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Abstract We present a class of smooth supersymmetric heterotic solutions with
a non-compact Eguchi-Hanson space. The non-compact geometry is embedded as
the base of a six-dimensional non-Kähler manifold with a non-trivial torus fiber.
We solve the non-linear anomaly equation in this background exactly. We also
define a new charge that detects the non-Kählerity of our solutions.

1 Introduction

In this paper, we study six-dimensional supersymmetric non-compact solutions
of the ten-dimensional heterotic supergravity. Non-compact solutions can have
different physical interpretations in string theory. They may be local models of
a compact solution or they may correspond to the supergravity descriptions of
solitonic objects of the theory.

We demonstrate the existence of six-dimensional smooth solutions on T 2 bun-
dles over an ALE space. For the base being the minimally resolved C2/Z2, we
work out the solution in detail using the Eguchi-Hanson metric (1). In solving this
solution, we work in complex coordinates and exploit the SU(2) global symme-
try of the Eguchi-Hanson metric. Importantly, the symmetry reduces the anomaly
equation to a first-order non-linear differential equation which we solve exactly.

Our solutions are 1/2 BPS and are asymptotically RP3×T 2. These local non-
Kähler models are closely related to the compact heterotic models of T 2 bundle
over K3 described in (2; 3) (see also (4; 5)). They give an explicit local description
of the six-dimensional compact solution near an A1 orbifold singularity of the
base K3. Moreover, it may be possible that our local solutions can be consistently
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glued-in to resolve in a non-Kähler manner singular compact manifolds such as
T 4/Z2×T 2 or even K3/Z2×T 2.

Alternatively, the local solutions we construct can be interpreted to describe a
heterotic five-brane that is wrapped around a torus and transverse to an Eguchi-
Hanson space. Heterotic five-brane solutions with a tranverse Eguchi-Hanson space
(6; 7) or wrapped over an S1 (8; 9) have been discussed previously in the literature.
Solutions of this type differ from the original five-brane solution (10; 11; 12; 13) in
that the five-brane charge can be sourced by a non-trivial U(1) gauge field instead
of an SU(2) instanton. Here, we point out that both the Eguchi-Hanson geome-
try and the non-trivial fibered torus induce non-trivial H fluxes. And of particular
importance for the heterotic string is that their presence introduces highly non-
linear terms in the anomaly differential equation. A main purpose of this paper is
to demonstrate that the induced fluxes can be carefully balanced to give smooth
non-compact solutions that solve the heterotic supergravity exactly at one-loop
order.

The outline of the paper is as follows. In Sect. 2, we review the supersymmetry
conditions and the solution ansatz we will use. In Sect. 3, we write down explicitly
the solution with an Eguchi-Hanson space and the differential equation that must
be solved from the anomaly equation. In Sect. 4, we solve the differential equation
exactly. In Sect. 5, we write down our solutions in general form and discuss their
physical characteristics. Though our smooth solutions have zero five-brane charge,
they are in general non-zero under a new charge which we define that detects the
non-Kählerity of the solutions.

2 Supersymmetry Conditions and Solution Ansatz

We start from the ten-dimensional heterotic supergravity on the product mani-
fold, M3,1×X6, a four-dimensional Minkowski spacetime times a six-dimensional
manifold. Preserving supersymmetry requires that X6 is complex and has an SU(3)
holonomy with respect to a torsional connection. The heterotic solution on X6 can
be described by a hermitian metric J, a holomorphic (3,0)-form Ω , and a stable
gauge bundle E ⊂ SO(32) or E8×E8 with curvature F . The additional conditions
from supersymmetry and the consistency of anomaly cancellation are

d(‖Ω‖J J∧ J) = 0, (2.1)

F(2,0) = F(0,2) = 0, FmnJmn = 0, (2.2)

2i∂ ∂̄J =
α ′

4
[tr(R∧R)− tr(F ∧F)], (2.3)

where

iΩ ∧ Ω̄ =
[1]
3
‖Ω‖2

JJ∧ J∧ J. (2.4)

Following Strominger (14), we take the curvature R in (2.3) to be defined by the
hermitian connection. Though the type of connection is not specified physically at
one-loop order,1 the hermitian connection is the unique metric connection that is

1 Physical relationships between different connections have been discussed in (15; 16; 17).
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compatible with the complex structure and whose torsion tensor does not contain a
(1,1) component. Furthermore, the resulting tr(R∧R) is always a (2,2)-form.2 The
above equations define what is called the Strominger system in the mathematical
literature. It consists of a conformally balanced condition for the hermitian metric
J, a hermitian Yang-Mills condition for the bundle curvature F , and an anomaly
condition relating the difference of the two Pontryagin classes, p1(R) and p1(F).
The relations to the physical fields - the metric g, the antisymmetric three-form
field H, and the scalar dilaton field φ - are given as follows:

gmn = JmrIr
n, H = i(∂̄ −∂ )J, e−2φ = ‖Ω‖J , (2.5)

where I is the complex structure determined by the holomorphic three-form Ω .
There is a much-studied solution ansatz on the T 2 bundle over a Calabi-Yau

two-fold (2; 3; 4; 5; 19). The metric takes the form

J = euJCY2 +
[1]
2

(dz+β )∧ (dz̄+ β̄ ), (2.6)

where u is a function of the base Calabi-Yau and the torus curvature ω = dθ ≡
d(dz+β ) satisfies the quantization and primitivity conditions

[1]
2π
√

α ′
∈ H1,1(M)∩H2(M,Z), ω ∧ JCY2 = 0. (2.7)

Taking the holomorphic three-form to be Ω 3,0 = Ω
2,0
CY2

∧θ which is a closed (3,0)-
form by (2.7), it is straightforward to check that the conformally balanced condi-
tion is satisfied for any function u. We note that with the metric and three-form
ansatz, the conformal factor eu = e2φ which follows from the third equation of
(2.5),

‖Ω‖−1
J = eu = e2φ . (2.8)

Further, choosing a hermitian Yang-Mills curvature, F , pull-backed from the base
CY2, the anomaly equation (2.3) reduces to a non-linear second-order differential
equation for u (or equivalently the dilaton field) that must be solved.

