sent to the DCM. It is then disabled until the DCSi+n < 0.5DCSi after 32 ticks.
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This sending of only that data greater than a threshold is called zero suppression.

The DCS threshold is determined by a DSO scan taken before a data-taking run

starts. It varies from channel (pixel of APD) to channel. During the DSO scan we

take 2,000 consecutive ADC samples, or effectively 1 ms of data for each channel

(Fig. 2.7), that is, zero suppression is turned off. The RMS (σ, see Fig. 2.8) of the

values of each channel is calculated, effectively measuring the noise of the APD and

front-end electronics. The threshold is set to be 4σ greater than the noise mean of

that corresponding channel. Channels with large noise values (large σ) are masked

off.

Figure 2.7: Typical noise spectrum from a DSO scan of a channel.

2.4.2 Nanoslice Format

The information of a hit: the time, ADC values and address of the cell, are recorded

in a nanoslice. The nanoslice format (Fig. 2.9) consists of a header (cell id and status),
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Figure 2.8: The distribution of the RMS noise values of the far detector channels
obtained by a DSO scan.

time stamp and data payload. Note that the front-end board can output hits with

effectively any number of ADC values. The number four NOνA has chosen is a

compromise between event size and pulse shape reconstruction, as we will discuss in

the following section.

The first word of a nanoslice is the nanoslice header, whose first three bits corre-

spond to

DM = Debug Mode =





1, Debug Mode

0, Normal.

DP = Data Present =





1, Hit Present

0, Empty Nanoslice.



40

LS = Link Status =





1, Link OK

0, Link ERROR.

The remaining bits of the nanoslice header are described as follows.

• DFT - Data format type indicator. This field denotes a packet as either a data

packet or status packet. For fixed length data packets this has the value 001.

• FEB ID - Front end board “Link” identifier for the DCM, range 0-63.

• FEB Status - Front end board status. This represents the readout mode that

the current packet was generated under. This ranges from simple DCS to DSO

mode.

• Pixel Address - APD Pixel address number, range 0-31.

• Version - Major version of the nanoslice format. For variable size nanoslices

the word size of the nanoslice is stored in the parent microslice header.

• SEQ - FEB frame sequence number. Incremented by one on each frame from

a given FEB.

31# 30# 29# 28# 27# 26# 25# 24# 23# 22# 21# 20# 19# 18# 17# 16# 15# 14# 13# 12# 11# 10# 9# 8# 7# 6# 5# 4# 3# 2# 1# 0#

DFT# SEQ# Version# Pixel#Address# FEB#Status# FEB#ID# DM# DP# LS#

Timestamp#counter#
Raw#ADC#1# Raw#ADC#2#
Raw#ADC#3# Raw#ADC#4#

Figure 2.9: Nanoslice format with 4 ADC samples of the amplifier waveform.

A nanoslice contains all the information of a cell hit, which is the fundamental unit

we reconstruct physics events based on.
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2.4.3 The DAQ Data Formats

The NOνA experiment has a raw data format that is a hierarchical concatenation

of different data blocks that arise at each level of the data acquisition chain. The

general ordering of the data formats is in terms of the data unit at each level of

processing, with higher level formats including the smaller units in a packed form

with appropriate headers. The ordering is specified as [35]:

• Run – A run is a sequential collection of triggered events written out to per-

manent storage that corresponds to a distinct period of time, normally on the

order of hours. It includes the required detector and trigger information that is

sufficient to describe the detector and run time parameters of the DAQ system.

Not all configuration information is embedded in the run file, but instead some

segments of this information are written to a master database.

• SubRun – A new subrun begins when the largest data stream reaches the size

limit (currently set at 1 GB) in a given period of time (currently set as 1 hour).

If no data stream reaches the size limit during the period of time, a new subrun

will start automatically. When 64 subruns are accumulated during one run, a

new run will automatically start.

• Event – An event is a piece of data recording the activity of the detector within

a certain time window. The size of time window varies depends on the trigger

which records this event. A fully qualified event includes all of the triggering

information, timing information and data blocks corresponding to the trigger

window of interest.

• Trigger – This information includes the type of trigger, the source of the trigger,

the time at which the trigger was issued and the time window of interest that

the trigger corresponds to. This information is used by the global trigger system

and buffer nodes to initiate data retrieval and storage at the data logger.
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• Nanoslice – This is the data read out from a single FEB channel and includes

pulse height and timing information. It is sometimes referred to as a “hit” later

in the thesis. Only data above a given threshold is read out to the DCM.

• Microslice – This is a 50 µs collection of individual FEB nanoslices, with appro-

priate time stamps for synchronization. This format is used for the extraction

of data from the DCM’s FPGA data buffer. Triggered events are written to

offline stages in integral multiples of microslices.

• Millislice – This is a collection of microslices that are packaged together to form

a larger data block appropriate for network transmission. Formed in the DCMs,

millislices of the same time window are collected together in a buffer node and

operated on by the trigger algorithms. The size of the block corresponds to

either an Ethernet protocol “jumbo frame” or a 5 ms maximum time interval.

This format is primarily used for data transmission between the DCMs and

buffer nodes.

• MilliBlock – This is a collection of millislices extracted from all the data

concentrator modules (DCM) during a 5 ms synchronized time period, which

contains the entire detector activity in the 5 ms time window. This format

exists on the buffer nodes, inside of the data ring buffer.

• Data Block – This is a collection of millislices and microslices that is extracted

from the buffer node’s ring buffer upon receipt of a trigger. This format becomes

the payload of the final event structure that is written to permanent storage.

2.5 Single Cell Hit Calibration

The method of least χ2 fitting of the 4 samples of a hit to a known response func-

tion is used to extract the time of a cell hit. As previously mentioned, the major
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purpose of multiple sampling is to get improved timing resolution. This improve-

ment is demonstrated by comparing the input time from the MC truth time to the

reconstructed hit time of a simulated cell hit.

We have simulated 10,000 2 GeV single muons starting at (0.25, 2.28, 200) cm,1

and traveling along the Z axis, with a uniformly distributed time variation of 1 µs.

The simulation result is shown in Fig. 2.10. Without fitting, the time resolution for a

single cell hit is roughly σ=144 ns, with fitting it is improved to below around 40 ns.

The offset from zero of the peak of the fitted time difference distribution is corrected

using the photon transportation time in the fiber.

(a) (b)

Figure 2.10: Monte Carlo simulation of (a) the time difference of the input (true)
time of the first hit and the raw time determined from the nanoslice time stamp
counts, and (b) the same comparison but with a fit to the nanoslice pulse shape.

Fitting the APD waveform to multiple readout samples leads to a more precise pulse

height and residual time simultaneously, as demonstrated by the plot in Fig. 2.11

(a). Generally speaking, a larger pulse height, with corresponding smaller relative

statistical fluctuation, leads to more precise fitted values, which is demonstrated by

1All the muons start from the same position inside cell 192 of plane 30, which is near the geomet-
ical center of the far detector, with half of the full fibre length. So in this Monte Carlo test, every
muon has an identical trajectory and the same attenuation factor.
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the plot in Fig. 2.11 (b).

(a) (b)

Figure 2.11: Monte Carlo tests of the single hit calibration: (a) The difference
between the fitted and true pulse heights vs. the difference between the fitted and true
hit times; (b) The difference between the fitted and true hit times vs. the difference
between the fitted and true pulse height (in ADC counts).

If the energy deposit in a cell is too high, the hit becomes “saturated”, as shown in

Fig. 2.12. A fast monopole would produce cell hits like this, which will be discussed

in detail in the next chapter. To successfully fit to a saturated hit would require

changing the nanoslice format by increasing the number of samples.2 This leads to

an increase in the event size, which the collaboration chose not to implement due

to bandwidth limitations. Though we are not able to calibrate the exact energy

deposit for a saturated hit, knowing the lower estimated energy deposit is enough to

distinguish monopole signals from background in the NOνA far detector.

For non-saturated hits studies have been made to determine whether increasing the

number of samples improves both the time and energy resolution. The improvement is

not enough to compensate for increasing the size of data dramatically (see Fig. 2.13).

2Note that consecutive samples need not be taken.
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Figure 2.12: A saturated hit found in a DSO scan data in far detector. The fit is
performed with 100 samples.

Figure 2.13: The time resolution of single hits of 2 GeV MC muons as a function of
the number of samples.
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The fitted pulse height, in ADC counts, is proportional to the number of photoelec-

trons (PE) collected by the readout end. The number of photoelectrons is corrected

for fibre attenuation, from the energy deposit position in the cell to the readout end,

which is referred to as the W position. The attenuation curve has the form:

f = Ae−W/L +B , (2.2)

where f is the fraction of photoelectrons produced by the APD after light has been

transported in the fiber, L is the attenuation length, and the two coefficients (A, B)

are fitted using the vast amount of cosmic-ray data for each cell, as shown in Fig. 2.14

(specifically for plane 895, cell 7 in the far detector). The number of photoelectrons is

corrected using this fraction f , once the W position is provided by the reconstructed

3D track (which contains hits in both views), and the parameters provided for a spe-

cific cell in the database. The attenuation correction is crucial for energy calibration

as an uncalibrated raw DCS value may represent a very different energy deposit. Fig-

ure 2.15 shows the distribution of the corrected photoelectron number at a given raw

DCS value, based on 2 seconds of minimum bias far detector cosmic data. Using the

corrected photoelectron number, we find the physics energy in units of MeV or MIP,

as shown in Fig. 2.16.
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Figure 2.14: Far detector cosmic-ray data for plane 895 (vertical), cell 7. Every entry
is given by a hit associated with a reconstructed cosmic-ray track. The fit curve gives
the mean photoelectron number at a given W position.

Figure 2.15: The distribution of corrected photoelectrons vs. the raw DCS value in
ADC counts for all the far detector cells. Each entry corresponds to a hit associated
with a reconstructed cosmic track.
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(a)

(b)

Figure 2.16: The calibrated energy deposit in a cell vs. DCS value in ADC, in the
units of (a) MeV and (b) MIP.



Chapter 3

Simulation of Magnetic Monopoles

The NOνA software is implemented and maintained under the ART framework

(Analysis & Reconstruction Toolkit) [37]. ART is a suite of tools, libraries, and

applications for processing detector events, all written in C++. The “simulation

engine” adopted by NOνA is Geant4, which simulates the propagation of all particles

in the detector. The energies deposited by the simulated particles in active material

are passed to a parameterized front-end simulation which converts energy deposits

into scintillation light, transports the scintillation light to the APD, and simulates

the read-out electronics response [38]. In this way, our simulated output is formatted

like the raw data. A powerful tool, the event display (see Fig. 3.1) is used to visualize

simulated as well as real data.

49
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(a)

(b)

Figure 3.1: The event display shows the energy and time response of all the channels
in both horizontal (y) and vertical (x) planes. Each hit is colored based on its DCS
value in units of ADC counts, representing the uncalibrated energy deposit. (a) The
event display of a simulated nonrelativistic (β ∼ 10−2) monopole’s trajectory in both
XZ and YZ views, with noise hits. (b) The same simulated monopole event overlaid
with 5 ms of simulated cosmic-ray hits and noise hits.
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3.1 Simulation of the Response of the Front-End Board

While the number of photons generated in the exact position of the energy de-

posit is proportional to the energy deposit, the number of photons surviving after

transportation in the fiber is found using an attenuation curve determined from mea-

surements from many spools of wavelength shifting fiber [38]. This is the number of

photoelectrons (Npe) captured by the APD.

Figure 3.2: The times for monopoles to traverse a cell and the detector as a function
of their velocities. The dimensions of cells and the detector are listed in Table 2.1.

We simulate the amplifier response of the front-end board in units of photoelectrons

using the approximation of instantaneous energy deposit [38]:

f(t) = Npe
F

F −R

(
e−(t−t0)/F − e−(t−t0)/R

)
+B , (3.1)
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where t0 is the time that the photoelectron pulse was collected by the APD, the

pulse shape fall time F = 7000 ns, the rise time R = 382 ns, and B is the noise

baseline which varies from channel to channel. This equation is identical to Eq. 2.1

we introduced in Chapter 2, by replacing Norm by Npe
F

F−R .

Figure 3.3: The simulated amplifier response for magnetic monopoles with different
velocities passing through the same cell along the z axis (path length of 5.64 cm,
the depth of each cell). The response of a 2 GeV muon with same trajectory has
also been plotted for reference. The distances (W) between the trajectory and the
corresponding APDs are half of the cell length.

