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Abstract. Non-Hermitian fermion Hamiltonian with γ5 mass extension is studied. The

connection of this PT -symmetrical pseudo-Hermitian model with the geometrical theory

with maximal mass is established. The interaction of modified Dirac particles with the

external magnetic field is considered. In particular, modified neutrinos is under studying.

The results of neutrinos mass values measurements are explained.

1 Introduction

It is well known fact that the most important recent experimental data are the following:

1). approximately only 5 % of the mass density of the Universe is consistent with the mass of

known particles;

2). neutrinos have a nonzero mass.

This new knowledge put serious questions for investigators. The Standard Model can not present

the cardinal decision of these problems. Here we suggest to find this decision with the help of so-

called theory with the maximal mass. We suppose that this theory will can become something like

"Standard Model in the curved p-space". But this is a far future, now we study the simple variant of

this model.

It is possible to say that the theory with the maximal mass consists of two parts: Geometrical

Theory and Algebraic one. We should consider shortly both of them here.

2 Geometrical Theory with Maximal Mass

The history of theory with maximal mass began in 1965, when Markov suggested a hypothesis that

mass spectrum of elementary particles should be cut off at the Planck mass MPlanck ≈ 1019GeV [1].

He named the particle with the maximal mass maximon.

The next step was made by Kadyshevsky in 1978. He proposed "geometrical approach" for build-

ing of the theory [2]. It means that Minkowski planar 4-dimensional p-space is replaced by the curved

momentum 4-space which is the hyperboloid surface in a 5-dimensional p-space,

p2
0 − p2

1 − p2
2 − p2

3 + p2
5 = M2, (1)
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where M is the curvature radius of the 5-dimensional hyperboloid. It is called the space of anti-de

Sitter. Note, that in the approximation

|p0|, |−→p | � M, p5 � M (2)

anti-de Sitter geometry is transformed into Minkowski geometry in the 4-dimensional pseudo-

Euclidean p-space (the so called "planar limit").

The postulate that the objects with masses m larger than M cannot be considered as elementary

particles, since no local fields correspond to them, is accepted:

m ≤ M. (3)

In this theory it becomes the fundamental principle together with the ordinary postulates of quantum

theory. The parameter M is named maximal mass here. It corresponds to the mass of maximon.

Note, that for a free particle, p2
0 −

−→p 2 = m2, condition (3) is automatically satisfied on surface (1).

The development of this theory ([3]–[14]) leads to the following facts. One of the main features

of the Geometrical Theory fermion sector is that the Dirac operator becomes modified [3],

D(p, p5) ≡ pnγ
n − (p5 − M)γ5 + 2Msin

μ

2
, (4)

where cos μ =
√

1 − m2

M2 . Easy to see, that in "planar limit" M → ∞ (see also (2)) modified D(p, p5)

becomes ordinary Dirac operator D. Modified equations of motion corresponding to operator (4) in

the Hamiltonian form are the following,(
p0 − α̂p − β̂m1 − β̂γ5m2

)
Ψ(x, t, x5) = 0. (5)

Here the matrices β̂ = γ0, γi = β̂α̂i, and we have notation

m1 = 2M sin μ/2, m2 = 2M sin2 μ/2, (6)

and pμ = i∂μ.

The another specific feature of Geometrical Theory is the existence of so-called the exotic Dirac
operator in it [3]. It has the following form,

Dexotic(p,M) = pνγν + (p5 + M)γ5 − 2M cos(μ/2), (7)

and the corresponding equation of motion(
p0 − α̂p − β̂m3 − β̂γ5m4

)
Ψex(x, t, x5) = 0, (8)

where m3 = 2M cos μ/2,m4 = 2M cos2 μ/2. In planar limit exotic operator and exotic equation don’t

come to ordinary Dirac operator and Dirac equation of motion. So one can propose that they associ-

ated with some fermion fields that has no analogues in Standard Model. They were named as exotic
fermions. It is proposed that they put a contribution to the Dark Matter in the Universe.

In the quantum mechanical approximation, the Hamiltonians corresponding to modified equations

of motion for ordinary and exotic fermion fields can be represented in the following form:

Ĥ =
−→̂
α−→p + β̂ (m1 + m2γ5) , (9)

  
 

  
DOI: 10.1051/,125 12505012EPJ Web of Conferences epjconf/201605012 (2016)

QUARKS-2016

2



Ĥexotic =
−→̂
α−→p + β̂ (m3 + m4γ5) . (10)

Easy to see that these expressions turn out to be non-Hermitian due to the γ5-mass terms. In summary,

we can conclude that the Geometric Theory leads to the emergence of non-Hermitian Lagrangian in

the fermion sector. It seems to be crucial point of the theory, but the solution of the problem was

found.

