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Protecting nonlocal quantum 
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Nonlocal quantum correlations, such as quantum entanglement, quantum steering, and Bell 
nonlocality, are crucial resources for quantum information tasks. How to protect these quantum 
resources from decoherence is one of the most urgent problems to be solved. Here, we investigate 
the evolution of these correlations in the correlated squeezed generalized amplitude damping 
(SGAD) channel and propose a scheme to protect them with weak measurement (WM) and quantum 
measurement reversal (QMR). Compared with the results of the uncorrelated SGAD channel, we 
find that when n = 1 , correlation and squeezing effects can prolong the survival time of quantum 
entanglement, Bell nonlocality, and quantum steering by about 152 times, 207 times, and 10 times, 
respectively. In addition, local WM and QMR can effectively recover the disappeared nonlocal quantum 
correlations either in uncorrelated or completely correlated SGAD channels. Moreover, we find 
that these initial nonlocal quantum correlations could be drastically amplified under the correlated 
channel. And the steering direction can be flexibly manipulated either by changing the channel 
parameters or the strength of WM and QMR. These results not only make a step forward in suppressing 
decoherence and enhancing quantum correlation in noise channels, but also help to develop relevant 
practical applications.

Nonlocality, a distinctive feature that distinguishes the quantum world from the classical one, describes the 
ability of objects to perform “spooky action at a distance”. Quantum entanglement, quantum steering, and Bell 
nonlocality are three typical nonlocal quantum correlations that originate from the famous “EPR Paradox”1. 
In this paradox, Einstein, Podolski, and Rosen pointed out that there is a contradiction between local realism 
and the completeness of quantum mechanics. In response, Schrödinger introduced the concept of quantum 
steering2,3. To rule out the existence of the local hidden variable (LHV) model in the paradox, Bell provided an 
experimental criterion, called Bell inequality, in 19644. And the corresponding nonlocal correlation is called 
Bell nonlocality. Later, Clauser, Horne, Shimony, and Holt refined the Bell inequality to a more experimental-
friendly CHSH inequality5, opening an epoch of unrelenting exploration of nonlocal quantum correlations. In 
1989, Werner found a class of inseparable mixed states that exhibits nonlocal effects even though it cannot violate 
Bell’s inequality, which is defined as quantum entanglement6. Subsequently, a series of experimental criteria for 
entanglement were proposed7–10. Bell nonlocality and quantum entanglement have made great progress both 
theoretically and experimentally between 1964 and 2006. However, quantum steering has not attracted wide 
attention until 2007, when Wiseman et al. redefined it strictly and presented detecting criterion11. They point out 
that quantum steering denotes a quantum correlation cannot be reproduced in terms of LHV-LHS model, where 
“LHS” stands for “local hidden state”11. It is different from Bell nonlocality, which does not admit a LHV-LHV 
model, and quantum entangled, which cannot be described by a LHS-LHS model. The relationship between 
the above three kinds of nonlocal quantum correlations is that quantum steering stands between Bell nonlocal-
ity and quantum entanglement, and exhibits particular asymmetry12–16. These nonlocal quantum correlations 
are very important resources which have a vast range of information in quantum information tasks: quantum 
entanglement can be applied to quantum communication, quantum computing and quantum metrology17,18, 
quantum steering can be further used to deal with one-sided device-independent tasks19,20, Bell nonlocality can 
even be used for full device-independent tasks, such as quantum teleportation21, quantum key distribution22–25 
and quantum secure direct communication26–33.
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However, these nonlocal quantum correlations are very fragile and easily degraded by the unavoidable inter-
action between the system and its surrounding environment34. And the system–environment interactions can 
be described as quantum channels34. One of the simplest example is the amplitude damping (AD) channel, 
which is a prototype model of a dissipating interaction between the quantum system and its zero-temperature 
environment35. In general, the real physical environment is the thermal bath, and the dissipative interaction is 
represented as a generalized amplitude damping (GAD) channel35. In addition, including the effect of squeezing, 
the GAD channel can be further expanded to a squeezed generalized amplitude damping (SGAD) channel36. 
What’s more, taking the correlation time of the environment and the time between the uses of successive channels 
into consideration, the SGAD channel can be further divided into correlated and uncorrelated37–40.

