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The term 'broken symmetry', in the sense in which I shall use it, signifies not merely an approximate
symmetry, but rather an exact symmetry of the Lagrangian or Hamiltonian which is not shared by

the vacuum or ground state. Theories of this type, in which the ground state is degenerate, have
contributed greatly to our understanding of many non-relativistic problems. The most familiar
example is the BCS model of superconductivity,' These impressive successes naturally led to the
hope, first expressed by Nambu,? that similar theories might be useful in the description of some

of the observed approximate symmetries of relativistic particle physics. A large number of relati-
vistic broken symmetry models have been investigated, ® but there remain considerable difficulties

in the way of applying them to real physical problems. In this lecture, I wish to discuss some general
features of these theories, and review the present situation.

It was realized at an early stage that relativistic broken symmetry models always seemed to exhibit
massless particles in the excitation spectrum. This is the statement of the Goldstone theorem,*
which was proved by Goldstone, Salam and Weinberg, ® and by Bludman and Klein. ® Since very few
massless particles are believed to exist, this theorem would seem to drastically circumscribe the
field of applicability of broken symmetry theories. Now, although the original proofs of the theorem
relied on the use of relativistic invariance, they can easily be extended to cover non-relativistic
cases also.” The theorem would then predict the existence of a branch of the excitation spectrum
whose energy tends to zero in the limit of infinite wavelength. However, such excitations are known
to be absent in many real superconducting systems, and it therefore became apparent that there
must be some flaw in the assumptions or proof of the Goldstone theorem. Various explanations for
this phenomenon were advanced, but it has now become clear that the relativistic and nonrelativistic
situations do not differ in any essential respect. In either case, the zero-energy excitations pre-
dicted by the theorem may be eliminated by the presence of long-range forces. The precise way in
which this happens is one of the main items I wish to discuss.
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Before turning to the Goldstone theorem in its general form, it will be helpful to recall how the
massless particles appear in a specific case. Let us consider Goldstone's original model* described
by the Lagrangian density

L= "é'(a“‘ﬁx)z + 'é'(auﬁ)z)z - V(¢12 * ¢22), (1)

which is clearly invariant under rotations in the ¢,-¢, space. If V has a maximum at ¢* = 0, and

a minimum at some other value, then we may expect that in the ground state the expectation value
of ¢ will not be zero, but rather will be approximately equal to the value at which V has a minimum.
Clearly, because of the invariance, there must be an infinitely degenerate set of ground states,

with expectation values corresponding to all the points round the circle on which V has its minimum.
From the equations of motion, one easily derives the consistency requirement

<av/ag> =0 (2)

which serves to fix the magnitude of <¢>. The various degenerate ground states are labelled by a
phase angle o, and characterized by the expectation values

<¢,> = ncosa, <¢> = nsina,

with 7 determined by (2). To be specific, we shall choose o = 0.
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To find the qualitative features of the spectrum, one can use a Hartree-like approximation, setting
¢, =71+ X1 ¢2 = X2 (3)

and retaining only the quadratic terms in y, and y, in the Lagrangian. The one finds
L= %(a“ x1)? - zm?y,? + %(%xz)z (4)

where m? is determined by the curvature of V at its minimum. Clearly, there are massive excita-
tions corresponding to oscillations in the radial x, direction, while the mass of the transverse x,
oscillations is zero because of the vanishing curvature of the potential surface in that direction.
These modes may also be regarded as oscillations in the phase angle @. Analogous modes appear
in any broken symmetry theory. For example, in a ferromagnet the analogue of the phase angle is
the magnetization direction, and the corresponding modes represent spatial distortions of this
direction. Their frequency should tend to zero in the infinite wavelength limit.

We may note another feature of this theory. The conserved current corresponding to the rotational
symmetry of the Lagrangian is

jp= e(¢13“ 2 - ¢2ap,¢1),

which in the approximation made above reduces to
j# menauxz. (5)

Thus j° is linear in the field variables, and its spatial integral over all space diverges. It follows
that the various degenerate ground states, which are formally related by the unitary operator formed
by exponentiating this integral, actually belong to different Hilbert spaces, and correspond to uni-
tarily inequivafent representations of the algebra of field operators. This kind of behhaviour is a
general feature of broken symmetry theories, ® and is well known in the case of the BCS model. ®

Now let us turn to the general proof of the Goldstone theorem. From the invariance of L, one can
infer the existence of a current j*#(x) satisfying the continuity equation

