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Abstract This work aims to explore the novel characteris-
tics of a static hybrid transitional star with a spherical dis-
tribution of relativistic matter under the embedded class one
metric framework. This theoretical stellar model is derived
using the nonmetricity-inspired f (Q) gravity, featuring a
core-crust structure: a strange matter core embedded in a nor-
mal matter crust. Our model incorporates pressure anisotropy
as an intrinsic characteristic of highly compact strange stars,
a feature expected to arise in the super-dense regime. The
equation of state, in its basic form, using the MIT bag model
is employed to represent correlation between pressure and
density in quark matter inside the star’s core. The develop-
ment of this model involves selecting the temporal gravi-
tational potential based on the Tolman–Kuchowicz ansatz,
while the radial gravitational potential is determined using
the Class One embedding formalism. We employed both
analytical and graphical methods to assess the robustness
and equilibrium of the presented stellar solution. We provide
an in-depth description of the astrophysical features of the
model and show that they fulfill regularity requirements. A
key finding of this investigation is the absence of a core sin-
gularity within the anisotropic stellar formation. The solution
matches the properties of the observed self-gravitating pulsar
objects: SAX J1804.4-3658 (SS1), EXO1745-248, 4U1820-
30, 4U1608-52, PSR J0740+6620, PSR J0030+0451, Cen
X-4, and SAX J1804.4-3658 (SS2).
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1 Introduction

Hybrid neutron stars represent an intriguing class of dense-
matter stellar configurations that enhance our understand-
ing of both the peculiar phases of matter proposed by high-
energy physics and standard neutron star models [1,2]. These
strange stellar formations are believed to feature a dense core
containing deconfined quark matter (QM) or other exotic
states, surrounded by an outer region of nuclear matter com-
posed of baryons and neutrons. Their research serves as
a searchlight for astrophysical and cosmic processes and
offers new perspectives on the fundamental physics of highly
dense matter content. These supernova remnants, like regu-
lar neutron stars, have a crust composed of ions, electrons,
and neutron-rich nuclei. However, their cores are believed
to contain deconfined QM or other exotic phases, such as
strange QM or states characterized by color superconduc-
tivity. It is hypothesized that phase shift, governed by the
MIT bag model [3], drives the shift from hadronic matter to
QM, resulting in a specialized EoS that integrates quark and
nuclear physics. The observable macroscopic characteristics
of the stellar configuration, including its mass-radius rela-
tionship, susceptibility to tidal deformation, and long-term
thermal behavior, are significantly influenced by the pres-
ence of a mixed-phase core. Gravitational wave signals from
neutron star mergers and surveys of large pulsars can pro-
vide significant constraints on the presence and properties
of hybrid QM stars [4]. Furthermore, these strange config-
urations are crucial for understanding astrophysical events
like cataclysmic stellar explosions, high-energy bursts, and
the cooling behavior of confined cosmic objects. Through
multi-messenger astrophysics, studying hybrid neutron stars
provides a unique laboratory for expanding our insight into
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quantum chromodynamics, the core of strong interactions,
and the expanding cosmos [5].

Recent advances in cosmology and astrophysical physics
have placed significant focus on the spatial organization of
the rapid cosmic acceleration [6–8]. New developments in
this cosmic epoch have revealed new ways to understand
the basic and empirical changes that are causing the galaxy
to evolve so rapidly. This rapid expansion is implicitly sup-
ported by a number of findings, including strong evidence
from extreme redshift supernova observations [9], large-scale
structures [10], and fluctuations in Cosmic Microwave Back-
ground Radiation [11]. Our universe undergoing rapid expan-
sion due to an unknown phenomenon called dark energy,
which exerts a strong negative pressure. As a result, modi-
fications to traditional gravitational models are necessary to
evaluate the phenomenon of rapid cosmic acceleration. These
observations encourage the possibility of extended or mod-
ified gravitational frameworks that can accurately represent
scenarios where general relativity (GR) produces insufficient
results. Cosmologists are actively exploring alternative grav-
itational theories to tackle the constraints of GR in explaining
the exponential cosmic acceleration. Prominent examples of
non-standard gravity models, such as f (R), f (G), f (R, T ),
f (G, T ), and f (R, T 2) [12–24]. These theories offer several
astrophysical and cosmological perspectives and conclusions
that help address the enigmas surrounding the phenomenon
of rapid galactic expansion. Astrophysical evidence provides
a vital testing ground for higher-curvature models of gravity.
Strong-field scenarios, such as those near black holes or neu-
tron stars, are crucial for distinguishing between GR and its
possible extensions, as these theories often coincide with GR
in weak-field regimes. Since dense-matter relativistic config-
urations, such as neutron stars, exist in intense gravitational
fields, these stellar structures can be examined to determine
whether the proposed modified gravity theory deviates from
GR. Additionally, multiple lines of evidence strongly indi-
cate the presence of dark matter. Extended gravitational mod-
els can also be employed to explain these phenomena with-
out integrating novel matter fields or non-standard energy
sources. The complex mechanism of dense-matter composi-
tions has been explored by several researchers using higher-
curvature ingredients within different backgrounds [25–30].