In recent years, the influence of noise channels on the evolution of nonlocal quantum correlation has been 
widely studied41–43. However, most of them are either limited to one of the nonlocal quantum correlations or 
ignored the correlation and squeezing effects of quantum channels. In addition, it is essential to recover the 
nonlocal quantum correlations when destruction happens. Numerous methods have been proposed to improve 
the nonlocal quantum correlations quality, such as entanglement purification44–46, weak measurement(WM) 
and quantum measurement reversal (QMR)47–51. Especially, WM and QMR has been demonstrated to effectively 
overcome the degenerative influence of AD channel47–51. However, whether the destroyed nonlocal quantum 
correlations in the correlated SGAD channel can be recovered via local WM and QMR remains unknown.

In this paper, we investigate the effects of correlated SGAD channel on the decay of quantum entanglement, 
Bell nonlocality, and quantum steering, especially one-way steering. The strength of channel correlation, the 
parameter of thermal photons, and the degree of squeezing on the dynamics of concurrence, Bell parameter, 
and critical radius are analyzed by numerical examples. Then we study the resilience of local WM and QMR to 
the aforementioned nonlocal quantum correlations in uncorrelated and completely correlated SGAD channels, 
respectively. Our results show that the decoherence on nonlocal quantum correlations can be weakened by add-
ing correlation strength and squeezing degree or decreasing thermal photon parameter. And in both channels, 
nonlocal quantum correlations can be successfully recovered via WM and QMR. Moreover, in the completely 
correlated SGAD channel, the recovered correlation may be much stronger than their initial one. Different from 
entanglement and Bell nonlocality, the decay and revival of quantum steering are directional. The presented 
results provide useful references for applying nonlocal quantum correlations in noisy environments.

Result
Channel model and state dynamics.  The basic task of quantum information is to propagate quantum 
states from one observer to another through channels. In particular, we consider a scenario depicted in Fig. 1a 
where a two-qubit entangled state ρAB is distributed to Alice and Bob through a correlated SGAD channel with 
the correlation strength µ ∈ [0, 1] . Usually, a quantum channel ε is defined mathematically as a completely posi-
tive trace-preserving (CPTP) linear map on input state ρAB . And the output state ε(ρAB) can be expressed as

Figure 1.   (Color online) (a) Evolution of nonlocal quantum correlations in noise channel. Two-qubit system 
state ρAB are sent to Alice and Bob through a correlated SGAD channel ε . Decoherence in the quantum channel 
weakens the nonlocal quantum correlations of the output state between Alice and Bob ε(ρAB) . (b) Recovering 
nonlocal quantum correlation from decoherence. The weakening of nonlocal quantum correlations caused by 
correlated SGAD channel can be recovered by sequentially performing local WM and QMR on the subsystem 
state before and after they undergo the channel.
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where εU and εC denote uncorrelated and completely correlated channel, respectively.
In the operator-sum representation, the uncorrelated SGAD channel maps the input state ρAB to εU (ρAB) , 

which can be expressed as

In this case, the kraus operator UAi ,Bj = uAi ⊗ uBj is a product of two local kraus operators uAi and uBj . The 
nonzero matrix elements uxyAi

 and uxyBj  of uAi and uBj in the x-th row and the y-th column are52,53

where g = e−�t , q = cosh(m�t) , and r = sinh(m�t) . � is the dissipation rate, which is associated with the 
spontaneous emission at zero temperature54. In our work, we set � = 1 . n is associated with the thermal photons, 
m is the squeezing degree which satisfies m < n+ 1/2 . Especially, SGAD channel reduces to GAD channel when 
m = 0 , and further to AD channel when m = n = 0.