Below, we analyze the case in which the base Calabi-Yau two-fold is taken to
be a non-compact ALE space. In particular, we shall work out the case with the
Eguchi-Hanson metric in detail.

3 Eguchi-Hanson Base Solution

Consider C2 with coordinates (z1,z2) and an involution, σ : (z1,z2)→ (−z1,−z2).
Let M be the blow up of C2/σ at the origin by a P1. Then M is biholomorphic to
OP1(−2) = T ∗P1, the cotangent bundle of P1. The Eguchi-Hanson metric (1; 20)
is an explicit complete, smooth Ricci-flat metric on M.

2 tr(R∧R) for non-hermitian connections will generally contain (3,1) and (1,3) components.
Since the other two terms in the anomaly equation in (2.3) are (2,2)-forms, the presence of these
additional components will likely over-constrain the system of differential equations as they
must be set to zero. We note that nilmanifold solutions with different connections have been
discussed recently in (18).
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Outside the origin of C2/σ , the metric is SU(2) invariant and depends only on
the radial coordinate r2 = |z1|2 + |z2|2. Being Kähler, the metric can be expressed
as

JEH =
[1]
2

∂ ∂̄ K (r2)

=
[1]
2
[
k ∂ ∂̄ r2 + k′∂ r2∧ ∂̄ r2] , (3.1)

where the Kähler potential K , the function k(r2) = dK /dr2, and its derivative
k′(r2)
= dk/dr2 are given by

K =
√

r4 +a4 +a2 log
[

[1]√
r4 +a4 +a2

]
, (3.2)

k =

√
1+

[1]
r4 =

[1]
r2

√
1+

[1]
a4 , k′ =− [1]

r4
√

1+ [1]
a4

. (3.3)

The constant a > 0 is a measure of the diameter of the central P1.
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On M, there is a normalizable anti-self-dual closed (1,1)-form. It corresponds
to the curvature of the line bundle of the P1 and has the form up to a constant c,

η = i∂ ∂̄ lnh = i
[
[1]
h

∂ ∂̄ r2 +
(

[1]
h

)′
∂ r2∧ ∂̄ r2

]
. (3.4)

The function (h′/h) can be found by imposing the primitivity condition, ω∧JEH =
0. This gives the differential equation

[1]
h

k +
(

[1]
h

kr2
)′

= 0, (3.5)

which has the solution, modulo a multiplicative integration constant,

[1]
h

=
[1]
r4k

=
[1]

a2r2
√

1+ [1]
a4

,

(
[1]
h

)′
=− [1]

a2r4(1+ [1]
a4 )3/2

. (3.6)

We can now write down explicitly the T 2 bundle over the Eguchi-Hanson
space metric ansatz

J = euJEH +
[1]
2

θ ∧ θ̄ . (3.7)

For the curvature of the torus bundle, we utilized the anti-self-dual (1,1)-form,

ω = dθ = ic∂ ∂̄ lnh =
[1]
a2

 [1]

r2
√

1+ [1]
a4

∂ ∂̄ r2− [1]

r4(1+ [1]
a4 )3/2

∂ r2∧ ∂̄ r2

 ,(3.8)

having inserted (3.6) into (3.4) and allowed for an overall complex constant c .
The constant c is quantized since [1]

2π
√

α ′
∈H1,1(M)∩H2(M,Z). We can obtain

the quantization condition by integrating the curvature ω over the P1 at the origin.
Working in the coordinate chart (y2 6= 0),

y1 =
[1]
z2

, y2 = z2
2, r2 = |z1|2 + |z2|2 = |y2|(1+ |y1|2), (3.9)

we integrate ω over P1 parametrized by y1 in the limit y2 → 0. We can rewrite

ω =
[1]
a2

{[
[1]

(1+ |y1|2)2 +O(|y2|2)
]

dy1∧dȳ1 + · · ·
}

, (3.10)

where we have only written out only the dy1∧dȳ1 term. Therefore,

[1]
2π
√

α ′

∫
P1

ω =
[1]

2π
√

α ′

∫ [1]
a2

[1]
(1+ |y1|2)2 dy1∧dȳ1

=
[1]

2π
√

α ′

∫
∞

0

[1]
a2

[1]
(1+ x2)2 =

[1]
a2
√

α ′
. (3.11)

The quantization requirement imposes

c = a2
√

α ′ n≡ a2
√

α ′(n1 + in2), n1,n2 ∈ Z. (3.12)

Having written down explicitly the metric which is conformally balanced by
construction, we now proceed to discuss the gauge connection and the anomaly
equation.
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3.1 Hermitian Yang-Mills connections and curvature

By convention, our gauge curvature F is imaginary and the Hermitian Yang-Mills
condition requires that it is also (1,1) anti-self dual. F takes value in the Lie alge-
bra of SO(32) or E8×E8. Hermitian Yang-Mills connections on Eguchi-Hanson
space has been studied by Kronheimer and Nakajima for various rank bundles. In
this paper, we will limit the discussion explicitly to the U(1) case.

