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Amplitude dependent shift of betatron oscillation center
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We have analytically calculated and measured the amplitude-dependent shift of the betatron oscillation
center at the electron storage ring, NewSUBARU. The shift is due to nonzero average horizontal
deflections at the normal sextupole magnets. The shifted center forms a displaced closed orbit and is
measured by a closed orbit distortion measurement system, although no single electron runs on this orbit.
The measured shifts by betatron oscillations agreed with the theoretical calculation except the variation
of data points, which did not obey the ring symmetry. Additional measurements, whose results included
the effect of the circumference shift, experimentally proved the amplitude dependent circumference shift
for the first time. We also discuss some applications of the shift, which has never been previously

analyzed.
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I. INTRODUCTION

A sextupole magnet is an essential element in a
synchrotron. On a basic level, it is introduced to control
the chromaticity of betatron oscillations. In addition at an
advanced level, the sextupole field is considered as a
nonlinear element, which limits the dynamic aperture. In
particular, the configuration of sextupole magnets is very
important in designing recent low-emittance electron stor-
age rings that require strong sextupole magnets. In this
paper, on the other hand, we discuss another basic
phenomenon—the amplitude-dependent center shift of
betatron oscillation, or ADCS. This shift is due to the
nonzero average of the horizontal deflection at normal
sextupole magnets.

The aim of this paper is to give a simple analytical
formula for ADCS and confirm it through measurements.
The existence of ADCS is widely acknowledged, but it has
never been discussed previously in detail. Although its
importance becomes apparent only under special circum-
stances, ADCS has potential useful applications. One
reported application is using the shift to detect beam
instability [1]. Another potential application is beam
injection with a large oscillation amplitude beam [2]. We
will discuss both of these and other applications in the last
section of this work.
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II. ANALYTICAL FORMULAS
A. Analytical deflection model

In this paper, we will use the conventional coordinates,
x, v, and s, as the horizontal displacement, the vertical
displacement, and the azimuthal coordinate, respectively.
For the other parameters we indicate the direction, hori-
zontal or vertical, by the subscripts , or , respectively. We
define the normal sextupole component, g, as

do, = (9/2)(x* = y*)ds, (1a)

do, = —

gxy - ds. (1b)
Here, 60, and 0, are the horizontal and vertical deflection
angles, respectively. We will also use the normalized

sextupole components defined by
G, =gp. % (2a)
Gy = gﬁxl/z/}y' (2b)

Here p, and p, are the horizontal and vertical beta
functions, respectively.

First, we focus our calculations on the horizontal
betatron motion. The linear betatron oscillation is given by

x =+/2J, B, cosy,. (3)
Here, J, is the invariant of horizontal betatron motion and

v, is the betatron phase. Substituting Eq. (3) into Eq. (1) we
obtain

df, = (9/2)BJ (1 + cos 2y, )ds. (4)
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The deflection by a sextupole has two frequency compo-
nents, the constant deflection 6, and the deflection with
twice the betatron oscillation frequency 6,,,

dexO = (g/z)ﬂx‘]xdsv (Sa)
db,, = (g/z)ﬁx‘]x cos 2y, ds. (Sb)

The constant deflection at s = sg produces a shift of the
oscillation center given by

ﬁx(s)ﬁx(SS)

dxos) = 2 sin v

Cx(S7SS) dgx()- (6)

Here, v, is the betatron tune and C, (s, sg) is the phase
factor defined by

—wulss)| =] (7)

A displacement produced by distributing sextupoles is

Cx(s’ SS) = COSHI/IX(S)

P(s)

4sinzv,

xols) = . /0 * Gu(s5)Cals. 55)dss.  (8)

The displacement caused by the vertical oscillation with
J, can be calculated by the same manner. Finally, the
displacement is given by

VPi(s)

xo(s) = 4sm7wx J G(s5) — J,G,(s5)]C

(s, 85)dss.

©)

The oscillating deflection given by Eq. (5b) does not
produce any shift of oscillation center. The vertical deflec-
tion given by Eq. (1b) has only the oscillating deflection
and there exists no vertical shift of oscillation center.

B. Path-length shift and energy displacement

The betatron oscillation also changes the averaged path
length for a revolution [3,4]. Then, after a single deflection,
the particle would start synchrotron oscillation. The shift of
the averaged path length for a revolution is given by

AL = 27(£J, + &J,). (10)

Here, &, and &, are the transverse chromaticities. The center
of the energy oscillation is given by

6= (Zﬂ/aPLO)(é:xe"f_éy‘]y)v (11)

where a,, is the momentum compaction factor and Ly is the
circumference. Over a long range, averaged over a syn-
chrotron oscillation period, a shift due to the energy
displacement of the oscillation center should be added to
Eq. (9). That is,

_ VPi(s) J G.(

XO S
~ 4sin U,

JyGy(SS)]Cx<S7 SS)dSS

+

(& + &y )n(s). (12)

PLO

where 7 (s) is the dispersion function.