Similarly, after the completely correlated SGAD channel, the output state εC(ρAB) can be expressed as

The nonzero matrix elements Cxy
k  of the kraus operators Ck in the x-th row and the y-th column are52,53

To investigate the effect of correlated SGAD channel on the behavior of quantum entanglement, Bell non-
locality, and quantum steering, especially the steering direction, we consider a class of one-way steering state

where |ψ(θ)� = cos(θ)|11� + sin(θ)|00� , ρθ
B = TrA[|ψ(θ)��ψ(θ)|] denotes the reduced state of Bob. It has been 

demonstrated that for θ ∈ [0,π/4] and cos2(2θ) �
2p− 1

(2− p)p3
 , Bob is not capable of steering Alice; however, Alice 

can steer Bob for p > 1/255. Note that nonlocal quantum correlations are very fragile and easily destroyed by 
noise channels. In the following two subsections, we chose a two-way steerable initial state from Eq. (6) with 
p = 0.85 and θ = 0.4 as an example to discuss the behavior of the aforementioned quantum correlations.
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Submitting Eq. (6) to Eq. (1), one can get the output state ε(ρAB) after the correlated SGAD quantum channel, 
whose density matrix is X-type (see more details in the section I of Supplementary Information). Here, we adopt 
the generalized concurrence C, Bell parameter B and steering radii RAB as well as RBA as the measure of entangle-
ment, Bell nonlocality, the steerability from Alice to Bob and the steerability from Bob to Alice, respectively (see 
more details in the section of “Methods”).

Decay effects.  First, we investigated the effect of channel correlation strength µ on the performance of 
nonlocal quantum correlations. The thermal photon parameter n and squeezing degree m are set to zero, which 
means that the correlated SGAD channel acts as the correlated AD channel. The results for a two-way steerable 
state in the form of Eq. (6) with p = 0.85 and θ = 0.4 are shown in Fig. 2. Here, quantum entanglement, Bell 
nonlocality and quantum steerability are quantified by concurrence C, Bell parameter B and steering radii RAB 
as well as RBA , respectively. Their definitions are presented in the section of “Methods”. The evolution of C, B 
as well as RAB and RBA are plotted for three values of channel correlation strength: µ = 0 (red lines), µ = 0.5 
(green lines) and µ = 1.0 (blue lines). Obviously, with the increase of µ , the decay rate of concurrence C, Bell 
parameter B, and steering radii R slow down, indicating that correlated channel can protect nonlocal quantum 
correlations to a certain extent. For a fixed correlation strength µ , steering radii RAB and RBA decay faster than 
concurrence C, and slower than Bell parameter B. The result again demonstrates that quantum steering is a cor-
relation stronger than quantum entanglement, but weaker than bell nonlocality. Unlike C, which decays mono-
tonically with increasing decoherence time t, B, RAB and RBA decrease first and then increase. The sudden change 
and revival phenomenon shown in Fig. 2b,c is due to AD noise decreasing the amplitude of excited state. As the 
AD channel strength increases, more qubits transition from excited state to ground state, and finally, the initial 
entangled mixed state decays into a separable pure ground state. Bell nonlocality and steerability can enhanced 
to some certain, but they cannot exceed the classical bound. And the increase of channel correlation strength µ 
can slow down the transition of qubits from excited state to ground state in the AD channel, thus affecting the 
sudden change and revival behavior. In addition, RAB increases faster than RBA . When µ increases to 1, thought 
RAB > RBA at t = 0 , it changes to RAB < RBA once t > 0.5 . Especially, in the range of t ∈ [1.6, 2.5] , only Bob can 
steer Alice. It is worth noting that the one-way steerability from Bob to Alice is absent for the initial state ρAB 
in the form of Eq. (6). To clarify this interesting phenomenon, we further respectively calculated the purity of 
Alice’s reduced state ( PA = Tr[ρ2

A] ) and that of Bob’s reduced state ( PB = Tr[ρ2
B])56, where ρA = TrB[ε(ρAB)] 

and ρB = TrA[ε(ρAB)] . As shown in Fig. 2d, the decay trend of state purity is highly consistent with that of 
steerability. This is because, in the two-qubit system, the more entangled the composite state is, the more mixed 
the subsystem state is. Surprisingly, we found that as the decoherence time increases, the purity of the current 
reduced state can be increased to a larger value than that of the initial reduced state.

