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Faculty of Mathematics, University of Belgrade
Studentski trg 16, p.o. box 550, 11 001 Belgrade, SERBIA

Abstract

In the first part of this paper we give a short overview on duality
principle for definite vectors and its relations with pointwise pseudo-
Riemannian Osserman manifolds. In the second part, we analyze few
important examples on which duality principle holds, and a natural
extension of the duality principle for null vectors is given.

1. Introduction

Let (M, 〈· , ·〉) be a m−dimensional pseudo-Riemannian manifold of the
signature (r,m−r). Let εX = 〈X,X〉 be the norm of the vector X ∈ TpM .
We say that a tangent vector X is spacelike, timelike, null, definite or unit
if εX > 0, εX < 0, εX = 0, X �= 0, εX �= 0 or |εX | = 1, respectively.
Let S+M and S−M (SM = S+M ∪S−M ) be the unit sphere bundles of
spacelike and timelike tangent vectors in TM, and let N (M) be the null
cone of nonzero null vectors.
Let ∇ be the Levi-Civita connection and let R be the associated Rieman-
nian curvature tensor; R(X,Y ) := [∇X ,∇Y ]−∇[X,Y ]. The Jacobi operator
KX : Y −→ R(Y,X)X is a symmetric endomorphism of the tangent bundle
TM . For non-null X, KX preserves the orthogonal space {X}⊥, and we
will use the notation K′

X for the restriction of KX to this space.
We say that (M, 〈· , ·〉) is spacelike, timelike or null pointwise Osserman
if the characteristic polynomial of KX is constant on X ∈ S−

p M, S+
p M,

or Np(M), 1 respectively. It is very well known that the notions pointwise
spacelike Osserman and pointwise timelike Osserman are equivalent. We
speak about globally spacelike, timelike or null Osserman manifolds if the
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1 S−
p M, S+

p M, and Np(M), are pseudo-spheres and null cone of tangent space TpM .
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characteristic polynomial of KX is constant on S+M, S−M, or N (M),
respectively. This definition implies if M is null Osserman, then neces-
sarily KX is nilpotent for X ∈ N (M), and consequently KX has only
the eigenvalue 0. It is clear if any spacelike or timelike Osserman mani-
fold is necessarily null Osserman. The converse can fail in general, see, for
example [10] in the Lorentzian setting.
In non-Riemannian setting Jordan normal form plays a crucial role, since
eigenvalue structure does not determine the Jordan normal form of a sym-
metric linear operator. One says that (M, 〈· , ·〉) is spacelike, timelike, or
null Jordan Osserman if the Jordan normal form of KX is constant on
X ∈ S+M, S−M, or N (M), respectively. While the notions of globally
spacelike Osserman or globally timelike Osserman are the same, the no-
tions of globally spacelike Jordan Osserman and globally timelike Jordan
Osserman are inequivalent. For more details about this topic see [9] and
[12]. In [11] it is proven that for a neutral (2, 2) manifold the notions
of: pointwise spacelike Osserman manifold, pointwise spacelike Jordan Os-
serman manifold, pointwise timelike Jordan Osserman manifold and null
Osserman manifold, are equivalent.
In Riemannian case it was shown, by Chi and by Nikolayevsky, that glob-
ally Osserman manifolds of dimension n �= 16 are two-point homogeneous
spaces2; and consequently for n �= 16, this gives an affirmative answer to
Osserman conjecture (see, [17], [18], [7], [13], [14], [15]). For a generalization
of Osserman conjecture to the pseudo-Riemannian case, see [5].

It is convenient to work in algebraic settings. Let R be an algebraic curva-
ture operator. This is a tensor satisfying the curvature symmetries

R(X,Y ) + R(Y,X) = 0, (1)

R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 0, (2)

〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉. (3)

One says R is an Osserman (Jordan-Osserman) algebraic curvature tensor
if the associated Jacobi operator has characteristic polynomial (Jordan-
form) constant on the unit pseudospheres S−

p M and S+
p M . Usually, one

proves results on the algebraic level, and then obtains corresponding con-
clusions in the geometric context.
In the Riemannian settings, duality principle is the following property of
an Osserman algebraic curvature tensor R:
λ ∈ R satisfies the duality principle if for any unit vectors X and Y holds

KXY = λY if and only if KY X = λX.