Following the development of GR, the majority of grav-
ity models are developed inside a geometrical foundation
that excludes non-metricity and torsion [31–34]. Alterna-
tively, gravitational models can be constructed using scalars
related to non-metricity (Q) and torsion (T ). Although the
actions

∫
d4x

√−g Q and
∫
d4x

√−g T are equivalent to
GR in the context of flat spacetime, their generalizations,
expressed through f (T ) [35–37] and f (Q) [38–40], can be
classified as modifications to classical GR. The f (Q) gravity
model has been used across multiple fields, including large-
scale structure composition [41], relativistic modified New-

tonian dynamics [42,43], bouncing cosmologies [44–46],
and quantum cosmology [47,48]. Multiple research works
have focused on understanding the implications of f (Q)

gravity in astrophysical and cosmic scenarios. Wang et al.
[49] developed spherically symmetric stellar configurations
featuring anisotropic fluid by employing the f (Q) gravity.
They pointed out that the assumption of coincident gauge
results into rigorous constraints on the function f (Q). Lin
and Zhai [50] examined the influence of non-metricity-based
f (Q) gravity on the static, dense-matter spherical configura-
tions by constructing the internal and external stellar models.
They showed that the coupling of polytropic EoS with the
quadratic function f (Q) = Q + αQ, where α < 0, enables
the formulation of more massive stellar configurations in the
enteral case. However, the external solutions coincides with
the classical GR solutions for any analytical form of f (Q)

model.
Several investigations into understanding the effects of

non-metricity on the physical features of DE stars, strange
stars, and hybrid stellar configurations have been conducted
in recent years. By employing the second-order formulation
of f (Q) model, Bhar et al. [51] examined an emerging family
of DE stars with static and spherically symmetric relativistic
matter configurations. This analysis reveals a significant find-
ing: the radii corresponding to the maximum masses exhibit
an increasing trend as the model parameter decreases. Bhar
and Pretel [52] explored the complex composition of DE
stars and hybrid stars using non-metricity-based linear ana-
lytical formulation of f (Q) gravity. Bhar and Rahaman [53]
developed an anisotropic DE stellar model with a distinctive
five-zone density configuration by employing classical GR.
The physical acceptability of the proposed stellar solution
was analyzed by applying small radial perturbations. Mau-
rya et al. [54] analyzed the role of electric charge on the
configurations of anisotropic gravitationally confined com-
pact solutions through the mechanism of linear f (Q) grav-
ity. The stability and regularity of the proposed model were
examined through stringent physical constraints.

For describing the matter distribution of dense-matter rel-
ativistic formations, local isotropy is one of the most fre-
quently employed assumptions when modeling a particular
stellar object. This Pascalian nature of fluids, characterized
by the equality of principal stresses, is well-supported by
extensive observational evidence. However, recent decades
have witnessed a surge in theoretical studies suggesting that
local anisotropy may arise within specific density ranges,
deviating from the Pascalian behavior [55–61]. Anisotropic
pressure is a primary tool for identifying the formation and
characteristics of relativistic matter under extreme condi-
tions, particularly in astrophysical scenarios involving self-
gravitating configurations such as stars, galaxies, and com-
pact structures (e.g., neutron stars and quark stars) [62–64].
Anisotropy refers to the phenomenon where the fluid pres-
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sure is separated into radial (Pr ) and tangential (Pt?) con-
tributions, in contrast to isotropic systems characterized by
uniform pressure in all directions. Anisotropic pressure in
astrophysical models of stellar interiors can arise from vari-
ous phenomena, including rotation, magnetic fields, viscos-
ity, the geometry of π− modes [65], and exotic matter. The
stability, structure, and evolution of such condensed matter
objects can be significantly influenced by these directional
pressure fluctuations. Recognizing the complexity of stellar
formations, models now often incorporate anisotropic matter,
including scenarios such as the presence of type P superfluids,
phase transitions, solid cores, or boson stars [66,67]. Local
anisotropy in low-density astrophysical configurations, such
as spherical galactic structures, can be attributed to the semi-
nal contributions of Jeans [68]. This anisotropy arises directly
from non-uniform velocity distributions within these sys-
tems. Ruderman [69] theoretically proposed that anisotropy
in dense-matter relativistic systems could arise as a con-
sequence of extremely high densities, i.e., on the order of
1015g/cm3, a characteristic feature of astrophysical models.

Anisotropy can potentially impact the stability of compact
stars, causing deviations from conventional models of stellar
evolution or increasing the likelihood of collapse in specific
scenarios [70,71]. In cosmological simulations, anisotropy
is critical, particularly in understanding different phases of
cosmic evolution or modified stellar models. The presence of
anisotropy in these models can lead to deviations from con-
ventional cosmological models, potentially offering alterna-
tive explanations for phenomena such as DE, the acceleration
of cosmic expansion, or the formation of cosmic structures,
differing from predictions of isotropic models. Furthermore,
in the context of extremely dense-matter configurations, such
as black holes and other gravitationally confined systems,
anisotropic models provide a more comprehensive frame-
work for understanding the underlying gravitational field.
These models account for possible deviations in pressure
and density, particularly within strong gravitational regimes
where modifications to GR may be required. Additionally,
anisotropy facilitates the representation of different phases
of matter, such as those found within stars or near black
holes, offering new insights into how matter behaves under
extreme conditions.

The following layout is used to present our analysis. Sec-
tion 2 provides the underlying framework of the Embed-
ding Class One symmetry within the framework of spher-
ically symmetric line element. Section 3 presents the rela-
tivistic dynamics of the f (Q) model of gravitational inter-
actions. In Sect. 4, we develop non-metricity-based self-
gravitating hybrid star models, regulated by normal mat-
ter and quark matter, within the background of the coinci-
dent gauge. Structural features ensuring the physical viabil-
ity of the presented anisotropic hybrid configuration, such
as energy bounds, hydrostatic equilibrium criteria, and sta-

bility analysis through different techniques, are discussed in
Sect. 5. Some additional features, including the mass func-
tion, gravitational characteristics and surface redshift of the
presented solution, are examined in Sect. 6. In Sect. 7, we
present the concluding remarks pertinent to this study.

