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1 Introduction

Chiral perturbation theory (yPT) is the most widespread theory for low-energy quantum
chromodynamics (QCD). It is an effective field theory (EFT) which reformulates the
non-perturbative behaviour of low-energy QCD as a perturbative theory of new degrees
of freedom, physically interpreted as bound states of quarks. When constructed using n
light quark flavours, the degrees of freedom are the n? — 1 light pseudoscalar mesons: the
pions for n = 2, with the kaons and eta added for n = 3. xPT was developed by Gasser &
Leutwyler [1, 2] based on earlier work by Weinberg [3]; see [4, 5] for modern introductions
with further references.

At leading order in the low-energy expansion, the only parameters of YPT are the
meson mass and decay constant, but higher orders introduce a rapidly increasing number
of Wilson coefficients or low-energy constants (LECs) which, while in principle derivable
from the underlying QCD dynamics, must in practice be seen as unknowns. At next-to-
leading order (NLO), the LECs can be measured reasonably well with experimental or
lattice methods, although the precision is typically only one or two significant digits. At
next-to-next-to-leading order (NNLO), only tentative results are presently available. For a
review of LEC measurements, see [6].

All quantum field theories must obey the axioms of unitarity, analyticity and crossing
symmetry, and normally do so by construction. However, it turns out that these axioms are
not automatically satisfied by EFTs such as yPT when perturbativity is assumed at a fixed
order in the expansion. Therefore, imposing the axioms actually adds new information,
typically by placing bounds on the scattering amplitudes. Pioneering work was done
by Martin [7] before the development of xPT as such. Bounds on NLO two-flavour yPT
amplitudes, which in turn translate to bounds on the LECs, were first obtained in [8-10] and
extended in [11, 12]. Further improvements were made in [13] and extended to three-flavour
XPT in [14]. There is ongoing research in extending these methods, both specific to yPT
and with broader scope; recent examples include [15-18].

The method of [13, 14], which serves as the basis of our method, is to apply dispersion
relations (a consequence of analyticity) to a meson-meson scattering amplitude decomposed
into isospin components (for higher flavours, the Clebsch-Gordan decomposition is used).
Then, crossing symmetry and the optical theorem (a consequence of unitarity) are applied
to give a positivity condition on the decomposed amplitude. With the amplitude calculated
in terms of the LECs to some order, this results in bounds on linear combinations of LECs.
More recently, stronger bounds have been obtained in [19, 20] by improving this method;
put extremely simply, this was done with more sophisticated use of dispersion relations
and crossing symmetry, respectively. Put similarly simply, our work instead improves
the handling of the isospin decompositions and the LEC bounds themselves, although
some improvements similar to [19] are also made. Perhaps more importantly, we perform
the first extension to NNLO xPT with any number of flavours (two flavours was treated
in [19]), albeit with the simplification that all mesons have the same mass. The LECs are
independent of the chosen masses, although the bounds do depend on the mass. At NLO
they depend only on the ratio of the meson mass and the subtraction scale p, at NNLO
also on the ratio of the meson mass and decay constant.



Preliminary results of this work are presented in the Lund University master thesis [21].
Our work is structured as follows: section 2 introduces xPT and its LECs; section 3
(backed by appendix A) presents the 2 — 2 meson scattering amplitude used to obtain the
bounds; section 4 (backed by appendix B) introduces the mathematical framework used to
manage them; section 5 (backed by appendix C) presents the method of [13, 14] and the
improvements made to it; and section 6 displays the most interesting bounds we obtain,
with final remarks given in section 7.

2 Chiral perturbation theory

n-flavour xPT is based around a non-linear sigma model (NLSM), whose degrees of
freedom are the n? — 1 Nambu-Goldstone bosons that arise when the chiral symmetry
G = SU(n)r, x SU(n) g of n-flavour massless QCD is spontaneously broken into its diagonal
subgroup H = SU(n)y. The Goldstone bosons live in the coset space G/H, which is
isomorphic to SU(n).

The presence of quark masses, electroweak interactions, etc. can be accounted for by
including four external n x n flavour-space matrix fields — s (scalar), p (pseudoscalar), v,
(vector) and a,, (axial vector)! — into the massless QCD Lagrangian. These additions were
introduced in [1, 2], and endow the Nambu-Goldstone bosons with masses and interactions
that allow them to accurately model the light pseudoscalar mesons, turning the SU(n)
NLSM into xPT proper.

The Nambu-Goldstone boson fields can be organised into a n x n flavour-space matrix
field u(¢) [24, 25]. Under the chiral transformation (g1, gr) € G, u(¢) transforms as

u(¢) — gru($) h[gr, gr, ()] = hlgr, gr, u(9)] u(¢) g}, (2.1)

where h € H is defined by this transformation. By requiring that G can be made local
while leaving the extended QCD Lagrangian invariant, it can be shown that

X = 2B(s +ip) — grx9),

ly=v, —ay — gLﬁugz — z‘a“ng}, (2.2)
Ty = v, +ay — gRr#g;r% — i@ugRg;r%,
where B is a constant related to the leading-order (LO) meson decay constant and the (gq)
condensate.
It is possible to rewrite u(¢), x,{,,r, in a basis of fields that transform entirely in
terms of g7, and gg, as is done in [2] to derive the NLO yPT Lagrangian. We instead choose
to follow [26-28] and rewrite them in a basis of fields that all transform as X — hXhl:

uy =1 [u*(@u —iry)u —u(0, — iﬁu)uq ,

X+ = uTqu + uXTu, (2.3)

