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1 Introduction

Chiral perturbation theory (χPT) is the most widespread theory for low-energy quantum

chromodynamics (QCD). It is an effective field theory (EFT) which reformulates the

non-perturbative behaviour of low-energy QCD as a perturbative theory of new degrees

of freedom, physically interpreted as bound states of quarks. When constructed using n

light quark flavours, the degrees of freedom are the n2 − 1 light pseudoscalar mesons: the

pions for n = 2, with the kaons and eta added for n = 3. χPT was developed by Gasser &

Leutwyler [1, 2] based on earlier work by Weinberg [3]; see [4, 5] for modern introductions

with further references.

At leading order in the low-energy expansion, the only parameters of χPT are the

meson mass and decay constant, but higher orders introduce a rapidly increasing number

of Wilson coefficients or low-energy constants (LECs) which, while in principle derivable

from the underlying QCD dynamics, must in practice be seen as unknowns. At next-to-

leading order (NLO), the LECs can be measured reasonably well with experimental or

lattice methods, although the precision is typically only one or two significant digits. At

next-to-next-to-leading order (NNLO), only tentative results are presently available. For a

review of LEC measurements, see [6].

All quantum field theories must obey the axioms of unitarity, analyticity and crossing

symmetry, and normally do so by construction. However, it turns out that these axioms are

not automatically satisfied by EFTs such as χPT when perturbativity is assumed at a fixed

order in the expansion. Therefore, imposing the axioms actually adds new information,

typically by placing bounds on the scattering amplitudes. Pioneering work was done

by Martin [7] before the development of χPT as such. Bounds on NLO two-flavour χPT

amplitudes, which in turn translate to bounds on the LECs, were first obtained in [8–10] and

extended in [11, 12]. Further improvements were made in [13] and extended to three-flavour

χPT in [14]. There is ongoing research in extending these methods, both specific to χPT

and with broader scope; recent examples include [15–18].

The method of [13, 14], which serves as the basis of our method, is to apply dispersion

relations (a consequence of analyticity) to a meson-meson scattering amplitude decomposed

into isospin components (for higher flavours, the Clebsch-Gordan decomposition is used).

Then, crossing symmetry and the optical theorem (a consequence of unitarity) are applied

to give a positivity condition on the decomposed amplitude. With the amplitude calculated

in terms of the LECs to some order, this results in bounds on linear combinations of LECs.

More recently, stronger bounds have been obtained in [19, 20] by improving this method;

put extremely simply, this was done with more sophisticated use of dispersion relations

and crossing symmetry, respectively. Put similarly simply, our work instead improves

the handling of the isospin decompositions and the LEC bounds themselves, although

some improvements similar to [19] are also made. Perhaps more importantly, we perform

the first extension to NNLO χPT with any number of flavours (two flavours was treated

in [19]), albeit with the simplification that all mesons have the same mass. The LECs are

independent of the chosen masses, although the bounds do depend on the mass. At NLO

they depend only on the ratio of the meson mass and the subtraction scale µ, at NNLO

also on the ratio of the meson mass and decay constant.

– 1 –
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Preliminary results of this work are presented in the Lund University master thesis [21].

Our work is structured as follows: section 2 introduces χPT and its LECs; section 3

(backed by appendix A) presents the 2 → 2 meson scattering amplitude used to obtain the

bounds; section 4 (backed by appendix B) introduces the mathematical framework used to

manage them; section 5 (backed by appendix C) presents the method of [13, 14] and the

improvements made to it; and section 6 displays the most interesting bounds we obtain,

with final remarks given in section 7.

2 Chiral perturbation theory

n-flavour χPT is based around a non-linear sigma model (NLSM), whose degrees of

freedom are the n2 − 1 Nambu-Goldstone bosons that arise when the chiral symmetry

G = SU(n)L × SU(n)R of n-flavour massless QCD is spontaneously broken into its diagonal

subgroup H = SU(n)V . The Goldstone bosons live in the coset space G/H, which is

isomorphic to SU(n).

The presence of quark masses, electroweak interactions, etc. can be accounted for by

including four external n × n flavour-space matrix fields — s (scalar), p (pseudoscalar), vµ

(vector) and aµ (axial vector)1 — into the massless QCD Lagrangian. These additions were

introduced in [1, 2], and endow the Nambu-Goldstone bosons with masses and interactions

that allow them to accurately model the light pseudoscalar mesons, turning the SU(n)

NLSM into χPT proper.

The Nambu-Goldstone boson fields can be organised into a n × n flavour-space matrix

field u(φ) [24, 25]. Under the chiral transformation (gL, gR) ∈ G, u(φ) transforms as

u(φ) −→ gR u(φ) h
[

gL, gR, u(φ)
]

= h
[

gL, gR, u(φ)
]

u(φ) g†
L, (2.1)

where h ∈ H is defined by this transformation. By requiring that G can be made local

while leaving the extended QCD Lagrangian invariant, it can be shown that

χ ≡ 2B(s + ip) −→ gRχg†
L,

ℓµ ≡ vµ − aµ −→ gLℓµg†
L − i∂µgLg†

L, (2.2)

rµ ≡ vµ + aµ −→ gRrµg†
R − i∂µgRg†

R,

where B is a constant related to the leading-order (LO) meson decay constant and the 〈q̄q〉

condensate.

It is possible to rewrite u(φ), χ, ℓµ, rµ in a basis of fields that transform entirely in

terms of gL and gR, as is done in [2] to derive the NLO χPT Lagrangian. We instead choose

to follow [26–28] and rewrite them in a basis of fields that all transform as X → hXh†:

uµ ≡ i
[

u†(∂µ − irµ)u − u(∂µ − iℓµ)u†
]

,

χ± ≡ u†χu† ± uχ†u,

fµν
± ≡ uF µν

L u† ± u†F µν
R u,

(2.3)

1One can add more types of externals fields to χPT. Examples are symmetric or antisymmetric

tensors [22, 23]. These extensions are not relevant for this work.