For the rank one or U(1) gauge bundle, we note that there is only the line
bundle over P1 so F must be proportional to η in (3.4). In general, we can have
a direct sum of U(1) bundles. The curvature for each U(1) bundle takes the form
(3.4)

F = c′∂ ∂̄ lnh = c′
[
[1]
h

∂ ∂̄ r2 +
(

[1]
h

)′
∂ r2∧ ∂̄ r2

]
, (3.13)

where c′ is a real number. We then have

F ∧F = c′2
{(

[1]
h

)2

∂ ∂̄ r2∧∂ ∂̄ r2 +

[(
[1]
h

)2
]′

∂ ∂̄ r2∧∂ r2∧ ∂̄ r2

}
≡ F ∂ ∂̄ r2∧∂ ∂̄ r2 +F ′

∂ ∂̄ r2∧∂ r2∧ ∂̄ r2, (3.14)

where

F = c′2
(

[1]
h

)2

=
[1]

a4r4(1+ [1]
a4 )

. (3.15)

The U(1) gauge bundle also has a quantization: [1]
2π
∈H1,1∩H2(Z). Following the

computation in (3.10)-(3.11), this implies

c′ = a2 m, m ∈ Z. (3.16)

3.2 Anomaly equation

With the metric ansatz (3.7), the anomaly equation is explicitly (see (2) for deriva-
tion)

2i∂ ∂̄J =
[1]
2

(tr[R∧R]− tr[F ∧F ])

=
[1]
2
×
(

tr[REH ∧REH ]+2∂ ∂̄u∧∂ ∂̄u+2∂ ∂̄ [e−utr(∂̄B∧∂B∗
[1]
2

)]−tr[F ∧F ]
)

,

(3.17)

where B is a column vector B =
(

B1
B2

)
locally defined such that ∂̄ (B1 dz1 +B2 dz2)=

ω . Note that each term is a closed (2,2)-form on the base. Since the solution has
SU(2) global symmetry, we can express each term in terms of a combination of
∂ ∂̄ r2∧∂ ∂̄ r2 and ∂ ∂̄ r2∧∂ r2∧ ∂̄ r2. We now proceed to calculate each term below.
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A. dH = 2i∂ ∂̄J term. Using (3.7) for J, we find

2i∂ ∂̄J = 2i∂ ∂̄eu∧ JEH −ω ∧ ω̄, (3.18)

and

2i∂ ∂̄eu∧ JEH =−
[
(eu)′k ∂ ∂̄ r2∧∂ ∂̄ r2 +[(eu)′k]′∂ ∂̄ r2∧∂ r2∧ ∂̄ r2] , (3.19)

−ω ∧ ω̄ = |c|2
{(

[1]
h

)2

∂ ∂̄ r2∧∂ ∂̄ r2 +

[(
[1]
h

)2
]′

∂ ∂̄ r2∧∂ r2∧ ∂̄ r2

}
.(3.20)

Combining the two terms, we can write

2i∂ ∂̄J ≡J ∂ ∂̄ r2∧∂ ∂̄ r2 +J ′
∂ ∂̄ r2∧∂ r2∧ ∂̄ r2, (3.21)

where

J =−(eu)′k + |c|2
(

[1]
h

)2

=−(eu)′
[1]
r2

√
1+

[1]
a4 +

[1]

a4r4(1+ [1]
a4 )

. (3.22)

As will be needed shortly, we note here that −ω ∧ ω̄ = ‖ω‖2 [1]
2! implies

‖ω‖2 =−4|c|2
{

2
(

[1]
h

)2

+

[(
[1]
h

)2
]′

r2

}
=

[1]

a8(1+ [1]
a4 )2

. (3.23)

B. tr[REH∧REH ] term. The curvature tensor is written in terms of metric (gEH)ab̄ =
−i(JEH)ab̄ in (3.1). For the hermitian curvature, we find

REH = ∂̄
(
(∂gEH)g−1

EH
)

=
[
[1]
k

I− [1]
r2k

M
]

∂̄ ∂ r2 +
[(

[1]
k

)′
I−
(

[1]
r2k

)′
M
]

∂̄ r2∧∂ r2

+
(

[1]
k

)′
∂̄ r2∧∂M−

(
[1]
r2k

)′
∂̄M∧∂ r2 +

[1]
k

∂̄ ∂M (3.24)

with the 2×2 matrix I = δi j and Mi j = z̄iz j . A long calculation results in

tr[REH ∧REH ] = 6

{
2
(

[1]
k

)2

+

[(
[1]
k

)2
]′

r2

}
dz1∧dz̄1∧dz2∧dz̄2

= 6

{(
[1]
k

)2

∂ ∂̄ r2∧∂ ∂̄ r2 +

[(
[1]
k

)2
]′

∂ ∂̄ r2∧∂ r2∧ ∂̄ r2

}
≡ R ∂ ∂̄ r2∧∂ ∂̄ r2 +R ′

∂ ∂̄ r2∧∂ r2∧ ∂̄ r2 (3.25)

with

R = 6
(

[1]
k

)2

=
[1]

r4
(

1+ [1]
a4

)2 . (3.26)
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Alternatively, we can express

tr[REH ∧REH ] =− [1]

a4
(

1+ [1]
a4

)3 dz1∧dz̄1∧dz2∧dz̄2. (3.27)