For charged particles that are significantly slower than the speed of light, partic-

ularly slow magnetic monopoles, the pulse shape (ASIC curve) is very different. In

particular, the rise time of the amplified pulse is longer, as it may take more than

382 ns for the monopole to traverse the detector, as shown in Fig. 3.2.

Fast (β > 0.1) magnetic monopoles can easily cause saturated hits, due to the

limit of the maximum ADC output of 4095. Figure 3.3 shows the simulated amplifier

response of a cell caused by magnetic monopoles with different velocities. The figure
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was made by simulating magnetic monopoles passing through the same cell and along

the same trajectory (magnetic monopoles that penetrate have sufficient momentum

they are hardly deflected along their straight trajectories). And for monopoles with

β = 10−4, it takes 2 µs to traverse the depth of a cell.

To validate the simulation of the front-end board response, the following has been

done. The front-end board response for a slow particle, whose time duration inside

the cell is not negligible, is modeled as a superposition of the response of many fast

particles hitting the same cell in a uniform and continuous time range (assuming the

particle’s speed does not change inside the cell). That is

ADC = N ′
ˆ tf

ti

e−(t−t0)/F{1− e−(t0−t)/R)}θ(t− t0)dt0 +B , (3.2)

where the rise time R = 382 ns, the fall time F = 7000 ns, B is the noise baseline,

θ(t− t0) is a step function, ti is the particle entering time and tf is the time leaving

the cell, N ′ is proportional to the energy loss rate (dE/dt).

By combining both the fast and slow cases, we obtain a universal front-end board

response function:

ADC =





Min(N ′F (e
tf−t

F − e ti−t

F )− N ′FR
F+R

(e
(F+R)(tf−t)

FR

−e (F+R)(ti−t)

FR ) +B, 4095) , t > tf

Min(N ′F (1− e ti−t

F )

−N ′FR
F+R

(1− e (F+R)(ti−t)

FR ) +B, 4095) . t < tf

(3.3)

Figure 3.4 shows the simulated front-end board response of a single cell hit caused

by a slow monopole with a known velocity and trajectory in the simulation and the

predicted curve using the analytical form of Eq. 2.1 with the best fit N ′. They
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perfectly match up with each other.

Figure 3.4: Simulation of the response of a slow magnetic monopole, with noise
turned off.

The simulated noise is modeled by the sum of two Gaussian Markov chains repre-

senting current and voltage noise sources [47]. The current noise component is given

by

AI(t+ ∆t) =
∆t

F + ∆t
G+

F

F + ∆t
AI(t) , (3.4)

where G is a random number drawn from the unit Gaussian distribution (µ = 0 and

σ = 1), ∆t = 500 ns, which is the time between digitizations, and the fall time F =

7000 ns. The voltage noise component is given by

AV (t+ ∆t) =
∆t

R + ∆t
G+

R

R + ∆t
AV (t) , (3.5)
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where the rise time R = 382 ns. The final noise trace is aAI + bAV where a and b are

determined through a fit to pedestal scan data.

3.2 Isotropic Generator

To determine the acceptance and efficiency of the monopole search, we assume

the monopole flux is isotropic. To avoid unnecessary use of computation time in

simulating the monopole’s propagation outside of the detector’s boundary, we start

at the surfaces of the detector. The generator randomly assigns a surface ID number

to determine on which surface the monopole starts. The probability of each starting

surface is proportional to the surface area, as shown in Fig. 3.5.

Once the starting surface has been selected, the exact starting position on the

surface is uniformly randomly generated. Then we set up a local coordinate system

as shown in Fig. 3.6, with positive z axis perpendicular to the chosen starting surface

and pointing into the detector. The direction of the monopole is determined as follows.

The local azimuthal angle φ′ is uniformly distributed in [0,2π], and cos θ′ (θ′ is the

local zenith angle) is uniformly distributed in (0,1], so that the generated monopole

will enter the detector.

For validation, we plot the angular distribution of all the simulated monopoles in

the global coordinate system, where positive x points west, positive y points up, and

positive z points north. As shown in Fig. 3.7, we have a uniform distribution of

azimuthal angle φ and cosine of zenith angle θ.

3.3 Simulation of Monopole’s Propagation

We use the package G4mplIonisationWithDeltaModel, which was written by A.

V. Bagulya, et al. [39], to simulate the monopole’s propagation through matter. Since
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Figure 3.5: The distribution of surface ID numbers where the simulated monopole
starts.

Figure 3.6: The local coordinate system: the z axis is chosen to point perpendicularly
into the chosen starting surface in the XY plane.
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(a) (b)

Figure 3.7: Distribution of the (a) polar and (b) azimuthal angle of the generated
monopoles, in the global coordinate system.

there is no applied magnetic field in the NOνA far detector, and the earth’s field can

be neglected, the ionization and atomic excitation processes are the most important

part in simulating the magnetic monopole’s propagation. However this package in-

correctly calculates the energy loss of slow (β < 0.01) magnetic monopoles, by using

the following improper approximation [39]:

dE

dx
= 45ρgβ (GeV/cm) , (3.6)

where the density ρ is in units of g/cm3, and g is the number of Dirac magnetic

charges. This approximation is only correct when the material is silicon, which is not

applicable for the simulation of the NOνA detector. We thus modified the source

code and adopted Eq. 1.36.

To validate the modified simulation code, we have calculated the energy loss of

slow monopoles in the NOνA scintillator, using Eq. 1.36. The electron density of

the scintillator used in NOνA, 2.96 × 1023 cm−3, is calculated from the composition

given in Table 2.3. The comparison of the energy loss given by the MC in the Geant4

simulation, before and after the correction is shown in Fig. 3.8.
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(a) (b)

Figure 3.8: Comparison of the theoretical prediction and simulation of the slow
monopole energy loss vs β. We see the discrepancy in the (a) simulated result of
Geant 4.9.5 without correction, and (b) the correction to Geant4 discussed in the
text.

As discussed in Chapter 1, there are large uncertainties in the predictions of the

monopole energy loss in matter. Hence, we perform an optimistic and a conservative

estimate of the monopole energy loss, in addition to the standard energy loss adopted

in the simulation. As discussed in Chapter 1, the optimistic estimate is set to 103%

of the standard estimate, and the conservative estimate is set to 97% of the standard

estimate, for monopoles with β ≥ 0.1; while the optimistic estimate is set to 200%

of the standard estimate, and the conservative estimate is set to 40% of the standard

estimate, for monopoles with β ≤ 0.01. In the intermediate velocity region β ∈

(0.01, 0.1), a polynomial interpolation is adopted for both optimistic and conservative

estimates, as is done with the treatment of the standard estimate in the simulation.

This is shown in Fig. 3.9.

3.4 Light Yield Simulation

The scintillation light yield does not scale linearly with energy deposit but is

quenched for heavily ionizing particles. In the simulation, the empirical formula
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Figure 3.9: The energy loss of slow monopoles as a function of monopole speed. The
bars in β represent the velocity bin size.

of Birks’ Law [40] is adopted:

Evis
Etrue

=
dE
dx

1 + ρkB
dE
dx

, (3.7)

where, ρ is the density of the scintillator in units of g·cm−2, Etrue is the energy deposit

of the charged particle, and Evis is the visible energy that is proportional to the light

yield. Note that for large energy losses, the value Evis/Etrue is approximately 1/ρkB,

and is hence capped at that value.

The default value of kB used by Geant4 for pseudocumene is 1.22×10−4 g·MeV−1·cm−2.

This value is about 80 times smaller than the value kB = 9.4× 10−3 g·MeV−1·cm−2,

given by Ref. [41]. In that reference a semi-empirical calculation of the Birks con-

stant is made and then compared to the experimental data of protons [42] and alpha

particles [43] [44] in pseudocumene. The agreement with both measurements is quite
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Figure 3.10: The visible energy (the true energy loss corrected by the Birks’ law)
as a function of monopole speed with the standard, optimistic and conservative esti-
mates, with the uncertainties in both the theoretical model and light yield simulation
included. The standard visible energy loss is obtained with the standard estimation
of monopole energy loss convoluted with the Birks suppression (using kB = 9.4×10−3

g/MeV·cm2). The optimistic visible energy loss is obtained with the optimistic esti-
mation of the monopole energy loss convoluted with an optimistic Birks suppression
(using kB = 4.7 × 10−3 g/MeV·cm2). The conservative visible energy loss is ob-
tained with the conservative estimation of the monopole energy loss convoluted with
a conservative Birks suppression (using kB = 18.8× 10−3 g/MeV·cm2).
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good (and the result is consistent with other measurements [45]). We use this Birks’

constant and set upper (lower) limit by a factor of 2 (1/2). The visible energy loss

including the Birks suppression is shown in Fig. 3.10.

Figure 3.11: The probability that a monopole produces a saturated response in
a cell as a function of its velocity, assuming an isotropic flux. The optimistic and
conservative curves represent the systematic uncertainties in both the theoretical
model and the light-yield simulation.

The probability that a hit gets saturated, referred to as the saturated hits ratio

ρ, is one important selection variable used in the final analysis. The saturated hits

ratio ρ as a function of monopole speed β is shown in Fig. 3.11. For monopoles with

β . 5× 10−4, the saturated hits ratio is extremely close to 0 and for monopoles with

β & 0.1, the saturated hits ratio reaches its maximum value.

3.5 Cosmic Ray Simulation

The background to the monopole search consists of cosmic-ray particles that strike

the far detector at a very high rate. Muons are by far the majority, and are the
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most penetrating species. NOνA adopted the CRY [46] package for the cosmic-ray

simulation, which provides fluxes of different particles (muons, neutrons, protons,

electrons, photons, and pions) within a 300 m × 300 m area at sea level at the

latitude of 48.4◦, the far detector site location. The list of particles is then passed

to Geant4, which propagates particles through the overburden and the detector. As

illustrated in Table 3.1, µ±, e± and γ comprise the majority of the cosmic particles

and their secondaries.

Table 3.1: The rate of cosmic-ray particles entering NOνA far detector.

Particle Rate (kHz)
µ± 144.7± 0.5
e± 0.2± 0.08
γ 0.3± 0.01
n 4.0± 0.07
p 0.4± 0.02

3.6 The Monte Carlo Signal Data Set

The mass of simulated monopole is set very high, so that its velocity change is

negligible along its path length inside the detector. We have simulated 3,400,000

isotropic monopoles with a fixed mass of M = 1016 GeV/c2, and uniformly random

variation of 9.99×1015 GeV/c in momentum. This gives a uniform distribution of the

monopole speed within the range β ∼ (10−4, 0.2).1 This simulated data set is used

to evaluate the trigger and monopole identification efficiencies, which is discussed in

the following chapters.

1For technical reasons it is extremely time consuming to simulate monopoles with β > 0.2 for
low values of the Birks suppression. However, it is not necessary to go beyond β = 0.2 since the
detector response is the same above β = 0.2.



Chapter 4

The Fast Monopole Trigger

The NOνA far detector produces about 1 GB of data per second, far more than can

be sent to Fermilab to permanent storage. Moreover, the amount of data produced

per year is far more than can be stored. Hence, only a fraction of the data can be

recorded for offline analysis.

In order to record candidate magnetic monopole events with high efficiency we have

implemented a software-based trigger. The trigger must be fast, have high efficiency,

and here a large rejection factor for the over 100,000 cosmic rays that course through

the detector every second. In this chapter, we first introduce the data-driven trigger

(DDT) system, discussing the requirements for the fast monopole trigger. Then we

describe in detail the algorithms of the monopole trigger, and its performance in

efficiency, trigger rate and execution time. See Appendix A for information of the

slow monopole trigger, whose data were not used in the analysis.

4.1 Introduction to the Data-Driven Trigger System

The data produced by every detector cell is buffered for real time analysis by the

data-driven trigger (DDT) system. The decision to record or discard data can thus be

63
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based on complex event topologies. A schematic overview of the NOνA DAQ system

with the integrated data-driven trigger is shown in Fig. 4.1. Data from the front-end

boards (FEB) are sent to the data concentrator modules (DCM). Each DCM collects

a piece (typically 2,098 cells) of milliblock data (5 ms of data) and sends it via a fast

switch to a buffer node for temporary storage. Each buffer node contains a 5 ms slice

of the data produced by the entire far detector.
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Figure 4.1: The NOνA DAQ readout showing the DDT (data-driven trigger) system.
Note that not all of the 200 buffer nodes were installed at the time covered by this
analysis. Rather, we had 47 buffer nodes on average.