Then we show how thermal field photon number n affects the decay of quantum entanglement, Bell nonlo-
cality, and quantum steering. Here, the squeezing parameter m is still equal to zero. The corresponding results 

Figure 2.   (Color online) Effect of channel correlation strength µ on the decay of nonlocal quantum correlations 
when m = n = 0 . (a) Concurrence C as a function of decoherence time t for different µ . (b) Bell parameters B 
as a function of decoherence time t for different µ . (c) Critical radii RAB and RBA as a function of decoherence 
time t for different µ . (d) Purities PA and PB as a function of decoherence time t when µ = 1.
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are depicted in Fig. 3. Clearly, the thermal field photon number has a significant promotion effect on the decay 
of quantum nonlocal correlation. As shown in Fig. 3a–c, for both uncorrelated ( µ = 0 ) and completely cor-
related ( µ = 1 ) channel, quantum entanglement, Bell nonlocality, and quantum steering disappear faster with 
the increase of n. When µ = 1 , as n increases from 0 to 1, the survival time of quantum entanglement decreases 
from t = 4.8 to t = 1.6 , and when µ = 0 , it decreases from t = 0.4 to t = 0.08 , a little faster than former case. 
And the decay trend of quantum steering and Bell nonlocality is similar, except that the decay speed increases in 
turn. The evolutions of the reduced states’ purities for different n and µ are shown in Fig. 3d. It is also consistent 
with the decay trend of quantum steering shown in Fig. 3c. However, different to Fig. 2d, the purity at t > 0 can 
not be larger than its original value when n = 1.

Finally, we analyzed the effect of squeezing degree m on the evolution of nonlocal quantum correlations. To 
satisfy m < n+ 1/2 , we set n = 1 , the correlation survival time is limited to the case of m = 1.5 . Here, we change 
m from 0 to 1.4. As shown in the Fig. 4a, when the correlation strength µ is small, the effect of m is not obvious, 
so we set µ = 1 in subsequent calculations. Figure 4b clearly shows that increasing m can prolong the survival 
time of quantum entanglement in noise channel. And the increased rate of survival time decreases, which is same 
as the effect of increasing µ . When m = 1.4 , quantum entanglement can still survive when t reaches 25, which is 
about 15 times longer than the case of m = 0 . It clearly shows the advantage of the squeeze effect. As illustrated 
in Fig. 4c, the sudden death of entanglement in the completely correlated SGAD channel is later than that in the 
completely correlated AD and completely correlated GAD channels. This squeeze-induced protection can also 
be observed in Bell nonlocality and quantum steering, see Fig. 4d,e for more clarity. Different from the first two 
cases, even m takes a different value, RAB and RBA increase to be equal at the same decoherence time. Figure 4f 
is an enlarged view of Fig. 4e when t ∈ [0, 0.5] , the black line t = 0.37 denotes the time when RAB = RBA , which 
does not depend on m.

Revival effects.  As mentioned above, using correlated or squeezed channels, nonlocal quantum correla-
tions can be prevented from decoherence, but cannot be recovered. In this section, we will show how to recover 
the disappeared nonlocal quantum correlations via WM and QMR.

The scheme is depicted in Fig. 1b. Before the system qubits undergo the correlated SGAD channel, they are 
subject to WM locally, which partially collapses them towards a state that is less vulnerable to decoherence. The 
two-qubit local WM is an unsharp measurement, which can be expressed as

Figure 3.   (Color online) Effect of thermal photon parameter n on the decay of nonlocal quantum correlations 
when m = 0 . (a) Concurrence C as a function of decoherence time t for different n and µ . (b) Bell parameters 
B as a function of decoherence time t for different n and µ . (c) Critical radii RAB and RBA a function of 
decoherence time t for different n and µ . (d) Purities PA and PB as a function of decoherence time t when µ = 1 
for different n and µ.
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where h is the strength of WM. After the correlated SGAD channel, local QMR is respectively operated on the 
subsystem. And the two-qubit local QMR operation can also be expressed as

where hr is the strength of QMR. After WM, correlated SGAD channel and QMR, the final state ρwr can be 
expressed as

Clearly, it is an X-type state, see more details in the section II of Supplementary Information. And the con-
currence, Bell parameter, and critical radius can be obtained from Eqs. (10)–(12) by replacing ε(ρAB) with ρwr

