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The coupling impedances are derived for a point charge traveling parallel to the axis of an infinite pipe
that is loaded with a finite number of cylindrical resonators or radial lines. The field problem is solved
with a mode-matching technique, using a source field, plus a continuous spectrum of waveguide
modes in the pipe region, and a discrete set of modes in the resonator regions. It is found that the
longitudinal impedance in the case of a radial line shows resonant enhancement up to frequencies of a
few times the pipe cut-off, then decays quickly, and seems to behave like /-112 for very high
frequencies f The impedance of a resonator consists of loss-free resonances below cutoff and more
and more de-Q-ed resonances above. For very small and heavily damped resonators, an additional
broad-band contribution is found. Finally, we show how the impedance changes when going from a
single resonator to many resonators. The resonances are shifted in frequency and become small
banded-whilst the losses stay constant-until they end up in the is-function impedance of a periodic
structure.

1. INTRODUCTION

The electromagnetic beam-environment interaction limits the performance of
modern accelerators or storage rings where the beam currents are high, the
bunches very short, or both. Experience has shown that even very small objects
such as gaps at a vacuum flange or bellows have high transverse impedances. In
the case of short bunches, as proposed for the new generation of synchrotron
light sources, one is afraid of having energy losses that are too high. Hence, it is
considered important to arrive at a better understanding of
(1) why the longitudinal impedance decreases much faster with the size of the

object than does the transverse impedance;
(2) when results obtained for infinite periodic structuresl

-
6 have a reasonable

physical meaning;
(3) what is the impedance above cutoff; and
(4) whether numerical codes such as TBCI

7 still work reliably in the case of tiny
objects.

The present paper deals analytically with the problem of a point charge
traveling parallel to the axis of an infinite pipe loaded with a finite number of
cylindrical resonators or radial lines (Fig. 1). Similar problems have been treated
in the past in many papers. Some considered a closed pillbox8

,9 where a discrete
set of known eigenmodes exists. Others estimate the radiation from the pipe into
the cavitylO or vice versa. 11

,12 In the case of an infinite periodic chain of
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FIGURE 1 Point charge traveling parallel to the axis of an infinite pipe loaded with cylindrical
resonators (upper part) or radial lines (lower part).

resonators, the fields can be decomposed into space harmonics, and a standard
field-matching technique1,Z is possible on a cylindrical surface. Instead of
matching in the axial direction, a transverse plane, as proposed for a rectangular
guide with a cross-section step,!3 can also be used. This procedure was later
employed for a cylindrical resonator with semi-infinite beam pipes.14-17

The method that is applied here is also a field-matching technique with
cylindrical matching interfaces, but it must use a continuous wave spectrum owing
to the nonperiodicity of the problem. This approach has been used before18,19 for
a single resonator. Here it is extended to many resonators. The choice of
subregions is seen to be more natural since it allows for a closed representation of
the fields in the pipe region. Therefore, it yields a simple charge-field interaction
integral and gives explicitly the well-known radial dependence of the interaction
as well as the dependence between transverse and longitudinal impedance.

The off-axis moving charge is Fourier-decomposed into azimuthal modes, and
the field problem is solved for each mode independently. For this purpose the
structure is separated into subregions (Fig. 1). In the pipe (Region I) the fields

, consist of the source fields plus a continuous spectrum of waveguide modes. In
the resonator (Regions IIi) a discrete set of radially forward and backward
traveling modes is used. (In the case of radial lines, only forward traveling modes
exist.) On the common interface the fields are matched, yielding an in­
homogeneous set of linear equations for the expansion coefficients of the
resonator region (or an integral equation for the spectrum of the pipe region).
The expansion integrals that occur are solved with the residual calculus; therefore
attention must be paid to the location of the poles in order to prevent waves
coming in from plus or minus infinity.

2 FIELD REPRESENTATION AND MATCHING

The cylindrical coordinates p, cp, and z are used, and all fields are Fourier
transformed; i.e., they are proportional to exp (jillt), which is omitted throughout
the paper.

The charge Q, traveling off-axis at p = r with constant velocity v, is
Fourier-decomposed in the cp direction and Fourier-transformed in the z
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direction. For the Mth component of the current density, this yields

j=( ~O) cosMcpD(p-r)exp(-jkz/f3)ez ,
1 + M nr

185

(1)

with the wave number k = (J) / Co and f3 = v /Co. Since the structure is axis
symmetric, all fields will have the same azimuthal dependence as the excitation
equation [Eq. (1)], and we can solve for each M independently. Therefore, all
expressions given in the following belong to fields with an azimuthal mode
number M.