C. Other trace R2 terms. The (∂ ∂̄u)2 term can be formally written as

2∂ ∂̄u∧∂ ∂̄u = 2
{
(u′)2

∂ ∂̄ r2∧∂ ∂̄ r2 +
[
(u′)2]′

∂ ∂̄ r2∧∂ r2∧ ∂̄ r2
}

≡ U ∂ ∂̄ r2∧∂ ∂̄ r2 +U ′
∂ ∂̄ r2∧∂ r2∧ ∂̄ r2, (3.28)

where

U = 2(u′)2. (3.29)

As for the remaining term, we use a formula in (2),

e−utr(∂̄B∧∂B∗
[1]
2

)] = i
[1]
4
‖ω‖2JEH

= −e−u [1]
(1+ r4)2

[
k ∂ ∂̄ r2 + k′ ∂ r2∧ ∂̄ r2]

≡ H1∂ ∂̄ r2 +H2∂ r2∧ ∂̄ r2, (3.30)

where

H1 =−e−u [1]

a6r2(1+ [1]
a4 )3/2

, H2 = e−u [1]

a6r4(1+ [1]
a4 )5/2

. (3.31)

This implies

2∂ ∂̄ [e−utr(∂̄B∧∂B∗
[1]
2

)]

= 2
{
(H ′

1 −H2)∂ ∂̄ r2∧∂ ∂̄ r2 +(H ′
1 −H2)′∂ ∂̄ r2∧∂ r2∧ ∂̄ r2}

≡H ∂ ∂̄ r2∧∂ ∂̄ r2 +H ′
∂ ∂̄ r2∧∂ r2∧ ∂̄ r2, (3.32)

where

H = 2(H ′
1 −H2) = 2|c|2e−u

[
[1]

a6r2(1+ [1]
a4 )3/2

+
[1]

a10(1+ [1]
a4 )5/2

]
. (3.33)
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3.3 The resulting anomaly differential equation

We can now write the anomaly equation (3.17) as

2i∂ ∂̄J− [1]
2

(tr[R∧R]− tr[F ∧F ]) ≡ A ∂ ∂̄ r2∧∂ ∂̄ r2 +A ′
∂ ∂̄ r2∧∂ r2∧ ∂̄ r2

=
[1]
r2

[
A (r2)r4]′ dz1∧dz̄1∧dz2∧dz̄2,

(3.34)

where

A = J +
[1]
2

F − [1]
2

(R +U +H ), (3.35)

written in terms of functions defined in (3.22), (3.15), (3.26), (3.29), and (3.33).
The anomaly condition is therefore solved setting A = 0. With the quantization
conditions (3.12) and (3.16), A = 0 leads to the first order differential equation

−u′ eu [1]
r2

√
1+

[1]
a4 +

[1]

r4(1+ [1]
a4 )

+
[1]

2r4(1+ [1]
a4 )

=α
′

[
[1]

r4(1+ [1]
a4 )2

+(u′)2 +α
′|n|2e−u

(
[1]

a2r2(1+ [1]
a4 )3/2

+
[1]

a6(1+ [1]
a4 )5/2

)]
,

(3.36)

where

|n|2 = n2
1 +n2

2 and n1,n2,mi ∈ Z. (3.37)

In mi , we have allowed for the possibility of multiple U(1) gauge bundles denoted
by the index i . Heterotic string allows for at most a rank 16 gauge bundle so m2

i
should be taken to denote ∑

16
j=1 m2

j .

For |n|2 + [1]
2 = 3, we find that the differential equation has a smooth solution

for u for all values of [1]
a2 > 0. Explicitly, it takes the form

eu =
∞

∑
k=0

[1]

(1+ [1]
a4 )

[1]
2

= a0

1−
(

[1]
a2a0

)
[1]

(1+ [1]
a4 )

[1]
2

+
(

[1]
a2a0

)2 [1]

(1+ [1]
a4 )2

+
(

[1]
a2a0

)3 [1]

(1+ [1]
a4 )

[1]
2

+ · · ·


(3.38)

which converges for [1]
a0

[1]
a2 < 1 sufficiently small. In the next section, we will derive

the solution showing how the constants ak can be found iteratively and that the
series converges to an exact solution of the differential equation (3.36).
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4 Solving the Anomaly Equation

To solve the differential equation, we first rewrite (3.36) in a more convenient form
in a few steps. To start, multiplying (3.36) by 1/a2 and re-arranging terms gives

[1]
r2 eu

√
1+

[1]
a4 +

(
[1]
a2

)(
u′2 +

[1]

r4(1+ [1]
a4 )2

− [1]

a4(1+ [1]
a4 )2

)

+
(

[1]
a2

)2

|n|2e−u

(
[1]
r2

[1]

(1+ [1]
a4 )3/2

+
[1]

a4(1+ [1]
a4 )5/2

)
= 0, (4.1)

Setting [1]
a2 = α , |n|2 + [1]

2 = 3 and replacing u′ eu with (eu)′, we find

[1]
r2

√
1+

[1]
a4 −α(eu)′(e−u)′− [1]

a4(1+ [1]
a4 )2

−α
2|n|2 [1]

r2
[1]

(1+ [1]
a4 )

[1]
2

+4α
2|n|2 [1]

a4(1+ [1]
a4 )

[1]
2

= 0. (4.2)

And lastly, defining eu = v(s) , s = [1]
a4 , with [1]

dr2 eu = 2 [1]
a2

[1]
ds v and multiplying

through by a4v2, we arrive at the final form of the differential equation D(α,v)
which we will solve