– 2 –
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where F µν
L ≡ ∂µℓν − ∂νℓµ − i[ℓµ, ℓν ] and similarly for F µν

R and rµ. These transformation

properties are conserved under the covariant derivative ∇µ defined as

∇µX = ∂µX + [Γµ, X], Γµ ≡
1

2

[

u†(∂µ − irµ)u + u(∂µ − iℓµ)u†
]

. (2.4)

2.1 The χPT Lagrangian

There exists an infinite number of possible Lagrangian terms consistent with the symmetries

of χPT. They can be organised into a power-counting hierarchy in the small energy-

momentum scale p, where uµ, ∇µ = O(p) and χ±, fµν
± = O(p2). Thus,

LχPT = L2 + L4 + L6 + . . . , (2.5)

where L2n is O(p2n); odd powers are forbidden by parity. The coefficient of each term in

L2n is a separate LEC.2

The LO Lagrangian is

L2 =
F 2

4
〈uµuµ + χ+〉, (2.6)

where F is a LEC related to the LO meson decay constant, and 〈. . .〉 indicates a trace over

flavour-space indices. The LEC of the χ+ term is BF 2

4 as defined in eq. (2.2). By requiring

that the kinetic term is canonically normalised, one can fix u(φ) = 1 + itaφa

F
√

2
+ . . ., where

ta are the generators of SU(n) and Einstein’s summation convention is used. The higher-

order terms depend on the choice of parametrisation, which influences the computation of

amplitudes but not the amplitudes themselves.

The next-to-leading-order (NLO) Lagrangian, which was first determined in [2], is in

terms of our basis3

L4 = L̂0〈uµuνuµuν〉 + L̂1〈uµuµ〉2 + L̂2〈uµuν〉〈uµuν〉 + L̂3

〈

(uµuµ)2
〉

+ L̂4〈uµuµ〉〈χ+〉 + L̂5〈uµuµχ+〉 + L̂6〈χ+〉2 + L̂7〈χ−〉2 + L̂8

〈

χ2
+ + χ2

−
〉

− iL̂9
〈

fµν
+ uµuν

〉

+ L̂10

〈

fµν
+ f+

µν − fµν
− f−

µν

〉

,

(2.7)

where the LECs are L̂i. The analogous NNLO Lagrangian with 112 LECs Ki was determined

in [27]. The 1862-LEC NNNLO Lagrangian, which we do not use here, was determined in [28].

For small n, the Cayley-Hamilton identity reduces the number of independent terms,

and consequently the number of LECs. At n = 3, it is standard to eliminate L̂0; the

remaining LECs are conventionally labelled Li with i preserved. At n = 2, it is customary

to also redefine the LECs slightly, resulting in the li of the original Gasser-Leutwyler

convention [1]. At NNLO, the 112+3 Ki (ordinary+contact terms) are reduced to 90+4 Ci

at n = 3 and 52+4 ci at n = 2 as detailed in [27]. For more details on the Lagrangians for

different n, see [6, 29].

2Some “terms”, like the one associated with L̂10 in eq. (2.7) below, actually consist of several terms.

These transform into each other under the discrete symmetries of the Lagrangian, and must therefore appear

with the same LEC.
3There are two additional contact terms proportional to

〈

χ2
+ − χ2

−

〉

and
〈

f
µν
+ f+

µν + f
µν
− f−

µν

〉

. They are

needed for renormalisation but make no physical contributions to the amplitudes considered here.

– 3 –
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The NLO renormalisation was first carried out in [1, 2], and the extension to NNLO

in [29]; for more information on χPT renormalisation, see [30]. A slightly altered MS scheme

is conventionally used, with renormalisation scale µ = 0.77 GeV. The renormalised LECs

are denoted Xr
i where X = ℓ, L, L̂, etc. At n = 2 flavours it is conventional to use ℓ̄i instead,

related to ℓr
i through

ℓr
i =

γi

32π2

[

ℓ̄i + ln

(

M2
phys

µ2

)]

(2.8)

where Mphys is the chosen meson mass and γi are coefficients found in [1]. Effectively,

eq. (2.8) sets the renormalisation scale to Mphys for ℓ̄i.

3 Scattering amplitudes

In this section, and in the remainder of the paper, we will restrict ourselves to a simplified

version of χPT. Firstly, we will not include the external (axial) vector fields aµ, vµ in the

Lagrangian, which essentially amounts to ignoring electroweak corrections to the amplitude.

Secondly, we will assume that all mesons have the same mass Mphys, as mentioned in the

introduction. While this limits the phenomenological applicability of three-flavour χPT,

it is a reasonable approximation that simplifies the procedure for obtaining bounds (see

section 5). More importantly, the full NNLO amplitude is currently not available in the

general-mass case; available results only cover ππ scattering in two- [30, 31] and three-

flavour [32] χPT, as well as πK scattering [33], and are not expressed in terms of elementary

functions. With equal masses, we normalise all Mandelstam variables so that s + t + u = 4.

For the general equal-mass n-flavour scattering process a + b → c + d, there are nine

independent flavour structures possible: the six distinct index permutations on
〈

tatbtctd
〉

and the three on
〈

tatb
〉〈

tctd
〉

. Due to charge conjugation symmetry, a permutation is not

independent of its reverse. Thus, the scattering amplitude M may be decomposed as

M(s, t, u) =
[

〈

tatbtctd
〉

+
〈

tdtctbta
〉

]

B(s, t, u)

+
[

〈

tatctdtb
〉

+
〈

tbtdtcta
〉

]

B(t, u, s)

+
[

〈

tatdtbtc
〉

+
〈

tctbtdta
〉

]

B(u, s, t)

+ δabδcdC(s, t, u) + δacδbdC(t, u, s) + δadδbcC(u, s, t),

(3.1)

where s, t, u are the normalised Mandelstam variables, and crossing symmetry imposes

that only two distinct functions B, C are used.4 This is the form used in [34], where the

functions B, C are given to NNLO for SU(n) equal-mass χPT. The NLO results were first

obtained in [1, 35].

