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Correlation functions in a superconformal field theory are strictly constrained by conformal symme-
try. Notably, one-point functions of conformal operators always vanish. However, when a defect is
inserted into the spacetime of the field theory, certain one-point functions become non-zero due to
the broken conformal symmetry, highlighting the special properties of the defect. One interesting
type of defect is the domain wall, which separates spacetime into two regions with distinct vacua.
The domain wall version of N = 4 supersymmetric Yang-Mills (SYM) theory has been extensively
studied in recent years. In this context, the supersymmetric domain wall preserves integrability,
allowing one to evaluate one-point functions in the defect field theory using integrability techniques.

As an analogous study of the domain wall version of N = 4 SYM theory, this thesis focuses on the
ABJM theory with a 1/2-BPS domain wall, meaning that the domain wall preserves half the original
supersymmetry. We first review integrability methods, e.g. the Coordinate Bethe ansatz and the
Algebraic Bethe ansatz for su(2) Heisenberg spin chain. The spectrum of the spin chain can be
determined by solving sets of the Bethe equations. Moreover, the Rational Q-system is examined,
which solves the Bethe equations efficiently and eliminates all nonphysical solutions automatically.

On the field theory side, we first review the original ABJM theory and its spectral integrability
following J. A. Minahan’s work in 2009. There exists an underlying quantum su(4) spin chain
with alternating even and odd sites, whose Hamiltonian can be identified with the two-loop dilation
operator of ABJM theory in the planar limit. This correspondence allows us to find the spectrum of
ABJM theory using the Bethe ansatz. We study the su(4) alternating spin chain and demonstrate
the procedure for constructing eigenstates of ABJM theory.

Finally, we study the tree-level one-point functions in the domain wall version of ABJM theory.
We derive the classical solutions for the scalar fields that describe a domain wall and explicitly
demonstrate how the domain wall preserves half of the supersymmetry. With these classical solu-
tions, we define a domain wall version of ABJM theory. Then, we introduce the so-called Matrix
Product State, which is a boundary state in the spin chain’s Hilbert space. The domain wall can be
identified with an integrable matrix product state, leading to a compact determinant formula for
the one-point functions in spin chain language. Consequently, we can evaluate one-point functions
explicitly using the Bethe ansatz and boundary integrability.
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1. Introduction

The Bethe ansatz provides a way to find exact solutions for the eigenvalues and eigen-
states of the Hamiltonian in integrable models. It was first introduced by Hans Bethe
in 1931 to solve the simplest su(2) Heisenberg spin chain [1], known as the Coordinate
Bethe Ansatz (CBA). Later, developed by the Leningrad (now Saint Petersburg) School
in the mid-1970s, the Quantum Inverse Scattering Method (QISM) or the Algebraic
Bethe Ansatz (ABA) plays a central role in solving integrable models [2]. The method
relies on the underlying algebraic structure of the model, where the integrability can be
proven rigorously. Therefore, the Bethe ansatz can be regarded as the starting point
of quantum integrability.

Integrability techniques have found successful applications in gauge theories. The
spectral problem in the planar limit of supersymmetric Yang-Mills theory can be
mapped to solving one-dimensional integrable spin chains, which was proposed by
J. Minahan and K. Zarembo in 2003 [3]. Specifically, they demonstrated that the
one-loop dilation operator acting on a sub-sector of scalars in N = 4 SYM can be iden-
tified with the Hamiltonian of an integrable Heisenberg spin chain. This observation
can be generalized to the full scalar sector, which corresponds to an integrable so(6)
spin chain. Consequently, the spectrum of anomalous dimensions of scalar composite
operators in planar N = 4 SYM is solvable with the Bethe ansatz method, and hence
the N = 4 SYM theory is integrable in this sense.

Inspired by the spectrum integrability in N = 4 SYM, another gauge theory pro-
posed by Aharony, Bergman, Jafferis and Maldacena, known as the ABJM theory [4],
also turns out to be integrable in the planar limit [5]. Analogous to the N = 4 SYM,
the planar two-loop dilation operator in the scalar sector of ABJM theory is identi-
fied with the Hamiltonian of an integrable spin chain with sites alternating between
the fundamental and the anti-fundamental representations of su(4). Besides, ABJM
theory has a high degree of superconformal symmetry in 3-dimensions and seems to
be an effective theory describing the world-volume theory of a stack of N M2 branes
moving on the orbifold C4/Zk. This is another example of the AdS/CFT correspon-
dence conjectured by Juan Maldacena in 1998 [6], referred to as AdS4/CFT3. This
correspondence relates two rather different types of models and provides an intuitive
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2 Chapter 1. Introduction

understanding of the origin of integrability in CFT3; it translates to the integrability
of the corresponding string sigma model, for which integrability is a common phe-
nomenon [7, 8]. Consequently, integrability has become an important tool to perform
exact calculations on both sides of AdS/CFT.

This holographic duality can be deformed by introducing defects (probe branes)
on the field theory (string theory) side, known as the AdS/dCFT correspondence,
which leads to novel features on pairs of models. For instance, certain one-point func-
tions become non-zero due to the broken conformal symmetry, highlighting the special
properties of the defect. The one-point functions in a domain wall version of N = 4
SYM can be expressed as an overlap between the Bethe state of su(2) spin chain
and the boundary state corresponds to the defect. The domain wall preserves part of
the supersymmetry, leading to boundary integrability and significantly simplifying the
overlap [9, 10]. Inspired by the study of domain wall set-ups in N = 4 SYM, one can
expect there exists supersymmetric domain wall defects in ABJM theory [11]. With
the classical solutions of scalar fields, a 1/2-BPS domain wall version of ABJM theory
can be defined. By studying the corresponding boundary state in spin chain picture,
it turns out that this domain wall preserves integrability as well. Thus, the overlap
between the Bethe state and the integrable boundary state simplifies to a determinant
formula. Furthermore, the half-BPS domain wall in ABJM theory is holographic dual
to a D4 probe brane embedding in the Type IIA background AdS4 ×CP3, resulting in
a D2-D4 probe brane system. Integrability of the Green-Schwarz sigma model in the
dual string description was checked in [12], which suggests the ABJM domain wall is
integrable to all loop orders and for any value of the bond dimension.

The thesis is organized as follows. We first review integrability methods, e.g.
the Coordinate Bethe ansatz and the Algebraic Bethe ansatz for su(2) Heisenberg
spin chain in Chapter 2. Then, the Rational Q-system is examined in Chapter 3,
which solves the Bethe equations efficiently and eliminates all nonphysical solution
automatically. In Chapter 4, we review the original ABJM theory and its spectrum
integrability. We study the su(4) alternating spin chain and demonstrate the procedure
for constructing the eigenvectors of ABJM theory. We also introduce the basic concepts
of the duality at last. In Chapter 6, we study the tree-level one-point functions in the
domain wall version of ABJM theory . We derive the classical solutions for the scalar
fields that describe a domain wall and explicitly demonstrate that the domain wall
preserves half of the supersymmetry. We define a domain wall version of ABJM theory
and briefly introduce its string theory description. Next, we discuss how boundary
integrability leads to a compact determinant formula for the one-point functions. This
overlap formula allows us to evaluate one-points in the spin chain picture. Finally,
Chapter 7 contains our conclusion and outlook.



2. Coordinate Bethe ansatz

In this chapter, we begin with the famous Heisenberg spin chain, a model proposed
by Werner Heisenberg in 1928 to study magnetism. We will briefly review how the
coordinate Bethe ansatz constructs exact solutions for the eigenvalues and eigenstates
of the Heisenberg spin chain. The key idea of the coordinate Bethe ansatz is to express
the wave function of the model as a superposition of plane waves.

2.1 Heisenberg spin chain

The Hamiltonian of the spin chain is given by

H = −
L∑

n=1

(
JxS

x
nS

x
n+1 + JyS

y
nS

y
n+1 + JzS

z
nS

z
n+1

)
, (2.1)

where Jx, Jy, Jz are coupling constants in each spacial direction. We consider the
simplest case, Jx = Jy = Jz = J ̸= 0 and spin operators satisfy the commutation
relation of su(2) algebra, which is known as the su(2) Heisenberg XXX spin-chain with
Hamiltonian

HXXX = −J
L∑

n=1
(Sx

nS
x
n+1 + Sy

nS
y
n+1 + Sz

nS
z
n+1)

= −J

2

L∑
n=1

(S−
n S

+
n+1 + S+

n S
−
n+1 + 2Sz

nS
z
n+1),

(2.2)

where S± ≡ Sx ± iSy and Si
n = 1

2σ
i
n, i = x, y, z (in fundamental representation). Fol-

lowing naturally, we should find the spectrum of the HXXX under the periodic boundary
condition Si

L+1 ≡ Si
1. The Hilbert space of the spin chain is the tensor product of the

spins of each site:

V = V1 ⊗ V2 ⊗ · · · ⊗ VL. (2.3)

It is of dimension 2L since each spin is V = C2. So the size of the Hamiltonian (2.2) is
2L × 2L and hence for large systems it is hard or impossible to diagonalize it directly.
Probably the spectrum has to be determined with some other methods.
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4 Chapter 2. Coordinate Bethe ansatz

2.2 General discussion

Without loss of generality, let J = 1. For a length-L spin chain, consider spin-
ups as vacuum and spin-downs as magnetic excitation (magnons). This decomposes
the Hilbert space into several subspaces, the vacuum sector, one magnon sector, two
magnon sector, etc., since the Hamiltonian HXXX does not change the number of up
spins and down spins (total spin is preserved).

Pseudo-vacuum state with all spin-ups is defined as

|Ω⟩ = | ↑⟩1 ⊗ | ↑⟩2 ⊗ · · · ⊗ | ↑⟩L ≡ | ↑↑ · · · ↑⟩ = | ↑L⟩. (2.4)

For simplicity, we omit the symbol of tensor product here. With S+| ↑⟩ = 0, Sz| ↑⟩ =
1
2 | ↑⟩, we can see

HXXX|Ω⟩ = −
L∑

n=1
Sz

nS
z
n+1|Ω⟩ = −L

4 |Ω⟩ ≡ E0|Ω⟩. (2.5)

Thus, |Ω⟩ is indeed the eigenstate of the Hamiltonian and the vacuum energy is E0 =
−L

4 .
The basis vectors in the N-magnon sector, generated by acting with N lowering

operators on the vacuum, are denoted by

|n1, n2, . . . , nN⟩ = S−
n1S

−
n2 · · ·S−

nN
|Ω⟩, (2.6)

where n1, n2, . . . , nN are the positions of down spins. Any energy eigenstate with N

flipped spins can be expressed as the linear combination of these basis vectors

|ψ⟩ =
∑

1≤n1<...<nN ≤L

a (n1, n2 . . . , nN) |n1, n2, . . . , nN⟩ , (2.7)

with some unknown coefficients a (n1, n2 . . . , nN) satisfying periodic boundary condi-
tion

a(n2, . . . , nN , n1 + L) = a(n1, . . . , nN). (2.8)

Hans Bethe proposed a formula for the coefficients in 1931, known as the Coordinate
Bethe ansatz (CBA). The inspiration comes from that the Hamiltonian (2.2) is invariant
under the one-site shift of the spin chain , since it is homogeneous. Next, let us figure
out the CBA from the specific case to the general.

2.3 One magnon sector

The basis vectors in one magnon sector are |n⟩. For any operator Xn acting on site
n, the one-site shift operation relocates the operator from site n to site n+ 1, namely



2.3. One magnon sector 5

U−1XnU = Xn+1. Easy to see the Hamiltonian (2.2) is invariant under the one-site
shift . Thus it commutes with the shift operator U and hence they have simultaneous
eigenstates. The one-site shift is just a lattice version of space translation, which
implies the energy eigenstate takes the discrete version of a plane-wave

|Ψ(p)⟩ =
L∑

n=1
eipn|n⟩. (2.9)

Namely, we propose that wave function in coordinate representation is a(n) = eipn and
here parameter p can be regarded as the momentum of magnon. With the following
relations

L∑
l=1

S+
l S

−
l+1|n⟩ = |n+ 1⟩,

L∑
l=1

S−
l S

+
l+1|n⟩ = |n− 1⟩,

L∑
l=1

Sz
l S

z
l+1|n⟩ = L− 4

4 |n⟩,

(2.10)

it is easy to find

HXXX|Ψ(p)⟩ =
L∑

n=1
eipnHXXX|n⟩

= −1
2

L∑
n=1

eipn
(

|n+ 1⟩ + |n− 1⟩ + L− 4
2 |n⟩

)

= −1
2

(
eip + e−ip + L− 4

2

) L∑
n=1

eipn|n⟩

= −
(

cos(p) + L− 4
4

)
|Ψ(p)⟩ ≡ E1(p)|Ψ(p)⟩.

(2.11)

The energy of an excitation, one magnon, is

ε(p) = E1(p) − E0 = 1 − cos(p) ≥ 0. (2.12)

From periodic boundary condition (2.8), we get the momentum quantization condition
eipL = 1. Hence, the momentum of magnon only takes values

p = 2πm
L

, m = 1, 2, . . . , L. (2.13)

There are L values of p totally, corresponding to L eigenstates. This is consistent with
the dimension of the Hilbert space of one magnon sector. (L basis vectors in this sector
and hence should have L eigenstates)
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2.4 Two magnon sector

In this sector, we propose the following ansatz for the energy eigenstate

|Ψ(p1, p2)⟩ =
∑

1≤n1<n2≤L

a(p|n)|n1, n2⟩, (2.14a)

a(p|n) = A(p1, p2)eip1n1+ip2n2 + A(p2, p1)eip2n1+ip1n2 , (2.14b)

where parameters p1, p2 are the momenta of the two magnons. The wave function
includes two parts: approximately two single-particle states that are nearly free, and
the other states resulting from the exchange of two momenta. The exact expression
for the amplitude is not important. We only need the ratio of the amplitude, given by
the scattering matrix

S(p1, p2) = A(p2, p1)
A(p1, p2)

. (2.15)

Now we must have

HXXX|Ψ(p1, p2)⟩ = E2(p1, p2)|Ψ(p1, p2)⟩. (2.16)

With the following relations,
L∑

l=1
S+

l S
−
l+1|n1, n2⟩ = |n1 + 1, n2⟩ + |n1, n2 + 1⟩,

L∑
l=1

S−
l S

+
l+1|n1, n2⟩ = |n1 − 1, n2⟩ + |n1, n2 − 1⟩ ,

L∑
l=1

Sz
l S

z
l+1|n1, n2⟩ = L− 8

4 |n1, n2⟩,

(2.17)

we can solve the energy E2(p1, p2) and the S-matrix by substituting (2.14a) and (2.14b)
into (2.16). Actually, there is a summation over the positions of the down-spins in
(2.16), which means (2.16) holds for |n1 − n2| > 1 terms and n2 = n1 + 1 terms
separately. We first work in the case that two spin-downs are not neighbors, i.e.
|n1 − n2| > 1, since (2.17) is only valid in this case.

It is straightforward to get

HXXX
∑

n1,n2

a(p|n)|n1, n2⟩ = − 1
2
∑

n1,n2

a(p|n)
(

|n1 − 1, n2⟩ + |n1 + 1, n2⟩

+ L− 8
2 |n1, n2⟩ + |n1, n2 − 1⟩ + |n1, n2 + 1⟩

)

= −
∑

n1,n2

(
cos(p1) + cos(p2) + L− 8

4

)
a(p|n)|n1, n2⟩

=E2(p1, p2)
∑

n1,n2

a(p|n)|n1, n2⟩.