D(α,v) = 2(1+ s)
[1]
2 v2v′+4α(1+ s)v′2−4αv′2

− [1]
(1+ s)2 v2 +

[1]

(1+ s)
[1]
2

v′+
[1]

(1+ s)
[1]
2

v = 0. (4.3)

In writing D(α,v), we have emphasized the dependence of the differential
equation on the parameter α . The solution function v = v(s,α) of course depends
on the coordinate s but should also vary with α . The presence of the parameter α is
actually rather useful. Together with v, we see that D(α,v) is indeed homogenous
under the scaling

D(λα,λv) = λ
3D(α,v), for λ ∈ R+. (4.4)

This is important as it means that if we find a solution D(α0,v0) = 0 at a given
value α = α0, then for any other value α = α̃ = λα0, there is also a solution given
by v = λv0. Taking advantage of this fact, we will solve D(α,v) for α < 1 and
sufficiently small (which we shall make precise later). The scaling of (4.4) then
implies a solution for all α > 0.

The form of (4.3) suggests that we look for a solution of the type

v =
∞

∑
k=0

[1]

(1+ s)
[1]
2

, (4.5)

with the coefficients αk’s possibly depending on the constants α and |n|2. Since
the four-dimensional base metric in (2.6) should be asymptotic to the flat metric
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as s → ∞, we must have a0 > 0. This positive constant a0 can be identified as a
parameter of the solution space of v(s,α) for a given α .3 For notational simplicity,
we shall set a0 = 1 and find solutions for this case. At the end of this section, we
shall show how solutions with a0 6= 1 can be easily obtained from those of a0 = 1
via a scaling argument.

With the differential equation (4.3) and the solution ansatz (4.5), we proceed
now to give a method to determine all the coefficients ak. We shall show that our
prescription for the ak’s results in v being a convergent series for α sufficiently
small. We then prove that v indeed converges to the solution D(α,v) = 0.

4.1 Determining the coefficients ak

For specifying the ak’s, we consider the finite series

vk =
k

∑
l=0

[1]

(1+ s)
[1]
2

. (4.6)

We introduce the error function E(vk(s)) = D(α,vk), or explicitly

E(vk) = 2(1+ s)
[1]
2 v2

kv′k +4α(1+ s)v′2k −4αv′2k

− [1]
(1+ s)2 v2

k +
[1]

(1+ s)
[1]
2

v′k +
[1]

(1+ s)
[1]
2

vk. (4.7)

Thus for example,

E(v0) =− [1]
(1+ s)2 +

[1]

(1+ s)
[1]
2

. (4.8)

And making the choice a1 = a2 = 0 and a3 =−α leads to

E(v0) = E(v1) = E(v2), (4.9)

and

E(v3) =
[1]

(1+ s)
[1]
2

− [1]
(1+ s)4 −

[1]
(1+ s)5 . (4.10)

Thus far, the error functions follow the form

E(vk) =
[1]

(1+ s)
[1]
2

+ · · · , (4.11)

with bk+2 = 0 for k = 0,1,2 and we have omitted terms of O((1+ s)−
[1]
2 ). In fact,

we can iteratively choose ak+1 such that (4.11) also holds for any k > 3. To show
this, we first write

E(vk+1) = E(vk)+(E(vk+1)−E(vk)) . (4.12)

3 From the string theory perspective, a0 = e2φ0 is the string coupling gs at the asymptotic
infinity of the Eguchi-Hanson space.
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We observe that

E(vk+1)−E(vk) =
[1]

(1+ s)
[1]
2

+ · · · , (4.13)

which comes from the first term 2(1+ s)
[1]
2 v2

kv′k+1 in (4.7). Comparing (4.11) and
(4.13), we can set

ak+1 =
[1]

k +1
, (4.14)

which would cancel the [1]

(1+s)
[1]
2

term and gives us for (4.12),

E(vk+1) =
[1]

(1+ s)
[1]
2

+ · · · . (4.15)

We shall choose each ak’s similarly and thereby ensure (4.11) is valid for all k.
We have thus given an algorithm to determine each ak from those ai’s with

i < k. Explicitly, the coefficients are given by

ak+1 =
[1]

k +1

{
−α

2|n|2(k−7)ak−3−3α

k−2

∑
i, j=0

∑
i+ j=k−2

aia j−α

k−3

∑
i, j=1

∑
i+ j=k−2

i j aia j

+α

k−1

∑
i, j=1

∑
i+ j=k

i j aia j−
k

∑
i, j=0

k

∑
l=1

∑
i+ j+l=k+1

l aia jal

}
. (4.16)

Using this formula, we find for instance

a4 = α
2|n|2 , a5 = 0 , a6 = 0 , a7 = α

3
(
|n|2 +

[1]
7

)
,

a8 =−α
4 (|n|4 +3|n|2

)
, a9 = α

3
(
−1+

[1]
9

α
2|n|4

)
,

(4.17)

and so on.

4.2 Estimates for ak and convergence

Being able to iteratively generate the coefficients of each term of the series (4.5),
we can now show that the series converges when α < 1 is sufficiently small. Since
|a3|= α < 1 is small, we can write

|a3|=
[1]

33 C
, (4.18)

for some large constant C and small α0 < 1. For a fixed α0 < 1 and with (4.16)
and (4.18), we shall prove by induction that when C is sufficiently large,

|ak| ≤
[1]

k3 C
. (4.19)
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This estimate then immediately implies that the series ∑
∞
k=0

[1]

(1+s)
[1]
2

converges for

any s≥ 0 since α0 < 1. We proceed now with the induction proof of (4.19).
Let us assume that (4.19) is true for 1≤ k ≤ N and N ≥ 3. We shall prove that

(4.19) is then also true for k = N +1. We show this by deriving explicit estimates
for all five terms in the expression for ak in (4.16) for k = N + 1. As convention,
we take as definition 0k = 1 below.

