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The term 'broken symmetry', in the sense in which I shall use it, signifies not merely an approximate 
symmetry, but rather an exact symmetry of the Lagrangian or Hamiltonian which is not shared by 
the vacuum or ground state. Theories of this type, in which the ground state is degenerate, have 
contributed greatly to our understanding of many non-relativistic pr oblems. The most familiar 
example is the BCS mode l of supercondu ctivity . 1 These impres s ive s uccesses naturally led to the 
hope, first expressed by Nambu, i that. similar theories might be usefu l in the descr iption of some 
of the observed approximate symmetries of relativistic particle physics. A large number of relati­
vistic broken symmetry models have been investigated, 3 but there remain considerable difficulties 
in the way of applying them to real physical problems. In this lecture, I wish to discuss some general 
features of these theories, and review the present situation. 

It was realized at an early stage that relativistic broken symmetry models always seemed to exhibit 
massless particles in the excitation spectrum. This is the statement of the Goldstone theorem, 4 

which was proved by Goldstone, Salam and Weinberg, 5 and by Bludman and Klein. 6 Since very few 
massless particles are believed to exist, this theorem would seem to drastically circumscribe the 
field of applicability of broken symmetry theories. Now, although the original proofs of the theorem 
relied on the use of relativistic invariance, they can easily be extended to cover non-relativistic 
cases also. 7 The theorem would then predict the existence of a branch of the excitation spectrum 
whose energy tends to zero in the limit of infinite wavelength. However, such excitations are known 
to be absent in many real superconducting systems, and it therefore became apparent that there 
must be some flaw in the assumptions or proof of the Goldstone theorem. Various explanations for 
this phenomenon were advanced, but it has now become clear that the relativistic and nonrelativistic 
situations do not differ in any essential respect. In either case, the zero-energy excitations pre­
dicted by the theorem may be eliminated by the presence of long-range forces. The precise way in 
which this happens is one of the main items I wish to discuss . 

• 
Before turning to the Goldstone theorem in its general form, it will be helpful to recall how the 
massless particles appear in a specific case. Let us consider Goldstone 's original model4 described 
by the Lagrangian density 

(1) 

which is clearly invariant under rotations in the cp 1 -cp2 space. If V has a maximum at ¢ 3 = 0, and 
a minimum at some other value, then we may expect that in the ground state the expectation value 
of ¢will not be zero, but rather will be approximately equal to the value at which V has a minimum. 
Clearly, because of the invariance, there must be an infinitely degenerate set of ground states, 
with expectation values corresponding to all the points round the circle on which V has its minimum. 
From the equations of motion, one easily derives the consistency requirement 

< av/0¢1> = o (2) 

which serves to fix the magnitude of < ¢ > . The various degenerate ground states are labelled by a 
phase angle a, and characterized by the expectation values 

<</Ji> = 7]COSO!, 

with 71 determined by (2). To be specific, we shall choose a = 0. 
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To find the qualitative features of the spectrum, one can use a Hartree-like approximation, setting 

(3) 

and retaining only the quadratic terms in xi and x2 in the Lagrangian. The one finds 

(4) 

where m2 is determined by the curvature of Vat its minimum. Clearly, there are massive excita­
tions corresponding to oscillations in the radial Xi direction, while the mass of the transverse x2 

oscillations is zero because of the vanishing curvature of the potential surface in that direction. 
These modes may also be regarded as oscillations in the phase angle a. Analogous modes appear 
in any broken symmetry theory. For example, in a ferromagnet the analogue of the phase angle is 
the magnetization direction, and the corresponding modes represent spatial distortions of this 
direction. Their frequency should tend to zero in the infinite wavelength limit. 

We may note another feature of this theory. The conserved current corresponding to the rotational 
symmetry of the Lagrangian is 

which in the approximation made above reduces to 

(5) 

Thus j 0 is linear in the field variables, and its spatial integral over all space diverges. It follows 
that the various degenerate ground states, which are formally related by the unitary operator formed 
by exponentiating tl1ls integral, actually belong to different Hilbert spaces, and correspond to uni­
tarily inequivafen.t representations of the algebra of field operators. This kind of behhaviour is a 
general feature of broken symmetry theories, 8 and is well known in the case of the BCS model. 0 

Now let us turn to the general proof of the Goldstone theorem. From the invariance of L, one can 
infer the existence of a current j µ(x) satisfying the continuity equation 

(6) 

(For the present, we consider only a one-parameter subgroup of the invariance group of the Lagran­
gian.) The spatial integral of j 0 over any finite volume V, 

Qv (t) = J d3x j 0 (t, x), (7) 
v 

must generate the transformation of the field operators within V, 

- i [ Qv (t), cp(t, y)] l 
= (j cp(t, y), y E V, 

= 0, y EV. 