(2.18)
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Thus, the energy derived from the region |n1 − n2| > 1 is

E2(p1, p2) − E0 = 2 − cos(p1) − cos(p2) = ε(p1) + ε(p2). (2.19)

This is just the sum of the energy of two magnons. For the n2 = n1 + 1 case, we claim
that the energy E2(p1, p2) still satisfies (2.19) because it is in front of the summation
over n1, n2 in (2.16). Then with modified relations

L∑
l=1

S+
l S

−
l+1|n1, n1 + 1⟩ = |n1, n1 + 2⟩,

L∑
l=1

S−
l S

+
l+1|n1, n1 + 1⟩ = |n1 − 1, n1 + 1⟩ ,

L∑
l=1

Sz
l S

z
l+1|n1, n1 + 1⟩ = L− 4

4 |n1, n1 + 1⟩,

(2.20)

the Schrödinger equation (2.16) gives(
E2 + L− 4

4

)
a(p|n1, n1 + 1) = −1

2 (a(p|n1 − 1, n1 + 1) + a(p|n1, n1 + 2)) . (2.21)

The scattering matrix is obtained by substituting explicit form of a(p|n) and E2 into
the above equation. Finally we get

S(p1, p2) = −1 − 2eip2 + ei(p1+p2)

1 − 2eip1 + ei(p1+p2) =
1
2 cot p1

2 − 1
2 cot p2

2 − i
1
2 cot p1

2 − 1
2 cot p2

2 + i
. (2.22)

The quantization condition for the momenta is derived from the periodic
boundary condition a(p|n1, n2) = a(p|n2, n1 + L). Also, notice that the relation
S(p1, p2)S(p2, p1) = 1 clearly follows from (2.22) and is consistent with the definition
(2.15) of S-matrix. Then, we get the set of quantization conditions, which is so-called
Bethe ansatz equations (BAE)

eip1LS(p1, p2) = 1, eip2LS(p2, p1) = 1. (2.23)

2.5 N-magnon sector

Inspired by the previous discussion, we can propose a similar form for the wave function.
An energy eigenstate in N-magnon sector takes the following form

|Ψ(p)⟩ =
∑

1≤n1<...<nN ≤L

a(p|n)|n1, . . . , nN⟩, (2.24a)

a(p|n) =
∑

σ∈SN

A(pσ)ei(pσ(1)n1+pσ(2)n2+...+pσ(N)nN), (2.24b)
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here we denote the set of all possible permutations of {1, ..., N} by SN . For each σ,
the corresponding permutation of momenta {p1, ..., pN} is denoted by pσ. Thus there
are N ! terms in the sum in (2.24b) while the unknown quantities we need to determine
are the eigenvalue EN and (N ! − 1) ratios A(pσ)/A(p).

For the total energy EN , based on the results in one and two magnon sector, we
conjecture that the energy of each magnon takes a simple form

ε(pk) = 1 − cos(pk). (2.25)

Then, the eigenvalue in N-magnon sector is

EN(p) = E0 +
N∑

k=1
ε(pk). (2.26)

The crucial conjecture for any amplitude is given by

A(· · · , pj, pk, · · · ) = S(pk, pj)A(· · · , pk, pj, · · · ), (2.27)

which comes from the physical interpretation of the two body S-matrix. Then, the
ratios A(pσ)/A(p) factorize into a sequence of two-body S-matrices since any A(pσ)
can be brought to A(p) by a sequence of exchanges of adjacent particles. With this
conjecture, the periodic boundary condition (2.8) leads to the following set of equations

eipkL =
N∏

j ̸=k

s(pj, pk), (2.28)

which is the quantization condition for momenta {p1, ..., pN}, namely N coupled Bethe
ansatz equations. Then, let us make a change of variables from momenta to the so-
called rapidity,

eipk =
uk + i

2
uk − i

2
, uk = 1

2 cot pk

2 , (2.29)

resulting in a simpler form of the BAEs(
uk + i

2
uk − i

2

)L

=
N∏

j ̸=k

uk − uj + i

uk − uj − i
k = 1, 2, ..., N. (2.30)

And the dispersion relation for each magnon also becomes simpler

ε(pk) = 1 − cos(pk) = 2
4u2

k + 1 . (2.31)



3. Algebraic Bethe ansatz

While the coordinate Bethe ansatz provides a physical picture that magnons propa-
gating in the vacuum and interact with each other in an integrable way, it does not
prove the integrability of the system. Let us review another method for solving inte-
grable models, called Quantum Inverse Scattering Method (QISM) or Algebraic Bethe
Ansatz (ABA), which was mainly developed by the Leningrad School. In this method,
the underlying algebraic structure of the model plays a role and the integrability can
be proven rigorously.

3.1 Building blocks

Instead of constructing the eigenstates immediately, we first define the building blocks
for the ABA. The starting point is the so-called Lax operator Lan defined on the local
Hilbert space of lattice site n and the auxiliary space labeled by an abstract index a,
namely Lan acts on Ca ⊗ Vn. It is parameterized by the complex spectral parameter u
and generally takes the form:

Lan(u) = (u− i

2)Ian + iPan, (3.1)

where Pan is the permutation operator. For the su(2) spin chain, the auxiliary space
can be taken as C2

a and hence Pan = 1
2(Ia ⊗ In) +

3∑
α=1

σα
a ⊗ Sα

n . Then the Lax operator
can be rewritten as

Lan(u) = uIan + i
∑

α=x,y,z

σα
a ⊗ Sα

n =
u+ iSz

n iS−
n

iS+
n u− iSz

n


a

, (3.2)

which is a 2 × 2 matrix in C2
a with local spin operators serving as entries. And it is

familiar that these spin operators satisfy the standard su(2) algebra.
The most important property of the Lax operator defined in (3.2) is that it

satisfies the RLL-relation:

Rab(u− v)Lan(u)Lbn(v) = Lbn(v)Lan(u)Rab(u− v), (3.3)

9
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where a, b denote two distinct two-dimensional auxiliary spaces and Rab is given by

Rab(u− v) = (u− v)Iab + iPab =


u− v + i 0 0 0

0 u− v i 0
0 i u− v 0
0 0 0 u− v + i


ab

. (3.4)

The relation (3.3) can be verified explicitly by rewriting Lan and Lbn as the 4 × 4
matrices in the tensor product space C2

a ⊗ C2
b . It is easy to see that the RLL-relation

relies on the underlying su(2) algebra.
Now we can build the central object for the ABA, which is known as the Mon-

odromy matrix and defined as the ordered product of Lax operators:

Ma(u) = La1(u)La2(u) . . . LaL(u) ≡

A(u) B(u)
C(u) D(u)


a

, (3.5)

where A(u), B(u), C(u), D(u) are complicated operators consisting of local spin opera-
tors. However, for most of our purpose it is unnecessary to figure out the explicit form
of these four operators. The point is the algebra they satisfy, which can be extracted
from the RMM -relation

Rab(u− v)Ma(u)Mb(v) = Mb(v)Ma(u)Rab(u− v). (3.6)

This relation directly follows from the RLL-relation (3.3). To find the algebra among
the operators A,B,C,D, we similarly rewrite the monodromy as the 4 × 4 matrix:

Ma(u) = Ma(u) ⊗ Ib =


A(u) 0 B(u) 0

0 A(u) 0 B(u)
C(u) 0 D(u) 0

0 C(u) 0 D(u)


ab

, (3.7)

and

Mb(v) = Ia ⊗Mb(v) =


A(v) B(v) 0 0
C(v) D(v) 0 0

0 0 A(v) B(v)
0 0 C(v) D(v)


ab

. (3.8)

Then substituting (3.7), (3.8) and (3.4) into (3.6) yields 16 relations among A,B,C,D.
The following algebra is our concern:

[A(u), A(v)] = [B(u), B(v)] = [C(u), C(v)] = [D(u), D(v)] = 0,
A(u)B(v) = f(v − u)B(v)A(u) + g(u− v)B(u)A(v),
D(u)B(v) = f(u− v)B(v)D(u) + g(v − u)B(u)D(v),

[C(u), B(v)] = 1
g(u− v) (A(v)D(u) − A(u)D(v)) ,

(3.9)
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where f(u) = u+i
u

, g(u) = i
u
.

The last important quantity we need to define is the Transfer matrix, which is
the trace of the monodromy matrix in the auxiliary space

T (u) = traMa(u) = A(u) +D(u). (3.10)

It is easy to show
[T (u), T (v)] = 0, (3.11)

through the algebra in (3.9). Because the Lax operator is linear in the spectral param-
eter u, the transfer matrix T (u) is a polynomial of order L in u whose coefficients are
operators acting on the quantum space. As a result of (3.11), all of these operators
commute with each other and hence we find a set of L mutually commuting operators

[Qi, Qj] = 0, i, j = 1, . . . , L, (3.12)

where Ql can be organized as the local conserved charge involving interactions between
l neighboring spins. In this sense, T (u) plays the role of generating function of these L
conserved charges and therefore the su(2) spin chain constitutes an integrable system.
We will see later that the Hamiltonian belongs to this set of conserved charges and
acts as Q2.

3.2 Yang-Baxter equation

So far we have not discussed how we determine the matrix Rab in (3.4). If we define
another kind of Lax operator with a different u dependence, we would have to use a
different R-matrix and finally would find another algebra instead of (3.9). However, it
turns out that the R-matrix is highly constrained and cannot be taken arbitrarily if
we want our algebra to be compatible. The consistency relation constraining the R-
matrix is known as the Yang-Baxter equation [13,14], which was discovered in different
contexts in the study of integrable models.

In order to derive the Yang-Baxter equation, let us reorder the product of three
monodromy as follows

Ma(u1)Mb(u2)Mc(u3) → Mc(u3)Mb(u2)Ma(u1), (3.13)

using the RMM -relation (3.6). This can be done in two different ways:

McMbMa = Rab (McMaMb)R−1
ab

= RabRac (MaMcMb)R−1
ac R

−1
ab

= RabRacRbc (MaMbMc)R−1
bc R

−1
ac R

−1
ab ,

(3.14)
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and
McMbMa = Rbc (MbMcMa)R−1

bc

= RbcRac (MbMaMc)R−1
ac R

−1
bc

= RbcRacRab (MaMbMc)R−1
ab R

−1
ac R

−1
bc .

(3.15)

These two ways of reordering must be consistent. Therefore, we find the Yang-Baxter
equation that R-matrix must satisfy

Rab(u1, u2)Rac(u1, u3)Rbc(u2, u3) = Rbc(u2, u3)Rac(u1, u3)Rab(u1, u2). (3.16)

Solving above equation is a highly non-trivial and mathematical problem. If we as-
sume that R(u1, u2) = R(u1 − u2) and certain non-degeneracy conditions, it can be
shown that there are three types of solutions for R(u): rational, trigonometric and el-
liptic, corresponding to the R-matrix in the XXX, XXZ and XY Z spin chain models
respectively.

3.3 Construct the conserved charges

Using the building blocks introduced before, we can figure out the ABA for the Heisen-
berg spin chain with spin-1

2 representation of SU(2). In this representation, the per-
mutation operator acting on C2

a ⊗ C2
n takes the form

Pan = 1
2

(
Ia ⊗ In +

∑
α

σα
a ⊗ σα

n

)
, α = x, y, z. (3.17)

It is called the permutation operator since we have

Pan (|x⟩a ⊗ |y⟩n) = |y⟩a ⊗ |x⟩n, (3.18)

for any vector |x⟩a and |y⟩n in the two spaces. The relation (3.18) can be checked
explicitly by writing Pan in the matrix form. Besides, we have the following identities

Pn,aPn,b = Pa,bPn,a = Pn,bPb,a, Pa,b = Pb,a. (3.19)

The point is that the Hamiltonian (2.2) of the Heisenberg spin chain can be
written in terms of permutation operators

HXXX = −
L∑

n=1
S⃗n · S⃗n+1 = −1

4

L∑
n=1

σ⃗n · σ⃗n+1 = L

4 − 1
2

L∑
n=1

Pn,n+1. (3.20)

We see that the Hamiltonian HXXX is essentially a sum of permutation operators up
to a constant shift. Recall that the Lax operator (3.1) is also expressed in terms of
permutation operator and we have the following relations

Lan(i/2) = iPan,

d
duLan(u) = Ian.

(3.21)
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Using the above relations we can extract the momentum operator and the Hamiltonian
from the transfer matrix. The shift operator is simply given by

U = i−LT (i/2) = i−LtraMa(i/2)
= traPa,1Pa,2 . . .Pa,L = (traPa,L) PL,L−1 . . .P2,3P1,2

= PL,L−1 . . .P3,2P2,1.

(3.22)

For any operator Xn at site-n, the operator U shifts all spins by one site

U−1XnU = Xn+1, (3.23)

where we have used the fact PnmXmPnm = Xn. Since the shift operator can be seen as
U = eiP̂ , we have found the momentum operator P̂ acting as the conserved charge Q1

P̂ = 1
i

log(i−LT ( i2)). (3.24)

Next, let us reconstruct the Hamiltonian (3.20) through the transfer matrix. In
order to expand the transfer matrix around u = i

2 , we first consider the derivative of
monodromy

d
duMa(u)

∣∣∣∣∣
u=i/2

= d
du(La1(u) . . . LaL(u))

∣∣∣∣∣
u=i/2

= iL−1
L∑

n=1
Pa,1 . . . P̂a,n . . .Pa,L

= iL−1
L∑

n=1
Pa,LPL,1 . . . P̂L,n . . .PL,L−1,

(3.25)

where P̂L,n means the permutation operator PL,n is missing from the string of operators.
Then, by taking the trace over the auxiliary space and employing a similar trick as
when deriving the shift operator, we arrive at

d
duT (u)

∣∣∣∣∣
u=i/2

= iL−1
L∑

n=1
PL,L−1 . . .Pn+2,n+1Pn+1,n−1Pn−1,n−2 . . .P2,1. (3.26)

With the relation (3.22), we find that
(

d
duT (u)

)
T (u)−1

∣∣∣∣∣
u=i/2

= 1
i

L∑
n=1

Pn,n+1. (3.27)

The left-hand side of (3.27) can be expressed as the logarithm derivative of T (u).
Comparing with (3.20), the Hamiltonian can be written in terms of the transfer matrix

HXXX = L

4 − i

2
d
du log T (u)

∣∣∣∣∣
u=i/2

. (3.28)
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We have seen that the transfer matrix generates the Hamiltonian, which serves as the
conserved charge Q2.

The third charge Q3 involves interactions between 3 neighboring spins, which can
be chosen as

Q3 =
L∑

i=1
[Hi,i+1, Hi+1,i+2]. (3.29)

For the higher conserved charges, a specific boosting procedure is utilized for their
construction [15,16].

3.4 Eigenvectors

We have demonstrated the significance of the transfer matrix in the integrable systems;
it plays the role of generating a set of conserved charges. In this section, we consider
diagonalizing the transfer matrix, which help us find the eigenvectors of the conserved
charges, particularly for the Hamiltonian (3.28).

The pseudo-vacuum is defined in the same way as in the CBA. On each lattice
site, we equivalently have an upper triangular matrix acting on the state

Lan(u)| ↑⟩n =
u+ iSz

n iS−
n

iS+
n u− iSz

n

 | ↑⟩n =
u+ i

2 iS−
n

0 u− i
2

 | ↑⟩n. (3.30)

Since the product of a sequence of upper triangular matrices is still an upper triangular
matrix, the action of the monodromy matrix on the pseudo-vacuum is

Ma(u)| ↑L⟩ =
u+ i

2 iS−
1

0 u− i
2

u+ i
2 iS−

2

0 u− i
2

 . . .
u+ i

2 iS−
L

0 u− i
2

 | ↑L⟩

=
(u+ i

2)L ⋆

0 (u− i
2)L

 | ↑L⟩

=
A(u) B(u)
C(u) D(u)

 | ↑L⟩,

(3.31)

here A(u), B(u), C(u), D(u) are the same operators introduced in (3.5). From the
general composition of these four operators, A(u), D(u) do not change the number
of up-spins and down-spins, while B(u) flips one up-spin and C(u) flips one down-
spin. Thus, B(u) and C(u) play the role of lowering operator and raising operator
respectively. We can read off the following eigenvalue equations from (3.31)

A(u)| ↑L⟩ = a(u)| ↑L⟩, D(u)| ↑L⟩ = d(u)| ↑L⟩, C(u)| ↑L⟩ = 0, (3.32)

with eigenvalues a(u) =
(
u+ i

2

)L
and d(u) =

(
u− i

2

)L
. The pseudo-vacuum state

is an eigenstate of A(u), D(u) and annihilated by C(u), as expected. Such a state is
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known as a highest weight state or reference state. The existence of a reference state
is a nontrivial property of the system and is a necessary condition that the system can
be solved by Bethe ansatz.

We have known the action of A(u), D(u) and C(u) on the reference state, while
the action of B(u) remains complicated. We claim that the following state

|uN⟩ = B(u1)B(u2) . . . B(uN)| ↑L⟩ (3.33)

is an eigenstate of T (u) = A(u) + D(u) if the spectral parameters uN = {u1, . . . , uN}
satisfy certain conditions. Since B(u) acts as the lowering operator, |uN⟩ is a state
with N down-spins, analogous to the N-magnon state in the CBA. Let us figure out
the action of A(u) and D(u) on the state |uN⟩ by using algebraic relations in (3.9).