= uFfl/uJf + uTFg'/u,

1One can add more types of externals fields to xPT. Examples are symmetric or antisymmetric
tensors [22, 23]. These extensions are not relevant for this work.



where F""' = 9F” — 9¥0* — i[¢* ("] and similarly for F;” and r#. These transformation

properties are conserved under the covariant derivative V,, defined as

VX =0, X + [0, X], D=5 [ul (0 — ir)u + u(@, — it,)u]. (2.4)

N | =

2.1 The xPT Lagrangian

There exists an infinite number of possible Lagrangian terms consistent with the symmetries
of xPT. They can be organised into a power-counting hierarchy in the small energy-
momentum scale p, where u,, V,, = O(p) and x4, f£ = O(p?). Thus,

LXPT:£2+L4+£6+-~7 (2.5)

where La, is O(p*"); odd powers are forbidden by parity. The coefficient of each term in
Loy, is a separate LEC.?
The LO Lagrangian is

F2
Lo = - {uu + x4, (26)
where F' is a LEC related to the LO meson decay constant, and (...) indicates a trace over
flavour-space indices. The LEC of the x4 term is BTFz as defined in eq. (2.2). By requiring
that the kinetic term is canonically normalised, one can fix u(¢) =1+ fj; + ..., where

t* are the generators of SU(n) and Einstein’s summation convention is used. The higher-
order terms depend on the choice of parametrisation, which influences the computation of
amplitudes but not the amplitudes themselves.

The next-to-leading-order (NLO) Lagrangian, which was first determined in [2], is in
terms of our basis?

Ly= Lolupuuru®) + Ly(u,u!)? + Lo(uyu,) (ubfu”) + f/3<(uuu“)2>
+ La(uu) (x4 ) + Ls(uuutxs) + Le(x4)® + Le(x-)* + IA/8<X3 + X%> (2.7)
— o f upun) + Lao{ 2 £, = 1 Fa),

where the LECs are L;. The analogous NNLO Lagrangian with 112 LECs K; was determined
in [27]. The 1862-LEC NNNLO Lagrangian, which we do not use here, was determined in [28].

For small n, the Cayley-Hamilton identity reduces the number of independent terms,
and consequently the number of LECs. At n = 3, it is standard to eliminate Lo; the
remaining LECs are conventionally labelled L; with i preserved. At n = 2, it is customary
to also redefine the LECs slightly, resulting in the [; of the original Gasser-Leutwyler
convention [1]. At NNLO, the 11243 K (ordinary+contact terms) are reduced to 90+4 C;
at n = 3 and 52+4 ¢; at n = 2 as detailed in [27]. For more details on the Lagrangians for
different n, see [6, 29].

2Some “terms”, like the one associated with Lo in eq. (2.7) below, actually consist of several terms.
These transform into each other under the discrete symmetries of the Lagrangian, and must therefore appear
with the same LEC.

3There are two additional contact terms proportional to <xi — X2—> and <ff’f;§, + fﬁ”’f;l,>. They are
needed for renormalisation but make no physical contributions to the amplitudes considered here.



The NLO renormalisation was first carried out in [1, 2], and the extension to NNLO
in [29]; for more information on YPT renormalisation, see [30]. A slightly altered MS scheme
is conventionally used, with renormalisation scale p = 0.77 GeV. The renormalised LECs

are denoted X where X =/, L, fj, etc. At n = 2 flavours it is conventional to use ¢; instead,
VA Vi

related to ¢; through
— , Mpnys

where My is the chosen meson mass and 7; are coefficients found in [1]. Effectively,

eq. (2.8) sets the renormalisation scale to Mppys for l;.

3 Scattering amplitudes

In this section, and in the remainder of the paper, we will restrict ourselves to a simplified
version of yPT. Firstly, we will not include the external (axial) vector fields a,,v, in the
Lagrangian, which essentially amounts to ignoring electroweak corrections to the amplitude.
Secondly, we will assume that all mesons have the same mass Mpys, as mentioned in the
introduction. While this limits the phenomenological applicability of three-flavour yPT,
it is a reasonable approximation that simplifies the procedure for obtaining bounds (see
section 5). More importantly, the full NNLO amplitude is currently not available in the
general-mass case; available results only cover 77 scattering in two- [30, 31] and three-
flavour [32] xPT, as well as 7K scattering [33], and are not expressed in terms of elementary
functions. With equal masses, we normalise all Mandelstam variables so that s +t 4+ u = 4.

For the general equal-mass n-flavour scattering process a + b — ¢ + d, there are nine
independent flavour structures possible: the six distinct index permutations on <tatbt0td>

and the three on <t“tb><t‘3td>. Due to charge conjugation symmetry, a permutation is not
independent of its reverse. Thus, the scattering amplitude M may be decomposed as

M(s,t,u) = [(teeeeh) 4 (ee42 ) B(s, ¢, )
+ [<t“tctdtb> n <t”tdt0t“>}B(t, u, 5)
+ [<t“tdtbtc> i <t0tbtdt“>}B(u, 5,t)
+ 0960 (s, t, u) + 396 C(t, u, 5) + §9%6°°C(u, 5, 1),

where s,t,u are the normalised Mandelstam variables, and crossing symmetry imposes

(3.1)

that only two distinct functions B, C are used.? This is the form used in [34], where the
functions B, C are given to NNLO for SU(n) equal-mass xPT. The NLO results were first
obtained in [1, 35].