2 Embedding class one metric: a spherically symmetric
scheme

A spacetime is categorized as Class One if it can be geometri-
cally embedded within a five-dimensional pseudo-Euclidean
space. This is achievable only if a symmetric tensor, called
the second fundamental form (Kμν), fulfills the equations

Rμνσρ = ε(Kμσ Kνρ − KμρKνσ ), (1)

∇σ Kμν = ∇νKμσ . (2)

Here, the mathematical quantity Rμνσρ signifies the Riemann
tensor, and ε = ±1 (depending on whether the normal to the
manifold is time-like “−” or space-like “+”). In this work,
we adopt a static metric ansatz to describe the geometry of
the gravitational field surrounding a spherical stellar config-
uration, defined as

ds2 = eadt2 − ebdr2 − r2
(
dθ2 − sin2 θdφ2

)
, (3)

where due to imposed symmetry a = a(r) and b = b(r)
are exclusively functions of r . Thus, the only non-zero terms
of Kμν , corresponding to the metric ansatz (3), are: K00,
K01 = K10, K11 and K22 = K33 sin2 θ . Upon plugging
these components in Eq. (1), we obtain the following result
[72]

R1010 = R1212R3030 + R1220R1330

R2323
, (4)

with R2323 �= 0 [73], this defines the embedding Class One
metric. Then, the combination of Eqs. (3) and (4) produces

2
a′′

a′ + a′ = b′eb

eb − 1
, (5)

where eb �= 0. The integration of Eq.(5) provides

eb = 1 + b′2Sea . (6)

We consider the temporal gravitational potential using the
well-defined Tolman–Kuchowicz metric (TK-metric, here-
after) ansatz, expressed as

a(r) = Ar2 + 2 ln B. (7)
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Here, B is a dimensionless constant, whereas A is a constant
with dimensions of [length−2]. The ability of the TK-metric
to provide analytical solutions to the equations of motion
within the dynamics of GR and modified gravitational for-
malism, under spherically symmetric and static scenarios,
makes it an important tool for modeling stellar configura-
tions [74,75]. Understanding the complex characteristics of
gravitationally bound compact formations, such as neutron
stars and quark stars, is facilitated by its well-defined and
theoretically tractable metric functions. Additionally, it sup-
ports a wide variety of EoSs utilized in the simulation of
gravitationally bound formations. The metric ansatz (7) has
been employed by numerous researchers to obtain solutions
to stellar structure equations for self-gravitational stellar con-
figurations. Bhar [76] developed a model of a self-gravitating
compact configuration fueled by a dark energy EoS using
the TK-metric. Furthermore, the author explored the astro-
physical features of dark energy gravitational stars through
modified gravity [76]. The TK-metric serves as an essential
framework for investigating how relativistic gravity, matter
composition, and spacetime curvature affect compact star
configurations. Its adaptability and stability make it crucial
to relativistic astrophysics and compact star models.

Next, by using Eq. (7) in Eq. (6), we get the radial gravi-
tational potentials as

b(r) = ln
(

1 + 4SA2B2r2eAr
2
)

. (8)

3 Relativistic dynamics of f (Q) gravity

The action of f (Q) gravity, which generalizes the symmet-
ric teleparallel formalism by substituting the non-metricity
scalar Q with a generic functional form f (Q), is defined as
[77]

S = 1

2

∫
d4x

√−g f (Q) + Smatter. (9)

In this theory, both the metric tensor gμν and the affine con-
nection 
σ

μν act as fundamental variables, making it a metric-
affine theory. Therefore, to obtain the field equations corre-
sponding to this gravity model, we must perform variations
concerning both gμν and 
σ

μν independently. We define the
torsion and non-metricity tensors as

T σ
μν := 
σ

μν − 
σ
νμ, (10)

Qρμν := ∇ρgμν = ∂ρgμν − 
η
ρμgσν − 
σ

ρνgμσ . (11)

Under these conditions, we have


σ
μν = {

σ
μν

} + Sσ
μν, (12)

where
{
σ
μν

}
denotes the Levi-Civita connection

{
σ
μν

} = 1

2
gσρ

(
∂μgρν + ∂νgρμ − ∂ρgμν

)
, (13)

and

Sσμν = −1

2
(Tμνσ + Tνμσ − Tσμν)

− 1

2
(Qμνσ + Qνμσ − Qσμν), (14)

is referred to as the distortion tensor. Let us now introduce
the following non-metricity conjugate

Pρμν = −1

4
Qρμν + 1

2
Q(μν)ρ + 1

4
(Qρ − Q̃ρ)gμν

− 1

4
gρ(μQν). (15)

Here, the terms Qρ and Q̃ρ represent two independent traces
associated with Qρμν

Qρ = gησQρησ , Q̃ρ = gησQηρσ , (16)

Consequently, the non-metricity scalar can be defined by the
following expression

Q = −Qρμν P
ρμν. (17)

Xμν ≡ 2√−g
∇ρ

(√−g fQPρ
μν

)
− 1

2
gμν f

+ (
PμσηQ

ρη
ν − 2PρημQ

ρη
ν

)
fQ = 8π

◦
Tμν (18)

Here, fQ ≡ ∂Q f (Q) and for notational convenience, the
equations of motion of the metric are represented by Xμν .
Being a metric-affine theory, the solutions to f (Q) theory
should satisfy the zero-curvature and zero-torsion conditions
by incorporating both metric and symmetric teleparallel GR
covariant derivatives. Since GR is merely a metric-dependent
theory, we believe this result illustrates that there are more
possibilities to develop solutions incorporating additional
gravitational effects in modified symmetric teleparallel GR
theories [78,79]. Furthermore, the stress-energy tensor (SET)
for the stellar system is described

◦
Tμν ≡ 2√−g

δ(
√−gLm)

δgμν
. (19)

Next, the variation of the gravitational action (9) concerning
the affine connection provides the following stellar equations

∇μ∇ν(
√−g fQPμν

α) = 0. (20)
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The field equations associated with f (Q) gravity ensure
the conservation of the SET and reduce to GR in the limit
f (Q) → Q.