AB.
First, we investigate the effect of WM and QMR on the revival of nonlocal quantum correlations in the pres-

ence of a completely uncorrelated SGAD channel, i.e., u = 0 . The rest channel parameters are set as m = n = 1 
and t = 0.2 . After passing through the channel, all the three types of nonlocal quantum correlations of the output 
state ε(ρAB) disappear. Figure 5a–c shows how C, B and RAB behave by employing WM and QMR. The relation-
ship of RAB , h and hr is presented in section II in Supplementary Information. The regions enclosed by C = 0 , 
B = 2 , RAB = 1 and RBA = 1 represent the existence of quantum entanglement, Bell nonlocality, Alice to Bob 
steering, and Bob to Alice steering, respectively.

Obviously, with some appropriate measurement strengths, the disappeared nonlocal quantum correlations 
can be recovered except for Bell nonlocality. For example, quantum entanglement reappears in the region of 
h ∈ [0.17, 0.87] and hr ∈ [0, 0.99] , C reaches the maximum value 0.137 when h = 0.69 and hr = 0.46 . Combining 
Fig. 5c and Fig. R1(a) in the section IIIof Supplementary Information, we can obtain different kinds of steering 
regions. As shown in Fig. 5d, the states located in regions labeled 1–4 are, in turn, no-way steering, only Alice 
can steer Bob, two-way steering and only Bob can steer Alice. By flexibly tuning h and hr, the steerability of ρwr

AB 
can vary among no-way steering, one-way steering, and two-way steering.

To recover the disappeared Bell nonlocality, we further take the completely correlated SGAD channel into 
consideration. For comparison with the uncorrelated channel, the channel parameters m, n, and t are same 
as above. As shown in Fig. 6a–c, there are some regions that satisfy C > 0 , B > 0 , and RAB < 1 , respectively, 
which indicates that WM and QMR can effectively recover the corresponding types of nonlocal quantum cor-
relations. Interestingly, we found a super-recover phenomenon, that is, with the optimal WM and QMR, C 
can recover to the maximum value of 0.68, which is about 17% higher than the concurrence of the initial state 
ρAB(p = 0.85, θ = 0.4) . In addition, the value of B can be 10 percent larger than the classical bound. Though 
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Figure 4.   (Color online) Effect of squeezing degree m on the decay of nonlocal quantum correlations when 
µ = n = 1 . (a) The effect of m on quantum entanglement when µ = 0 . (b) Concurrence C as a function 
of decoherence time t for different m. (c) The evolution of Concurrence C under completely correlated AD 
( µ = 1,m = n = 0 ), GAD ( µ = 1,m = 0, n = 1 ) and SGAD ( µ = 1,m = 1.4, n = 1 ) channels. (d) Bell 
parameters B as a function of decoherence time t for different m. (e) Critical radii RAB and RBA are a function 
of decoherence time t for different m. (f) The enlarged view of Fig. 4e when t ∈ [0, 0.5] , the black line t = 0.37 
denotes the time when RAB = RBA.
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two-way steering can be observed over the full ranges of h and hr, the relative steerability of Alice and Bob can be 
changed by tuning h or hr. As shown in Fig. 6c and Fig. R1(b) in the section III of Supplementary Information, 
when h and hr are on the left side of the red curve, the steerability of Bob is larger than that of Alice. However, 
when they are on the right side, the result is just the opposite. We also investigated the effect of WM and QMR 
on the relative purity of the reduced state �P = PA − PB , the result is shown in Fig. 6d. Clearly, when h and hr 
are located on the left of the �P = 0 , PA > PB , otherwise, PA < PB . Their results are consistent with the change 
of steerability.

Conclusion
To summarize, we have investigated the decay of quantum entanglement, Bell nonlocality, and quantum steer-
ing under the correlated SGAD channel. These nonlocal quantum correlations are quantified by concurrence 
C, Bell parameter B, critical radii RAB and RBA , respectively. We mainly analyze the roles of channel correlation 
strength µ , the thermal photon parameter n, and the squeezing degree m. The results show the effects of correla-
tion and squeezing reduce decoherence, however, the effect of thermal photon increases decoherence. And as 
the increase of µ and m or the decrease of n, the change of the decrease speed of C and B as well as the change of 
the increased speed of RAB and RBA become large. What’s more, RAB changes faster than RBA , and a new one-way 
steering scenario from Bob to Alice appears.