The DDT runs in parallel on every buffer node and receives the data through

a shared memory segment. This shared memory segment acts as a queue for the

milliblocks as they arrive to the DAQ. The queue depth can be changed to contain

any number of milliblocks desired. When the queue is full, the oldest milliblock is

overwritten. In order to avoid dropping milliblocks before the trigger algorithms have
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a chance to operate on them, we run in parallel the different trigger algorithms of the

DDT, all of whom read from the same shared memory segment. There is not enough

time1 to fully reconstruct all of the events in the far detector within the buffer storage

time, so we have been compelled to design fast data handling and analysis methods.

There are currently eight triggers implemented in the DDT framework including

two monopole triggers: one focusing on fast, highly ionizing monopoles, and the other

on subliminal monopoles and other slowly (β . 0.01) moving exotic charged particles.

A positive trigger decision issues a time window within the 5 ms-long milliblock data.

This is illustrated in Fig. 4.2: the length of the data read out is the smallest time

window containing the event in units of 50µs. Data-driven triggers with different

algorithms are likely to issue different time windows when operating on the same mil-

liblock of data stored in a buffer node; thus the data triggered by different algorithms

or configurations is sent to separate data streams.

Figure 4.2: An illustration of the data recorded by a data-driven trigger with an
issued trigger window of [Ti,Tf ]. The shortest time window allowed to be read out
is ti+1 − ti = 50µs, hence the data read out in this case includes a time window of
[t1,t5].

With 47 buffer nodes2, each with 16 to 32 cores and each running 13 processes,

all the trigger decisions and their corresponding service modules are required to be

finished within 3 seconds or the data is lost. This mandates fast and efficient trigger

1We have only roughly 3 seconds to make all the trigger decisions for each milliblock with 47
buffer nodes.

2This is the average number of buffer nodes enrolled in DAQ during the data taking period for
this analysis.
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modules, as well as organizing the entire trigger system in an optimized way.3 Note

that the main neutrino trigger is also run in the DDT framework. However, rather

than using reconstruction algorithms operating on the data, it receives a time signal

from the accelerator at Fermilab telling it when the neutrinos were produced, and after

adding the appropriate time-of-flight delay, determines the correct time window to be

sent to permanent storage. Note too that a pulser trigger is used which simply records

a 550 µs-long time period called minimum-bias data, which is used for calibration and

data quality check.

4.2 The Fast Monopole Trigger Algorithm

The primary goal of the fast monopole trigger is to record a potential signal event

while rejecting many background cosmic-ray events to keep the transferred data rate

below the bandwidth budget.

Figure 4.3: The event display of a simulated monopole with β = 0.01 and mass 1016

GeV penetrating the detector.

3Some service modules, such as that which sorts the input hits by their time order, are required
by most of the triggers. These service modules are not run repeatedly for the same input milliblock
data.
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Figure 4.4: The event display of a high-energy cosmic ray event with showers, recorded
by the high-energy trigger.

The signature of a fast monopole is a straight track that is heavily ionizing with

some saturated hits, indicated by the simulation shown in Fig. 4.3. The major back-

ground is high-energy charged particles from cosmic rays or their secondaries, like the

high-energy event in Fig. 4.4. Before a trigger decision can be made, the process of

clustering data that are all associated with a same event is needed, so that the trigger

decision is made based on a subgroup of hits within a certain restricted time window

in the entire 5 ms milliblock data. This clustering is called slicing and is explained in

the next section.

4.2.1 Slicing Algorithms for the Fast Monopole Trigger

In NOνA, a spatially and temporally correlated group of hits is called a slice.

In DDT framework, we use the sliding-window algorithm to cluster hits which are

causally and spatially correlated, which is achieved by two slicing modules: TimeSlice

and SpaceSlice. The products of these two modules are groups of hits, referred to as

space-time slices.
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Figure 4.5: The flow chart of the algorithm that separate hits into different groups
based on their time information. The ADCmin is set to 500 and ADCmax is 4095
(the maximum ADC value). The names of the corresponding DDT modules are
listed on the right. SortByTDC is a module that sorts all the hits by their time.
HighADCFilter filters out all the hits which are outside the ADC range. TimeSlice
loops through all the remaining hits that are time ordered and groups them into
different slices.
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The fast monopole trigger algorithm acts on each space-time slice. A space-time

slice reconstructed with the fast monopole trigger specific configuration is a collection

of hits, each with DCS values not less than 500 ADC (approximately 1 to 8 MIPs).

It is required that within any time window of 3125 ns (200 TDC) inside the slice,

there be at least 10 hits without any single gap longer than 3 planes. These values

have been tuned using the minimum-bias cosmic data and the standard Monte Carlo

signal data set. The larger the time window is, the larger the possibility that the slice

can include all the hits caused by a potential monopole track. However, if the time

window is too large, too many hits are associated with the slice, which produces a

large and useless slice containing too many background hits.

The TimeSlice algorithm and its service modules is shown as a flow chart in Fig. 4.5.

Since sorting the hits by time is needed by every trigger algorithm at an early stage,

and filtering hits based on their DCS values is not, we do sorting first, although

reversing the order would speed up the fast monopole trigger. Note that the TimeS-

lice is done before SpaceSlice. If a time slice contains at least 10 hits, it is further

sliced into smaller4 clusters of hits based on their spacial distribution by the module

SpaceSlice. Otherwise, that time slice is ignored. The algorithm is quite similar to

TimeSlice, as shown by the flow chart of Fig. 4.6.

The parameters of TimeSlice and SpaceSlice have been tuned for triggering on

monopoles with β & 0.01. The failure rate of slicing the monopole hits will signif-

icantly increase for slower monopoles as it is limited by the size of the sliding time

window, and the minimum ADC threshold.5

4If all the hits in the TimeSlice are also spatially correlated, then all the hits in the TimeSlice
would be clustered into one SpaceSlice.

5As long as a slice contains enough monopole hits to allow the fast monopole trigger issue a trigger
window with a fully contained monopole event, the slicing process is considered to be a success.
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Figure 4.6: The flow chart of the algorithm that divides hits into groups based on
their spatial separation. We use the notation “a:=b” to denote an operation in which
we set the value of a variable a to be equal to the value b.
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4.2.2 Monte Carlo Tests of Space-time Slicing Performance

and Efficiency

To evaluate the slicing performance for the fast monopole trigger, we use the fol-

lowing two metrics:

• Purity: the number of hits in the slice caused by the target monopole divided

by the total number of hits included in the slice,

• Inclusiveness: the number of hits in the slice caused by the target monopole

divided by the total number of hits caused by the target monopole.

A perfectly reconstructed slice would include all the hits caused by a specific monopole

event and simultaneously filter out all the background hits, i.e., would have purity

and inclusiveness both equal to one. However, this task becomes more and more

difficult as the velocity of monopole gets smaller, as any two adjacent monopole hits

are further separated in time, and cosmic-ray background events increase. Simply

increasing the size of the time window would eventually end up clustering all the hits

into one huge slice.

(a) (b)

Figure 4.7: Performance of the monopole trigger on simulated monopole events with
added electronic noise: (a) the purity and (b) the inclusiveness of the slicer configured
for the fast monopole trigger as a function of the monopole velocity.
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An evaluation of the slicing performance has been made using large sets of isotropic

monopoles (with β uniformly distributed from 1 × 10−4 to 0.2) with simulated elec-

tronic noise.6 The high ADC threshold removes most of the noise hits. A high purity

monopole sample remains, shown in Fig. 4.7(a). The inclusiveness decreases with

slower monopoles, as their hits are further separated in time. The overall slicing

efficiency as a function of monopole speed is shown in Fig. 4.8.

A successfully reconstructed fast monopole slice is the basis of a successful fast

monopole trigger decision. A small fraction (3.37%) of fast (β > 0.01) monopole

events fail the slice reconstruction mainly due to lack of hits, as illustrated in Fig. 4.9(a).

Monopoles going almost vertically have a greater chance to go through the gaps be-

tween two adjacent planes, or to hit only a few vertical cells, thus leaving too few

cell hits for reconstruction, as indicated by the peak in Fig. 4.10. For significantly

slower (β < 0.01) monopoles, the energy deposited in each cell may not be enough

to produce a hit, or for a produced hit to pass the ADC cut. The smaller energy

deposited in the detector cells becomes the dominant cause for these monopoles to

fail the slice reconstruction, as shown in Fig. 4.9(b).

The slicing algorithm has been tested with 400 milliblocks (5 ms length each) of

minimum-bias far detector data as well. Figure 4.11 shows the distribution of the

number of overlapping planes in both space and time of hits from both views which

are clustered into one space-time slice, and Fig. 4.12 shows the same distribution

for the MC signal data set. Figure 4.13 show the number of high-energy hits (those

with DCS values larger than 3100 ADC) and the average DCS value of the hits in

each reconstructed space-time slice, and Fig. 4.14 shows the same distribution for

6Hits of faster monopoles have less variation in time and higher DCS values in general; thus
monopoles with higher velocity (β > 0.2) will generally have a better chance of being grouped into
one slice and deposit more energy in the detector, which leads to a greater chance to be triggered
by the fast monopole trigger.



73

Figure 4.8: The efficiency of slicing for the fast monopole trigger as a function of the
monopole velocity.

(a) (b)

Figure 4.9: Total energy and number of hits for monopole events that fail (a) the
fast (β > 0.01) and (b) slow (10−4 < β < 0.01) monopole slicing. The plots have
been normalized to one. The same slicer was used in both cases.
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Figure 4.10: The polar angular distribution of fast (β > 0.01) monopoles which failed
the reconstruction of a fast monopole trigger slice. We adopt the global coordinate
system where the Z axis is directed north.

the signal MC data set. We discuss the trigger cuts on those quantities in the next

section.

(a) (b)

Figure 4.11: The fraction of overlapping (a) planes and (b) time of hits in both views
in one space-time slice reconstructed with 2 s of minimum-bias data.

4.2.3 Fast Monopole Trigger Cuts

At the trigger level we do not do three-dimensional tracking due to time constrains

so the absolute energy calibration with the attenuation correction is absent through-

out the trigger decision making process. Based on the information of all the hits
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(a) (b)

Figure 4.12: The fraction of overlapping (a) planes and (b) time of hits in both views
in one space-time slice reconstructed using the standard Monte Carlo signal data set.

(a) (b)

Figure 4.13: The distribution of (a) number of high-energy hits and (b) mean DCS
value of one space-time slice reconstructed with 2 s of minimum-bias data.

(a) (b)

Figure 4.14: The distribution of the (a) number of high-energy hits and (b) mean
DCS value of one space-time slice reconstructed using the standard Monte Carlo
signal data set.
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in a space-time slice, the fast monopole trigger will decide whether a slice contains

a possible fast monopole track. If so, it issues a trigger window, which is the time

range of the slice plus a time buffer of 50 TDC counts (781.25 ns) on each end. This

decision is based on a series of trigger requirements (cuts) which are described below.

Their values are given in Table 4.1.

• Cut 1: Minimum-Hits Requirement – We need to reconstruct a track in

three dimensions in the offline; thus we require enough hits in both X and

Y views to do so. The offline track-fitting algorithm requires at least 3 hits

to reconstruct the projection of the track in each view, hence, this is what is

required at the trigger level.

• Cut 2: Penetration Test – Magnetic monopoles are extremely unlikely to be

stopped within the detector; thus we require at least two different hits in the

slice to be close to two different surfaces of the detector. Note that this is only

a necessary but not a sufficient requirement. A slice containing a cosmic track

coming from a corner of the detector but not deeply penetrating through the

detector is very likely to pass this test. Two parameters: ∆plane and ∆cell,

determine whether a hit is close to a surface. Plane 0 is first and Plane 895 (the

largest plane number) is at the ends of the far detector. A cell whose number

is close to 0 or 383 is near the sides of the detector. The parameters ∆plane

and ∆cell represent the distance of a hit from the boundary of the detector in

number of planes and cells respectively.

• Cut 3: Space-Matching Test – A minimum number of overlapping planes

(Pol) is required to correlate tracks in different views in order to produce a 3D

track. The number of overlapping planes is determined by:

Pol = min(Pxmax, Pymax)−max(Pxmin, Pymin) , (4.1)
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where Px(y)max(min) corresponds to the maximum (minimum) plane number of

the X(Y) view hits in the slice.

• Cut 4: Time-Matching Test – We require some hits that overlap in time

(Tol) from different views to check the causal correlation of hits in different

views. This parameter is determined by :

Tol = min(Txmax, Tymax)−max(Txmin, Tymin) , (4.2)

where Tx(y)max(min) corresponds to the maximum (minimum) time of the X(Y)

view hits in the slice.

• Cut 5: High-energy Hits Cut – Fast monopoles are so heavily ionizing that

they usually deposit much energy in a cell. A minimum number of hits with a

DCS value larger than 3100 ADC (Nhigh) is required.