We say that R satisfies the duality principle if and only if every eigenvalue
of Jacobi operator KX , satisfies the duality principle.

2 Two-point homogeneous spaces are R
n, RPn, Sn, Hn, CPn, CHn, HPn, HHn, Cay P2,

and CayH2.
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Duality principle is used as one of important tools in the proof of Osserman
conjecture for n �= 8, 16 by Nikolayevsky (see [14]).
Osserman manifolds are described in Riemannian setting (except some
cases for n = 16), in the Lorentzian setting (spaces of constant sectional
curvature, see [3]), but in the case of higher signature (except the case of
4-dimensional Kleinian manifolds, see [4], [9]) we are very far from the com-
plete picture. For example, Osserman conjecture doesn’t hold, see [19], [6],
[4], [9]. The interesting questions which arise from our investigations are:
classification of all algebraic curvature tensors which satisfy duality princi-
ple and classification of all pseudo-Riemannian manifolds whose curvature
tensor satisfy duality principle.
Our paper is organized as follows. Section 1 is devoted to the introduction
and motivation in this topic. Since k-stein manifolds are closely related
to the Osserman manifolds, in Section 2 we give some basic characteriza-
tions of k-stein conditions and specially of 1-stein and 2-stein manifolds.
Also, we introduce notion of diagonalizable pseudo-Riemannian Osserman
manifolds and we obtain the analogous conditions (Theorem 2.) as in Rie-
mannian case, see [20]. In Section 3 we recall of our main results (without
proofs) given in [1]: the definition of duality principle for all non-null vec-
tors (Theorem 4.), a characterization of duality principle for diagonalizable
pseudo-Riemannian manifolds, and consequences of it. Section 4 contains
original results and it is devoted to the examples of manifolds in which
duality principle holds. After that, we investigate duality principle for null
vectors, and find several examples of manifolds which allow an extension
of duality principle to null vectors, also. Those examples, motivate us to
extend the duality principle to null vectors.

2. Duality for non null vectors

2.1. k-stein

We say that a manifold M is k-stein if there exist constants Ct for 1 ≤ t ≤ k
such that for all X ∈ S(M) hold Tr(Kt

X) = (εX)tCt. It is well-known that 1-
stein manifolds are Einstein and vice versa and also that Osserman timelike
(spacelike) condition is equivalent with k-stein condition (see for example
[ 9, 1.7.3 Lemma ]).

Let (E1, E2, ..., Em) be an arbitrary pseudo-orthonormal basis of TpM . Let
X = αEi + βEj where i and j are fixed and 1 ≤ i �= j ≤ m. Then we have

KX = α2Ki + αβKij + β2Kj (4)
where we put

Ki = KEi and Kij = R(·, Ei)Ej + R(·, Ej)Ei .

Now, after the substitution α2 = εX εi − β2εi εj in (4) we obtain

KX = εXεiKi + αβKij + β2(Kj − εiεjKi). (5)
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Let us introduce the following notations,

Ai
pq := [Ki]pq = εpRqiip , Bj

pq := [Kj ]pq = εpRqjjp ,

Zij
pq := [Kij ]pq = εp(Rqijp + Rqjip) . (6)

Since

[Kk
X ]pq =

∑
p2,p3,...,pk

[KX ]pp2[KX ]p2p3 · · · [KX ]pkq ,

Tr(Kk
X) =

∑
p1,p2,...,pk

[KX ]p1p2 [KX ]p2p3 · · · [KX ]pkp1 ,

the equation (5) put the k-stein condition in the following form

εk
XCk=

∑
p1,...,pk,pk+1=p1

∏
1≤t≤k

(
εXεiA

i
ptpt+1

+ αβZij
ptpt+1

+ β2(Bj
ptpt+1

− εiεjA
i
ptpt+1

)
)