2.1. Source Fields in the Pipe, Region I

Source fields are the fields in an infinitely long pipe excited by the current density
[Eq. (1)]. They are well known and can be written, for p > a, as

Hs", = - (1 + DE:Jr 1131 r cos Mcp R'(p)exp ( - jkz/f3),

H~=O,

s QZoM. 1 .
Etp = (1 + D~)Jrf3 sm Mcpp R(p) exp ( - ]kz/f3),

E~ = j (1 + ~t)~f32r2 cos McpR(p) exp ( - jkz/f3),

with y = (1 - f3)-1/2, Zo = (Jlo/ £0)1/2,

2.2. Scattered Fields in the Pipe, Region I

(2)

(3)

Because of the inhomogeneous boundary, the scattered fields must be a
superposition of E- and H-waves (for M = 0, only E-waves are needed):

j
E = V X Bez -k ZoV X V XAe z ,

H= V XAez +~ZOlV X VX Bez ,

where the vector potentials A and B are given by a continuous spectrum of
waves, since there are no boundary conditions. The region is unbound in the z
direction, and the fields are unknown at p = a. The only requirement is regularity
at p = O. So we have to sum over all radial (K) or longitudinal (kz ) wave
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numbers. We choose kz , yielding
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2.3. Scattered Fields in the Resonator Regions II;

(4)

In the resonator, regions II;, (p ~ a, iL $ z $ iL + 2g, - 1$ i $ I) we use (as for
the pipe region) both E- and H-waves for M ~ 1. But now boundary conditions
exist in the z direction:

E~i(Z = iL, iL + 2g) = 0, (5)

and radially we find outgoing waves in the case of radial lines, and outgoing as
well as incoming waves with

(6)

in the case of resonators. The corresponding vector potentials can then be written
as

n

n

with

Rn(p) = NM, (Knb)JM(KnP) -JM, (Knb)NM(KnP)}
for resonators,

Pn(p) = N M(Knb )JM(KnP) - JM(Knb )NM(KnP)

Rn(p) = Pn(p) =H~(KnP) for radial lines,

2.4. Matching of the Electric field

(7)

In Region I, the complete solution is given by the source fields [Eq. (2)], plus
the scattered fields [Eqs. (3) and (4)], whereas in Region II; only scattered fields
[Eqs. (3) and (7)] are present. Then, at the interface P = a, the continuity
condition can be written as

ES + E1 = {E~Ii for iL:5 z :5 iL + 2g,
P P 0 elsewhere,

where the subscript p stands for z or qJ.

(8)
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Multiplying Eq. (8) with exp (jk~z) and integrating over z, we find

f
oo liL+2g

-00 (E~ + E~) exp (jk~z) dz =~ iL E~Ii exp (jk~z) dz.
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(9)

The integrals on the right-hand side can easily be performed. For the left-hand
side we use the identity

(10)

Consequently, we find the spectral functions F and G expressed in sums over A~
and B~:

2JrF(kz)K2JM (Ka) = 2: K~Rn(a) 2: A~C~(kz)
n i

2Jl[~ F(kz)kJM(Ka) - G(kz)KJM(Ka)] (11)

= - j ~~ kznRia) ~ A~S~(kz) - ~ P~(a) ~ B~S~(kz).

The expressions C and S are integrals over Z and are given in Appendix A.

2.5. Matching of the Magnetic Field

After having derived the magnetic fields from the vector potentials [Eq. (4)],
we introduce the spectral functions F and G, Eq. (11), and obtain the field of
region I expressed by the coefficients A~ and B~ of Region IIi. The integrals that
occur are solved by means of the residual calculus (see appendix B); thereby
attention must be paid to the location of the poles. They must be placed so that
for a lossy structure the waves excited at the input and output ports, Z = - IL
and Z = IL + 2g, respectively, are damped and travel away from the structure.

In contrast to the electric fields, the tangential magnetic fields are unknown on
the pipe walls. On the interfaces, P = a, iL:5 Z :5 iL + 2g, they must be
continuous:

p=Z,cp. (12)

In this case we expand the fields of the Regions IIi in terms of the functions of
Region I; i.e.,

l
~+~ J~+~

H~ sin kzm(z - iL) dz = H~Ii sin kzm(z - iL) dz,iL iL

J
~+~ J~+~

(H~ + H~) cos kzm(z - iL) dz = H~i cos kzm(z - iL) dz,
~ ~
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yielding

2.n:(1- D~)gK~Pm(a)B:"=jM~2: 2: K;;-zI~~~ - 2: 2: kznPn(a)I~2J.Bm
ani n i

o [iM i, i]2.n:(1 + DM)g ka kzmPm(a)Bm- Rm(a)Am

_ - QkR'(a) i •~ ~ [(3) M
2 (4)] i

- (1 + D~).n: IPI y Cm( - kiP) - ] ~ "7 Inm - K~az Inm An

-~~ t kznPn(a)I~5j,B~.