• Cut 6: Mean Energy Cut – Not only do we require a minimum number of

hits with a high ADC value but also a high average ADC value. The average

DCS value (E<ADC>) of all hits in a slice is the final cut made in the trigger

decision.

An additional merit of the second cut, the Penetration Test is to filter out the large

fraction of non-physics slices caused by hot APDs. The Space-Matching and Time-

Matching cuts further help in filtering out non-physics slices caused by hot APDs

close to the detector boundary (and thus passing the Penetration Test). These three

cuts help keep the fast monopole trigger rate low and stable particularly when the

detector is in an abnormal state with a lot of hot channels. The High-energy Hits Cut

has the highest rejection rate for minimum-bias data, while the Mean Energy Cut

also plays a key role in filtering out many high-energy cosmic events with electron or

hadronic showers, like the event shown in Fig. 4.3(b). Though such events can have
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plenty of high-energy hits, allowing them to pass the High-energy Hits cut, they are

cut out by the Mean Energy Cut due to the many hits with low ADC values caused

by the secondaries. This cut keeps the average rate of the fast monopole trigger below

25 Hz while preserving the trigger efficiency.7

The seven cut parameters for the fast monopole trigger are listed in Table 4.1.

Their values have been tuned using both simulation (simulated isotropic monopoles

with β uniformly distributed within the range (0.01,0.2)) and real minimum-bias data,

to achieve an efficiency as high as possible while keeping the trigger rate stable and

under 25 Hz.

Table 4.1: The list of parameters cut on for the fast monopole trigger.

Parameter Name Minimum Value Maximum Value Trigger Value

1 Hitsmin 1 – 3
2 ∆Planemin 2 895 15
3 ∆Cellmin 2 383 35
4 Polmin 1 894 3
5 Tolmin 0 5 ms 0
6 Nhigh 1 975 6
7 E<ADC>min 500 4095 1200

The performance of each trigger cut is summarized in Table 4.2, where the implicit

Cut 0 represents the requirement that a fast monopole slice is reconstructed, and

where the standard energy loss and light yield simulation is applied. The rejection

fraction of MC monopole events and the rejection rate of minimum-bias events listed

in Table 4.2, is based on each cut alone all using slicing. The remaining efficiency in

Table 4.2 represents the fraction of MC events that remain after the corresponding

previous cuts. The final remaining efficiency of 81.03% is the overall fast monopole

trigger efficiency on the Monte Carlo signal data set.

7A simple pattern recognition algorithm distinguishing showers from tracks can do the same (or
better) than the mean energy cut, and several algorithms were written and tested, but found to take
too much execution time and CPU resources.
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Table 4.2: Summary of the fast monopole trigger cuts performance.

Cut
Remaining
Efficiency

(MC)

Rejection
Fraction (MC)

Trigger Rate
(Data)

Rejection
Fraction (Data)

0 96.63% 3.37× 10−2 42128 Hz –

1 94.01% 2.71× 10−2 6269 Hz 0.851

2 92.88% 2.71× 10−2 2200 Hz 0.922

3 90.47% 2.59× 10−2 2032 Hz 0.845

4 90.47% 9.33× 10−5 1960 Hz 0.836

5 85.26% 8.67× 10−2 20 Hz 0.996

6 81.03% 11.3× 10−2 19 Hz 0.903

4.2.4 Fast Monopole Trigger Efficiency and Performance

The cosmic-ray Monte Carlo CRY used by NOνA, does not simulate the very high-

energy cosmic particles seen in the data, and indeed the fast monopole trigger never

triggers on simulated cosmic-ray events. Simulated noise hits overlaid with simulated

monopole events does not agree with the DCS spectrum of minimum-bias data in

far detector shown in Fig. 4.15. Thus, we developed the following mechanism to

evaluate the mean DCS value of a reconstructed slice based on the DCS spectrum of

minimum-bias data.

Background hits (including both electronic noise hits and cosmic-ray hits) do not

decrease the acceptance for monopoles, aside from Cut 7 (Mean Energy Cut). Un-

derestimation of the background hits with DCS values between 500 ADC and the

mean DCS value of true monopole hits may reduce the average DCS value of the slice

by reducing the purity of the slice. Hence we reevaluated the mean DCS value of

each space-time slice using the DCS spectrum of real data to estimate the effect of

backgrounds on the trigger acceptance.
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Figure 4.15: The DCS spectrum of all the hits in all channels in minimum-bias far
detector data.

For a space-time slice with ∆P planes and a time window of ∆T , the expected

number of background hits per slice with DCS value between q and q + dq is:

f(q)dq∆V Text , (4.3)

where f(q) is the frequency density of hits per cell with DCS values between q and

q + dq, provided by the DCS spectrum of minimum-bias data, shown in Fig. 4.15.

The fiducial volume ∆V covered by the slice is expressed as 384(∆P + 6), given

that each plane contains 384 cells and ∆P is the extend of the slice in planes. The

extended time window is Text = (∆T + 6250 ns), where ∆T is the time window of the

slice. A spatial range (3 planes) and the time gap (3125 ns) have been added to both

ends. After a slice is reconstructed, we evaluate the mean DCS value of the slice by

calculating the influence of the background hits which are not simulated in our MC

signal data set, using the DCS spectrum from real data.
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The efficiency estimation8 of the fast monopole trigger on monopoles with one

Dirac magnetic charge (gD) is shown in Fig. 4.16. For monopoles with higher speeds

(β > 0.2), the trigger efficiencies are assumed not to increase, but remain at their

plateaued values.

Figure 4.16: The Monte Carlo estimate of the efficiency of the fast monopole trigger
as a function of the monopole velocity with one Dirac magnetic charge (gD). The
bars in efficiency include systematic and statistical uncertainties, and the bars in β
represent the velocity bin size.

To prevent the fast monopole trigger rate from getting too high when the detector

is behaving poorly with lots of hot channels or dead FEBs, we have implemented a

trigger rate cap of 30 Hz for the fast monopole trigger. The usual trigger rate of fast

monopoles is around 16 Hz, as illustrated in Fig. 4.17.

8To estimate the uncertainty in the trigger efficiency we first calculate it using the standard,
optimistic, and conservative energy loss curves given in Fig. 3.9, each using the best value (9.4×10−3

g/MeV·cm2) of the Birks’ constant to give the visible energy. We then calculate the trigger efficiency
using the standard energy loss curve, first using the high (18.8 × 10−3 g/MeV·cm2) and then the
low (4.7× 10−3 g/MeV·cm2) values of the Birks’ constant. We then add the variations in efficiency
quadratically to produce the uncertainties shown in Fig. 4.16.
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Figure 4.17: The fast monopole trigger rate during a typical week.



Chapter 5

Offline Reconstruction of Fast

Monopole Tracks

The raw data recorded by the fast monopole trigger contains all the information

of every cell hit within the issued trigger time window. To determine if it contains a

monopole track we need to pick out all the hits associated with a potential monopole

track first. Then we obtain the velocity, the calibrated energy deposit, etc. All the

event reconstruction tasks we need to do but don’t have time at the trigger level are

done in the offline analysis.

The first step in the offline reconstruction of monopole events is reconstructing each

single cell hit, which has been described in detail in Chapter 2. Then we reproduce

the procedure of the slicing algorithm as used in the fast monopole trigger, to find

collections of hits which are correlated in both time and space. The reconstruction of

monopole tracks described below is based on each reconstructed space-time slice.

83
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Figure 5.1: Illustration of how the offline monopole track reconstruction finds hits as-
sociated with a simulated monopole. A simulated monopole (β = 0.1) track overlaid
with simulated noise hits is shown in (a). All the hits associated with the recon-
structed track are highlighted in blue as shown in (b).

5.1 Monopole Track Trajectory Reconstruction

We require at least 3 hits (the minimum requirement to perform a linear fit) in the

slice in both the X and Y views, otherwise the tracking process is terminated and we
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move to the next available slice. A linear fit to the X view or Y view trajectory is

performed using all the hits in the space-time slice in each view separately. Each fit

produces what we call a two-dimensional (2D) track. In the fit each hit is weighted

by its DCS value. After the initial fit we remove hits in the slice which are further

than 14 cm (the grid diagonal distance in one view1) away from the fitted line of

the 2D track in each view. In addition to this requirement, we also require that the

attached hits be within 4σT (standard deviation of the hit times in the slice) of the

average time of the slice. This cut is very useful in getting rid of electronic noise hits

in the data, discussed in detail in the next chapter.

Once the hits attached to the 2D tracks are determined, we perform space-matching

and time-matching tests (similar to that the used in the fast monopole trigger dis-

cussed in Chapter 4) to determine whether the two reconstructed 2D tracks are cor-

related in both time and space. If so, we then perform a linear interpolation to get

the W position (the longitudinal position of a hit in a cell) of each hit using the

fitted information of the corresponding 2D track in the other view. For example,

the fitted 2D track in the X view provides the x coordinates for a given z position,

in particular the x position of the hits in the corresponding Y view cells. For each

cell hit associated with the tracks, there is a reconstructed 3D trajectory point (with

coordinate (xi, yi, zi, ti)). Figure 5.1 illustrates how this picks out the hits associated

with a simulated monopole (β = 0.1) event among overlaid noise hits. How this track

reconstruction algorithm works on cosmic muon tracks in the data is illustrated in

Fig. 5.2.

1The distance between two adjacent cells in a plane is δC = 3.9 cm, and the distance between
two adjacent planes in the same view is δP = 13.2 cm. The grid diagonal distance is defined as√

(δC2 + δP 2).
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Figure 5.2: Illustration of how the offline monopole track reconstruction algorithm
reconstructs a cosmic track with a high-energy deposit: The raw data of a long cosmic
track event is shown in (a). The hits correlated with the slice are grouped together
are shown in yellow in (b). The points corresponding to each hit associated with the
track are shown in yellow in (c). Note that we have zoomed in to better show the
hits associated with the slice and tracks; not all of the X and Y cells are shown.
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Each trajectory point provides crucial information for further calibration of its as-

sociated hit, including the distance of the hit to the readout end (W position) which

allows the corrected photoelectron number to be determined (and hence calibrated

energy) and the hit residual time. In the following section, we explain how we re-

construct the velocity of the 3D track, based on the information of the 3D trajectory

points.

5.2 Monopole Velocity Reconstruction

The velocity reconstruction determines the magnitude and the direction of the

monopole velocity. Given a group of 3D track points with space and time information,

we first sort them by their z coordinates. The coordinates (xi, yi, zi, ti) denote the

space and time information of the ith cell hit along the track, and (x0, y0, z0, t0) is the

space-time information of the cell hit with the lowest z value. The distance between

the two is li = ((xi − x0)2 + (yi − y0)2 + (zi − z0)2)
1
2 . Then we define:

χ2
T = (ti − T0 − li/v)2 , (5.1)

where v is the velocity and T0 is the hit time of the first cell. Minimizing χ2
T gives the

best fit velocity magnitude v and hit time T0, which can be calculated analytically:

v =

(
(
∑

i

li)
2 −N

∑

i

l2i

)
/

(∑

i

ti
∑

i

li −N
∑

i

liti

)
, (5.2a)

T0 = ti − li/v , (5.2b)

where N is the total number of 3D track points involved in the fit, and |v| is con-

strained to lie within the range [0.003,30] cm/ns (β ∈ [10−4, 1]). Figure 5.3 shows

an example of reconstructing the velocity of a typical Monte Carlo monopole track

(β = 0.045) based on its track information. The direction of the velocity is indi-
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cated by the sign of v, i.e., a negative v indicates the track is going in the negative z

direction, and vice-versa for positive v values.

(a)

(b)

Figure 5.3: Example of reconstructing a Monte Carlo monopole velocity. (a) The
event display of the reconstructed Monte Carlo monopole (β = 0.045) track. Hits not
associated with the reconstructed track have been dimmed. (b) A scatterplot of the
distance vs. time of the reconstructed track points shown in (a). The slope of the
red line corresponds to the true velocity of 1.34 cm/ns, and the slope of the blue line
corresponds to the best fit velocity of 1.43 cm/ns.
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The spatial resolution of a trajectory point is determined by the size of a cell. The

uncertainty in the hit time is provided by the official calibration module based on the

fit to the cell hit time response (discussed in Chapter 2). The statistical uncertainty of

the fitted velocity is determined by the following procedure: the velocity is fitted for

100 times; each time every track point is randomly varied using the parameters given

by Table 5.1. Each time we obtain a different best-fit velocity. The standard error

of the 100 best-fit values is used as the statistical uncertainty of the reconstructed

velocity.