3 Algebraic Theory with Maximal Mass

At the end of 90th and in the early 2000-ies a group of mathematicians found a solution to this

problem. They proved that if the model isn’t Hermitian but is PT-symmetrical [15], [16] or pseudo-

Hermitian
(
η0Hη−1

0 = H†, η0 is linear Hermitian operator
)

[17], so the average of Hamiltonian can

become real in new scalar product, which is modified due to special operator C. The formula for this

operator was found. This method appears to be very powerful, so such models become very popular

(see, for example, [18]–[37]).

So it is possible to apply this technique for investigation of non-Hermitian fermionic model which

arises in Geometrical Theory with Maximal Mass.

Let’s try to study our Hamiltonian (9) at the algebraic theory point of view. 1 We’ll call it the

Algebraic Theory with the physical mass (mass of the particle) m2 = m2
1 −m2

2. One can easily see that

these Hamiltonians are not Hermitian, but PT -symmetrical and pseudo-Hermitian with

η0 = eαγ5 , where α is defined as m1 = m chα; m2 = m shα (11)

(see [38], [39], [40]). It is so-called non-disturbed PT-symmetry in the theory when m is real, t.e.

m2
1 ≥ m2

2.
Very important feature of Algebraic Theory is that there exists a parameter of maximal mass in it.

Indeed, due to simple mathematical manipulations one can find ([39], [40]), that

m ≤
m1

2

2m2

≡ mmax. (12)

This formal estimation becomes the physical one due to the postulate which we propose: mmax must be
equal to M in Geometrical Theory. So these two theories become equivalent (at least, on this simple

level). This fact allows to Algebraic Theory to find a physical sense, and to Geometrical Theory

to solve the problem of non-Hermitian Hamiltonian in fermion sector. But for understanding this

equality it is necessary to put the postulate mmax = M in the theory for all particles [39], [40]. In this

case M have to be maximal mass for all the elementary particles mass spectrum.

Due to parametrization (11) the parameters m1, m2 can be re-expressed through another two ones:

m and mmax,

m∓
1 =

√
2mmax

√
1 ∓
√

1 − m2/m2
max; (13)

m∓
2 = mmax

(
1 ∓
√

1 − m2/m2
max

)
. (14)

So if we know the physical mass of a particle and the mass of maximon, we can calculate the param-

eters m1, m2 for Hamiltonian (9). But obviously we have two values of the parameters m1, m2 for

1See also [27]
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each value of m. It means that in Algebraic Theory exotic particles also arise, such as in Geometrical

one [40]. The high sign in formulas (13), (14) corresponds to ordinary particles, and the down sign to

exotic fermions. This fact is the indirect confirmation of the equality Geometrical (in fermion sector)

and Algebraic Theories. Even more, if in the formulas (13), (14) we use M instead of mmax, we get

the correspondence (equality) of the parameters in Algebraic and Geometric Theories,

m−
1 ↔ m1, m+1 ↔ m3, m−

2 ↔ m2, m+2 ↔ m4. (15)

As we note above, the exotic particles are the candidates for Dark Matter in the Universe. Of

course, maximon have to put contribution to Dark Matter too.

Easy to see also that modified Dirac Hamiltonian Ĥ in algebraic theory with maximal mass and

ordinary Dirac Hamiltonian Ĥ0 are connected by the following transformations,

Ĥ0 = ηĤη−1, Ĥ0 = η
−1Ĥ†η, η = eαγ5/2 (16)

(see [38], [39], [41]). Note that η isn’t unitary, so this modified Dirac model and ordinary Dirac model

are not equivalent. 2

Using a common algebraic theory [17], one can find C-operator for the definition of modified

scalar product,

C = η0
−1P = e−αγ5γ0. (17)

It is possible to demonstrate that the new scalar product is positive defined and the average values of

the Hamiltonian (9), (10) are real [40].

Also the eigenvalues and eigenvectors for free modified Dirac Hamiltonian were found [40], [43],

[44]. The law of the current density continuity was obtained [45].