Starting with the first term of (4.16), we find the estimate

[1]
N +1

≤ [1]
N +1

[1]
(N−3)3C

≤ [1]
(N +1)3C

[1]
C2

[1]
36(N−3)3

≤ [1]
(N +1)3C

[1]
C2 C1

(4.20)

with the constant

C1 = sup
i≥3

[1]
36(i−3)3 . (4.21)

For the estimate of the second term in (4.19) for k = N +1, we find

[1]
N +1 ∑

i+ j=N−2
∑

i, j≥0
| aia j | ≤

[1]
N +1

[1]
C2 ∑

i+ j=N−2
∑

i, j≥0

[1]
i3 j3

≤ [1]
(N +1)C

[1]
C ∑

j=N−2−i

[1]
j3

N−2

∑
i≥[ [1]

2 ]

[1]
i3

≤ [1]
(N +1)3C

[1]
C2

[1]
9(N−2)3

N−2−[ [1]
2 ]

∑
j=0

[1]
j3

≤ [1]
(N +1)3C

[1]
C2

(4.22)

with the constant

C2 =
[1]
9

∞

∑
j=0

[1]
j3 . (4.23)

The estimates for the third and fourth term are found similarly. For the third term,
we find

[1]
N +1 ∑

i+ j=N−2
∑

i, j≥1
i j | aia j |≤

[1]
(N +1)3C

[1]
C2 (4.24)

with the constant

C3 =
[1]
33

∞

∑
j=1

[1]
j2 , (4.25)



14 J.-X. Fu, L.-S. Tseng, S.-T. Yau

and for the fourth term

[1]
N +1 ∑

i+ j=N
∑

i, j≥1
i j | aia j |≤

[1]
(N +1)3C

[1]
C2 (4.26)

with the constant

C4 =
[1]
35

∞

∑
j=1

[1]
j2 . (4.27)

Lastly, we estimate the fifth term in (4.16) for k = N +1. From direct calculation,
we obtain

[1]
N +1 ∑

i, j≥0,l≥1
∑

i+ j+l=N+1
l | aia jal |

≤ [1]
(N +1)C3 ∑

i, j≥0,l≥1
∑

i+ j+l=N+1

[1]
l2i3 j3

≤ [1]
(N +1)C3 ∑

i+ j=N−1−l

 ∑
l≥[ [1]

3 ]

+ ∑
l<[ [1]

3 ]

 [1]
l2i3 j3

≤ [1]
(N +1)3C3

N+1−[ [1]
3 ]

∑
i+ j=0

[1]
i3 j3 +2 ∑

j=N+1−i−l
∑

i≥[ [1]
3 ]

∑
l≤[ [1]

3 ]

[1]
l2i j3


≤ [1]

(N +1)3C3

N+1−[ [1]
3 ]

∑
i+ j=0

[1]
i3 j3

≤ [1]
(N +1)3C

[1]
C2 (4.28)

with the constant

C5 = 27
∞

∑
i+ j=0

[1]
i3 j3 . (4.29)

Now let C0 = max{C1,C2,C3,C4,C5}. For α0 < 1, we choose the constant

C ≥
√

5C0. (4.30)

By summing over the five estimates in (4.20), (4.22), (4.24), (4.26), and (4.28),
we obtain the estimate

|aN+1| ≤
[1]

(N +1)3C
. (4.31)

And by induction, we have proven the desired estimate (4.19) and therefore v(s) =
∑

∞
k=0

[1]

(1+s)
[1]
2

converges for any s.
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Having shown that the series v converges, we still need to make sure that v =
eu > 0. This positivity condition will give us a bound on α for solutions with
a0 = 1. Clearly for any s≥ 0,

v > 1− [1]
33C ∑

k≥3
α

k
0 = 1− [1]

33(1−α0)C
= 1− [1]

1−α0
. (4.32)

Since, 0 < α0 < 1, (4.32) gives the condition

α ≤ 1−α0 < 1 (4.33)

to ensure v(s) > 0. Let α̃ > 0 be the solution of the equation

α̃ =
[1]

33
√

5C0
. (4.34)

Then by (4.18), (4.30), and (4.33), for any 0 < α ≤ α̃ , v(s) = ∑
∞
k=0

[1]

(1+s)
[1]
2

con-

verges and v(s) > 0 for all s≥ 0.