As discussed in [80], one can consider a particular coor-
dinate system {yμ}, where the affine connection 
λ

μν(y
λ)

is zero. This is defined as the coincident gauge [78]. Trans-
forming to any other coordinate system {xμ} results in the
following form for the affine connection


λ
μν(x

μ) =
(

∂xλ

∂yε

)

∂μ∂ν y
ε. (21)

Consequently, the non-metricity tensor simplifies to

Qρμν = ∂ρgμν. (22)

We assume a time-independent metric in curvature coordi-
nates (x0, x1, x2, x3) ≡ (t, r, θ, φ), defined as

ds2− = ea(r)dt2 − eb(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (23)

The expression for the non-metricity scalar of the above-
mentioned metric reads

Q = −2e−b
(
a′

r
+ 1

r2

)

, (24)

The SET characterizing the distribution of hybrid matter can
be defined by the following decomposed relation

◦
Tμν = Tμν + T̃μν, (25)

where Tμν and T̃μν denote the contributions of normal matter
and the quark matter, respectively. The matrix form of the
SET (25) can be represented as

◦
Tμ

ν =

⎛

⎜
⎜
⎜
⎜
⎝

◦
σ 0 0 0

0 − ◦
Pr 0 0

0 0 − ◦
Pt 0

0 0 0 − ◦
Pt

⎞

⎟
⎟
⎟
⎟
⎠

⇒ ◦
Tμ

ν

=

⎛

⎜
⎜
⎝

σ + σ q 0 0 0
0 −(Pr + Pq

r ) 0 0
0 0 −(Pt + Pq

t ) 0
0 0 0 −(Pt + Pq

t )

⎞

⎟
⎟
⎠ , (26)

such that
◦
Pr �= ◦

Pt . The non-zero components of SET are

then
◦
T 0

0 = ◦
σ ,

◦
T 1

1 = − ◦
Pr , and

◦
T 2

2 = ◦
T 3

3 = − ◦
Pt . In

addition, σ q , Pq
r , Pq

t represent the density and the pressure
components corresponding to the quark matter. Finally, the

stellar model for the linear f (Q) model is characterized by
the following differential equations

X00 = 8π
◦
T 00 : f

2
− fQ

{

Q + 1

r2 + e−b

r
(a′ + b′)

}

= −8π
◦
σ , (27)

X11 = 8π
◦
T 11 : f

2
− fQ

(

Q + 1

r2

)

= 8π
◦
Pr , (28)

X22 = 8π
◦
T 22 : f

2
− fQ

{
Q

2
− e−b

[
a′′
2

+
(
a′
4

+ 1

2r

)

(a′ − b′)
]}

= 8π
◦
Pt , (29)

X12 = 8π
◦
T 21 : Q′

2
cot θ fQQ = 0. (30)

That is, assuming a vanishing affine connection in the spher-
ically symmetric coordinate system and requiring vacuum
solutions for f (Q) theory (Xμν = 0), the non-diagonal terms
of the equations of motion yield the result fQQ = 0. This
implies that f (Q) must be linear. Nonlinear alternatives for
f (Q), such as f (Q) = Q2, lead to inconsistencies in the
field equations and their solutions. Thus, nonlinear functional
forms of f (Q) are not favorable for producing viable solu-
tions to the field equations.

4 Modeling hybrid stars within f (Q) gravity

For developing viable and realistic stellar solutions that char-
acterize self-gravitating stars, an appropriate formulation
of the function f (Q) is a key ingredient. Concerning this,
Wang et al. [49] suggested physically realistic static, self-
gravitating solutions by restricting the formulation of f (Q)

to the linear case. The resulting solutions correspond to the
Schwarzschild (Anti-) de Sitter model. Therefore, to examine
physically feasible star models, we select a linear formulation
of f (Q), which is given by [51]

f (Q) = β + αQ. (31)

Here, α and β are constants. Choosing α = 1 and β = 0
reproduces the results of classical GR.

To solve the stellar equations using linear f (Q) formula-
tion, we assume a standard EoS for strange matter: the MIT
bag model [81,82]. An EoS of this form has been extensively
purposed for developing realistic modeling of strange matter
stellar configurations. This EoS defines the correspondence
between matter density and pressure through the bag constant
Bg as follows

Pq = 1

3
(σ q − 4Bg). (32)
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For the usual matter distribution, we assume the following
proportional relationship

Pr ∝ σ ⇒ Pr = mσ, (33)

where m ∈ (0, 1) such that m �= 1
3 , is an EoS parameter.

Then, using the gravitational potentials (7) and (8), we
obtain the following set of stellar equations

8π(σ + σ q) = 16αA3B2Sr2eAr
2 − β + 8A2B2SeAr

2 (
3α − βr2

) − 16A4B4S2r2e2Ar2 (−2α + βr2
)

2
(
1 + 4A2B2Sr2eAr2)2 , (34)

8π(Pr + Pq) = 4αA + β − 4A2B2SeAr
2 (

2α − βr2
)

2 + 8A2B2Sr2eAr2 , (35)

8π(Pt + Pq) =
2αA + β + 16βA4B4S2r2e2Ar2 + A2

(
−4αB2SeAr

2 + r2
(
β + 8βB2SeAr

2
))

2
(
1 + 4A2B2Sr2eAr2)2 . (36)

Thus, the values of the thermodynamical quantities corre-
sponding to the self-gravitating hybrid star model, under the
gravitational potentials (7) and (8), are defined as