T
9,i# = 0. (6)

(For the present, we consider only a one-parameter subgroup of the invariance group of the Lagran-
gian.) The spatial integral of j° over any finite volume V,

Qy (t) = .v/- d’x jo (ty X), (7)

must generate the transformation of the field operators within V,

5¢(t; Y)’ ye¢ v,
-ilQuw), o, v (8)
= 0, Ye¢ V.
Note that the representations corresponding to different degenerate ground states are equivalent

within any finite volume - and therefore physically equivalent, From (8), we obtain the equal-time
commutation relation

-ili°¢, ®), o, y) =o¢(t, y) 8°x -y). : (9)

The broken symmetry condition may be expressed by requiring that the variation of some designated
operator A have a non-vanishing expectation value in the ground state, <6A> £ 0. In practice, one
may often choose A to be one of the local dynamical variables, say ¢, and for simplicity we shall
assume this to be the case. However, the proof goes through in a straightforward manner for any
operator A which is a function of the field variables within a finite volume of space. Because of the
assumed translational invariance of the ground state, the expectation value must be independent

of position in space-time. Thus we require

<6¢(t, X)> =n £ 0, (10)
which in turn implies that the expectation value of the commutator function (9) is non-zero.
Let us now examine the Fourier transform of this ,commutator expectation value,
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tH(k) = - i/d“x e <[jH(x), $(0)]>,

which by the continuity equation (6) must satisfy
k“f“(k) = 0. (11)

From (9) and (10), we deduce the sum rule
dw 0 [
‘2_71'— f (ws k) =10 (UJ =k ) (12)

valid for each value of k. (If we had chosen some operator A other than a local field operator, this
integral would not be independent of k, but would still be a continuous (indeed, entire) function of
k, with the value nat k = 0.) It is worth noting that this sum rule is sufficient to exclude the possi-
bility of a term in f# proportional to 6*(k), thus contradicting one of the suggested mechanisms for
avoiding the conclusions of the Goldstone theorem. *°

In a manifestly covariant theory, one must require that £ u(k) be proportional to the only available
vector, namely k“. Then from (11) it follows that it must also contain a factor 6(k*). Thus, using
(12), we find

£,(k) =kl ne(w) + £ 206(x?), (13)

where £ is arbitrary (unless we invoke time-reversal invariance). Thus there is a non-zero contri-
bution from states with k® = 0, and therefore there must exist massless particles in the spectrum.

Even without invoking the requirement of covariance, we may take the limit k — 0 in the continuity
equation,
a

wf%w, k) - k'f{w, k) =0,
and hence deduce that

lim f%w, k) = 21n6(w), (14)
k—0

provided only that f(w, k) is non-singular in this limit. This is the non-relativistic form of the
Goldstone theorem, which asserts the existence of a branch of the excitation spectrum whose energy
tends to zero as k — 0 (zero energy gap).

The assumption that f is non-singular is evidently crucial. In fact, if we relax this assumption,
then it is easy to obtain functions satisfying both (11) and (12). For example, if w(k) is any given
excitation spectrum, then we may take

fYw, k) = 2rn|w|6(w? - W¥(K)),
2 (15)

L e(w)o(w? - wi(K)).

f(w, k) = 21rnk?

Clearly, if w(0) = we Z 0, then f will be singular as k — 0.

Before discussing the conditions under which this can happen, it will be useful to rephrase the dis-
cussion in terms of coordinate space, as was done by Guralnik, Hagen and Kibble, ** and for the
non-relativistic case by Lange. 2 The condition (14) is equivalent to the time-independence of the
integral

-1 f ex<die, x), 90, 01> )

Note that this integral always exists, even though the integral of j° itself diverges. This time inde-
pendence follows from the continuity equation if and only if the surface integral

i [as <li, %), 60, 0)]> (17)

tends to zero in the limit of infinite volume. This condition is obviously equivalent to the condition
k-f— 0ask — 0.