3.1 Other forms of the amplitude

With two flavours, the traces can be evaluated in terms of Kronecker δ’s, giving5

M(s, t, u) = δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t), (3.2)

4These functions have the symmetries B(s, t, u) = B(u, t, s) and C(s, t, u) = C(s, u, t), which is consistent

with the symmetries of the respective flavour structures. Likewise, A(s, t, u) = A(s, u, t) holds in eq. (3.2).
5This form can be traced back to the original current-algebra calculation [36] of the ππ amplitude.

– 4 –
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which is the form used in [13] (up to reordering the arguments as permitted by the symmetries

of A). In terms of the functions above,

A(s, t, u) = C(s, t, u) + B(s, t, u) + B(t, u, s) − B(u, s, t), (3.3)

the function A was first determined to NLO in [1].

With n flavours, the traces can be evaluated using the anticommutation relation
{

ta, tb
}

= 2
n

δab + dabctc to give6

M(s, t, u) = dabedcdeB′(s, t, u) + dacedbdeB′(t, u, s) + dadedbceB′(u, s, t)

+ δabδcdC ′(s, t, u) + δacδbdC ′(t, u, s) + δadδbcC ′(u, s, t),
(3.4)

where
B′(s, t, u) = 1

2

[

B(s, t, u) + B(t, u, s) − B(u, s, t)
]

,

C ′(s, t, u) = C(s, t, u) + 4
n

B′(s, t, u).
(3.5)

With three flavours, the Cayley-Hamilton theorem7 allows for the removal of one term at

the expense of symmetry, leaving

M(s, t, u) = δabδcdA1(s, t, u) + δacδbdA2(s, t, u) + δadδbcA3(s, t, u)

+ dabedcdeB1(s, t, u) + dacedbdeB2(s, t, u)
(3.6)

where

B1(s, t, u) = B(t, u, s) − B(u, s, t), B2(s, t, u) = B(t, u, s) − B(s, t, u),

A1(s, t, u) = C(s, t, u) + B(s, t, u) + 1
3B1(s, t, u),

A2(s, t, u) = C(t, u, s) + B(u, s, t) + 1
3B2(s, t, u),

A3(s, t, u) = C(u, s, t) + B(s, t, u) + B(u, s, t) − B(t, u, s).

(3.7)

This is the form used in [14].

3.2 Structure of the amplitude

The functions B(s, t, u) and C(s, t, u) consist of one part that is polynomial in the Man-

delstam variables and contains the LECs, plus the so-called unitarity correction that is

non-polynomial in the Mandelstam variables.8 The polynomial parts are quadratic at NLO

and cubic at NNLO. At NLO, the unitarity correction does not contain any LECs; at

NNLO, the unitarity correction depends on the NLO LECs.

6The relevant identity is
〈

t
a
t
b
t
c
t
d
〉

+
〈

t
a
t
d
t
c
t
b
〉

= 1

2

(

d
abe

d
cde + d

ade
d

cbe − d
ace

d
bde
)

+ 2

n

(

δ
ab

δ
cd + δ

ad
δ

cb − δ
ac

δ
bd
)

.

It is most easily derived by first using tatb = 1

n
δab + 1

2
(dabc + ifabc)tc repeatedly, and then removing all

occurrences of f with the Jacobi-like identity

f
abe

f
cde = d

ace
d

bde − d
bce

d
ade + 4

n

(

δ
ac

δ
bd − δ

ad
δ

bc
)

,

which is derived from the observation that
[[

ta, tb
]

, tc
]

=
{{

tb, tc
}

, ta
}

−
{

{tc, ta}, tb
}

.
7More specifically the n = 3 Cayley-Hamilton theorem, recast as the SU(3)-specific identity

3
(

d
abe

d
cde + d

bce
d

ade + d
cae

d
bde
)

= 2
(

δ
ab

δ
cd + δ

bc
δ

ad + δ
ca

δ
bd
)

.

8This split is not uniquely defined, but we adhere to the conventions of [34].
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The unitarity correction at NLO depends on the function J̄ , which originates in the

loop integral as shown in [1]. The NNLO unitarity correction introduces four analogous

functions ki, i = 1, . . . 4 [31, 32, 34, 37]. More details about these functions can be found in

appendix C.

The LEC content of the amplitude considered here is more limited than that of the

full χPT Lagrangian. About half of the Lagrangian terms are dropped by not including

the external (axial) vector fields, and a significant part of the NNLO Lagrangian cannot

appear in a 4-particle process below NNNLO. Also, the number of LECs is reduced by the

Cayley-Hamilton theorem in the 2- and 3-flavour case as described in section 2.1. Lastly,

L̂7, K12, K24, K30, K34, K36, K41 and K42, i.e. those whose Lagrangian terms contain 〈χ−〉,

disappear in the equal-mass limit.9 Even with these reductions, there are still 35 (27 at

n = 3, 18 at n = 2) NNLO LECs that are involved in the amplitude at hand, in addition to

8 (7, 4) NLO LECs.