σ =
[

16πBg

(
1 + 4A2B2Sr2eAr

2
)2 + 3αA

+ 8αA3B2Sr2eAr
2 + β − 4A2B2SeAr

2
(

3α − 2βr2
)

+ 16A4B4S2r2e2Ar2
(
−2α + βr2

)] /

[

4π(3m − 1)
(

1 + 4A2B2Sr2eAr
2
)2

]

, (37)

Pr = m

[

16πBg

(
1 + 4A2B2Sr2eAr

2
)2 + 3αA

+ 8αA3B2Sr2eAr
2 + β − 4A2B2SeAr

2
(

3α − 2βr2
)

+ 16A4B4S2r2e2Ar2
(
−2α + βr2

)] /

[

4π(3m − 1)
(

1 + 4A2B2Sr2eAr
2
)2

]

, (38)

Pt =
[

32πmBg

(
1 + 4A2B2Sr2eAr

2
)2 + 6αmA

− 8αA3B2S(m − 1)r2eAr
2+2mβ+16A4B4S2r2e2Ar2

×
(
−α(1 + m) + 2βmr2

)
+ A2

(
−24αmSB2eAr

2

+r2
(
−α + 3mα + 16βmSB2eAr

2
))]/

[

4π(3m − 1)
(

1 + 4A2B2Sr2eAr
2
)2

]

. (39)

The values of density and pressure due to quark matter read

σ q =
[

−64πBg

(
1 + 4A2B2Sr2eAr

2
)2

+3
(
−4αA + 16αA3B2S(m − 1)r2eAr

2 − (1 + m)β

−16αA4B4S2r2e2Ar2

× (1 + m)(−2α + βr2) + 8A2B2SeAr
2

(
α + 3mα − (1 + m)βr2

))] /

[

16π(3m − 1)
(

1 + 4A2B2Sr2eAr
2
)2

]

, (40)

Pq =
[

−64πmBg

(
1 + 4A2B2Sr2eAr

2
)2

−4αA + 16αA3B2S(m − 1)r2eAr
2 − (1 + m)β

−16αA4B4S2r2e2Ar2

× (1 + m)(−2α + βr2) + 8A2B2SeAr
2

(
α + 3mα − (1 + m)βr2

)]/

[

16π(3m − 1)
(

1 + 4A2B2Sr2eAr
2
)2

]

. (41)

The anisotropy arising form the normal content of the hybrid
self-gravitating star is defined as

� ≡ Pt − Pr =
αA2

(
1 − 4ASB2eAr

2
)
r2

8π
(
1 + 4A2B2Sr2eAr2)2 , (42)

and 2�
r corresponds to the anisotropic force, exhibiting a

repulsive nature for � < 0 and an attractive nature for � > 0.
Figure 3 depicts the variation of the anisotropy �. It is appar-
ent from the figure that � > 0, meaning Pt > Pr , which con-
firms that anisotropic force is repulsive. Furthermore, � → 0
as r → 0, implying that � vanishes at the core of the hybrid
composition, an expected feature of a viable stellar system.

The central values of the matter density and stress com-
ponents are defined as

σ(0) = 16πBg + 3αA + β − 12αSA2B2

4π(1 − 3m)
, (43)
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Table 1 The numerical values of A, B, S, and Bg for different self-gravitating pulsars by taking m = 0.4

Compact Star M(M�) R(km) A (km−2) B S (km−2) Bg (km−2)

(S1) SAX J1804.4-3658 (SS1) 1.435 7.07 0.0068354 −0.649715 0.0123134 0.000806253

(S2) EXO1745-248 1.4 11 0.00141101 −0.792751 0.0475357 0.000798647

(S3) 4U1820-30 1.58 9.1 0.00321209 −0.707315 0.0238472 0.000801307

(S4) 4U1608-52 1.74 9.3 0.00345669 −0.681239 0.0231137 0.000801425

(S5) PSR J0740+6620 2.072 12.39 0.00163683 −0.719487 0.045898 0.000798663

(S6) PSR J0030+0451 1.44 13.02 0.000837727 −0.822008 0.0766373 0.000797578

(S7) Cen X-4 1.57 9.308 0.00293794 −0.716756 0.0256826 0.000800931

(S8) SAX J1804.4-3658 (SS2) 1.3238 6.35 0.0088673 −0.638577 0.0967094 0.000809059

Pr (0) = Pt (0) = m
(
16πBg + 3αA + β − 12αSA2B2

)

4π(1 − 3m)
.

(44)

An analysis of σ(0), Pr (0), and Pt (0) reveals that they are
finite and positive at the core of the system, ensuring the
model’s singularity-free nature.

4.1 Boundary conditions in f (Q) gravity

This subsection is devoted to finding the values of the con-
stant parameters in the gravitational potentials through the
smooth matching of the inner and outer metrics at the bound-
ary r = R, where r > 2M [52]. The Schwarzschild metric
serves as the exterior spacetime, defined as

ds2+ =
(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2

− r2
(
dθ2 + sin2 θdφ2

)
. (45)

The continuity of the metric potentials gt t , grr , and ∂grr
∂r

across the boundary r = R, provides

(

1 − 2M

R

)

= B2eAr
2
, (46)

(

1 − 2M

R

)−1

= 1 + 4SA2B2r2eAr
2
, (47)

M

R2 = 2AB2reAr
2
, (48)

However, we use the condition Pr (R) = 0 to determine the
value of the constant Bg as

Bg =
[
−3αA + (

12αSA2B2 − 8αSA3B2R2 − 8βSA2B2R2
)
eAR

2 + (
32αS2R2A4B4 − 16βS2A4B4R4

)
e2AR2

]

16π
(
1 + 4A2B2R2SeAr2)2 . (49)

The numerical values of Bg subject to different self-
gravitating pulsar models are given in Table 1. Now, solving
the set of Eqs. (46)–(48), we have

A = − M

(2M − R)R
, (50)

B = −
√
Me− AR2

2√
AR3/2

, (51)

S = R

2A(R − 2M)
. (52)

Using the mathematical formulations mentioned above,
we can obtain numerical values for the model parameters
describing well-known self-gravitating pulsars. Table 1 pro-
vides a few examples of these dense-matter compact objects.