For A(u), We know the state | ↑L⟩ diagonalizes it and hence we want to move
A(u) through a string of B operators. From the algebra, when A(u) passes through
one B operator, their spectral parameters might be swapped. Thus, We arrive at the
following final result

A(u)B(u1) . . . B(uN)| ↑L⟩ = a(u)
N∏

k=1
f(uk − u)B(u1) . . . B(uN)| ↑L⟩

+
N∑

k=1
Mk(u|uN)B(u1) . . . B̂(uk) . . . B(uN)B(u)| ↑L⟩,

(3.34)

where B̂(uk) denotes that the operator B(uk) is absent. The first term on the right-
hand side is called the ’wanted term’ since it appears in the form of an eigenstate
of A(u). The rest terms on the right-hand side are labeled as ’unwanted terms’ be-
cause we aim for them to cancel out in some manner. The coefficients Mk(u|uN)
can be determined as follows: firstly, it is straightforward to find the coefficient of
B(u2)B(u3) . . . B(uN)B(u)| ↑L⟩ by using the second term of the algebra once, and
then use the first term for the rest of the commutation relations

g(u− u1)B(u)A(u1)B(u2) . . . B(uN)| ↑L⟩

=g(u− u1)f(u2 − u1)B(u)B(u2)A(u1)B(u3) . . . B(uN)| ↑L⟩

=g(u− u1)
N∏

k=2
f(uk − u1)B(u)B(u2) . . . B(uN)A(u1)| ↑L⟩

=g(u− u1)a(u1)
N∏

k=2
f(uk − u1)B(u2) . . . B(uN)B(u)| ↑L⟩.

(3.35)

Therefore, we find

M1(u|uN) = g(u− u1)a(u1)
N∏

k=2
f(uk − u1). (3.36)
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Secondly, since all B operators commute, we can obtain Mk(u|uN) simply from
M1(u|uN) by replacing u1 with uk

Mk(u|uN) = g(u− uk)a(uk)
N∏

j ̸=k

f(uj − uk). (3.37)

Similarly, using the algebra we obtain the following result for D(u)

D(u)B(u1) . . . B(uN)| ↑L⟩ = d(u)
N∏

k=1
f(u− uk)B(u1) . . . B(uN)| ↑L⟩

+
N∑

k=1
Nk(u|uN)B(u1) . . . B̂(uk) . . . B(uN)B(u)| ↑L⟩,

(3.38)

where the coefficients can be determined in the same way

Nk(u|uN) = g(uk − u)d(uk)
N∏

j ̸=k

f(uk − uj). (3.39)

The unwanted terms cancel under the condition Mk +Nk = 0, which leads to

g(u− uk)a(uk)
N∏

j ̸=k

f(uj − uk) = −g(uk − u)d(uk)
N∏

j ̸=k

f(uk − uj),

a(uk)
N∏

j ̸=k

f(uk − uj) = d(uk)
N∏

j ̸=k

h(uk − uj) k = 1, 2, . . . , N.
(3.40)

Or written more explicitly(
uk + i

2
uk − i

2

)L N∏
j ̸=k

uk − uj − i

uk − uj + i
= 1, k = 1, 2, . . . , N. (3.41)

This is noting but the Bethe ansatz equations for the Heisenberg spin chain, exactly
the same as (2.30) that we derived by the CBA. Under the condition (3.41), the state
|uN⟩ is an eigenstate of the transfer matrix T (u)

(A(u) +D(u))|uN⟩ = τ(u|uN)|uN⟩, (3.42)

with the eigenvalue

τ(u|uN) = a(u)
N∏

k=1
f(uk − u) + d(u)

N∏
k=1

f(u− uk)

= a(u)
N∏

k=1

u− uk − i

u− uk

+ d(u)
N∏

k=1

u− uk + i

u− uk

.

(3.43)

The eigenvalue of all conserved charges can be obtained from τ(u|uN) due to the fact
that the transfer matrix generates all conserved charges. For instance, the eigenvalue
equation of the momentum operator (3.24) on a Bethe state is

P̂ |uN⟩ = 1
i1+L

log T ( i2)|uN⟩ =
N∑

k=1
p(uk)|uN⟩, (3.44)
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where
p(uk) = 1

i
log

uk + i
2

uk − i
2
. (3.45)

And for the energy of |uN⟩, using the Hamiltonian (3.28) we find

HXXX|uN⟩ =
L

4 − i

2
d
du log T (u)

∣∣∣∣∣
u= i

2

 |uN⟩

=
(
L

4 − L

2 +
N∑

k=1

2
1 + 4u2

k

)
|uN⟩

=
(

N∑
k=1

ε(uk) − L

4

)
|uN⟩,

(3.46)

where ε(uk) can be regarded as the energy of each magnon. The result (3.46) is
consistent with the energy of N-magnon state (2.26) derived by the CBA. Thus, we
have seen that the spin chain Hamiltonian can be exactly solved by the ABA. We can
derive the eigenvalue of higher conserved charges in a similar way.

3.5 Generalization

So far, algebraically, We have constructed the Bethe state (3.33) and derived the Bethe
ansatz equations (3.41) for the Heisenberg spin chain, where the spin operators satisfy
the su(2) algebra and lie in the spin-1/2 representation. It is natural to consider the
more general spin chain with higher spin representation or higher-rank symmetry. It
is now clear that the algebraic structure underlying integrable models is the RMM -
relation (3.6) where the R-matrix is analogous to the structure constant in a Lie algebra
and the monodromy plays the role of generators. Thus, essentially we can construct
different monodromy and R-matrix to generalize the Heisenberg spin chain.

3.5.1 Higher spin representation

Consider the spin-s representation of the local spin operators. The Lax operator takes
the same form, while the spin operators can not be written as Pauli matrices anymore.
The monodromy and the transfer matrix can be constructed in exactly the same way.
It is straightforward to find

A(u)|Ωs⟩ = (u+ is)L|Ωs⟩, D(u) = (u− is)L|Ωs⟩, (3.47)

where |Ωs⟩ is the pseudo-vacuum state in the spin-s representation. And the transfer
matrix is diagonalized by the Bethe state with the corresponding eigenvalue

τ(u|uN) = a(u)
N∏

k=1

u− uk − i

u− uk

+ d(u)
N∏

k=1

u− uk + i

u− uk

, (3.48)
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here a(u) = (u + is)L and d(u) = (u − is)L. The Bethe equations for the XXXs spin
chain read as follows:

(
uk + is

uk − is

)L N∏
j ̸=k

uk − uj − i

uk − uj + i
= 1, k = 1, 2, . . . , N. (3.49)

Thus, we observe that the spin representation is labeled by the eigenvalues of the
operators A(u) and D(u). Interestingly, this observation arises in other integrable
models as well. Different physical models can serve as representations of the same
algebra (3.6), characterized by a(u) and d(u). In this sense, the algebraic Bethe ansatz
is a more universal approach for integrable models.

3.5.2 Higher rank symmetry

Another generalization of the Heisenberg spin chain is achieved by selecting a symmetry
algebra with rank r > 1, indicating that the system enjoys a higher-rank symmetry
instead of su(2). For instance, the su(N) spin chain has the symmetry algebra with
rank r = N − 1, where the nested Bethe Ansatz [17] must be applied to solve the
spectrum. The basic idea of the nested Bethe Ansatz is to reduce the rank of the
symmetry algebra successively until it reaches rank 1, namely the well-known su(2)
case. For each reduction, we obtain a set of Bethe equations. Adding the last set of
equations from the rank 1 case, totally there should be (N − 1) sets of nested Bethe
equations.

The Hamiltonian of the su(N) fundamental spin chain takes the following form:

HXXX =
L∑

n=1
(In,n+1 − Pn,n+1), (3.50)

where permutation opeartor Pn,n+1 acts on CN
n ⊗CN

n+1 and is defined by standard basis
matrix (Eij)lk = δilδjk:

Pab =
N∑

i,j=1
Ea

ij ⊗ Eb
ji. (3.51)

For the lattice site-n, local Hilbert space is Vn = CN
n . We designate |1⟩ as the vacuum

state for each site, and |2⟩, |3⟩, . . . , |N⟩ as distinct excitations. The coefficients in front
of the identity operator and permutation operator were fixed by acting the Hamiltonian
(3.50) on the vacuum |1L⟩.

From the definition (3.51), the permutation operator in components is Pkl
ij =

δilδjk. And for the identity operator, we have Ikl
ij = δikδjl, where the indices take the

value
(ij) = (11), (12), . . . , (1N), (21), . . . , (NN). (3.52)
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which implies the Hamiltonian of su(N) fundamental spin chain is a N2 × N2 ma-
trix. This Hamiltonian can be expressed in terms of generators of su(N). Using the
properties of tensor product, we find

(tan ⊗ tan+1)i(N−1)+j,k(N−1)+l = taik × tajl = 1
2

(
δilδkj − 1

N
δikδjl

)
n,n+1

, (3.53)

here we have used the Fierz identity satisfied by the fundamental generators of su(N).
Then the tensor product of generators can be rewritten as the following

(tan ⊗ tan+1)kl
ij = 1

2

(
Pkl

ij − 1
N

Ikl
ij

)
n,n+1

. (3.54)

Now the Hamiltonian (3.50) can be recast using (3.54)

H
su(N)
XXX =

L∑
n=1

Hn,n+1 =
L∑

n=1

[
(1 − 1

N
)In,n+1 − 2tan ⊗ tan+1

]
. (3.55)

It is easy to show that this Hamiltonian is su(N) invariant, i.e.[
H

su(N)
XXX , T a

]
= 0, a = 1, 2, 3, . . . , N2 − 1. (3.56)

where
T a = 1

2

L∑
n=1

(
tan ⊗ In+1 + In ⊗ tan+1

)
. (3.57)

are analogous to the global spin operators in Heisenberg spin chain. With the commu-
tation relations of su(N) Lie algebra

[
tan, t

b
m

]
= ifabcδnmt

c, one can show that
∑
n,m

[
tan ⊗ In+1 + In ⊗ tan+1, t

b
m ⊗ tbm+1

]
= 0, (3.58)

which leads to (3.56). The R-matrix of the su(N) fundamental spin chain has the form

R(u− v) = I + g(u− v)P, g(u− v) = i

u− v
. (3.59)

And other building blocks of Algebraic Bethe Ansatz are defined in a similar manner

Lan(u) = Ran(u− i

2),

Ma(u) = Ra1(u− i

2)Ra2(u− i

2) . . . RaL(u− i

2),

T (u) = TraMa(u) =
N∑

k=1
Mkk(u).

(3.60)

The RMM -relation (3.6) still holds and leads to the algebra among the monodromy
matrix entries

[Mij(u),Mkl(v)] = g(u− v) (Mkj(v)Mil(u) −Mkj(u)Mil(v)) , (3.61)
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which is the famous Yangian algebra Y[su(N)] [18]. We expect the representation of
Yangian algebra is highest weight if

Mii |Ω⟩ = λi(u) |Ω⟩ , i = 1, . . . , N.
Mji |Ω⟩ = 0, 1 ≤ i < j ≤ N.

(3.62)

where λi(u) are the vacuum eigenvalues characterizing the representation. The mon-
odromy is a N ×N matrix in the auxiliary space CN

a , we can decompose it into:

Ma(u) =
A(u) B(u)
C(u) D(u)


a

, (3.63)

with entries B(u) = {B1(u), B2(u), . . . BN−1(u)} as a row vector and C(u) as a column
vector. The (N − 1) × (N − 1) matrix D(u) can be regarded as a sub-monodromy
satisfying the RMM -relation of su(N − 1). Thus, the transfer matrix becomes T (u) =
A(u) + TraD(u). Monomial Bethe state (3.33) generally is not invariant under the
action of T (u). Therefore, we claim that eigenvectors of the transfer matrix take a
polynomial form

|Ψ⟩ =
∑

β1,...,βN1

Bβ1(u1)Bβ2(u2) . . . BβN1
(uN1)Fβ1,...,βN1

|Ω⟩, (3.64)

where βi = 1, 2, . . . , N − 1. To determine the function Fβ1,...,βN1
, we can map it to the

energy eigenstate of inhomogeneous su(N − 1) fundamental spin chain with length N1

Fβ1,...,βN1
→ |β1, . . . , βN1⟩. (3.65)

We identify Fβ1,...,βN1
as the wavefunction of the spin chain eigenstate, allowing us to

determine it by solving the su(N − 1) spin chain, for which the rank of the algebra is
reduced by 1. Repeating this process, we can eventually return to the su(2) spin chain,
which has been extensively studied before.

After the reduction, a total of N−1 Bethe states will be constructed, with the last
Bethe state having the same form as (3.33). Acting the corresponding transfer matrix
on each Bethe state, to ensure the unwanted terms vanish, one set of Bethe equations
should be imposed. Therefore there are N − 1 sets of Bethe equations totally. Here
we present the general Bethe equations for the su(N) fundamental spin chain without
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going into the detailed derivation [19]
(
u1,k + i

2
u1,k − i

2

)L

=
K1∏
j ̸=k

S(u1,k, u1,j)
K2∏
j=1

S̃(u1,k, u2,j),

1 =
K2∏
j ̸=k

S(u2,k, u2,j)
K1∏
j=1

S̃(u2,k, u1,j)
K3∏
j=1

S̃(u2,k, u3,j),

1 =
K3∏
j ̸=k

S(u3,k, u3,j)
K2∏
j=1

S̃(u3,k, u2,j)
K4∏
j=1

S̃(u3,k, u4,j),

· · · · · ·

1 =
KN−1∏
j ̸=k

S(uN−1,k, uN−1,j)
KN−2∏
j=1

S̃(uN−1,k, uN−2,j),

(3.66)

with
S(u, v) = u− v + i

u− v − i
S̃(u, v) =

u− v − i
2

u− v + i
2
. (3.67)

There are N − 1 sets of Bethe roots {u1,u2, . . . ,uN−1} with each set having
K1, K2, . . . , KN−1 roots, respectively. After finding these Bethe roots, we can determine
the energy eigenvalues and construct the corresponding eigenstates of the Hamiltonian.
The energy is given by

E =
K1∑
k=1

1
u2

1,k + 1
4
. (3.68)

The Bethe roots u1 are special because they contribute alone to the momentum and
energy, hence they are called momentum carrying roots, while the other Bethe roots
are referred to as auxiliary roots.

From the representation theory, we know that any irreducible representation of
gl(n) is also an irreducible representation of su(N) and vice versa. Consequently, the
Hamiltonian of gl(N) fundamental spin chain is exactly the same as (3.55), and the
Bethe ansatz for the gl(N) spin chain remains unchanged. We have discussed the
fundamental spin chain, while for other representations, the Hamiltonian of the spin
chain would be more complicated, requiring some adjustments to the Bethe ansatz.
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The Bethe ansatz allows us to determine the spectrum of integrable models by solv-
ing sets of algebraic equations. However, finding solutions to these non-linear coupled
equations is by no means a simple task, especially for generalized spin chains where
dealing with nested equation sets is highly complicated. Moreover, regarding the com-
pleteness of the Bethe ansatz, solving the Bethe equations directly may yield too many
solutions, including unwanted nonphysical ones. The Rational Q-system, proposed
by Marboe and Volin in 2016 [20], offers a powerful approach for analytically finding
Bethe roots, automatically eliminating all nonphysical solutions. We work with the
Heisenberg XXX spin chain for illustrative purpose.