(8) 

Note that the representations corresponding to different degenerate ground states are equivalent 
within any finite volume - and therefore physically equivalent. From (8), we obtain the equal-time 
commutation relation 

- i [j 0 (t, x), cp(t, y)] = 6¢(t, y) 63(x - y). (9) 

The broken symmetry condition may be expressed by requiring that the variation of some designated 
operator A have a non-vanishing expectation value in the ground state, < oA> /, 0. In practice, one 
may often choose A to be one of the local dynamical variables, say cf>, and for simplicity we shall 
assume this to be the case. However, the proof goes through in a straightforward manner for any 
operator A which is a function of the field variables within a finite volume of space. Because of the 
assumed translational invariance of the ground state, the expectation value must be independent 
of position in space-time. Thus we require 

<ocp(t, x)> = 7l /, o, (10) 

which in turn implies that the expectation value of the commutator function (9) is non-zero. 

Let us now examine the Fourier transform of this ,commutator expectation value, 
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which by the continuity equation (6) must satisfy 

0. (11) 

From (9) and (10), we deduce the sum rule 

f :~ f
0
(w, k) = 71, (w = k 0

) (12) 

valid for each value of k. (If we had chosen some operator A other than a local field operator, this 
integral would not be independent of k, but would still be a continuous (indeed, entire) function of 
k, with the value 71 at k = 0.) It is worth noting that this sum rule is sufficient to exclude the possi­
bility of a term in fJl proportional to o4 (k), thus contradicting one of the suggested mechanisms for 
avoiding the conclusions of the Goldstone theorem. 10 

In a manifestly covariant theory, one must require that f 11 (k) be proportional to the only available 
vector, namely kµ- Then from (11) it follows that it must also contain a factor o(k2

). Thus, using 
(12), we find 

(13) 

where ~ is arbitrary (unless we invoke time-reversal invariance). Thus there is a non-zero contri­
bution from states with k2 = O, and therefore there must exist massless particles in the spectrum. 

Even without invoking the requirement of covariance, we may take the limit k-+ 0 in the continuity 
equation, .. 

and hence deduce that 

wf0(w, k) - k·f(w, k) = O, 

lim f0(w, k) = 27T71o(w), 
k-+O 

(14) 

provided only that f(w, k) is non-singular in this limit. This is the non-relativistic form of the 
Goldstone theorem, which asserts the existence of a branch of the excitation spectrum whose energy 
tends to zero as k --+ O (zero energy gap). 

The assumption that f is non-singular is evidently crucial. In fact, if we relax this assumption, 
then it is easy to obtain functions satisfying both (11) and (12). For example, if w(k) is any given 
excitation spectrum, then we may take 

f 0(w, k) = 27T71lwlo(w2 
- w2 (k)), 

w2 
f(w, k) = 27T71k k 2 e(w)o(w2 

- w2 (k)). 

Clearly, if w (O) = w0 -f O, then f will be singular ask-+ 0. 

(15) 

Before discussing the conditions under which this can happen, it will be useful to rephrase the dis­
cussion in terms of coordinate space, as was done by Guralnik, Hagen and Kibble, 11 and for the 
non-relativistic case by Lange. 12 The condition (14) is equivalent to the time-independence of the 
integral 

- i J d3x <[ j 0(t, x), cf>(O, O)] > (16) 

Note that this integral always exists, even though the integral of j 0 itself diverges. This time inde­
pendence follows from the continuity equation if and only if the surface integral 

i f dS· <[j (t, x), cp(O, O)] > (17) 

tends to zero in the limit of infinite volume. This condition is obviously equivalent to the condition 
k·f --1 0 ask -+ 0. 

It is clear that we should expect the limit of (17) to vanish, except possibly in the presence of long­
range forces. Indeed, it can be shown that if the forces are of limited range, then it must tend to 
zero, and the Goldstone theorem must apply. 13 Moreover, the examination of specific cases shows 
that when there are long-range Coulomb-type forces, then the condition is generally violated, and 
fµ. has a form similar to (15) with non-zero Wo. 