(7)

Lemma 1. (i1) A manifold M is 1-stein iff for all 1 ≤ i �= j ≤ m, the
following formulas hold∑

1≤p≤m

Zij
pp = 0 and

∑
1≤p≤m

(Bj
pp − εiεjA

i
pp) = 0. (8)

(i2) If a manifold is 2-stein then for all 1 ≤ i �= j ≤ m, the following
formulas hold∑

1≤p,q≤m

Ai
pqZ

ij
qp =

∑
1≤p,q≤m

Bj
pqZ

ij
qp = 0 , (9)

2
∑

1≤p,q≤m

Ai
pqB

j
qp − 2 εiεj

∑
1≤p,q≤m

Ai
pqA

i
qp +

∑
1≤p,q≤m

Zij
pqZ

ij
qp = 0 , (10)

∑
1≤p,q≤m

Ai
pqA

i
qp =

∑
1≤p,q≤m

Bj
pqB

j
qp . (11)

Proof. The proof for both statements follows from (7) for k = 1 and k = 2,
respectively. ♦

2.2. Diagonalizable manifolds
When the Jacobi operator KX is diagonalizable for any X ∈ SM, we call
such manifolds diagonalizable Osserman (pseudo-Riemannian) manifolds.
Since all information about R are encoding in the terms with αiβi+2t (i =
0, 1 and t ∈ N) of Tr(Kk

X) (see (7)), one can consider terms with αβ and
β2. Following the proof of main theorem (Theorem 1.1) of [20], we proved
the following theorem, in [1].
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Theorem 2. Let (M, 〈· , ·〉) be a diagonalizable pseudo-Riemannian Osser-
man manifold, and let (E1, E2, ..., Em) be an orthonormal basis of TpM
such that K1 has diagonal matrix with respect to this basis, and let
Λa = {t | [K1]tt = a}. Then for every eigenvalue a of K1, and for all
1 ≤ i �= j ≤ m, hold

(i1)
∑
t∈Λa

Zij
tt = 0, (12)

(i2)
∑

s,t∈Λa

Zij
st Zij

st = 0 . (13)

In [1] we generalize the duality principle (from [20]) in pseudo-Riemannian
settings for non null vectors.

Definition 3. Let R be an Osserman algebraic curvature tensor. For λ ∈
R we say that it satisfies the duality principle if for all mutually orthogonal
unit vectors X ,Y holds

KX(Y ) = εX λY =⇒ KY (X) = εY λX . (14)

If the duality principle holds for all λ ∈ R then we say that duality principle
holds for the algebraic curvature tensor R (or for the pseudo-Riemannian
Osserman manifold (M, 〈· , ·〉) whose curvature tensor is R).

In the following theorem we showed (see [1]) that we can relax condition on
vectors X, and Y.

Theorem 4. Let (M, 〈· , ·〉) be a diagonalizable Osserman manifold such
that the duality principle holds for λ ∈ R. Then implication (14) holds for
all X,Y ∈ TpM with εX �= 0.

Let (M, 〈· , ·〉) be a diagonalizable pseudo-Riemannian Osserman manifold
and let (E1, E2, ..., Em) be a pseudo-orthonormal basis of TpM such that
the Jacobi operator K1 has diagonal matrix with respect to this basis. Then
the duality applied to the coordinate eigenvectors vectors gives

K1(Ej) = ε1λEj =⇒ Kj(E1) = εjλE1. (15)

K1(Ej) = ε1λEj is equivalent to μj = A1
jj = ε1λ and A1

kj = 0 for k �= j.
From (6) it follows λ = ε1 εj Rj11j and Rj11k = 0 for k �= j. From the other
hand we have Kj(E1) = εjλE1 is equivalent to Bj

11 = εjλ and Bj
k1 = 0

for k �= 1, then (6) gives λ = εj ε1 R1jj1 and R1jjk = 0 for k �= 1. Since
ε1εj Rj11j = εjε1 R1jj1 hold, we see that

(Rj11k = 0 for k �= j) =⇒ (R1jjk = 0 for k �= 1) , (16)

is the sufficient condition for (15). Now, we can formulate the following
theorem.
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Theorem 5. Let (M, 〈· , ·〉) be a diagonalizable pseudo-Riemannian Os-
serman manifold, and let (E1, E2, ..., En) be an orthonormal basis of TpM
such that K1 has diagonal matrix with respect to this basis. The duality
principle holds for M iff for all j > 1 and all 1 ≤ p ≤ n hold Z1j

pp = 0.