(13)

(15)

Equations (13) are a system of linear equations for the expansion coefficients A~
and B~. They can be solved after truncation. The constants [~ln, i = 1, ... , 5, are
expansion integrals and are derived in Appendix B.

Alternatively, we could use the condition of Eq. (12) directly, before
substituting F and G from Eq. (11) into Eq. (4). This means that we express A~
and B~ in terms of F and G and substitute them into Eq. (11). Then we obtain
two coupled integral equations that may be more suitable for deriving ap­
proximations or asymptotic behaviour.

3. DERIVATION OF THE COUPLING IMPEDANCES

The longitudinal and transverse coupling impedances are defined as

ZL(W) = - M M 1 (00 E~ exp (jkzIP) dz,
Q, '1 cos MqJ1 J-oo

(14)

ZT(W) = - Q M M-! M r (E~ -llovH~) exp (jkzIP) dz,"1 cos qJ1 J-oo
where the integration is performed along a path (p = '1, qJ = qJ1)' They are
normalized so that for relativistic particles they are independent of the position
(p =', qJ = 0) of the exciting charge and the position (p = '1, qJ = qJ1) of the
probing charge.

Substituting the fields from Eqs. (3) and (4), and using Eqs. (10) and (11), one
obtains for the impedances [Eq. (14)],

Zo 1. (2
ZL(W) = i~-k hm 2nF kz)K JM (K'1)

Q"1 kz~k/f3
~.",.....---

. Zo 1 [MCV(3-2 - 1 k'1) ~ 2 ~ i i

=] QrMrr k IMCVtJ-z -1 ka) ~ KnRn(a) "7 CnCkltJ)Am

-2 [~CV(3-2 - 1 k'1)
ZT(W) = rltJVtJ -1 IM(YtJ-z -1 krl) ZL(W),



IMPEDANCES OF CYLINDRICAL RESONATORS

which in the case of relativistic motion becomes
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(16)

Equations (16) show the well-known relation between the longitudinal and the
transverse impedance of the same azimuthal mode M.

4. NUMERICAL RESULTS

Apart from some special cases such as short gap length or low frequency, where
approximate formulae can be derived, the system of linear equations [Eqs. (13)]
must be solved. For this purpose a computer code ICYRP (Impedances of
Cylindrical Resonators with Pipes) has been written. It truncates the system to an
order n + nl, where n corresponds to kzn ~ k, and nt is typically between 1 and
10.

As a first example let us consider the longitudinal impedance of a radial line
(Fig. 2). Here the impedance is dominated by the radiation into the radial line
and does not show resonant behaviour as for a cavity. The real part of the
impedance increases rapidly from zero frequency onward (there is no cutoff in the
radial line), reaches a maximum around 2g ~ 'A/2, and decays. At each cutoff
frequency kc == kzn of the radial line, a new mode starts propagating, and the

~
-'

N

20.

10.

o.
ka

-10.

-20.

FIGURE 2 Longitudinal impedance of a radial line (geometry of Fig. 1 with 1=0, a = 2g = 15 mm,
r = 106

).
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impedance increases correspondingly. This example is also better suited to the
study of the high-frequency behaviour than is a resonator. At first, we can excite
only even or odd modes when selecting the cutoff values k = kzn . This means that
the system [Eq. (13)] reduces to half the order, and we can go up to twice the
frequency. Secondly, the behaviour is smoother than for a resonator and allows a
direct visualization of the decay with frequency. Figure 3 shows the real part of
the longitudinal impedances at selected high-frequency points equal to k = kzn for
various gap widths. For 15-, 30-, and 60-mm gaps, the impedance clearly seems to
decay with W-

1I2
• For the 120-mm gap, we could not yet reach the high-w region,

although ka = 40 means that there are about 100 modes taken into account in
Region II. The impedance is still in a range were interference plays a role.