4.1 Completeness of Bethe ansatz

For the su(2) XXXs spin chain with length L and magnon number N , we first count
the number of expected solutions to the Bethe equations. Denoting the irreducible
spin-s representation by D(s), the length-L Hilbert space decomposes as:[

D(s)
]⊗L

=
sL⊕

J=Jmin

ds(L, J)D(J), (4.1)

where Jmin = 0 for even L and Jmin = s for odd L. ds(L, J) is the number of spin-J
representations. The decomposition (4.1) can be computed by repeatedly applying the
Clebsch-Gordan decomposition for any two representations

D(ℓ) ⊗ D(ℓ′) = D|ℓ′−ℓ| ⊕ D|ℓ′−ℓ|+1 ⊕ · · · ⊕ D(ℓ′+ℓ). (4.2)

For a given magnetization m, the number of coupled basis states bs(L,m) can be
computed by expanding the left-hand side of the following equation

(z−s + z−s+1 + . . .+ zs)L =
sL∑

m=−sL

bs(L,m)zm. (4.3)

On the other hand, each spin-J representation with J ≥ |m| contributes one
magnetization-m state to bs(L,m), hence

bs(L,m) = ds(L, |m|) + ds(L, |m| + 1) + . . .+ ds(L, sL). (4.4)

22
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The relation (4.4) indicates that the number of spin-J representations can be evaluated
by

ds(L, J) = bs(L, J) − bs(L, J + 1). (4.5)

For the Heisenberg XXX spin chain, from (4.3) we can see that b1/2(L,m) is just
the binomial coefficient

b1/2(L,m) = b1/2(L,−m) =
 L

|L/2 −m|

 =
L
N

 , (4.6)

where we have rewritten m in terms of the magnon number by m = L
2 −N . The Bethe

state (3.33) is the highest weight state of the spin-(L
2 −N) representation, since

S+|uN⟩ = 0, Sz|uN⟩ =
(
L

2 −N
)

|uN⟩. (4.7)

In other words, |uN⟩ corresponds to the primary state |J, J⟩ in a spin-J representation.
Therefore, we expect that the number of Bethe states equal to the number of spin-
(L

2 −N) representations, namely the number of physical solutions N (L,N) is expected
to be

N (L,N) = d1/2(L,
L

2 −N) =
L
N

−

 L

N − 1

 . (4.8)

We restrict N ≤ L
2 because J ≥ 0. The dimension of a spin-J representation is

2J + 1, and the total dimension of the Hilbert space of the spin chain is the sum of the
dimension of each subspace

L
2∑

J=Jmin

d 1
2
(L, J) × (2J + 1)

=
[ L

2 ]∑
N=0

d 1
2
(L, L2 −N) × (L− 2N + 1)

=2L,

(4.9)

which is consistent with the dimension of the tensor product space V = (C2)⊗L.
If we directly solve the Bethe equations (2.30), for example, for L = 4, N = 2,

we find six solutions, whereas from (4.8) we only expect two solutions. This suggests
that some of the solutions are not physical, meaning that although they satisfy (2.30),
the corresponding Bethe state is no longer an eigenstate of the Hamiltonian or transfer
matrix. There are two kinds of such solutions that require more careful analysis:
coinciding roots and singular solutions that introduce poles in the dispersion relation
(2.31).

In general, for the solution {u0, u0, . . . , u0, u1, u2, . . . , uN}, where the first K roots
are coinciding, there are N + 1 Bethe equations and K − 1 additional constraints to
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ensure the solution is physical. However, with only N + 1 variables, such a system
is over-determined and often does not have solutions. For the Heisenberg spin chain,
there is good evidence that we do not have physical solutions with repeated roots,
while for the su(2) XXXs spin chain with s ≥ 1, the physical solutions with coinciding
roots are allowed [21]. Besides, for the general singular solution { i

2 ,−
i
2 , u1, . . . , uN}

the singular roots ± i
2 need to be regularized carefully. After proper regularization, we

see that some of the singular solutions are physical while others are not. The physical
singular solutions need to satisfy an additional condition.

Regrading the completeness of Bethe ansatz for the Heisenberg spin chain, the
actual number of physical solutions should match the expected number of solutions
N (L,N) in (4.8). Denoting the number of non-singular and physical-singular solutions
without repeated roots by N1(L,N) and N2(L,N), respectively. The completeness
conjecture [21] proposed by Hao, Nepomechie and Sommese indicates that

N1(L,N) + N2(L,N) =
L
N

−

 L

N − 1

 . (4.10)

where we find that the right-hand side of (4.10) is precisely the number of solutions
that we expect in (4.8). Thus, if the conjecture (4.10) holds true, the Bethe ansatz for
Heisenberg XXX spin chain is complete. In fact, this conjecture has been tested quite
non-trivially up to L = 14 [21].

So far, we see that there are in general too many solutions when solving Bethe
equations directly and we have to discard solutions with coinciding roots and non-
physical singular solutions. To find physical solutions efficiently, other alternative for-
mulations of the Bethe equations should be considered, such as Baxter’s TQ-relation
and Rational Q-system. We focus on the Rational Q-system since it is more efficient
to find Bethe roots and can be generalized to solve generic Bethe ansatz equation [22].

4.2 The formalism

Firstly, we need a Young tableaux on which the Q-system is defined. For the Heisenberg
spin chain with length L and magnon number N , a Young tableaux with two rows
(L−N,N) is shown in figure 4.1. At each lattice point (a, s), we associate a polynomial
Q-function Qa,s(u) whose degree is equal to the number of boxes to the upper right of
the point. Secondly, we impose the boundary conditions by fixing the Q-functions on
the upper and left boundary:

Q2,s(u) = 1, Q0,0(u) = uL, Q1,0(u) =
N∏

k=1
(u− uk), (4.11)
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Figure 4.1: Young tableaux for the Bethe equations (2.30)

where Q1,0(u) is just the Baxter Q-function whose zeros are Bethe roots uk. For
convenience, we parameterize Q1,0(u) as follows

Q1,0(u) = uN +
N−1∑
k=0

cku
k, (4.12)

where the coefficients ck encoding the Bethe roots are to be determined. We want to
derive a set of algebraic equations for {ck} from the Q-system. Finally, we impose the
QQ-relation to relate the four Q-functions at the four corners of each box

Qa+1,s(u)Qa,s+1(u) = Q+
a+1,s+1(u)Q−

a,s(u) −Q−
a+1,s+1(u)Q+

a,s(u), (4.13)

with Q±(u) ≡ Q(u± i
2). Thus, we can find all the Q-functions on the Young tableaux

using the QQ-relation and the boundary conditions. The point is that we require all
the Q-functions should be polynomial, which yields the zero remainder condition. We
will see that this requirement is non-trivial and leads to a set of algebraic equations
for {ck}.

4.3 Solve the Q-system

Before solving the Q-system, we first prove the equivalence between the QQ-relations
(4.13) and the Bethe ansatz equations (2.30). Considering the first column of the
Young tableaux in figure 4.1, we have the following QQ-relations

Q1,1(u) = Q+
1,0(u) −Q−

1,0(u), (4.14a)
Q1,0(u)Q0,1(u) = Q+

1,1(u)Q−
0,0(u) −Q−

1,1(u)Q+
0,0(u). (4.14b)

Evaluating the equation (4.14b) at u = uk, we notice that Q1,0(uk) = 0, which yields:

Q+
1,1(uk)Q−

0,0(uk) −Q−
1,1(uk)Q+

0,0(uk) = 0. (4.15)

To determine Q±
1,1(uk), we can evaluate the equation (4.14a) at u = uk ± i

2 , leading to

Q+
1,1(uk) = Q++

1,0 (uk), Q−
1,1(uk) = −Q−−

1,0 (uk). (4.16)
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Substituting them into (4.15), we obtain

Q+
0,0(uk)Q−−

1,0 (uk) +Q−
0,0(uk)Q++

1,0 (uk) = 0, (4.17)

or equivalently,
Q+

0,0(uk)Q−−
1,0 (uk)

Q−
0,0(uk)Q++

1,0 (uk) = −1. (4.18)

Upon plugging in (4.11), we find that the equation (4.18) is equivalent to the Bethe
ansatz equations (2.30). Therefore, we can find Bethe roots by solving Q1,0(u) through
QQ-relations.

The basic strategy for solving the Q-system is to determine the Q-functions using
(4.13), row by row, from top to bottom. We begin with the row a = 1, the QQ-relation
reads

Q1,s+1(u) = Q−
1,s(u) −Q+

1,s(u). (4.19)

The solution to this difference equation is

Q1,s(u) = DsQ1,0(u), Df(u) ≡ f(u− i

2) − f(u+ i

2). (4.20)

We then consider the next row with a = 0. The QQ-relation reads

Q0,s+1(u)Q1,s(u) = Q+
1,s+1(u)Q−

0,s(u) −Q−
1,s+1(u)Q+

0,s(u), (4.21)

where functions Q1,s are already determined by (4.20). This equation can be used to
determine all Q0,s by writing it as

Q0,s+1(u) =
Q+

1,s+1(u)Q−
0,s(u) −Q−

1,s+1(u)Q+
0,s(u)

Q1,s(u) . (4.22)

Generally, the right-hand side of the above equation is a rational function of u, instead
of a polynomial. Thus, we need to impose constraints to ensure all the Q-functions
are polynomial in u, meaning that the remainder of the right-hand side of (4.22) must
be zero. It turns out that the zero remainder condition leads to a set of equations
for coefficients {ck} in (4.12). Then we can solve these equations and determine the
Baxter Q-function Q1,0(u) whose zeros are Bethe roots.

To see how rational Q-system works, we present an example for (L,N) = (4, 2).
The Young tableaux is shown in figure 4.2. The boundary conditions are given by
(4.11) where the Baxter Q-function becomes

Q1,0(u) = u2 + c1u+ c0. (4.23)

We first consider the row a = 1, the QQ-relations for s = 0, 1 are given by

Q1,1(u) = Q−
1,0 −Q+

1,0 = DQ1,0(u) = −i(2u+ c1),
Q1,2(u) = DQ1,1(u) = −2,

(4.24)
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Figure 4.2: Young tableaux for L = 4, N = 2

where the operator D is defined in (4.20). For the next row a = 0, we have the following
QQ-relation relations

Q0,1(u) =
Q+

1,1Q
−
0,0 −Q−

1,1Q
+
0,0

Q1,0(u) ,

Q0,2(u) =
Q+

1,2Q
−
0,1 −Q−

1,2Q
+
0,1

Q1,1(u) ,

(4.25)

where the explicit form of Q0,1(u) is

Q0,1(u) = i

[
2(u− i

2) + c1
]

(u+ i
2)4 −

[
2(u+ i

2) + c1
]

(u− i
2)4

u2 + c1u+ c0
. (4.26)

Since the right-hand side of the above equation should be a polynomial in u, we find

Q0,1(u) = −6u2 + 2c1u− 2c2
1 + 6c0 − 1,

R0,1(u) = (2c3
1 − 8c1c0 + 2c1)u+ (2c0c

2
1 − 6c2

0 + c0 + 1
8),

(4.27)

where R0,1(u) denotes the remainder of the right-hand side of (4.26). Now we can
evaluate Q0,2(u) and the corresponding remainder R0,2(u) in the same way

Q0,2(u) = 12, R0,2(u) = 16ic1. (4.28)

We require the remainder R0,1(u) and R0,2(u) vanish, leading to a set of equations for
{c1, c0}

2c3
1 − 8c1c0 + 2c1 = 0, 2c0c

2
1 − 6c2

0 + c0 + 1
8 = 0, 16ic1 = 0. (4.29)

Solving for {c1, c0} is straightforward, and then the Bethe roots are derived from the
zeros of Baxter Q-function (4.23):{

i

2 ,−
i

2

}
,

{
1

2
√

3
,− 1

2
√

3

}
. (4.30)

We can see there are only two physical solutions to the Bethe equations with (L,N) =
(4, 2), which is consistent with the conjecture (4.10). Compared with solving the Bethe
equations directly, which yields a total of 6 solutions, the crucial advantage of solving
Q-system is that it eliminates all non-physical solutions and preserves the completeness
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conjecture. Although deriving the algebraic equations for {ck} requires some effort, it
is definitely worthwhile because the zero remainder conditions are much more efficient
to handle, particularly when (L,N) are large.

It is important to notice that in practice, not all QQ-relations are non-trivial.
For example, when (L,N) = (6, 2), although there are 8 unknown Q-functions on the
Young tableaux, only 4 of them are non-vanishing. As a result, the QQ-relations remain
the same as the case (L,N) = (4, 2) but with slightly different boundary conditions.
Furthermore, not all zero remainder conditions are necessary. For (L,N) = (6, 3), we
have 3 zero remainder conditions. However, it is not necessary to use all of them to
solve for {ck}. By appropriately choosing a subset of these conditions, we can find the
desired physical solutions as expected. Indeed, there exists a set of minimal choices of
zero remainder conditions [23].

4.4 Generalization

The rational Q-system can be generalized to solve other types of Bethe equations corre-
sponding to various quantum integrable spin chains, such as inhomogeneous spin chains
where the vacuum on each site carries a weight, XXZ-type spin chains with open or
twisted boundary conditions [24–26], and more. For our concern, we want to generalize
the formulation of rational Q-system for solving Bethe equations corresponding to the
spin chains with higher spin representation and higher rank symmetry algebra.

The Bethe ansatz equations of su(N) fundamental spin chain are given by (3.66),
which can be denoted graphically by the Dynkin diagram with N−1 nodes as shown in
Figure 4.3. here the solid circle is termed as momentum carrying node while the others

Figure 4.3: Dynkin diagram for su(N) fundamental spin chain

are considered auxiliary nodes. Each node in the Dynkin diagram is associated with a
set of Bethe roots ua, which corresponds to the a-th set of Bethe equations involving
the self-interactions of roots ua and their interactions with neighboring roots ua±1.
Furthermore, the momentum carrying nodes have an additional term contributing to
the Bethe equations (

ua + i
2

ua − i
2

)L

. (4.31)

It turns out that the conserved charges such as momentum and energy of the Bethe
state only explicitly depend on the Bethe roots associated with the momentum carrying
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nodes. The rational Q-system for Bethe equations (3.66) can be readily extended
from the case of Heisenberg spin chain. Now, the Young tableaux has N rows λ⃗ =
(λ1, λ2, . . . , λN) and the number of boxes in each row is given by

λ1 = L−K1,

λ2 = K1 −K2,

λ3 = K2 −K3,

· · ·

λN = KN−1,

(4.32)

where {K1, K2, . . . , KN−1} are the number of Bethe roots {u1,u2, . . . ,uN−1}, respec-
tively. The boundary conditions become

Q0,0(u) = uL, QN,s(u) = 1,

Qa,0(u) = Qa(u) = uKa +
Ka−1∑
k=0

c
(a)
k uk,

(4.33)

where a = 1, 2, . . . , N − 1 and Qa(u) are Baxter Q-functions solving for the N − 1 sets
of Bethe roots {u1,u2, . . . ,uN−1}. The QQ-relation remains the same as (4.13). All
the Q-functions should be polynomial and the zero remainder conditions would lead
to systems of equations for {c(a)

k }.
Particularly, we would like to figure out the rational Q-systems for so(6) and su(4)

alternating spin chains which are useful in various contexts. The Dynkin diagrams of
the Bethe equations corresponding to these two types of spin chains are illustrated in
Figure 4.4.

(a) so(6) fundamental spin chain (b) su(4) alternating spin chain

Figure 4.4: Dynkin diagrams for so(6) and su(4) spin chains

The so(6) spin chain plays an important role in the context of integrability in
planar N = 4 super-symmetric Yang-Mills theory (SYM). The one-loop dilation oper-
ator in the scalar sector was calculated by Minahan and Zarembo in 2002 [3]. They
proposed that this dilation operator can be identified with the Hamiltonian of the so(6)
spin chain

HSO(6) =
L∑

n=1
(Kn,n+1 + 2In,n+1 − 2Pn,n+1). (4.34)

At each site of the spin chain, there are 6 possible polarizations corresponding to the
six real scalar fields in N = 4 SYM. Since the Hamiltonian (4.34) can be diagonalized
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by Bethe ansatz, meaning that it is integrable, the problem of finding the one-loop
anomalous dimensions of composite operators in N = 4 SYM simplifies to solving sets
of Bethe equations. The Bethe ansatz equations for so(6) spin chain can be read out
from the Dynkin diagram:

1 =
K1∏
j ̸=k

u1,k − u1,j + i

u1,k − u1,j − i

K2∏
l=1

u1,k − u2,l − i
2

u1,k − u2,l + i
2
,

(
u2,k + i

2
u2,k − i

2

)L

=
K1∏
l=1

u2,k − u1,l − i
2

u2,k − u1,l + i
2

K2∏
j ̸=k

uk,2 − uj,2 + i

uk,2 − uj,2 − i

K3∏
l=1

uk,2 − ul,3 − i
2

uk,2 − ul,3 + i
2
,

1 =
K3∏
j ̸=k

u3,k − u3,j + i

u3,k − u3,j − i

K2∏
l=1

u3,k − u2,l − i
2

u3,k − u2,l + i
2
.