3.3 Irreducible amplitudes

The scattered particles are in the adjoint representation of SU(n). The Clebsch-Gordan

decomposition of the initial and final states is therefore10

Adj ⊗ Adj = RI + RS + RA + RA
S + RS

A + RS
S + RA

A, (3.8)

where RI is the singlet representation, and the sub(super)scripts on the other representations

indicate lower (upper) index pairs that are symmetric (S) or antisymmetric (A). Details on

the representations and their dimensions can be found in [34, 38]. From this, it follows that

the scattering amplitude can be decomposed in terms of seven corresponding irreducible

amplitudes TJ . In terms of eq. (3.1), these are

RI : TI = 2
n2 − 1

n

[

B(s, t, u) + B(t, u, s)
]

−
2

n
B(u, s, t)

+ (n2 − 1)C(s, t, u) + C(t, u, s) + C(u, s, t),

RS : TS =
n2 − 4

n

[

B(s, t, u) + B(t, u, s)
]

−
4

n
B(u, s, t)

+ C(t, u, s) + C(u, s, t),

RA : TA = n
[

B(t, u, s) − B(s, t, u)
]

+ C(t, u, s) − C(u, s, t),

RA
S , RS

A : TAS = TSA = C(t, u, s) − C(u, s, t),

RS
S : TSS = 2B(u, s, t) + C(t, u, s) + C(u, s, t),

RA
A : TAA = −2B(u, s, t) + C(t, u, s) + C(u, s, t).

(3.9)

9This can be understood by noting that χ− has odd parity, so all terms in its expansion contain an

odd number of pseudoscalar fields. If the even-parity Lagrangian term contains two traces of odd-parity

objects, it can therefore only result in six-point vertices or larger, since the trace of a single field vanishes.

Therefore, K12, K24 etc. do not appear in the NNLO four-point amplitude, whereas L̂7 only appears in

s, t, u-independent tadpole diagrams. As will be shown in section 5, we only consider s-derivatives of the

amplitude, so also L̂7 disappears for our purposes.
10[35] contains an intuitive description of how the decomposition is performed.

– 6 –
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Only six amplitudes are needed, since TSA and TAS are identical due to crossing symmetry

etc., as mentioned in [14].

In SU(3), the RA
A representation vanishes, so only five amplitudes are needed. In [14],

the representations are labelled by their dimensions, which are 1, 8, 8, 10 and 27 in the order

they appear in eqs. (3.8) and (3.9).

In SU(2), only RI , RA and RS
S remain and have dimension 1, 3 and 5, respectively. The

corresponding amplitudes can be identified with the isospin components T 0, T 1 and T 2,

respectively. In terms of eq. (3.2), they are

T 0 = 3A(s, t, u) + A(t, u, s) + A(u, s, t),

T 1 = A(t, u, s) − A(u, s, t),

T 2 = A(t, u, s) + A(u, s, t).

(3.10)

This well-known relation can be derived from eqs. (3.3) and (3.9).

3.4 Eigenstate amplitudes

A general amplitude can be expressed as aJT J , where the index J runs over the repres-

entations in the order they appear in eq. (3.8). For a physically applicable scattering

process, however, the initial and final states should typically be taken as a product of

mass eigenstates such as π, K and η. This corresponds to fixing aJ to a small selection of

values so that T (ab → cd) = aJ(ab → cd)T J . Here, as in [13, 14], we consider only elastic

scattering of eigenstates, with aJ(ab → ab) ≡ aJ(ab).

With two flavours, where J runs over I, A, SS (alternatively, isospin 0, 1, 2), the

eigenstates are11

aJ(π0π0) =
(

1
3 0 2

3

)

, aJ(π0π±) =
(

0 1
2

1
2

)

, aJ(π±π±) =
(

0 0 1
)

, (3.11)

and with three flavours, where J runs over I, S, A, AS, SS, they are12

aJ(π0π0) =
(

1
8

1
5 0 0 27

40

)

, aJ(π±π±, K±K±, K0K0) =
(

0 0 0 0 1
)

,

aJ(π0π±) =
(

0 0 1
3

1
6

1
2

)

, aJ(K±π±, K±π∓, K0K±) =
(

0 0 0 1
2

1
2

)

,

aJ(K0π±) =
(

0 3
10

1
6

1
3

1
5

)

, aJ(Kπ0) =
(

0 3
20

1
12

5
12

7
20

)

,

aJ(πη) =
(

0 1
5 0 1

2
3
10

)

, aJ(Kη) =
(

0 1
20

1
4

1
4

9
20

)

;

(3.12)

see e.g. [13, 14], respectively.13 With four or more flavours, χPT loses its applicability as

low-energy QCD since there are only three light quarks in the Standard Model. Therefore,

there is little sense in considering eigenstates for n flavours, although we can note that

T (π±π± → π±π±) = TSS regardless of n.

11aJ is invariant under particle/antiparticle exchange, so aJ (π+π+) = aJ (π−π−) ≡ aJ (π±π±). Note,

however, that aJ (π±π∓) 6= aJ (π±π±) — they are instead related by crossing; see eq. (3.14).
12Here, π without superscript stands for any of π± or π0 (and similarly for K) whenever aJ is agnostic

about the particular choice. We use aJ (ab, cd, . . .) for aJ (ab) = aJ (cd) = . . ..
13Eq. (3.12) differs from the values given in [14]: there was an error or misprint in aJ (π0π±), and all

eigenstates were not included, with aJ (K±π±) given as aJ (Kπ).
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One of our extensions over previous work is that we use all possible values for the aJ ,

rather than restricting them to eigenstates (see section 5 for what constitutes “possible”).

This can be done without complications, since the mass eigenstates are completely degenerate

in the equal-mass limit. However, it is still useful to view those states that remain mass

eigenstates in the unequal-mass case as special. Below, by “eigenstate” we will specifically

mean scattering between these states. Note that by treating general aJ , we effectively

include inelastic scattering such as aJ(π0π0 → π+π−) =
(

1
3 0 −1

3

)

. However, it turns out

that inelastic scattering is useless for our purposes by invariably failing to satisfy eq. (5.6b).

This (in addition to [13, 14]) is why this section has focused mainly on elastic scattering.