3.1 Other forms of the amplitude

With two flavours, the traces can be evaluated in terms of Kronecker §’s, giving®

M (s, t,u) = 6954 A(s, t,u) + 626 A(t, u, s) 4+ 6°%6% A(u, 5, 1), (3.2)

4These functions have the symmetries B(s,t,u) = B(u,t, s) and C(s,t,u) = C(s,u,t), which is consistent
with the symmetries of the respective flavour structures. Likewise, A(s,t,u) = A(s,u,t) holds in eq. (3.2).
5This form can be traced back to the original current-algebra calculation [36] of the w7 amplitude.



which is the form used in [13] (up to reordering the arguments as permitted by the symmetries
of A). In terms of the functions above,

A(s,t,u) = C(s,t,u) + B(s,t,u) + B(t,u,s) — B(u,s,t), (3.3)

the function A was first determined to NLO in [1].

With n flavours, the traces can be evaluated using the anticommutation relation
{t“, tb} — 259 4 gabere to give

M(s,t,u) = d®d°®B'(s,t,u) + d*d*¥®B'(t,u, s) + d**d"*B' (u, s, t) (3.4)

+ 09054 (s, 1, u) 4 69°6°4C (£, u, ) + §9%6°°C (u, 5, 1), '

where
B'(s,t,u) = 3[B(s,t,u) + B(t,u,s) — B(u, s,t)],

C'(s,t,u) = C(s,t,u) + %B’(s,t, u).

With three flavours, the Cayley-Hamilton theorem” allows for the removal of one term at

(3.5)

the expense of symmetry, leaving

M(s,t,u) =  0P6LA(s,t,u) + 690 Ay (s, t,u) + 6996% A(s, t, u)

+ dde By (s,t,u) + d*°d"¥ By (s, t, u) (3.6)
where
B (s,t,u) = B(t,u,s) — B(u,s,t), Bs(s,t,u) = B(t,u,s) — B(s,t,u),
Ai(s,t,u) = C(s,t,u) + B(s,t,u) + %Bl(s,t,u), 3.7)
As(s,t,u) = C(t,u,s) + B(u, s, t) + %Bg(s,t,u), .
As(s,t,u) = C(u,s,t) + B(s,t,u) + B(u,s,t) — B(t,u, s).

This is the form used in [14].

3.2 Structure of the amplitude

The functions B(s,t,u) and C(s,t,u) consist of one part that is polynomial in the Man-
delstam variables and contains the LECs, plus the so-called unitarity correction that is
non-polynomial in the Mandelstam variables.® The polynomial parts are quadratic at NLO
and cubic at NNLO. At NLO, the unitarity correction does not contain any LECs; at
NNLO, the unitarity correction depends on the NLO LECs.

5The relevant identity is
<tatbtctd> + <tatdt('tb> — % (dabedcde + dadedcbe _ dacedbde) + % (5ab5cd + 5ad60b _ 6ac6bd) )

It is most easily derived by first using t%t® = %5“17 + %(d“bC + if‘lbc)tC repeatedly, and then removing all
occurrences of f with the Jacobi-like identity

fabefcde _ dacedbde _ dbcedade 4 (§a05bd _ 5ad6bc)

which is derived from the observation that Ht“ tb] °] {{tb tc} t“} {{t° t*}, tb}
"More specifically the n = 3 Cayley-Hamilton theorem, recast as the SU(3)-specific identity

3 (dabedcde + dbcedade + dcaedbde) —92 (6ab6cd + 6bc5ad + 6ca6bd) )

8This split is not uniquely defined, but we adhere to the conventions of [34].



The unitarity correction at NLO depends on the function .J, which originates in the
loop integral as shown in [1]. The NNLO unitarity correction introduces four analogous
functions k;,i = 1,...4 [31, 32, 34, 37]. More details about these functions can be found in
appendix C.

The LEC content of the amplitude considered here is more limited than that of the
full xPT Lagrangian. About half of the Lagrangian terms are dropped by not including
the external (axial) vector fields, and a significant part of the NNLO Lagrangian cannot
appear in a 4-particle process below NNNLO. Also, the number of LECs is reduced by the
Cayley-Hamilton theorem in the 2- and 3-flavour case as described in section 2.1. Lastly,
L7, K19, Kou, K39, K34, K36, K41 and Kys, i.e. those whose Lagrangian terms contain (x_),
disappear in the equal-mass limit.” Even with these reductions, there are still 35 (27 at
n =3, 18 at n = 2) NNLO LECs that are involved in the amplitude at hand, in addition to
8 (7, 4) NLO LECs.

3.3 Irreducible amplitudes

The scattered particles are in the adjoint representation of SU(n). The Clebsch-Gordan
decomposition of the initial and final states is therefore!”