Now, we can combine the previous theorem and Theorem 4. to obtain some
conditions on a diagonalizable pseudo-Riemannian manifolds under which
duality principle holds.

Corollary 6. The duality principle holds in a diagonalizable pseudo-Rieman-
nian Osserman manifold (M, 〈· , ·〉) if
(i1) its Jacobi operator has all different eigenvalues.
(i2) for every X ∈ SpM doesn’t exist null eigenvector of KX , (specially in

Riemannian case).

The signature (2, 2) gives the examples 3 of non-diagonalizable Osserman
manifolds, but the duality holds, as the following theorem shows.

Theorem 7. The duality principle holds for every 4-dimensional Osser-
man manifold.

The general theory of symmetric endomorphisms in pseudo-unitarian spaces
(see for example [16]), shows that for similar investigations of non-diagonali-
zable pseudo-Riemannian (Jordan)Osserman manifolds, we essentially need
to study the duality principle for null vectors.

3. Duality for non-zero null vectors

Since duality principle holds in Riemannian, Lorentzian and four-dimen-
sional manifolds (see [20], [3]), here we will investigate it on some examples
in more general settings. Also, in all mentioned examples we will take care
about behavior of null vectors.

3.1 Manifolds with constant sectional curvature
Let M be a pseudo-Riemannian manifold of signature (r,m − r) which
has constant sectional curvature λ. The curvature tensor of M is given by

R(X,Y )Z = λ (〈Y,Z〉X − 〈X,Z〉Y ).

If M is complete, connected and simply connected, M = M(c, r,m− r) is
determined by (c, r, q). These manifolds have been classified by Wolf [21].
Now, we want to examine duality for null vectors. It is known ([ 12, 1.7.4
Lemma ]) that KX is nilpotent for a null vector X, since M is m-stein.
Then, the following theorem holds,

3 of the smallest possible dimension.
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Theorem 8. Let M be a pseudo-Riemannian manifold of signature (r,m−
r) with constant sectional curvature λ �= 0. Then duality principle holds
for M. Moreover, for an arbitrary null vector X we have
(i1) K2

X = 0 , and dim Ker (KX) = m − 1.

(i2) if 0 �= Y is a vector such that KX(Y ) = 0 then KY (X) = λ εY X.

Remark 2. Since the proof of this theorem is similar (but simpler), than the
proof of Theorem 9., we will omit it.

4.2 Kähler manifolds with constant holomorphic sectional curva-
ture.
The indefinite projective space CP

m
s (λ) of signature (2s, 2m − 2s) can

be constructed, see [2] for details. The Kähler space form CP
m
s (4λ) has

constant holomorphic sectional curvature 4λ �= 0 with curvature tensor:

R(X,Y )Z = λ {〈Y,Z〉X − 〈X,Z〉Y (17)
+ 〈JY,Z〉JX − 〈JX,Z〉JY − 2 〈JX, Y 〉JZ}.

Furthermore, every Kähler manifold M of signature (2s, 2m − 2s) with
constant holomorphic sectional curvature 4λ �= 0 is holomorphically iso-
metric to CP

m
s (4λ). The following theorem holds.

Theorem 9. Let M be a Kähler manifold M of signature (2s, 2m−2s) with
constant holomorphic sectional curvature 4λ �= 0. Then duality principle
holds for M. If X is an arbitrary null vector, then
(i1) K2

X = 0 , and dim Ker (KX) = 2m − 2.

(i2) if 0 �= Y is a vector such that KX(Y ) = 0 then KY (X) = λ εY X.