3.5 Crossing symmetry

Since all amplitudes can be expressed as aJT J , crossing symmetry implies that channel

crossing must take the form of a linear transformation of aJ . For s ↔ u crossing, the

transformation T I(u, t, s) = CIJ
u T J(s, t, u) is given by [21, 38]

CIJ
u =



























1
n2−1

1 −1 4−n2

2
n2(n+3)
4(n+1)

n2(n−3)
4(n−1)

1
n2−1

n2−12
2(n2−4)

−1
2 1 n2(n+3)

4(n+1)(n+2)
n2(3−n)

4(n−1)(n−2)
1

1−n2 −1
2

1
2 0 n(n+3)

4(n+1)
n(3−n)
4(n−1)

1
1−n2

2
n2−1

0 1
2

n(n+3)
4(n+1)(n+2)

n(n−3)
4(n−1)(n−2)

1
n2−1

1
2+n

1
n

n−2
2n

n2+n+2
4(n+1)(n+2)

n−3
4(n−1)

1
n2−1

1
2−n

− 1
n

n+2
2n

n+3
4(n+1)

n2−n+2
4(n−1)(n−2)



























(3.13)

which also works at n = 2, 3 by removing appropriate rows and columns:

CIJ
u

∣

∣

∣

SU(2)
=

1

6







2 −6 10

−2 3 5

2 3 1






CIJ

u

∣

∣

∣

SU(3)
=

















1
8 1 −1 −5

2
27
8

1
8 − 3

10 −1
2 1 9

8

−1
8 −1

2
1
2 0 27

40

−1
8

2
5 0 1

2
9
40

1
8

1
5

1
3

1
6

7
40

















. (3.14)

These versions can be found in [13, 14] respectively.

4 Linear constraints

In this section, we will introduce a mathematical language of linear constraints. This

formalism is introduced before positivity bounds (see section 5) so that they can be

established in full generality. In order to make the handling of the bounds as general

and powerful as possible, we dedicate this section to developing some useful mathematical

definitions and results.14

14In this section employ mathematical notation that, depending on the background of the reader, may not

be entirely familiar. We also define new notation for our own purposes. A glossary covering all potentially

unfamiliar notation is provided in appendix B.7.
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4.1 Definition and combination of constraints

For a set of parameters bi (e.g. the LECs), a linear constraint takes the general form

α1b1 + α2b2 + . . . + αnbn − c ≥ 0, (4.1)

where c, αi are known coefficients. By treating αi, bi as components of vectors, this is

equivalent to

α · b ≥ c. (4.2)

We say that b lives in the parameter space, whereas α lives in the constraint space.15 Since

α and c can be rescaled by any positive scalar without changing the inequality, any linear

constraint can be described by the pair 〈α, c〉 with c ∈ {1, 0, −1}.

We say that a point b satisfies a constraint 〈α, c〉 if α · b ≥ c. We denote by B (〈α, c〉)

the subset of parameter space that satisfies 〈α, c〉. For any α, it is clear that the origin

b = 0 is contained in B (〈α, −1〉) but not in B (〈α, 1〉), and lies on the boundary of B (〈α, 0〉)

(except when α = 0).

The LECs will typically be subject to many linear constraints simultaneously. We

will normally use the letter Ω to denote a constraint, either a single one like 〈α, c〉 or

a combination of several such constraints. Given two constraints Ω, Ω′, we write the

constraint that imposes both of them simultaneously as Ω + Ω′. A point b satisfies Ω + Ω′

if and only if it satisfies both Ω and Ω′; thus, the B notation naturally generalises through

B(Ω + Ω′) ≡ B(Ω) ∩ B(Ω′). For combinations of many constraints, we will generalise + into

e.g. Ω =
∑

i 〈αi, ci〉.

4.2 Stronger and weaker constraints

A hierarchy can be established among the constraints based on how strong (restrictive)

they are. For instance, b1 ≥ 1 is stronger than b1 ≥ 0. We will write the stronger-than

relation as Ω ≥ Ω′, which holds if all points that satisfy Ω also satisfy Ω′. Thus, Ω ≥ Ω′ is

equivalent to B(Ω) ⊆ B(Ω′). Naturally, we say Ω = Ω′ if B(Ω) = B(Ω′), and say Ω > Ω′

if Ω ≥ Ω′ but Ω 6= Ω′. Just like subset relations, our stronger-than relation is not a total

ordering, as there exist many pairs of constraints Ω, Ω′ where neither is stronger than the

other. From our definitions, it trivially follows that

(Ω + Ω′) ≥ Ω, (Ω + Ω′) ≥ Ω′,

(Ω + Ω′) = Ω ⇔ Ω ≥ Ω′,
(4.3)

so that if Ω 6≥ Ω′ and Ω′ 6≥ Ω, their combination Ω + Ω′ is indeed a new, strictly stronger

constraint. Furthermore, we see that, for all λ > 0, κ > 1, and α 6= 0,

〈λα, 1〉 > 〈λα, 0〉 > 〈λα, −1〉 , (4.4)

〈κα, 1〉 < 〈α, 1〉 , 〈λα, 0〉 = 〈α, 0〉 , 〈κα, −1〉 > 〈α, −1〉 . (4.5)

15We consistently use Roman letters for vectors in parameter space and Greek letters for vectors in

constraint space. In general, parameter space may be any finite-dimensional real vector space, with

constraint space considered as its dual.
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From the c = 0 version of eq. (4.5), we see that 〈α, 0〉 is not a unique representation of

the constraint, since we can freely rescale α without changing it. We may remove this

ambiguity by constraining α to be a unit vector.

There exists a constraint Ω∞, equivalent to 〈0, 1〉 or e.g. 〈α, 1〉 + 〈−α, 1〉, that is not

satisfied by any point. It follows that Ω∞ ≥ Ω and Ω∞ + Ω = Ω∞ for any Ω. A constraint

that is satisfied by all points, i.e. 〈0, −1〉 or 〈0, 0〉, will be called a trivial constraint.