Adj ® Adj = R; + Rs + Ra + R4 + RS, + R3 + R4, (3.8)

where R; is the singlet representation, and the sub(super)scripts on the other representations
indicate lower (upper) index pairs that are symmetric (S) or antisymmetric (A). Details on
the representations and their dimensions can be found in [34, 38]. From this, it follows that
the scattering amplitude can be decomposed in terms of seven corresponding irreducible
amplitudes T;. In terms of eq. (3.1), these are

n°—1

Ry: Tr =2

[B(s,t,u) + B(t,u,s)] — %B(u, s,t)
+ (n? = 1)C(s,t,u) + C(t,u,s) + C(u, s, 1),

Rg: Ts = n2n_ 1 [B(s,t,u) + B(t,u,s)] — %B(u,s,t)
+ C(t,u,s) + C(u,s,t), (3.9)
Ry : Ta =n[B(t,u,s) — B(s,t,u)] + C(t,u,s) — C(u,s,t),
R4, RS : Tas =Tsa = C(t,u,s) — C(u,s,t),
Rg : Tss = 2B(u,s,t) + C(t,u,s) + C(u,s,t),
Rﬁ: Taa = —2B(u,s,t) + C(t,u,s) + C(u, s,t).

9This can be understood by noting that x_ has odd parity, so all terms in its expansion contain an
odd number of pseudoscalar fields. If the even-parity Lagrangian term contains two traces of odd-parity
objects, it can therefore only result in six-point vertices or larger, since the trace of a single field vanishes.
Therefore, K2, K24 etc. do not appear in the NNLO four-point amplitude, whereas L. only appears in
s, t, u-independent tadpole diagrams. As will be shown in section 5, we only consider s-derivatives of the
amplitude, so also L, disappears for our purposes.

10[35] contains an intuitive description of how the decomposition is performed.



Only six amplitudes are needed, since Ts4 and T4g are identical due to crossing symmetry
etc., as mentioned in [14].

In SU(3), the R¥ representation vanishes, so only five amplitudes are needed. In [14],
the representations are labelled by their dimensions, which are 1,8, 8,10 and 27 in the order
they appear in egs. (3.8) and (3.9).

In SU(2), only Ry, R4 and Rg remain and have dimension 1,3 and 5, respectively. The
corresponding amplitudes can be identified with the isospin components 7° 71 and T2,
respectively. In terms of eq. (3.2), they are

T° = 3A(s, t,u) + A(t,u, s) + A(u, s,1),
T = A(t,u,s) — A(u, s, 1), (3.10)
T? = A(t,u,s) + A(u, s, t).

This well-known relation can be derived from egs. (3.3) and (3.9).

3.4 Eigenstate amplitudes

A general amplitude can be expressed as a;T”, where the index J runs over the repres-
entations in the order they appear in eq. (3.8). For a physically applicable scattering
process, however, the initial and final states should typically be taken as a product of
mass eigenstates such as m, K and 7. This corresponds to fixing a; to a small selection of
values so that T'(ab — cd) = ay(ab — c¢d)T”. Here, as in [13, 14], we consider only elastic
scattering of eigenstates, with aj(ab — ab) = aj(ab).

With two flavours, where J runs over I, A, SS (alternatively, isospin 0,1,2), the

eigenstates are!!

a7 =(302),  arH)=(011), e =(001), (311

and with three flavours, where J runs over I, S, A, AS, SS, they are!?

N[ —=
N[ —

a7 = (L 100 E),  ayrtrt KEKE KK = (00001),

armn )= (0034 1), (K KOk = (0004 1) G2

as(Kor) = (05 3 5 4). wKn) = (045 & &%)
as(mn) = (05073 3). as(Kn) = (0% 1§ %)

see e.g. [13, 14], respectively.'> With four or more flavours, xPT loses its applicability as
low-energy QCD since there are only three light quarks in the Standard Model. Therefore,
there is little sense in considering eigenstates for n flavours, although we can note that

T(rFn* — 7t71%) = Tsg regardless of n.

+ +

(nt7nt) = as(nn7) = as(rTrT). Note,

g is invariant under particle/antiparticle exchange, so a.;
however, that a;(7t7T) # as(nfnT) — they are instead related by crossing; see eq. (3.14).

2Here, 7 without superscript stands for any of 7% or 7° (and similarly for K) whenever a; is agnostic
about the particular choice. We use aj(ab,cd,...) for as(ab) = aj(cd) =

13Bq. (3.12) differs from the values given in [14]: there was an error or misprint in a;(7°7%), and all

eigenstates were not included, with a;(K*7¥) given as a;(Kn).



One of our extensions over previous work is that we use all possible values for the ay,
rather than restricting them to eigenstates (see section 5 for what constitutes “possible”).
This can be done without complications, since the mass eigenstates are completely degenerate
in the equal-mass limit. However, it is still useful to view those states that remain mass
eigenstates in the unequal-mass case as special. Below, by “eigenstate” we will specifically
mean scattering between these states. Note that by treating general aj, we effectively
include inelastic scattering such as aj(7°7% — 7t77) = (% 0 —%) However, it turns out
that inelastic scattering is useless for our purposes by invariably failing to satisfy eq. (5.6b).
This (in addition to [13, 14]) is why this section has focused mainly on elastic scattering.