Proof. Let J be a (almost) complex structure on M then for any vector
X holds 〈X,J(X)〉 = 0, and if X is null vector (17) is reduced to

KX(Y ) = R(Y,X)X = λ {−〈Y,X〉X − 3 〈JY,X〉JX}. (18)

From (18) we have X, J(X) ∈ Ker (KX) and Im (KX) = span{X,J(X)},
which implies that K2

X = 0. Since ± 1 is not eigenvalue of the oper-
ator J , the vectors X and J(X) are linearly independent. It implies
dim Ker (KX) = 2m − 2.
We can choose an orthonormal frame (E1, E2, . . . , E2m) of TpM such that
{E1, . . . , E2s} are timelike vectors, {E2s+1, . . . , E2m} are spacelike vectors
and JE2i−1 = E2i, JE2i = −E2i−1, for i = 1, 2 . . . m . Then generic non-
vanishing components of curvature tensor given by (17) are

R2i−1 2t−1 2t 2i = −R2i−1 2t 2t−1 2i = ε2i ε2t−1 λ , t �= i ,

Rkjjk =
{ 4 λ , if k = 2 t, j = 2 t − 1 or k = 2 t− 1, j = 2 t ,

εj εk λ , otherwise ,

(19)
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where εi = ‖Ei‖. Then the matrix of Jacobi operator KEi with respect to
this basis has the following diagonal form

KEi =

⎧⎪⎨
⎪⎩

εi diag [λ, λ, . . . ,
i
0, 4λ, λ, . . . , λ ] , if i is odd ,

εi diag [λ, λ, . . . , 4λ,
i
0, , λ, . . . , λ ] , if i is even .

(20)

Now, if we take an unit timelike vector X, then we choose a basis as above
taking X = E1. From (19) it follows that all components of the curvature
tensor with three different indices (with respect to the chosen basis) are
vanishing, and since the matrix of KEi is diagonal,(20), we conclude that the
duality principle holds. The analogous proof works for any unit spacelike
vector X.
For (i2), take any null vector X �= 0 then X = α (E + F ) where α �= 0
and E, F are unit timelike and spacelike vectors, respectively. The vec-
tors X, and J(X) are mutually orthonormal and linearly independent,
and we can choose orthonormal basis like above where we take E1 =
E, E2m = F , and then direct calculations shows that KX in the basis

(E1, E2, E2m−1, E2m, E3, . . . , E2m−2) has matrix
[

A 0
0 0

]
where

A =

⎡
⎢⎢⎣

λ 0 0 −λ

0 −3 λ −3 λ 0
0 3 λ 3 λ 0
λ 0 0 −λ

⎤
⎥⎥⎦ .

Then eigenvectors of KX are v1 = X,
v2 = J(X) = E2 − E2m−1, vj = Ej for
j = 3, . . . , 2m − 2. Since, K2

X = 0 and
rank (KX) = 2 we see that the Jordan
normal form of KX consists of two two-

dimensional blocks N2 =
[

0 1
0 0

]
, and all other blocks are one-dimensional

(zero matrices).
Let Y = (y1, y2, . . . , y2m) be an arbitrary eigenvector of KX , then it has
form
Y = (y1, y2,−y2, y1, y5, . . . , y2m). Let z = JY (X), then using the com-
ponents of the curvature tensor R given by (19) one can find that the only
non-vanishing components of the vector z are z1 = z4 = λ 〈Y, Y 〉. It implies
(i2). ♦
3.3. Para-Kähler manifolds with constant para-holomorphic sec-
tional curvature.
The tangent bundle TS

m of the standard sphere can be equipped with a
pseudo-Riemannian metric 〈·, ·〉 of signature (m,m) and a para-complex
structure such that Pm(B) = (TS

m, 〈·, ·〉, F ) is of constant para-holomorphic
sectional curvature 4λ �= 0. For m > 1, Pm(B) is complete, connected
and simple connected, see [8] for details. Furthermore, every para-Käehler
manifold M2m with constant para-holomorphic sectional curvature 4λ is
F holomorphically isometric to Pm(B). The curvature tensor of Pm(B)
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is given by

R(X,Y )Z = λ {〈Y,Z〉X − 〈X,Z〉Y (21)
− 〈JY,Z〉JX + 〈JX,Z〉JY + 2 〈JX, Y 〉JZ}.

