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Abstract 

We present a new data anal}sis method to study rectangular T3 "small universes" 
with one or two of its dimensions significantly smaller than the present horizon (which we 
refer to as T1- and T2-models, respectively). We find that the 4 year COBE/DMR data 
set a lower limit on the smallest cell size for T1- and T2-models of 3000h-1 Mpc, at 953 
confidence, for a scale invariant power spectrum ( n= 1 ) .  

1 Introduction 
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In the past few years, mainly after the discovery of CMB anisotropies by CO BE /DMR [ll ] ,  
the study of the topology of the universe has become an important problem for cosmologists and 
some hypotheses, such as the "small universe" model [4], have received considerable attention. 
From the theoretical point of dew, it is possible to have quantum creation of the universe with 
a multiply-connected topology [16]. From the observational side, this model has been used to 
explain the "observed" periodicity in the distributions of quasars [7] and galaxies [l ] .  

Almost all work on "small universes" has been limited to the case where the spatial sec­
tions form a rectangular basic cell with sides Lx, Ly, Lz and with opposite faces topologically 
connected, a topology known as toroidal. The three-dimensional cubic torus T3 is the simplest 
model among all possible multiply-connected topologies, in which all three sides have the same 
size L = Lx = Ly =  Lz. In spite of the fact that cubic T3-model has been ruled out by COBE 
results [2, 8, 12, 13, 14] , the possibility that we live in a universe with a more anisotropic 
topology, such as a rectangular torus T3, is an open option that has not been ruled out yet. 
For instance, if the toroidal model is not a cube, but a rectangle with sides Lx i= Ly i= Lz 
and with one or two of its dimensions significantly smaller than the horizon RH (= 2cH01 ) , 
this small rectangular universe cannot be completely excluded by any of the previous analyses: 
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Figure 1 :  Simulated sky maps for the T1- and T2-models and their S-maps. (A) T1-model with 
dimensions (Lx, Ly , Lz) = RH(3,3,0.3); (B) T2-model with dimensions (Lx . Ly, L2) = RH(0.3,0.3,3) ; 
(C) S-map of the T1-model shown in (A) ; (D) S-map of the T2-model shown in (B). Both models 
are plotted in galactic coordinates and have a scale invariant power spectrum (n=l) .  

constraints from the DMR data merely require that at least one of the sides of the cell be larger 
than RH · 

As pointed out by [5] and [13], if the rectangular T3-universe has one of the cell sizes smaller 
than the horizon and the other two cell sizes are of the order of or larger than the horizon (for 
instance, Lz « RH and I,. Ly � RH) ,  the values of i5T /T are almost independent of the z­
coordinate, i .e. , the large scale CMB pattern shows the existence of a symmetry plane formed 
by the x and y-axes; and if it has two cell sizes smaller than the horizon and the third cell 
size is of the order of or larger than the horizon (for instance, Lx , Ly « RH and Lz � RH) ,  
the temperatures i5T/T are aproximately independent of both x and y. i . e . ,  the CMB pattern 
shows the existence of a symmetry axis: values of i5T /T are almost constant along rings around 
the z-axis. We call the former case a T1-model because the spatial topology of the universe 
becomes just T1 in the limit Lx, Ly -t oo with Lz being fixed. The later case is denoted a 
T2-model for the same reason (the corresponding limit is Lz -t oo with Lx, Ly being fixed) . 
See Figures lA (upper left) and 1B (upper right) .  

Our goal is to show that the COBE /DMR maps haw the ability to test and rule out T1-
and T2-models. We use a new approach to study these models in which we constrain their 
sizes by looking for the symmetries that they would produce in the CMB, obtaining strong 
constraints from the 4 year COBE/DMR data. 

2 The method 

The analysis of T1- and T2-models is not an easy task, since there are infinitely many 
combinations of different cell sizes and cell orientations. In order to study these models, we 



choose a statistic in which we calculate the function S(ll;) defined by [3] 

• _ 1 N,,, [1*(ftj) - 1* (ft;j )]2 
S(n;) = -N . L C )2 + C )2 , pix j=l f7 nJ f7 n,J 
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(1) 

where Npix is the number of pixels that remain in the map after the Galaxy cut has taken place, 
ft;j denotes the reflection of ftj in the plane whose normal is ft;, i .e. , 

(2) 

and e7(ftj) and e7(ft;j) are the r.m.s. errors associated with the pixels in the directions ftj and ftij · 
S(ft;) is a measure of how much reflection symmetry there is in the mirror plane perpendicular 
to ft;. The more perfect the symmetry is, the smaller S(ft;) will be. When we calculate S(ft;) 
for all 6144 pixels at the positions ft;, we obtain a sky map that we refer to as an S-map. This 
sky map is a useful visualization tool and gives intuitive understanding of how the statistic 
S(ft;) works. 