III. MEASUREMENT AT NEWSUBARU
A. Electron storage ring NewSUBARU

We measured ADCS at the electron storage ring,
NewSUBARU [5]. Table I shows the parameters of the
ring. It is a racetrack shaped ring and has fourfold
symmetry. The ring has 44 sextupole magnets divided into
four families. The theoretical calculation was based on the
ideal ring model, which had a perfect symmetry.

B. Single deflection

We measured ADCS of the horizontal betatron oscil-
lation. A single electron bunch was stored and deflected by
an injection kicker magnet. The pulse width of the kicker
was | pus, which was longer than the twice of the revolution
period (Trgy = 396 ns). Then the bunch was kicked twice
at the successive turns. The turn-by-turn beam position was
recorded at 18 beam position monitors (BPMs) in the ring.
The measured period was 40 turns after the deflections
(16 us), which was much shorter than the synchrotron
oscillation period (190 us). This means that we measured
ADCS given by Eq. (9). The excited oscillation amplitude
was J, = 1.6 ym radian. This was obtained from the
measured oscillation amplitudes and the beta function from
the model. The results are shown in Fig. 1. The measure-
ments agree with the calculation using the ring model and
Eq. (9) except the deviation, which does not obey the ring
symmetry. This deviation of the data points came from
unidentified measurement error because the fitting error
itself was the level of the symbol size.

We measured ADCS of the vertical betatron oscillation
using a newly installed vertical kicker. The pulse width was
450 ns, which was a little bit longer than the revolution
period. The ring was filled with equally spaced 66 bunches.
The kicker gave a different vertical oscillation amplitude
for each different bunch. The excited oscillation of a bunch

TABLE I. Parameters of NewSUBARU at 1 GeV.
Circumference (L) 118.7 m
Synchrotron frequency 5.3 kHz
Betatron tune (v, / vy) 6.27/2.17
Momentum compaction 0.00136
factor (ap)
Horizontal natural emittance 50 7 nm
Chromaticity (&, /&) Natural —11.1/—-6.6
with sextupoles  +2.9/ +4.8
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FIG. 1. Horizontal amplitude dependent orbit shift through the

ring. The 18 circles are the measured shift at the 18 BPMs and the
broken line is the calculated shift using the analytical formula,
Eq. (9). The shaded square shows the location of the kicker
magnet.

with maximum amplitude was J, = 0.07 um radian. The
multibunch data was used for the analysis to recover the
small deflection angle. The oscillation was recorded for
200 turns after the deflection. However we used the initial
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FIG. 2. A typical turn-by-turn beam position in the horizontal
(above) and the vertical (below) direction. The deflection took
place after the revolution number 0. The vertical oscillation
damped because of the chromatic Landau damping. The main
component of the horizontal movement after the deflection was
horizontal betatron oscillation.
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FIG. 3. Vertical amplitude dependent orbit shift. The diamonds

are the measured shift at the BPMs and the broken line is the
calculated shift using the analytical formula, Eq. (9). One extra
data point at the long straight section (s = 113 m) was obtained
by a newly installed BPM with the new vertical kicker magnet.

40 turns for the analysis to avoid the influence of the orbit
drift. Figure 2 shows the example of turn-by-turn beam
position signal from one BPM. The measured ADCS are
shown in Fig. 3, which agree with the calculation using
Eq. (9) except the nonsymmetric deviations.

C. Continuous deflection

We applied continuous deflection to a multibunched
beam using the strip-line deflector, which deflected the
beam with white noise either in the horizontal or vertical
directions. The equilibrium state of the beam is the result of
the continuous deflection and radiation damping. In this
case, we expect ADCS to be given by Eq. (12).

The increase of the beam spread, produced by the
deflection, was estimated from the change of the beam
profile. The increase of averaged J, and J, were 0.7 and
0.11 um, respectively. They were calculated using the
model beta function at the synchrotron radiation monitor.
The orbit shift was measured by means of the slow closed
orbit distortion measurement system for 20 times each with
the strip-line deflector turned on and off. The difference of
beam position in two cases gave ADCS. However, in this
case of the continuous deflection, the difference contains a
J or J, dependent false signal shift produced by the BPM
system. A nonlinear response of BPM and a BPM offset
produces a beam size dependent position signal shift. This
shift can be calculated using the equation given in the
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FIG. 4. Amplitude dependent orbit shift by (a) the horizontal
betatron oscillation and (b) the vertical betatron oscillation. The
circles and the diamonds are the measured shift at the BPMs. The
error bars are measurement errors estimated from the variation of
20 measurement results. The broken lines and the solid lines are
the calculated shift using the analytical formulas, Eqs. (9) and
(12), respectively. The shaded square and the shaded ellipse show
the locations of the strip-line deflector and the synchrotron
radiation profile monitor, respectively.
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Appendix from known parameters, nonlinear response
coefficients of BPM, horizontal BPM offset, and beta
functions. We subtracted this false shift from the position
difference and obtained the ADCS. This false signal was
considerable because the BPM had as large as 1.9 mm
displacement at the maximum. The results of ADCS
measurement, after the correction, are shown in Fig. 4.
The differences from the results using the kicker magnets
are the first experimental proof of the amplitude dependent
“circumference” shift given by Eq. (10).