4.3 Proving the series solves the differential equation

Finally, having established that v is a convergent series, we now prove that v is
indeed a solution to the differential equation (4.3). This is equivalent to showing
that the error vanishes for the entire series, i.e.

lim
k→∞

E(vk) = 0. (4.35)

Since the leading term is (1+ s)−
[1]
2 , we can write

E(vk) =

[1]
2

∑
p=k+2

[1]

(1+ s)
[1]
2

, (4.36)

with ck+2 = bk+2. By direct computation, we find

cp = −α
2|n|2(p−9)ap−5−3α

k

∑
i, j=0

∑
i+ j=p−4

aia j−α

k

∑
i, j=1

∑
i+ j=p−4

i j aia j

+α

k

∑
i, j=1

∑
i+ j=p−2

i j aia j−
k

∑
i, j=0

k

∑
l=1

∑
i+ j+l=p−1

l aia jal , (4.37)

and the first term is zero if p > k +5. Similar to the estimate for |ak| in (4.19), we
find the estimate for |cp|,

|cp| ≤C(p−1) ‖ ap−1 ‖≤
[1]

(p−1)2 , (4.38)
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where we denote ‖ ap−1 ‖ the summation of absolute values of every term in ap−1.
Therefore,

|E(vk)| ≤
[1]
2

∑
p=k+2

[1]

(1+ s)
[1]
2

≤ [1]

(1+ s)
[1]
2

[1]
2

∑
p=k+2

[1]
(p−1)2 → 0, (4.39)

as k → ∞. This proves E(v) = 0.

4.4 Solution and parameter space

We have shown that the differential equation D(α,v)
= 0 in (4.3) is solved by the convergent series

v(s,α) =
∞

∑
k=0

[1]

(1+ s)
[1]
2

= 1− [1]

(1+ s)
[1]
2

+
[1]

(1+ s)2 +
[1]

(1+ s)
[1]
2

+ · · · , (4.40)

for α ≤ α̃ and ak given by (4.16).
We can now use the scale invariance of D(α,v) = 0 in (4.4) to demonstrate a

one parameter family of solution for any given value of α . We first show this for
α = α̃ as defined in (4.34) for a0 = 1 solutions. Let α0 < α̃ and write α0 = α̃/λ

for a real constant λ > 1. At α = α0, we have the solution v(s,α0) given in (4.40).
Making use of the scaling of (4.4), we obtain

0 = D(α0,v(s,α0)) = D(
[1]
λ

α̃,
[1]
λ

λ v(s,
[1]
λ

)) =
[1]
λ 3 D(α̃,λ v(s,

[1]
λ

)). (4.41)

This implies a family of solutions parametrized by λ at α = α̃ given by

vλ (s, α̃) = λ v(s,
[1]
λ

)

= λ

[
1− [1]

λ

[1]

(1+ s)
[1]
2

+
(

[1]
λ

)2 [1]
(1+ s)2 +

(
[1]
λ

)3 [1]

(1+ s)
[1]
2

+ · · ·

]
,(4.42)

with λ = [1,∞) . To show a family of solutions for any value of α = µ α̃ for any
real constant µ , we apply the scaling of (4.4) again to obtain

vλ (s,α) = µ vλ (s, α̃) = µλ v(s,
[1]
µλ

). (4.43)

In terms of the original expansion v = ∑
∞
k=0

[1]

(1+s)
[1]
2

, we find that a0 = µλ and

we have convergence to a solution for a0 = [µ,∞) . More simply, we write the
convergent solution as

v(s,α)=a0

[
1− [1]

a0

[1]

(1+ s)
[1]
2

+
(

[1]
a0

)2 [1]
(1+ s)2 +

(
[1]
a0

)3 [1]

(1+ s)
[1]
2

+ · · ·

]
,

(4.44)

with the condition [1]
a0

= [1]
λ

< 1 sufficiently small (since α̃ < 1 and λ ≥ 1).
In summary, we have found a one-parameter family of solutions for the anomaly

equation for any value of α = α ′/a2.
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5 Discussion

We have constructed a class of smooth non-compact solutions that exactly solve
the heterotic supergravity supersymmetry constraints to first order in α ′. We write
below the solution in the most general form, introducing the complex moduli τ =
τ1 + iτ2 (in z = x+ τy) and area A of the torus as parameters:

J = eu JEH +
[1]
2

[1]
τ2

(dz+β )∧ (dz̄+ β̄ ), (5.1)

JEH =
[1]
2

 [1]
r2

√
1+

[1]
a4 ∂ ∂̄ r2− [1]

r4
[1]√

1+ [1]
a4

∂ r2∧ ∂̄ r2

, (5.2)

ω =dβ = i
√

α ′(n1 + τn2)

 [1]

r2
√

1+ [1]
a4

∂ ∂̄ r2− [1]

r4(1+ [1]
a4 )

[1]
2

∂ r2∧ ∂̄ r2

,(5.3)

Fi = mi

 [1]

r2
√

1+ [1]
a4

∂ ∂̄ r2− [1]

r4(1+ [1]
a4 )

[1]
2

∂ r2∧ ∂̄ r2

, (5.4)

e2φ = eu =
∞

∑
k=0

[1]

(1+ [1]
a4 )

[1]
2

= e2φ0

1− [1]
e2φ0a2

[1]

(1+ [1]
a4 )

[1]
2

+
(

[1]
e2φ0a2

)2 [1]

(1+ [1]
a4 )2

+ · · ·

 (5.5)

for

[1]
τ2
|n1 + τn2|2 +

[1]
2

= 3, and n1,n2,mi ∈ Z, (5.6)

and eφ0 is the string coupling at asymptotic spatial infinity r → ∞. From (5.3)
and (5.4), we see that both the torus twist curvature ω and the U(1) gauge fields
curvature F are localized around the origin of the Eguchi-Hanson space and vanish
in the asymptotic limit of r → ∞. The expression for e2φ in (5.5) is obtained from
(4.44) by replacing |n|2 → [1]

τ2
|n1 + τn2|2 and setting a0 = e2φ0 . The condition for

the convergence of the series then becomes(
[1]
a2

)
[1]
g2

s
< 1, (5.7)

and sufficiently small. Clearly, our solution is consistent in the supergravity limit
of gs � 1 and α/a2 � 1 for sufficiently large a2.