5 Structural features

The physical validity of any dense-matter, non-rotating
spherical configuration, such as ultra-compact self-gravitating
systems, black holes, neutron stars, and hybrid matter con-
figurations, depends on the consistent behavior of their phys-
ical and geometric variables associated with the system. In
this context, the relativistic matter must satisfy the following
astrophysical constraints.

1. The geometric functions ea(r) and eb(r), corresponding to
the relativistic strange-matter configuration, should align
with standard criteria. Specifically, they should be mono-
tonically increasing and positive throughout.

2. The structural variables, including matter density and
stress components associated with the relativistic matter,
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should remain non-negative throughout the dense matter,
i.e., σ , Pr , Pt > 0 for 0 ≤ r < R. Additionally, Pr
should be zero at the boundary of the hybrid star, i.e.,
Pr (r = R) = 0.

3. The r -derivatives of structural variables should be nega-
tive, i.e., ∂σ

∂r < 0, ∂Pr
∂r < 0, and ∂Pt

∂r < 0. The structural
variables should be maximum at the core and exhibit a
gradually decreasing trend toward the boundary.

4. The gravitational anisotropy (�), which arises due to the
decomposition stress components, must be zero at the cen-
ter because Pr = Pt at the center of the gravitational
configuration.

The profiles of ea(r), eb(r), σ , Pr , Pt , ∂σ
∂r , ∂Pr

∂r , and ∂Pt
∂r for the

assumed self-gravitating compact star models are displayed
in Figs. 1, 2, 3, 4 and 5. Their profiles demonstrate that the
presented solution for the hybrid self-gravitating star model
satisfies the requirements outlined in 1–4.

5.1 Energy criteria

Matter distribution in dense stars, particularly in GR and
extended models, depends critically on energy conditions.
These conditions reflect the fundamental physical laws and
provide an effective framework for determining the realistic
behavior of astrophysical formations. Generally, energy con-
ditions are divided into four categories, with the following
mathematical representations

(i)Weak Energy Conditions (WEC) : σ + Pr ≥ 0,

σ + Pt ≥ 0, (53)

(ii)Null Energy Conditions (NEC) : σ ≥ 0,

σ + Pr ≥ 0, σ + Pt ≥ 0, (54)

(ii)Dominant Energy Conditions (DEC) : σ ≥ |Pr |,
ρ ≥ |Pt |, (55)

(iii)Strong Energy Conditions (SEC) : σ + Pr + 2Pt ≥ 0,

σ + Pr ≥ 0, σ + Pt ≥ 0. (56)

These inequalities are necessary conditions for the viability
of any realistic astrophysical fluid sphere with an anisotropic
fluid distribution. All energy conditions in our analysis
exhibit stable and positive behavior throughout the stellar
interior, as shown in Fig. 6 for the considered self-gravitating
pulsar models.

5.2 Stability analysis of the proposed model

To understand the realistic nature of gravitationally confined
stellar formations, it is essential to fulfill certain astrophysical
constraints. These constraints act as critical criteria to ensure

the stability and viability of the proposed self-gravitating star
solution. The construction of these constraints is as follows.

5.2.1 Hydrostatic equilibrium condition in f (Q) gravity

For a dense-matter relativistic sphere to be realistic, it must
be in hydrostatic equilibrium. We employ the generic form
of the TOV equation within the linear f (Q) model to ensure
the hydrostatic equilibrium of the proposed compact star can-
didate. This is characterized by the following mathematical
expression

2

r
(Pt − Pr ) − ∂Pr

∂r
− a′

2
(σ + Pr )

− a′

2

(
σ q + Pq

r
) − ∂Pq

∂r
= 0, (57)

which can be alternatively defined as

Fh + Fg + Fa + Fq = 0, (58)

where

Fa = 2

r
(Pt − Pr ) , (59)

Fh = −dPr
dr

, (60)

Fg = −a′

2
(σ + Pr ) , (61)

Fq = −a′

2

(
σ q + Pq

r
) − dPq

dr
, (62)

denote the anisotropic force, hydrostatic force, gravitational
force, and quark matter force, respectively. Figures 7, 8, 9 and
10 describe the profiles of the Fa , Fh , Fg, and Fq subject to
the self-gravitating hybrid star. These profiles illustrate that
all the forces counterbalance each other, resulting in a state
of static equilibrium for the suggested stellar model.

5.2.2 Adiabatic perturbations

The adiabatic index is significant parameter for understand-
ing the robustness of self-gravitating stellar formations like
hybrid stars or neutron stars [83]. This explains the relation-
ship between density and pressure in an adiabatic process.
The mathematical representation of the adiabatic index is
defined as


 = σ + P

P

∂P

∂σ
. (63)

Since Pr �= Pt , for an anisotropic stellar configuration, there-
fore the modified form of 
 becomes a function of both Pr
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Fig. 1 Plots of gravitational potentials against r

Fig. 2 Behaviors of σ and Pr against r

Fig. 3 Plots of Pt and � against r for the considered self-gravitating pulsars
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Fig. 4 Plots of σ -gradient and Pr -gradient against r

Fig. 5 Plot of Pt -gradient versus r

and Pt . Thus, the expression for the adiabatic index in such
a case is modified as


r =
(

σ + Pr
Pr

)
∂Pr
∂σ

and 
t =
(

σ + Pt
Pt

)
∂Pt
∂σ

. (64)

Bondi [84] established the stability criterion for a self-
gravitating sphere: stability requires 
 > 4/3, while 
 =
4/3 corresponds to a state of neutral equilibrium. Figure 11
shows the the variations of radial tangential adiabatic indices
(
r and 
t ) against r for different self-gravitating pulsar
models. We observe that both 
r and 
t are greater than 4/3
throughout the self-gravitating configuration, which ensures
the stability of the suggested stellar model against adiabatic
perturbations.