Table 5.1: Uncertainties in the reconstructed trajectory points.

Coordinate Variation Type Variation Value Description
X Uniform 1.8 cm Cell half-width
Y Uniform 1.8 cm Cell half-width
Z Uniform 2.82 cm Cell half-length

T Gaussian
Obtained from
hit response fit

Time resolution
of the hit

As discussed in Chapter 2, if a hit is saturated, the residual time and pulse-height

fit fails due to lack of effective sampling points. Hence, there are two types of hits

that need to be considered for each track: saturated hits, where the ADC is pinned

to its maximum value, and non-saturated hits. In the former case both time and

energy information is not well determined. In particular, saturated hits tend to have

earlier times.2 This is illustrated in Fig. 5.4, which gives the difference between the

mean time of saturated hits and non-saturated hits for those tracks that have hits of

both types. The data come from reconstructed tracks recorded by the fast monopole

trigger in a total live time of 185.9 hours (the data set used for background studies

which will be discussed in the following chapter).

2When a front-end response curve fails the fit due to saturation, the earliest sample point that
caused the trigger is read out.
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Figure 5.4: The difference (∆Tsat−nonsat) between average time of all saturated hits
and non-saturated hits associated with the same reconstructed tracks of data recorded
by the fast monopole trigger.

To avoid a systematic uncertainty introduced by this offset, we separate saturated

hits and non-saturated hits associated with a same track into two groups. The veloc-

ity reconstruction is done separately for both groups as long as either group has at

least 3 hits. If one group has less than 3 hits, the reconstructed velocity is obtained

from the other group. The velocity fitted from saturated hits tends to have worse

resolution for obvious reasons. We compare the reconstructed velocity with the true

velocity of simulated monopoles in Fig. 5.5, and see a wider distribution of veloc-

ity ratios (reconstructed over the entire Monte Carlo data set) when the velocity is

reconstructed by saturated hits.

If a reconstructed track contains more than two saturated hits and more than

two non-saturated hits, we have two different reconstructed values of velocity. The

final velocity is chosen to be the one with a smaller χ2
T (and this is usually that

reconstructed with non-saturated hits). The corresponding χ2
T and statistical velocity

uncertainty σv are recorded for further offline analysis.
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(a) (b)

Figure 5.5: Ratio of the reconstructed to the generated velocities of Monte Carlo
monopoles with at least 3 saturated and 3 non saturated hits, where the velocities
are reconstructed using (a) non-saturated and (b) saturated hits.

5.3 Reconstruction Validation

We have tested the track and velocity reconstruction algorithms using simulated

isotropic monopoles with a velocity range of β ∈ (10−4, 0.2). The reconstructed

quantities are compared with the MC truth information for validation. as shown in

Fig. 5.6(a). For faster tracks the direction determination is worse as the transit time

is shorter and more hits are saturated, as shown in Fig. 5.6(b), and the uncertainty in

the angle between the reconstructed direction and the true direction becomes larger.

(a) (b)

Figure 5.6: Monte Carlo test of the monopole track velocity reconstruction. (a)
The ratio of the reconstructed velocity magnitude over the true velocity, as a func-
tion of the monopole true speed. (b) The angle between the true direction and the
reconstructed direction of monopole tracks, as a function of the monopole true speed.
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(a)

(b)

(c)

Figure 5.7: Monte Carlo test of the monopole track entry position reconstruction.
The distance between the x, y, z components of the reconstructed and true entry
position of the simulated monopole, is given respectively in (a), (b), and (c).
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(a)

(b)

(c)

Figure 5.8: Monte Carlo test of the monopole track exit position reconstruction. The
distance between the x, y, z components of the reconstructed and true exit position
of the simulated monopole, is given respectively in (a), (b), and (c).
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The reconstructed entry point and exit point, compared to the true positions, is

shown in Figs. 5.7 and 5.8. They show little dependence on the monopole velocity

and are consistent with the spatial resolution of the NOνA far detector. The offset in

the Z position is mainly due to the fact that often a monopole event enters or leaves

the detector it partially clips a cell, not leaving enough energy to trigger a hit.

Figure 5.9: The comparison between the reconstructed and true energy deposited by
a monopole in the detector as a function of the monopole true velocity. The horizontal
bars represent the bin size of the velocities. The vertical bars represent the standard
deviation of energy deposit per cell.

The determination of the deposited energy of a monopole inside the detector is

simply the sum of the energies in each cell hit of the monopole track. Given the

limited number of samples (4) recorded for each hit, we cannot determine the true

energy for a saturated hit, so the reconstructed energy for a saturated hit is a lower

limit. As the monopole velocities increase, the saturated hits ratio increases, and

the true energy deposit becomes much larger than the reconstructed energy. This
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behavior is shown in the Fig. 5.9.3

3Note that as the energy deposit increases, the Birks suppression gets more obvious, which adds
to the discrepancy between the reconstructed energy deposit and the true value.



Chapter 6

Offline Data Analysis

The installation of the instrumentation in the far detector was completed at the

end of 2014. We selected the far detector data recorded by the fast monopole trigger

from December 41 to December 12 in 2014 to be the data set used to tune and test

the monopole identification criteria and to investigate backgrounds. This unblinded

data set has a total live time of 185.9 hours, and is called the background data set.

The monopole identification criteria were determined by the Monte Carlo signal data

set discussed in Chapter 3 (simulated monopoles with a uniformly random velocity

β ∈ (10−4, 0.2)). Finally, the identification criteria were then applied to a three-month

data set collected by the fast monopole trigger from December 12th, 2014 to March

16th, 2015, using strict blind analysis rules.

6.1 Data Selection and Live Time Calculation

Minimum-bias cosmic data are used to calibrate the far detector and to identify

bad subruns. A standard set of data quality criteria [48] are used to validate the data

collected. The data collected by the fast monopole trigger and used for this analysis

1This was the date when the data-driven triggers were implemented with a configuration identical
to the current data readout mode discussed in Chapter 2, and when we started taking data with the
fully instrumented detector.

96
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uses only those subruns that pass the data quality criteria.

Here is the list of criteria used for the data selection:

• Minimum Stats – If the duration of the minimum-bias data taken by the

pulser trigger in a subrun is less than 1 second, the subrun is not considered.

• Median MIP Hit Rate per Cell – A minimum-ionizing particle (MIP) hit,

typically from a muon, has a DCS value within the ADC range [175,3200]. We

require a good subrun [48] to have the median MIP hit rate per cell to be within

the range (13 Hz, 23 Hz). The cut is chosen based on Fig. 6.1.

Figure 6.1: Typical distribution of the median MIP hit rate per cell per subrun.
Subruns in the region where the red arrows point to fail the data quality cuts.

• Slices per Subrun – We require the number of slices per 104 channels in a

subrun to be within the range (1.2,3.2), as illustrated in Fig. 6.2.

• 2D Only Track Fraction – There are some 2D tracks that cannot be further

reconstructed to 3D tracks due to lack of information in the other view. We

require the fraction of these 2D tracks less than 15%, as illustrated in Fig. 6.3.
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Figure 6.2: Typical distribution of the slices per subrun. Subruns in the region where
the red arrows point to fail the data quality cuts. Trigger here stands for the pulser
trigger which collects minimum-bias data.

Figure 6.3: Typical distribution of the 2D only track fraction per subrun. Subruns
in the region where the red arrow points to fail the data quality cuts.
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In addition to these data quality cuts, we also require that the data were taken

by a fully instrumented far detector, defined as having more than 99.8% active chan-

nels. This cut removes 1.1% of the subruns which have passed the data quality cuts.

As shown in Fig. 6.4, the subruns that pass the data quality cuts and taken by a

fully instrumented detector have a very constrained fraction of active channels within

[99.85%,99.95%].

Figure 6.4: The fraction of active channels for those subruns that passed the data
quality cuts and have more than 99.8% active channels.

If the total time of every trigger decision is beyond the allowed DAQ time on a

milliblock, the entire milliblock is dropped. Each buffer node records the number of

milliblocks processed and dropped. By counting the fraction of dropped milliblocks

among the milliblocks read out, we can calculate the trigger live time. During the

data taking period, we had a varying number of buffer nodes (40-50) in the DAQ, and

different configurations for various triggers, both of which influenced the execution

time of all the trigger decisions and hence the live time. The recorded live time

fraction in one of the buffer node is shown in Fig. 6.5. The overall live time fraction is
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calculated by counting the fraction of dropped milliblocks in each buffer node during

the data taking period. The total live time fraction was 76% during the data taking

period. With more and faster buffer nodes (farm-70 in Fig. 6.5 is one of faster nodes)

being added to in the DAQ, the fraction of dropped milliblocks will be greatly reduced

in the future.

Figure 6.5: The live-time fraction from January 21 to March 16. The data is taken
from one of the fastest buffer nodes (farm-70), which was implemented on January
21st, 2015.

The live time of the unblinded data set is 185.9 hours, and the three-month blinded

data set has a total live time of 1628.2 hours. The fast monopole trigger rate for the

blinded and unblinded data sets has been calculated, corrected for the live-time, over

all the buffer nodes, as shown in Fig. 6.6. It has a mean value of 21.2 Hz.



101

Figure 6.6: The fast monopole trigger rate with live time correction.

6.2 Preselection Cuts

Most of the background tracks and fake reconstructed tracks can be rejected with

simple cuts. These are applied before further analysis. The series of cuts are described

below. In the plots below by signal we mean the monopole MC data set and the back-

ground we mean the unblinded data set. The MC data set includes monopoles with

uniform velocity distribution β ∈ (10−4, 0.2). During the data taking period, some

(around 0.64%) channels are triggered at a extremely high rate (log10(HitRate)>3.5)

or unusually low rate (log10(HitRate)<0.5). These channels are tagged as bad chan-

nels that are masked off in the offline analysis. Note that the channels masked off

may vary slightly for different runs. In the MC we have applied the bad channel mask

which is properly weighted for the data taking period.

6.2.1 Cut 1: Saturated Hits Number

Reconstructed tracks without a single saturated hit are rejected. The probability

of a monopole hit being saturated as a function of the monopole’s speed is shown in
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Fig. 3.11.

Figure 6.7: The number of saturated hits for signal (blue) and background (red)
events, before any preselection cuts. Preselection cut 1 requires at least one saturated
hit in the track.

6.2.2 Cut 2: Track Fatness

To get rid of the largest background, high-energy cosmic showers, we use a metric,

“track fatness”, to distinguish tracks from showers. When reconstructing 2D tracks

in the X and Y views, we calculate the DOCA (distance of closest approach) of every

hit attached to the best fit track. We define:

FL0 =
∑

i

DOCA2/Ns , (6.1)

where Ns is the number of signal hits attached to the track.
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Figure 6.8: The DCS spectrum of X view (blue) and Y view (red) events of a 2-second
minimum-bias data set. The peaks at high ADC values correspond to saturated hits.
The data used here passed the data quality cuts.

The number of additional noise and background hits attached to a monopole track

is estimated using:

Nb = f · dT · dV/V , (6.2)

where f corresponds to the frequency of those hits in either the X view or Y view

with DCS values larger than 500 ADC, dT is the track time window, V is the entire

far detector volume, and dV is the fiducial volume of the reconstructed track given

by:

dV = πLr2 , (6.3)

where L is the reconstructed track length and r = 14 cm (the maximum DOCA cut

used to attach hits to a 2D track). Assuming the Nb noise and background hits are

uniformly distributed, their average DOCA2 value is:

ˆ r

0

2πx

πr2
x2dx = r2/2 . (6.4)
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The corrected fatness of the track, including the contribution of noise and background

hits is:

FL =
Ns · FL0 + Nb · r2/2

Ns + Nb

, (6.5)

(a) (b)

(c) (d)

Figure 6.9: The distribution (after preselection cut 1) of track fatness FL in the (a) X
view and the (b) Y view, as well as the distribution of fractional track fatness FL/L

2

(where L is the reconstructed track length) in the (c) X view and the (d) Y view.
The track fatness cuts reject track with FL > 15 cm2 or FL/L

2 > 0.001 in either the
X or Y views.

For a conservative estimate (over estimating the fatness of signal tracks), the value f

is determined using the DCS spectrum of X view and Y view hits from minimum-bias

data that passed the data quality criteria, shown in Fig. 6.8. We obtain fx = 6.74×105

Hz, and fy = 1.31×105 Hz. Note that the total number of X view hits and the number

of Y view hits are about equal. However vertical (X view) channels tend to have larger

energy deposit than horizontal (Y view) channels due to the angular distribution of
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cosmic rays and the fact that there is more activity near the top of the detector. This

is reflected in the corrected fatness distribution of signal tracks shown in Fig. 6.9, as

we see more “fatter” tracks in the X view than in the Y view.2 We place a fatness

cut FL on both views based on its absolute value and relative value FL/L
2 to reject

tracks with FL > 15 cm2 or FL > 0.001, where L corresponds to the reconstructed

track length.