It is clear that we should expect the limit of (17) to vanish, except possibly in the presence of long~
range forces. Indeed, it can be shown that if the forces are of limited range, then it must tend to
zero, and the Goldstone theorem must apply. ‘> Moreover, the examination of specific cases shows
that when there are long-range Coulomb-type forces, then the condition is generally violated, and
f,, has a form similar to (15) with non-zero wo.
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As a simple example which clearly exhibits this type of behaviour, let us consider the model des-
cribed by the Hamiltonian

fd3 m3(t, x) + (v ¢)4(t, X)| +3 fdax dy n(t, X)V(x - y)u(t, y). (18)
It is invariant under the transformation ¢(x) — ¢(x) + ¢, but clearly < ¢> is not. Thus we have a
broken symmetry, albeit of a somewhat trivial kind. For this model the conserved current is given
by j°= -~ mandj = v¢. Thus
-1 [3%, x), o(t, y) =6%x -y),

and so 7 = 1, The model is of course completely soluble, and it is easy to verify that fu has precisely
the form given in (15), with = 1. From the equations of motion, one finds the excitation spectrum

=k*[1+ V()] , (19)
where V(k) is the Fourier transform of V(x). Thus w(0) = 0 if and only if

lim kV(k) = (20)
k —0

or, in other words, for short-range potentials. The Coulomb potential is evidently the limiting case.

This example shows that in the presence of long-range forces the surface integral (17) need not tend
asymptotically to zero, and (16) need not be time-independent. In fact, when w, differs from zero,
(16) oscillates at the frequency w,. This result is easy to understand physically. The Goldstone bosons
correspond, as we have seen, to oscillations in the phase parameter which labels the various degen-
erate ground states. For example, in the case of the ferromagnet, which is particularly easy to
visualize, they, correspond to oscillations in the magnetization direction. Now let us consider the
introduction of a distortion of this parameter which varies slowly with position, If the forces are

of finite range, this requires essentially no energy, and will lead to oscillations of nearly zero
frequency. This is not the case, however, in the presence of long-range forces. Then, any small
part of the system is affected not merely by its immediate surroundings but by distant regions as
well, Thus even a distortion which varies very slowly with position requires a finite amount of
energy, and the oscillation frequency will tend to a finite infinite-wavelength limit. Moreover, even
an initially localized disturbance will produce long-range effects, leading to a finite oscillating flux
across any large sphere.

This particular model is very similar to the well known example of the condensed Bose gas at finite |
density p. This is a broken symmetry theory in which the particle number symmetry is broken by

setting <y > = p e'* . As before, the parameter o labels the var10us degenerate ground states. At |
zero temperature, one can use the Bogoliubov approximation, ** which consists in writing |
p = <>+ §’, and neglecting terms of higher than second degree in §’, just as we did for the Gold-

stone model. The frequency spectrum is then given by

w¥(k) =2-k§1 [§n+2p6(k)] . (21)

Once again, we see that the condition for a zero energy gap is precisely (20).

Now let us ask whether an analogous effect can occur in a relativistic theory. At first sight, one
might think the answer should be no, because (15) is obviously not covariant. However, it was pointed
out by Higgs, ** and by Guralnik, Hagen and Kibble, ** that this argument does not necessarily apply

to theories involving gauge fields, since for such theories it is necessary to use the radiation gauge
in which manifest covariance is destroyed. Moreover, it is precisely in this case, relying on the
analogy of nonrelativistic theories, that one should expect the Goldstone theorem to fail, since
relativistically long-range forces are described by gauge fields. In fact, it is easy to construct
examples of theories of this type which do not possess massless particles. For instance, let us
regard the original Goldstone model as describing the two real components of a charged field, and
introduce the usual electromagnetic coupling. We then have

L= %(au¢1 - eA“ ¢2)2 <+ ‘é‘(au(ﬁz +* eA“¢l)2 = V(¢12 + ¢22) - %(aVAp' . ay_Ay)z- (22)
Making the same substitution (3) as before, and again retaining only the quadratic terms, we find
L= %(aux.l)z = %mlez + %(a“‘)(z +e'r]A“)2 = %(BVA“. -9, A
Introducing a new field

1
BM=A“+53“,@, (23)
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we may write this Langrangian as
L = 3(9,x)° - sm’x® - 3(3, B, - 9,B,)° + 2e*1°B °. (24)

As before, we have a massive scalar field corresponding to the radial oscillations. However, the
massless photon field has combined with the massless Goldstone boson to produce a massive vector
excitation. This is precisely the type of behaviour which was shown by Anderson*® to be responsible
for the nonzero frequency of the plasmon modes in a superconducting electron gas.