3.5 Crossing symmetry

Since all amplitudes can be expressed as a;T”, crossing symmetry implies that channel
crossing must take the form of a linear transformation of a;. For s <> u crossing, the
transformation T/ (u,t,s) = CI/TY(s,t,u) is given by [21, 38]

1 1 -1 4—n?2 n2(n+3) n2(n—3)
n2—1 2 4(n+1) 4(n—1)
1 n2—12 1 9 n?(n+3) n?(3—n)
n2—1 2(n2—-4) 2 4(n+1)(n+2) 4(n—1)(n—2)
1 1 . 1 1 0 n(n+3) n(3—n)
— | 1-n 2 2 4(n+1 4(n—1
Cu - 1 2 0 1 n%n+3§ n((n—3% (313)
1-n? n2-1 2 4(n+1)(n+2) 4(n—1)(n—2)
1 1 1 n=2 _n°4nt2 n—3
n?2—1  24n n 2n  4(n+1)(n+2) 4(n—1)
1 1 1 nt2 n+3 n?—n+2
n?2—1 2-n n  2n 4(n+1) 4(n—1)(n—2)

which also works at n = 2,3 by removing appropriate rows and columns:

1 5 27
5 %
cy’ _! —22 _36 150 cy’ ST (1) i (3.14)
“lsu@) 6 v [su(3) 8 ~ 2 2 10 .
9 3 1 1 2 0 1 9
FER
§ 5 3 6 40

These versions can be found in [13, 14] respectively.

4 Linear constraints

In this section, we will introduce a mathematical language of linear constraints. This
formalism is introduced before positivity bounds (see section 5) so that they can be
established in full generality. In order to make the handling of the bounds as general
and powerful as possible, we dedicate this section to developing some useful mathematical
definitions and results.'*

141n this section employ mathematical notation that, depending on the background of the reader, may not
be entirely familiar. We also define new notation for our own purposes. A glossary covering all potentially
unfamiliar notation is provided in appendix B.7.



4.1 Definition and combination of constraints

For a set of parameters b; (e.g. the LECs), a linear constraint takes the general form
a1by + asbs + ...+ apb, —c >0, (4.1)

where ¢, o; are known coefficients. By treating oy, b; as components of vectors, this is
equivalent to
a-b>c. (4.2)

We say that b lives in the parameter space, whereas o lives in the constraint space.'® Since
a and c can be rescaled by any positive scalar without changing the inequality, any linear
constraint can be described by the pair (e, c) with ¢ € {1,0,—1}.

We say that a point b satisfies a constraint (o, c) if a-b > c¢. We denote by B ({a, c))
the subset of parameter space that satisfies (e, ¢). For any «, it is clear that the origin
b = 0 is contained in B ({a, —1)) but not in B ((«x, 1)), and lies on the boundary of B ({«x, 0))
(except when a = 0).

The LECs will typically be subject to many linear constraints simultaneously. We
will normally use the letter 2 to denote a constraint, either a single one like (a,c) or
a combination of several such constraints. Given two constraints €2,’, we write the
constraint that imposes both of them simultaneously as Q + Q'. A point b satisfies Q + Q'
if and only if it satisfies both Q and '; thus, the B notation naturally generalises through
B(Q+ Q') = B(Q) N B(Q). For combinations of many constraints, we will generalise + into

e.g. Q= Zz (ai, Ci>.
4.2 Stronger and weaker constraints

A hierarchy can be established among the constraints based on how strong (restrictive)
they are. For instance, by > 1 is stronger than b; > 0. We will write the stronger-than
relation as Q > €', which holds if all points that satisfy  also satisfy €. Thus, Q > Q' is
equivalent to B(2) C B(€'). Naturally, we say Q = Q" if B(Q2) = B({'), and say Q > &/
if Q> Q' but Q # Q. Just like subset relations, our stronger-than relation is not a total
ordering, as there exist many pairs of constraints 2, Q" where neither is stronger than the
other. From our definitions, it trivially follows that

Q+9Q)>Q, Q+9Q) >,

(4.3)
Q+) =0 & Q>

so that if Q 2 Q' and Q' % Q, their combination  + Q' is indeed a new, strictly stronger

constraint. Furthermore, we see that, for all A > 0, k > 1, and ¢ # 0,

(A, 1) > (A, 0) > (A, —1), (4.4)
(ko 1) < (a, 1), (A, 0) = (a, 0), (ko,—1) > (o, —1). (4.5)

15We consistently use Roman letters for vectors in parameter space and Greek letters for vectors in
constraint space. In general, parameter space may be any finite-dimensional real vector space, with
constraint space considered as its dual.



From the ¢ = 0 version of eq. (4.5), we see that (a,0) is not a unique representation of
the constraint, since we can freely rescale a without changing it. We may remove this
ambiguity by constraining o to be a unit vector.

There exists a constraint 0, equivalent to (0,1) or e.g. (o, 1) + (—a, 1), that is not
satisfied by any point. It follows that Q. > Q and Qs + Q2 = Q4 for any Q. A constraint
that is satisfied by all points, i.e. (0, —1) or (0,0), will be called a trivial constraint.

4.3 Determining the relationship between constraints

We will now present a general result, which determines if a given linear constraint (3, c) is
weaker than an arbitrarily complicated constraint €. This will serve as the basis for all our
uses of linear constraints.'® For complete proofs, more details, and practical applications,
see appendix B.