6.2.3 Cut 3: Velocity Validation

As mentioned in Chapter 5, the sign of the final reconstructed velocity indicates

the direction of the track: a positive velocity value corresponds to a positive z di-

rection, and vice-versa for a negative velocity. We calculate the distance between

the reconstructed entry (exit) hit position to the earliest (latest) hit position in the

reconstructed track. The distance should be within the propagated uncertainty upper

limit in spatial resolution:

|σv|(Tmax − Tmin) + σt|v|+ 14 cm , (6.6)

where σv is the statistical reconstructed velocity uncertainty, Tmax (Tmin) is the latest

(earliest) hit time of the track, σt is the standard deviation of the times of all the

hits attached to the track, and 14 cm is the maximum DOCA cut used to attach hits

to a track. If a reconstructed track fails this cut, it indicates the uncertainty of the

reconstructed velocity has been underestimated, or this track contains some hits with

badly measured times and σt is underestimated.

The final reconstructed velocity is either based on the group of saturated hits or

the non-saturated hits in the track, with a corresponding value of
√
χ2
T of the chosen

2We are working on overlaying real minimum-bias data with the MC monopoles, so this conser-
vative evaluation will no longer be needed for future analysis.
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group of hits. We compare the value of
√
χ2
T with the standard deviation of the

times of the chosen group of hits. A larger value of
√
χ2
T/σT indicates the velocity

reconstruction is not valid. We choose the upper limit of
√
χ2
T/σT to be

√
χ2
T/σT < 0.4 . (6.7)

Figure 6.10: The
√
χ2
T/σT distribution of signal (blue) and background (red) recon-

structed tracks, after preselection cuts 1 and 2. The velocity validation cuts require
the value of

√
χ2
T/σT to be less than 0.4 (black arrow).

We also require the statistical reconstructed velocity uncertainty to be less than 10%

of the magnitude of the reconstructed velocity. Figure 6.11 shows that background

events tend to have a larger statistical uncertainty in the reconstructed velocity.

If a track contains more than two saturated hits and more than two non-saturated

hits, we have two values of the reconstructed velocity, one based on saturated hits

(βsat) and the other based on non-saturated hits (βnonsat). We introduce a consistency

check by requiring the ratio βsat/βnonsat be between 0.4 and 2.5. This cut gets rid of

many background events due to their inconsistent reconstructed velocities, as shown
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Figure 6.11: The statistical relative velocity uncertainty distribution of signal (blue)
and background (red) events, after preselection cuts 1 and 2. The velocity validation
cuts require the relative velocity uncertainty σβ/β to be less than 0.1 (black arrow).

in Fig. 6.12.

In Chapter 5, we mentioned that the fitted velocity magnitude is constrained within

the range [10−4,1]. If the velocity obtained via Eq. 5.2 is larger than 1 or smaller than

−1, it is set to 1 or −1 respectively. Most of the cosmic-ray tracks in the real data are

traveling at the speed of light, which is why there are two peaks in the velocity ratio

of the background data set in Fig 6.12. We cannot resolve the directionality for most

of these relativistic tracks, which is why the peaks are at about the same height.

As we mentioned in Chapter 2 and show in Fig. 5.5, saturated hits have a larger

uncertainty in the hit time. The background tracks are mainly high-energy muons and

their saturated hits are usually close together, where the bremsstrahlung radiation

takes place. Hence, the fit velocity based on the saturated hits for such events is likely

to be underestimated. This explains why there is a peak at zero in the spectrum of

the background data set in Fig. 6.12. For MC monopole events, the saturated hits are
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Figure 6.12: The βsat/βnonsat distribution of signal (blue) and background (red)
events after after preselection cuts 1 and 2. The consistency check of the velocity
validation cuts requires the value of βsat/βnonsat to be within (0.4,2.5) (black arrows).

uniformly distributed along the track, thus well separated in space and time which

leads to a more precise fit velocity. This is why we see a dip in the signal spectrum

in Fig. 6.12.

After the track fatness cuts the majority of remaining background tracks are high-

energy muons with β = 1, as shown in Fig. 6.13. We cut out all tracks with β > 0.8,

since the detector cannot distinguish well a high-energy muon from a relativistic

monopole.

6.2.4 Cut 4: Bremsstrahlung Rejection

As we have just mentioned, the energy deposit of a high-energy cosmic muon (one

of the major background sources) is concentrated where the bremsstrahlung radiation

takes place, as shown in Fig. 6.14.
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Figure 6.13: The reconstructed β distribution of signal (blue) and background (red)
events after preselection cuts 1 and 2. The tracks with velocity larger than 0.8c are
rejected (black arrow).

The total power dissipated in bremsstrahlung radiation of a magnetic monopole

with speed β and deceleration β̇ is given by:3

P =
2g2

3c
γ6[β̇2 − (~β × ~̇β)2] , (6.8)

where g is the magnetic charge of the monopole and γ = (1−β2)−
1
2 . Due to the large

mass of the monopole, the deceleration is negligible (β̇ ∼ 0), and there is effectively no

bremsstrahlung radiation in our simulation of monopoles. Hence, the energy deposit

of monopoles is generally quite uniform along its trajectory.

To distinguish monopole tracks from high-energy cosmic muons that produce brem-

sstrahlung radiation, we define δ to be the distance between the geometric center and

the energy-weighted center position of a track, divided by the reconstructed track

length. For a track with a completely uniform energy deposit, δ is 0. Figure 6.15

3This is an analogy to the Lienard result (1898), with the electric charge e replaced by the
magnetic charge g. The derivation is given in Jackson’s Classical Electrodynamics.
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Figure 6.14: The event display of a high-energy muon with bremsstrahlung radiation.
The hit size is proportional to the energy deposit. The event display is zoomed in on
the region which contains the muon track, and note that the X view range (top) is
smaller than the Y view range (bottom).

Figure 6.15: The reconstructed δ of signal (blue) and background (red) events after
preselection cuts 1 through 3. The bremsstrahlung rejection cut requires the value of
δ to be smaller than 0.04 (black arrow).
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shows δ for both signal and background events after preselection cuts 1 through 3.

We observe a bump at δ = 0.1, and set a upper limit for δ = 0.04. The cosmic muon

shown in Fig. 6.14 is a typical cosmic track that passes all the preselection cuts but

the bremsstrahlung rejection cut. This track is 14.7 meters long and penetrates the

detector. The energy weighted center is 2.16 meters away from the geometric center

of the track, which gives a δ value of 0.147.

6.2.5 Cut 5: Maximum Gap Cuts

Another class of background tracks is composed of those with hits from different

cosmic rays that are miss-reconstructed as a single non-relativistic track, and that pass

the velocity cut. We have introduced a metric to remove such tracks by measuring

the gap between the segments of the reconstructed track, in terms of the number of

missing planes. Ideally, a track caused by a single particle has no missing planes.

And there are few channels that are dead or have been masked off. If a track contains

a gap more than 5 planes or 13% of the total number of planes crossed, it is rejected

by this cut.

(a) (b)

Figure 6.16: The distribution of the maximum gap in the number of missing planes
(a) and gap ratio (b), for signal (blue) and background (red) events after preselection
cuts 1 through 4. The maximum gap cut require the maximum gap to be less than 6
planes, and the gap ratio to be no more than 13%.
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6.2.6 Cut 6: Time Window for Non-relativistic Tracks

Non-relativistic reconstructed tracks should have a relatively long time between the

earliest and the latest hits (time window). An additional cut only applied to β < 0.3

events, requires the time window of the track to be larger than 500 ns, which is the

time between two adjacent samples of a hit. Figure 6.17 shows that a large number

of background tracks with β < 0.3 have fairly small time windows. Such tracks

usually have only a few number of hits, which leads to a fitted velocity with a large

uncertainty. Thus we require at least 10 hits in each view with an overlapping plane

number no less than 10, which ensures the reconstructed velocity is well determined.

The relativistic (β ≥ 0.3) reconstructed tracks that pass preselection cuts 1 through

5 skip this cut.

Figure 6.17: The non-relativistic (β < 0.3) track time window size of signal (blue)
and background (red) events after preselection cuts 1 through 5. The cut requires the
time window to be larger than 500 ns (black arrow).
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6.2.7 Cut 7: Penetration

A penetration cut is applied to the fast monopole trigger, and the same cut is

applied again with the reconstructed entry and exit positions. This is the last prese-

lection cut. We reject tracks with either the entry or exit positions more than 0.5 m

away from the detector surface, or whose entry and exit positions are within 0.5 m of

the same surface.

(a) (b)

Figure 6.18: The distance between (a) the entry and (b) the exit positions in the
track to the detector surface, before preselection cuts 1 through 6. The penetration
cut requires both entry and exit position be within 50 cm from the detector surface
(black arrow).

6.2.8 Summary of Preselection Cuts

The performance of the preselection cuts is summarized in Table 6.1. More than

93% of signal events (simulated monopoles with uniform β ∈ (10−4, 0.2) which pass

the fast monopole trigger) pass the preselection cuts. There are 959 tracks in the

background data set passing the preselection cuts, out of 3.49 × 107 reconstructed

tracks in the background data set. A total of 3.05×106 out of 3.27×106 reconstructed

simulated monopole tracks (those monopole tracks that pass the fast monopole trigger

and are successfully reconstructed) in the signal data set pass all the preselection cuts.

Note that before the preselection cuts, 6.3% MC monopoles fail to be reconstructed
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due to low velocity or lack of hits.

Table 6.1: Summary of the preselection cuts performance, assuming the standard
estimate of energy loss and light yield.

Preselection
Cut

Signal-Remaining-
Efficiency

Signal-Rejection-
Fraction

Background-
Rejection-Fraction

1 99.98% 1.6× 10−4 94.1%

2 99.84% 14.4× 10−4 94.4%

3 93.77% 33.0× 10−3 74.0%

4 93.52% 26.1× 10−4 89.8%

5 93.52% 5.6× 10−5 7.0%

6 93.34% 19.2× 10−4 10.3%

7 93.15% 20.2× 10−4 58.3%

The rejection rate for both signal and background data set are evaluated for each cut

individually. The preselection cuts are performed in the order as listed in Table 6.1,

and the signal remaining efficiencies are calculated after each cut.

6.3 Function Discriminant Analysis

The strategy of monopole identification is to search for either heavily ionizing or

convincingly non-relativistic reconstructed penetrating tracks. Hence the saturated

hits ratio ρ and the reconstructed velocity β have been chosen to be the input vari-

ables for the final selection of the monopole signals. Figure 6.19 shows the distribu-

tion of ρ and β for both signal (simulated monopoles with standard light yield) and

background data sets. We have compared various multivariate classification methods

provided by the toolkit TMVA [49] used in high-energy physics. The best classifica-

tion method would allow 0 background events to appear in the signal region (in the

other words, the false positive rate would be rigorously zero), while preserving a high

signal identification efficiency.
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Figure 6.19: The distribution of ρ and β of the Monte Carlo monopole events with
standard light yield (signal data set) and cosmic data events (background training
data set) that pass the preselection cuts. Each data set is unit normalized. Most
signal events appear in the left top region of the plot, while most background events
appear in the right bottom region of the plot. The black dashed line illustrates a
possible classification method; the method described in the text produces a more
optimal choice.

A simple and good performing method, the function discriminant analysis (FDA),

has been adopted. A score function of β and ρ, is defined as:

FDA(β, ρ) = C1(0.8− β)2 + C2ρ
2 , (6.9)

where the coefficients C1 and C2 are determined by maximizing the separation be-

tween background and signal, through maximizing the following function:

〈
S2
〉

=
1

2

¨
(pdfS − pdfB)2

pdfS + pdfB
dρdβ , (6.10)
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where pdfS and pdfB are the signal and background probability density functions,

which depend on the variables ρ and β. The probability density functions are calcu-

lated based on the distributions of FDA scores, hence the separation 〈S2〉 depends on

C1 and C2. The reconstructed tracks passing the preselection cuts must have a recon-

structed velocity below 0.8c, so the first term in Eq. 6.9 is in the form C1(0.8− β)2.

The optimized coefficients are C1 = 0.200 and C2 = 0.872, and the FDA score dis-

tributions of signal and background events for the training data set are shown in

Fig. 6.20, under the assumption that there were no actual monopoles.