21 



As a simple example which clearly exhibits this type of behaviour, let us consider the model des­
cribed by the Hamiltonian 

H = t j d3x [ 7T
2 (t, x) + ( v ¢)2 (t, x)] + t J d3x d3y 1T(t, x)V(x - y)7r(t, y). (18) 

It is invariant under the transformation cp(x) -+ cp(x) + c, but clearly < <P > is not. Thus we have a 
broken symmetry, albeit of a somewhat trivial kind. For this model the conserved current is given 
by j 0 = - 1T and j = vcp. Thus 

- i [j 0(t, x), ¢(t, y)] = 6 3(x -y), 

and so T/ = 1. The model is of course completely soluble, and it is easy to verify that f µ has precisely 
the form given in (15), with T/ = 1. From the equations of motion, one finds the excitation spectrum 

where V(k) is the Fourier transform of V(x). Thus w (0) = 0 if and only if 

um k 2V(k) = o, 
k -o 

(19) 

(20) 

or, in other words, for short-range potentials. The Coulomb potential is evidently the limiting case. 

This example shows that in the presence of long-range forces the surface integral (17) need not tend 
asymptotically to zero, and (16) need not be time-independent. In fact, when w 0 differs from zero, 
(16) oscillates at the frequency w 0 • This result is easy to understand physically. The Goldstone bosons 
correspond, as we have seen, to oscillations in the phase parameter which labels the various degen­
erate ground states. For example, in the case of the ferromagnet, which is particularly easy to 
visualize, they& correspond to oscillations in the magnetization direction. Now let us consider the 
introduction of a distortion of this parameter which varies slowly with position. If the forces are 
of finite range, this requires essentially no energy, and will lead to oscillations of nearly zero 
frequency. This is not the case, however, in the presence of long-range forces. Then, any small 
part of the system is affected not merely by its immediate surroundings but by distant regions as 
well. Thus even a distortion which varies very slowly with position requires a finite amount of 
energy, and the oscillation frequency will tend to a finite infinite-wavelength limit. Moreover, even 
an initially localized disturbance will produce long-range effects, leading to a finite oscillating flux 
across any large sphere. 

This µirticular model is very similar to the well known example of the condensed Bose gas at finite 
density p. This iis a broken symmetry theory in which the particle number symmetry is broken by 
setting <I/!>= p e 1

., • As before, the parameter Ci labels the various degenerate ground states. At 
zero temperature, one can use the Bogoliubov approximation, 14 which consists in writing 
ljJ = <I/!> + 1//, and neglecting terms of higher than second degree in l/J', just as we did for the Gold­
stone model. The frequency spectrum is then given by 

k2 [k2 - ] w2(k) = 2m 2m + 2pV(k) (21) 

Once again, we see that the condition for a zero energy gap is precisely (20). 

Now let us ask whether an analogous effect can occur in a relativistic theory. At first sight, one 
might think the answer should be no, because (15) is obviously not covariant. However, it was pointed 
out by Higgs, 15 and by Guralnik, Hagen and Kibble, 11 that this argument does not necessarily apply 
to theories involving gauge fields, since for such theories it is necessary to use the radiation gauge 
in which manifest covariance is destroyed. Moreover, it is precisely in this case, relying on the 
analogy of nonrelativistic theories, that one should expect the Goldstone theorem to fail; since 
relativistically long-range forces are described by gauge fields. In fact, it is easy to construct 
examples of theories of this type which do not possess massless particles. For instance, let us 
regard the original Goldstone model as describing the two real components of a charged field, and 
introduce the usual electromagnetic coupling. We then have 

L = t(aµ¢1 - eAµ ¢2)2 + i(aµ¢2 + eAµ¢1) 2 - V(¢12 + ¢22) -t(a 11Aµ - aµA 11)
2. (22) 

Making the same substitution (3) as before, and again retaining only the quadratic terms, we find 

L = t(aµx1) 2 - im2x12 + t(aµx2 +eriAµ)2 -t(avAµ - aµA 11 )2 

Introducing a new field 

22 

(23) 



we may write this Langrangian as 

(24) 

As before, we have a massive scalar field corresponding to the radial oscillations. However, the 
massless photon field has combined with the massless Goldstone boson to produce a massive vector 
excitation. This is precisely the type of behaviour which was shown by Anderson16 to be responsible 
for the nonzero frequency of the plasmon modes in a superconducting electron gas. 