Consider a set of linear constraints (o, ¢) for i in some finite set I C N.!7 Note that ¢
is the same for all constraints. Then let w. = 3",/ (v, ¢);'® an example of such a constraint
is given in figure 1. Then define A(w,) as the set of all points that can be expressed as

Z A, A >0, Z A € Ac, (4.6)
i€l el
where
A1 = [1, OO), A() = [0, OO), A_1 = [0, 1]. (47)

The shape of A(w,) is illustrated in figure 2. With these definitions, the following holds:

Proposition 4.1 (determining if constraint is weaker, special case). Let (B, c) be a single
linear constraint, and let w. # Qo be defined as above. Then (B,c) < w. if and only if

B € A(we).

This is proven in appendix B.1. If w, is a single linear constraint, this result reduces down
to eq. (4.5). The condition w. # 2 is necessary, since there exist corner cases where
we = Qs but A(w,) fails to cover the entire constraint space.'® However, if A(w.) does
cover the entire space, then it is certain that w. = Q.

In figure 2, we may note that A(w,) is closely related to the convexr hull of the a;. In
essence, A(w.) is obtained by forming the hull, and then also including all points that give
weaker constraints under eq. (4.5). We may also note that the convex hull can be defined as

Hull ({ai}ig) = {Z )\iai )\z‘ Z 0, Z )\i = 1} s (4.8)

il i€l

which is very similar to eq. (4.6).

16Pproposition 4.1, along with a version of the notation we use here, was defined in [21], although the proof
was completely different. An incorrect version of proposition 4.2 was also presented without proof. To the
best of our knowledge, these results are novel, although the relevant literature is vast and lies outside our
area of expertise. The closest we have found is [39], although their algorithm requires knowing a point that
satisfies €2, relies on more complicated mathematical machinery, and does not include all the extensions
presented further below in section 4.4 and appendix B.

171t is crucial that only finite combinations of constraints are considered, and it will normally be tacitly
assumed that all sets like I are finite. A limited extension to infinite sets is covered in appendix B.6.

18We use lowercase w here to emphasise that it is not a general constraint. A similar treatment of general
Q is given below.

19A trivial example of this is w1 = (0, 1), where A(w1) = {0}.
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b2 b2

Figure 1. A cropped depiction of twelve random two-dimensional constraints (ay,c¢) for ¢ = +1
(left, ), ¢ = 0 (middle, blue) and ¢ = —1 (right, red) illustrated as the parameter-space
lines a; - b = ¢. The side of the line that is excluded by the constraint is hatched. The region
B(w,) for w. = >, (e, ¢), i.e. the set of points that satisfy all the constraints, is shaded. The lines
corresponding to relevant constraints (i.e. those that actually delimit B(w.); this is more closely
defined in section 4.4) are drawn more strongly than the rest.

%)

aq

Figure 2. Examples of the regions A(wy) (left, ), A(wp) (middle, blue) and A(w_1) (right,
red) in constraint space, using the same «; as in figure 1. The «y; are represented as points (2, o, v,
respectively) in the space, and the relevant ones are filled (again, relevancy is defined in section 4.4).
The convex hulls (as defined in eq. (4.8)) of the a; are outlined. For comparison to figure 1, it
is helpful to remember that a; are normal vectors to the lines shown there, and that larger |oy|
correspond to lines passing closer to the origin. Note how, given identical «;, A(wp) is the union of
A(wy) and A(w_1) (this is easy to see from eq. (4.7)) whereas the set of relevant constraints is the

intersection of the respective sets.

Now, let us handle the general case. The most general combination of a finite number

of linear constraints can be expressed as

Q=> (an 1)+ > (@00 + Y (a;,—1), (4.9)

1€lq i€lp i€l _q

where I, are some disjoint, finite, and possibly empty sets. We may compactly write this as
Q=>cr(oy,c) where [ =11 UlyUI_; and ¢; =cifi € I..

Similarly to A(w.), let A.(£2) be the set of all points that can be expressed as (recall
that ¢ € {1,0,—1})

el _q i€l el

- 11 -



with \; constrained by the condition

- D ANz (4.11)

el el _q

An illustration of A.(€2) can be found in appendix B.4.5. With these definitions, the
following holds:

Proposition 4.2 (determining if constraint is weaker, general case). Let (8,c) be a linear
constraint, and let Q) # Qoo be defined as above. Then (B,c) < Q if and only if B € A:(Q).

This is proven in appendix B.1.4. If only one of the I. is nonempty, this reduces down to
proposition 4.1.

While it is not as useful for the purposes of proposition 4.2, one may note that egs. (4.10)
and (4.11) can be more succinctly stated as

AC(Q) = {Z )\iai

el

Ai >0, Aieg > c} . (4.12)

el

This definition of A4.(€2) works also if ¢, ¢; are not constrained to {—1,0,1}.

4.4 Representations and degeneracy

Checking if b satisfies 2 becomes computationally expensive if {2 is the combination of many
different linear constraints. However, €2 is usually not uniquely determined by how it is
expressed as a sum of linear constraints, and it is possible to vastly reduce that redundancy.
To that end, we define a representation of a constraint 2 as any finite set S of linear
constraints with the property?°

Q= > (a,0). (4.13)

(a,c)€S

If it is implicit which representation is used for €2, we may call the («, c) € S the elements
of €.