Figure 6.20: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events after all preselection cuts. The background events tend to have
low ρ values, and the maximum background score is 0.13, which is the FDA score
when both ρ and β are very small.4

The correlation between the two training variables β and ρ, is shown in Fig. 6.27.

The correlation in the signal data set is understood: monopoles with larger velocity

4The coefficients C1 and C2 are calculated with the background training data set and the Monte
Carlo data set with default Geant4 light yield. In this plot, we show the distribution of FDA score
of Monte Carlo data set with standard light yield. Thus the signal distribution has shifted from 1.
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(β) tend to be more heavily ionizing with a larger saturated hits ratio (ρ), whereas

in the background data set, these two variables are almost independent.

Figure 6.21: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events, after preselection cut 1 (saturated hits number cut).

The coefficients C1 and C2 are normalized so that 0.64C1 + C2 = 1. This restricts

the FDA score to be within the range (0,1), so it can be treated as a probability

density function. We use it to predict the upper sideband of the background, which

will be discussed in detail in the next section.

The effect of each preselection cut on the FDA is shown in Figs. 6.21 through 6.26

The overlap between signal and background becomes progressively less (the separation

gets larger), with each additional cut, and eventually they are well separated, as seen

in Fig. 6.20.
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Figure 6.22: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events, after preselection cut 1 and cut 2 (track fatness cut).

Figure 6.23: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events, after preselection cut 1 through cut 3 (velocity validation cut).
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Figure 6.24: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events, after preselection cut 1 through cut 4 (bremsstrahlung rejection
cut).

Figure 6.25: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events, after preselection cut 1 through cut 5 (maximum gap cut).
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Figure 6.26: The FDA scores (with unit normalization) of signal (blue) and back-
ground (red) events, after preselection cut 1 through cut 6 (time window cut). In this
plot, there is one track in the background training data set with a particularly high
score of 0.17. This is a high-energy cosmic muon with bremsstrahlung. It is rejected
by the last preselection cut (penetration cut).

(a) (b)

Figure 6.27: The correlation matrices of the two training variables, β and ρ in (a)
the signal data set and (b) the background data set.
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6.4 Background Prediction and Detection Efficiency

To predict the upper sideband of the background for high FDA values, we perform

an exponential fit in the region (0.006,0.4) of the FDA background distribution:

F (β, ρ) = e−p0−p1·FDA . (6.11)

The best fit result is p0 = 3.05±0.19 and p1 = 45±19. Such a prediction based on so

little live time is fraught with uncertainty, so we carried out a conservative background

sideband prediction using: p′0 = 2.85 and p′1 = 26. The best fit background prediction,

the 1 σ upper band of the fit, as well as the conservative prediction, is shown in

Fig. 6.28.

Figure 6.28: The background FDA score distribution (with unit normalization) from
the training data set with the best fit (black) line, the 1σ upper band (purple) line,
and the conservative fit (blue) line to the tail of the distribution. Since the p0 and p1

are correlated, the conservative fit is not the 1σ upper band.
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Using the prediction from the background sideband, we present the time it would

take to accumulate enough data to have a far detector event with a FDA score larger

than a given FDA cut. Figure 6.29 shows that time for the best fit and the conservative

background sideband predictions.

The largest FDA score of the background events in the training data set (for those

that passed the preselection cuts) is 0.144. According to the conservative estimate,

an event in far detector with an FDA score larger than 0.4 appears every 1.9 live years

on average. It takes 314 live years to observe 1 event with an FDA score larger than

0.6, again according to the conservative estimate, and 7.78× 107 live years according

to the best-fit estimation. We expect a background-free search in that region.

Figure 6.29: The FDA background predictions, in live years per event, in the NOνA
far detector for the: (a) standard (given by the best fit) and (b) conservative estimates.
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A region we call the control region is set to (0.4, 0.6), which is comfortably above

the largest FDA score in the background training data set. It is used to first check if

the background FDA extrapolation is reasonable. And only if that is the case, is the

signal region of FDA > 0.6 opened up for examination.

We have calculated the detection efficiency with three sets of simulations (opti-

mistic, standard and conservative), shown in Fig. 6.30, as we did for the calculation

of the fast monopole trigger efficiency. This efficiency includes the trigger efficiency,

reconstruction efficiency, preselection efficiency and functional discriminant efficiency.

Figure 6.30: The final monopole detection efficiency with an FDA cut > 0.6. The
optimistic estimation and the conservative estimation efficiency represent the upper
and lower systematic uncertainties introduced in the simulation of the detector re-
sponse to monopoles. The uncertainties in the individual points are statistical, and
the bars in β represents the velocity bin size.

The final result is discussed in the next chapter.
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6.5 Investigation of a Heavily Ionizing Flash Event

In the background training data set, we discovered an interesting heavily ionizing

event recorded by the fast monopole trigger and reconstructed in offline, which is

shown in Fig. 6.31. This event has a particularly high FDA score (0.75) but is cut

out by the preselection cuts. Although very high-energy muons are expected to have

wider tracks than minimum ionizing particles due to bremsstrahlung, this event is

much wider than what is expected from such events. Hits with a large amount of

deposited energy produce electronic noise hits in the same module due to crosstalk

in the front end boards (FEB). These electronic noise hits are referred to as FEB

flash hits. The event shown in Fig. 6.31 has FEB flash hits along the trajectory of a

heavily ionizing cosmic track in the 59 planes which it crossed.

The time distribution of hits in two modules in two different planes (at two ends of

the track) is shown in Fig. 6.32. The hits cluster around two time periods: an early

time which is that of the particle producing the ionization, and a later time which

is due to the FEB crosstalk caused by the real hits. All the FEB crosstalk hits have

times more than 5 µs after the high-energy hits which caused them, and most of them

have smaller DCS values: between 300 to 400 ADC. The two planes are at either end

of the track, and are thus well separated in space.

This behavior is well understood in bench tests done in Caltech [50] [51]. An FEB

channel with a large signal (high DCS value) through crosstalk produces a negative

signal of about 2% of the amplitude in all the other channels in the FEB. If the initial

signal (DCS value) is larger than about 250 times the threshold of the channel, then

when the crosstalk signals return to baseline they re-trigger to produce hits more

than 5 µs later. The FEB flash is the only type of crosstalk noise we have observed

in the data so far which is not simulated in the Monte Carlo signal data set.
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(a)

(b)

Figure 6.31: Event display of an interesting heavily ionizing flash event, where hits
are colored by (a) DCS value and (b) raw hit time. Only a portion of the detector is
shown in this plot.
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(a) (b)

Figure 6.32: The time distribution of hits in the flash event in two modules (FEBs)
at different ends of the track. The ADC time samples of all the channels in one FEB
of (a) module 9 of plane 2 and (b) module 11 of plane 55 are shown. The hits near
time 0 are presumably from a heavily ionizing track, whereas later (> 5000 ns) hits
are from crosstalk.

(a) (b)

Figure 6.33: The hits attached to the flash event after final reconstruction in the (a)
X view and the (b) Y view. The color of each hit corresponds to the reconstructed
visible energy in units of MIPs. Note that the scale is different (the Y view has a
smaller cell range, and thus it looks wider).
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How does the FEB flash affect the identification of such an event as a monopole?

Not much due to the large separation in time between the FEB flash crosstalk hits

and the high-energy hits causing them, as well as the low DCS values of FEB flash

crosstalk hits (most are lower than the 500 ADC threshold applied when slicing).

Hence the slicing algorithm applied in trigger and reconstruction will exclude most

of the FEB flash hits from the monopole slice, as shown in Fig. 6.34. The track

reconstruction algorithm described in Chapter 5 will further reject the remaining

FEB flash hits in the monopole slice by excluding hits more than 14 cm away from

the main trajectory, as illustrated in Fig. 6.33.

Figure 6.34: The event display of the flash event reconstructed offline by the fast
monopole slicer. Hits not included in the reconstructed slice have been dimmed.

The hits associated with the reconstructed track in the event are shown in Fig. 6.33.

This track has a reconstructed track length of 523 ± 6 cm, with 344 saturated hits

out of 374 total number of hits attached to the track, and a visible energy deposit of

71.9 GeV. The reconstructed velocity of this track is β = 0.57 with an uncertainty

of 262%, which suggests this is a relativistic particle which we are unable to tell its



128

direction given the poor timing resolution of the saturated hits. Hence, this track

does not pass the velocity validation preselection cut. The track fatness is σLx = 638

cm2 in X view and σLy = 111 cm2 in Y view, indicating the bremsstrahlung process

of a charged particle, which would not occur for a monopole track. Hence, it does

not pass the track fatness preselection cut either.



Chapter 7

Results

7.1 Search Result

After performing the preselection cuts on the reconstructed tracks we obtain the

FDA score distribution of the 3-month data set selected by the fast monopole trigger.

Before we opened the box to check the entire FDA distribution, we performed an

exponential fit in the region (0.006,0.4) with the function:

FN(β, ρ) = Ne−p0−p1·FDA . (7.1)

as we did using the one-week training data set. The parameter N is the total number

of events in the background region. The best fit to the distribution is consistent with

the predicted best fit from the training data set, as shown in Fig. 7.1. No events were

found in the control region (0.4,0.6). We then opened the blinded box in the signal

region [0.6, 1.0] and we found no events.

7.2 Monopole Flux Upper Limits in NOνA

The null result that we have observed can be used to set an upper limit on the

monopole flux that reaches the NOνA far detector. As discussed in Chapter 1 and

129
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Figure 7.1: The FDA score distribution of the reconstructed tracks in the three-
month data set after preselection cuts with the signal region blinded. The best fit
values are p0 = 2.97 ± 0.13 and p1 = 31 ± 16. Note this plot is not unit normalized
and we use the same bin size (0.01 FDA) as we use in Fig. 6.28. After opening the
blinded signal region no events were found.

shown in Fig. 1.11, NOνA is sensitive to phase-space regions in monopole mass and

velocity that have not been explored by previous experiments. The flux limit with

90% of CL Φ90%C.L. is calculated using :

Φ90%C.L.(M,β) =
4µ90%

AΩ(M,β)T
, (7.2)

where A is the effective detector surface area (4,082 m2), Ω is the exposure solid angle

at mass M and velocity β, as shown in Fig. 1.10, T is the accumulated live time, and

µ90% is the upper limit of the expected number of monopole events at 90% CL. Note

that for a fixed value of the final detection efficiency η, the value for µ90% is 2.3 with

zero background events.
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Assuming a Poisson distribution with the a mean number of events λ, the proba-

bility of observing k monopole events, using the Poisson limit theorem is:

P (k) =

ˆ
e−λ

λk

k!
fs(η)dη , (7.3)

where η is the detection efficiency, fs is the probability density for a given η, and

λ = ηµ, where µ is the actual number of events. As shown in Fig. 7.1, no background

events are expected.

The detection efficiency is shown in Fig. 6.30. We take the uncertainty in the

final detection efficiency to be any value between the conservative and the optimistic

estimates given in that figure. Applying the Rolke Model [52] and assuming the

detection efficiency is equally likely for any value between [η1, η2], where η1 is the

conservative detection efficiency and η2 is the optimistic detection efficiency, we have

calculated µ90% as a function of monopole speed β. The corresponding flux upper limit

shown in Fig. 7.2. The flux limit varies from 9.6 × 10−12 cm−2s−1sr−1 at β ≈ 10−3,

M ≈ 4×108 GeV, to 3.6×10−15 cm−2s−1sr−1 at β ≈ 0.2, M ≈ 1×1018 GeV. The low

mass and low β region in the left-hand corner of Fig. 7.2 is particularly interesting

as it is virgin territory first probed by NOνA, as explained in Chapter 1. We have

tabulated the results in this phase-space region in Table 7.1.

Table 7.1: Monopole (with one Dirac charge) flux upper limits (cm−2s−1sr−1) at 90%
CL in the low mass region.

Mass (GeV)
β

2.1× 10−3 6.7× 10−3 1.9× 10−2 8.4× 10−2

3.55× 108 1.16× 10−12 3.01× 10−14 9.42× 10−14 7.37× 10−15

8.91× 108 2.72× 10−13 2.47× 10−14 8.86× 10−14 7.27× 10−15

4.47× 109 1.94× 10−13 2.25× 10−14 8.59× 10−15 7.22× 10−15

8.91× 109 1.87× 10−13 2.23× 10−14 8.56× 10−15 7.21× 10−15
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Figure 7.2: The flux upper limit with 90% CL for monopoles with one Dirac magnetic
charge (gD = 68.5e).