Again, we want to examine duality for null vectors, and we have,

Theorem 10. Let M be a para-Kähler manifold of signature (m,m)
with constant para-holomorphic sectional curvature 4λ �= 0. Then duality
principle holds for M. If X is an arbitrary null vector, then
(i1) K2

X = 0 .

(i2) dim Ker (KX) =
{

2m − 2 , if J(X) �= ±X ,
2m − 1 , if J(X) = ±X .

(i3) if 0 �= Y is a vector such that KX(Y ) = 0 then KY (X) = λ εY X.

The proof is similar to the proof of Theorem 9. and we will omit it. The only
essential difference is a consequence of the fact that in the para-Kählerian
manifolds there exist null eigenvectors of J for the eigenvalues ±1. It means
that for a such null vector X (J(X) = ±X), we have Im (KX) = span{X},
i.e., rank (KX) = 1, and consequently the Jordan normal form of KX con-

sists of one two-dimensional block N2 =
[

0 1
0 0

]
, and all other matrix

elements are zeros.
Let us remark that rankKX = 1 for X ∈ VJ(±1) ∩ Np(M), where VJ(1),
VJ(−1) are eigenspaces of para-complex structure J for the eigenvalues 1
and −1 respectively, and Np(M) is null cone of TpM .

3.4. On duality for nonzero null vectors.
The above examples and results of previous sections (Theorem 4.), as well
as the fact that for m-stein (m = dim M) manifolds the Jacobi operator
KX of an arbitrary null vector X �= 0 is nilpotent, motivate us to extend
our definition of duality principle to null vectors. More precisely,

Definition 11. For λ ∈ R we say that it satisfies the duality principle if for
all vectors X �= 0 �= Y ∈ Tp(M) such that

(d) ε(X) �= 0 , holds

KX(Y ) = εXλY =⇒ KY (X) = εY λX .

(n) ε(X) = 0, holds

KX(Y ) = 0 =⇒ X is an eigenvector of KY ,

and moreover if Y is null vector then

KX(Y ) = 0 =⇒ KY (X) = 0 .
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If the duality principle holds for all λ ∈ R then we say that duality principle
holds for the algebraic curvature tensor R (or for the pseudo-Riemannian
Osserman manifold (M, 〈· , ·〉) whose curvature tensor is R).

Remark 3. Let us mention here that the first statements (i1) of Theorems 8.,
and 9., means that pseudo-Riemannian manifolds with constant scalar sec-
tional curvatures and Kähler manifolds with constant holomorphic sectional
curvatures are examples of globally null Jordan-Osserman manifolds. Also,
they are manifolds in which duality principle holds for all type of vectors.
Para-Kähler manifolds of dimension 2m with constant para-holomorphic
sectional curvatures are manifolds in which duality principle holds for all
type of vectors, but they are not null pointwise Jordan-Osserman manifolds,
since their Jacobi operator change its Jordan form on the intersection of
null cone and eigenspaces of para-complex structure J .

Remark 4. Let us consider the following Walker metric on R
4 which are

given in [9], pages 64-66,

g =

⎛
⎜⎝

x3f1 a 1 0
a x4f2 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ (22)

where f1 = f1(x1, x2) and f2 = f2(x1, x2) are smooth real functions and
where a is constant. For ∂f1

∂x2
+ ∂f2

∂x1
= 0, those metrics define a family

of (2,2) Osserman manifolds. Moreover, they satisfy the duality principle
for non-null vectors, but they don’t satisfy the duality principle for null
vectors. For example, the vector E3 is null and its Jacobi operator KE3 = 0,
but KE1(E3) = −1

2
∂f1

∂x2
E4 (see, page 66 of [9]), it means that the duality

principle for null vectors is not satisfied.
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