In a resonator (Fig. 4) the situation is quite different. Radiation can occur only
into the pipes with a cutoff frequency of ka =iOl = 2.405. Below the cutoff the
impedance shows loss-free resonances. The real part is zero, apart from
resonances, where it consists of D-functions. The imaginary part behaves like a
reactance. Above cutoff, the resonances are no longer loss free owing to the
radiation into the pipe. Some modes are still well trapped; others are heavily
degraded. In Table I we make a comparison between modes of a closed pillbox
and the resonator with pipes (Fig. 4). The modes (0, 0,1), (0,0,2), and (0,1, 1)
are well conserved and shifted only slightly up in frequency. The higher modes (0,
1, 2) and (0, 1, 3) are shifted quite a lot owing to the beam ports; this corresponds
to a reduction of the capacitance. Other modes are so strongly Q-degraded that
they are either barely seen or are not seen at all, as for modes (0, 0, 3) and (0, 0,
4), respectively. Finally, it should be mentioned that even for very high
frequencies the impedance behaves quite irregularly, as indicated in Fig. 4. A
study of the w dependence would therefore require integration over bins-a
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FIGURE 3 High-frequency dependence of the longitudinal impedance of radial lines (geometry of
Fig. 1 with I = 0, a = 15 mm, y = 106

).
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FIGURE 4 Longitudinal impedance (M = 0) of a cylindrical resonator (geometry of Fig. 1 with
I = 0, a = 2g = 15 mm, d = 30 mm, y = 106

).

TABLE I

Resonant modes of closed and open resonators:

a =2g = 15mm, b =45mm.

Closed resonator; (ka)mnp = [(nJla/2g)2 + (jmpa/b)2]1/2

ka open resonator
m n p (ka)mnp (Figs. 4 and 5)

0 0 1 0.802 0.82
0 0 2 1.840 1.97
0 0 3 2.885 Hidden
0 1 1 3.242 3.27
0 1 2 3.641 3.86
0 0 4 3.930 Hidden
0 1 3 4.265 4.85
1 0 1 1.277 1.22
1 1 1 3.391 1.78
1 0 2 2.339 2.31
1 1 2 3.916 3.28
1 0 3 3.391 3.48
1 1 3 4.623 3.85
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possible way, but it consumes more computer time than the procedure chosen
above for the radial line.

In Fig. 5 the transverse impedance M = 1 is given for the same cavity (Fig. 4).
As in the longitudinal case, the impedance is imaginary below cutoff of the lowest
TE mode, ka =i~l = 1.841. The real part consists of D-functions. Above cutoff
the resonances are Q-degraded. Since for transverse modes the fields are
essentially magnetic in the pipe region, the aperture corresponds to an increase of
the inductance and, therefore, a decrease of resonant frequencies, as can be seen
from Table I. We also see that the frequency shift is much more pronounced than
for the longitudinal resonances.

The next example is a very small resonator corresponding, for instance, to one
undulation of a bellows used as the compensation element in the vacuum pipe
(Fig. 6). Apparently, the impedance consists of three parts. A broad-band
resonance at ka = 12.8 with a Q of 5. This corresponds to a resonance on a radial
line of length d = A/4, which is heavily damped by radiation into the pipe. In
series with the broad-band impedance, we find several high-Q resonances (in this
case, four) belonging to well-trapped modes. Finally, there are notches located at
ka = iOs' the cutoff frequencies of the pipe. They result because, for A« 2g, only

5.

1.

1. :2. 3. 4. 5. ko

j~1

IE
C
..Y:

~
N

E

1.

-l ka

-5.

FIGURE 5 Transverse impedance (M = 1) of the resonator in Fig. 4.
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FIGURE 6 Longitudinal impedance (M = 0) of a small cylindrical resonator (geometry of Fig. 1
with I = 0, a = 40 mm, 2g = 2 mm, d = 4 mm, 'Y = 106

).

the z-independent mode exists in the resonator region, but it is not excited since
E~(p = a) = O. There are no secondary fields at cutoff.

The transverse impedance (M = 1) for the resonator in Fig. 6 is given in Fig. 7.
It looks very similar to the longitudinal impedance; the main difference is the
nonzero imaginary part for low frequencies. Note that the transverse impedance
in Fig. 3 of Ref. 18 is wrong, apart from the different definition with a negative
sign as used here [Eq. (14)].

As a last example, we will treat the transition from a single undulation of a
bellows to an infinite periodic structure. Figure 8 shows the real part of the
longitudinal impedance for an increasing number of undulations. As in the
foregoing example, the single undulation has a broad-band resonance that is
located at ka = 4.7 in this case. This corresponds to a A/4 resonance of the radial
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15.
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5.
ka

FIGURE 7 Transverse impedance (M = 1) of the resonator in Fig. 6.

line. With increasing number of undulations the resonance at first becomes
broader, owing to coupling between undulations, and is shifted in frequency. For
more than 20 undulations, a real isolated resonance is formed at ka = 3.45. This
resonance becomes smaller and smaller in bandwidth, although the losses per
undulation stay constant. In Fig. 9 it is depicted for 41 undulations, for instance.
Note the highly suppressed losses outside the transmission band ka = 3.2 through
ka = 3.8. Finally, the resonance becomes D-function-like for the case of an
infinite periodic structure. The resonance frequency ka = 3.45 is that of the space
harmonic, which has a phase velocity equal to the velocity of light in the first
passband (Fig. 10).
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FIGURE 8 Real part of the longitudinal impedance of a set of cylindrical resonators (geometry of
Fig. 1 with a = 15 mm, 2g = 2 mm, d = L = 4 mm, y = 106
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FIGURE 9 Longitudinal impedance of a set of 41 cylindrical resonators as shown in Fig. 8.
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10.

ko

5.