It is clear that there exist minimal representations, i.e. representations with the smallest
number of elements. As we will see below, there is often a unique minimal representation,
which we will label R(€2). However, there is an important exception to this: when B(f2) is
contained in a hyperplane. This happens when there are some 9§, d such that § - b = d for
all b € B(2), or equivalently (8,d) + (=9, —d) < Q. We will call Q degenerate if so is the
case, and non-degenerate otherwise.?!’ With this in mind, we can state the following result:

20Clearly, all Q also admit representation as a sum of an infinite number of constraints. However, we will
not consider such representations, and proposition 4.3 below generally only holds if €2 can be expressed as a
finite sum. See appendix B.6 for a discussion about infinite sums of constraints.

21 As defined here, Qo would be considered a special case of a degenerate constraint. In the closer study
of degenerate constraints given in appendix B.2.1, it turns out to be more useful to consider 2., seperately,
viewing it as neither degenerate nor non-degenerate.

- 12 —



Proposition 4.3 (finding relevant constraints, non-degenerate case). If Q is a non-
degenerate constraint, there exists a minimal representation R(S2) that is unique up to
the normalisation of its elements. Furthermore, for any representation S of €1, the relation
R(Q2) C S is true up to normalisation.

The elements of R(S2) are exactly those (o, c) < Q for which there is some b € B(Q2)
such that a-b=c and B-b > d for all (B,d) < Q with (B,d) # (c,c).

This is proven in appendix B.3. Due to this uniqueness, and the fact that R(£2) is a subset of
any representation, we will call the elements of R(2) the relevant elements of €2, and call all
other elements of any representation irrelevant, since they can be discarded without altering
Q. A more practical way of finding R(£2), based on proposition 4.2, is given in appendix B.4.4.

When (2 is degenerate, there is typically no unique minimal representation, although
there is still a straightforward way to find some minimal representation, which we will also
label R(£2). This generalisation of proposition 4.3 is discussed in appendix B.2.1, along
with a more general method of replacing any degenerate constraint with a non-degenerate
analogue in a lower-dimensional space. Note, however, that degenerate constraints are only
a corner case with little practical relevance: a small perturbation, e.g. by numerical error,
to the elements of a degenerate constraint will either render it non-degenerate, or render it
equal to Q.

5 Positivity bounds

Equipped with the notion of linear constraints, we are ready to move on to the main topic
of this paper: positivity bounds. (For a more detailed version of this derivation, see [13];
various generalisations can be found in e.g. [19, 20].) We start by writing down the fixed-¢
dispersion relation for the amplitude a;T":
J

ay T (s,1) = ;mﬁdzajf_(?t). (5.1)
The amplitude has two branch cuts along the real axis: a right-hand cut starting at z =4
corresponding to the s-channel, and a left-hand cut starting at z = —t corresponding to the
u-channel. The discontinuity across these cuts is T'(z + i) — T'(z —ie) = 2iIm T'(z + i¢).
For real s in the span —t < s < 4, we deform the contour v as shown in figure 3. We can
then reexpress the integral in terms of the discontinuities, which may require derivatives
(subtractions) to make the contour at infinity vanish. Using the crossing relation derived in
section 3.5 to rewrite the u-channel cut in terms of s, the result is

& gy = B[ a DR
aJ@T (s,t) = ;A dz [(z—s)k“ + (= u)Ftl Im T (2 + ie, t). (5.2)

The Froissart bound [40] shows that the integral converges whenever k > 2, since
T (2 +ie,t) = O(sIn?5).22 We will discuss specific values for k in section 5.2; here, we
keep it general.

22Note that T7(z + e, t) on the right-hand side of eq. (5.2) is the exact, non-perturbative amplitude —
see e.g. [13]. Indeed, the perturbative xPT amplitude at any fixed order grows polynomially with s, so it
violates the Froissart bound. We can insert the fixed-order perturbative amplitude at the left-hand side
thanks to the smallness of s (and t), which guarantees good agreement with the exact one.
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Figure 3. The contour integral in the z-plane around z = s used in the dispersion relation.

Above threshold, the partial-wave expansion of the amplitude takes the form?3
R 2t
T (s,t) =Y (20 +1)f/ (s)P, (1 ) 5.3
(s,t) Z(:)( +Dfi(s)P |1+ —, ), (5.3)

where fé] are partial wave amplitudes, P, are Legendre polynomials, and the expression in
parentheses is the cosine of the scattering angle. The optical theorem then gives

Im fg](s) = 55(5)02’(5), B(s) =4/1— g, (5.4)

which is positive above threshold since the partial-wave cross-sections O'Z] are always positive.
Therefore,
Rl 2t
ImT7(s,t) = > (20 + 1)sB(s)of Py (1 + ) (5.5)
= s—4
is positive above threshold as long as P is. Since Py(z) > 0 when z > 1, eq. (5.2) therefore
imposes the constraint that, for any ¢ € [0,4], s € [—t,4] and any representation index J,

dk J
CLJ@T (S,t) Z 0 (56&)
k+1

zZ— S8

if ar {(51J |:Z —d

+ (—1)kcgJ} >0 forall z>4. (5.6b)

The region in the s,t plane where this holds is shown in figure 4. Note that u € [—4,4], so
the expression in square brackets above is always positive.