In order to better understand S(ft;), we first consider the simple model of a T1-universe 
with L, « RH. For this specific model, the values of 6T/T are almost independent of the 
z-coordinate, so we have almost perfect mirror symmetry about the xy-plane or, in spherical 
coordinates, 6T /T ( (}, ¢) ;::::: 6T /T ( 7r - (}, ¢) . When ft; points in the direction of the smallest 
cell size (i .e . ,  in the z-direction), we have S(ft;) ;::::: 1; otherwise, S(ft;) > 1 .  An S-map for a 
T1-model (Lx, Ly, L,) = RH(3,3,0.3) can be seen in Figure lC (lower left ) .  Notice in this plot 
that the direction in which the cell is smallest can be easily identified by two "dark spots" at 
ft; ;::::: z and ft; ;::::: -z. For T2-models, the only difference will be that in the place of the two 
"dark spots" , we have a "dark ring" structure in the plane formed by the two small directions. 
See Figure lD (lower right) ,  an S-map of the T2-model (Lx, Ly, L,) = RH(0.3,0.3,3). 

From the two S-maps, we can infer two important properties: first, the direction in which the 
S-map takes its minimum value, denoted S0 , is the direction in which the universe is small. For 
a large universe such as Lx, Ly, L, � RH, the S0-directions obtained from different realizations 
are randomly distributed in the sky. Secondly, the distribution of S0-values changes with the 
cell size, i .e. , as the universe becomes smaller, the values of S0 decrease. From the definition of 
the S-map, it is easy to see that the value of S0 is independent of the cell orientation. In other 
words, if we rotate the cell, we will just be rotating the S-map, leaving its minimum value S0 
unchanged. 

From here on, we will present our results in terms of the cell sizes Rx, Ry and R,, usually 
sorted as Rx � Ry � R, and defined as Rx = Lx/RH, Ry = Ly/RH and R, = L,/RH. We 
remind the reader that the results are identical for all six permutations of Rx, Ry and R,. 

3 Data Analysis 

If the density fluctuations are adiabatic and the Universe is spatially flat, the Sachs-Wolfe 
fluctuations in the CMB are given by [10] 

6T
((} ,1,) = -� H� '°' 6k ik·r 

T ' 'I' 2 c2 � k2 e ' (3) 

where r is the vector with length RH = 2cH01 that points in the direction of observation 
(9, ¢) , H0 is the Hubble constant (written here as lOOh km s-1 Mpc-1 )  and 6k is the density 
fluctuation in Fourier space, with the sum taken over all wave numbers k. 
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Figure 2: Cumulative probability distribution of 80 for T1- and T2-models obtained from Monte 
Carlo simulations. A, left plot: Simulations for T2-universes with dimensions (Rx, Ry, Rz) = (0.5,0.5,3) 
or dot-dashed line, (0.6,0.6,3) or dashed line, and (0.7,0.7,3) or dotted line. B, right plot: Simulations 
for T1-universes with dimensions (Rx, Ry, Rz) = (0.5,3,3) or dot-dashed line, (0.6,3,3) or dashed line, 
and (0.7,3,3) or dotted line. In both pictures the model (Rx, Ry, Rz) = (3,3,3) is represented by a 
solid line, S[?MR = 2.59 (vertical straight line) and the horizontal solid lines indicate the confidence 
levels of 953, 903 and 683 (from top to bottom). 

In a Euclidean topology the universe is isotropic, and the sum in (3) is normally replaced 
by an integral. However, in a toroidal universe this is not the case. In this model, only wave 
numbers that are harmonics of the cell size are allowed. As a result, we have a discrete k 
spectrum [6, 15] 

(4) 

where Px, Py and Pz are integers. 
From equation (3), we can construct simulated skies by calculating [3] 

0; (B, ¢) ex L [91 cos(2wy) + 92 sin(27r/) ] °' ":<4 e-(RnekJ.)'!2 + n(B, ¢) , (5) 
p:r;,py,P:: 

where 91 and 92 are two independent Gaussian random variables with zero mean and unit 
variance, / = (1!.:Lx + b..y + EL z) , a = 