4.3 Determining the relationship between constraints

We will now present a general result, which determines if a given linear constraint 〈β, c〉 is

weaker than an arbitrarily complicated constraint Ω. This will serve as the basis for all our

uses of linear constraints.16 For complete proofs, more details, and practical applications,

see appendix B.

Consider a set of linear constraints 〈αi, c〉 for i in some finite set I ⊂ N.17 Note that c

is the same for all constraints. Then let ωc ≡
∑

i∈I 〈αi, c〉;18 an example of such a constraint

is given in figure 1. Then define A(ωc) as the set of all points that can be expressed as
∑

i∈I

λiαi, λi ≥ 0,
∑

i∈I

λi ∈ Λc, (4.6)

where

Λ1 = [1, ∞), Λ0 = [0, ∞), Λ−1 = [0, 1]. (4.7)

The shape of A(ωc) is illustrated in figure 2. With these definitions, the following holds:

Proposition 4.1 (determining if constraint is weaker, special case). Let 〈β, c〉 be a single

linear constraint, and let ωc 6= Ω∞ be defined as above. Then 〈β, c〉 ≤ ωc if and only if

β ∈ A(ωc).

This is proven in appendix B.1. If ωc is a single linear constraint, this result reduces down

to eq. (4.5). The condition ωc 6= Ω∞ is necessary, since there exist corner cases where

ωc = Ω∞ but A(ωc) fails to cover the entire constraint space.19 However, if A(ωc) does

cover the entire space, then it is certain that ωc = Ω∞.

In figure 2, we may note that A(ωc) is closely related to the convex hull of the αi. In

essence, A(ωc) is obtained by forming the hull, and then also including all points that give

weaker constraints under eq. (4.5). We may also note that the convex hull can be defined as

Hull
(

{αi}i∈I

)

=

{

∑

i∈I

λiαi

∣

∣

∣

∣

∣

λi ≥ 0,
∑

i∈I

λi = 1

}

, (4.8)

which is very similar to eq. (4.6).

16Proposition 4.1, along with a version of the notation we use here, was defined in [21], although the proof

was completely different. An incorrect version of proposition 4.2 was also presented without proof. To the

best of our knowledge, these results are novel, although the relevant literature is vast and lies outside our

area of expertise. The closest we have found is [39], although their algorithm requires knowing a point that

satisfies Ω, relies on more complicated mathematical machinery, and does not include all the extensions

presented further below in section 4.4 and appendix B.
17It is crucial that only finite combinations of constraints are considered, and it will normally be tacitly

assumed that all sets like I are finite. A limited extension to infinite sets is covered in appendix B.6.
18We use lowercase ω here to emphasise that it is not a general constraint. A similar treatment of general

Ω is given below.
19A trivial example of this is ω1 = 〈0, 1〉, where A(ω1) = {0}.
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b1

b2

b1

b2

b1

b2

Figure 1. A cropped depiction of twelve random two-dimensional constraints 〈αi, c〉 for c = +1

(left, yellow), c = 0 (middle, blue) and c = −1 (right, red) illustrated as the parameter-space

lines αi · b = c. The side of the line that is excluded by the constraint is hatched. The region

B(ωc) for ωc =
∑

i
〈αi, c〉, i.e. the set of points that satisfy all the constraints, is shaded. The lines

corresponding to relevant constraints (i.e. those that actually delimit B(ωc); this is more closely

defined in section 4.4) are drawn more strongly than the rest.

α1

α2

α1

α2

α1

α2

Figure 2. Examples of the regions A(ω1) (left, yellow), A(ω0) (middle, blue) and A(ω−1) (right,

red) in constraint space, using the same αi as in figure 1. The αi are represented as points ( , , ,

respectively) in the space, and the relevant ones are filled (again, relevancy is defined in section 4.4).

The convex hulls (as defined in eq. (4.8)) of the αi are outlined. For comparison to figure 1, it

is helpful to remember that αi are normal vectors to the lines shown there, and that larger |αi|

correspond to lines passing closer to the origin. Note how, given identical αi, A(ω0) is the union of

A(ω1) and A(ω−1) (this is easy to see from eq. (4.7)) whereas the set of relevant constraints is the

intersection of the respective sets.

Now, let us handle the general case. The most general combination of a finite number

of linear constraints can be expressed as

Ω =
∑

i∈I1

〈αi, 1〉 +
∑

i∈I0

〈αi, 0〉 +
∑

i∈I−1

〈αi, −1〉 , (4.9)

where Ic are some disjoint, finite, and possibly empty sets. We may compactly write this as

Ω =
∑

i∈I 〈αi, ci〉 where I ≡ I+1 ∪ I0 ∪ I−1 and ci = c if i ∈ Ic.

Similarly to A(ωc), let Ac(Ω) be the set of all points that can be expressed as (recall

that c ∈ {1, 0, −1})

∑

i∈I−1

λiαi +
∑

i∈I0

λiαi +
∑

i∈I1

λiαi, λi ≥ 0, (4.10)
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with λi constrained by the condition

∑

i∈I1

λi −
∑

i∈I−1

λi ≥ c. (4.11)

An illustration of Ac(Ω) can be found in appendix B.4.5. With these definitions, the

following holds:

Proposition 4.2 (determining if constraint is weaker, general case). Let 〈β, c〉 be a linear

constraint, and let Ω 6= Ω∞ be defined as above. Then 〈β, c〉 ≤ Ω if and only if β ∈ Ac(Ω).

This is proven in appendix B.1.4. If only one of the Ic is nonempty, this reduces down to

proposition 4.1.

While it is not as useful for the purposes of proposition 4.2, one may note that eqs. (4.10)

and (4.11) can be more succinctly stated as

Ac(Ω) =

{

∑

i∈I

λiαi

∣

∣

∣

∣

∣

λi ≥ 0,
∑

i∈I

λici ≥ c

}

. (4.12)

This definition of Ac(Ω) works also if c, ci are not constrained to {−1, 0, 1}.