Then we propose a scheme that utilizes local WM and QMR to revive nonlocal quantum correlations after 
decay occurs. By adjusting the strengths of WM and QMR, quantum entanglement, Bell nonlocality, and quan-
tum steering can be recovered or even enhanced, especially in the completely correlated SGAD channel. This 
finding also opens up the possibility of developing optimal WM and QMR to perfectly distinguish uncorrelated 
transition from correlated transition.

It should be noted that whether in the process of decay or revival, the changes of C, RBA , RAB and B slowed 
down in turn, which indicates that quantum steering is a state property that is more restrictive than quantum 
entanglement, and yet more general than Bell nonlocality. And the steering direction can be manipulated flexibly 
by adjusting the parameters of noise channel or the strengths of WM and QMR. The presented results provide 
useful references for understanding nonlocal quantum correlation properties of quantum state which interacts 

Figure 5.   (Color online) Revival effects of nonlocal quantum correlations in uncorrelated SGAD channel 
( µ = 0 ). (a) The contour plot of concurrence C. (b) The contour plot of Bell parameter B. (c) The contour plot 
of critical radius RAB . (d) The steering regions are parameterized by h and hr. h and hr represent the strength of 
WM and QMR, respectively.
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with noise environment, and also have potential applications in asymmetric quantum information processing 
exploiting quantum steering as a valuable resource.

Methods
In this paper, quantum entanglement, Bell nonlocality, and quantum steering are quantified by concurrence, Bell 
parameter, and critical radius, respectively. It is easy to show that after the correlated SGAD quantum channel, 
the initial state shown in Eq. (6) evolves to an X-type state (see more details in the section I of Supplementary 
Information). The concurrence of the X-type output state ε(ρAB) can be expressed as57

where c1 = |ε(ρAB)14| −
√
ε(ρAB)22ε(ρAB)33 , c2 = |ε(ρAB)23| −

√
ε(ρAB)11ε(ρAB)44 , ε(ρAB)ij is the matrix ele-

ment of ε(ρAB) . And ε(ρAB) is entangled if C > 0.
And the Bell nonlocality can be tested by violating the Bell Clauser–Horne–Shimony–Holt (Bell-CHSH) 

inequality58–60. The Bell parameter of the X-type output state ε(ρAB) can be expressed as

where b1 = 4(|ε(ρAB)14| + |ε(ρAB)23|)2 ,  b2 = 4(|ε(ρAB)14| − |ε(ρAB)23|)2 ,  b3 = (ε(ρAB)11 − ε(ρAB)22− 
ε(ρAB)33 + ε(ρAB)44)

2 . The state ε(ρAB) is Bell nonlocal if B > 2.
To capture the one-way steering, the steerability is quantified by the critical radius, which represents a neces-

sary and sufficient steering criterion. The critical radius from Alice to Bob is defined as61–63

where ρη = ηε(ρAB)+ (1− η)IA/2⊗ ρB , ρB = TrA[ε(ρAB)] denotes the reduced state of Bob. Geometri-
cally, 1− RAB measures the distance from ε(ρAB) to the surface of unsteerable or steerable states relatively to 
(IA ⊗ ρB)/2

61–63. The steering task from Alice to Bob is successful if RAB < 1 . Otherwise, the task fails if RAB ≥ 1 . 
Similarly, the steerability from Bob to Alice can be quantified by the critical radius RBA.
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}

,

(12)RAB = max
η

{η > 0 : ρη
AB is unsteerable},

Figure 6.   (Color online) Revival effects of nonlocal quantum correlations in completely correlated SGAD 
channel ( µ = 1 ). (a) The contour plot of concurence C. (b) The contour plot of Bell parameter B. (c) The 
contour plot of critical radius RAB . (d) The contour plot of relative purity �P = PA − PB . h and hr represent the 
strength of WM and QMR, respectively.
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