One obvious question needs to be answered. It would of course be possible to treat this model in

a manifestly covariant fashion by using the Lorentz gauge. Then the Goldstone theorem must apply,
and one might ask what has happened to the massless particles it predicts. Indeed, if the appro-
priate modification of the Lagrangian (22) is made, then in the same approximation we find not only
the massive fields of (24), but also a pair of massless scalar fields, one of which appears with a
sign corresponding to a negative metric in Hilbert space. These fields are purely guage parts, with
vanishing matrix elements between physical states. Thus, although the theorem allows us to deduce
the existence of massless states in the Hilbert space, it does not allow us to conclude that they
correspond to physical particles.

It is interesting to verify the expected behaviour of the expectation values of commutators for this
model. In the approximation made above, the conserved current is simply

jp= en(auxz +enAy) = eznzBu. (25)

The continuity equation thus reduces to 3,,B* = 0, which is a simple consequence of the field equa-
tions. The commutators may be evaluated by using the radiation-gauge commutation relations of
¢1, ¢2, and A ;. However, a simpler method is to express yx, in terms of B u- Using the radiation
gauge condition V'A =0, we find from (23) that

a

Xz = - enV 2V, B~ (26)

The commutator function of the fields B " is

[B#(X), B, =-i [guy+ azﬂzv Ax - y; e*r). (27)

en

Hence, as expected, we find that the commutator of x, with j° has the local structure
[i°x), %(0)] = ideA(x; e?P), (28)
while that with j* has the acausal form

[ix(®), x(0)] = i(e®7?v2 - 1)v.a(x; e2?). (29)

Taking the Fourier transform, we arrive precisely at the structure (15) with w?(k) = k? + e*77, and
7 there set equal to unity.

The main conclusion, therefore, of this discussion is that in both relativistic and nonrelativistic
theories the criterion for applicability of the Goldstone theorem is the same - the absence of long-
range Coulomb-type forces. A broken symmetry theory with only short-range forces must exhibit
an energy spectrum extending down to zero, but when long-range forces are included it need not
do so.

It is a rather paradoxical feature of the relativistic broken-symmetry theories that in order to avoid
the appearance of massless particles in the excitation spectrum, it is necessary to insert fields

of zero bare mass in the original Lagrangian. Even in a theory with unbroken symmetry, the intro-
duction of Yang-Mills fields'” need not necessarily lead to the appearance of massless vector bosons
in the spectrum, as has been demonstrated by Schwinger. '® However the possibility that they might
occur was a rather undesirable feature of the theory. But as Anderson remarked, !® the problems
posed by the vanishing masses of the Yang-Mills bosons and the Goldstone bosons can in suitable
circumstances cancel each other out. Instead of the massless particles we might expect with either
separately, the introduction of both together can lead instead to the appearance of massive vector
particles.

Clearly, in view of this very suggestive result, it is interesting to ask whether the approximate
symmetries of relativistic particle physics could be explained along these lines. When we consider
a multi-dimensional symmetry group, such as SU(3), we do not in general want to break all of its
subgroups. There will remain some residual subgroup of unbroken symmetries. In this situation,
we cannot avoid the appearance of massless particles altogether. In order to remove the massless
Goldstone bosons corresponding to the broken components of the symmetry, we have to couple the
corresponding currents to vector gauge fields. For the hroken components, these fields will acquire
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a mass, but for the unbroken components the mass will remain zero. At first sight, this might
seem to be not unreasonable. For SU(3), for example, the only subgroup which is completely
unbroken is that generated by the electric charge. Thus, of the octet of gauge vector fields, we
should expect just one to be massless - the electromagnetic field. Unfortunately, however, a closer
examination quickly reveals that this idea is subject to very grave difficulties. For, if we neglect
electromagnetic and weak interactions, then the unbroken symmetry is the SU(2) x U(1) isotopic
spin and hypercharge group. In this approximation, four of the eight vector fields would be massless.
Moreover, even including electromagnetic symmetry-breaking, we have a U(1) X U(1) group
generated by the third component of the isospin and the hypercharge, and therefore two massless
fields. Thus, although four of the vector bosons might reasonably be expected to have large masses,
we should expect two to have masses of purely electromagnetic origin, and one to have a mass due
only to the weak symmetry breaking. It hardly needs to be said that masses of the order of magni-
tude these arguments would suggest are quite as badly in disagreement with observation as strictly
zero masses would be.