3.45 --- --- -- -

o. 0.5 CP/Tt--

FIGURE 10 Brillouin diagram of the first passbands in an infinite periodic structure of cylindrical
resonators. Dimensions as in Fig. 8.
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APPENDIX A

The integrals in Eq. (11) are

APPENDIX B

The expansion integrals /~~, i = 1, ... , 5, in Eq. (13) are given by

197

(A-I)

f
iL+ 2g

/ (i) = i(i) sin k (z - iL) dznm n zm
iL

f
iL+ 2g

/(i) = i(i) cos k (z - iL) dznm n zm
iL

for i = 1, 2,

for i = 3, 4, 5,

(B-1)

where the integrands i~) follow from introducing F and G [Eq. (11)] into the
expression for the magnetic fields in region I. These integrands can' be written as
(all length quantities normalized with respect to a)

with

and

(B-2)
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The ratios of Bessel functions can be expanded in series:20

JM(K) = _~ DO + 2 L j'rJs 1
KJ~(K) K2

M s j'iis - M2k; - b;2

J~(K) M2 1
KJM(K) = K 2 -2~ k;-b;

(B-3)

with

b - {fis =Yk2
- /Ms b ' _ {fi; =Yk2

- j'rJs f {k "?jMs, j~s
s-. ·"\/·2 k2 s- ., ·"\/·'2 k2 or k . ,.-jl¥s= -jVjMs- -jl¥s= -jVjMs- <jMs,jMs

After introducing Eq. (B-3) into Eq. (B-2), the integrands i~n)(z) can all be
expressed in terms of the following integral:

_ foo exp [jkz(iL - z)] _ jnJr foo exp [jkz(iL + 2g - z)]
I(a, fi, z) - _00 (k; _ ( 2)(k; _ fi2) dkz e _00 (k; _ ~)(k; _ fi2) dkz ,

(B-4)

which is solved by means of the residual calculus. The integration paths and the
poles, shown in Fig. 11, are thereby chosen so that the modes excited at the input
and output ports, z = - IL and z = IL + 2g, respectively, are damped and travel
away from the structure. This results in

j:rc {II}I(a, fi, z) = ~ _ fi2 ~ [1J.'I(fi, z) -1J.'2(fi, z)] - ~J1J.'1(a, z) -1J.'2(a, z)] ,

:rc
I' (a, fi, z) = a2_ fi2 [1J.'1(fi, z) + 1J.'2(fi, z) - 1J.'1(a, z) - 1J.'2(a, z)], (B-5)

I"(a, fi, z) = ~j~ fi2 {a[1J.'1(a, z) - 1J.'2(a, z)] - fi[ 1J.'1(fi, z) - 1J.'2(fi, z)]},

1m kz

right integral
z~ iL+2g

left integral
z ~ iL

FIGURE 11 Integration path and location of poles in the k z plane.
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with
1/Jl(a, z) = exp [ja(iL - z)],

1/Jz(a, z) = exp (jnn) exp [ - ja(iL + 2g - z)].

Using Eq. (B-5) in Eq. (B-2) we can write
·,z

i~l)(Z)= -2D1tI"(k, 0, z)-22: .,zlMs zI"(b;, 0, z),
s lMs- M

·,z
i~Z)(z) = 2D1tI"(kzn , 0, z) + 2 2: .,z lMs z [kZI(kzn , b;, z) + I"(kzn , b;, z)]

s lMs-M

i~3)(Z) = - jMZI'(kzn , k, z) - j2 2: I'(kzn , bs, z),
s
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(B-6)

·'Z

i~4)(Z) = - j2D~I'(k, k, z) - j2 2: .,z lMs zI'(k, b;, z),
s lMs-M

·,z
i~5)(Z) =j2D~I'(kzn, k, z) + j2 2: .,z lMs zI'(kzn , b;, z).

s lMs-M

The remaining integration over z [Eq. (B-1)] is straightforward and gives the
expressions of Eq. (AI).