One obvious question needs to be answered. It would of course be possible to treat this model in 
a manifestly covariant fashion by using the Lorentz gauge. Then the Goldstone theorem must apply, 
and one might ask what has happened to the massless particles it predicts. Indeed, if the appro­
priate modification of the Lagrangian (22) is made, then in the same approximation we find not only 
the massive fields of (24), but also a pair of massless scalar fields, one of which appears with a 
sign corresponding to a negative metric in Hilbert space. These fields are purely guage parts, with 
vanishing matrix elements between physical states. Thus, although the theorem allows us to deduce 
the existence of massless states in the Hilbert space, it does not allow us to conclude that they 
correspond to physical particles. 

It is interesting to verify the expected behaviour of the expectation values of commutators for this 
model. In the approximation made above, the conserved current is simply 

(25) 

The continuity equation thus reduces to a gBµ. = O, which is a simple consequence of the field equa­
tions. The commutators may be evaluated by using the radiation-gauge commutation relations of 
c/-i. ¢ 2 , and Aµ.- However, a simpler method is to express x2 in terms of Bµ.. Using the radiation 
gauge condition v·A = O, we find from (23) that 

.. 
(26) 

The commutator function of the fields B µ. is 

(27) 

Hence, as expected, we find that the commutator of x2 with j 0 has the local structure 

[ j 0{x), x2(0)] = iOoA(x; e2rf), {28) 

while that with jk has the acausal form 

(29) 

Taking the Fourier transform, we arrive precisely at the structure (15) with w2 (k) = k2 + e2rf, and 
17 there set equal to unity. 

The main conclusion, therefore, of this discussion is that in both relativistic and nonrelativistic 
theories the criterion for applicability of the Goldstone theorem is the same - the absence of long­
range Coulomb-type forces. A broken symmetry theory with only short-range forces must exhibit 
an energy spectrum extending down to zero, but when long-range forces are included it need not 
do so. 

It is a rather paradoxical feature of the relativistic broken-symmetry theories that in order to avoid 
the appearance of massless particles in the excitation spectrum, it is necessary to insert fields 
of zero bare mass in the original Lagrangian. Even in a theory with unbroken symmetry, the intro­
duction of Yang-Mills fields 17 need riot necessarily lead to the appearance of massless vector bosons 
in the spectrum, as has been demonstrated by Schwinger. 18 However the possibility that they might 
occur was a rather undesirable feature of the theory. But as Anderson remarked, 18 the problems 
posed by the vanishing masses of the Yang-Mills bosons and the Goldstone bosons can in suitable 
circumstances cancel each other out. Instead of the massless particles we might expect with either 
separately, the introduction of both together can lead instead to the appearance of massive vector 
particles. 

Clearly, in view of this very suggestive result, it is interesting to ask whether the approximate 
symmetries of relativistic particle physics could be explained along these lines. When we consider 
a multi-dimensional symmetry group, such as SU(3), we do not in general want to break all of its 
subgroups. There will remain some residual subgroup of unbroken symmetries. In this situation, 
we cannot avoid the appearance of massless particles altogether. In order to remove the massless 
Goldstone bosons corresponding to the broken components of the symmetry, we have to couple the 
corresponding currents to vector gauge fields. For the J:µ-oken components, these fields will acquire 
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a mass, but for the unbroken components the mass will remain zero. At first sight, this might 
seem to be not unreasonable. For SU(3), for example, the only subgroup which is completely 
unbroken is that generated by the electric charge. Thus, of the octet of gauge vector fields, we 
should expect just one to be massless - the electromagnetic field . Unfortunately, however, a closer 
examination quickly reveals that this idea is subject to very grave difficulties. For, if we neglect 
electromagnetic and weak interactions, then the unbroken symmetry is the SU(2) x U(l) isotopic 
spin and hypercharge group. In this approximation, four of the eight vector fields would be massless . 
Moreover, even including electromagnetic symmetry-breaking, we have a U(l) x U(l) group 
generated by the third component of the isospin and the hypercharge, and therefore two massless 
fields. Thus, although four of the vector bosons might reasonably be expected to have large masses, 
we should expect two to have masses of purely electromagnetic origin, and one to have a mass due 
only to the weak symmetry breaking. It hardly needs to be said that masses of the order of magni­
tude these arguments would suggest are quite as badly in disagreement with observation as strictly 
zero masses would be. 