IV. SUMMARY AND DISCUSSION

We measured ADCS in two different situations, i.e.,
single deflection and continuous deflection. The results
agreed with the theoretical calculations if we ignored the
variation, which did not obey the ring symmetry. In the
following, we explain examples of application and conse-
quence of ADCS.

At the SPring-8 storage ring, this shift is used to detect
any transverse beam instability, which produces an effec-
tive beam size blowup. The interlock system, based on the
fast rf BPMs, detects ADCS and aborts the stored beam. It
protects the front-end components of the photon beam lines
from displaced synchrotron radiation. Before the installa-
tion of the system using ADCS, we had watched broadband
frequency components up to a few hundreds MHz in the
fast BPM signal. The strength of these components
depended also on the bucket filling pattern, which had
no relation with the harmful synchrotron radiation. The old
system required a complicated adjustment of the threshold
level because the bucket filling was frequently changed at
the SPring-8. On the other hand, the ADCS signal is simply
proportional to the averaged beam oscillation amplitude
and less noisy. The operation became simple and stable
with the new system.

ADCS can be considerable at the beam injection,
because the oscillation amplitude of the injected beam
can be as large as the ring acceptance. Depending on
whether the injected beam comes from the outside or the
inside according to the sign of the ADCS, the oscillation
amplitude can be reduced.

The energy shift given by Eq. (11) can be considerable at
beam injection into a quasi-isochronous ring, which has
very small ap. It naturally requires off-energy injection [6].
When the injection point has finite dispersion, the energy
displacement can reduce the betatron oscillation amplitude
of the injected beam.

Another possible application of the shift is the beam
emittance measurement. An intentional ac sextupole field
would make (/,) and (/) dependent orbit oscillation with
the ac field frequency. When we have a weak ac sextupole,
which produces xo/J, = 1, it is easy to measure (J,) of
nanometer radian. This method does not have any funda-
mental limitation like diffraction limit of conventional
synchrotron radiation profile monitor.

The ADCS is one of the causes of the amplitude
dependent tune shift, but it is not the only one. The second
harmonic deflection 6, also contributes to the tune shift. It
diverges to infinity at the third-integer tune [7].
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APPENDIX: BETATRON AMPLITUDE
DEPENDENT FALSE BPM
POSITION SIGNAL

This Appendix explains how the measured beam posi-
tion could have a false shift. When the beam center is
displaced from the BPM center, a nonlinear signal response
to the beam displacement makes the false shift in BPM
signal. This shift is not real and looks like ADCS.

Generally a raw BPM signal is not linear to the real beam
position, x and y. This nonlinearity is corrected after the
detection of a signal averaged over particles in a bunch.
When we represent this nonlinearity by a function f, the
measured result of the position, X, is expressed by

X =)l (A1)
The bracket () means taking average over particles mea-
sured at a time. In most cases f is an odd function of x and
even function of y because of a mechanical symmetry of
BPM structure. Then the function is expanded as

flx,y) =x+ax® +bxy* +---. (A2)
Here a and b are coefficients of the function. From now on
we ignore the terms higher than the fourth order. Equation
(A1) is rewritten as

X +aX? + bXY? ~ (x + ax’ + bxy?). (A3)

The parameters X and Y are results of the beam position
measurement after the nonlinearity correction.

Here we write the position of a particle by a sum of a
displacement of beam center and a displacement from the
center as follows:

X =Xy + 6, (Ada)

y = Yo + 0. (A4b)
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Here x and y, are the displacements of the beam center and
0, and 6 are the displacements from the center. Because of
the symmetry o, and 6, satisfy the following equations:

(A5a)
<5x3> = <5x5y2> =0. (A5Db)

Substituting Eqgs. (A4a), (A4b), (A5a), and (A5b) into (A3)
gives
X +aX? + bXY? = xy + axy® + bxoy,’
+ 361X0<6x2> + b.XO <6V2>'

(A6)

The last two terms on the right-hand side give the false
shifts. They are

3axy <5x2> = 3axop, <2Jx>v (A7a)

bxo(8,2) = bxof, (2],). (A7b)

These false shifts are proportional to J, or J,, and could
be misunderstood as ADCS. However, it is not difficult to
cancel the effect because the false dependence can be
calculated from known parameters, a, b, f3,, f,, and x. Our
equations in this Appendix are a simple version of those for
the multi-strip-line beam shape monitors, originally
demonstrated by Miller et al. [9].
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