(l!.:L) 2 
+ 

(b..) 2 
+ 

(&) 2 
ex k2 and n is the spectral index Rx R, R, Rx Ry R, 

of the scalar perturbations. The term e-(RnekJ.)' 12 represents the experimental beam function, 
where kl. is the length of the k-component perpendicular to the line of sight and e is the width 
of the Gaussian beam given by 8 = FWHM/ )8 ln 2 � 0.43 FWHM, where FWHM is the full 
width of the beam at its half maximum. Finally, we model the noise n(B, ¢) at each pixel i as 
independent Gaussian random variables with mean (n;) =0 and variance (n;nj) = a;p5;j [9]. 

We generate our simulated skies as standard DMR maps with 6144 pixels for n=l, with a 
Galaxy cut of 20°, FWHM = 7°, the monopole and dipole removed, add noise and normalize to 
a10 = 34.98µK (the r.m.s. value at 7° extracted from our DMR map, a 4 year combined 53 plus 
90 GHz map with monopole and dipole removed) .  Fixing a cell size, we construct a simulated 
sky according to (5), we smooth this once more by 7° and use the statistic defined in (1) to 
obtain an S-map from which we extract its minimum value S0 • Repeating this procedure 1000 
times, we obtain the probability distribution of S0 for that fixed cell size. When we repeat this 
same procedure for different cell sizes, we are able to construct plots as shown in Figure 2. 
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Figure 3: Grid of cumulative probability distributions of 80 for T1- and T2-models obtained from 
Monte Carlo simulations. The thin-shaded, thick-shaded and grey regions correspond, respectively, to 
the models ruled out at 683, 903 and 953 confidence. 

In Figure 2A (left plot) ,  we show the cumulative probability distribution of S0 obtained from 
the Monte Carlo simulations for the cell sizes (Rx, J4, R,) = (0.5,0.5,3) , (0.6,0.6,3), (0.7,0.7,3) 
and (3,3,3) . The horizontal lines indicate the confidence levels of 95%, 90% and 68% (from top 
to bottom). Comparing these curves with the value s[!MR = 2.59 (represented in the plot by 
the vertical straight line), where s[!MR is the S0 value extracted from our data set, we conclude 
that T2-models with smallest cell sizes Rx, J4 ;S0.5 can be ruled out at 95% confidence. As the 
second cell size J4 is increased, the curves shift to the left of the T2-models and we can rule 
out T1-models for Rx ;S0.5 at a similar confidence level, see Figure 2B (right plot) .  In this plot, 
we show the cumulative probability distribution of S0 obtained from Monte Carlo simulations 
for the cell sizes (Rx, J4, R,) = (0.5,3,3) , (0.6,3,3) , (0.7,3,3) and (3,3,3). 

A more complete picture of the cell size limits is obtained when we construct a two­
dimensional grid for different values of the cell sizes (Rx, J4, R,) with R, = 3.0 and 0.2 < 
Rx, J4 < 3.0 (see Figure 3). The thin-shaded, thick-shaded and grey regions correspond, re­
spectively, to the models ruled out at 68%, 90% and 95% confidence. Notice in this plot that all 
contours are almost £-shaped, which means that, to a good approximation, the level in which 
a model (Rx, /4) is ruled out depends only on the smallest cell size, R,.,.;n = min{ Rx, J4}.  We 
see that R,.,.;n ;<:0.5 at 95% confidence. 

4 Conclusions 

We have shown that the COBE/DMR maps have the ability to test and rule out T1 and T2 
topological models. We have presented a new statistic to study these anisotropic models which 
quantifies the "smallness" of a sky map in a single number, So, which is independent of the 
cell orientation, is precisely sensitive to the type of symmetries that small universes produce, 
is easy to work with and is easy to interpret. 
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From the COBE/DMR data, we obtain a lower limit for T1- and T2-models of Rx �0.5, 
which corresponds to a cell size with smallest dimension of L=3000h-1 Mpc. This limit is 
at 95% confidence and assumes n=l. Since the topology is interesting only if the cell size is 
considerably smaller than the horizon, so that it can (at least in principle) be directly observed, 
these models lose most of their appeal. Since the cubic T3 case has already been ruled out as an 
interesting cosmological model [2] , and T1- and T2-models for small cell sizes are ruled out, this 
means that all toroidal models (cubes and rectangles) are ruled out as interesting cosmological 
models. 
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