A generalization of the Goldstone model which illustrates this behaviour of the masses has been 
discussed by Higgs. We consider an octet of scalar fields ¢1, possibly with some SU(3)-invariant 
self-interaction, and an octet of gauge vector fields Aiµ coupled to the corresponding conserved 
currents. The symmetry may be broken by requiring a non-vanishing expectation value for ¢1 . By 
an appropriate SU(3) transformation we can arrange that the only non-zero components are < ¢e > 
and <¢3 > . These may be taken to represent the medium strong and electromagnetic symmetry 
breaking respectively. (The effect of weak symmetry breaking is not included in this model.) The 
vector mesons then separate into three doublets with squared masses proportional to J<¢3 > 12 and 

J< ~ </Je ± ~¢3> 12
, while the two corresponding to unbroken components, Aeµ and A3µ, are massless . 

It appears therefore that massless particles in one guise or another present a formidable obstacle 
to the interpretation of the approximate isospin and SU(3) symmetries as broken symmetries of 
the type discussed here. At present, the only way round the difficulty would seem to be to invoke 
Schwinger's argument, and suppose that the unwanted massless vector bosons are absent for some 
dynamical reason. This, however , does not get us very far, since as yet we do not understand the 
dynamics. 

Before concluding, I ought to mention the possibilities of broken symmetry theories in which the 
symmetry is a space-time symmetry. There is no difficulty whatsoever associated with the. breaking 
of discrete symmetries such as parity or charge conjugation. For example, if the Lagrangian were 
CP invariant, the observed violation of CP could be interpreted as being due to the non-invariance 
of the vacuum under this transformation. In this case, however , we would have only two vacua, 
rather than an infinite number, and there would be no Goldstone bosons . The non-invariance of the 
vacuum could be expressed by requiring a nonzero expectation value for some field odd under CP. 
Such an interpretation might perhaps throw some light on the structure of the theory, although it 
is formally rather empty, since any CF-violating theory can readily be embedded in a broken sym­
metry theory of this type. 

Much more interesting is the possibility of breaking the symmetries associated with the continuous 
Lorentz transformations. This is obviously a rather dangerous thing to do, because, unlike isospin 
or SU(3), the Poincare group represents, so far as we know, an exact symmetry group. It is, 
however, possible to break this symmetry without necessarily violating the observed Lorentz 
invariance . This can be shown explicitly for the case of the Bjorken model, 19 in which the electro­
magnetic interaction is replaced by a d11·ect point interaction of the form g0j µ(x)j µ (x). The Lorentz 
in var lance is broken by requiring < j µ. > = T) /!. f. 0. The theory is formally equivalent, as was shown 
by Guralnik20

, to ordinary electrodynamics in the presence of a constant external potfim~ial 
A~t = go11 . The fact that this theory is nol ln contradiction with observed Lorentz invariance is 
essentiatlY an expression of the unobse1·val:>lllty of a constant potential. As in previous cases, the 
representation based on different values of TJµ are mathematically inequivalent, but physically 
indistinguishable. It is interesting to note that one can carry over to this model t he previous inter­
pretation of the Goldstone bosons. In this case, because the symmetry-breaking parameter is a 
vector, the Goldstone bosons have vectorial char~cter, and are of course simply photons. They 
may be identified with oscillations in the symmetry-breaking parameter 11µ- In other words, the 
photons are to be regarded as oscillations in the external field about its vacuum value goTJµ-

It is important to note that this particular theory has a number of unusual features which conspire 
in a rather remarkable way to avoid any contradiction with Lorentz invariance. In general, one 
could hardly expect this to be true, and the scope for theories in which rotational symmetry is 
broken must be very strictly limited. Indeed, it would not be unreasonable to say that this theory 
is consistent only because it can be reformulated in a manner which makes no reference to sym-
metry breaking. 21 

· 
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Our conclusions , then, are perhaps somewhat pessimistic , at least in regard to possible a pplica­
tions of broken s ymmetry theories . The photon, if we wish, can be regarded as a kind of Goldstone 
boson, but whether this is useful is not altogether clear. In most ordinary broken symmetry theories , 
the scalar Goldstone bosons are usually an embarrassment. They can be eliminated by introducing 
long-range for ces, represented by gauge vector flelds, bul U1en these fields must be coupled to 
every compone nt of the current associated with t he symmetry group, and the mass less fields coupled 
to unbroke n components remain to plague us. However, at least we now know where we stand in 
relation to the Goldstone theorem, which has been divested of its aura of mysticism, and instead 
has taken root in the solid ground of nonrelativistic physics. 

I wish to acknowledge the value of many conversations with Dr . G.S. Guralnik on the subjects dis­
cussed in this lecture. 
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