(4.35)

The rational Q-system for Bethe equations (4.35) includes a Young tableaux with four
rows λ⃗ = (L−K1, L+K1 −K2, K2 −K3, K3), the QQ-relation (4.13) and the boundary
conditions:

Q0,0(u) = (u− i

2)L(u+ i

2)L, Q4,s(u) = 1,

Q1,0(u) = uLQ1(u), Q2,0(u) = Q2(u),

Q3,0(u) = Q3(u), Qa(u) = uKa +
Ka−1∑
k=0

c
(a)
k uk.

(4.36)

The su(4) alternating spin chain serves a crucial role in the study of integrability
in ABJM theory, which constitutes one of the key points throughout the thesis. In
the next chapter, we will delve into the su(4) alternating spin chain in detail. Here,
we just present the Bethe equations and the corresponding rational Q-system, which
helps solve the spectrum of ABJM theory later on. From the graphical representation
of the Bethe equations, we can read off(

u1,k + i
2

u1,k − i
2

)L

=
K1∏
j ̸=k

u1,k − u1,j + i

u1,k − u1,j − i

K2∏
l=1

u1,k − u2,l − i
2

u1,k − u2,l + i
2
,

1 =
K1∏
l=1

u2,k − u1,l − i
2

u2,k − u1,l + i
2

K2∏
j ̸=k

uk,2 − uj,2 + i

uk,2 − uj,2 − i

K3∏
l=1

uk,2 − ul,3 − i
2

uk,2 − ul,3 + i
2
,

(
u3,k + i

2
u3,k − i

2

)L

=
K3∏
j ̸=k

u3,k − u3,j + i

u3,k − u3,j − i

K2∏
l=1

u3,k − u2,l − i
2

u3,k − u2,l + i
2
.

(4.37)

The Young tableaux has four rows λ⃗ = (2L−K1, L+K1 −K2, L+K2 −K3, K3), with
the following conditions on the upper and left boundary:

Q0,0(u) = (u− i)Lu2L(u+ i)L, Q1,0(u) = (u− i

2)L(u+ i

2)LQ1(u),

Q2,0(u) = uLQ2(u), Q3,0(u) = Q3(u), Q4,s(u) = 1.
(4.38)
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Inspired by the spectrum integrability in N = 4 SYM [3], another gauge theory pro-
posed by Aharony, Bergman, Jafferis and Maldacena, known as the ABJM theory [4],
also turns out to be integrable in the planar limit [5]. In this chapter, we review
the setup of ABJM theory and investigate its spectrum integrability through the un-
derlying su(4) alternating spin chain. We exhibit the procedure for constructing the
eigenvectors in the scalar sector of ABJM theory and briefly introduce the duality at
last.

5.1 Field theory setup

The ABJM theory is a Chern-Simons-matter theory in three dimensions with gauge
group U(N)k × Û(N)−k at Chern-Simons levels ±k. The action of the ABJM theory
in the SU(4)R invariant component form is given by [27]

S = k

4π

∫
d3x

[
ϵµνλ Tr

(
Aµ∂νAλ + 2i

3 AµAνAλ − Âµ∂νÂλ − 2i
3 ÂµÂνÂλ

)
+ Tr

(
DµY

†
AD

µY A + iψ†AγµDµψA

)
− Vferm − Vbos

]
,

(5.1)

with the potential terms

Vferm = i

2 Tr
(
Y †

AY
Aψ†BψB − Y AY †

AψBψ
†B + 2Y AY †

BψAψ
†B

− 2Y †
AY

Bψ†AψB + ϵABCDY †
AψBY

†
CψD − ϵABCDY

Aψ†BY Cψ†D
)
, (5.2a)

Vbos = − 1
12 Tr

(
Y †

AY
AY †

BY
BY †

CY
C + Y AY †

AY
BY †

BY
CY †

C

+ 4Y †
AY

BY †
CY

AY †
BY

C − 6Y AY †
BY

BY †
AY

CY †
C

)
, (5.2b)

where the indices A,B,C = 1, 2, 3, 4. The covariant derivatives are defined as

DµY
A = ∂µY

A + AµY
A − Y AÂµ, DµY

†
A = ∂µY

†
A + ÂµY

†
A − Y †

AAµ. (5.3)

The field contents in the action (5.1) include gauge fields Aµ and Âµ transforming in
the adjoint representation of the groups U(N)k and Û(N)−k respectively, along with

31
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four complex scalar fields Y A and Weyl spinors ψA, both in the bi-fundamental rep-
resentation of the gauge group U(N)k × Û(N)−k. The gauge structure of the ABJM
theory can be represented by the quiver diagram shown in Figure 5.1, where the ar-
rows indicate the gauge group representations of the various fields, pointing from a
fundamental to an anti-fundamental representation.

Figure 5.1: Quiver diagram of ABJM theory. The arrows indicate the repre-
sentations of the fields under the gauge groups. The arrows are drawn from a
fundamental to an anti-fundamental representation.

There are two parameters in ABJM theory, the Chern-Simons level k and the
rank of the gauge group N . Since the level k is an overall factor in the action, g2

CS ≡ 1
k

plays the role of coupling constant. Besides, the level k must be an integer, as required
by the gauge symmetry [28]. For k ≫ 1, the ABJM theory is weakly coupled and
can be treated using perturbation theory. Particularly, the ABJM theory becomes
integrable in the ’t Hooft (or planar) limit [5, 29, 30], realized by a small coupling and
a large number of colors:

N → ∞, k → ∞, with N

k
fixed, (5.4)

which introduces the effective coupling λ ≡ g2
CSN , referred to as the ’t Hooft coupling.

For infinite N, k and finite λ, essentially λ is continuous.

5.2 Global symmetries

As mentioned above, the action of the ABJM theory possesses a global SO(6)R
∼=

SU(4)R symmetry, known as the R-symmetry, which is a symmetry of the superalge-
bra itself. The fields Y A, ψ†

A and Y †
A, ψA transform as the 4 and 4̄ representations of

the SU(4)R respectively, ensuring the scalar and fermionic terms in the action (5.1)
are invariant under both gauge and R-symmetry transformations. This symmetry is
essential for the supersymmetric nature of the theory and affects the supersymmetry
transformations and the form of the action.

For the spacetime symmetry, the ABJM theory is invariant under Lorentz trans-
formations and spacetime translations, which constitute the PoincarÃ© symmetry.
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Furthermore, incorporating the symmetries under scale transformations, the ABJM
theory exhibits the 3-dimensional conformal symmetry Sp(4) ∼= SO(2, 3).

The action (5.1) is also invariant under the N = 6 supersymmetry (SUSY) trans-
formations:

δY A =iωABψB, δY †
A = iψ†BωAB,

δψA = − γµωABDµY
B + 2π

k

[
−ωAB(Y CY †

CY
B − Y BY †

CY
C) + 2ωCDY

CY †
AY

D
]
,

δψA† =DµY
†

Bω
ABγµ + 2π

k

[
−(Y †

BY
CY †

C − Y †
CY

CY †
B)ωAB + 2Y †

DY
AY †

Cω
CD
]
,

δAµ =π
k

(−Y AψB†γµωAB + ωABγµψAY
†

B),

δÂµ =π
k

(−ψA†Y BγµωAB + ωABγµY
†

AψB),

(5.5)

where ωAB and ωAB are SUSY transformation parameters and anti-symmetric in spinor
indices AB, given by

ωAB = εi(Γi)AB, ωAB = εi((Γi)∗)AB. (5.6)

Six (2 + 1)-dimensional majorana spinors εi are generators of N = 6 SUSY. And we
have the following relations for Γ matrices:

{
Γi,Γj†

}
= 2δij, (Γi)AB = −(Γi)AB,

1
2ε

ABCDΓi
CD = −(Γi†)AB = ((Γi)∗)AB.

(5.7)

Hence the SUSY parameters satisfy

(ωAB)α = (ω∗
AB)α, ωAB = 1

2ϵ
ABCDωCD. (5.8)

Together with the R-symmetry, the SUSY transformations (5.5) significantly restricts
the possible interactions in the theory. Moreover, the SUSY plays a crucial role in the
cancellation of certain types of anomalies and quantum corrections.

The representations of the ABJM field contents under the gauge and global
symmetries are collected in table 5.1. The global symmetries, including SU(4)R R-
symmetry, SO(2, 3) conformal symmetry, and N = 6 supersymmetry generators εi,
combine into a larger symmetry group, the ortho-symplectic supergroup OSp(6|4)
[31–33]. In this sense, the ABJM theory is a N = 6 superconformal theory.
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U(N) Û(N) SU(4)R SO(2,1) U(1)∆ U(1)b

Y A N N 4 1 1
2 1

Y †A N N 4 1 1
2 −1

ψA N N 4 2 1 1
ψ†A N N 4 2 1 −1
Aµ adj 1 1 3 1 0
Âµ 1 adj 1 3 1 0

Table 5.1: Field contents of ABJM theory and representations carried by the
fields under the gauge symmetry, the R-symmtry, the Lorentz group SO(2,1). As
well as the conformal dimension ∆ and the baryonic charge U(1)b.

5.3 Correlation functions

The presence of conformal symmetry in the ABJM theory strictly constrains the form
of correlation functions. The one-point function of a scalar operator ⟨O(x)⟩ should
be constant due to the translations invariance. Furthermore, the operator O(x) must
transform appropriately under the dilation:

x → λx, O(x) → λ∆O(λx), (5.9)

where ∆ is the scaling dimension of the operator O(x). For the one-point function, the
scaling invariance implies

⟨O(x)⟩ → ⟨O(λx)⟩ = λ−∆⟨O(x)⟩. (5.10)

To satisfy (5.10), the one-point function must vanish

⟨O(x)⟩ = 0. (5.11)

Similarly, the two-point functions are completely fixed by the conformal symme-
try. The translation and rotation invariance imply that the two-point functions can
only depend on the distance between the two points, namely

⟨O1(x)O†
2(y)⟩ = f(|x− y|) ≡ f(r), (5.12)

where f(r) is an arbitrary function. The dilation invariance requires

f(λr) = λ−∆1−∆2f(r) (5.13)

holds for any λ. Thus, we have

f(r) = C

r∆1+∆2
, (5.14)
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where C is a constant. Additionally, the two-point functions should transform correctly
under special conformal transformations, leading to the non-vanishing condition ∆1 =
∆2. Finally, we see that the two-point functions are fixed up to a constant

⟨O1(x)O†
2(y)⟩ = δ12C

|x− y|∆1+∆2
. (5.15)

Actually, all correlation functions in a conformal field theory are fixed in terms
of the so-called conformal data (∆, λ). Here, ∆ represents the conformal or scaling
dimension of the operator, as previously mentioned. And λ (distinct from the param-
eter in the dilation) is the structure constant that appears in the operator product
expansion (OPE):

Oi(x)Oj(y) = δijC

|x− y|∆i+∆j
+
∑

k

λij
k

|x− y|∆i+∆j−∆k
d(x− y, ∂y)Ok(y), (5.16)

where the sum runs over conformal primary operators and the differential operator d
accounts for the presence of conformal descendants. Following from the OPE (5.16),
the three-point functions are fixed up to the structure constant λijk. Moreover, all
higher-point functions can be determined by repeatedly using the OPE (5.16), which
leads to their factorization into a sum of two-point functions.

5.4 Gauge invariant operators

Since the gauge symmetry of ABJM theory is U(N) × Û(N), the scalars and gauge
fields transform as

Y A → UY AÛ †, Aµ → UAµU
† − iU∂µU

†,

Y †
A → ÛY †

AU
†, Âµ → ÛÂµÛ

† − iÛ∂µÛ
†,

(5.17)

where (U, Û) ∈ U(N) × Û(N). For spinors, there are similar gauge transformations.
We aim to construct gauge invariant operators because only the correlation functions of
these operators are physically observable. There are several classes of gauge invariant
operators. The simplest examples of such operators are single trace operators, taking
the following form

O = Tr
(
Xi1X

†
i2Xi3X

†
i4 . . . Xin−1X

†
in

)
, (5.18)

where X2k−1 are any fields that transform in the bi-fundamental representations (N, N̄)
of the gauge group, while X2k represents fields in the anti-bi-fundamental representa-
tions (N̄,N). Moreover, we can build gauge invariant multi-trace operators by taking
products of such single trace operators (5.18). We observe that maintaining gauge
symmetry requires an alternating sequence of fields within the trace. Therefore, at
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odd sites we can have any of the 4B + 8F fields Y A, ψAα, while at even sites any of the
4B + 8F fields Y †

A, ψ
†A
α can reside. Additionally, any number of covariant derivatives

Dαβ can be introduced to act on the fields.
We will work in the scalar sector of ABJM theory, and gauge invariant composite

operators can be built with these scalars in the form

O = ΨB1...BL
A1...AL

tr(Y A1Y †
B1Y

A2Y †
B2 . . . Y

ALY †
BL

), (5.19)

where the coefficient ΨB1...BL
A1...AL

is invariant under cyclic permutations of the sequence
{A1, B1, . . . , AL, BL} due to cyclic property of trace. The operator O can be seen as a
SU(4) alternating tensor in (4 ⊗ 4̄)⊗L.

5.5 Spectral problem

The spectral problem in a conformal field theory involves finding the spectrum of
conformal dimensions. The classical or bare dimension ∆0 of a composite operator O
can be obtained by standard power counting. However, conformal dimension ∆ can
receive quantum corrections, implying that ∆ depends on the coupling constant in
general. The corrections γ = ∆ − ∆0 is called the anomalous dimension by historical
reasons. The dilation operator D measures the dimension ∆ of a composite operator
O by the eigenvalue equation

DO(x) = ∆O(x). (5.20)

It plays an important role in the spectral problem. The eigenvectors of D are good
conformal operators with definite conformal dimensions. We will see that the anoma-
lous dimension of the operator O arises in the perturbative expansion of its two-point
correlation function.

The two-point function at quantum level, by the conformal symmetry, still takes
the form (5.15), but with ∆ expressed as a power series in the coupling constant λ

∆(λ) =
∞∑

n=0
λ2n∆(n). (5.21)

For small coupling, γ ≪ ∆0, expanding ∆(λ) in the two-point function, we have

⟨O(x)O†(y)⟩ = 1
|x− y|2∆0

(
1 − λ2∆(1) log(Λ2|x− y|) +O(λ4)

)
, (5.22)

where ∆(1) is the anomalous dimension at leading order. Since the interactions in
ABJM theory are of types Y 6 and Y 2ψ2, the lowest quantum corrections to the scaling
dimension come at two-loop order. Here, Λ is a renormalization scale with dimension
of mass, introduced to ensure that the logarithm is dimensionless. From (5.22), we see
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that quantum corrections to the two-point functions of local composite operators are
manifested through the coupling dependence of scaling dimensions.

Let us investigate the spectral problem in the scalar sector of ABJM theory. For
a general operator composed of scalar fields

OA1,...,AL
B1,...,BL

= tr(Y A1Y †
B1Y

A2Y †
B2 . . . Y

ALY †
BL

), (5.23)

the two-point function ⟨OI(x)O†
J(y)⟩ at tree level does not receive quantum corrections,

meaning that it only depends on ∆0. There are three types of tree-level Feynman
diagrams contributing to the two-point function, as shown in Figure 5.2. We can

Figure 5.2: Tree-level diagrams contributing to the two-point function

evaluate these diagrams by contracting scalar fields with the propagator〈
(Y A(x))a

b(Y †
B(y))c

d

〉
= 1
k

δA
Bδ

a
dδ

c
b

|x− y|
, (5.24)

where a, b, c, d = 1, 2, . . . , N are color indices and A,B are flavor indices. The contri-
butions from diagrams a and b are proportional to N2L since every two propagators
give a factor δa

dδ
c
bδ

d
aδ

b
c = N2. While for the diagram c, such contractions swap the order

of two of the propagators, making it proportional to (N2)L−1. Hence, the contribu-
tions from non-planar diagrams such as c are suppressed in the ’t Hooft limit. It is
straightforward to calculate the contributions from diagram a and c. The result is〈

OA1,...,AL
B1,...,BL

O†B′
1,...,B′

L

A′
1,...,A′

L

〉
= λ2L

|x− y|2L

(
δA1

A′
1
. . . δAL

A′
L
δ

B′
1

B1 . . . δ
B′

L
BL

+ cyclic perm.
)
. (5.25)

We see that the classical dimension of composite operator (5.23) is ∆0 = L, consistent
with the power counting.