4.4 Representations and degeneracy

Checking if b satisfies Ω becomes computationally expensive if Ω is the combination of many

different linear constraints. However, Ω is usually not uniquely determined by how it is

expressed as a sum of linear constraints, and it is possible to vastly reduce that redundancy.

To that end, we define a representation of a constraint Ω as any finite set S of linear

constraints with the property20

Ω =
∑

〈α,c〉∈S
〈α, c〉 . (4.13)

If it is implicit which representation is used for Ω, we may call the 〈α, c〉 ∈ S the elements

of Ω.

It is clear that there exist minimal representations, i.e. representations with the smallest

number of elements. As we will see below, there is often a unique minimal representation,

which we will label R(Ω). However, there is an important exception to this: when B(Ω) is

contained in a hyperplane. This happens when there are some δ, d such that δ · b = d for

all b ∈ B(Ω), or equivalently 〈δ, d〉 + 〈−δ, −d〉 ≤ Ω. We will call Ω degenerate if so is the

case, and non-degenerate otherwise.21 With this in mind, we can state the following result:

20Clearly, all Ω also admit representation as a sum of an infinite number of constraints. However, we will

not consider such representations, and proposition 4.3 below generally only holds if Ω can be expressed as a

finite sum. See appendix B.6 for a discussion about infinite sums of constraints.
21As defined here, Ω∞ would be considered a special case of a degenerate constraint. In the closer study

of degenerate constraints given in appendix B.2.1, it turns out to be more useful to consider Ω∞ seperately,

viewing it as neither degenerate nor non-degenerate.
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Proposition 4.3 (finding relevant constraints, non-degenerate case). If Ω is a non-

degenerate constraint, there exists a minimal representation R(Ω) that is unique up to

the normalisation of its elements. Furthermore, for any representation S of Ω, the relation

R(Ω) ⊆ S is true up to normalisation.

The elements of R(Ω) are exactly those 〈α, c〉 ≤ Ω for which there is some b ∈ B(Ω)

such that α · b = c and β · b > d for all 〈β, d〉 ≤ Ω with 〈β, d〉 6= 〈α, c〉.

This is proven in appendix B.3. Due to this uniqueness, and the fact that R(Ω) is a subset of

any representation, we will call the elements of R(Ω) the relevant elements of Ω, and call all

other elements of any representation irrelevant, since they can be discarded without altering

Ω. A more practical way of finding R(Ω), based on proposition 4.2, is given in appendix B.4.4.

When Ω is degenerate, there is typically no unique minimal representation, although

there is still a straightforward way to find some minimal representation, which we will also

label R(Ω). This generalisation of proposition 4.3 is discussed in appendix B.2.1, along

with a more general method of replacing any degenerate constraint with a non-degenerate

analogue in a lower-dimensional space. Note, however, that degenerate constraints are only

a corner case with little practical relevance: a small perturbation, e.g. by numerical error,

to the elements of a degenerate constraint will either render it non-degenerate, or render it

equal to Ω∞.

5 Positivity bounds

Equipped with the notion of linear constraints, we are ready to move on to the main topic

of this paper: positivity bounds. (For a more detailed version of this derivation, see [13];

various generalisations can be found in e.g. [19, 20].) We start by writing down the fixed-t

dispersion relation for the amplitude aJT J :

aJT J(s, t) =
1

2πi

∮

γ
dz

aJT J(z, t)

z − s
. (5.1)

The amplitude has two branch cuts along the real axis: a right-hand cut starting at z = 4

corresponding to the s-channel, and a left-hand cut starting at z = −t corresponding to the

u-channel. The discontinuity across these cuts is T (z + iε) − T (z − iε) = 2i Im T (z + iε).

For real s in the span −t < s < 4, we deform the contour γ as shown in figure 3. We can

then reexpress the integral in terms of the discontinuities, which may require derivatives

(subtractions) to make the contour at infinity vanish. Using the crossing relation derived in

section 3.5 to rewrite the u-channel cut in terms of s, the result is

aJ
dk

dsk
T J(s, t) =

k!

π

∫ ∞

4
dz

[

aJ

(z − s)k+1
+

(−1)kaICIJ
u

(z − u)k+1

]

Im T J(z + iε, t). (5.2)

The Froissart bound [40] shows that the integral converges whenever k ≥ 2, since

T J(z + iε, t) = O(s ln2 s).22 We will discuss specific values for k in section 5.2; here, we

keep it general.

22Note that T J (z + iε, t) on the right-hand side of eq. (5.2) is the exact, non-perturbative amplitude —

see e.g. [13]. Indeed, the perturbative χPT amplitude at any fixed order grows polynomially with s, so it

violates the Froissart bound. We can insert the fixed-order perturbative amplitude at the left-hand side

thanks to the smallness of s (and t), which guarantees good agreement with the exact one.
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−t 4

γ
−→

s

γ′

Figure 3. The contour integral in the z-plane around z = s used in the dispersion relation.

Above threshold, the partial-wave expansion of the amplitude takes the form23

T J(s, t) =
∞
∑

ℓ=0

(2ℓ + 1)fJ
ℓ (s)Pℓ

(

1 +
2t

s − 4

)

, (5.3)

where fJ
ℓ are partial wave amplitudes, Pℓ are Legendre polynomials, and the expression in

parentheses is the cosine of the scattering angle. The optical theorem then gives

Im fJ
ℓ (s) = sβ(s)σJ

ℓ (s), β(s) ≡

√

1 −
4

s
, (5.4)

which is positive above threshold since the partial-wave cross-sections σJ
ℓ are always positive.