All these problems were solved for the algebraic model with maximal mass, where fermionic

fields interact with the external magnetic field. Namely, let’s study modified fermion without spin in

the homogeneous magnetic field 	H = (0, 0,H). The electromagnetic field potentials in gauge [46]

can be chosen in the following form: A0 = 0, A1 = 0, A2 = H x1, A3 = 0. Considering the equation

Hψ̃ = Eψ̃, (18)

where

H = (−→α
−→
P) + βm1 + βγ5m2, (19)

and Pμ = i∂μ − eAμ ; e = −|e|, one can find ([45], [47], [48], [49], see also review [50])

E = ±
√

m1
2 − m2

2 + 2γn + p3
2, (20)

where n = 0, 1, 2... and γ = |e|H . Taking into account that m2 = m1
2 −m2

2, we can see that this result

coincides with the eigenvalues of the Hermitian Hamiltonian describing Landau relativistic levels

(see, e.g., [46]).

The situation is cardinally changed when the spin of the fermion is taken into account. We consider

the Hamiltonian [47], [48], [51]

HΔμ = 	α	P + β(m1 + γ5m2) + Δμβ(	σ 	H), (21)

where Δμ = (μ − μ0) = μ0(g − 2)/2. Here, μ is the magnetic moment of the fermion, g is the

gyromagnetic factor of the fermion, μ0 = |e|/2m is the Bohr magneton, and andσμν = i/2(γμγν−γνγμ).

2See, for comparison, [42].
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Thus, the phenomenological constant Δμ introduced by Pauli is a part of the equation and can be

interpreted from the point of view of the quantum field theory. Taking into account the quantum

electrodynamic contribution into the anomalous magnetic moment of the electron to e2, we have

Δμ = α
2π
μ0, where α = e2 = 1/137 is the fine structure constant, and it is still assumed that the

external field potential satisfies the free Maxwell equation. As it was shown in paper [45], [48], with

the help of the modified Dirac-Pauli equation we can find the exact values of the energy spectrum for

the Hamiltonian (21),

E(ζ, p3, 2γn,H) = ±

√
p3

2 − m2
2 +

[√
m1

2 + 2γn + ζΔμH
]2
, (22)

where ζ = ±1 characterizes the fermion spin projection onto the magnetic field direction.

For the case of neutral particles with anomalous magnetic moment it is necessary to replace the

value of the quantized transverse momentum of a charged particle in a magnetic field by the regular

value, 2γn → p1
2 + p2

2 = p⊥2. As a result, we obtain [47], [51]

E(ζ, p3, p⊥,H) = ±

√
p3

2 − m2
2 +

[√
m1

2 + p⊥2 + ζΔμH
]2
. (23)

Namely, the estimations were found for the neutrinos ([40], [50]), [52].

Formulas (22), (23) show that taking into account of the spin with the magnetic field interaction

allows us to separate the variables m1 and m2 (m∓
1 and m∓

2 ), and therefore, separate ordinary and exotic

particles. This means that for the observation of exotic particles it is not necessary ultra-high energy.

It is necessary the presence of the anomalous magnetic moment of the particles and it’s interaction

with the magnetic field. It’s very important to emphasize that the experiment, in which the exotic

fermions may be observable, proves the existence of Maximal mass.

4 Algebraic Theory and Experiment

The neutrinos mass observation may become experiment mentioned above [53]. Just the existence of

the exotic particles in the theory allows to explain the experiments for the neutrino mass observations.

Really, using (23) one could write for neutrino mass square in the magnetic field:

m̃2
ν(H) = m̃2

ν ± 4ΔμHM. (24)

We want draw attention to the fact that we deal with experiment measurements of neutrinos mass with

taking into account influence of the magnetic fields. The result of experiment depends on the spin

direction relatively magnetic field direction, and the exotic neutrinos make the principal contribution.

According to scheme of the the Troitsk experimental installation for measurement of mass the

electron antineutrino gas-tritium is injected into a long tube, where a strong magnetic field (up to H =

0.8T = 8000Gauss) is existed [54], [55]. The results of Troitsky experiment at 95% confidence (C.L.)

are the following [56]

m2
ν = −0.67 ± 1.89stat ± 1.68syst eV2. (25)

If we suggest that the beam of neutrinos partially consist of pseudo-Hermitian components exotic

neutrinos (m̃2
ν) that we can obtain the following evaluation m̃2

ν(H) = m̃2
ν − 4ΔμHM. If we consider

estimation, which follows from the ordinary experimental dates m̃ν = mν = 1eV and suppose m̃2
ν(H) =

−1eV2 so we can evaluate that 4ΔμHM � 2eV2 and moreover, estimate M � 2 · 1014 − 1015 GeV.
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5 Conclusions

In summary, we can conclude that the Algebraic Theory makes possible to describe the experimental

data of the mass squared neutrinos observations and to estimate the value of maximal mass M in the

low energies region.

So the experiments for observations of mass squared neutrinos may prove the existence of exotic

particles and confirm the restriction of elementary particles mass spectrum by the maximal mass M.
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