Chapter 8

Conclusions and Future Work

8.1 Conclusion

We have implemented the simulation of monopoles in the NOνA detector, devel-

oped monopole track reconstruction algorithms, and monopole data-driven triggers.

Using a strictly blind analysis procedure, we have observed no monopole events in a

3-month exposure at the NOνA far detector.

The monopole flux limit includes a phase-space region not covered by previous

experiments. Combining this result with limits set by previous experiments (see

Fig. 1.11 in Ch. 1), we present the updated flux limits for monopoles only carrying

one Dirac magnetic charge without additional electric charge in Fig. 8.1. In this

analysis, the detection efficiency depends on the energy loss via ionization and atomic

excitation of monopoles in the scintillator, and not monopole catalysis of proton decay.

Assuming the current detection efficiency (and assuming monopoles do not catalyze

proton decay), we will have the best limits for 0.01 < β < 0.8 monopoles after a

six-year run.
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Figure 8.1: The flux upper limits of magnetic monopoles with one Dirac mag-
netic charge at 90% CL, combined with the limit set by MACRO (I and II:
2.8 × 10−16 cm−2s−1sr−1; III: 1.4 × 10−16 cm−2s−1sr−1 ) and SLIM (1.3 × 10−15

cm−2s−1sr−1) [31] [32] .

8.2 Future Work

We have developed all the tools needed to trigger, simulate, and analyze NOνA far

detector data to search for magnetic monopoles. And we have presented results for a

first search which shows this capability of the NOνA far detector. For future work, we

plan to overlay the simulated monopoles with real data. This will allow a more precise

estimate of trigger and reconstruction efficiencies to be made. Upgrades to the data-

driven trigger hardware are planned to enable all 200 buffer nodes to be used, rather

than the 47 used in this analysis. This would allow 13 seconds for trigger decisions

to be made, rather than 3 seconds. This timing cap affects the slow monopole trigger

more as it has to consider many more hits in a much larger time window. Once all

the buffer nodes are included, we will lower, and perhaps remove the DCS value cut

in the slow monopole trigger, which will increase the trigger efficiency in the slower

velocity region, where monopoles are expected to be minimum ionizing particles. In
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the future work, we are considering measuring the scintillator response to heavily

ionizing particles, which can reduce the systematic uncertainty in simulation.

The tools for the monopole search have been developed and are functioning well.

Both monopole triggers will be taking data for some years and the search will continue.



Appendix A

Slow Magnetic Monopole Trigger

We explain here the algorithms and performance of the slow monopole trigger.

Though the analysis of the data recorded by the slow monopole trigger is not included

in this thesis, it contains some important work I carried out in conjunction with the

analysis described in this thesis.

A.1 Slow Monopole Trigger

Adjacent hits in a slow monopole track have large time separation. Thus, a large

time window (TWindow) is required to group all the hits belonging to a slower

monopole event. However, simply extending the allowed time gap in slicing to deter-

mine if two hits are causally related would cluster all the hits in the milliblock into

one slice, making the clustering process meaningless. This causes the drop of the fast

monopole trigger efficiency as the monopole velocity goes down, shown in Fig. 4.16.

Thus, we have developed an entirely different algorithm from the slicing algorithm

introduced previously, to find possible slow monopole tracks.
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A.1.1 Triangle Algorithm of the Slow Monopole Trigger

The triangle algorithm triggers on any slowly moving charged particle as long as

it penetrates the detector. The main challenge of this trigger is to finish the trigger

decision within the limited time available. Thus the algorithm only operates on the

hits from one view. Due to the fact that we generally have more hits in horizontal

planes (Y-view hits) in our selected ADC range [150,4095],1 the algorithm is naturally

applied in the X view.

Figure A.1: Illustration of the view check process: an X-view hit is considered noise
if it does not have any Y-view hits in the adjacent planes within [tx −∆T, tx + ∆T ],
where tx is the X-view hit time and ∆T = 2000 ns.

1This is determined by the limit of execution time, which we shall talk about in the following
section.
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To reduce the number of hits involved in the triangle algorithm, a view check,

illustrated in Fig. A.1, judges whether an X-view hit is correlated with any Y-view

hit in adjacent planes. The X-view hit is considered to be a surface hit, if either

itself is close to the surface of the detector, or it has a correlated Y view hit that is

close to the surface of the detector, as illustrated in Fig. A.1. Figure A.4 is the flow

chart of the entire slow monopole trigger algorithm, and view check is immediately

performed for the incoming hits. The boundary hits and the contained hits are stored

as separate groups simultaneously with view check process.

The Penetration Test is adopted in the slow monopole trigger as well. However,

unlike the fast monopole trigger using the Penetration Test as one of the trigger cuts

after the reconstruction, the slow monopole trigger starts with it for a simple 2D

track reconstruction.

(xi, zi, ti)

(xf , zf , tf )

L =
q

(xf � xi)2 + (zf � zi)2L1

L2

(1 + �f)L < L1 + L2

Figure A.2: Illustration of the triangle algorithm to judge whether a hit is on track.

First, it looks for hits close to the surface of the detector to be possible entry and

exit hits. As illustrated in Fig. A.2, for every possible combination of entry (with
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space-time coordinate (xi, zi, ti)) and exit (with space-time coordinate (xf , zf , tf ))

hits (the red cell hits in Fig. A.2 ), it loops over all the hits within the time window

(ti, tf ) and the space region x ∈ (xi, xf ) and z ∈ (zf , zi). These hits are referred to

as “intermediate hits” for a particular surface hits combination. To judge whether

a hit belongs to this possible track, the distance is calculated from the intermediate

hit to the two surface hits. The distance to the “entry” (earlier) hit is L1, and to the

other surface hit is L2. Their summed values are compared to the distance between

the entry and exit hits (L). If the hit is geometrically on the line, L should be equal

to L1 + L2 within a fractional uncertainty ∆f : L1 + L2 < (1 + ∆f)L, where ∆f is

set to be 0.01.

For each combination of surface hits, the inverse speed of the putative track is

obtained, V pro = (tf − ti)/L. There are two expected hit times for each cell based

on either the “entry” or “exit” hit times:

• based on entry hit: texp1 = ti + L1 × V pro

• based on exit hit: texp2 = tf − L2 × V pro

Figure A.3 shows the difference between the calculated time and the true hit

time for MC generated monopoles, which indicates that the calculation based on the

surface hit further away is best as expected.

To reduce the execution time, we set a list of requirements to meet before we

perform the triangle algorithm for a certain combination of surface hits:

• Cross Plane Check – The plane difference of the two surface hits is required

to be no less than 4 planes. This cut gets rid of vertical tracks which cannot be

reconstructed in 3D.
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• Distance Check – The two surface hits are required to be adequately sep-

arated. To simplify the calculation, the plane and cell number are used to

characterize the length.

• Velocity Check – The inverse velocity projection in the X view calculated

using the two surface hits is required to be within range (1.472, 200) cells/TDC,

which roughly corresponds to the range β ∈ (10−4, 10−2).

(a) (b)

Figure A.3: The absolute value of the difference between the true hit time and
calculated hit time based on the (a) closer and the (b) further surface hit used to
determine the putative track.

The signal to trigger a possible slow monopole event is to check whether the accu-

mulated intermedia hits has reached the cut: ρL, where the linear hits density cut ρ

is set to be 0.1 and L is the putative track length.

If the total execution time has exceeded the maximally allowed time (the so called

“execution time cap”), the process will terminate and issue a smallest inclusive trigger

window: [ti −∆T, tf + ∆T ], where ti is the time of the current “entry” hit, tf is the

time of the corresponding “exit” hit, and the additional buffer time ∆T = 50 ns. This

avoids a drop of efficiency, and the waste of the computation done upon the incoming

milli-block data.
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Table A.1: List of parameters in the slow monopole trigger.

Parameter Value Description
Distmin 100 cells The minimum 2D distance required for two

surface hits to be considered as a possible
combination of entry and exit hits belonging to a
same slow track.

1
vxmin

1.472 (TDC/cells) The minimum allowed inverse velocity projection
on X view estimated by the combination of
surface hits.

1
vxmax

200 (TDC/cells) The maximum allowed inverse velocity projection
on X view estimated by the combination of
surface hits.

δP 2 A hit as well as its correlated hits on the other
view, is assigned to the surface hits container if it
took place within this number of planes away
from the boundary of the detector.

δC 6 A hit as well as its correlated hits on the other
view, is assigned to the surface hits container if it
took place within this number of cells away from
the boundary of the detector.

∆f 0.01 Maximum allowed additional length relative to
the distance between the two surface hits. This
parameter is used in determining whether an
“intermediate” hit is geometrically along the
track.

σT 64 TDC (1 µs) Maximum allowed time difference cut in
determining whether an “intermediate” hit
belongs to a certain “slow” track candidate. This
value is determined by b) of Fig. A.3, which
includes the single-cell-hit time uncertainty and
the geometry resolution(involved when
calculating the velocity of a surface hits
combination).

∆T 128 TDC (2 µs) Maximum allowed time difference cut in
determining the associate hits on the other view;
Time buffer added to extend the trigger window
size on both ends.

ρmin 0.1 Minimum number of linear hits density to trigger
a putative track.
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Figure A.4: The flow chart of the slow monopole trigger algorithm.
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To further reduce the number of calculations of “entry” and “exit” hits, we imple-

mented a “Continuity Check and Break” mechanism taking advantage of hits being

sorted by time, as shown in the flow chart A.4. If an obvious “continuity break” has

been discovered, we will move on to the next combination of surface hits.

A.1.2 Triangle Algorithm Complexity and computation time

The execution time of the slow monopole trigger algorithm is closely related to

the number of surface hits (denote as Ns) and the number of contained hits (Nc).

The total number of pairs of surface hits is proportional to N2
s , as every contained

hit is checked for fitting into every possible pair of surface hits. So, we define the

complexity (C) of the triangle algorithm as following:

C = Nc ·N2
s . (A.1)

The total computation time of the slow monopole trigger module should have a linear

relation to the triangle algorithm complexity:

T = p · C + t0 , (A.2)

where p is a scale factor to be fitted, and t0 is the time needed for the preparation

before processing the triangle algorithm, including assigning the surface hits and

contained hits.

A test of the computation time for slow monopole trigger has been done with real

environment and minimum bias far detector data. By varying the cuts in δP and δC

(detector surface boundary cut in number of planes and cells, see Table A.1), we have

different number of contained hits (Nc) and number of surface hits (Ns). And thus,

we obtain different computation time with different complexity as shown in Fig. A.5.
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The test result supported the simple model of relation between the complexity and

computation time. The least χ2 fit suggests p = (9.6 ± 0.3) ×10−12 s and t0 =

1.4±0.1 s.

Figure A.5: The computation time of the slow monopole trigger as a function of
complexity.

A.1.3 Slow Monopole Trigger Efficiency and Performance

Due to restrictions in computation time, we have to deploy a cut based on the DCS

value to reduce the total number of hits in a milli slice, like what we have done in fast

monopole trigger. We tested the efficiency of slow monopole trigger when different

DCS cuts on hits were chosen, as shown in Fig. A.6.

Maximizing the efficiency while keeping the execution time within required time

limits, we finally choose to filter hits with a DCS value less than 150 ADC (approx-

imately 0.3 to 2.4 MIPs). The execution time is capped at 20,000,000 CPU ticks

(around 2 seconds). If the slow monopole trigger cannot make a decision within that
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time, a slow monopole trigger decision will be made using the time window of the

current pair of surface hits. The trigger algorithm is designed so that the issued

trigger time window is as small as possible without losing efficiency.

Figure A.6: The Monte Carlo estimation of the efficiency of the slow monopole
trigger as a function of the monopole’s velocity, based on the optimistic energy loss
and light yield in the monopole simulation.

The slow monopole trigger rate is the lowest among all the data-driven triggers,

as shown in Fig. A.7. The majority of the triggered events are caused by hitting the

timing cap.

A.2 Combined Monopole Trigger Efficiency and Performance

The overall monopole trigger efficiency (either triggered by the fast or the slow

monopole trigger), is shown in Fig. A.8. The execution time with real environment
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Figure A.7: The slow monopole trigger rate in the far detector in a week.

has also been examined for every module which is related to making monopole trigger

decisions. Most of the modules take negligible time to finish, as shown in Fig. A.9.

The slow monopole trigger, due to its more complicated algorithm, has a much wider

distribution in execution time, though with a timing cap at 2 seconds.
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Figure A.8: The Monte Carlo estimation of the combined efficiency of both monopole
triggers as a function of the monopole’s velocity, assuming the optimistic energy loss
and light yield in the monopole simulation.
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