5.2.3 Herrera’s cracking method

Among the essential physical conditions for ensuring the
validity of the proposed relativistic solution, causality holds
the utmost importance. According to this criterion, the radial
(V 2

r ) and tangential (V 2
t ) components of sound velocity

should be less than 1. Mathematically, these components are
defined as

V 2
r = ∂Pr

∂ρ
= m, (65)

V 2
t = ∂Pt

∂ρ
. (66)

The graphs for the velocity components V 2
r and V 2

t for
the proposed anisotropic spherical fluid sphere model cor-
responding to the considered compact stars are presented in
Fig. 12. The Figure makes it evident that 0 < V 2

r ≤ 1 and
0 < V 2

t ≤ 1 throughout the stellar formation. The stability of
self-gravitating structures, particularly in the case of stellar
configurations, is investigated using Herrera’s stability cri-
teria, based on the analysis of radial and tangential sound
speeds. According to this criterion, known as the ’cracking
method,’ a model may be stable if the transverse pressure
wave speed is greater than the radial pressure wave speed,
i.e., V 2

t − V 2
r < 0. Furthermore, since 0 < V 2

r ≤ 1 and
0 < V 2

t ≤ 1, the presented solution also satisfies Andreas-
son’s assertion that |V 2

t − V 2
r | ≤ 1 (see Fig. 13).

5.2.4 EoS parameters

The EoS parameters are characterized by the matter density
ratio to the fluid’s pressure within the astrophysical compact
matter configuration. The mathematical representations of
the EoS parameters for an anisotropic stellar fluid are defined
as

ωr = Pr
σ

, ωt = Pt
σ

(67)

These parameters offer key information regarding the dense-
matter configuration of self-gravitating stars. To describe the
realistic character of dense matter, the EoS parameters should
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Fig. 6 Plot of energy conditions versus r

satisfy the following constraints

0 < ωr < 1, 0 < ωt < 1, (68)

for all the considered self-gravitating pulsar models within
the background of the linear functional form of f (Q) gravity.
The graphical analysis describing the radial and tangential
fluctuations of the EoS parameters ωr and ωt is presented
in Fig. 14. Their profiles illustrate that ωr and ωt satisfy the
constraint (68). These results imply that the EoS parameter
fluctuations associated with the proposed hybrid star model
are consistent with astrophysical constraints.

6 Additional characteristics associated with hybrid
configuration

6.1 Effective mass function

A mathematical tool used to characterize the overall gravita-
tional mass contained within a dense-matter spherical config-
uration is calculated using the Misner-Sharp criterion. This
criterion has the following mathematical form

M(r) = r

2

(
1 − gμν∂μr∂νr

)
, (69)
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Fig. 7 Graphical illustration of all forces for the compact star S1 (left panel) and S2 (right panel) versus r

Fig. 8 Behavior of all forces for the self-gravitating pulsars S3 (left panel) and S4 (right panel) versus r

Fig. 9 Graphical analysis of all forces for the stellar configurations S5 (left panel) and S6 (right panel) versus r
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Fig. 10 Behavior of all forces for the compact stars S7 (left panel) and S8 (right panel) versus r

Fig. 11 Variations of 
r and 
t against r

Fig. 12 Behaviors of V 2
r (left panel) and V 2

t (right panel) against r
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Fig. 13 Variations of V 2
t − V 2

r (left panel) and |V 2
t − V 2

r | (right panel) against r

Fig. 14 Variations of ωr (left panel) and ωt (right panel) against r

which gives

M(r) = r

2

(
1 − e−b(r)

)
, (70)

or, equivalently as

M(r) = 4π

∫ r

0
r2σ(x)dx, (71)

Therefore, the expression of effective mass for the considered
anisotropic configuration can be given by

M(r)e f f = 4π

∫ r

0
r2σ e f f (x)dx

= 4π

∫ r

0
r2 (

σ + σ q) (x)dx . (72)

The behavior of Mef f against r for the considered compact
stars is shown in Fig. 15. The graphical examination shows
that Mef f is a positive and gradually increasing function of
r throughout the self-gravitating stellar structure. The viable

behavior of the mass function ensures the physical viability
of the presented relativistic solution.

6.2 Compactness

The compactness of the self-gravitating dense-matter config-
uration is determined by a dimensionless parameter, defined
as

Uef f = Mef f

r
(73)

Figure 16 illustrates the graphical representation of Uef f ,
showing a monotonically increasing trend with respect r .

6.3 Effective surface redshift

The effective surface redshift, denoted as Zef f
s , for the cur-

rent stellar formation, can be determined by employing the
expression of the effective compactness factor, Uef f , as fol-
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Fig. 15 Plot of Meff against r

Fig. 16 Variation of U eff versus r

lows

Zef f
s = 1√

1 − 2Uef f
− 1. (74)

The graphical analysis of Zef f
s , showing a monotonically

increasing trend concerning the radial coordinate r . Ivanov
[85] suggests that a self-gravitating, anisotropic formation
may reach a maximum surface redshift of 3.842. The profile
of Zef f

s shows that the presented stellar model satisfies the
Ivanov’s limit.