To find the anomalous dimension, we can first calculate the two-point function at
loop order and then extract the logarithmically divergent pieces from it. In the N = 4
SYM theory, the dilation operator can be read off from the two-point function under
a specific renormalization scheme [34]. Alternatively, in ABJM theory, we can obtain
the dilation operator by studying the one-point functions of the composite operators
(5.19). The divergences due to quantum corrections require the renormalization

Oren
a = Z b

a (λ,Λ)Obare
b , (5.26)
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where matrix Z b
a cancels the appearing divergences and implies there is a mixing of

different bare operators. The operator mixing matrix Γ describes how the basis (5.23)
transform under the renormalization and can be viewed as the matrix representation
of the dilation operator, which is given by

Γ = Z−1 dZ
d ln Λ . (5.27)

The two-loop renormalization in the basis (5.23) was studied in [5,30] and the dilation
operator in the planar limit is given by

Γ2-loop = λ2

2

2L∑
l=1

(2 − 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2) . (5.28)

Now the spectral problem of anomalous dimension translates to diagonalizing the
dilation operator. The set of basis (5.23) forms a tensor product space V1 ⊗V2 ⊗. . .⊗VL

with Vn = 4 ⊗ 4̄, on which the dilation operator acts. And the eigenvectors of the
dilation operator generally are linear combinations of single trace operators, taking the
form (5.19). The dilation operator in this basis is a matrix of size 42L. Thus, for large
L it is hard or impossible to diagonalize it directly. Fortunately, the dilation operator
(5.28) can be identified with the Hamiltonian of the SU(4) alternating spin chain, where
the spectral problem can be solved using integrability technique, e.g. Bethe ansatz.

5.6 SU(4) alternating spin chain

The Hamiltonian of the SU(4) alternating spin chain is exactly same as the dilation
operator (5.28), where permutation operator P and trace operator K acting on C4 ⊗C4

are defined by

Pij|i⟩ ⊗ |j⟩ = |j⟩ ⊗ |i⟩, Kij|i⟩ ⊗ |j⟩ = δij

4∑
k=1

|k⟩ ⊗ |k⟩. (5.29)

The spin chain shown in Figure 5.3 has two types of lattice sites, where spins at odd
sites and even sites sit in the 4 and 4̄ representations of SU(4) group respectively.

Figure 5.3: su(4) alternating spin chain
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Since the scalar fields Y A, Y †
A in ABJM theory transform as the fundamental and

anti-fundamental representations of SU(4) R-symmetry group, we can map these fields
to the spins

Y A 7→ |A⟩, Y †
B 7→ |B̄⟩, (5.30)

where bars are used to distinguish odd and even sites. Then, the composite operator
(5.23) can be mapped to a state in the Hilbert space of the spin chain

tr
(
Y A1Y †

B1Y
A2Y †

B2 · · ·
)

7→ |A1B̄1A2B̄2 · · · ⟩. (5.31)

Therefore, we can diagonalize the dilation operator (5.28) within the spin chain frame-
work by utilizing the Bethe ansatz, which was detailed in the previous chapter.

5.6.1 Eigenvalue

The Bethe ansatz equations for the SU(4) alternating spin chain are given by (4.37),
and we rewrite it as

1 = eiϕuk =
(
uk + i

2
uk − i

2

)L Ku∏
j=1
j ̸=k

S(uk, uj)
Kw∏
j=1

S̃(uk, wj),

1 = eiϕwk =
Kw∏
j=1
j ̸=k

S(wk, wj)
Ku∏
j=1

S̃(wk, uj)
Kv∏
j=1

S̃(wk, vj),

1 = eiϕvk =
(
vk + i

2
vk − i

2

)L Kv∏
j=1
j ̸=k

S(vk, vj)
Kw∏
j=1

S̃(vk, wj),

(5.32)

where the S-matrices are the same as those in (3.67), and we introduce the functions
ϕ for later use. Through the rational-Q system (4.38), we can solve these coupled
equations efficiently. The two-loop anomalous dimension of the conformal operator
(5.19) equals to the energy eigenvalue

∆ − L = λ2
(

Ku∑
k=1

1
u2

k + 1
4

+
Kv∑
k=1

1
v2

k + 1
4

)
. (5.33)

5.6.2 Eigenvector

The eigenvectors of the dilation operator are identified with the energy eigenstate of
SU(4) alternating spin chain, which can be constructed by the nested coordinate Bethe
ansatz (CBA). There are 4 possible states at each site of the spin chain while the odd
and even sites should be distinguished. Each scalar field in ABJM theory is mapped
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to a specific combination of the Bethe roots as follows:

Y 1 7→ |1⟩ = |•⟩, Y 2 7→ |2⟩ = |u•⟩, Y 3 7→ |3⟩ = |
w
u•⟩, Y 4 7→ |4⟩ = |

w
uv• ⟩,

Y †
1 7→ |1̄⟩ = |

w
uv◦ ⟩, Y †

2 7→ |2̄⟩ = |
w
v◦⟩, Y †

3 7→ |3̄⟩ = |v◦⟩, Y †
4 7→ |4̄⟩ = |◦⟩.

(5.34)

Here, we choose |Ω⟩ = |14̄⟩L as the vacuum state, corresponding to a chiral primary
operator Ogs = tr[(Y 1Y †

4 )L]. It is easy to see Ogs is symmetric under any permutation
Pl,l+2 and vanishing under any trace Kl,l+1. Thus, Ogs is the ground state of the
dilation operator (5.28) with zero anomalous dimension. Moreover, the chiral primaries
in ABJM theory are those in (5.19) with symmetric and traceless ΨB1,...,BL

A1,...,AL
. Their

conformal dimension are protected from quantum corrections by the supersymmetry.
To construct eigenvectors, we initially distribute the Bethe roots {u,w,v} to the

sites of the spin chain in a specific manner:

1. Distribute the momentum carrying roots {u1, . . . , uKu} and {v1, . . . , vKv} to the
vacuum state |•1, ◦1, · · · •L, ◦L⟩. Either a single root uk or a pair of roots ukvj

can be placed at odd sites. Likewise, a single v-type root or two roots of uv-type
can be assigned to even sites.

2. Distribute the auxiliary roots {w1, . . . , wKw} to the sites that contain roots u or
v. Each root wk can be allocated to the top of either u, v or uv.

3. Distributions with configurations not listed in (5.34), such as |uv• ⟩ which does not
correspond to any of the fields, are set to zero.

Following this procedure, the possible configurations at site-n are given by

s2n−1 ∈ {•, uk• ,
wi
uk• ,

wi
ukvj• }, s2n ∈ {◦,

vj◦ ,
wi
vj◦ ,

wi
ukvj◦ }. (5.35)

Any possible distribution is denoted by

s⃗ ≡ {s1, s2, . . . , s2L−1, s2L}. (5.36)

All the distributions s⃗ form a set of basis vectors |⃗s⟩. Any eigenvector is the linear
combination of these basis vectors

|u,w,v⟩ =
∑

s⃗
Ψs⃗(u,w,v)|⃗s⟩, (5.37)

where Ψ represents the wavefunction of each distribution. It takes the following general
form:

Ψs⃗(u,w,v) = S ×
2L∏

n=1
Φ(sn). (5.38)
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Single-site wave functions Φ(sn) with at most one Bethe root are given by

Φ(•n) = Φ(◦n) = 1, Φ(uk•n) =
(
uk + i

2
uk − i

2

)n

, Φ( vk◦n) =
(
vk + i

2
vk − i

2

)n

, (5.39)

and Φ(sn) with two Bethe roots are

Φ(
wi
uk•n) =

(
uk + i

2
uk − i

2

)n

× ψ(wi|zj) × −1
wi − uk − i

2
,

Φ(
wi
vk◦n) =

(
vk + i

2
vk − i

2

)n

× ψ(wi|zj) × 1
wi − vk − i

2
,

(5.40)

where ψ(wi|zj) indicates that wavefunctions (5.40) depend on the Bethe roots at other
sites. The explicit form of ψ(w|zj) is

ψ(w|zj) =
∏
j

w − zj + i
2

w − zj − i
2
, (5.41)

and zj denotes all the momentum carrying roots located at sites to the left of the site
containing w. Similarly, Φ(sn) with three Bethe roots also depends on zj, given by

Φ(
wi

ukvj•n ) =
(
uk + i

2
uk − i

2

)n (
vj + i

2
vj − i

2

)n

× ψ(wi|zl) ×
−(vj − i

2)
(wi − uk − i

2)(wi − vj − i
2) ,

Φ(
wi

ukvj◦n ) =
(
uk + i

2
uk − i

2

)n (
vj + i

2
vj − i

2

)n

× ψ(wi|zl) ×
+(uk + i

2)
(wi − uk − i

2)(wi − vj − i
2) .

(5.42)

Now, the single-site wavefunction Φ(sn) for all eight types of configurations in
(5.35) has been determined. The remaining task is to determine the factor S in (5.38),
which is a product of S-matrices (3.67). The factor S accounts for the reordering
of Bethe roots into the canonical order, namely the same order as {u1, u2, . . . uk},
{v1, v2, . . . vk} and {w1, w2, . . . wk}.

5.6.3 Norms and Gaudin determinant

The normalization problem involves the norm of Bethe states. The Gaudin conjecture
points out that for any integrable spin chains, the norm of Bethe states is proportional
to the determinant of the Gaudin matrix [35]. The Gaudin matrix is defined by

(Gab)jk =
∂ϕub,k

∂ua,j

, (5.43)

where the function ϕ is the logarithm of Bethe equations, as introduced in (5.32). And
ua,j is an element in the a-th set of Bethe roots. Thus, the Gaudin matrix in general
is a block matrix.
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For the SU(4) alternating spin chain, the Gaudin matrix is a 3 × 3 block matrix
with a total size of (Ku +Kw +Kv) × (Ku +Kw +Kv):

G =


∂ui
ϕuj

∂ui
ϕwj

∂ui
ϕvj

∂wi
ϕuj

∂wi
ϕwj

∂wi
ϕvj

∂vi
ϕuj

∂vi
ϕwj

∂vi
ϕvj

 . (5.44)

We see that the Gaudin matrix would be large even for small (Ku, Kw, Kv). However,
if the Bethe roots {u,w,v} are parity-symmetric, the determinant of the Gaudin ma-
trix (5.44) factorizes into the determinants of two sub-matrices. This factorization has
already been observed in the SU(2) Heisenberg spin chain when studying the integra-
bility in N = 4 SYM [36]. We will see this factorization in ABJM theory later. The
norm of the Bethe states (5.37), as conjectured in [37], is given by

⟨u,w,v|u,w,v⟩ =
∏

i<j

S(ui, uj)
S(u∗

i , u
∗
j)

 1
2
∏

i<j

S(vi, vj)
S(v∗

i , v
∗
j )

 1
2
∏

i<j

S(wi, wj)
S(w∗

i , w
∗
j )

 1
2

×

∏
j

1
∂up(uj)

(∏
k

1
∂vp(vk)

)
detG,

(5.45)

with

S(u, v) = u− v − i

u− v + i
, p(u) = 1

i
log

u+ i
2

u− i
2
, ∂up(u) = −1

u2 + 1
4
. (5.46)

The conjecture for the norm (5.45) can be tested in the specific case. For the parity-
symmetric Bethe states which satisfy P|u,w,v⟩ = |u,w,v⟩, the norm formula simpli-
fies to

⟨u,w,v|u,w,v⟩ =
[ Kw

2 ]∏
k=1

(wk − i
2)(w∗

k + i
2)

(wk + i
2)(w∗

k − i
2)

Ku∏
j=1

(
u2

j + 1
4

)2
detG. (5.47)

5.7 Duality

The AdS/CFT correspondence proposed by Maldacena in [6], indicates that the bound-
ary of an anti-de Sitter space can act as the spacetime for a d-dimensional conformal
field theory. And this CFTd is exactly equivalent to the gravitational theory in the
bulk of the AdSd+1 space, suggesting a correspondence where every entity in the CFT
has a counterpart on the gravity side (and vice versa). There are several examples of
the AdS/CFT correspondence; for instance, N = 4 SYM theory in four dimensions
is equivalent type IIB string theory on the product space AdS5 × S5, referred to as
AdS5/CFT4. The integrability in planar N = 4 SYM theory is manifested through
the classically integrable string world-sheet model on the string theory side [38, 39].
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Specifically, the dilation operator in the CFT can be mapped to a Hamiltonian of a
spin chain, whose integrability mirrors that of the string sigma model in AdS space.
Thus, integrability aids in computing these spectra exactly on both sides, providing a
powerful check of the duality.

Another example of the AdS/CFT correspondence is AdS4/CFT3 [4]: the ABJM
theory is gravitational dual to M-theory on AdS4 × S7/Zk. In other words, ABJM
theory describes the world-volume theory of a stack of N M2 branes moving on the
orbifold C4/Zk. In the ’t Hooft limit (planar limit), where k and N grow large with
equal powers, we have k5 ≫ N and hence M-theory is approximated by weekly coupled
IIA string theory on AdS4×CP 3 background. The string coupling constant and tension
are given by:

gs ∼
(
N

k5

)1/4
= λ5/4

N
,

R2

α′ = 4π
√

2λ, (5.48)

where R is the radius of CP 3 and twice the radius of AdS4. We see that both the
string theory and the field theory are controlled by only two parameters k and N . As
discussed in [7,8], planar integrability was established for the dual string sigma model,
which provides an intuitive understanding of the origin of integrability in CFT3.



6. One-point functions in defect
ABJM theory

As previously discussed, correlation functions in a conformal field theory (CFT) are
significantly constrained by conformal symmetry. In particular, one-point functions
must vanish due to symmetry arguments, see Eq.(5.11). However, we can introduce a
defect in the spacetime of a CFT, which leads to several novel effects. The presence
of defects can break conformal symmetry and affect the correlation functions. We
consider a flat co-dimension 1 defect that acts as an interface, as depicted in Figure 6.1.
This interface allows some of the physical modes to propagate while blocking others.
Furthermore, it reduces the conformal symmetry by one dimension and necessarily
breaks some of the supersymmetry as well.

Figure 6.1: A co-dimension-1 defect in the spacetime of a CFT

In such a defect CFT, one-point functions and two-point functions of operators
with unequal conformal dimensions are less restricted and hence become non-vanishing.
Specifically, one-point functions are now fixed up to a constant C [40]

⟨OI(x)⟩ = CI

z∆I
, (6.1)

where z denotes the distance from x to the interface. And two-point functions are no

44
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longer proportional to a delta function:

⟨OI(x)OJ(y)⟩ = fIJ(ξ)
z∆I

x z∆J
y

, ξ = |x− y|2

4zxzy

, (6.2)

with the conformal ratio ξ. Additionally, correlation functions involving bulk and
boundary fields emerge.

A defect version of ABJM theory with a co-dimension 1 defect can be built by
introducing a domain wall on which Nahm pole boundary conditions are applied to cer-
tain field components. This defect ABJM theory is holographic dual to a string theory
with D2-D4 probe brane system, referred to as the AdS/dCFT correspondence. The
defect, as well as its holographic dual description, can be identified with an integrable
boundary state in the Hilbert space of underlying spin chain. Consequently, overlaps
between these integrable boundary states and Bethe eigenstates encode the one-point
functions, demonstrating that integrability is preserved in this setup.

6.1 Supersymmetric defect in ABJM theory

The domain wall in a field theory separates regions of different vacuum configurations.
It is described by the classical scalar-field profile and can be viewed as an interface
where scalar fields transition from one vacuum configuration to another in this interface.
There exists super-symmetric domain walls with certain boundary conditions, which
preserve a fraction of the original supersymmetry. In ABJM theory, the domain wall
described by Nahm pole boundary conditions preserves half of the supersymmetry
and hence is named the 1/2-BPS domain wall. The Nahm pole boundary conditions
are solutions to the Nahm’s equations, which can be derived by rewriting the BPS
equations.