We observe that our solution with non-zero H fluxes have moduli which may
be constrained but are not fixed. Certainly the string coupling, gs = eφ0 , and the
size of the resolved P1 as measured by a2 are not fixed. Together, they are con-
strained by (5.7). As for the torus, Eq. (5.6) gives only one constraint for the torus
area A and complex structure moduli τ combined. Thus, we are free to vary τ with
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a compensating variation of A.4 Nevertheless, if n1 and n2 are not both zero, the
area of the torus is constrained to be of O(α ′) (as A is normalized with respect to
α ′ in (5.6)),

If we treat our solution as a solitonic object, we should determine its five-
brane charge. This charge can be obtained by integrating H = dcJ at the spatial
infinity of the transverse Eguchi-Hanson space, EH. However, because of the non-
trivial fibering, the Eguchi-Hanson space is not a four-dimensional submanifold
of X6 and so taking the spatial infinity limit of EH is ill-defined in X6. Thus,
to be rigorous, we should pull-back RP3(r) at the radial coordinate r in EH to
a T 2 bundle over RP3(r) which is a submanifold over X6. Denoting this five-
submanifold by S(r), we define the five-brane charge in X6 as5

Q5 = lim
r→∞

[1]
(4π2α ′)2

∫
S(r)

H ∧ J = lim
r→∞

[1]
(4π2α ′)2

∫
S(r)

H ∧
(

[1]
2

θ ∧ θ̄

)
= lim

r→∞

[1]
4π2α ′

∫
RP3(r)

H = lim
r→∞

[1]
4π2α ′

∫
RP3(r)

i(∂̄ −∂ )eu∧ JEH

= − lim
r→∞

[1]
8π2α ′

∫
RP3(r)

(eu)′
[1]
r2

√
1+

[1]
a4 (∂̄ r2∧∂ ∂̄ r2 +∂ r2∧ ∂̄ ∂ r2)

= − lim
r→∞

[1]
2α ′

[
r4(eu)′

√
1+

[1]
r4

]
(5.8)

having used (5.1) and (5.2). Plugging in the expression for eu in (5.5), we find that
the total net charge is zero. This is perhaps as expected since in imposing the con-
dition (5.6), we have effectively cancelled the negative charge contribution from
the curvature of the Eguchi-Hanson space with the positive charge contribution
from the torus twist and gauge fields. A non-zero five-brane charge would likely
require a singular solution.

Being zero, the five-brane charge can not distinguish between different torus
curvature ω which when non-zero makes X6 a non-Kähler manifold. We can how-
ever define a new charge

Q̃ =
[1]

(4π2α ′)2

∫
X6

dH ∧ J

=
[1]

(4π2α ′)2

∫
X6

(
2i∂ ∂̄eu∧ JEH −ω ∧ ω̄

)
∧
(

[1]
2

θ ∧ θ̄

)
, (5.9)

where we have used the primitivity condition ω ∧ JEH = 0. Now, the first term
on the right-hand side, integrates to zero since it is a total derivative with zero

4 In the compact case of T 2 bundle over K3 base as discussed in (21), the torus complex
structure moduli can be fixed with appropriately chosen ω = ω1 +τω2 ∈H2,0⊕H1,1 . Here, the
Eguchi-Hanson base is special in that it has only one normalizable two-form.

5 For simplicity, we have set A = 1 and τ = i for the moduli of the torus in the discussion. The
area of the torus is conventionally normalized to (2π

√
α ′)2 .
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boundary contribution as in (5.8). The second term reduces to an integral on EH,

Q̃ = − [1]
4π2α ′

∫
EH

ω ∧ ω̄

= − [1]
4π2α ′

∫
C2/Z2

[1]

a4(1+ [1]
a4 )2

dz1∧dz̄1∧dz2∧dz̄2 =
[1]
2
|n|2. (5.10)

Therefore, when ω 6= 0 and X6 is non-Kähler, Q̃ 6= 0.
A motivation for considering the charge Q̃ is that for the Kähler case where

dJ = 0, Stokes’s theorem implies Q̃ = Q5 (compare (5.8) with (5.9)). Note that
dH corresponds to the source density of the five-brane. But when J is not Kähler,
we have

Q̃−Q5 =
∫

X6
H ∧dJ =−2i

∫
X6

∂J∧ ∂̄J. (5.11)

Hence, the difference between Q̃ and Q5 implies non-Kählerity. We also note that
for the compact case, Q̃ is well-defined for J as a class in the ∂ ∂̄ cohomology.
That is, Q̃ is invariant under J → J +∂ γ̄ + ∂̄ γ , where γ is (1,0)-form. This may be
relevant as the anomaly equation (2.3) is locally a ∂ ∂̄ equation (21).

It is expected that as higher order α ′ corrections to the supergravity constraints
are taken into account, the explicit form of our solutions will be corrected. The
explicit form as in the series expansion of (3.38) suggests that the corrections can
probably be incorporated order by order in α ′. Alternatively, one would like to
have a worldsheet conformal field theory description of the geometrical model.
Such has been presented in (22) using the gauged linear sigma model formalism
of (23).

We have given a detailed study of the solution of a torus bundle over a non-
compact Eguchi-Hanson space with U(1) gauge bundles. This can be considered
the simplest case of a more general class of solutions that involve non-Abelian
gauge bundles and more general ALE base geometry. Investigations on these more
general solutions are interesting and we plan to report on them elsewhere.
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