A generalization of the Goldstone model which illustrates this behaviour of the masses has been
discussed by Higgs. We consider an octet of scalar fields ¢, possibly with some SU(3)-invariant
self-interaction, and an octet of gauge vector fields A, " coupled to the corresponding conserved
currents. The symmetry may be broken by requiring a non-vanishing expectation value for ¢;. By
an appropriate SU(3) transformation we can arrange that the only non-zero components are <¢g>
and <¢3>. These may be taken to represent the medium strong and electromagnetic symmetry
breaking respectively. (The effect of weak symmetry breaking is not included in this model.) The
vector mesons then separate into three doublets with squared masses proportional to |<¢;>|? and

l<% ¢s +3¢3>|?, while the two corresponding to unbroken components, Agy and Ay, are massless.

It appears therefore that massless particles in one guise or another present a formidable obstacle
to the interpretation of the approximate isospin and SU(3) symmetries as broken symmetries of
the type discussed here. At present, the only way round the difficulty would seem to be to invoke
Schwinger's argument, and suppose that the unwanted massless vector bosons are absent for some
dynamical reason. This, however, does not get us very far, since as yet we do not understand the
dynamics.

Before concliding, I ought to mention the possibilities of broken symmetry theories in which the
symmetry is a space-time symmetry. There is no difficulty whatsoever associated with the breaking
of discrete symmetries such as parity or charge conjugation. For example, if the Lagrangian were
CP invariant, the observed violation of CP could be interpreted as being due to the non-invariance
of the vacuum under this transformation. In this case, however, we would have only two vacua,
rather than an infinite number, and there would be no Goldstone bosons. The non-~invariance of the
vacuum could be expressed by requiring a nonzero expectation value for some field odd under CP,
Such an interpretation might perhaps throw some light on the structure of the theory, although it

is formally rather empty, since any CP-violating theory can readily be embedded in a broken sym-
metry theory of this type.

Much more interesting is the possibility of breaking the symmetries associated with the continuous
Lorentz transformations. This is obviously a rather dangerous thing to do, because, unlike isospin
or SU(3), the Poincaré group represents, so far as we know, an exact symmetry group. It is,
however, possible to break this symmetry without necessarily violating the observed Lorentz
invariance. This can be shown explicitly for the case of the Bjorken model, *° in whlch the electro-
magnetic interaction is replaced by a direct point interaction of the form goj*(x)j ,(x). The Lorentz
invariance is broken by requiring <j , .~ = My # 0. The theory is formally equivalg t as was shown
by Guralnik®®, to ordinary electrodynamics in the presence of a constant external potent1a1

A"’" = go1,,. The fact that this theory is not in contradiction with observed Lorentz invariance is
essentmu‘; an expression of the unobservability of a constant potential. As in previous cases, the
representation based on different values of 1y are mathematically inequivalent, but physically
indistinguishable. It is interesting to note that one can carry over to this model the previous inter-
pretation of the Goldstone bosons. In this case, because the symmetry-breaking parameter is a
vector, the Goldstone bosons have vectorial character, and are of course simply photons. They
may be identified with oscillations in the symmetry-breaking parameter 7,,. In other words, the
photons are to be regarded as oscillations in the external field about its vacuum value Bony -

It is important to note that this particular theory has a number of unusual features which conspire
in a rather remarkable way to avoid any contradiction with Lorentz invariance. In general, one
could hardly expect this to be true, and the scope for theories in which rotational symmetry is
broken must be very strictly limited. Indeed, it would not be unreasonable to say that this theory
is consistent only because it can be reformulated in a manner which makes no reference to sym-
metry breaking. 2

L3
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Our conclusions, then, are perhaps somewhat pessimistic, at least in regard to possible applica-
tions of broken symmetry theories. The photon, if we wish, can be regarded as a kind of Goldstone
boson, but whether this is useful is not altogether clear. In most ordinary broken symmetry theories,
the scalar Goldstone bosons are usually an embarrassment. They can be eliminated by introducing
long -range forces, represented by gauge vector fields, but then these fields must be coupled to

every component of the current associated with the symmetry group, and the massless fields coupled
to unbroken components remain to plague us. However, at least we now know where we stand in
relation to the Goldstone theorem, which has been divested of its aura of mysticism, and instead

has taken root in the solid ground of nonrelativistic physics,

I wish to acknowledge the value of many conversations with Dr. G.S. Guralnik on the subjects dis-
cussed in this lecture.
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