7 Conclusion

According to recent investigations of extremely dense astro-
physical configurations, the pressure inside these stellar
objects is anisotropic in nature, and their densities are often
higher than that of nuclear matter. In this respect, hybrid
quark stars have emerged as prominent candidates for under-
standing the relativistic composition of anisotropic, compact
astrophysical objects in recent years. We have successfully
modeled an anisotropic hybrid compact star whose matter

Fig. 17 Plot of Z eff versus r

distribution consists of two components: normal matter and
quark matter. The distribution of quark matter is modeled
by assuming the widely known MIT bag model EoS. The
proposed model of the hybrid compact configuration is non-
singular, spherically symmetric, and non-isotropic in nature.
The embedding Class One formalism is used to derive an
important correspondence between the radial and temporal
gravitational potentials and to simplify the methodology for
constructing solutions to the f (Q)-field equations. In this
investigation, we employed the TK ansatz for the temporal
geometric variable, while the radial geometric function was
formulated using the embedding Class One condition. The
key findings are outlined below:

• The graphical analysis of the gravitational potentials is
presented in Fig. 1, which demonstrates that they meet
all the necessary requirements and are finite, positive,
and free of singularities. Furthermore, the values of the
gravitational potentials at the center of the hybrid stellar
structure are ea = B2 and eb = 1. Both metric variables
exhibit monotonic growth and attain their maximum val-
ues near the stellar boundary.

• Figures 2 and 3 display the graphical analysis of the phys-
ical variables, such as σ , Pr , and Pt , associated with the
Karmarkar-connected hybrid star. The matter density is
positive, finite, and a monotonically decreasing function
of r . Both stress components gradually decrease from the
center toward the boundary of the hybrid composition and
attain their maximum values at the core. Furthermore, the
radial pressure vanishes at the boundary, i.e., PR = 0.
This behavior of the physical variables indicates that the
relativistic configuration has a consistent and physically
acceptable.

• The graphical analysis of gravitational anisotropy is pre-
sented in Fig. 3, which shows that the anisotropy force
exhibits a repulsive character. The repulsive nature of the
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anisotropic force supports the existence of a viable astro-
physical configuration.

• As illustrated in Fig. 7, the graphical analysis of the
energy conditions confirms that all energy bounds are sat-
isfied for the considered models of self-gravitating pul-
sars.

• We investigated the cumulative impact of various exter-
nal forces, namely Fa , Fh , Fg, and Fq , on the Karmarkar-
connected hybrid stellar configuration. It is noted that all
these forces are in equilibrium for the considered self-
gravitating pulsar objects, which further strengthens the
robustness of the proposed anisotropic gravitational solu-
tion.

• Figure 11 displays the stability of the Karmarkar-
connected hybrid solution against adiabatic perturba-
tions. The profiles of the radial and tangential indices
indicate that the compact system is stable in all interior
regions.

• Another interesting technique that we have presented to
assess the consistency of the compact system is Herrera’s
cracking criterion displayed in Fig. 13. This characteris-
tic demonstrates that V 2

r − V 2
t < 0, proving the physical

dependability of our model and its suitability for con-
structing a stable structure.

• The graphical analysis of EoS parameters, ωr and ωt , is
displayed in Fig. 14. The profiles indicate that 0 < ωr <

1 and 0 < ωt < 1 throughout, confirming the realistic
nature of the model.

• Figures 15, 16, and 17 illustrate the behavior of the effec-
tive mass, compactness, and redshift. These parameters
are observed to increase monotonically with increasing
r throughout the stellar interior and lie within the astro-
physical constraints.

To summarize, the present work demonstrates the construc-
tion of a stable and singularity-free hybrid self-gravitating
stellar system. Establishing a link between such dense-matter
structures and dark matter could be a fascinating avenue for
future research. Such a study could provide new insights
into the interaction of matter configurations with the dark
sector, possibly advancing our understanding of compact
star systems in the context of extended gravitational mod-
els. We have found several interesting astrophysical stud-
ies related to our work. In this regard, the authors of [86]
constructed compact star models by considering the MIT
bag model within the framework of non-perturbative f (R)

gravity. Similarly, Nashed and Capozziello [87] investigated
spherically symmetric dense-matter configurations regulated
by an anisotropic fluid distribution, adopting a more general
model of f (R) gravity. Their results have been validated
using observations of the SAX J1748.9-2021 pulsar. Further-
more, some static, anisotropic, and spherically symmetric
models that constrain quadratic f (R) gravity using the self-

gravitating pulsar J0704+6620 [88], as well as linear mod-
els of curvature-matter coupled gravity applied to the pulsar
PSR J0740+6620 [89], could also be relevant to our work.
The primary difference between the f (R) and f (Q) grav-
ity models is their underlying geometry. The f (R) gravity
model alters Einstein’s gravity by applying the Ricci scalar,
which is related to curvature. In contrast, f (Q) employs non-
metricity, a measure of how geometry differs from traditional
distance measurements, to provide a curvature-free solution.
This leads to novel ways of simulating gravity. For astro-
physical configurations, such as compact objects, f (Q) grav-
ity provides easier adjustments to the equations controlling
neutron star construction than f (R), possibly leading to dif-
fering mass and stability attributes. Modifications in f (R)

gravity arise from curvature alterations, whereas deviations
in f (Q) gravity result from non-metricity. This fundamental
difference leads to distinct field equations and stellar struc-
tures, significantly affecting quark star equilibrium. We have
demonstrated through our analysis that f (Q) gravity alters
both the mass-radius relationship and the stability of quark
stars.
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