We first derive the BPS equations by minimizing the energy functional and then
use supersymmetry arguments to demonstrate that they indeed preserve half of the
supersymmetry in ABJM theory. The bosonic part of the Lagrangian of ABJM theory
follows from (5.1):

L = k

4π tr
[
εµνλ

(
Aµ∂νAλ + 2

3AµAνAλ − Âµ∂νÂλ − 2
3ÂµÂνÂλ

)

+DµY
†

AD
µY A + 1

12Y
AY †

AY
BY †

BY
CY †

C + 1
12Y

AY †
BY

BY †
CY

CY †
A

− 1
2Y

AY †
AY

BY †
CY

CY †
B + 1

3Y
AY †

BY
CY †

AY
BY †

C + fermions
]
.

(6.3)

And the energy functional of scalars reads

E = k

4π

∫
dx tr

(
DµY

†
AD

µY A + Vbos
)
, (6.4)
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with the potential energy Vbos give by (5.2b). The energy of a BPS configuration takes
the absolute minimum value within its topological sector. Thus, we aim to re-express
the energy functional (6.4) as a total square plus a total derivative and then require
the total square to vanish. Although the potential Vbos is not a total square in general,
it turns out that Vbos can become such if we consider a configuration with only two of
the scalar fields Y A being non-zero. We choose Y 1, Y 4 as the non-zero components for
later convenience, collectively denoted by Y α.

Contracting Y †
αY

δY †
β Y

εY †
γ Y

ω with the Levi-Civita tensor εαβγεδεω, which is al-
ways zero for 2-dimensional indices α, β, γ, δ, ε, ω = 1, 4, we establish the following
identity:

trY †
αY

βY †
γ Y

αY †
β Y

γ =3 trY †
αY

βY †
β Y

αY †
γ Y

γ − trY †
αY

βY †
β Y

γY †
γ Y

α

− trY †
αY

αY †
β Y

βY †
γ Y

γ,
(6.5)

which implies that there are only three kinds of independent tensor structures in the
potential term

Vbos = 1
4Y

αY †
αY

βY †
β Y

γY †
γ + 1

4Y
αY †

β Y
βY †

γ Y
γY †

α − 1
2Y

αY †
αY

βY †
γ Y

γY †
β . (6.6)

Along with

tr
[
Dµ(Y †

αY
αY †

β Y
β)
]

= tr
[
Dµ(Y †

αY
α)Y †

β Y
β + Y †

αY
αDµ(Y †

β Y
β)
]

= 2 tr
[
Dµ(Y †

αY
α)Y †

β Y
β
]
.

(6.7)

we can rewrite the energy functional as

E = k

4π

∫
dx tr

[
DµY

†
αD

µY α − 1
2Dµ(Y †

αY
α)Y †

β Y
β + 1

2Y
αY †

αDµ(Y βY †
β )

+ Vbos + 1
4Dµ(Y †

αY
αY †

β Y
β) − 1

4Dµ(Y αY †
αY

βY †
β )
]
.

(6.8)

Then, it can be expressed in a modulus-squared form

E = k

4π

∫
dx tr

(
dY †

α

dx
− 1

2Y
†

β Y
βY †

α + 1
2Y

†
αY

βY †
β

)

×
(
dY α

dx
− 1

2Y
αY †

β Y
β + 1

2Y
βY †

β Y
α

)
+ total derivatives.

(6.9)

where covariant derivative Dµ reduces to ∂µ by a specific gauge choice and x ≡ x2

because we assume Y α=Y α(x2). To ensure that the energy functional takes the smallest
value, we set the total squared term to zero, which leads to the BPS equations

dY α

dx
− 1

2Y
αY †

β Y
β + 1

2Y
βY †

β Y
α = 0. (6.10)
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The solutions to the BPS equations are consistent with the equations of motion of the
scalars. Hence, these solutions describe a BPS domain wall.

To explicitly see that the BPS equations (6.10) preserve half of the supersymme-
try, we can re-derive them from the SUSY transformations (5.5). Here we still assume
that Y α = Y α(x2), Y 3 = Y 4 = 0, along with

γ2ω12 = ω12, γ2ω34 = ω34, γ2ωaḃ = −ωaḃ, γ2ωḃa = −ωḃa, (6.11)

where ωAB are SUSY transformation parameters defined in (5.6) with a = 1, 2 and
ḃ = 3, 4. The condition (6.11) implies, for instance, ω12 = ω∗

34. Thus, there are only
three independent ωAB, resulting in the SUSY transformation (5.5) coinciding with the
usual N = 3 SUSY transformation. The BPS condition reads δψA = 0, whose solutions
will preserve 6 supercharges, namely half of the original supersymmetry. Under the
choice (6.11), the SUSY transformation for ψ becomes

dY 1

dx2
+ 2π

k

(
Y 2Y †

2 Y
1 − Y 1Y †

2 Y
2
)

= 0,

dY 2

dx2
+ 2π

k

(
Y 1Y †

1 Y
2 − Y 2Y †

1 Y
1
)

= 0,
(6.12)

or collectively
dY α

dx2
= −2π

k
(Y βY †

β Y
α − Y αY †

β Y
β), (6.13)

which will be exactly same as the BPS equations (6.10) after re-scaling the fields. Now
we see that the solutions to (6.10) indeed correspond to a 1/2-BPS domain wall.

6.2 1/2-BPS solutions and Nahm’s equations

Let us find the solutions to the BPS equations (6.10). The solution for the half-space
x > 0 takes the form

Y α(x) = Sα

√
x
, x > 0, (6.14)

where Sα sit in the bi-fundamental representation (N, N̄) of the gauge group and satisfy
the following algebra

S1 = S2S2†S1 − S1S2†S2, (6.15a)

S2 = S1S1†S2 − S2S1†S1. (6.15b)

With the U(N) × Û(N) gauge symmetry, we can always diagonalize S2 by the gauge
transformation (5.18), and hence we take

(S2)ij = αiδij, (6.16)
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where αi is a real and non-negative number. Without loss of generality, we can assume
αi+1 ≤ αi, facilitating the formulation for diagonal S2. Then, equation (6.15a) gives

(S1)ij =
(
α2

i − α2
j

)
(S1)ij, (6.17)

which implies (S1)ij = 0 if α2
i −α2

j ̸= 1. Thus, S1 is block diagonalized if α2
i −α2

i+1 = 1
and α2

i − α2
j ̸= 1 when j ̸= i+ 1, where we can assume

(S1)ij = βiδi,j−1, i, j = 1, · · · , N. (6.18)

With (S1(S1)†)ij = δij(βi)2 and ((S1)†S1)ij = δij(βi−1)2, equation (6.15b) reads

(
β2

i − β2
i−1

)
αi = αi, i = 1, . . . , N. (6.19)

For convenience, we set αN = 0 and β0 = 0. Then, equation (6.19) implies β1 = 1
when i = 1. Therefore, we conclude that

(S1)ij = δi,j−1
√
i, (S2)ij = δij

√
N − i, i, j = 1, . . . , N. (6.20)

These solutions, combined with (6.14), is the BPS solution for x > 0.
We consider a configuration where we take i = 1, . . . , q − 1 and j = 1, . . . q in

(6.20), assuming q ≤ N . This configuration still satisfies 1/2-BPS equations and serves
as the classical solution for the scalar fields, given by

Y α
cl (x) = 1√

x

 Sα
(q−1)×q 0(q−1)×(N−q)

0(N−q+1)×q 0(N−q+1)×(N−q)

 , x > 0. (6.21)

And all other fields, i.e. Y 3, Y 4, gauge fields and fermions vanish classically. In other
words, for x > 0, the gauge symmetry breaks down to U(N − q + 1) × Û(N − q)
due to the non-zero part of Y α

cl and the symmetry will restored to U(N) × Û(N) as
x → ∞. In the other half-space x < 0, to maintain consistency, the gauge symmetry
is taken to be U(N − q + 1) × Û(N − q). All fields in this region transform under
the representations of this symmetry group and possess vanishing classical solutions.
Consequently, this defect field theory setup define a domain wall version of ABJM
theory, as shown in Figure 6.2, where the domain wall breaks the SU(4) symmetry of
scalar fields to SU(2) × SU(2) × U(1).



6.2. 1/2-BPS solutions and Nahm’s equations 49

Figure 6.2: The domain wall version of ABJM theory [41]

Equivalently, the domain wall can also be described by Nahm pole boundary
conditions [42], which solve Nahm’s equations [43]. In fact, Nahm’s equations describe
super-symmetric domain walls in 4D [44] and play a significant role in the parallel
studies of defect N = 4 SYM [45]. We aim to demonstrate that the BPS equations
(6.10) are equivalent to Nahm’s equations, in the sense that they represent a square
root of Nahm’s equation.

Defining the composite field with (q − 1) × q dimensional scalar fields Y α

Φα
β = Y αY †

β , (6.22)

we can combine the BPS equation (6.10) and its conjugate into a single equation
dΦα

β

dx
= Φα

γΦγ
β − 1

2 {Φγ
γ,Φα

β} . (6.23)

Furthermore, expanding the composite field Φα
β in the (σ, I) basis,

Φα
β = Φiσα

iβ + Φδα
β , (6.24)

the equation (6.23) simplifies to

dΦi

dx
= i

2ε
ijk
[
Φj,Φk

]
,

dΦ
dx

= ΦiΦi − Φ2,

(6.25)

where the first equation is the Nahm equation. It is easy to find the simplest Nahm-pole
solution:

Φi = ti

x
, (6.26)

with ti satisfying the su(2) algebra. Since Φi is of size (q − 1) × (q − 1) by the defini-
tion (6.22), ti form a (q − 1)-dimensional representation of su(2). Hence, the Casimir
operator ΦiΦi = q(q−2)

4 I. Then, we find the solution for the singlet component

Φ = qI
2x. (6.27)
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The same arguments apply to the dual bi-linear

Φ̂α
β = Y †

αY
β ≡ Φ̂iσ

iβ
α + Φ̂δα

β. (6.28)

For which, the BPS equation can be reformulated as Nahm’s equation:

dΦ̂i

dx
= − i

2εijk[Φ̂j, Φ̂k],

dΦ̂
dx

= −Φ̂iΦ̂i + Φ̂2.

(6.29)

Similarly, it is straightforward to find the simplest Nahm pole solution

Φ̂i = − t̂i
x
,

Φ̂ = (q − 1)I
2x .

(6.30)

Notice that in this case t̂i form a q-dimensional representation of su(2), instead of
(q − 1)-dimensional, because the dual bi-linear Φ̂α

β is of size (q × q). We can check
the Nahm pole solutions (6.26), (6.27) and (6.30) are consistent with the BPS solution
(6.21), implying that they do correspond to a 1/2-BPS domain wall. The simplest
Nahm pole solution arises when q = 2, given by

Φα
β = 1

x
δα

β,

Φ̂α
β = I2×2δα

β − σ3σiσ3σ
iβ
α

2x ,

(6.31)

here we choose the representation t̂i = σ3σiσ3 for consistency. With the classical
solution (6.21) for q = 2, we explicitly find

Y αY †
β = 1

x

1 0
0 1

 , Y †
αY

β = 1
x



0 0
0 1

 0 0
1 0


0 1

0 0

 1 0
0 0



 , (6.32)

which is exactly consistent with the Nahm pole solution (6.31).

6.3 String theory description

As mentioned before, planar ABJM theory describes the world-volume theory of a
stack of N D2 branes in type IIA superstring theory. This holographic duality can
be deformed by introducing defects (probe branes) on the field theory (string theory)
side. The defect version of ABJM theory with a 1/2-BPS domain wall, constructed in
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the previous section, has a dual string theory description where a D4 probe brane is
embedded in the type IIA background AdS4 × CP3. The resulting D2-D4 probe brane
system consists of N coinciding D2-branes and one single probe D4-brane inserted
among them. The relative orientation of the branes is shown in Table 6.1.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D2 • • •
D4 • • • • •

Table 6.1: D2-D4 probe brane system in ten-dimensional string theory background

The probe brane system has the geometry AdS3 × CP1 and carries q units of
world volume gauge field flux on the CP1. It preserves half of the supersymmetry in
the string theory [46], namely it is 1/2-BPS, which is consistent with the domain wall
in ABJM theory. In fact, integrability of the string boundary conditions on the probe
D4-brane within the Green-Schwarz sigma model was checked in [12], which suggests
the ABJM domain wall is integrable to all loop orders and for any value of the bond
dimension.

This is not surprising, since similar results are obtained in AdS5/CFT4. The D3-
D5 probe brane setup describing N = 4 SYM with a supersymmetric domain wall was
studied in [9,10,36], where the investigation of tree-level one-point functions has uncov-
ered notable signs of integrability and enabled a test of the AdS/dCFT correspondence
at classical level [47]. Furthermore, at quantum level the study of one-loop one-point
functions has provided a positive test of the AdS/dCFT correspondence [48,49]. What
is more, there exists a probe brane setup that breaks all supersymmetry of N = 4
SYM, known as the D3-D7 brane setup, which comes in two variants. In one variant,
the D7-brane has the geometry AdS4 × S4 [50]; in the other, it is AdS4 × S2 × S2 [51].
The former setup exhibits SO(5) symmetry, while the latter one displays SU(2)×SU(2)
symmetry. The one-point functions were evaluated for the SO(5) D3-D7 setup in [52],
including those of non-protected operators. And the boundary integrability in this
dCFT was proved in [53]. However, so far, for the SU(2)×SU(2) D3-D7 setup, only
tree-level one-point functions of chiral primaries have been calculated, and these cal-
culations were consistent with string-theory predictions [54].

Finally, it is worth mentioning that integrability in the context of the AdS/CFT
correspondence has been studied for other duality configurations involving D7-branes.
These include a D7-D3 probe setup with the geometry AdS5 × S3 [55–57], and a D7-
O7-D3 setup which involves an orientifold plane [58–61].
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6.4 Integrable boundary states

Now we focus on the one-point functions in the 1/2-BPS domain wall version of ABJM
theory. At tree level, the one-point functions of composite operator (5.19) can be
evaluated by inserting the classical solution of scalar fields (6.21):

⟨O(x)⟩tree = 1
xL

ΨB1...BL
A1...AL

tr(SA1S†
B1S

A2S†
B2 . . . S

ALS†
BL

). (6.33)

The coefficients ΨB1...BL
A1...AL

ensure that the operator O(x) is an eigenstate of the dilation
operator. With the underlying integrable quantum spin chain in ABJM theory, ΨB1...BL

A1...AL

can be determined by Bethe ansatz method as analysed in section 5.6.
Alternatively, we can calculate the one-point functions exploiting the integrability

of the domain wall. Since the domain wall preserves half of the supersymmetry, it
turns out that such super-symmetric defects possess integrability, which is manifested
through the corresponding integrable boundary state in spin chain picture.

6.4.1 Definition

There is no rigours definition for the integrable boundary state. One possible definition
of the integrable boundary state was proposed by Piroli, Pozsgay, Vernier in 2017 [62],
which is inspired from the definition of boundary states in quantum field theories [63].
They suggested that an boundary state |Ψ0⟩ is integrable if it is annihilated by all local
conserved charges of the model that are odd under space reflection:

Q2k+1|Ψ0⟩ = 0, k = 1, 2, . . . . (6.34)

The integrability condition (6.34) is equivalent to another integrability condition using
the transfer matrix T (u) that generates the set of conserved charges

ΠT (u)Π|Ψ0⟩ = T (u)|Ψ0⟩, (6.35)

where Π is the parity operator, acting on the all sites of spin chain as

Π|i1, i2, · · · , iL⟩ = |iL, iL−1, · · · , i1⟩. (6.36)

The parity transformation ΠT (u)Π in the condition (6.35) are model-dependent, as
the structure of the transfer matrix varies between different models. For instance, the
transfer matrix of su(2) spin chain constructed in section 3.1, transforms as [64]

ΠT (u)Π = T (−u). (6.37)

We will discuss the significance of the integrability conditions when studying the overlap
between boundary states and Bethe states.
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6.4.2 Matrix product state

We consider a specific type of boundary state represented by the so-called matrix
product state. The matrix product state (MPS) [65] is a representation of quantum
many-body states, especially useful for one-dimensional systems, such as spin chains.
It expresses the quantum state of a system in terms of a product of matrices. A generic
(periodic) MPS can be defined as

|MPS⟩ =
d∑

i1,...,iL=1
tr
[
A

(i1)
1 A

(i2)
2 . . . A

(iL)
L

]
|i1, i2, . . . , iL⟩, (6.38)

where d is the dimension of the physical space and A(in)
n are dn−1 × dn dimensional

matrices with dn being arbitrary positive integer numbers, referred to as bond dimen-
sions. The |MPS⟩ that corresponds to the domain wall can be constructed by replacing
matrices A(in)

n with the classical solution of scalar fields. In studies of the integrability
of defect N = 4 SYM theory, the constructed MPS is indeed integrable [9, 10, 66],
which implies that the defect preserves integrability and there exists a closed formula
for one-point functions. We will see this later in ABJM theory.