Up to and including NNLO, the second derivative of T is linear in all LECs, so we
obtain from eq. (5.6a) an expression of the form

S L] +> BiK +v >0, (5.7)
i J

where the coefficients «y, 5;,7 are functions of s,t and aj, but not of the LECs. This
constitutes a linear constraint, and each valid choice of s, and aj potentially yields a
different constraint. The result of combining these constraints will be that only a limited
region in parameter space (B(£2) in the notation of section 4) satisfies the positivity bounds.
With some luck, the boundary of this region is close enough to the experimentally measured
value to improve on its uncertainty (carefully considering also the uncertainty of the bounds).

ZThere is a limited domain of validity for this expansion, but it does not affect the range of s, used by
us. Again, see [13] for details.

— 14 —



Vi
7
7|
7
7
7
7|
7
7|
7
7|
7|
7
7|
7
7|
7
7|
7
7|
7
7|

00
7777777

Figure 4. The plane of normalised Mandelstam variables. The red triangle is the region where the
amplitude is real and free from singularities or branch cuts. The positivity conditions eq. (5.6) are
valid inside the outlined part. The hatched regions with s,¢ or u positive are the physical regions
for the respective channels.

5.1 Conditions on ay

If we demand that eq. (5.6b) holds in the entire allowed s,t region, we see that the factor
in square brackets can be made arbitrarily large or small by varying s, u, z. Therefore, we
obtain the independent conditions a; > 0 and (—1)ka1C'£J > 0. However, we may apply
the dispersion relation independently to each fixed s,¢. Then, eq. (5.6b) can be made less
restrictive, and a wider range of constraints on the LECs can be generated. This also
includes permitting odd k for some s, t.

While we may fix s and ¢ (which in turn fixes u), we must still allow z to cover its
entire range. Therefore, finding all valid a; for given s,t presents some practical issues.
We solve this by using the technology of section 4, since eq. (5.6b) is a set of linear
constraints on the vector aj; we may write it compactly as a - B‘](z) > 0. Noting that

zZ—S8
write 87 (2) = uB” (4) + (1 — p)B” (c00) for p € [0,1]. By propositions 4.1 and 4.3 (see also
proposition B.3), it follows that only ,6‘](4) and 8”7 (00) are relevant constraints on a. Thus,

+1
(ﬂ> is monotonic as a function of z € [4,00), we see that it is always possible to

it is sufficient to evaluate eq. (5.6b) at z = 4 and z = oo, rather than letting z cover its
entire range.

Another practical problem is that the set of allowed a; is typically unbounded. However,
eq. (5.6a) is independent of the magnitude of ay. The obvious solution is to fix the
normalisation of the vector a, but this is problematic since a linear constraint on a is
not necessarily a linear constraint on ﬁa. Instead, we may simply rescale a so that
> jay = 1. This does not cover all possible a (for that, we must also look at Y ;a; =0
and Y ;ay = —1), but it turns out that eq. (5.6b) is only satisfied by a for which this works.

Using this, constraints on aj are shown in figure 5.
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Figure 5. Illustration of which ay, a4, ags, normalised so that a; + a4 + ags = 1, are permitted
by eq. (5.6b) for n =2, k = 2 at t = 4 and various fixed s. The shaded band is the region permitted
by the z = 0o bounds (see the discussion in section 5.1). It is independent of s and extends to
infinity. The hatched triangles are the regions permitted by the z = 4 bounds for various s as
indicated. Thus, the a; permitted at fixed s,t is the overlap between the triangle and the band.
The orange rectangle is the region permitted at all s,¢. The blue points represent the eigenstates,
including a;(7¥7F) = Cl/a;(7*7%) in addition to those given in eq. (3.11). Not shown is the
inelastic scattering a;(7°7% — 77 =) = (3 0 —31), which never satisfies eq. (5.6b). For n > 2, the
permitted region has an analogous shape, albeit in 4 (n = 3) and 5 (n > 4) dimensions, respectively.

Like for n = 2, the eigenstate scattering amplitudes are mainly located in the corners of the
always-permitted region.

5.2 The number of derivatives

As mentioned before, eq. (5.6) requires k > 2 to be valid, and k = 2 is sufficient; indeed, [41]
claims that this value produces the best bounds. However, nothing prevents us from taking
more derivatives, and with our generalised methods, we do find new relevant bounds from
larger k; see e.g. figures 6 and 12 below. Also [19] makes use of higher derivatives.

At NLO, the LECs only enter through the second-order polynomial part of the amplitude,
so the third and higher derivatives are parameter-independent and do not generate any
bounds. This is not the case at NNLO, where the polynomial part is third-order, and where
the non-polynomial unitarity correction contains NLO LECs. Therefore, kK = 3 should yield
another set of bounds on the NNLO LECs, and & > 4 should add bounds on the NLO LECs
not obtainable from the NLO-only amplitude.

It also turns out that odd k cannot be used at any order in the 2-flavour case. To see
this, look explicitly at eq. (5.6b) at z = oo:

§'7—cll =1l where ¢ = (2 1 —1) ,Co = (2 3 —5) (5.8)
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