Therefore,

Im T J(s, t) =
∞
∑

ℓ=0

(2ℓ + 1)sβ(s)σI
ℓ Pℓ

(

1 +
2t

s − 4

)

(5.5)

is positive above threshold as long as Pℓ is. Since Pℓ(z) ≥ 0 when z ≥ 1, eq. (5.2) therefore

imposes the constraint that, for any t ∈ [0, 4], s ∈ [−t, 4] and any representation index J ,

aJ
dk

dsk
T J(s, t) ≥ 0 (5.6a)

if aI

{

δIJ

[

z − u

z − s

]k+1

+ (−1)kCIJ
u

}

≥ 0 for all z ≥ 4. (5.6b)

The region in the s, t plane where this holds is shown in figure 4. Note that u ∈ [−4, 4], so

the expression in square brackets above is always positive.

Up to and including NNLO, the second derivative of T J is linear in all LECs, so we

obtain from eq. (5.6a) an expression of the form
∑

i

αiL̂
r
i +

∑

j

βjKr
j + γ ≥ 0, (5.7)

where the coefficients αi, βi, γ are functions of s, t and aJ , but not of the LECs. This

constitutes a linear constraint, and each valid choice of s, t and aJ potentially yields a

different constraint. The result of combining these constraints will be that only a limited

region in parameter space (B(Ω) in the notation of section 4) satisfies the positivity bounds.

With some luck, the boundary of this region is close enough to the experimentally measured

value to improve on its uncertainty (carefully considering also the uncertainty of the bounds).

23There is a limited domain of validity for this expansion, but it does not affect the range of s, t used by

us. Again, see [13] for details.
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s
=

4

t = 4

u
=
4

u
=
0

s

t

u

Figure 4. The plane of normalised Mandelstam variables. The red triangle is the region where the

amplitude is real and free from singularities or branch cuts. The positivity conditions eq. (5.6) are

valid inside the outlined part. The hatched regions with s, t or u positive are the physical regions

for the respective channels.

5.1 Conditions on aJ

If we demand that eq. (5.6b) holds in the entire allowed s, t region, we see that the factor

in square brackets can be made arbitrarily large or small by varying s, u, z. Therefore, we

obtain the independent conditions aJ ≥ 0 and (−1)kaICIJ
u ≥ 0. However, we may apply

the dispersion relation independently to each fixed s, t. Then, eq. (5.6b) can be made less

restrictive, and a wider range of constraints on the LECs can be generated. This also

includes permitting odd k for some s, t.

While we may fix s and t (which in turn fixes u), we must still allow z to cover its

entire range. Therefore, finding all valid aJ for given s, t presents some practical issues.

We solve this by using the technology of section 4, since eq. (5.6b) is a set of linear

constraints on the vector aI ; we may write it compactly as a · βJ(z) ≥ 0. Noting that
(

z−u
z−s

)k+1
is monotonic as a function of z ∈ [4, ∞), we see that it is always possible to

write βJ(z) = µβJ(4) + (1 − µ)βJ(∞) for µ ∈ [0, 1]. By propositions 4.1 and 4.3 (see also

proposition B.3), it follows that only βJ (4) and βJ (∞) are relevant constraints on a. Thus,

it is sufficient to evaluate eq. (5.6b) at z = 4 and z = ∞, rather than letting z cover its

entire range.

Another practical problem is that the set of allowed aJ is typically unbounded. However,

eq. (5.6a) is independent of the magnitude of aJ . The obvious solution is to fix the

normalisation of the vector a, but this is problematic since a linear constraint on a is

not necessarily a linear constraint on 1
|a|a. Instead, we may simply rescale a so that

∑

J aJ = 1. This does not cover all possible a (for that, we must also look at
∑

J aJ = 0

and
∑

J aJ = −1), but it turns out that eq. (5.6b) is only satisfied by a for which this works.

Using this, constraints on aI are shown in figure 5.
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Figure 5. Illustration of which aI , aA, aSS , normalised so that aI + aA + aSS = 1, are permitted

by eq. (5.6b) for n = 2, k = 2 at t = 4 and various fixed s. The shaded band is the region permitted

by the z = ∞ bounds (see the discussion in section 5.1). It is independent of s and extends to

infinity. The hatched triangles are the regions permitted by the z = 4 bounds for various s as

indicated. Thus, the aJ permitted at fixed s, t is the overlap between the triangle and the band.

The orange rectangle is the region permitted at all s, t. The blue points represent the eigenstates,

including aJ(π±π∓) = CIJ
u aI(π±π±) in addition to those given in eq. (3.11). Not shown is the

inelastic scattering aJ(π0π0 → π+π−) =
(

1

3
0 − 1

3

)

, which never satisfies eq. (5.6b). For n ≥ 2, the

permitted region has an analogous shape, albeit in 4 (n = 3) and 5 (n ≥ 4) dimensions, respectively.

Like for n = 2, the eigenstate scattering amplitudes are mainly located in the corners of the

always-permitted region.

5.2 The number of derivatives

As mentioned before, eq. (5.6) requires k ≥ 2 to be valid, and k = 2 is sufficient; indeed, [41]

claims that this value produces the best bounds. However, nothing prevents us from taking

more derivatives, and with our generalised methods, we do find new relevant bounds from

larger k; see e.g. figures 6 and 12 below. Also [19] makes use of higher derivatives.

At NLO, the LECs only enter through the second-order polynomial part of the amplitude,

so the third and higher derivatives are parameter-independent and do not generate any

bounds. This is not the case at NNLO, where the polynomial part is third-order, and where

the non-polynomial unitarity correction contains NLO LECs. Therefore, k = 3 should yield

another set of bounds on the NNLO LECs, and k ≥ 4 should add bounds on the NLO LECs

not obtainable from the NLO-only amplitude.

It also turns out that odd k cannot be used at any order in the 2-flavour case. To see

this, look explicitly at eq. (5.6b) at z = ∞:

δIJ − CIJ
u = 1

6cI
1cJ

2 where c1 =
(

2 1 −1
)

, c2 =
(

2 3 −5
)

(5.8)
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