In the presence of a 1/2-BPS domain wall in ABJM theory, the boundary state
|MPS⟩ in the spin chain’s Hilbert space, takes the following form

|MPS⟩ =
2∑

Ak,Bk=1
tr
[
SA1S†

B1S
A2S†

B2 . . . S
ALS†

BL

]
|A1, B1, . . . , AL, BL⟩. (6.39)

Combining odd and even sites into Φα
β and inserting Nahm pole solutions (6.26) and

(6.27), we find the wavefunction of |MPS⟩

MPS = tra M11̄ . . .MLL̄,

Mnn̄ = q

2Ia ⊗ In + tia ⊗ σi
n,

(6.40)

where Mnn̄ are matrices acting on the (q − 1)-dimensional auxiliary space Va and
quantum spaces of two neighboring sites Vn = |An⟩ ⊗ |Bn⟩. Equivalently, using dual
bi-linear solutions Φ̂α

β in (6.30), another representation of the boundary state |MPS⟩
can be obtained

MPS = trb M̂1̄2M̂2̄3 . . . M̂L̄1,

M̂n̄,n+1 = q − 1
2 Ib ⊗ In − t̂ib ⊗ σi

n,
(6.41)

here the auxiliary space Vb = Cq and quantum space Vn = |Bn⟩ ⊗ |An+1⟩. When the
bond dimension parameter q = 2, the 1-dimensional representation of su(2) is trivial
ti = 0 and there is no auxiliary space to be traced. Thus, the boundary state given in
(6.40) becomes a product of two-site states:

MPSq=2 = δA1
B1δ

A2
B2 . . . δ

AL
BL
. (6.42)
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Such a boundary state is named the valence bond State (VBS), defined as

⟨MPSq=2| = ⟨K|⊗L ≡ ⟨VBS|, (6.43)

where ⟨K| is a two-site state with components KA
B = δA

B.

6.5 Overlap formula

The one-point functions (6.33) can be re-expressed in spin chain picture. Since the
dilation operator (5.28) is identified with the Hamiltonian of su(4) alternating spin
chain, the conformal operator O(x) is proportional to energy eigenstate of spin chain.
In general, the energy eigenstate of su(4) spin chain can be written as

|u⟩ = ΨB1...BL
A1...AL

|A1, B1, . . . , AL, BL⟩, (6.44)

with the same coefficients ΨB1...BL
A1...AL

as in equation (6.33). The overlap between the
eigenstate |u⟩ and the boundary state |MPS⟩ in (6.39) is

⟨MPS|u⟩ = ΨB1...BL
A1...AL

tr
(
SA1S†

B1S
A2S†

B2 . . . S
ALS†

BL

)
. (6.45)

We observe that the overlap is equal to the one-point functions in (6.33), up to a
normalization factor. It turns out that the one-point functions at tree level have the
following exact form in terms of the overlap

⟨O(x)⟩tree = 1
xL

1
λLL

1
2

⟨MPSq|u⟩
⟨u|u⟩ 1

2
, x > 0, (6.46)

which allows to evaluate one-point functions using integrability technique in spin chain
language. Specifically, the eigenstate |u⟩ and its norm can be found using the Bethe
ansatz as discussed in section 5.6, and the overlap ⟨MPS|u⟩ simplifies greatly under
the integrability condition (6.35) for boundary states.

6.5.1 Selection rules

Before we discuss the overlap formula, we first need to examine the conditions under
which the one-point functions are non-vanishing. These conditions are referred to as
selection rules in this context. From the field theory perspective, the non-vanishing one-
point functions (6.33) are determined by the classical solutions Y AY †

B with A,B = 1, 4,
which serve as the building blocks of the single trace operator. It is easy to see that
the one-point function of the chiral primary vanishes, since

⟨Ogs⟩ = Tr(Y 1Y †
4 . . . Y

1Y †
4 ), Y 1Y †

4 ≡ Φ1
2 = tiσ1

i 2

x
= 2t−

x
, (6.47)
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where t− is a (q − 1)-dimensional lower triangular matrix with the same structure as
the lowering operator, implying that the trace of any product of Y 1Y †

4 vanish. The
other three types of field combinations in (6.33) are

Y 4Y †
1 = 2t+

x
, Y 1Y †

1 = q + 2t3
2x , Y 4Y †

4 = q − 2t3
2x , (6.48)

where t+ serves as the raising operator, and t3 is a diagonal matrix. Thus, we find that
for non-vanishing one-point functions an arbitrary number of field combinations of the
two types Y 1Y †

1 and Y 4Y †
4 are allowed within the trace, whereas a combination Y 1Y †

4

needs another combination Y 4Y †
1 to form a pair.

By this observation, in order to have the non-vanishing one-point functions of an
operator that is excited from the vacuum Ogs based on the correspondence in (5.34),
we require Ku = Kv = Kw so that only Y 1, Y †

1 , Y
4, Y †

4 arise in the excited operator.
Furthermore, we need an equal number of combinations Y 4Y †

1 and Y 1Y †
4 to ensure they

form a pair, which yields
Ku = Kv = Kw = L, (6.49)

where L is half the length of the operator or corresponding spin chain. Besides, the
selection rule (6.49) is consistent with the perspective of the spin chain. The boundary
state |MPS⟩ constructed in (6.39) only contains states |1⟩, |4⟩, |1̄⟩, |4̄⟩. For the overlap
⟨MPS|u⟩ non-vanishing, the Bethe state |u⟩ should only involve these four states,
leading to the condition Ku = Kv = Kw. Note that the selection rule (6.49) is just a
consequence of the global symmetry SU(2) × SU(2) × U(1) in the domain wall version
of ABJM theory, and it is not due to the integrability of the matrix product state.

A Bethe state with (Ku, Kw, Kv) roots belongs to the su(4) representation with
the Dynkin labels[

L− 2Ku +Kw, Ku − 2Kw +Kv, L− 2Kv +Kw

]
, (6.50)

and the excitation numbers must satisfy

2Ku ⩽ L+Kw, 2Kv ⩽ L+Kw, 2Kw ⩽ Ku +Kv. (6.51)

Thus, the selection rule (6.49) requires the Bethe state |u⟩ is a singlet [0, 0, 0] of su(4).
Next, let us discuss the implications of the boundary integrability, which will also

lead to selection rules. Assuming that the boundary state ⟨MPS| is integrable, we have

⟨MPS|Πt(u)Π = ⟨MPS|t(u), (6.52)

where t(u) is one of the transfer matrices of su(4) alternating spin chain. These transfer
matrices can be constructed with the R-matrix Rab(u) = uIab − Pab

t(u) = TraRa1(u)R̄a2(u) . . . Ra,2L−1(u)R̄a,2L(u),
t̄(u) = TraR̄a1(u)Ra2(u) . . . R̄a,2L−1(u)Ra,2L(u).

(6.53)
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The R-matrix Ran acts on the fundamental representation Va = C4 of su(4) and the
quantum space Vn, while R̄an carries the anti-fundamental representation 4̄ as the
auxiliary space. They are related by crossing symmetry

R̄an(u) = RTa
an(2 − u) = RTn

an(2 − u), (6.54)

with Ta representing transposition in space Va. Then, the parity transformation on
t(u) can be related to the other transfer matrix t̄(u) by

Πt(u)Π = TraR̄a,2L(u)Ra,2L−1(u) . . . R̄a2(u)Ra1(u)
= TraR̄a1(2 − u)Ra2(2 − u) . . . R̄a,2L−1(2 − u)Ra,2L(2 − u)
= t̄(2 − u).

(6.55)

Thus, the integrability condition (6.52) implies

t(u) = t̄(2 − u). (6.56)

Applying this equation to the Bethe state we find that〈
MPS

∣∣∣t(u)
∣∣∣u〉 =

〈
MPS

∣∣∣t̄(2 − u)
∣∣∣u〉,

τ(u)
〈
MPS

∣∣∣u〉 = τ̄(2 − u)
〈
MPS

∣∣∣u〉 , (6.57)

where τ(u) and τ̄(u) are eigenvalues of the two transfer matrices respectively and they
have the same structure. Thus, the non-vanishing overlap

〈
MPS

∣∣∣u〉 yields τ(u) =
τ̄(2 − u). With the explicit form of τ(u) and τ̄(u) given in [5, 37], the boundary
integrability (6.52) ultimately leads to the following selection rules on sets of Bethe
roots:

1. The set of roots w must have the following paired structure:

w =

(w1,−w1, . . . , wKw
2
,−wKw

2
), Kw : even,

(w1,−w1, w2,−w2, . . . , 0), Kw : odd.
(6.58)

In other words, w = −w.

2. The set of sets of roots {u,w,v} is invariant under the parity reflection, namely

{u,w,v} = {−v,−w,−u} = {−v,w,−u}, (6.59)

here we use the parity-symmetric property of w. This condition implies that
v = −u.
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6.5.2 Determinant formula for the overlap

So far, we have determined the selection rules (6.49), (6.58) and (6.59) for the non-
vanishing overlap between the Bethe state and the integrable matrix product state.
Now let us discuss the overlap formula for the one-point functions (6.46). We will see
that the one-point functions can be expressed as a determinant formula, which includes
a universal part for overlaps involving integrable boundary states.

The three sets of Bethe roots under these selection rules take the form:

u = (u1, u2, . . . , uL),
v = −u = (−u1,−u2, . . . ,−uL),
w = (w1,−w1, . . . , wL

2
,−wL

2
),

(6.60)

here we assume L is even without loss of generality. For convenience, we divide w into
w+ = (w1, w2, . . . , wL

2
) and w− = (−w1, . . . ,−wL

2
). Then, the 3L-dimensional Gaudin

matrix defined in (5.44), can be written as

G =


Uu U+ U− Uv

W+u W++ W+− W+v

W−u W−+ W−− W−v

Vu V+ V− Vv

 , (6.61)

with sub-blocks given by

[Uu]ij ≡ ∂ui
ϕuj

, [U±]ij ≡ ∂ui
ϕw±

j
, [Uv]ij ≡ ∂ui

ϕvj
,

[W±u]ij ≡ ∂w±
i
ϕuj

, [W±v]ij ≡ ∂w±
i
ϕvj

, [W±±]ij ≡ ∂w±
i
ϕw±

j
,

[Vu]ij ≡ ∂vi
ϕuj

, [V±]ij ≡ ∂vi
ϕw±

j
, [Vv]ij ≡ ∂vi

ϕvj
.

(6.62)

The setup (6.60) implies the following relations among these sub-blocks of the Gaudin
matrix:

Uu = Vv, Uv = Vu, W±u = W∓v,

U± = V∓, W+± = W−∓.
(6.63)

The determinant of Gaudin matrix (6.61) is invariant under swapping rows and
columns:

detG = det


Uu U+ Uv U−

W+u W++ W+v W+−

Vu V+ Vv V−

W−u W−+ W−v W−−

 . (6.64)
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With the relations (6.63), the determinant detG simplifies further

detG = det


Uu U+ Uv U−

W+u W++ W+v W+−

Uv U− Uu U+

W+v W+− W+u W++



= det


Uu + Uv U+ + U− 0 0

W+u +W+v W++ +W+− 0 0
Uv U− Uu − Uv U+ − U−

W+v W+− W+u −W+v W++ −W+−


= detG+ detG−,

(6.65)

where we introduce G+ and G− defined as:

G+ =
 Uu + Uv U+ + U−

W+u +W+v W++ +W+−

 , G− =
 Uu − Uv U+ − U−

W+u −W+v W++ −W+−

 . (6.66)

We see that, under the selection rules, the determinant of the Gaudin matrix (6.61)
factorizes into two determinants of sub-matrices.

Normalized overlaps between integrable boundary states and Bethe states are
described by a remarkably compact formula [67]:

|⟨Ψ0|u⟩|2

⟨u|u⟩
=

∏
j,ν

Fν(uν
j )

︸ ︷︷ ︸
boundary dependent

× detG+

detG−︸ ︷︷ ︸
universal

, (6.67)

where the universal term is a quotient of Gaudin-like determinants, just like the ma-
trices we defined in (6.66). The universal term is independent of the boundary state
|Ψ0⟩ and depends only on the specific spin chain and the corresponding Bethe roots.
Systematic derivations of this formula exist for the XXX and XXZ spin chains [68–70],
while overlaps for models with higher-rank symmetry groups or higher spin representa-
tions are mainly based on conjecture. For our purpose, as analyzed in [67], the overlap
formula involving the valence bond state is explicitly given by

⟨VBS|u⟩
⟨u|u⟩ 1

2
= 2−LQ2(i)

√√√√ SdetG
Q2(0)Q2

(
i
2

) , (6.68)

where ⟨VBS| defined in (6.43) is a special case of ⟨MPS| when q = 2. And Q2 is the
Baxter Q-function for Bethe roots w. The SdetG represents the quotient of detG+

and detG−:
SdetG = detG+

detG− . (6.69)
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With this overlap formula (6.68), we can evaluate tree-level one-point functions (6.46)
for q = 2. Therefore, in the domain wall version of ABJM theory, the one-point
functions can be calculated totally by integrability methods. Once the set of Bethe
roots {u,w,v} is solved, we can evaluate SdetG using (6.66) and then find the ex-
plicit expression of the one-point functions of specific composite operators. Moreover,
the selection rules for non-trivial one-point functions strictly constrain the degrees of
freedom of the input. The only parameter we should consider is the half-length of the
operator or spin chain, when calculating one-point functions. Other input parameters
such as (Ku, Kw, Kv) are fixed by selection rules.

On the other hand, the overlap formula (6.68) can be verified from the field theory
side. The eigenvectors of the dilation operator can be determined either by the Bethe
ansatz or by direct diagonalization. By substituting the classical solution (6.21) into
specific composite operators, we obtain their tree-level one-point functions, which are
expected to match those calculated by the overlap formula (6.68). The validity of the
overlap formula indicates that the boundary state is integrable, which suggests the
1/2-BPS domain wall in ABJM theory preserves integrability as well.



7. Conclusion and outlook

In this thesis, we review the integrability techniques, e.g. Bethe ansatz and Rational
Q-system for solving the spectrum of integrable models. The coordinate Bethe ansatz
provides an intuitive physical picture of Heisenberg spin chain, namely magnons prop-
agating on top of the vacuum and interact with each other in an integrable way, while
the algebraic Bethe ansatz highlights the integrability through the algebraic nature of
the method. Both of them transfer the spectral problem into solving sets of algebraic
Bethe equations. For finding solutions to Bethe equations analytically and efficiently,
we introduce the Rational Q-system which automatically eliminates all nonphysical
solutions. These integrability techniques play an important role in the later discussion.

Next, the setup of ABJM theory is introduced and the spectrum of anomalous
dimensions of scalar composite operators is discussed. With the underlying integrable
su(4) alternating spin chain, the spectral problem in the scalar sector of ABJM theory
can be solved using integrability techniques.

The focus of this thesis is on the one-point functions in the defect version of ABJM
theory, featuring a 1/2-BPS domain wall. We demonstrate that the 1/2-BPS domain
wall preserves half the supersymmetry of ABJM theory. In spin chain language, the
domain wall can be mapped to a Matrix Product State which is a fixed state in the
Hilbert space. The one-point functions of scalar composite operators can be expressed
as an overlap between the Bethe state and the matix product state. The boundary
integrability implies the selection rules for non-vanishing one-point functions, and the
overlap simplifies to a compact determinant formula that includes a universal term
and a boundary-dependent term. The overlap formula for the matrix product state
with a bond dimension of 1 is explicitly demonstrated, and one-point functions can be
calculated using this formula together with Bethe ansatz.

It would be beneficial to check the integrability on the string theory side, as in
the thesis there is only a brief introduction to the string theory description of ABJM
theory and the domain wall version of ABJM theory. Furthermore, it is possible to
evaluate one-point functions in the dual string theory by a variant of the GKPW
prescription [71]. This allows us to compare the one-point functions on both sides and
assess the credibility of the AdS/CFT correspondence.
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